

The PowerShell Scripting and Toolmaking
Book
Forever Edition

Don Jones and Jeff Hicks

This book is for sale at http://leanpub.com/powershell-scripting-toolmaking

This version was published on 2022-01-29

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2017 - 2022 Don Jones and Jeff Hicks

http://leanpub.com/powershell-scripting-toolmaking
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Don Jones and Jeff Hicks by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I got The #PowerShell #Toolmaking book http://leanpub.com/powershell-scripting-toolmaking
@JeffHicks & @concentrateddon

The suggested hashtag for this book is #PowerShellToolmaking.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#PowerShellToolmaking

http://twitter.com
https://twitter.com/intent/tweet?text=I%20got%20The%20%23PowerShell%20%23Toolmaking%20book%20http://leanpub.com/powershell-scripting-toolmaking%20@JeffHicks%20&%20@concentrateddon
https://twitter.com/intent/tweet?text=I%20got%20The%20%23PowerShell%20%23Toolmaking%20book%20http://leanpub.com/powershell-scripting-toolmaking%20@JeffHicks%20&%20@concentrateddon
https://twitter.com/search?q=%23PowerShellToolmaking
https://twitter.com/search?q=%23PowerShellToolmaking

Also By These Authors
Books by Don Jones
Become Hardcore Extreme Black Belt PowerShell Ninja Rockstar

Instructional Design for Mortals

How to Find a Wolf in Siberia

Tales of the Icelandic Troll

The Culture of Learning

Alabaster

Power Wave

Onyx

Superior Wave

Shell of an Idea

Verdant

Books by Jeff Hicks
The PowerShell Practice Primer

The PowerShell Conference Book

#PS7Now

http://leanpub.com/u/donjones
http://leanpub.com/become-powershell
http://leanpub.com/id-for-mortals
http://leanpub.com/troubleshooting
http://leanpub.com/icelandic-troll
http://leanpub.com/culture-of-learning
http://leanpub.com/alabaster
http://leanpub.com/powerwave
http://leanpub.com/onyx
http://leanpub.com/superiorwave
http://leanpub.com/shell-of-an-idea
http://leanpub.com/verdant
http://leanpub.com/u/jeffhicks
http://leanpub.com/psprimer
http://leanpub.com/powershell-conference-book
http://leanpub.com/ps7now

Contents

About This Book . i

Dedication . iii

Acknowledgements . iv

About the Authors . v
Additional Credits . v

Foreword . vi

Feedback . viii

Introduction . ix
Pre-Requisites . ix
Versioning . ix
The Journey . x
Following Along . x
Providing Feedback . x

A Note on Code Listings . xi

Lab Setup . xiii
Create a Virtualized Environment . xiii
Use the Windows 10 Sandbox . xiii
Adding Lab Files and Configuring PowerShell . xiii
Assumptions Going Forward . xiv

Part 1: Review PowerShell Toolmaking . 1

Functions, the Right Way . 2
Tool Design . 2
Start with a Command . 2
Build a Basic Function and Module . 3
Adding CmdletBinding and Parameterizing . 3
Emitting Objects as Output . 3

CONTENTS

Using Verbose, Warning, and Informational Output . 4
Comment-Based Help . 4
Handling Errors . 4
Are You Ready . 4

PowerShell Tool Design . 5
PowerShell Tools Do One Thing . 5
PowerShell Tools are Testable . 5
PowerShell Tools are Flexible . 6
PowerShell Tools Look Native . 7
An Example . 8
Your Turn . 10
Let’s Review . 12

Start with a Command . 13
Your Turn . 14
Let’s Review . 15

Build a Basic Function and Module . 17
Start with a Basic Function . 17
Create a Script Module . 21
Pre-Req Check . 22
Running the Command . 23
Your Turn . 23
Let’s Review . 26

Adding CmdletBinding and Parameterizing . 27
About CmdletBinding and Common Parameters . 27
Accepting Pipeline Input . 29
Mandatory-ness . 32
Parameter Validation . 33
Parameter Aliases . 34
Your Turn . 35
Let’s Review . 36

Emitting Objects as Output . 38
Assembling the Information . 38
Constructing and Emitting Output . 40
A Quick Test . 41
Your Turn . 42
Let’s Review . 45

An Interlude: Changing Your Approach . 47
The Critique . 48

CONTENTS

Our Take . 48
Summary . 51

Using Verbose, Warning, and Informational Output . 53
Knowing the Six Channels . 53
Adding Verbose and Warning Output . 54
Doing More With Verbose . 56
Informational Output . 60
Your Turn . 66
Let’s Review . 71

Comment-Based Help . 72
Where to Put Your Help . 72
Getting Started . 72
Going Further with Comment-Based Help . 76
Broken Help . 77
Your Turn . 77
Let’s Review . 81

Handling Errors . 82
Understanding Errors and Exceptions . 82
Bad Handling . 83
Two Reasons for Exception Handling . 84
Handling Exceptions in Our Tool . 84
Handling Exceptions for Non-Commands . 87
Going Further with Exception Handling . 87
Deprecated Exception Handling . 88
Your Turn . 88
Let’s Review . 96

Basic Debugging . 97
Two Kinds of Bugs . 97
The Ultimate Goal of Debugging . 98
Developing Assumptions . 98
Debugging Tool 1: Write-Debug . 99
Debugging Tool 2: Set-PSBreakpoint . 105
Debugging Tool 3: The PowerShell ISE . 111
Debugging Tool 4: VS Code . 112
Your Turn . 112
Let’s Review . 116

Verify Yourself . 118
The Transcript . 118
Our Read-Through . 120

CONTENTS

Our Answer . 122
How’d You Do . 124

Part 2: Professional-Grade Toolmaking . 125

Going Deeper with Parameters . 126
Parameter Position . 126
Validation . 130
Multiple Parameter Sets . 131
Value From Remaining Arguments . 133
Help Message . 133
Alias . 133
More CmdletBinding . 134
A Demonstration . 134
Your Turn . 137
Let’s Review . 144

Advanced Function Tips and Tricks . 145
Defining an Alias . 145
Specify Output Type . 145
Adding Labels . 147
Use Your Command Name Programmatically . 148
ArgumentCompleter . 149

Dynamic Parameters . 150
Declaring Dynamic Parameters . 151
Using Dynamic Parameters . 153
Let’s Review . 154

Writing Full Help . 155
External Help . 155
Using Platyps . 157
Supporting Online Help . 164
“About” Topics . 165
Making Your Help Updatable . 167
Your Turn . 168
Let’s Review . 169

Unit Testing Your Code . 170
Starting Point . 170
Sketching Out the Test . 171
Making Something to Test . 172
Expanding the Test . 173
But Wait, There’s More . 176

CONTENTS

Your Turn . 176
Let’s Review . 178

Extending Output Types . 179
Understanding Types . 179
The Extensible Type System . 179
Extending an Object . 180
Using Update-TypeData . 186
Next Steps . 188

Advanced Debugging . 189
Getting Fancy with Breakpoints . 189
Getting Strict . 190
Getting Remote . 192
Let’s Review . 193

Command Tracing . 194
Getting in PowerShell’s Brain . 194

Analyzing Your Script . 197
Performing a Basic Analysis . 197
Analyzing the Analysis . 198
Your Turn . 198

Controlling Your Source . 201
The Process . 201
Tools and Technologies . 202
Let’s Review . 204

Converting a Function to a Class . 206
Class Background . 206
Starting Point . 209
Doing the Design . 211
Making the Class Framework . 211
Coding the Class . 212
Adding a Method . 215
Making Classes Easy To Use . 217
Wrapping Up . 220

Publishing Your Tools . 221
Begin with a Manifest . 221
Publishing to PowerShell Gallery . 225
Publishing to Private Repositories or Galleries . 226
Your Turn . 227
Let’s Review . 227

CONTENTS

Part 3: Controller Scripts and Delegated Administration . 229

Basic Controllers: Automation Scripts and Menus . 230
Building a Menu . 230
Using UIChoice . 231
Writing a Process Controller . 233
Your Turn . 234
Let’s Review . 235

Graphical Controllers in WPF . 236
Design First . 236
WinForms or WPF . 236
WPF Architecture . 237
Using .NET . 238
Using XAML . 244
A Complete Example . 247
Just the Beginning . 250
Recommendations . 250
Your Turn . 251
Let’s Review . 254

Proxy Functions . 255
For Example . 255
Creating the Proxy Base . 255
Modifying the Proxy . 258
Adding or Removing Parameters . 261
Your Turn . 262
Let’s Review . 264

Just Enough Administration: A Primer . 266
Requirements . 266
Theory of Operation . 267
Roles . 267
Endpoints . 270
Let’s Review . 274

PowerShell in ASP.NET: A Primer . 275
Caveats . 275
The Basics . 275
Beyond ASP.NET . 276

Part 4: The Data Connection . 277

Working with SQL Server Data . 278
SQL Server Terminology and Facts . 278

CONTENTS

Connecting to the Server and Database . 279
Writing a Query . 280
Running a Query . 284
Invoke-Sqlcmd . 285
Thinking About Tool Design Patterns . 286
Let’s Review . 286
Review Answers . 286

Working with XML Data . 287
Simple: CliXML . 287
Importing Native XML . 288
ConvertTo-Xml . 293
Creating native XML from scratch . 295
Your Turn . 298
Let’s Review . 299

Working with JSON Data . 301
Converting to JSON . 303
Converting from JSON . 306
Your Turn . 310
Let’s Review . 313

Working With CSV Data . 314
I Want to Script Microsoft Excel . 314
Know Your Data . 314
Custom Headers . 315
Importing Gotchas . 317
Your Turn . 318
Let’s Review . 321

Part 5: Seriously Advanced Toolmaking . 322

Tools for Toolmaking . 323
Editors . 323
3rd Party . 325
PowerShell Community Modules . 326
Books, Blogs and Buzz . 327
Recommendations . 327

Measuring Tool Performance . 329
Is Performance Important . 329
Measure What’s Important . 329
Factors Affecting Performance . 331
Key Take-Away . 333

CONTENTS

PowerShell Workflows: A Primer . 334
Terminology . 334
Theory of Execution . 335
A Quick Illustration . 336
When to Workflow . 341
Sequences and Parallels are Standalone Scopes . 342
Workflow Example . 342
Workflow Common Parameters . 343
Checkpointing Workflows . 344
Workflows and Output . 345
Your Turn . 345
Let’s Review . 347

Globalizing Your Tools . 349
Starting Point . 349
Make a Data File . 351
Use the Data File . 352
Adding Languages . 354
Defaults . 355
Let’s Review . 355

Using “Raw” .NET Framework . 356
Understanding .NET Framework . 356
Interpreting .NET Framework Docs . 357
Coding .NET Framework in PowerShell . 358
Loading Assemblies . 359
Wrap It . 360
Your Turn . 361
Let’s Review . 363

Scripting at Scale . 364
To Pipeline or not . 365
Foreach vs ForEach-Object . 368
Write-Progress . 368
Leverage Remoting . 373
Leverage Jobs . 377
Leverage Runspaces . 379
Design Considerations . 382
Your Turn . 383
Let’s Review . 387

Scaffolding a Project with Plaster . 388
Getting Started . 388
Plaster Fundamentals . 389

CONTENTS

Invoking a Plaster Template . 389
Creating a Plaster Module Template . 392
Creating a Plaster Function Template . 401
Integrating Plaster into your PowerShell Experience . 407
Creating Plaster Tooling . 412

Adding Auto Completion . 417
ValidateSet . 417
Argument Completer Attribute . 417
Advanced Argument Completers . 418
Your Turn . 422
Let’s Review . 424

Adding Custom Formatting . 425
Format.ps1xml . 426
Define a TypeName . 428
Defining a View Definition . 429
Update-FormatData . 431
New-PSFormatXML . 431
Adding to a Module . 434
Your Turn . 435
Let’s Review . 439

Adding Logging . 440
Why Are You Logging . 440
Logging or Transcript . 440
Structured vs Unstructured . 442
Write-Information . 442

Toolmaking Tips and Tricks . 446
Format Code . 449

Part 6: Pester . 451

Why Pester Matters . 452

Core Pester Concepts . 455
Installing Pester . 455
What is Pester . 456
Pester’s Weak Point . 456
Understand Unit Testing . 457
Scope . 458
Sample Code . 458
New-Fixture . 459

CONTENTS

Writing Testable Code . 461

What to Test . 463

Describe Blocks . 464

Context Blocks . 466
BeforeEach and AfterEach . 466

It Blocks . 468

Should and Assertions . 471
Should Operators . 472

Mocks . 474
Where to Mock . 475
How to Mock . 475
Verifiable Mocks . 476
Parameter Filters . 476
Mocking the Unmockable . 477

Pester’s TESTDRIVE . 478
Clean Slate and Auto-Cleanup . 478
Working with Sample Data . 478
Using TESTDRIVE . 479

Pester for Infrastructure Validation . 482
Spinning Up the Validation Environment . 482
Taking Actual Action . 483
Testing the Outcomes of Your Actions . 483

Measuring Code Coverage . 484
Displaying Code Coverage Metrics . 484
An Example . 485

Test-Driven Development . 489

Part 7: PowerShell 7 Scripting . 490

PowerShell 7 Scripting Features . 491
Updating Your Editor . 491
Ternary Operators . 492
Chain operators . 493
Null-Coalescing Assignment . 495
Null Conditional Operators . 496
ForEach-Object Parallel . 497

CONTENTS

Using ANSI . 498

Cross Platform Scripting . 501
Know Your OS . 501
State Your Requirements . 502
Testing Variables . 502
Environment Variables . 504
Paths . 504
Watch Your Aliases . 505
Leverage Remoting . 506
Custom Module Manifests . 513

Wish List . 515

Release Notes . 516

About This Book
The ‘Forever Edition’ of this book is published on LeanPub¹, an “Agile” online publishing platform.
That means the book is published as we write it, and that means we’ll be able to revise it as needed in
the future. We also appreciate your patience with any typographical errors, and we appreciate you
pointing them out to us - in order to keep the book as “agile” as possible, we’re forgoing a traditional
copyedit. Our hope is that you’ll appreciate getting the technical content quickly, and won’t mind
helping us catch any errors we may have made. You paid a bit more for the book than a traditional
one, but that up-front price means you can come back whenever you like and download the latest
version. We plan to expand and improve the book pretty much forever, so it’s hopefully the last one
you’ll need to buy on this topic!

You may also find this book offered on traditional booksellers like Amazon. In those cases, the book
is sold as a specific edition, such as “Second Edition.” These represent a point-in-time snapshot of
the book, and are offered at a lower price than the Agile-published version. These traditionally
published editions do not include future updates.

If you purchased this book, thank you. Know that writing a book like this takes hundreds of hours
of effort, during which we’re not making any other income. Your purchase price is important to
keeping a roof over our families’ heads and food on our tables. Please treat your copy of the book as
your own personal copy - it isn’t to be uploaded anywhere, and you aren’t meant to give copies to
other people. We’ve made sure to provide a DRM-free file (excepting any DRM added by a bookseller
other than LeanPub) so that you can use your copy any way that’s convenient for you.We appreciate
your respecting our rights and not making unauthorized copies of this work.

If you got this book for free from someplace, know that you are making it difficult for us to write
books. When we can’t make even a small amount of money from our books, we’re encouraged to
stop writing them. If you find this book useful, we would greatly appreciate you purchasing a copy
from LeanPub.com or another bookseller. When you do, you’ll be letting us know that books like
this are useful to you, and that you want people like us to continue creating them.

Please note that this book is not authorized for classroom use unless a unique copy has been
purchased for each student. No-one is authorized or licensed to manually reproduce the PDF
version of this book for use in any kind of class or training environment.

¹https://leanpub.com

https://leanpub.com/
https://leanpub.com/

About This Book ii

This book is copyrighted (c)2017-2020 by Don Jones and Jeffery Hicks, and all rights are reserved.
This book is not open source, nor is it licensed under a Creative Commons license. This book is not
free, and the authors reserve all rights.

Dedication
This book is fondly dedicated to the many hardworking PowerShell users who have, for more than
a decade, invite us into their lives through our books, conference appearances, instructional videos,
live classes, and more. We’re always humbled and honored by your support and kindness, and you
inspire us to always try harder, and to do more. Thank you.

Acknowledgements
Thanks to Michael Bender, who has selflessly provided a technical review of the book. Any
remaining errors are, of course, still the authors’ fault, but Michael has been tireless in helping
us catch many of them.

About the Authors
Don Jones received the Microsoft MVP Award recipient for 16 consecutive years for his work with
Windows PowerShell and administrative automation. He has authored dozens of books, articles,
white papers, and instructional videos on information technology, and today is a Vice President
in the Content team at Pluralsight.com. Don was also a co-founder of The DevOps Collective²,
which offers IT education programs, scholarships, and which runs PowerShell.org and PowerShell
+ DevOps Global Summit³ and other DevOps- and automation-related events.

Don’s recent writing focuses on business, instructional design, self-improvement, and fiction, and
can be found at http://leanpub.com/u/donjones⁴. You can follow Don on Twitter @concentratedDon.
He blogs at DonJones.com.

Jeff Hicks is a grizzled IT veteran with almost 30 years of experience, much of it spent as an
IT infrastructure consultant specializing in Microsoft server technologies with an emphasis in
automation and efficiency. He is a multi-year recipient of the Microsoft MVP Award. He works
today as an independent author, teacher and consultant. Jeff has taught and presented on PowerShell
and the benefits of automation to IT Pros worldwide for over a decade. Jeff has authored and co-
authored a number of books, writes for numerous online sites, is a Pluralsight author, and a frequent
speaker at technology conferences and user groups world-wide.

You can keep up with Jeff on Twitter (@JeffHicks) and on his blog at https://jdhitsolutions.com⁵.

Additional Credits

Technical editing has been helpfully provided not only by our readers, but by Michael Bender. We’re
grateful to Michael for not only catching a lot of big and little problems, but for fixing most of them
for us. Michael rocks, and you should watch his Pluralsight videos. However, anything Michael
didn’t catch is still firmly the authors’ responsibility.

²https://devopscollective.org
³https://events.devopscollective.org/
⁴http://leanpub.com/u/donjones_
⁵https://jdhitsolutions.com

https://devopscollective.org/
https://events.devopscollective.org/
https://events.devopscollective.org/
http://leanpub.com/u/donjones_
https://jdhitsolutions.com/
https://devopscollective.org/
https://events.devopscollective.org/
http://leanpub.com/u/donjones_
https://jdhitsolutions.com/

Foreword
After the success of Learn PowerShell in a Month of Lunches, Jeff and I wanted to write a book that
took people down the next step, into actual scripting. The result, of course, was Learn PowerShell
Toolmaking in a Month of Lunches. In the intervening years, as PowerShell gained more traction
and greater adoption, we realized that there was a lot more of the story that we wanted to tell. We
wanted to get into help authoring, unit testing, andmore.Wewanted to cover working with different
data sources, coding in Visual Studio, and so on. These were really out of scope for the Month of
Lunches series’ format. And even in the “main” narrative of building a proper tool, we wanted to go
into more depth. So while theMonth of Lunches book was still a valuable tutorial in our minds, we
wanted something with more tooth.

At the same time, this stuff is changing really fast these days. Fast enough that a traditional
publishing process - which can add as much as four months to a book’s publication - just can’t keep
up. Not only are we kind of constantly tweaking our narrative approach to explaining these topics,
but the topics themselves are constantly evolving, thanks in part to an incredibly robust community
building add-ons like Pester, Platyps, and more.

So after some long, hard thinking, we decided to launch this effort. As an Agile-published book on
LeanPub, we can continuously add new content, update old content, fix the mistakes you point out
to us, and so on. We can then take major milestones and publish them as “snapshots” on places like
Amazon, increasing the availability of this material. We hope you find the project as exciting and
dynamic as we do, and we hope you’re generous with your suggestions - which may be sent to us
via the author contact form from this book’s page on LeanPub.com. We’ll continue to use traditional
paper publishing, but through a self-publishing outlet that doesn’t impose as much process overhead
on getting the book in print. These hard copy editions will be a “snapshot” or “milestone edition” of
the electronic version.

It’s important to know that we still think traditional books have their place. PowerShell Scripting in
a Month of Lunches, the successor to Learn PowerShell Toolmaking in a Month of Lunches, covers
the kind of long-shelf-life narrative that is great for traditionally published books. It’s an entry-level
story about the right way to create PowerShell tools, and it’s very much the predecessor to this book.
If Month of Lunches is about getting your feet under you and putting them on the right path, this
book is about refining your approach and going a good bit further on your journey.

Toolmaking, for us, is where PowerShell has always been headed. It’s the foundation of a well-de-
signed automation infrastructure, of a properly built DSCmodel, and of pretty much everything else
you might do with PowerShell. Toolmaking is understanding what PowerShell is, how PowerShell
wants to work, and how the world engages with PowerShell. Toolmaking is a big responsibility.

My first job out of high school was as an apprentice for the US Navy. In our first six weeks, we
rotated through various shops - electronics, mechanical, and so on - to find a trade that we thought

Foreword vii

we’d want to apprentice for. For a couple of weeks, I was in a machine shop. Imagine a big, not-
climate-controlled warehouse full of giant machines, each carving away at a piece of metal. There’s
lubrication andmetal chips flying everywhere, and you wash shavings out of yourself every evening
when you go home. It was disgusting, and I hated it. It was also boring - you set a block of metal
into the machine, which might take hours to get precisely set up, and then you just sat back and
kind of watched it happen. Ugh. Needless to say, I went into the aircraft mechanic trade instead.
Anyway, in the machine shop, all the drill bits and stuff in the machine were called tools and dies.
Back in the corner of the shop, in an enclosed, climate-controlled room, sat a small number of nicely-
dressed guys in front of computers. They were using CAD software to design new tools and dies for
specific machining purposes. These were the tool makers, and I vowed that if I was ever going to
be in this hell of a workplace, I wanted to be a toolmaker and not a tool user. And that’s really the
genesis of this book’s title. All of us - including the organizations we work for - will have happier,
healthier, more comfortable lives as high-end, air-conditioned toolmakers rather than the sweaty,
soaked, shavings-filled tool users out on the shop floor.

Enjoy!

Don Jones

Feedback
We’d love your feedback. Found a typo? Discovered a code bug? Have a content suggestion? Wish
we’d answered a particular question? Let us know.

Zeroth, make sure you’re not using Leanpub’s online reader, as it omits some of the front matter
from the book. Use the PDF, EPUB, or MOBI version, or a printed edition you bought someplace
else.

First, please have a chapter name, heading reference, and a brief snippet of text for us to refer to.
We can’t easily use page numbers, because our source documents don’t have any.

Second, understand that due to time constraints like having full-time jobs, we can’t personally
answer technical questions and so forth. If you have a question, please hop on the forums at
PowerShell.org⁶, where we and a big community of enthusiasts will do our best to help.

Third, keep in mind that the EPUB and MOBI formats in particular allow little control over things
like code formatting. So we can’t usually address those for you.

Then, head to the LeanPub website and use their email link⁷ to email us. We can’t always reply
personally to every email, but know that we’re doing our best to incorporate feedback into the
book.

Finally, accept our thanks!

⁶http://powershell.org
⁷https://leanpub.com/powershell-scripting-toolmaking/email_author/new

http://powershell.org/
https://leanpub.com/powershell-scripting-toolmaking/email_author/new
http://powershell.org/
https://leanpub.com/powershell-scripting-toolmaking/email_author/new

Introduction
Pre-Requisites

We’re assuming that you’ve already finished reading an entry-level tutorial like, Learn Windows
PowerShell in a Month of Lunches, or that you’ve got some solid PowerShell experience already
under your belt. Specifically, nothing on this list should scare you:

• Find commands and learn to use them by reading help
• Write very basic “batch file” style scripts
• Use multiple commands together in the pipeline
• Query WMI/CIM classes
• Connect to remote computers by using Remoting
• Manipulate command output to format it, export it, or convert it, using PowerShell commands
to perform those tasks

If you’ve already done things like written functions in PowerShell, that’s marvelous - but, you may
need to be open to un-learning some things. Some of PowerShell’s best practices and patterns aren’t
immediately obvious, and especially if you know how to code in another language, it’s easy to go
down a bad path in PowerShell. We’re going to teach you the right way to do things, but you need
to be willing to re-do some of your past work if you’ve been following the Wrong Ways.

We also assume that you’ve read PowerShell Scripting in a Month of Lunches, a book we wrote for
Manning. It provides the core narrative of “the right way to write PowerShell functions and tools,”
this book essentially picks upwhere that one leaves off. Look for that book in late 2017 fromManning
or your favorite bookseller. Part 1 of this book briefly slams through this “the right way” narrative
just to make sure you’ve got it in your mind, but the Month of Lunches title really digs into those
ideas in detail.

Versioning

This book is primarily written against Windows PowerShell v5/v5.1 running on Microsoft Windows.
In January 2018, Microsoft announced the General Availability of PowerShell Core 6.0, which
is a distinct cross-platform “branch” of PowerShell. This branch has now become PowerShell 7,
which was released in early 2020. As far as we can tell, everything we teach in this book applies
to PowerShell 7, too - although some of our specific examples may still only work on Windows
PowerShell, the concepts and techniques are applicable to PowerShell 7. However, PowerShell 7
includes some new scripting features which we’ll cover in a dedicated chapter or two.

Introduction x

The Journey

This book is laid out into seven parts:

1. A quick overview of “the right way” to write functions.
2. Professional-grade toolmaking, where you amp up your skills, comes next in a second narrative.
This part is less tightly coupled than the first, so you can just read what you think you need,
but we still recommend reading the chapters in order.

3. Moving on from toolmaking for a moment, we’ll cover different kinds of controller scripts that
can put your tools to use. Read these in whatever order you like.

4. Data sources are often a frustrating point in PowerShell, and so this part is dedicated to those.
Again, read whichever ones you think you need.

5. More advanced topics complete the book, and again you can just read these as you encounter
a need for them.

6. A high-level introduction to using Pester in your toolmaking development.
7. Scripting for the PowerShell 7 and cross-platform world.

Following Along

We’ve taken some pains to provide review Q&A at the end of most chapters, and to provide lab
exercises (and example answers) at the end of many chapters. We strongly, strongly encourage you
to follow along and complete those exercises - doing is a lot more effective than just reading. And
if you get stuck, hop onto the Q&A forums on PowerShell.org and we’ll try and unstick you. We’ve
tried to design the labs so that they only need a Windows client computer - so you won’t need a
complex, multi-machine lab setup. Of course, if you have more than one computer to play with,
some of the labs can be more interesting since you can write tools that query multiple computers
and so forth. But the code’s the same even if you’re just on a single Windows client, so you’ll be
learning what you need to learn.

Providing Feedback

Finally, we hope that you’ll feel encouraged to give us feedback on this book. There’s a “Contact
the Authors” form on this book’s page⁸ on LeanPub.com, and you’re also welcome to contact us on
Twitter@concentratedDon and@JeffHicks. You can also post in theQ&A forums on PowerShell.org,
which frankly is a lot easier to respond to than Twitter. If you purchased the “Forever Edition” of
this book on LeanPub, then you’ll see us incorporating suggestions and releasing a new build of the
book all the time. If you obtained the book elsewhere, we can’t turn your purchase into a LeanPub
account for you. However, when the book changes enough for us to publish a new “edition” to other
booksellers, that might be a time to pick it up on LeanPub instead, provided you understand the
“Agile publishing” model and are comfortable with it.

⁸http://leanpub.com/powershell-scripting-toolmaking

http://leanpub.com/powershell-scripting-toolmaking
http://leanpub.com/powershell-scripting-toolmaking

A Note on Code Listings
The code formatting in this book only allows for about 60-odd characters per line. We’ve tried our
best to keep our code within that limit, although sometimes you may see some awkward formatting
as a result.

For example:

Invoke-CimMethod -ComputerName $computer-MethodName Change -Query "SELECT * FROM Win\

32_Service WHERE Name = '$ServiceName'"

Here, you can see the default action for a too-long line - it gets word-wrapped, and a backslash
inserted at the wrap point to let you know.We try to avoid those situations, but they may sometimes
be unavoidable. When we do avoid them, it may be with awkward formatting, such as using
backticks (‘):

Invoke-CimMethod -ComputerName $computer `

-MethodName Change `

-Query "SELECT * FROM Win32_Service WHERE Name = '$ServiceName'" `

Here, we’ve given up on neatly aligning everything to prevent a wrap situation. Ugly, but oh well.

You may also see this crop up in inline code snippets, especially the backslash.

If you are reading this book on a Kindle, tablet or other e-reader, then we hope you’ll
understand that all code formatting bets are off the table. There’s no telling what the
formatting will look like due to how each reader might format the page. We trust you know
enough PowerShell to not get distracted by odd line breaks or whatever.

When you write PowerShell code, you should not be limited by these constraints. There’s no reason
for you to have to use a backtick to “break” a command. Simply type out your command. If you
want to break a long line to make it easier to read without a lot of horizontal scrolling, you can hit
Enter after any of these characters:

• Open parenthesis (
• Open curly brace {
• Pipe |
• Comma ,
• Semicolon ;

A Note on Code Listings xii

• Equal sign =

This is probably not a complete list, but breaking after any of these characters makes the most sense.

Anyway, we apologize for these artifacts. Keep inmind that you can, and should, use Install-Module
PowerShell-Toolmaking to download and install the code samples from the PowerShell Gallery.
They’ll end up in \Program Files\WindowsPowerShell\Modules\PowerShell-Toolmaking, typically
broken down by chapter. We try to update that download often, so if you don’t have the latest
version installed, do that.

Lab Setup
We hope that you plan to follow along with us in this book, and to help you do so we’ve provided
hands-on exercises at the end of most chapters. To complete those, you won’t need much of a lab
environment - just a Windows 10 (or later) computer to which you have Administrator access, and
which has Internet connectivity. Business editions (not “Home”) of Windows are recommended.
We’ve built the labs so that there’s no need for a domain controller, servers, or anything else.

We assume that your lab computer (or virtual machine) will have Internet access.

Create a Virtualized Environment

We know that most of our readers are technically savvy and more than likely have a preferred
virtualization tool. You might prefer Hyper-V or big a VMware fan. Or maybe something completely
different. If you would like to have a separate Windows 10 environment, we suggest downloading
the evaluation edition of Windows 10 from https://www.microsoft.com/en-us/evalcenter/evaluate-
windows-10-enterprise⁹. You should be able to use your virtualization tool of choice to create a new
virtual machine from the ISO file.

Use the Windows 10 Sandbox

Another option if you are running a recent Pro or Enterprise version of Windows 10 is to enable
the Windows Sandbox feature. You need a machine that supports virtualization and is enabled in
the BIOS. The sandbox is a completely separate Windows 10 instance that you can play in without
disturbing your main desktop. Although be aware that it is not persistent like a virtual machine. You
get a fresh experience every time you launch it.

To install, open up Control Panel and go to Add/RemoveWindows Features to enable the feature. Or
run Enable-WindowsOptionalFeature -FeatureName Containers-DisposableClientVM. You’ll most
likely need to reboot.

Adding Lab Files and Configuring PowerShell

We have published all of the lab files for this book on the PowerShell Gallery, to make it easier to
install them.

⁹https://www.microsoft.com/en-us/evalcenter/evaluate-windows-10-enterprise

https://www.microsoft.com/en-us/evalcenter/evaluate-windows-10-enterprise
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-10-enterprise
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-10-enterprise

Lab Setup xiv

1. On your Windows computer, press Windows+R, type powershell, and press Enter.
2. Right-click the PowerShell icon on the Task Bar, and select Run as Administrator.
3. Click Yes.
4. In the new PowerShell window (which must say “Administrator: Windows PowerShell” in the

title bar), type Install-Module PowerShell-Toolmaking and press Enter.
5. You may be notified that “NuGet provider is required to continue.” Type Y and press Enter.
6. You may be notified of an “Untrusted repository.” Type Y and press Enter.
7. Type Set-ExecutionPolicy Bypass and press Enter.
8. Type Y and press Enter.

If the installation fails, or if you see an error or warning when setting the execution policy, ensure
that PowerShell is running as Administrator and that the computer has unrestricted Internet access.
On a company-owned computer, restrictions may be in place that prevent the installation of files or
the changing of the execution policy. You will need to consult your company’s IT administrators to
remedy that.

If you are new to scripting, youmay also want to install the free Visual Studio Code, often referred to
as VS Code, from https://code.visualstudio.com/¹⁰. The PowerShell ISE that ships with Windows 10
isn’t going away, and we used it a lot to develop the material in this book. But it should be considered
deprecated. Microsoft is no longer developing it. All of their efforts are directed toward VS Code.
This product is updated frequently and has a rich ecosystem of extensions. In fact, after you install
it and launch it, click the gear icon in the lower left and then Extensions. Search for powershell and
install the extension.

We won’t lie. VS Code has a learning curve. But if you are new to scripting, you most likely would
have to learn the PowerShell ISE. If you have to spend time learning a tool you might as well learn
the tool that will be around for a while and as a bonus works cross-platform!

Assumptions Going Forward

Because scripting and toolmaking are not entry-level tasks, we assume that readers are already
aware of the need to run PowerShell “as Administrator” when developing scripts and tools. We
assume a basic level of familiarity with the PowerShell Integrated Scripting Environment (ISE), and
we assume an intermediate or higher level of familiarity with PowerShell itself. If you don’t feel
you meet these expectations, we suggest first completing Learn Windows PowerShell in a Month of
Lunches¹¹ available from most booksellers or from Manning.com.

¹⁰https://code.visualstudio.com
¹¹https://www.manning.com/books/learn-windows-powershell-in-a-month-of-lunches-third-edition

https://code.visualstudio.com/
https://www.manning.com/books/learn-windows-powershell-in-a-month-of-lunches-third-edition
https://www.manning.com/books/learn-windows-powershell-in-a-month-of-lunches-third-edition
https://code.visualstudio.com/
https://www.manning.com/books/learn-windows-powershell-in-a-month-of-lunches-third-edition

Part 1: Review PowerShell
Toolmaking
This first Part of the book is essentially a light-speed refresher of what PowerShell Scripting in a
Month of Lunches covers. If you’ve read that book, or feel you have equivalent experience, then this
short Part will help refresh you on some core terminology and techniques. If you haven’t… well, we
really recommend you get that fundamental information under your belt first.

Functions, the Right Way
This chapter is essentially meant to be a warp-speed review of the material we presented in the core
narrative of Learn PowerShell Toolmaking in a Month of Lunches (and its successor, PowerShell
Scripting in a Month of Lunches). This material is, for us, “fundamental” in nature, meaning it
remains essentially unchanged from version to version of PowerShell. Consider this chapter a kind
of “pre-req check;” if you can blast through this, nodding all the while and going, “yup,” then you’re
good to skip to the next Part this book. If you run across something where you’re like, “wait, what?”
then a review of those foundational, prerequisite books might be in order, along with a thorough
reading of this Part of this book.

By the way, you’ll notice that our downloadable code samples for this book (the “PSTool-
making” module in PowerShell Gallery) contain the same code samples as the core “Part 2”
narrative from PowerShell Scripting in a Month of Lunches. Those code samples also align
to this book, and we use them in this chapter as illustrations.

Tool Design

We strongly advocate that you always begin building your tools by first designing them. What
inputs will they require? What logical decisions will they have to make? What information will
they output? What inputs might they consume from other tools, and how might their output be
consumed? We try to answer all of these questions - often in writing! - up front. Doing so helps us
think through the ways in which our tool will be used, by different people at different times, and to
make good decisions about how to build the tool when it comes time to code.

Start with a Command

Once we knowwhat the tool’s going to do, we begin a console-based (never in a script editor) process
of discovery and prototyping. Or, in plain English, we figure out the commands we’re going to need
to run, figure out how to run them correctly, and figure out what they produce and how we’re going
to consume it. This isn’t a lightweight step - it can often be time-consuming, and it’s where all of
your experimentation can occur.

A user in PowerShell.org’s forums once posted a request for help with the following:

I need a PowerShell script that will check a complete DFS Root, and report all targets and
access based enumeration for each. I then need the script to check all NTFS permissions
on all the targets and list the security groups assigned. I then need this script to search 4
domains and report on the users in these groups.

Functions, the Right Way 3

And yup - that’s what “Start with a Command” means. We’d probably start by planning that out -
inputs are clearly some kind of DFS root name or server name, and an output path for the reports
to be written. Then the discovery process would begin: how can PowerShell connect to a DFS root?
How can it enumerate targets? How can it resolve the target physical location and query NTFS
permissions? Good ol’ Google, and past experience, would be our main tool here, and we wouldn’t
go an inch further until we had a text file full of answers, sample commands, and notes.

Build a Basic Function and Module

With all the functional bits in hand, we begin building tools. We almost always start with a basic
function (no [CmdletBinding()] attribute) located in a script module. Why a script module? It’s the
end goal for us, and it’s easier to test. We’d fill in our parameters, and start adding the functional bits
to the function itself. We tend to add things in stages. So, taking that DFS example, we’d first write a
function that simply connected to aDFS root and spewed out its targets. Once that wasworking, we’d
add the bit for enumerating the targets’ physical locations. Then we’d add permission querying…
and so on, and so on, until we were done. None of that along-the-way output would be pretty - it’d
just be verifying that our code was working.

Adding CmdletBinding and Parameterizing

We’d then professional-ize the function, adding [CmdletBinding()] to enable the common parame-
ters. If we’d hard coded any changeable values (we do that sometimes, during development), we’d
move those into the Param() block. We’d also dress up our parameters, specifying data [types],
mandatory-ness, pipeline input, validation attributes, and so on. We’d obviously re-test.

Emitting Objects as Output

Next, we work on cleaning up our output. We remove any “development” output created by
Write-Output or Write-Host (yeah, it happens when you’re hacking away). Our function’s only
output would be an object, and in the DFS example it’d probably include stuff like the DFS root
name, target, physical location, and a “child object” with permissions.

If you’re really reading that DFS example, we’d probably stop our function at the point
where it gets the permissions on the DFS targets. The results of that operation could be used
to unwind the users who were in the resulting groups - a procedure we’d write as a separate
tool, in all likelihood.

Functions, the Right Way 4

Using Verbose, Warning, and Informational Output

If we hadn’t already done so, we’d take the time to add Write-Verbose calls to our function so that we
could track its progress.We tend to do that habitually as we write, almost in lieu of comments a lot
of the time, butwe have built that up as a habit. We’d add warning output as needed, and potentially
add Write-Information calls if we wanted to create structured, queryable “sidebar” output.

Comment-Based Help

We’d definitely “dress up” our code using comment-based help, if not full help (we cover that later
in the book). We’d make sure to provide usage examples, documentation for each parameter, and a
pretty detailed description about what the tool did.

Handling Errors

Finally, and again if we hadn’t habitually done so already, we’d anticipate errors and try to handle
them gracefully. “Permission Denied” querying permissions on a file? Handled - perhaps outputting
an object, for that file, indicating the error.

Are You Ready

That’s our process. The entire way through, we make sure we’re conforming as much as possible to
PowerShell standards. Input via parameters only; output only to the pipeline, and only as objects.
Standardized naming, including Verb-Noun naming for the function, and parameter names that
reflect existing patterns in native PowerShell commands. We try to get our command to look and
feel as much like a “real” PowerShell command as possible, and we do that by carefully observing
what “real” PowerShell commands do.

Ok, if you’ve gotten this far and you’re still thinking, “yup, got all that and good to go,” then you’re…
well, you’re good to go. Proceed.

PowerShell Tool Design
Before you sit down and start whipping up a PowerShell function or class-based module, you need
to seriously think about its design. We almost constantly see toolmaking newcomers start charging
into their code, and before long they’ve made some monstrosity that is harder to work with than
it should be. Or they are totally lost and don’t know what to do next. In this chapter, we’re going
to lay out some core PowerShell tool design principles that we think, based on our experience, will
help keep you the path of PowerShell Toolmaking Righteousness.

PowerShell Tools Do One Thing

When you buy a wrench or a hammer, they are designed to fill a specific need. You wouldn’t use a
wrench to pound in a nail much less use a hammer to tighten a bolt. This philosophy carries over into
our world. The Prime Directive for a PowerShell tool is that it onlyt does one thing. You can see this
in almost every single PowerShell tool - that is, command - that ships with PowerShell. Get-Service
gets services. It doesn’t stop them. It doesn’t read computer names from a text file. It doesn’t modify
them. For that we can use Set-Service or Stop-Service. Commands in PowerShell do one thing.

This critical concept is one we see newcomers violate the most. For example, you’ll see folks build
a command that has a -ComputerName parameter for accepting a remote machine name, as well as
a -FilePath parameter so that you can alternately read computer names from a file. That’s Dead
Wrong, because it means the tool is doing two things instead of just one. A correct design would be to
stick with the -ComputerName parameter, and let it accept strings (computer names) from the pipeline.
You could also feed it names from a file by using a -ComputerName (Get-Content filename.txt)

parenthetical construct. The Get-Content command reads text files; you shouldn’t duplicate that
functionality without a really strong reason.

PowerShell Tools are Testable

Another thing to bear in mind is that - if you’re trying to make tools like a real pro - you’re going
to want to create automated units tests for your tools. We’ll actually get into how that’s done later
in this book, but from a design perspective, you want to make sure you’re designing tools that are,
in fact, testable. And trust us. In the long run you’ll be glad that you’ve designed your tools with
testing in mind.

One way to do that is, again, to focus on tightly-scoped tools that do just one thing. The fewer pieces
of functionality a tool introduces, the fewer things and permutations you’ll have to test. The fewer
logic branches within your code, the easier it will be to thoroughly test your code using automated

PowerShell Tool Design 6

unit tests. This also means when someone reports a bug in your code, it will be easier to find and
resolve.

For example, suppose you decide to design a tool that will query a number of remote computers.
Within that tool, you might decide to implement a check to make sure each computer is online and
reachable, perhaps by pinging it with Test-NetConnection. It makes sense in your head. But it might
be a bad idea. First, your tool is now doing two things: querying whatever it is you’re querying, but
also pinging computers. That’s two distinct sets of functionality. The pinging part, in particular, is
likely to be code you’d use in many different tools, suggesting it should, in fact, be its own tool.
Having the pinging built into the same querying tool will make testing harder, too, because you’ll
have to explicitly write tests to make sure that the pinging part works the way it’s supposed to.

An alternate approach would be to write that “Test-PCConnection” functionality as a distinct tool.
This code could use existing PowerShell commands wrapped up with features that make sense
in your environment. So, if your “querying” tool is something like “Get-SystemData,” you might
concoct a pattern like:

Get-Content computernames.txt | Test-PCConnection | Get-SystemData

The idea being that Test-PCConnection would filter out whatever computers weren’t reachable,
perhaps logging the failed ones in some fashion, so that Get-SystemData could just focus on its one
job of querying something. Both tools would then become easier to independently test, since they’d
each have a tightly scoped set of functionality.

If you needed to take this a step further, say by automating this task for the help desk, you
can put this pattern into a control script. Which is something we’ll cover later.

You also want to avoid building functionality into your tools that will be difficult to test. For example,
you might decide to implement some error logging in a tool. That’s great - but if that logging is
going to a SQL Server database, it’s going to be trickier to test and make sure that the logging is
working as desired. Logging to a file might be easier, since a file would be easier to check. An even
better approach would be to write a separate tool that handles logging. You could then test that tool
independently, and simply use it within your other tools. This gets back to the idea of having each
tool do one thing, and one thing only, as a good design pattern.

PowerShell Tools are Flexible

You want to design PowerShell tools that can be used in a variety of scenarios. This often means
wiring up parameters to accept pipeline input. For example, suppose you write a tool named
Set-MachineStatus that changes some setting on a computer. You might specify a -ComputerName

parameter to accept computer names. Will it accept one computer name, or many? Where will those
computer names come from? The correct answers are, “always assume there will be more than one,

PowerShell Tool Design 7

if you can” and “don’t worry about where they come from.” You want to enable, from a design
perspective, a variety of approaches.

It can help to actually sit down and write some examples of using your command that you intend to
work. These can become help file examples later, but in the design stage can help make sure you’re
designing to allow all of these. For example:

Get-Content names.txt | Set-MachineStatus

Get-ADComputer -filter * | Select -Expand Name | Set-MachineStatus

Get-ADComputer -filter * | Set-MachineStatus

Set-MachineStatus -ComputerName (Get-Content names.txt)

That third example is going to require some careful design, because you’re not going to be able to
pipe an Active Directory Computer object to the same -ComputerName parameter that also accepts a
String object from Get-Content! You may have identified a need for two parameter sets, perhaps one
using -ComputerName <string[]> and another using -InputObject <ADComputer> to accommodate
both scenarios. Now, creating two parameter sets is going to make the coding, and the automated
unit testing, a bit harder - so you’ll need to decide if the tradeoff is worth it. Will that third example
be used so frequently that it justifies the extra coding and test development? Or will it be a rare
enough scenario that you can exclude it, and instead rely on the similar second example?

The point is that every design decision you make will have downstream impact on your tool’s code,
its unit tests, and so on. It’s worth thinking about those decisions up front, which is why it’s called
the design phase!

Who and How
A lot of the ideas we’re discussing here come down to a fundamental set of questions. Who
will be using your tools and what are their expectations? Are you writing a command for the
help desk to use but they have minimal PowerShell experience? Are you creating something
that you will be using? Will the use be importing Excel spreadsheets to pass as parameter
values? What type of output do you need and how might it be used? Will your tool be used
in conjunction with something else you are developing? The more you understand who will
be using your tool and their expectations, the better your result.

PowerShell Tools Look Native

Finally, be very careful with tool and parameter names. Tools should always adopt the standard
PowerShell Verb-Noun pattern, and should only use the most appropriate verb from the list returned
by Get-Verb. Microsoft also publishes that list online¹² and the online list includes incorrect
variations and explanations that you can use to check yourself.

¹²https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/approved-verbs-for-windows-powershell-commands

https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/approved-verbs-for-windows-powershell-commands

PowerShell Tool Design 8

When you run Get-Verb in PowerShell 7, Microsoft has added a description for each verb.

Don’t beat yourself up too hard over fine distinctions between approved verbs, like the difference
between Get and Read. If you check out that website, you’ll realize that Get-Content should probably
be Read-Content; likely a distinction Microsoft came up with after Get-Content was already in the
wild.

The noun portion of your name should be singular, although we have been known to bend
this rule from time to time. What you should consider is the potential for a naming conflict.
Yes, there are ways to call the right PowerShell command but it can be a bit cumbersome so
why not avoid it altogether. We suggest you get in the habit of using a short prefix on your
command’s noun. For example, if you work for DonCo, Inc., then you might design commands
named Get-DCISystemStatus rather than just Get-SystemStatus. The prefix helps prevent your
command name from conflicting with those written by other people and it will make it easier to
discover and identify commands and tools created for your organization.

Parameter names should also follow native PowerShell patterns. Whenever you need a parameter,
take a look at native PowerShell commands and see what parameter name they use for similar
purposes. For example, if you need to accept computer names, you should use -ComputerName (notice
it’s singular!) and not some variation like -MachineName. If you need a filename, that’s usually
-FilePath or -Path on most native commands. Later in the book we’ll show you how to create a
parameter alias. This let’s you use the official and proper parameter name, like -Computername but
still let users of your tool use something like -Server.

An Example

Beforewe even start thinking about our design decisions, we like to review the business requirements
for a new tool. We try to translate those business requirements to usage examples, so it’s clearer to us
how a tool might be used. If there are other stakeholders to involve - such as the people who might
consume this tool, once it’s done - we get them to sign off on this “functional specification,” so that
we can go into the design phase knowing with clear, mutual expectations for the new tool. We also
try to capture problem statements that this new tool is meant to solve, because those sometimes
offer a clearer business perspective than a specification that someone else may have written. The
discussion might go something like this:

We’ve been managing servers in our data center with PowerShell and PowerShell remoting.
With the arrival of PowerShell 7, we will be able to use SSH for PowerShell remoting.
We won’t switch every server to SSH because some servers may rely on Just Enough
Administration. We need to inventory servers and identify which servers have PowerShell
remoting enabled. And if it is enabled, is it also configured to use SSL. Long term, we need
to move servers that must useWSMan remoting to use SSL. We also need to know if a server
already has ssh installed.

PowerShell Tool Design 9

That statement would drive some more detailed questions from us, asking for specifics on what the
tool needs to query. Suppose the answer came back as:

• Computer host name
• WSMan remoting enabled
• WSMan ports in use
• WSMan protocols
• Is SSH enabled
• A report date

There are a number of PowerShell commands to use, although Test-NetConnectionmight be a good
choice. We can plan on writing a tools called Get-RemoteListeningConfiguration. It is of course
going to have a -ComputerName parameter that accepts one or more computer names as strings.
Looking ahead with a PowerShell 7 migration coming, it might also be helpful to know the operating
system and current PowerShell version. That information could be part of this command, but since
the information doesn’t really apply to remoting, it might be best to keep that as a separate tool. We
might also take into account how computer names will be fed to the command and what we might
do with the output. We’ll assume that some computers won’t respond, so we’ll design a way to deal
with that situation.

Our design usage examples might be pretty simple:

Get-RemoteListeningConfiguration -Computername SRV1

Get-RemoteListeningConfiguration -Computername SRV1,SRV2

Get-Content servers.txt | Get-RemoteListeningConfiguration

Import-CSV servers.csv | Get-RemoteListeningConfiguration

Get-RemoteListeningConfiguration (Get-ADComputer -filter *).Name

The output of the command should be structured and predictable. That is, given a specific set of
inputs, we should get the same output, which will make this a fairly straightforward design to write
unit tests for. Our command is only doing one thing, and has very few parameters, which gives us
a good feeling about the design’s tight scope.

So we’d take that back to the team and ask what they thought. Almost invariably, that will generate
questions.

How will we know if a machine fails? Will the tool keep going? Will it log that information?
Does it need to log anything?

OK - we might need to evolve the design a bit. We know that we need to keep going in the event
of a failure, and give the user the option to log failures to, perhaps, a text file. Provided the team
was happy with a text file as the error log, we’re good including that in the design. If they wanted
something more complicated - the option to log to a database, or to an event log - then we’d design
a separate logging tool to do all of that. For the sake of argument, though, let’s say they’re OK with
the text file.

PowerShell Tool Design 10

Get-Content servers.txt | Get-RemoteListeningConfiguration -LogPath errorlog.txt

Let’s say that the team is satisfied with these additions, and that we have our desired usage examples
locked down. We can now get into the coding. But before we do, why don’t you take a stab at your
own design exercise?

Your Turn

If you’re workingwith a group, this will make a great discussion exercise. Youwon’t need a computer,
just a whiteboard or some pen and paper. The idea is to read through the business requirements and
come up with some usage examples that meet the requirements. We’ll provide all of the business
requirements in a single statement, so that you don’t have to “go back to the team” and gather more
information.

Start Here

Your team has come to you and asked you to design a PowerShell tool that will help them automate
a repetitive and critical, task. Team members are skilled in using PowerShell, so they just need a
command, or set of commands, that will help automate this task.

Members of the HelpDesk, as well as the Server Management Team, periodically manually
run a set of commands to get performance information that can be used to assess the status
or health of system. This information is often used to generate reports and to populate a
trend database. The information gathered includes these values:

• Computer name
• Total number of processes
• Total processor load
• % free physical memory
• % free space on drive C:
• The computer’s uptime

It would be helpful to have a single command to run that would generate a unified result. It
needs to be able to process multiple computers. And it will need to take credentials into
account. It would also be helpful to have some sort of optional logging mechanism for
failures.

Your Task

Your job is to design the tool that will meet the team’s business requirements. You arenotwriting any
code at this point. When creating a new tool, you have to consider who will use the tool, how they

PowerShell Tool Design 11

might use it and their expectations. And the user might be you! The end-result of your design will be
a list of command usage examples (like we have shown you previously), which should illustrate how
each of the team’s business needs will be solved by the tool. It’s fine to include existing PowerShell
commands in your examples, if those commands play a role in meeting the requirements.

Stop reading here and complete the task before resuming.

Our Take

We’ll design the command name as Get-TMComputerStatus. The “TM” stands for “Toolmaking,”
which is part of this book’s name, since we don’t have a specific company or organizational name
to use. We’ll design the following use cases:

Get-TMComputerStatus SRV1,SRV2

Get-Content servers.txt | Get-TMComputerStatus -credential company\administrator

(Get-ADComputer -filter *).name | Get-TMComputerStatus -ErrorLogFilePath err.log

Our intent here is that -Verbosewill generate on-screenwarnings about failures, while -ErrorLogFilePath
will write failed computer names to a file. It might also be nice to append errors to the same log.
Notice that, to make this “specification” easier to read, we’ve put each parameter on its own line.
The command won’t actually execute exactly like that, but that’s fine - clarity is the idea at this
point.

Get-TMComputerStatus -Computername SRV1,SRV2,SRV3 `

-Credential "company\administrator" `

-ErrorLogFilePath "statuserrors.txt" `

-ErrorAppend

This example uses -ErrorLogFilePath and -ErrorAppend to indicate logging errors to a text file and
appending.

And because the output might be used to generate reports or be consumed by other applications,
we’ll want to make sure our code will meet these scenarios:

Import-CSV servers.csv | Get-TMComputerStatus -credential $cred |

Export-CSV status.csv

Get-Content group1.txt | Get-TMComputerStatus |

ConvertTo-HTML <parameters>

Get-TMComputerStatus (Get-ADComputer -filter *).name |

Sort-Object Computername |

Format-Table -GroupBy Computername -property Date,Uptime,Pct* |

Out-File report.txt

PowerShell Tool Design 12

We’re illustrating two things here. First is that we can accept an imported CSV file, assuming it has
a Computername column. Our output is also consumable by standard PowerShell commands like
ConvertTo-HTML, which implies that Format- commands and Export- commands will also work.

Let’s Review

Let’s quickly review some of the key concepts from this chapter, just to make sure you’ve got them
all firmly in mind. See if you can answer these questions:

1. What’s the “prime directive” of PowerShell tool design?
2. What verb should you use instead of “Ping” in a command name?
3. What verb should you use instead of “Delete” in a command name?
4. What’s the most important output from a tool design process?
5. What is one downside of having an overly complex tool?

Review Answers

Not all of our questions lend themselves to easy, black-and-white answers, so if you didn’t answer
exactly the way we did, it doesn’t necessarily mean you’re wrong. But here’s how we’d have
answered:

1. Make tools that do one thing, and one thing only.
2. Test.
3. Remove.
4. A comprehensive set of usage examples for the proposed tool.
5. It will be harder to write comprehensive unit tests for it.

Start with a Command
Before we ever open up a script editor, we start in the basic PowerShell command-line window.
This is your “lowest common denominator” for testing, and it’s a perfect way to make sure that the
commands your tool will run are actually correct. It’s way easier to debug or troubleshoot a single
command in the window than it is to debug an entire script. And by “single command” we mean a
PowerShell expression.

If you’ve already read the previous chapter, then you know that we’ve been asked to develop a tool
that will query the following information:

• Computer name
• Total number of processes
• Total processor load
• % free physical memory
• % free space on drive C:
• The computer’s uptime
• a time stamp

We’ll plan to use CIM or CIM-related commands for much of this. We also know we’re going to
need to write a text log file in the event of errors. There’s more in terms of the tool itself we’ll need
to do, like adding a datetime stamp, but these are the basic units of functionality we need to figure
out.

We’re going to assume that you already know how to run PowerShell commands. If that’s not your
strong suit, please stop and go read Learn Windows PowerShell in a Month of Lunches, because it’s
all about discovering and running commands. Our point here is that we want to test and make sure
we know how to actually accomplish everything our tool needs to accomplish, by manually running
commands in the command-line window.

In our specific case, we want to also make sure we know how to reliably retrieve all of the
information in our list, which is going to involve more than one WMI/CIM class. We’ll need
Win32_OperatingSystem and Win32_Processor at the least. We could use Win32_LogicalDisk to get
C: drive information. Or we can use CIM-related commands like Get-Volume. Again - you should
know how to do these things already if you’re reading this book, so we’re not going to walk through
that entire “discovery” process.

We’re planning to use Get-CimInstance to do the actual querying, and because we’ll eventually
end up querying multiple classes, we’ll use New-CimSession and Remove-CimSession to create (and
then remove) a persistent connection to each computer, so that we can run all the queries over one

Start with a Command 14

connection. We’ll need to be able to detect errors in case the connection doesn’t work. Review the
help for New-CimSession if you’re not familiar with those tasks.

For now we’ll assume that all computers can be reached using the CIM cmdlets. If they can’t, that
probably means the server is in need of a major upgrade, and we’ll want to be able to log those
failures.

Since so much of this tool is getting performance related data, you may be wondering about
Get-Counter. This is a command designed to get performance information and can probably
gather most of what we need. For us there are a few potential gotchas. First, Get-Counter
relies on legacy remoting protocols like RPC and DCOM. It is not firewall friendly. Second,
the output from Get-Counter is a little convoluted and would take a few extra steps to get
the values we’re looking for. Get-CimInstance is a better (read that as modern) approach.
And it will be easier to get the values we need. But this is exactly the type of discussion you
need to have. What are the best PowerShell tools to use? What are the implications if we go
with one over another?

Your Turn

The previous chapter also included an exercise for you, and this one picks up where it left off. This
is where you’ll get to practice what we’ve preached in this chapter: making sure you know how to
accomplish everything that your tool will need to do, by starting in the PowerShell command-line
window.

Start Here

Remember that you are designing a tool that will get remoting configuration information for a
remote server. You don’t have to write any code at this point. Instead, mock up a sample output.
What PowerShell cmdlets do you think you will need to run? Come up with a list of examples on
how the command might be used. List what requirements you might need in order for your code to
run.

Your Task

Stop reading here and complete the task before resuming.

Our Take

For our exercise, we are creating a tool to get status information about a server. We know that we
assume at a minimum that the command can be run passing a single computername and writing an
object to the pipeline.

Start with a Command 15

PS C:\> Get-TMComputerStats -Computername SRV1

Computername : SRV1

Processes : 275

CPULoad : 13

PctFreeMemory : 50.9874975465509

PctFreeDrive : 39.1990451499511

Uptime : 1.20:48:21.2817144

Date : 7/20/2020 2:09:16 PM

We also assume the person running the script will import a list of computernames and want to be
able to export to a CSV file. If there are errors they should be written to a log file.

PS C:\> Get-Content c:\work\servers.txt |

Get-TMComputerstatus -ErrorLog c:\work\tmstatus-error.log -errorappend |

Export-CSV D:\status.csv -append

We’ll need commands like these to generate the necessary results:

• Get-Date

• Get-Volume

• Get-CimInstance -class win32_OperatingSystem

• Get-CimInstance -class win32_processor

• Get-CimInstance -class win32_process

• Out-File

Let’s Review

Here are a few questions you can answer to make sure you’ve picked up the key elements of this
chapter:

1. What is the value of testing commands in the command-line before you start writing a script?
2. Why is it important to understand how your command might be used?
3. Why is it critical that your command write an object to the pipeline?

Review Answers

Here are our answers to the questions. Note that these aren’t necessarily the only correct answers,
but hopefully they’ll help you understand if you grasped the chapter’s material or not.

Start with a Command 16

1. Individual commands are easier to test and fix in the command-line window. Using tested
commands in your script will help reduce the number of bugs that you introduce while coding.
Remember, that if you command fails at the console it won’t work in your script any better.

2. If you don’t know who your command will be used, you won’t be able to include necessary
features like input from the pipeline.

3. If your command doesn’t write an object to the pipeline, than you can’t process the results
with other PowerShell commands like Where-Object, Sort-Object or Out-Gridview.

Build a Basic Function and Module
In this chapter, we’ll start creating the tool that we designed in “Tool Design,” using some of the
commands that we figured out and tested in the previous chapter. It’svery important to understand
that this chapter isn’t going to attempt to build the entire tool, or attempt to solve the entire business
statement from our Design chapter. We’ll be taking things one step at a time, because it’s really the
process of toolmaking that we want to demonstrate for you.

Start with a Basic Function

Basic functions have existed in PowerShell since v1, and they are one of themany types of commands
that PowerShell understands (some of the others being cmdlets, applications, workflows, and so on).
Functions make a great unit of work for toolmaking, so long as you follow a basic principle of
keeping your function tightly scoped and self-contained. We’ve written already about the need to
have tightly scoped functions - that is, functions that do just one thing. Self-contained means that
the function needs to live in its own little world, and become a kind of little black box. Practically
speaking, that means two things:

Information to be used inside the function should come only from declared input parameters. Of
course, some functions may “look up” data from elsewhere, like a database or a registry, and that’s
fine if it’s what the function does. But functions shouldn’t rely on external variables or other sources.
You want them as self-contained as possible.* Output from a function should be to the PowerShell
pipeline only. Stuff like creating a file on disk, updating a database, and other actions aren’t output,
they’re actions. Obviously, a function can perform one of those actions if that’s what the function
does.

Design the Input Parameters

Looking back through the design for your function to get computer status details, what information
will the function need? Your usage examples should already provide pretty clear guidance on what
parameters you’ll have to create, which is one reason we recommend creating usage examples as
tht primary design deliverable. So now let’s create basic versions of those parameters.

Build a Basic Function and Module 18

Function Get-TMComputerStatus {

Param(

[string[]]$Computername,

[string]$ErrorLogFilePath,

[switch]$ErrorAppend

)

}

Notice how careful we’re being with the formatting of this code? In order to conserve space in this
book, we’re only indenting the code a little bit within the function and within the Param() block,
but you’ll typically indent four spaces (which, in most code editors, is what the Tab key will insert).
Do not get lazy about your code formatting. Lazy formatting is a sign of the devil, and is a sure
sign of code that probably has bugs - and will be hard to debug.

In the Param() block, we’ve only had to declare a few parameters. The Computername is pretty
straightforward. Although thinking ahead, we might need to take alternate credentials into account.
for the computer to query. We also have parameters related to the logging we want to do.

For those of you looking for some nits to pick, yeah, there’s probably one here. An argument
could be made that logging is a second thing the command is doing and it should not be
part of this command. On the other hand, a counter argument might be that the task of
getting computer status information by design includes logging. Semantics. But if nothing
else, including these parameters offers us some “teachable moments” so we’re going to go
with it.

Parameter definitions are very simple declarations, and we’ll build on these in upcoming chapters.
For now, here are some things to notice:

• Data types are enclosed in square brackets. Common ones include [string], [int], and
[datetime].

• Parameters become variables inside the function, so their names are preceded with a $. And
for God’s sake, don’t try to create a parameter name with spaces!

• Each parameter is separated from the next by a comma. You don’t have to put them one-per-
line as we’ve done, but when we start building on these, it’ll be a lot easier to read if they’re
broken out one per line.

• The -ComputerName parameter will accept one or more values in an array, which is what
[string[]] denotes.

Write the Code

Now let’s insert some basic functional code. Again this will not complete the tool’s entire mission
- we’re just getting started, and we want to walk you through each step.

Build a Basic Function and Module 19

Function Get-TMComputerStatus {

Param(

[string[]]$Computername,

[string]$ErrorLogFilePath,

[switch]$ErrorAppend

)

foreach ($computer in $Computername) {

get data via Get-CimInstance and Get-Volume

create output object

} #foreach #computer

} #Get-TMComputerStatus

Notice that we tagged a #Get-TMComputerStatus comment on the closing bracket of the function?
That’s a good habit to get into when you have a closing bracket, as it can help remind you which
construct the bracket closes. You’ll appreciate this when you have a script file withmultiple functions
defined.

We know we’ll need to run Get-CimInstance and maybe Get-Volume. At some point all of these
outputs will need to be condensed down to a simple, unified object. The basic command also doesn’t
include any error handling at this point. But this should be enough to give us a feel for how the
command will be structured and how the execution will flow internally.

Details: The ForEach Construct

Our code uses a ForEach construct. It works a bit like PowerShell’s ForEach-Object command, but
it has a different syntax:

ForEach ($item in $collection) {

code

}

The second variable - $collection here, and $ComputerName in our preliminary function - is
expected to contain zero or more items. The ForEach loop will execute its {script block} one time
for each item that is contained in the second variable. So, in Get-RemoteListeningConfiguration,
if we provided three computer names to the -ComputerName parameter, the ForEach loop would run
three times. Each time the loop runs, one item is taken from the second variable and placed into the
first. So, within the script block above, $item will contain one thing at a time from $collection. In
the defined function, $computer will contain one string at a time, taken from $ComputerName.

You’ll often see people use singular and plural words in their ForEach loops:

Build a Basic Function and Module 20

$names = Get-Content names.txt

ForEach ($name in $names) {

code

}

That approach makes it easier to remember that $name contains one thing from $names, but that’s
purely for human readability. PowerShell doesn’t magically know that “name” is the singular of
“names,” and it doesn’t care. The above could easily be rewritten as:

$unicorns = Get-Content names.txt

ForEach ($purple in $unicorns) {

code

}

And PowerShell would be perfectly happy. That code would be a lot harder to read and keep track
of, though. In our sample function, you’ll notice that our second variable is not plural, right?

foreach ($computer in $computername) {

That’s because $ComputerName is one of our function’s input parameters. PowerShell’s convention
is to use singular words for command and parameter names. You won’t see -ComputerNames; you
only see -ComputerName as a parameter. We stuck with the convention, and so our ForEach loop
doesn’t follow a singular/plural pattern. Again, PowerShell itself doesn’t care, and we feel it’s more
important that our “outward-facing” elements - command and parameter names - follow PowerShell
naming conventions. And, honestly, using $computer as our one-item-at-a-time variable name saves
a little space in this book.

Design the Output

Finally, we need to have the command output something. We’ll add that in this version.

Function Get-TMComputerStatus {

Param(

[string[]]$Computername,

[string]$ErrorLogFilePath,

[switch]$ErrorAppend

)

foreach ($computer in $Computername) {

$OS = Get-CimInstance win32_operatingsystem -computername $computer |

Select-Object -property CSName,TotalVisibleMemorySize,FreePhysicalMemory,

NumberOfProcesses,

Build a Basic Function and Module 21

@{Name="PctFreeMemory";Expression = {($_.freephysicalmemory/`

($_.TotalVisibleMemorySize))*100}},

@{Name="Uptime";Expression = { (Get-Date) - $_.lastBootUpTime}}

$cpu = Get-CimInstance win32_processor -ComputerName $computer |

Select-Object -Property LoadPercentage

$vol = Get-Volume -CimSession $computer -DriveLetter C |

Select-Object -property @{Name = "PctFreeC";Expression = `

{($_.SizeRemaining/$_.size)*100 }}

$os,$cpu,$vol

} #foreach $computer

} #Get-TMComputerStatus

The output in the book has been formatted to fit the page.Normally you wouldn’t need to break
lines using the back tick. This code works and writes results to the pipeline. However, this version is
breaking the cardinal rule of writing more than 1 type of object to the pipeline. We’ll need to refine
this code to get a single object type out of it. That’s coming up in the next few chapters.

Create a Script Module

Our last step will be to save all of this code as a script module. These are supported on PowerShell v2
and later, and should ideally be stored in one of the paths specified in the PSModulePath environment
variable. On PowerShell v4 and later, the default path includes C:Program FilesWindowsPower-
ShellModules, so that’s where we’ll create our module. Specifically, we’ll save it as C:Program
FilesWindowsPowerShellModulesToolmakingToolmaking.psm1. Notice that the subfolder name
and the filename must match in order for PowerShell to automatically discover our module and
load it on-demand.

We’re also going to create a module manifest. This isn’t strictly required, but it’s a good idea. A
properly designed manifest can speed up PowerShell’s module auto-discovery, and as our module
becomes more complex will offer us some useful features. To create the manifest, we’ll run:

Build a Basic Function and Module 22

Cd "\Program Files\WindowsPowerShell\Modules\Toolmaking"

New-ModuleManifest -Path .\Toolmaking-Prelim.psd1

-Author "Don Jones & Jeff Hicks"

-RootModule toolmaking.psm1

-FunctionsToExport @('Get-TMComputerStatus)

-Description "Sample Toolmaking module"

-ModuleVersion 1.0.0.0

As is our custom in this book, we’ve put each parameter on its own line for readability. In practice,
you’d type all of the above as one long line which you’ll see in our final code samples. Notice:

• The manifest name must match the module subfolder name.
• The manifest file gets a .psd1 filename extension.
• The root module is the .psm1 file that we already created. It is typically in the same folder as
the manifest.

• -FunctionsToExport is an array of functions that we want people to be able to “see” within our
module. This is optional, but using it speeds up PowerShell’s auto-discovery magic. Technically
you can use wildcards but the recommendation is to use complete command names.

• The author and description are optional, but it’s not a bad idea to include them especially if
you intend on publishing or sharing your module with the world.

• The module version is also optional, but it’s highly recommended, and becomes required if
you’re going to publish your module to a repository (which we will eventually be doing).

We’ve included our module, to this point, in the code samples for this book (which are available
by running Install-Module PowerShell-Toolmaking in PowerShell). You’ll find it in the Chapters
folder, under this chapter’s title. To load the module, you’ll need to manually run Import-Module

and provide the full path to our .psd1 file on your computer. In the code samples for this chapter, our
module name is Toolmaking-Prelim, to avoid conflicting with the “finished” Toolmaking module
that’s part of the code sample download.

Pre-Req Check

Before we test our command, especially if you’re planning to run it yourself and follow along, you
need to check a few things.

• Make sure your PowerShell window always says “Administrator” in the title bar. If not, run
the shell “as Administrator” by right-clicking the PowerShell Task Bar icon and selecting the
appropriate option.

• Run Get-ExecutionPolicy; the result should be RemoteSigned, Bypass, or Unrestricted. If not,
use Set-ExecutionPolicy to change the setting to one of those. We use Bypass because we are
working on a non-production system in a secure environment.

Build a Basic Function and Module 23

Running the Command

Now for the real test. First, close your PowerShell window. That will ensure our test is in a “clean”
PowerShell environment. Then open a new one (make sure it’s “as Administrator”), and run:

Get-TMComputerStatus -Computername localhost

You should get some output from that. In fact, you should just be able to type Get-TMCo and hit Tab,
type a space, type -Comp and hit Tab, and then type a space and localhost. If the Tab completion
isn’t working, then double-check your script for proper file names, any typos in the code (indicated
in the PowerShell ISE by red squiggly underlines), and so on. Also make sure that you’ve used a
path that’s in your machine’s PSModulePath environment variable:

$env:PSModulePath

If the command runs without trouble, then you’re good to go. Take some time to make sure you
understand why each line of code is in the command, and that you can explain the reason for each
step we’ve performed to this point.

If you make any changes to your module, it is very important to understand that PowerShell
won’t “see” those changes. That’s because it loaded your module into memory when you first ran
your command; afterwards, it runs entirely from memory, and doesn’t re-load from disk. So if you
make any changes to your code, you need to do one of two things:

• Close the PowerShell console window in which you’ve been testing, and open a new one. This
is a sure-fire way to make sure you get a fresh start every time.

• Unload your module, and then run your command again to re-load your module. In our case,
that would mean running Remove-Module Toolmaking, since “Toolmaking” is our module name
(as defined by the subfolder name and the .psd1 filename).

• Or you can try to manually force PowerShell to re-import the module with the command
Import-Module Toolmaking -force.

You’ll also notice that we tend to test our command in a normal PowerShell console window, even
through we’re developing in something like the PowerShell ISE, Visual Studio Code, etc. That’s
because development environments sometimes have a slightly different way of running scrips, and
the console window represents the “standard” way that your script will run in production. Since the
console represents the “production environment,” that’s where we test.

Your Turn

Let’s return to the tool that we asked you to design in the Design chapter to get remote listening
configuration information. It’s time to start coding it up.

Build a Basic Function and Module 24

Start Here

To review, we designed the command name as Get-TMRemoteListeningConfiguration. The “TM”
stands for “Toolmaking,” which is part of this book’s name, since we don’t have a specific company
or organizational name to use. We’ll design the following use cases:

Get-TMRemoteListeningConfiguration -ComputerName SERVER1,SERVER2

-ErrorLog failed.txt

-Verbose

Our intent here is that -Verbose will generate on-screen warnings about failures, while -ErrorLog
will write failed computer names to a file. Notice that, to make this “specification” easier to read,
we’ve put each parameter on its own line. The command won’t actually execute exactly like that,
but that’s fine - clarity is the idea at this point.

Get-TMRemoteListeningConfiguration -ComputerName SERVER1,SERVER2

This example illustrates that -ErrorLog and -Verbosewere optional. We also want to illustrate some
of our flexible execution options:

Get-Content servers.txt | Get-TMRemoteListeningConfiguration

This illustrates our ability to accept computer names from the pipeline. Finally:

Import-CSV computers.csv | Get-TMRemoteListeningConfiguration | ConvertTo-HTML

We’re illustrating two things here. First is that we can accept an imported CSV file, assuming it has a
column named Computername. Our output is also consumable by standard PowerShell commands
like ConvertTo-HTML, which also implies that Format- commands and Export- commands will also
work.

Your Task

Create a basic function named Get-TMRemoteListeningConfiguration. Specify all of the parameters
that are listed in the design, although right now we might not actually use all of those parameters.
Write enough code so that, given a computer name you can get the desired configuration informa-
tion.

• Is it listening on port 5985
• Is it listening on port 5986
• Is it listening on port 22

Build a Basic Function and Module 25

Don’t worry about piping computer names into the function at this point. But you will need to use
a ForEach construct.

Create the function in a script module named TMTools. Test your function against your computer,
ie local host. For now, don’t worry about the logging or other features specified in the design.
Keep in mind what you learned from previous chapters. For now, it’s okay to create output using
Select-Object and custom properties. Later, we’ll work on getting the output closer to the design
specification. Test your command in the PowerShell console, rather than in the ISE or VS Code, and
bear in mind the caveats we pointed out about unloading your module after making changes.

Our Take

Here’s our solution for you to compare to your own. Minor variations shouldn’t be cause for concern,
provided your command works when you run it.

Function Get-TMRemoteListeningConfiguration {

Param(

[string[]]$Computername,

[string]$ErrorLog

)

$ports = 22,5985,5986

foreach ($computer in $computername) {

foreach ($port in $ports) {

Test-NetConnection -Port $port -ComputerName $Computer |

Select-Object Computername,RemotePort,TCPTestSucceeded

}

#TODO

#better output

#error handling and logging

} #foreach

} #Get-RemoteListeningConfiguration function

Note that we are using a nested set of ForEach loops. We’re telling PowerShell, “For each computer,
run though this collection of ports.” The command gives us output like this:

Build a Basic Function and Module 26

ComputerName RemotePort TcpTestSucceeded

------------ ---------- ----------------

WIN10PRO 22 True

WIN10PRO 5985 True

WIN10PRO 5986 False

If you get odd results using localhost use $env:computername or type your actual computername.

We created a manifest for this, too:

New-ModuleManifest -Path TMTools.psd1

-RootModule .\TMTools.psm1

-FunctionsToExport Set-TMServiceLogon

-ModuleVersion 1.0.0.0

We’ve included our solution, to this point, in the code samples for this book (which are available
by running Install-Module PowerShell-Toolmaking in PowerShell). You’ll find it in the Chapters
folder, under this chapter’s title. To load the module, you’ll need to manually run Import-Module

and provide the full path to our .psd1 file on your computer. In the code samples for this chapter, our
module name is TMTools-Prelim, to avoid conflicting with the “real” TMTools module that you’re
building on your own.

Let’s Review

Let’smake sure you picked up on the key elements of this chapter. See if you can answer the following
questions:

1. To create a module named CorpTools, what folder and filename structure would you use?
2. What data type would accept whole numbers in a parameter?
3. What would a parameter defined as [string[]]$Username indicate?
4. How do you separate defined function parameters?
5. What does a foreach construct allow you to do?

Review Answers

Here are the answers to this chapter’s review questions:

1. Something like Program FilesWindowsPowerShellModulesCorpToolsCorpTools.psd1 for the
module manifest, and CorpTools.psm1, in the same folder, for the main script module file.

2. It is [int] or [int32].
3. That the parameter accepts an array or collection of user name strings.
4. Separate each parameter definition by a comma.
5. Enumerate through an array, or collection, of items.

Adding CmdletBinding and
Parameterizing
In this chapter, we’ll focus entirely on the Param() block of our function, and discuss some of the
cool things you can do with it.

About CmdletBinding and Common Parameters

Back when PowerShell v2 was being developed, Microsoft toyed with the idea of having a cmdlet{}
construct that was essentially a superset of function{}. The idea was that these “script cmdlets”
would exhibit all of the behaviors of a “real” cmdlet (e.g., one written in .NET and compiled into
an assembly). By the time v2 released, these had become advanced functions, and are differentiated
primarily by the [CmdletBinding()] attribute. To illustrate the first major difference, let’s start with
a basic function:

function test {

Param(

[string]$ComputerName

)

}

That’s it. No code at all. Now ask PowerShell for help with that function:

PS C:\> help test

NAME

test

SYNTAX

test [[-ComputerName] <string>]

ALIASES

None

That’s what we’d expect - PowerShell is producing the best help it can given the complete
nonexistence of anything. Now, let’s make just one change to the code:

Adding CmdletBinding and Parameterizing 28

function test {

[CmdletBinding()]

Param(

[string]$ComputerName

)

}

and again ask for help:

PS C:\> help test

NAME

test

SYNTAX

test [[-ComputerName] <string>] [<CommonParameters>]

ALIASES

None

PowerShell has added the common parameters. If you read the about_CommonParameters help
file¹³, you’ll discover that all PowerShell commands support this set of parameters. The number
has grown through the subsequent versions of PowerShell, and now consists of 11 parameters.
Cmdlet authors don’t need to do anything to make these work - PowerShell takes care of everything.
And now, because we added [CmdletBinding()], our function will support all of these common
parameters as well. Some of the cooler ones (with availability differing based on your version of
PowerShell) include:

• The -Verbose parameter enables the output of Write-Verbose in your function, overriding the
global $VerbosePreference variable.

• The -Debug parameter enables the use of Write-Debug in your function.
• The -ErrorAction parameter modifies your function’s behavior in the event of an error, and
overrides the global $ErrorActionPreference variable.

• The -ErrorVariable parameter lets you specify a variable name, in which PowerShell will
capture any errors your function generates.

• The -InformationAction parameter overrides the global $InformationPreference variable and
enables Write-Information output.

• The -InformationVariable parameter specifies a variable inwhich output from Write-Information

will be captured.

¹³https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/about/about_commonparameters

https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/about/about_commonparameters
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/about/about_commonparameters
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/about/about_commonparameters

Adding CmdletBinding and Parameterizing 29

• The -OutVariable parameter specifies a variable, in which PowerShell will place copies of your
function’s output, while also sending copies into the main pipeline. We’ll cover this more in
our chapter on troubleshooting.

• The -PipelineVariable parameter specifies a variable, in which PowerShell will store a copy
of the current pipeline element. We’ll cover this more in our chapter on troubleshooting.

There are others, and we’ll discuss almost all of them in more detail in upcoming chapters.

Accepting Pipeline Input

If you remember our original tool design, we specified a need to capture input from the pipeline.
This requires a modification both to our parameters and to the code of the function. As a reminder,
here’s where we’re starting after the previous chapter:

Function Get-TMComputerStatus {

Param(

[string[]]$Computername,

[string]$ErrorLogFilePath,

[switch]$ErrorAppend

)

foreach ($computer in $Computername) {

$OS = Get-CimInstance win32_operatingsystem -computername $computername |

Select-Object -property CSName,TotalVisibleMemorySize,FreePhysicalMemory,

NumberOfProcesses,

@{Name="PctFreeMemory";Expression = {($_.freephysicalmemory/`

($_.TotalVisibleMemorySize))*100}},

@{Name="Uptime";Expression = { (Get-Date) - $_.lastBootUpTime}}

$cpu = Get-CimInstance win32_processor -ComputerName $computername |

Select-Object -Property LoadPercentage

$vol = Get-Volume -CimSession $computername -DriveLetter C |

Select-Object -property @{Name = "PctFreeC";Expression = `

{($_.SizeRemaining/$_.size)*100 }}

$os,$cpu,$vol

} #foreach $computer

} #Get-TMComputerStatus

And here’s our modified function:

Adding CmdletBinding and Parameterizing 30

Function Get-TMComputerStatus {

[cmdletbinding()]

Param(

[Parameter(ValueFromPipeline=$True)]

[string[]]$Computername,

[string]$ErrorLogFilePath,

[switch]$ErrorAppend

)

BEGIN {}

PROCESS {

foreach ($computer in $Computername) {

$OS = Get-CimInstance win32_operatingsystem -computername $computername |

Select-Object -property CSName,TotalVisibleMemorySize,FreePhysicalMemory,

NumberOfProcesses,

@{Name="PctFreeMemory";Expression = {($_.freephysicalmemory/`

($_.TotalVisibleMemorySize))*100}},

@{Name="Uptime";Expression = { (Get-Date) - $_.lastBootUpTime}}

$cpu = Get-CimInstance win32_processor -ComputerName $computername |

Select-Object -Property LoadPercentage

$vol = Get-Volume -CimSession $computername -DriveLetter C |

Select-Object -property @{Name = "PctFreeC";Expression = `

{($_.SizeRemaining/$_.size)*100 }}

#TODO: Clean up output

$os,$cpu,$vol

} #foreach $computer

}

END {}

} #Get-TMComputerStatus

Here’s what we did:

• We added [CmdletBinding{}] to the Param() block.
• We used blank lines to visually separate our parameters in the Param() block.
• We added a [Parameter()] decorator, or attribute, to the $ComputerName parameter. Al-
though we physically placed it on the preceding line, PowerShell will read those two lines
as one.

Adding CmdletBinding and Parameterizing 31

• In the decorator, we specified that the $ComputerName parameter is capable of accepting values
([string] values, to be specific, since that’s what the parameter is) from the pipeline.

• We added BEGIN{}, PROCESS{}, and END{} scriptblocks.

Understanding how all this fits together requires you to remember that we want our function to run
in two distinct modes, and that each mode has slightly different requirements from PowerShell.

Running Commands in Non-Pipeline Mode

Imagine running our command like this:

Get-TMComputerStatus -ComputerName ONE,TWO,THREE

In this mode, PowerShell will ignore the BEGIN{}, PROCESS{}, and END{}labels, but it won’t ignore the
code within those labels. In other words, it’s simply like the labels never existed. $ComputerName
will contain an array, or collection, of three [string] objects, “ONE”, “TWO”, and “THREE”. Our
entire command will run one time, from the first line of code to the last. Our ForEach loop will
execute three times.

Running Commands in Pipeline Mode

Imagine running our command like this:

"ONE","TWO","THREE" | Get-TMComputerStatus

First, PowerShell will construct a three-element array, because that’s what comma-separated lists
do in PowerShell. It will then “scan ahead” in the pipeline, and execute the BEGIN{} block ONCE for
each command in the pipeline. That’s true both for advanced functions and for compiled cmdlets.
The Begin block (which does not have to be in all-uppercase, and which can be omitted if you
don’t have any code to stick in there) is a good place to do “set up” tasks, such as opening database
connections, setting up log files, or initializing arrays. Any variables you create in the Begin block
will continue to exist elsewhere in your function.

Next, PowerShell will start feeding the elements from that three-element array down the pipeline,
one at a time. So it will insert “ONE” into $ComputerName, and then run the PROCESS{} block.
Our ForEach loop will execute, but only once - it’s actually kind of redundant in this mode, but we
need it for the non-pipeline mode. PowerShell will then feed “TWO” into $ComputerName, and run
PROCESS{} again. It’ll then put “THREE” into $ComputerName, and run PROCESS{} one last time.

Finally, after all the objects have been sent through the pipeline, PowerShell will re-scan the pipeline
and ask everyone to run their END{} blocks once. Again, you can omit this if you don’t have anything
to put in there, but for visual purposes we like to include it even if it’s empty. One suggestion is to
insert a comment into empty Begin or End blocks so you don’t think something is missing.

Adding CmdletBinding and Parameterizing 32

End {

intentionally empty

}

We also like including comments at the closing } (e.g. } #close begin) so you can tell where
scriptblocks begin and end.

Values and PropertyNames

Notice that our example is using this decorator:

[Parameter(ValueFromPipeline=$True)]

This enables ByValue binding of pipeline input. You can enable this only for one parameter per data
type. Since $ComputerName is a [string], it’s therefore the only [string] parameter we can mark as
accepting pipeline input ByValue.

We can also enable input ByPropertyName:

[Parameter(ValueFromPipeline = $True,ValueFromPipelineByPropertyName=$True)]

If you’re not deeply familiar with pipeline parameter input ByValue and ByPropertyName,
we urge you to read Learn Windows PowerShell in a Month of Lunches and learn all about
it. It’s a crucial PowerShell feature.

Now, if the object in the pipeline isn’t a System.String, but it has a ComputerName property, our
$ComputerName variable will pick that up as well.

In the parameter attribute you will see that we assigned a value of $True to ValueFromPipeline. In
earlier versions of PowerShell this was required and you’ll find plenty of examples in the wild. Along
with other settings like Mandatory and ValueFromPipelineByPropertyName. However, specifying
$True is redundant. If you decorate a parameter with ValueFromPipeline it is automatically true.
You do not have to explicitly make it so. We will probably be explicitly redundant for a bit to make
sure you understand what we’re doing but eventually, we’ll drop the explicit assignment. This also
applies to other parameter settings like Mandatory.

Mandatory-ness

Because our function can’t really run correctly without a computer name, we want to ensure at least
one is always provided. Here’s our revised set of parameters:

Adding CmdletBinding and Parameterizing 33

Param(

[Parameter(ValueFromPipeline=$True,Mandatory=$True)]

[string[]]$Computername,

[string]$ErrorLogFilePath,

[switch]$ErrorAppend

)

Some notes on our decision-making process, here:

• Making $ComputerName mandatory makes sense. If a value isn’t provided, PowerShell will
prompt for it, and then fail with an error if one still isn’t given.

• Making $ErrorLogFilePath mandatory doesn’t make sense, because we don’t want to force
people to log errors. We’ll check to see if this is provided, and enable logging accordingly.

If one of your parameters is a [Switch] avoid making it mandatory, because you’re
essentially forcing it to be $True (or forcing someone to run -Enable:$false to turn it off,
which is awkward).

Parameter Validation

Our Computername parameter has a potential weakness, in that it’ll accept any string whatsoever.
We have no way of knowing what data might be fed into this parameter or even how.

Param(

[Parameter(ValueFromPipeline=$True,Mandatory=$True)]

[ValidateNotNullorEmpty()]

[string[]]$Computername,

[string]$ErrorLogFilePath,

[switch]$ErrorAppend

)

Here, we’ve added a [ValidateNotNullOrEmpty()] attribute to our $Computername parameter.
PowerShell will complain if the value is empty or null. Again, we have no way of knowing how
the user of our function is getting a value for Computername. We might even take this a step further
and add a second validation.

Adding CmdletBinding and Parameterizing 34

Param(

[Parameter(ValueFromPipeline=$True,Mandatory=$True)]

[ValidateNotNullorEmpty()]

[ValidatePattern("^\w+$")]

[string[]]$Computername,

[string]$ErrorLogFilePath,

[switch]$ErrorAppend

)

It is possible that the user could specify a Computername value that was a variable with nothing
but spaces. This would technically pass the not null or empty test. The second test using a regular
expression pattern to ensure that the value is starts and ends with a word character. Parameter values
need to pass all the validation tests. Also be aware that parameter validation doesn’t negate the need
for error handling. All we’ve done so far is validate that the parameter might be a computername.
But is it up? Do you have proper credentials? Eventually we will need to handle those situations.

There are other validation methods available, and we’ll cover those in an upcoming chapter.
You can also read about_functions_advanced_parameters¹⁴ for a full list.

Parameter Aliases

Finally, although we’ve followed native PowerShell patterns in using -ComputerName as our param-
eter name, we might also find value in this addition:

Param(

[Parameter(ValueFromPipeline=$True,Mandatory=$True)]

[ValidateNotNullorEmpty()]

[ValidatePattern("^\w+$")]

[Alias("CN","Machine","Name")]

[string[]]$Computername,

[string]$ErrorLogFilePath,

[switch]$ErrorAppend

)

Here, we’ve defined three aliases for our parameter, making -CN, -Machine, and -Name valid alterna-
tives. The user can run the command using these alternate parameters instead of -Computername.
Note that code within the function will use the defined parameter name internally, that is,
$Computername.

¹⁴https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/about/about_functions_advanced_parameters

https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/about/about_functions_advanced_parameters
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/about/about_functions_advanced_parameters

Adding CmdletBinding and Parameterizing 35

Your Turn

Okay, let’s return to the command you started building in the previous chapter, and start making
some improvements.

Start Here

Here’s where we finished up after last chapter; you can either use this as a starting point, or use your
own lab result.

Function Get-TMRemoteListeningConfiguration {

Param(

[string[]]$Computername,

[string]$ErrorLog

)

$ports = 22,5985,5986

foreach ($computer in $computername) {

foreach ($port in $ports) {

Test-NetConnection -Port $port -ComputerName $Computer |

Select-Object Computername,RemotePort,TCPTestSucceeded

}

#TODO

#better output

#error handling and logging

} #foreach

} #Get-RemoteListeningConfiguration function

Your Task

Go ahead and make this an advanced function, and accomplish the following:

• Ensure that the ComputerName parameter is mandatory.
• Ensure that ComputerName can accept pipeline input ByValue.
• Ensure that the Computername value isn’t null or empty.
• Add a Computername alias of CN.

Our Take

Here’s what we came up with. Notice especially the PROCESS{} label addition in the body of the
code.

Adding CmdletBinding and Parameterizing 36

Function Get-TMRemoteListeningConfiguration {

[cmdletbinding()]

Param(

[Parameter(ValueFromPipeline = $True, Mandatory = $True)]

[ValidateNotNullorEmpty()]

[Alias("CN")]

[string[]]$Computername,

[string]$ErrorLog

)

Begin {

#not used

}

Process {

$ports = 22,5985,5986

foreach ($computer in $computername) {

foreach ($port in $ports) {

Test-NetConnection -Port $port -ComputerName $Computer |

Select-Object Computername,RemotePort,TCPTestSucceeded

}

#TODO

#better output

#error handling and logging

} #foreach

}

End {

#not used

}

} #Get-RemoteListeningConfiguration function

We’ve included our solution, to this point, in the code samples for this book (which are available
by running Install-Module PowerShell-Toolmaking in PowerShell). You’ll find it in the Chapters
folder, under this chapter’s title. To load the module, you’ll need to manually run Import-Module

and provide the full path to our .psd1 file on your computer. In the code samples for this chapter, our
module name is TMTools-Prelim, to avoid conflicting with the “real” TMTools module that you’re
building on your own.

Let’s Review

See if you can answer these questions, to help ensure that you’ve picked up the key facts from this
chapter:

Adding CmdletBinding and Parameterizing 37

1. What does [CmdletBinding()] do?
2. What does PowerShell do with mandatory parameters?
3. What is the reason for parameter validation?
4. What might happen in an END{} block?

Review Answers

Here’s what we came up with:

1. Designates a function as an advanced function and activates the common PowerShell parame-
ters.

2. If a value isn’t provided, then the shell will prompt for values.
3. To verify that parameter values meet at least an initial level of verification. If the validation

fails the command will fail to run which is preferable to getting half-way through and then
erroring out.

4. Closing a database connection, closing a log file, or other “clean up” tasks.

Emitting Objects as Output
So far, the tool we’ve been building isn’t querying all of the information we originally specified
in our design. That was a deliberate decision so that we could get some structure around the tool
first. We’ve also held off because once we start querying a bunch of information, we need to take a
specific approach to combining it, and we wanted to tackle that approach in a single chapter.

Right now, the “functional” part of our tool looks like this:

Query data

$os = Get-CimInstance -ClassName Win32_OperatingSystem -ComputerName $computername

$cpu = Get-CimInstance win32_processor -ComputerName $computername

$vol = Get-Volume -CimSession $computername -DriveLetter C

The output is currently the collection of all these results. That’s not good design.

The code we have thus far is using Select-Object to create some of the custom properties that we
want.

$vol = Get-Volume -CimSession $computername -DriveLetter C |

Select-Object -property @{Name = "PctFreeC";

Expression = {($_.SizeRemaining/$_.size)*100 }}

The problem is that all of the properties or data is spread across multiple results. We need to assemble
them into a unified result object.

Assembling the Information

We’re going to move away from using backticks in some places, to keep our code’s column width
under the 80 character count that fits well in this book. Instead, we’re going to start using a technique
called splatting. With this technique, we construct a hash table whose keys are parameter names,
and whose values are the corresponding parameter values. This is also a smart step in our particular
case because we’re calling the same command multiple times with only slight parameter variations.
Here’s what splatting looks like.

Emitting Objects as Output 39

$params = @{ClassName = 'Win32_OperatingSystem'

ComputerName = 'CLIENT1'

}

We are defining a hashtable. You can call it anything you want. Put each parameter on a new line.
For switch parameters, assign a value of $True.

$params = @{ClassName = 'Win32_OperatingSystem'

ComputerName = 'CLIENT1'

Verbose = $True

}

You then feed those to the command by prefixing the variable name with @ instead of $:

Get-CimInstance @params

There, now you can tell your family you splatted today ;). So here’s our revised chunk of code that
queries the information we need into variables:

foreach ($computer in $Computername) {

$params = @{

Classname = "Win32_OperatingSystem"

Computername = $computer

}

$OS = Get-CimInstance @params

$params.ClassName = "Win32_Processor"

$cpu = Get-CimInstance @params

$params.className = "Win32_logicalDisk"

$vol = Get-CimInstance @params -filter "DeviceID='c:'"

#TODO: Clean up output

} #foreach $computer

A couple of notes on this snippet. One of the benefits of splatting is that because you are using a
hashtable you can modify it on the fly. In this case, all of the calls to Get-CimInstance are using the
same computer name. The only thing that is changing is the class name. You can assign a new value
by using the dotted notation. And using splatting doesn’t mean you can’t use other parameters. We
decided to switch out the Get-Volume command to also use Get-CimInstance. We are splatting the
core parameters but also adding a filter parameter.

Emitting Objects as Output 40

Constructing and Emitting Output

What we absolutely do not want to do at this point is output text. PowerShell should never use
Write-Host for tool output, because that output would be drawn directly on the screen as text. We
couldn’t re-use, re-direct, or re-anything that output, which isn’t the point of a reusable tool. Instead,
our tools should always output structured data in the form of objects, just like “real” PowerShell
commands do. In this case, there is data from 3 different objects. What we’re going to do is create a
new, single object and assign property values from the collected data.

You probably noticed the snippet above doesn’t have all of the Select-Object statements to define
all the custom properties. That can get a bit clunky especially when you compare it to this.

#Output data

$props = @{

Computername = $os.CSName

TotalMem = $os.TotalVisibleMemorySize

FreeMem = $os.FreePhysicalMemory

Processes = $os.NumberOfProcesses

PctFreeMem = ($os.FreePhysicalMemory/$os.TotalVisibleMemorySize)*100

Uptime = (Get-Date) - $os.lastBootUpTime

CPULoad = $cpu.LoadPercentage

PctFreeC = ($vol.FreeSpace/$vol.size)*100

}

$obj = New-Object -TypeName PSObject -Property $props

Write-Output $obj

Again, some notes:

• Were constructing a hash table - not unlike when splatting - that holds our output. Each key
in the hash table is a property name we want to output, and each value is the corresponding
data for that property.

• You can make the property names anything you want. You don’t have to use the object’s
original property name.

• We’re constructing values here instead of using Select-Object.
• We use New-Object to construct a blank object and attach our properties and values.
• We don’t need to save our object in $obj at this point, but we tend to do that because later we’ll
be modifying the object a bit, so it’s useful to have it in a variable.

• We explicitly output the object immediately to the pipeline, using Write-Output, rather than
accumulating it in an array or something to output later. The whole point of the pipeline is
to accumulate objects for us, and pass them on to whatever’s next in the pipeline. Technically,
you don’t need to use Write-Output. If you had simply used $obj, the result would have been
the same.

Emitting Objects as Output 41

A Quick Test

Running the code snippet for the local machine we get:

FreeMem : 15050452

Uptime : 4.20:30:00.2480806

CPULoad : 8

Processes : 304

PctFreeMem : 45.0038011371357

TotalMem : 33442624

Computername : BOVINE320

PctFreeC : 36.5086482029627

Notice that these properties aren’t in the right order! That’s because we used a normal hash table
to construct our property list, and .NET memory-optimizes that storage, which can result in a re-
ordering. That’s fine. At this level of a tool, we shouldn’t be worried about what the output looks
like - we could always use a Format command, or Select-Object, to specify an order. It is possible
to construct an [ordered] hash table instead, but we rarely do so. You’ll see another trick later in
the book.

By the way, we deliberately left the memory values in the native format, because it’ll be useful for
showing you another trick later.

Here’s our revised code:

Revised Get-TMComputerStatus

Function Get-TMComputerStatus {

[cmdletbinding()]

Param(

[Parameter(ValueFromPipeline = $True, Mandatory = $True)]

[ValidateNotNullorEmpty()]

[ValidatePattern("^\w+$")]

[Alias("CN", "Machine", "Name")]

[string[]]$Computername,

[string]$ErrorLogFilePath,

[switch]$ErrorAppend

)

BEGIN {}

PROCESS {

foreach ($computer in $Computername) {

$params = @{

Emitting Objects as Output 42

Classname = "Win32_OperatingSystem"

Computername = $computer

}

$OS = Get-CimInstance @params

$params.ClassName = "Win32_Processor"

$cpu = Get-CimInstance @params

$params.className = "Win32_logicalDisk"

$vol = Get-CimInstance @params -filter "DeviceID='c:'"

$props = @{

Computername = $os.CSName

TotalMem = $os.TotalVisibleMemorySize

FreeMem = $os.FreePhysicalMemory

Processes = $os.NumberOfProcesses

PctFreeMem = ($os.FreePhysicalMemory/$os.TotalVisibleMemorySize)*1\

00

Uptime = (Get-Date) - $os.lastBootUpTime

CPULoad = $cpu.LoadPercentage

PctFreeC = ($vol.FreeSpace/$vol.size)*100

}

$obj = New-Object -TypeName PSObject -Property $props

Write-Output $obj

} #foreach $computer

}

END {}

} #Get-TMComputerStatus

Keep in mind that this is also in the code samples that we’ve mentioned previously.

Your Turn

Let’s turn back to the task at creating getting remote listening configuration. The current output is
limited to Select-Object. But that’s about to change!

Start Here

Here’s where we left off with our version of this function:

Emitting Objects as Output 43

Function Get-TMRemoteListeningConfiguration {

[cmdletbinding()]

Param(

[Parameter(ValueFromPipeline = $True, Mandatory = $True)]

[ValidateNotNullorEmpty()]

[Alias("CN")]

[string[]]$Computername,

[string]$ErrorLog

)

Begin {

#not used

}

Process {

$ports = 22,5985,5986

foreach ($computer in $computername) {

foreach ($port in $ports) {

Test-NetConnection -Port $port -ComputerName $Computer |

Select-Object Computername,RemotePort,TCPTestSucceeded

}

#TODO

#better output

#error handling and logging

} #foreach

}

End {

#not used

}

} #Get-RemoteListeningConfiguration function

Use that, or your own work from the previous chapter, as a starting point.

Your Task

Modify your function so that it outputs an object for each computer it operates against. The output
should include the computer name, the remote IP address that responded, and the date of the test.
The primary purpose for this function is to determine what WSMan and SSH ports and/or protocols
are enabled. You can assume the standard ports.

Don’t be afraid to restructure or revise the code. Often we start going down one path only to realize
we really need to go down a different one.

Emitting Objects as Output 44

Our Take

Here’s our version (remember, you can get the actual code file in the downloadable samples).

Get-TMRemoteListeningConfiguration

Function Get-TMRemoteListeningConfiguration {

[cmdletbinding()]

Param(

[Parameter(ValueFromPipeline = $True, Mandatory = $True)]

[ValidateNotNullorEmpty()]

[Alias("CN")]

[string[]]$Computername,

[string]$ErrorLog

)

Begin {

#define a hashtable of ports

$ports = @{

WSManHTTP = 5985

WSManHTTPS = 5986

SSH = 22

}

#initialize an splatting hashtable

$testParams = @{

Port = ""

Computername = ""

}

} #begin

Process {

foreach ($computer in $computername) {

$testParams.Computername = $computer

#define the hashtable of properties for

#the custom object

$props = @{

Computername = $computer

Date = Get-Date

}

#enumerate the hashtable

$ports.GetEnumerator() | ForEach-Object {

Emitting Objects as Output 45

$testParams.Port = $_.Value

$test = Test-NetConnection @testParams

#add results

$props.Add($_.name, $test.TCPTestSucceeded)

#assume the same remote address will respond to all

#requests

if (-NOT $props.ContainsKey("RemoteAddress")) {

$props.Add("RemoteAddress", $test.RemoteAddress)

}

}

#create the custom object

$obj = New-Object -TypeName PSObject -Property $props

Write-Output $obj

#TODO

#error handling and logging

} #foreach

} #process

End {

#not used

} #end

} #Get-RemoteListeningConfiguration function

Notice a couple of things:

• We are now using the Begin‘ block to initialize a few hashtables. This only needs to be
done once before any computernames are processed. The names on the ports hashtable will
eventually be used as property names.

• We setup a hashtable of parameters to splat to Test-NetConnection. There are a few ways
to handle this hashtable and purists might take offense. But it works and is pretty easy to
understand.

• We’re assuming the same IP address will respond to all requests so that value only needs to be
added once to the property hashtable.

Let’s Review

Here are a few questions you can use to make sure you’ve picked up the key points of this chapter:

1. What is splatting?

Emitting Objects as Output 46

2. Why is it important to output objects from a tool?
3. Why might you save a new object in a variable instead of outputting it right away?
4. Why should you not accumulate objects in an array before outputting them all at once?

Review Answers

Here are our answers:

1. Splatting is a way of assembling command parameters into a hash table and feeding them to
the command in one unit.

2. Objects are structured data, and can be consumed by many other commands. Text is not
structured, and cannot easily be consumed by anything other than human eyeballs.

3. Youwill oftenwant to perform additional actions on, ormodifications to, the object, and having
the object in a variable facilitates that.

4. Accumulating will make your command “block” the pipeline; outputting objects one at a time
allows the pipeline to run multiple commands in parallel.

An Interlude: Changing Your
Approach
Let’s take a quick break from the narrative. In the preceding chapters, we’ve focused a lot on building
tools that conform to PowerShell’s native patterns and practices. That’s all well and good, but
sometimes you can make a point truly hit home by showing its opposite.

Consider this forums post from PowerShell.org¹⁵, which we’ve referenced with permission from its
original author. He posted this code which we’ve reformatted slightly to fit the page:

$UserNames = Get-ADUser -Filter * -SearchBase `

"OU=NAME_OF_OU_WITH_USERS3,OU=NAME_OF_OU_WITH_USERS2,

OU=NAME_OF_OU_WITH_USERS1,DC=DOMAIN_NAME,DC=COUNTRY_CODE"

Select -ExpandProperty samaccountname

$UserRegex = ($UserNames | ForEach{[RegEx]::Escape($_)}) -join "|"

$myArray = (Get-ChildItem -Path "\\file2\Felles\Home*" -Directory |

Where {$_.Name -notmatch $UserRegex})

foreach ($mapper in $myArray) {

#Param ($mapper = $(Throw "no folder name specified"))

calculate folder size and recurse as needed

$size = 0

Foreach ($file in $(ls $mapper -recurse)) {

If (-not ($file.psiscontainer)) {

$size += $file.length

}

}

return the value and go back to caller

echo $size

}

The goal is to list the sizes of each user’s home folder, and to show any “orphan” folders - that is,
folders which no longer correspond to an Active Directory user.

¹⁵https://powershell.org/forums/topic/compare-home-folders-with-user-names-and-fetch-folder-size/#post-61401

https://powershell.org/forums/topic/compare-home-folders-with-user-names-and-fetch-folder-size/#post-61401
https://powershell.org/forums/topic/compare-home-folders-with-user-names-and-fetch-folder-size/#post-61401

An Interlude: Changing Your Approach 48

The Critique

Now, this isn’t in any way meant as a beat-up on the original author. People learn different things at
different times, and arrive at their code through a variety of paths. Let’s just take the code for what
it is.

• If we were asked to solve this problem, we’d write this as two functions, not as one script.
One function would sum-up folder sizes, which is a totally useful function in a lot of scenarios.
Another would figure out which folders were orphans.

• We’d also take a more PowerShell-native approach, avoiding things like echo. Instead, we’d
have a goal of outputting objects, since those could be piped to commands that made them
into CSV files, HTML reports, and lots more. Although on most systems echo should be an
alias for Write-Output which means objects will be written to the pipeline. But using this alias
doesn’t make that clear, and someone could have used echo as an alias for Write-Host and then
you would be back to not having objects in the pipeline.

• We’d probably make more use of native PowerShell commands, since they tend to run a smidge
faster than a script.

• Finally, we’d try to keep our functions as generic and non-context-specific as possible, to
maximize re-use. This means no hard-coded names or paths.

One thing to remember is that, in Windows, folders don’t have a size. We have to instead get all the
files within that folder, and add up their sizes.

Our Take

Here’s our first function. Notice that, if a folder doesn’t exist, we’re explicitly outputting an “empty”
object.

Get-FolderSize

function Get-FolderSize {

[CmdletBinding()]

Param(

[Parameter(

Mandatory,

ValueFromPipeline,

ValueFromPipelineByPropertyName

)]

[string[]]$Path

)

BEGIN {}

PROCESS {

An Interlude: Changing Your Approach 49

ForEach ($folder in $path) {

Write-Verbose "Checking $folder"

if (Test-Path -Path $folder) {

Write-Verbose " + Path exists"

#turn the folder into a true FileSystem path

$cPath = Convert-Path $Folder

$params = @{

Path = $cPath

Recurse = $true

File = $true

}

$measure = Get-ChildItem @params |

Measure-Object -Property Length -Sum

[pscustomobject]@{

Path = $cPath

Files = $measure.count

Bytes = $measure.sum

}

}

else {

Write-Verbose " - Path does not exist"

[pscustomobject]@{

Path = $folder

Files = 0

Bytes = 0

}

} #if folder exists

} #foreach

} #PROCESS

END {}

} #function

That’s our first function, and the results end up looking like this:

Path Files Bytes

---- ----- -----

Z:\Documents\GitHub\ToolmakingBook\code 35 44101

Z:\Documents\GitHub\ToolmakingBook\manuscript 55 63679159

Z:\nope 0 0

Obviously, we could pipe that to Select-Object to turn the Byte count into another unit, like

An Interlude: Changing Your Approach 50

megabytes, but we feel it’s important for our tool to output the lowest-level of information possible,
to maximize its utility. Notice that we didn’t test this against “home folders” per se; we want this to
be a generic folder-size-adding-up function. Later, we’ll write a controller script to put this function
to a more specific business use, like summing up user home folder sizes.

Now we’re going to write a second function to deal with orphan folders. This will actually
incorporate our Get-FolderSize function. This tool is a bit more task-specific, because it needs to
understand our specific need to identify orphaned home folders.

Get-UserHomeFolderInfo

function Get-UserHomeFolderInfo {

[CmdletBinding()]

Param(

[Parameter(Mandatory)]

[string]$HomeRootPath

)

BEGIN {}

PROCESS {

Write-Verbose "Enumerating $HomeRootPath"

$params = @{

Path = $HomeRootPath

Directory = $True

}

ForEach ($folder in (Get-ChildItem @params)) {

Write-Verbose "Checking $($folder.name)"

$params = @{

Identity = $folder.name

ErrorAction = 'SilentlyContinue'

}

$user = Get-ADUser @params

if ($user) {

Write-Verbose " + User exists"

$result = Get-FolderSize -Path $folder.fullname

[pscustomobject]@{

User = $folder.name

Path = $folder.fullname

Files = $result.files

Bytes = $result.bytes

Status = 'OK'

}

}

else {

An Interlude: Changing Your Approach 51

Write-Verbose " - User does not exist"

[pscustomobject]@{

User = $folder.name

Path = $folder.fullname

Files = 0

Bytes = 0

Status = 'Orphan'

}

} #if user exists

} #foreach

} #PROCESS

END {}

}

Here, we’re taking a root location which contains home folders. We go through them one at a time,
and check to see that a corresponding Active Directory user exists. If one doesn’t, we output a
“blank” object with an “Orphan” status property. We could easily use Where-Object to filter for just
the orphans, so that someone can deal with those. If the user does exist, we use Get-FolderSize to
get the size info, and output the same kind of object. This time, the object is fully populated, with
an “OK” status.

The idea of writing out the same kind of object, either way, ensures consistent output, andmaximizes
the reusability of the information. You’ll find this code in the downloadable samples, under this
chapter’s folder.

Our functions are far from a complete and production worthy pieces of code. There’s no
error handling or parameter validation among other things. They were written to illustrate
concepts and patterns. You are welcome to finish these functions off to meet your own
production requirements.

Summary

The idea here is to take the task and really break it down. In the original forums post, the source
data was “all users in AD,” which created some challenges in finding orphan folders. In our approach,
we’ve used the actual list of folders as the source data, and checked each one against Active Directory.
That won’t tell us if we have userswithout home folders, but that wasn’t a stated problem. In reality,
we’d expect the users themselves would bring it up to the help desk if they didn’t have a home folder.

We took the one “generic” portion of our task and wrote it out as its own tool - Get-FolderSize. We
made sure it was useful on its own, accepting pipeline input and such, even though that’s not how

An Interlude: Changing Your Approach 52

Get-UserHomeFolderInfo actually uses it. We incorporated Verbose output that will make each one
a bit easier to follow and debug, if necessary. And, because we’ve used functions, each task is tightly
scoped and does just one thing, making each function less complex, easier to debug, and easier to
understand and maintain.

Using Verbose, Warning, and
Informational Output
A couple of chapters ago, we pointed out that adding [CmdletBinding()] to our Param block would
“enable” the output of certain commands for verbose, warning, and informational. Well, it’s time to
put that to use.

Knowing the Six Channels

It’s useful to understand that PowerShell has six “channels,” or pipelines, rather than the one that
we normally think of.

First up is the Success pipeline, which is the one you’re used to thinking of as just “the pipeline.”
This gets some special treatment from the PowerShell engine. For example, it’s the pipeline used
to pass objects from command to command. Additionally, at the end of the pipeline, PowerShell
sort of invisibly adds the Out-Default cmdlet, which has the effect of running any objects in the
pipeline through PowerShell’s formatting system. Whatever hosting application you’re using - the
PowerShell console, ISE,VS Code, etc. - is responsible for dealing with that output by placing it onto
the screen or something.

But there are five other pipelines:

1. Success - which we discussed.
2. Errors
3. Warnings
4. Verbose
5. Debug
6. Informational

Those numbers actually correspond with how PowerShell references each pipeline for redirection
purposes¹⁶.

Each pipeline represents a discrete and independent way of passing information. Each hosting
application decided how to deal with each pipeline. For example, the console host displays items
from pipeline #4 (Verbose) in yellow text, prefixed by “VERBOSE: “. Other hosts might log that
output to an event log or ignore it completely.

¹⁶https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/about/about_redirection

https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/about/about_redirection
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/about/about_redirection
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/about/about_redirection

Using Verbose, Warning, and Informational Output 54

Additionally, the shell defines several “preference” variables that control the output of each pipeline.
$VerbosePreference controls pipeline #4, $WarningPreference controls #3, and so on. Setting a
preference to “SilentlyContinue” will suppress that pipeline’s output; setting it to “Continue” will
display the output in whatever way the host application defines. The common parameters we
described in a previous chapter override the preference variables on a per-command basis. For
example, adding -Verbose to your command, when you run it, will enable Write-Verbose output in
your command.

Adding Verbose and Warning Output

Verbose output is disabled by default; Warning output is enabled. With that in mind, we tend to do
something like the following with those two forms of output:

Get-TMComputerStatus

Function Get-TMComputerStatus {

[cmdletbinding()]

Param(

[Parameter(ValueFromPipeline = $True, Mandatory = $True)]

[ValidateNotNullorEmpty()]

[ValidatePattern("^\w+$")]

[Alias("CN", "Machine", "Name")]

[string[]]$Computername,

[string]$ErrorLogFilePath,

[switch]$ErrorAppend

)

BEGIN {

Write-Verbose "Starting $($myinvocation.mycommand)"

}

PROCESS {

foreach ($computer in $Computername) {

Write-Verbose "Querying $computer"

$params = @{

Classname = "Win32_OperatingSystem"

Computername = $computer

}

$OS = Get-CimInstance @params

$params.ClassName = "Win32_Processor"

$cpu = Get-CimInstance @params

Using Verbose, Warning, and Informational Output 55

$params.className = "Win32_logicalDisk"

$vol = Get-CimInstance @params -filter "DeviceID='c:'"

[pscustomobject]@{

Computername = $os.CSName

TotalMem = $os.TotalVisibleMemorySize

FreeMem = $os.FreePhysicalMemory

Processes = $os.NumberOfProcesses

PctFreeMem = ($os.FreePhysicalMemory/$os.TotalVisibleMemorySize)*100

Uptime = (Get-Date) - $os.lastBootUpTime

CPULoad = $cpu.LoadPercentage

PctFreeC = ($vol.FreeSpace/$vol.size)*100

}

} #foreach $computer

}

END {

Write-Verbose "Ending $($myinvocation.mycommand)"

}

} #Get-TMComputerStatus

Sharp-eyed readers will notice two things:

• We snuck in a change to the New-Object creation. This is mainly just to show you a new
technique that you may run across. Rather than defining a hash table of properties and passing
it to New-Object, we’ve used the [pscustomobject] type accelerator to do the same job in a bit
less space.

• We’ve replaced a lot of our inline comments with verbose output. This lets the same message
be seen by someone running the code, provided they add -Verbose when doing so.

When you run your command with -Verbose any cmdlets that you call which support -Verbosewill
also use it.

Using Verbose, Warning, and Informational Output 56

PS C:\> Get-TMComputerStatus -Computername thinkp1 -Verbose

VERBOSE: Starting Get-TMComputerStatus

VERBOSE: Querying thinkp1

VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters,

''namespaceName' = root\cimv2,'className' = Win32_OperatingSystem'.

VERBOSE: Operation 'Enumerate CimInstances' complete.

VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters,

''namespaceName' = root\cimv2,'className' = Win32_Processor'.

VERBOSE: Operation 'Enumerate CimInstances' complete.

VERBOSE: Perform operation 'Query CimInstances' with following parameters,

''queryExpression' = SELECT * FROM Win32_logicalDisk WHERE DeviceID='c:',

'queryDialect' = WQL,'namespaceName' = root\cimv2'.

VERBOSE: Operation 'Query CimInstances' complete.

Processes : 220

Computername : THINKP1

FreeMem : 27192868

PctFreeMem : 82.2032500565296

PctFreeC : 54.8739635724224

Uptime : 1.03:13:05.0375303

TotalMem : 33080040

CPULoad : 1

VERBOSE: Ending Get-TMComputerStatus

We also added verbose output in the Begin and End scriptblocks to reflect starting and ending a
command. Instead of hard-coding your command name, let PowerShell detect it from the automatic
variable $myinvocation. This is a very handy technique when you have functions calling other
functions and you are trying to follow the flow of execution.

We haven’t added any warning output yet, because we haven’t a need for it. But we will, eventually
- so keep Write-Warning in the back of your brain. Eventually we’ll add statements like this:

Write-Warning "Danger, Will Robinson!"

Doing More With Verbose

If you take a moment to think about it, you’ll realize that incorporating Write-Verbose statements
into your tool makes a lot of sense. In fact, we recommend you include the statements from the very
beginning. Don’t wait to add them until after you have finished scripting. Add them first! Insert

Using Verbose, Warning, and Informational Output 57

verbose messages throughout your script that highlight what action your command is performing,
or the value of key variables. This will help you troubleshoot and debug during the development
process because you can run your command with -Verbose. The verbose messages can also double
as internal documentation. Finally, if someone is trying to run your tool and encountering problems,
you can have them start a transcript, run your command with -Verbose, then close the transcript
and send it to you. If you’ve written good verbose messages you’ll be able to track what is happening
and hopefully identify the problem.

In fact, you might consider adding Verbose messages like this at the beginning of your command.

Write-Verbose "Execution Metadata:"

Write-Verbose "User = $($env:userdomain)\$($env:USERNAME)"

$id = [System.Security.Principal.WindowsIdentity]::GetCurrent()

$IsAdmin = [System.Security.Principal.WindowsPrincipal]::new($id).IsInRole(

'administrators')

Write-Verbose "Is Admin = $IsAdmin"

Write-Verbose "Computername = $env:COMPUTERNAME"

Write-Verbose "OS = $((Get-CimInstance Win32_Operatingsystem).Caption)"

Write-Verbose "Host = $($host.Name)"

Write-Verbose "PSVersion = $($PSVersionTable.PSVersion)"

Write-Verbose "Runtime = $(Get-Date)"

When executed you’ll get potentially useful information like this:

VERBOSE: Execution Metadata:

VERBOSE: User = BOVINE320\Jeff

VERBOSE: Is Admin = False

VERBOSE: Computername = BOVINE320

VERBOSE: Perform operation 'Enumerate CimInstances' with following

parameters, ''namespaceName' = root\cimv2,'className' =

Win32_Operatingsystem'.

VERBOSE: Operation 'Enumerate CimInstances' complete.

VERBOSE: OS = Microsoft Windows 10 Pro

VERBOSE: Host = Windows PowerShell ISE Host

VERBOSE: PSVersion = 5.1.18362.752

VERBOSE: Runtime = 07/03/2020 15:05:50

Another tip is to add a prefix to each verbose message that indicates what scriptblock is being called.

Using Verbose, Warning, and Informational Output 58

Get-Foo

Function Get-Foo {

[cmdletbinding()]

Param(

[string]$Computername

)

Begin {

Write-Verbose "[BEGIN] Starting: $($MyInvocation.Mycommand)"

Write-Verbose "[BEGIN] Initializing array"

$a = @()

} #begin

Process {

Write-Verbose "[PROCESS] Processing: $Computername"

code goes here

} #process

End {

Write-Verbose "[END] Ending: $($MyInvocation.Mycommand)"

} #end

} #end Get-Foo

See how there is sort of a “block comment” effect? This makes it easier to know exactly where your
command is. Note the use of padded spaces. This is to make the verbose output easy to read.

PS C:\> Get-Foo -Computername FOO -Verbose

VERBOSE: [BEGIN] Starting: Get-Foo

VERBOSE: [BEGIN] Initializing array

VERBOSE: [PROCESS] Processing: FOO

VERBOSE: [END] Ending: Get-Foo

A variation you might consider is including a timestamp. This is especially useful for long running
commands.

Using Verbose, Warning, and Informational Output 59

Get-Bar

Function Get-Bar {

[cmdletbinding()]

Param(

[string]$Computername

)

Begin {

Write-Verbose "[$((Get-Date).TimeOfDay) BEGIN] Starting: $($MyInvocation.M\

ycommand)"

Write-Verbose "[$((Get-Date).TimeOfDay) BEGIN] Initializing array"

$a = @()

} #begin

Process {

Write-Verbose "[$((Get-Date).TimeOfDay) PROCESS] Processing: $Computername"

code goes here

} #process

End {

Write-Verbose "[$((Get-Date).TimeOfDay) END] Ending: $($MyInvocation.Myc\

ommand)"

} #end

} #end Get-Bar

Which will give you verbose output like this:

PS C:\> Get-Bar -Computername foo -Verbose

VERBOSE: [14:01:51.8020007 BEGIN] Starting: Get-Bar

VERBOSE: [14:01:51.8140051 BEGIN] Initializing array

VERBOSE: [14:01:51.8170015 PROCESS] Processing: foo

VERBOSE: [14:01:51.8190054 END] Ending: Get-Bar

There’s really no limit to how you can use Verbose messages. It is up to you to decide what would
be useful information.

Using Verbose, Warning, and Informational Output 60

Informational Output

This new, sixth channel was introduced in PowerShell v5. In fact, PowerShell v5 more or less
did away with its original Write-Host cmdlet, and turned Write-Host into a wrapper around
Write-Information. The Information stream is a bit different from other pipelines that can carry
messages, because it’s designed to carry structured messages. It requires a bit of pre-planning to use
well. However, there’s still an $InformationPreference variable which can suppress or allow the
output of this stream, and it’s set to SilentlyContinue, or “off,” by default. When you run a command,
you can specify -InformationAction Continue to enable that command’s Informational output.

$InformationPreference and -InformationAction are automatically set to “Continue” when
you use Write-Host, so that Write-Host behaves as it did in previous versions of PowerShell.

It’s worth noting that Informational output works in PowerShell jobs, scheduled jobs, andworkflows,
which isn’t the case with most of the other forms of messaging - Verbose, Warning, etc.

On a basic level, using Write-Information isn’t any different than using Write-Verbose. The
-MessageData parameter is in the first position, so you’ll often skip using the parameter name and
just add whatever message you want to include - same as we just did with Write-Verbose. But
messages can also be tagged, usually with a keyword like “information,” “instructions,” or whatever
you decide. The information stream can then be searched based on those tags. You can also run
commands using the -InformationVariable parameter to have informational messages added to a
variable that you designate. This can help keep the information messages from “cluttering up” your
normal output.

So, for example:

Get-Example

Function Get-Example {

[CmdletBinding()]

Param()

Write-Information "First message" -tag status

Write-Information "Note that this had no parameters" -tag notice

Write-Information "Second message" -tag status

}

Get-Example -InformationAction Continue -InformationVariable x

Using “Continue” the way we did there makes it apply to all Write-Information commands inside
the Example function. And if you run that (in PowerShell 5 or later), you’ll see that the informational

Using Verbose, Warning, and Informational Output 61

messages do indeed appear. Were you to examine $x, you’d find the messages in it, as well. Contrast
the above with this:

Get-Example with variable output

function Get-Example {

[CmdletBinding()]

Param()

Write-Information "First message" -tag status

Write-Information "Note that this had no parameters" -tag notice

Write-Information "Second message" -tag status

}

Example -InformationAction SilentlyContinue -IV x

$x

This time, our messages don’t appear, because we used “SilentlyContinue.” However, the commands
still run and still work, and if you were to examine $x you’d find all three messages in there. Notice
that we shortened -InformationVariable to its -IV alias to save some room. Let’s now go one step
further:

Get-Example with filtered output

function Get-Example {

[CmdletBinding()]

Param()

Write-Information "First message" -tag status

Write-Information "Note that this had no parameters" -tag notice

Write-Information "Second message" -tag status

}

Get-Example -InformationAction SilentlyContinue -IV x

$x | Where-Object tags -in @('notice')

In this example, only our second message, “Note that this had no parameters”, will display, because
we filtered that out of $x by using the Tags property of the messages.

A Detailed Information Example

Like Verbose output, effectively using the Information channel requires some planning on your part.
You have to figure out what needs to be logged and how it might be used and you need to implement

Using Verbose, Warning, and Informational Output 62

your Write-Information commands when creating your tool. Here’s a very simple function we can
use to illustrate how you might use Write-Information. You can find a file with these test functions
in the code folder for this chapter.

Test-Me

Function Test-Me {

[cmdletbinding()]

Param()

Write-Information "Starting $($MyInvocation.MyCommand) " -Tags Process

Write-Information "PSVersion = $($PSVersionTable.PSVersion)" -Tags Meta

Write-Information "OS = $((Get-CimInstance Win32_operatingsystem).Caption)" `

-Tags Meta

Write-Verbose "Getting top 5 processes by WorkingSet"

Get-Process | Sort-Object WS -Descending |

Select-Object -first 5 -OutVariable s

Write-Information ($s[0] | Out-String) -Tags Data

Write-Information "Ending $($MyInvocation.MyCommand) " -Tags Process

}

Running the command normally will give you the top 5 processes by working set. Now run it like
this:

PS C:\> test-me -InformationAction Continue

Starting Test-Me

PSVersion = 5.1.18362.752

OS = Microsoft Windows 10 Pro

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName

------- ------ ----- ----- ------ -- -- -----------

0 0 3860 1597352 382.23 3272 0 Memory Compression

273 45 1790192 1307884 1,376.14 4208 1 TabNine

1694 187 739776 618188 438.19 24200 1 firefox

2111 182 539468 516704 1,946.97 976 1 firefox

1906 67 844212 362408 7,494.30 1460 1 dwm

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName

------- ------ ----- ----- ------ -- -- -----------

0 0 3860 1597352 382.23 3272 0 Memory Compression

Using Verbose, Warning, and Informational Output 63

Ending Test-Me

By setting the common parameter, -InformationAction to Continue this “turned on” the information
channel which also displays the information. This can be useful when building your messages and
you want to see how what they will do.

Next, run the command using the -InformationVariable parameter.

PS C:\> test-me -InformationVariable inf

This time you won’t get the information messages, because the command is running with the default
“SilentlyContinue” setting for informationmessages, suppressing them. Instead, they will be directed
to the variable inf.

PS C:\> $inf

Starting Test-Me

PSVersion = 5.1.18362.752

OS = Microsoft Windows 10 Pro

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName

------- ------ ----- ----- ------ -- -- -----------

0 0 3860 1596064 382.27 3272 0 Memory Compression

Ending Test-Me

What you get back is a very rich object:

PS C:\> $inf | Get-Member

TypeName: System.Management.Automation.InformationRecord

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string ToString()

Computer Property string Computer {get;set;}

ManagedThreadId Property uint32 ManagedThreadId {get;set;}

Using Verbose, Warning, and Informational Output 64

MessageData Property System.Object MessageData {get;}

NativeThreadId Property uint32 NativeThreadId {get;set;}

ProcessId Property uint32 ProcessId {get;set;}

Source Property string Source {get;set;}

Tags Property System.Collections.Generic.List[string] Tags...

TimeGenerated Property datetime TimeGenerated {get;set;}

User Property string User {get;set;}

Which means you can work with the data however you’d like.

PS C:\> $inf.where({$_.tags -contains 'meta'}) | select Computer,MessageData

Computer MessageData

-------- -----------

BOVINE320 PSVersion = 5.1.18362.752

BOVINE320 OS = Microsoft Windows 10 Pro

The key takeaway is that if your command doesn’t have any Write-Information commands, then
the information parameters are irrelevant.

However, as we mentioned earlier, beginning with PowerShell 5.05, Write-Host was re-factored to
be a conduit for Write-Information. Check this revised version of the function.

Test-Me2

Function Test-Me2 {

[cmdletbinding()]

Param()

Write-Host "Starting $($MyInvocation.MyCommand) " -fore green

Write-Host "PSVersion = $($PSVersionTable.PSVersion)" -fore green

Write-Host "OS = $((Get-CimInstance Win32_operatingsystem).Caption)" `

-fore green

Write-Verbose "Getting top 5 processes by WorkingSet"

Get-Process | Sort-Object -property WS -Descending |

Select-Object -first 5 -OutVariable s

Write-Host ($s[0] | Out-String) -fore green

Write-Host "Ending $($MyInvocation.MyCommand) " -fore green

}

One benefit of using Write-Host is the ability to colorize the output. Unfortunately even if you run
the command like this:

Using Verbose, Warning, and Informational Output 65

test-me2 -InformationVariable inf2

You will get the information output saved to $inf2. But you’ll also get the informational messages
written to the host in green. This may not be desirable. This technique also loses the ability to add
tags.

Here’s one final version that is more a proof of concept than anything.

Test-Me3

Function Test-Me3 {

[cmdletbinding()]

Param()

if ($PSBoundParameters.ContainsKey("InformationVariable")) {

$Info = $True

$infVar = $PSBoundParameters["InformationVariable"]

}

if ($info) {

Write-Host "Starting $($MyInvocation.MyCommand) " -fore green

(Get-Variable $infVar).value[-1].Tags.Add("Process")

Write-Host "PSVersion = $($PSVersionTable.PSVersion)" -fore green

(Get-Variable $infVar).value[-1].Tags.Add("Meta")

Write-Host "OS = $((Get-CimInstance Win32_operatingsystem).Caption)" `

-fore green

(Get-Variable $infVar).value[-1].Tags.Add("Meta")

}

Write-Verbose "Getting top 5 processes by WorkingSet"

Get-Process | Sort-Object WS -Descending |

Select-Object -first 5 -OutVariable s

if ($info) {

Write-Host ($s[0] | Out-String) -fore green

(Get-Variable $infVar).value[-1].Tags.Add("Data")

Write-Host "Ending $($MyInvocation.MyCommand) " -fore green

(Get-Variable $infVar).value[-1].Tags.Add("Process")

}

}

This function tests to see if -InformationVariablewas specified and if so a variable ($Info) is switch
on. When information is needed via Write-Host, if $Info is true, then the Write-Host lines are called.
Immediately after each line a tag is added to the information variable.

Using Verbose, Warning, and Informational Output 66

test-me3 -InformationVariable inf3

This will display the information messages in green and generate the information variable.

PS C:\> $inf3 | Group-object {$_.tags -join "-"}

Count Name Group

----- ---- -----

2 PSHOST-Process {Starting Test-Me3 , Ending Test-Me3 }

2 PSHOST-Meta {PSVersion = 5.1.18362.752, OS = Mi...}

1 PSHOST-Data {...

Before we move on, don’t forget that the information variables are just another type of object. You
could export the variable using Export-Clixml, store the results in a database, or create a custom
text log file from the different properties.

Verbose output is still a good choice when you’re using PowerShell versions prior to 5. Once you’re
using 5, however, it may make sense to start migrating to Information messages instead, given their
flexibility, tags, and searchability. For now, because we’re aiming for greater compatibility, we’re
sticking with verbose output in our example.

Your Turn

As you might imagine, you’re going to add some verbose output to the tool designed to get remote
listening configurations.

Start Here

Here’s where we left off after the last round of revisions. You can start here (or use our code sample
from the download), or start with your result from the earlier chapter.

Function Get-TMRemoteListeningConfiguration {

[cmdletbinding()]

Param(

[Parameter(ValueFromPipeline = $True, Mandatory = $True)]

[ValidateNotNullorEmpty()]

[Alias("CN")]

[string[]]$Computername,

[string]$ErrorLog

)

Using Verbose, Warning, and Informational Output 67

Begin {

#define a hashtable of ports

$ports = @{

WSManHTTP = 5985

WSManHTTPS = 5986

SSH = 22

}

#initialize an splatting hashtable

$testParams = @{

Port = ""

Computername = ""

}

} #begin

Process {

foreach ($computer in $computername) {

$testParams.Computername = $computer

#define the hashtable of properties for

#the custom object

$props = @{

Computername = $computer

Date = Get-Date

}

#enumerate the hashtable

$ports.GetEnumerator() | ForEach-Object {

$testParams.Port = $_.Value

$test = Test-NetConnection @testParams

#add results

$props.Add($_.name, $test.TCPTestSucceeded)

#assume the same remote address will respond to all

#requests

if (-NOT $props.ContainsKey("RemoteAddress")) {

$props.Add("RemoteAddress", $test.RemoteAddress)

}

}

#create the custom object

$obj = New-Object -TypeName PSObject -Property $props

Using Verbose, Warning, and Informational Output 68

Write-Output $obj

#TODO

#error handling and logging

} #foreach

} #process

End {

#not used

} #end

} #Get-RemoteListeningConfiguration function

Your Task

Add some meaningful verbose output to your tool. If you see an opportunity to add warning output,
feel free to add that as well.

Our Take

Here’s what we came up with:

Get-TMRemoteListeningConfiguration

Function Get-TMRemoteListeningConfiguration {

[cmdletbinding()]

Param(

[Parameter(ValueFromPipeline,Mandatory)]

[ValidateNotNullorEmpty()]

[Alias("CN")]

[string[]]$Computername,

[string]$ErrorLog

)

Begin {

Write-Information "Command = $($myinvocation.mycommand)" -Tags Meta

Write-Information "PSVersion = $($PSVersionTable.PSVersion)" -Tags Meta

Write-Information "User = $env:userdomain\$env:username" -tags Meta

Write-Information "Computer = $env:computername" -tags Meta

Write-Information "PSHost = $($host.name)" -Tags Meta

Write-Information "Test Date = $(Get-Date)" -tags Meta

#define a private function to write the verbose messages

Function WV {

Param($prefix,$message)

Using Verbose, Warning, and Informational Output 69

$time = Get-Date -f HH:mm:ss.ffff

Write-Verbose "$time [$($prefix.padright(7,' '))] $message"

}

WV -prefix BEGIN -message "Starting $($myinvocation.MyCommand)"

#define a ordered hashtable of ports so that the testing

#goes in the same order

$ports = [ordered]@{

WSManHTTP = 5985

WSManHTTPS = 5986

SSH = 22

}

#initialize an splatting hashtable

$testParams = @{

Port = ""

Computername = ""

WarningAction = "SilentlyContinue"

WarningVariable = "wv"

}

#keep track of total computers tested

$total=0

#keep track of how long testing takes

$begin = Get-Date

} #begin

Process {

foreach ($computer in $computername) {

$total++

#make the computername all upper case

$testParams.Computername = $computer.ToUpper()

WV PROCESS "Testing $($testParams.Computername)"

#define the hashtable of properties for the custom object

$props = [ordered]@{

Computername = $testparams.Computername

Date = Get-Date

}

#this array will be used to store passed ports

#It is used by Write-Information

$passed = @()

Using Verbose, Warning, and Informational Output 70

#enumerate the hashtable

$ports.GetEnumerator() | ForEach-Object {

$testParams.Port = $_.Value

WV "PROCESS" "Testing port $($testparams.port)"

$test = Test-NetConnection @testParams

WV PROCESS "Adding results"

$props.Add($_.name, $test.TCPTestSucceeded)

if ($test.TCPTestSucceeded) {

$passed+=$testParams.Port

}

if (-NOT $props.Contains("RemoteAddress")) {

wv "PROCESS" "Adding RemoteAddress $($test.remoteAddress)"

$props.Add("RemoteAddress", $test.RemoteAddress)

}

}

Write-Information "$($testParams.Computername) = $($passed -join ',')" `

-Tags data

$obj = New-Object -TypeName PSObject -Property $props

Write-Output $obj

#TODO: error handling and logging

} #foreach

} #process

End {

$runtime = New-TimeSpan -Start $begin -End (Get-Date)

WV END "Processed $total computer(s) in $runtime"

WV END "Ending $($myinvocation.mycommand)"

} #end

} #Get-TMRemoteListeningConfiguration function

Here are a few highlights of the changes we made.

• Wewanted to use Write-Verbose throughout. But we alsowanted to standardize on the verbose
message and reduce the amount of typing. In the Begin block we created a private “helper”
function called wv. Because the command is never exposed we are ok using a non-standard

Using Verbose, Warning, and Informational Output 71

name. The function handles writing the verbose message. If we decide later we want a different
time stamp format or other information, all we have to do is modify the function.

• We are using Write-Information to capture additional information.
• If you have really been paying attention, some of you may also noticed that we changed the
$Ports hashtable into an [ordered] hashtable. We wanted the ports to always be tested in the
same order and this is an easy way to accomplish that.

• We removed comments where a verbose message would provide the same information.

Let’s Review

See if you can answer these questions:

1. In PowerShell v5 and later, what command does Write-Host wrap around?
2. How does the person running your function get Verbose output from it?
3. What are the common parameters related to the information stream?
4. What are some of the benefits of incorporating verbose output into your commands?

Review Answers

Here are our answers:

1. Write-Information.
2. Running the command with the -Verbose parameter, or manually setting $VerbosePreference

to “Continue.”
3. The -InformationAction and -InformationV$ivariable parameters.
4. You can get detailed information about what your script is doing which can be logged as well

as provide useful debugging or troubleshooting information.

Comment-Based Help
One of the things we all love about PowerShell is its help system. Like Linux’ “MAN” pages,
PowerShell’s help files can provide a wealth of information, examples, instructions, and more.
So we definitely want to provide help with the tools we create - and you should, too. You’ve
got two ways of doing so. First, write “full” PowerShell help. That consists of external, XML-
formatted “MAML” (Microsoft Assistance Markup Language) files, which can even include versions
for different languages. We’ll show you how to do that in the next Part of this book. For now, we’re
instead going to use the simpler, single-language comment-based help¹⁷ that lives right inside your
function.

Where to Put Your Help

There are three “legal” places where PowerShell will look for your specially formatted comments,
in order to turn them into help displays:

1. Just before your function’s opening function keyword, with no blank lines between the last
comment line and your function. We don’t like this spot, because we prefer…

2. Just inside your function, after the opening function declaration and before your [CmdletBinding()]
or Param parts. We prefer this spot, because it’s easier to move the help with your function if
you’re copying and pasting your code someplace else. Your comments will also “collapse” into
the function if you use an editor that has “code-folding” features.

3. Or stick it as the last thing in your function before the closing }. We’re not fans of this spot,
either, because having your comments at the top of the function helps better document the
function for someone reading the code.

Getting Started

Let’s just dive in with a completed example using the Get-TMComputerStatus example.

¹⁷https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/about/about_comment_based_help

https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/about/about_comment_based_help
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/about/about_comment_based_help

Comment-Based Help 73

Get-MachineInfo
Function Get-TMComputerStatus {

<#

.SYNOPSIS

Get computer status information.

.DESCRIPTION

This command retrieves system information from one or more remote computers

using Get-CimInstance. It will write a summary object to the pipeline for

each computer. You also have the option to log errors to a text file.

.PARAMETER Computername

The name of the computer to query.

.PARAMETER ErrorLog

The path to the error text file. This is not implemented yet.

.PARAMETER ErrorAppend

Append errors to the error file. This is not implemented yet.

.EXAMPLE

PS C:\> Get-TMComputerstatus -computername SRV1

#>

[cmdletbinding()]

Param(

[Parameter(ValueFromPipeline, Mandatory)]

[ValidateNotNullorEmpty()]

[ValidatePattern("^\w+$")]

[Alias("CN", "Machine", "Name")]

[string[]]$Computername,

[string]$ErrorLog,

[switch]$ErrorAppend

)

BEGIN {

Write-Information "Command = $($myinvocation.mycommand)" -Tags Meta

Write-Information "PSVersion = $($PSVersionTable.PSVersion)" -Tags Meta

Write-Information "User = $env:userdomain\$env:username" -tags Meta

Write-Information "Computer = $env:computername" -tags Meta

Write-Information "PSHost = $($host.name)" -Tags Meta

Write-Information "Test Date = $(Get-Date)" -tags Meta

Write-Verbose "Starting $($myinvocation.mycommand)"

}

PROCESS {

foreach ($computer in $Computername) {

Write-Verbose "Querying $($computer.toUpper())"

$params = @{

Comment-Based Help 74

Classname = "Win32_OperatingSystem"

Computername = $computer

}

$OS = Get-CimInstance @params

$params.ClassName = "Win32_Processor"

$cpu = Get-CimInstance @params

$params.className = "Win32_logicalDisk"

$vol = Get-CimInstance @params -filter "DeviceID='c:'"

[pscustomobject]@{

Computername = $os.CSName

TotalMem = $os.TotalVisibleMemorySize

FreeMem = $os.FreePhysicalMemory

Processes = $os.NumberOfProcesses

PctFreeMem = ($os.FreePhysicalMemory/$os.TotalVisibleMemorySize)*100

Uptime = (Get-Date) - $os.lastBootUpTime

CPULoad = $cpu.LoadPercentage

PctFreeC = ($vol.FreeSpace/$vol.size)*100

}

} #foreach $computer

}

END {

Write-Verbose "Starting $($myinvocation.mycommand)"

}

} #Get-TMComputerStatus

The help here reflects what we believe is the bare minimum for inclusion in the race of Upright
Human Beings. Some notes:

• You do not have to use all-uppercase letters, but the period preceding each help keyword
(.SYNOPSIS, .DESCRIPTION) must be in the first column.

• We used a block comment; you could also use line-by-line comments. The block comment looks
nicer and is considered a collapsible region.

• .SYNOPSIS is meant to be a very short description of what your command does.
• .DESCRIPTION is a longer description, which can be full of details, instructions, and insights.
• .PARAMETER is followed by the parameter name, and then followed by a description of the
parameter’s use. You do not need to provide a listing for every single parameter.

• .EXAMPLE should be followed immediately by the example itself ; PowerShell will add a
PowerShell prompt in front of this line when the help is displayed. Although if your tool takes
advantage of different providers such as the registry, you can certainly insert an appropriate
prompt to illustrate your example. Subsequent lines can explain the example.

Comment-Based Help 75

• You can have blank comment lines between each of these settings make it all easier to read in
code.

• You normally don’t need to worry about line length. PowerShell will wrap lines as necessary
depending on the console size of the current host. However if you want to manually break
lines, a width of 80 characters is your best bet.

Here’s a slightly revised and “prettier” help block.

<#

.SYNOPSIS

Get computer status information.

.DESCRIPTION

This command retrieves system information from one or more remote computers

using Get-CimInstance. It will write a summary object to the pipeline for

each computer. You also have the option to log errors to a text file.

.PARAMETER Computername

The name of the computer to query. This parameter has aliases of

CN, Machine and Name.

.PARAMETER ErrorLog

The path to the error text file. This is not implemented yet.

.PARAMETER ErrorAppend

Append errors to the error file. This is not implemented yet.

.EXAMPLE

PS C:\> Get-TMComputerStatus -computername SRV1

Computername : SRV1

TotalMem : 33080040

FreeMem : 27384236

Processes : 218

PctFreeMem : 82.7817499616083

Uptime : 11.06:23:52.7176115

CPULoad : 2

PctFreeC : 54.8730920184876

Get the status of a single computer

.EXAMPLE

PS C:\> Get-Content c:\work\computers.txt | Get-TMComputerStatus |

Comment-Based Help 76

Export-CliXML c:\work\data.xml

Pipe each computer name from the computers.txt text file to this

command. Results are immediately exported to an XML file using

Export-CliXML.

#>

As we wrote, these elements are the bare minimum. You can do more. A lot more.

Going Further with Comment-Based Help

You can use an .INPUTS section to list .NET class types, one per line, that your command accepts as
input from the pipeline.

.INPUTS

System.String

Similarly, .OUTPUTS lists the type names that your script outputs. Because ours presently only outputs
a generic PSObject, there’s not much point in listing anything.

A .NOTES section can list additional information, which is only displayed when the “full” help is
requested by the user.

.NOTES

version : 1.0.0

last updated: 1 June, 2020

A .LINK, followed by a topic name or a URL, will show up as a “Related Topic” in the help. Use one
.LINK keyword for each related topic; don’t put multiples under a single .LINK.

.LINK

https://powershell.org/forums/

.LINK

Get-CimInstance

There’s more, too - read the about_comment_based_help topic in PowerShell for the full list. A few
of them, you’ll see us include in upcoming chapters, as we add functionality that pertains to those
help keywords. So be on the lookout.

Comment-Based Help 77

Broken Help

PowerShell’s a little bit picky - okay, a lot bit picky - about help formatting and syntax. Get just
one thing wrong, and none of the help will work AND you’ll get no error message or explanation.
So if you’re not getting the help display you expect, go review your help keyword spelling, period
locations, and other details very carefully.

Your Turn

Time to add some comment-based help to your function.

Start Here

Here’s where we left off after the most recent chapter. You can use this as a starting point, or use
your own result from that chapter:

Function Get-TMRemoteListeningConfiguration {

[cmdletbinding()]

Param(

[Parameter(ValueFromPipeline,Mandatory)]

[ValidateNotNullorEmpty()]

[Alias("CN")]

[string[]]$Computername,

[string]$ErrorLog

)

Begin {

Write-Information "Command = $($myinvocation.mycommand)" -Tags Meta

Write-Information "PSVersion = $($PSVersionTable.PSVersion)" -Tags Meta

Write-Information "User = $env:userdomain\$env:username" -tags Meta

Write-Information "Computer = $env:computername" -tags Meta

Write-Information "PSHost = $($host.name)" -Tags Meta

Write-Information "Test Date = $(Get-Date)" -tags Meta

#define a private function to write the verbose messages

Function WV {

Param($prefix,$message)

$time = Get-Date -f HH:mm:ss.ffff

Write-Verbose "$time [$($prefix.padright(7,' '))] $message"

}

Comment-Based Help 78

WV -prefix BEGIN -message "Starting $($myinvocation.MyCommand)"

#define a ordered hashtable of ports so that the testing

#goes in the same order

$ports = [ordered]@{

WSManHTTP = 5985

WSManHTTPS = 5986

SSH = 22

}

#initialize an splatting hashtable

$testParams = @{

Port = ""

Computername = ""

WarningAction = "SilentlyContinue"

WarningVariable = "wv"

}

#keep track of total computers tested

$total=0

#keep track of how long testing takes

$begin = Get-Date

} #begin

Process {

foreach ($computer in $computername) {

$total++

#make the computername all upper case

$testParams.Computername = $computer.ToUpper()

WV PROCESS "Testing $($testParams.Computername)"

#define the hashtable of properties for the custom object

$props = [ordered]@{

Computername = $testparams.Computername

Date = Get-Date

}

#this array will be used to store passed ports

#It is used by Write-Information

$passed = @()

#enumerate the hashtable

$ports.GetEnumerator() | ForEach-Object {

$testParams.Port = $_.Value

Comment-Based Help 79

WV "PROCESS" "Testing port $($testparams.port)"

$test = Test-NetConnection @testParams

WV PROCESS "Adding results"

$props.Add($_.name, $test.TCPTestSucceeded)

if ($test.TCPTestSucceeded) {

$passed+=$testParams.Port

}

if (-NOT $props.Contains("RemoteAddress")) {

wv "PROCESS" "Adding RemoteAddress $($test.remoteAddress)"

$props.Add("RemoteAddress", $test.RemoteAddress)

}

}

Write-Information "$($testParams.Computername) = $($passed -join ',')" `

-Tags data

$obj = New-Object -TypeName PSObject -Property $props

Write-Output $obj

#TODO: error handling and logging

} #foreach

} #process

End {

$runtime = New-TimeSpan -Start $begin -End (Get-Date)

WV END "Processed $total computer(s) in $runtime"

WV END "Ending $($myinvocation.mycommand)"

} #end

} #Get-TMRemoteListeningConfiguration function

Your Task

Add, at a minimum, the following to your tool:

• Synopsis
• Description
• Parameter descriptions
• Two examples, including descriptions

Comment-Based Help 80

Import your module and test your help (Help Get-TMRemoteListeningConfiguration -ShowWindow,
for example) to make sure it works.

Our Take

Here’s the help we came up with. As always, you’ll find this in the code downloads, under this
chapter’s folder.

Get-TMRemoteListeningConfiguration Help

Function Get-TMRemoteListeningConfiguration {

<#

.Synopsis

Test remote listening ports.

.Description

This command will be used to test the network listening configuration on one

or more remote computers. It will test if standard PowerShell remoting is

enabled on both ports 5985 and 5986. It will also test if SSH is enabled on

port 22.

Because the command is testing at the network layer, you do not need to use

any credentials.

.Parameter Computername

Specify the name of IP address of a remote computer.

.Parameter ErrorLog

Specify the path to a text file to log errors. This feature is still in

development.

.Example

PS C:\> Get-TMRemoteListeningConfiguration -Computername srv1

Computername : SRV1

Date : 7/28/2020 5:13:57 PM

WSManHTTP : True

RemoteAddress : 192.168.3.50

WSManHTTPS : False

SSH : False

Get configuration information for a single computer.

Comment-Based Help 81

.Example

PS C:\> Get-Content c:\work\computers.txt | Get-TMRemoteListeningConfiguration | Exp\

ort-CSV c:\work\results.csv -NoTypeinformation

Get remote listening information for every computer in the computers.txt file and

export results to a CSV file.

.Inputs

System.String

.Link

Test-NetConnection

#>

Let’s Review

Let’s make sure you picked up on a couple of key points from this chapter:

1. What must follow the .PARAMETER keyword?
2. What must follow the .EXAMPLE keyword?
3. What is our recommended location for comment based help?
4. What happens if you misspell one of the help headings?

Review Answers

Here are our answers to the review questions:

1. On the same line, the parameter name. On the following lines, a description of the parameter’s
purpose.

2. On the same line, nothing. On the next line, the command example. On subsequent lines, a
description or explanation of the example.

3. Between the Function title and [Cmdletbinding()].
4. You will get PowerShell’s auto-generated help.

Handling Errors
We have a lot of functionality yet to write in the tool we’ve been building, and we’ve been deferring
a lot of it to this point. In this chapter, we’ll focus on how to capture, deal with, log, and otherwise
“handle” errors that our tool may encounter. As a note, PowerShell.org offers a free eBook, The
Big Book of PowerShell Error Handling, which dives into this topic from a more technical reference
perspective. We recommend checking it out, once you’ve completed this tutorial-focused chapter.

Understanding Errors and Exceptions

PowerShell defines two broad types of “bad situation:” an error and an exception. Because most
PowerShell commands are designed to deal with multiple things at once, and because in many
cases a problem with one thing doesn’t mean you want to stop dealing with all the other things,
PowerShell tries to err on the side of, “just keep going.” So, often times, when something goes wrong
in a command, PowerShell will emit an error and keep going. For example:

Get-Service -Name BITS,Foo,WinRM

There’s no service named “Foo,” and so PowerShell will emit an error on that second item. But by
default, PowerShell will keep going and process the third item in the list. When PowerShell is in
this “keep going” mode, you cannot have your code respond to the problem condition. So, if you
want to do something about the problem, you have to change PowerShell’s behavior to this kind of
non-terminating error.

At a global level, PowerShell defines a $ErrorActionPreference variable, which tells PowerShell
what to do in the event of a non-terminating error. This variable tells PowerShell what to do when
a problem comes up, but PowerShell is able to keep going. The default value for this variable is
“Continue”. The options are:

• “Continue” means emit an error message and keep going. Your code can’t detect that a problem
occurred, so you can’t do anything else.

• “SilentlyContinue” means emit no error message, and keep going. Again, you can’t detect the
problem or respond to it yourself.

• “Inquire” tells PowerShell to display a prompt, and ask the user whether to continue or stop.
• “Stop” tells PowerShell to turn the non-terminating error into a terminating exception and stop
running the command. This is something your code can detect and respond to.

Handling Errors 83

Check out the help topic about_preference_variables.

Rather than changing $ErrorActionPreference at the scope level, you’ll typically want to specify
a behavior on a per-command basis. You can do this using the -ErrorActionPreference common
parameter, or its alias -EA, that exists on each and every PowerShell command - even the ones you
write yourself when you include [CmdletBinding[].

For example, try running these commands and note the different behaviors:

Get-Service -Name BITS,Foo,WinRM -EA Continue

Get-Service -Name BITS,Foo,WinRM -EA SilentlyContinue

Get-Service -Name BITS,Foo,WinRM -EA Inquire

Get-Service -Name BITS,Foo,WinRM -EA Stop

The thing to remember is that you can’t handle exceptions in your code unless PowerShell actually
generates an exception. Most commands won’t generate an exception unless you run them with
the “Stop” error action. One of the biggest mistakes people make is forgetting to add -EA Stop to a
command that they want to properly handle when something goes wrong.

Bad Handling

There are two fundamentally bad practices that we see people engaging in. Now, these aren’t always
always always bad, but they’re usually bad, so we want to bring them to your attention.

First up is globally setting $ErrorActionPreference='SilentlyContinue' right at the top of a script.
In the days of VBScript people used On Error Resume Next. This is essentially saying, “I don’t want
to know if anything’s wrong with my code.” People will do this in a misguided attempt to suppress
possible errors that they know won’t matter. For example, attempting to delete a file which does
not exist will cause an error - but you probably don’t care, because “mission accomplished” either
way, right? But to suppress that unwanted error, you should be using -EA SilentlyContinue on the
Remove-Item command, not globally suppressing all errors in your script.

The other bad practice is a bit more subtle, and can come up in the same situation. Suppose you do
run Remove-Item with -EA SilentlyContinue, and then suppose you try to delete a file that does
exist, but that you simply don’t have permission to. You’ll be suppressing the error, and wondering
while the file still exists. So before you just start suppressing errors, make sure you’ve really thought
it through. Nothing is more vexing than spending hours debugging a script, simply because you
suppressed an error message that would have told you right where the problem was.

Handling Errors 84

Two Reasons for Exception Handling

There are two very broad reasons to handle exceptions in your code. Oh, notice that we’re using
their official name, exceptions, to differentiate from the non-handle-able errors that we wrote of
previously.

Reason one is that you plan to run your tool out of your view. Perhaps it’s a scheduled task, or
perhaps you’re writing tools that will be used by remote customers. In other case, you want to make
sure that you have some evidence for any problems that occur, to help you with your debugging.
In this scenario, you might globally set $ErrorActionPreference to “Stop” at the top of your script,
and wrap your entire script in an error-handling construct. That way, any errors, even unanticipated
ones, can be trapped and logged for diagnostic purposes. While this is a very valid scenario, it isn’t
the one we’re going to focus on in this book.

We’ll focus on reason two, which is that you’re running a command where you can anticipate a
certain kind of problem occurring, and you want to actively deal with that problem. This might be
a failure to connect to a computer, a failure to log on to something, or some other scenario along
those lines. So let’s dig into that with the tool we’ve been building.

Handling Exceptions in Our Tool

In the tool we’ve been building to get computer status information, we can anticipate the Get-CimInstance
command running into problems, either should a computer simply be offline or nonexistent. We
want to handle that condition and, depending on the parameters we were run with, log the failed
computer name to a text file So we’ll start by focusing on the command that could cause the problem,
and make sure that it’ll generate a terminating exception if it runs into trouble. We’ll change this:

foreach ($computer in $Computername) {

Write-Verbose "Querying $($computer.toUpper())"

$params = @{

Classname = "Win32_OperatingSystem"

Computername = $computer

}

$OS = Get-CimInstance @params

Into this:

Handling Errors 85

foreach ($computer in $Computername) {

Write-Verbose "Querying $($computer.toUpper())"

$params = @{

Classname = "Win32_OperatingSystem"

Computername = $computer

ErrorAction = "Stop"

}

$OS = Get-CimInstance @params

Now, it’s hugely important to notice that we’ve already constructed our command so that it’s only
ever attempting to connect to one computer at a time. That happens by means of our ForEach loop.
Any time you’re going to be handling errors, it’s crucial that you construct things so that only
one thing can fail at a time. That’s because we’re telling PowerShell to not continue. Were we to
attempt five computers at once, a failure in any of them would result in the rest of them never being
attempted. Make sure you understand why this design principle is so important!

Simply changing the error action to “Stop” isn’t enough, though. We also need to wrap our code in
a Try/Catch construct. If an exception occurs in the Try block, then the entire rest of the Try block
will be skipped, and the Catch block will execute instead. So the PROCESS{} block of our function
begins looks like this:

PROCESS {

foreach ($computer in $Computername) {

Write-Verbose "Querying $($computer.toUpper())"

$params = @{

Classname = "Win32_OperatingSystem"

Computername = $computer

ErrorAction = "Stop"

}

Try {

$OS = Get-CimInstance @params

$OK = $True

}

Catch {

$OK = $False

#exception handling code...

}

...

The idea here is that, should a problem happen with Get-CimInstance, then everything else gets
abandoned. That should make sense. If the first time Get-CimInstance is run it fails, there’s no
reason to attempt to get the other data. If that one thing goes wrong, we need to quit.

Now let’s focus on what we’ll do if an error - sorry, an exception - does occur:

Handling Errors 86

foreach ($computer in $Computername) {

Write-Verbose "Querying $($computer.toUpper())"

$params = @{

Classname = "Win32_OperatingSystem"

Computername = $computer

ErrorAction = "Stop"

}

Try {

$OS = Get-CimInstance @params

$OK = $True

}

Catch {

$OK = $False

$msg = "Failed to get system information from $computer. `

$($_.Exception.Message)"

Write-Warning $msg

if ($ErrorLog) {

Write-Verbose "Logging errors to $ErrorLog. Append = $ErrorAppend"

"[$(Get-Date)] $msg" | Out-File -FilePath $ErrorLog -Append:$ErrorAppend

}

}

if ($OK) {

#only continue if successful

$params.ClassName = "Win32_Processor"

$cpu = Get-CimInstance @params

...

First, we apologize if some of that wraps - remember, if you see a backslash in the last column is
an indicator that the formatter for the book couldn’t fit everything into the printed page width.. As
always, the code’s available in the downloads - so grab that for an un-wrapped version!

Anyway, here’s what’s happening.

• FirstWe’re using error handling on the first Get-CimInstance command. If it fails, PowerShell
will create a terminating exception. That’s the purpose of setting the common ErrorAction
parameter to Stop.

• Second If an error occurs, the exception object will be caught by the Catch block. $_ in this
contextmeans the exception object. This is a rich object.Whatwe’re doing is creating amessage
indicating which computer failed and the exception message. We’re using Write-Warning to
display this message.

• Third If the user also specified the path to a log file, we will write it to the file. Notice our trick
to pass the -ErrorAppend parameter value to Out-File. This works because both parameters
are switches. It’s worth mentioning that we could, and probably should have error handling for

Handling Errors 87

Out-File in the event the user specified a non-existent location or one they don’t have access
to. But we didn’t want this example to be any more complicated.

• Fourth After the exception is caught and handled, or if there was no problem, PowerShell
jumps to the next line of code. In our case it is the If statement. Back in the Try block, if there
are no errors we set a variable, $OK, to True. We are using this to decide if the code should
continue or not.

Technically, the other Get-CimInstance commands could also be wrapped in Try/Catch but that felt
like overkill. Assuming we didn’t misspell anything, if we have access and the computer is online,
they should work. The other option is to move all of Get-Ciminstance commands into theTry block
and use the same Catch block to handle all errors. This is a bit of complex logic - so go through it a
few times and make sure you understand it!

Handling Exceptions for Non-Commands

What if you’re running something - like a .NET Framework method - that doesn’t have an
-ErrorAction parameter? Well, in most cases, you can just run them in a Try block as-is, because
most of them will throw trappable, terminating exceptions if something goes wrong. The “non-
terminating exception” thing is kind of unique to PowerShell commands, like functions and cmdlets.

However, you still may have instances when you need to do this:

Try {

$ErrorActionPreference = "Stop"

run something that doesn't have -ErrorAction

$ErrorActionPreference = "Continue"

} Catch {

...

}

This is your error handling of last resort. Basically, we’re temporarilymodifying $ErrorActionPreference
for the duration of the one command (or whatever) we want to trap an exception for. This isn’t at
all a common situation in our experience, but we figured we’d point it out.

Going Further with Exception Handling

It’s possible to have multiple Catch blocks after a given Try block, with each Catch dealing with a
specific type of exception. For example, if a file deletion failed, you could react differently for a “File
Not Found” or an “Access Denied” situation. To do this, you’ll need to know the .NET Framework
type name of each exception you want to call out separately. The Big Book of PowerShell Error
Handling has a list of common ones, and advice for figuring these out (e.g., generating the error on
your own in an experiment, and then figuring out what the exception type name was). Broadly, the
syntax looks like this:

Handling Errors 88

Try {

something here generates an exception

} Catch [Exception.Type.One] {

deal with that exception here

} Catch [Exception.Type.Two] {

deal with the other exception here

} Catch {

deal with anything else here

} Finally {

run something else

}

Also shown in that example is the optional Finally block, which will always run after the Try or
the Catch, whether an exception occurs or not.

Deprecated Exception Handling

You may, in your Internet travels, run across a Trap construct in PowerShell. This dates back to v1,
when the PowerShell team frankly didn’t have time to get Try/Catch working, and Trap was the
best short-term fix they could come up with. Trap is deprecated, meaning that it’s left in the product
for backward compatibility, but you’re not intended to use it in newly written code. For that reason,
we’re not covering it here. It does have some uses for global, “I want to catch and log any possible
error” situations, but Try/Catch is considered a more structured, professional approach to exception
handling, and we recommend you stick with it.

Your Turn

It’s time to deal with errors in your code.

Start Here

This is where we left off at the end of the previous chapter; you can use this as a starting point, or
use your own results from that chapter.

Handling Errors 89

Function Get-TMRemoteListeningConfiguration {

[cmdletbinding()]

Param(

[Parameter(ValueFromPipeline,Mandatory)]

[ValidateNotNullorEmpty()]

[Alias("CN")]

[string[]]$Computername,

[string]$ErrorLog

)

Begin {

Write-Information "Command = $($myinvocation.mycommand)" -Tags Meta

Write-Information "PSVersion = $($PSVersionTable.PSVersion)" -Tags Meta

Write-Information "User = $env:userdomain\$env:username" -tags Meta

Write-Information "Computer = $env:computername" -tags Meta

Write-Information "PSHost = $($host.name)" -Tags Meta

Write-Information "Test Date = $(Get-Date)" -tags Meta

#define a private function to write the verbose messages

Function WV {

Param($prefix,$message)

$time = Get-Date -f HH:mm:ss.ffff

Write-Verbose "$time [$($prefix.padright(7,' '))] $message"

}

WV -prefix BEGIN -message "Starting $($myinvocation.MyCommand)"

#define a ordered hashtable of ports so that the testing

#goes in the same order

$ports = [ordered]@{

WSManHTTP = 5985

WSManHTTPS = 5986

SSH = 22

}

#initialize an splatting hashtable

$testParams = @{

Port = ""

Computername = ""

WarningAction = "SilentlyContinue"

WarningVariable = "wv"

}

Handling Errors 90

#keep track of total computers tested

$total=0

#keep track of how long testing takes

$begin = Get-Date

} #begin

Process {

foreach ($computer in $computername) {

$total++

#make the computername all upper case

$testParams.Computername = $computer.ToUpper()

WV PROCESS "Testing $($testParams.Computername)"

#define the hashtable of properties for the custom object

$props = [ordered]@{

Computername = $testparams.Computername

Date = Get-Date

}

#this array will be used to store passed ports

#It is used by Write-Information

$passed = @()

#enumerate the hashtable

$ports.GetEnumerator() | ForEach-Object {

$testParams.Port = $_.Value

WV "PROCESS" "Testing port $($testparams.port)"

$test = Test-NetConnection @testParams

WV PROCESS "Adding results"

$props.Add($_.name, $test.TCPTestSucceeded)

if ($test.TCPTestSucceeded) {

$passed+=$testParams.Port

}

if (-NOT $props.Contains("RemoteAddress")) {

wv "PROCESS" "Adding RemoteAddress $($test.remoteAddress)"

$props.Add("RemoteAddress", $test.RemoteAddress)

}

}

Write-Information "$($testParams.Computername) = $($passed -join ',')" `

Handling Errors 91

-Tags data

$obj = New-Object -TypeName PSObject -Property $props

Write-Output $obj

#TODO: error handling and logging

} #foreach

} #process

End {

$runtime = New-TimeSpan -Start $begin -End (Get-Date)

WV END "Processed $total computer(s) in $runtime"

WV END "Ending $($myinvocation.mycommand)"

} #end

} #Get-TMRemoteListeningConfiguration

Your Task

Your job is to add error handling to your tool. This might be a bit trickier than you realize. How
errors are handled is also part of the cmdlet design. Get-Service behaves one way if you give it a
bad name. But if you give Test-NetConnection a bad name, that doesn’t mean there is an error as
far as the cmdlet is concerned. Rather, the test simply fails. You may want to capture the warning
messages and generate our own “exceptions”. Or modify the function to use additional commands.

Our Take

Here’s what we came up with.

Get-TMRemoteListeningConfiguration

Function Get-TMRemoteListeningConfiguration {

<#

.Synopsis

Test remote listening ports.

.Description

This command will be used to test the network listening configuration on one

or more remote computers. It will test if standard PowerShell remoting is

enabled on both ports 5985 and 5986. It will also test if SSH is enabled on

port 22.

Because the command is testing at the network layer, you do not need to use

Handling Errors 92

any credentials.

.Parameter Computername

Specify the name of IP address of a remote computer.

.Parameter ErrorLog

Specify the path to a text file to log errors. Entries will be automatically

appended. Make sure the folder location exists.

.Example

PS C:\> Get-TMRemoteListeningConfiguration -Computername srv1

Computername : SRV1

Date : 7/28/2020 5:13:57 PM

WSManHTTP : True

RemoteAddress : 192.168.3.50

WSManHTTPS : False

SSH : False

Get configuration information for a single computer.

.Example

PS C:\> Get-Content c:\work\computers.txt | Get-TMRemoteListeningConfiguration -erro\

rlog c:\work\tmerrors.txt | Export-CSV c:\work\results.csv -NoTypeinformation

Get remote listening information for every computer in the computers.txt file and

export results to a CSV file. Any errors will be logged to c:\work\tmerrors.txt.

.Inputs

System.String

.Link

Test-NetConnection

#>

[cmdletbinding()]

Param(

[Parameter(ValueFromPipeline, Mandatory)]

[ValidateNotNullorEmpty()]

[Alias("CN")]

[string[]]$Computername,

[string]$ErrorLog

)

Handling Errors 93

Begin {

Write-Information "Command = $($myinvocation.mycommand)" -Tags Meta

Write-Information "PSVersion = $($PSVersionTable.PSVersion)" -Tags Meta

Write-Information "User = $env:userdomain\$env:username" -tags Meta

Write-Information "Computer = $env:computername" -tags Meta

Write-Information "PSHost = $($host.name)" -Tags Meta

Write-Information "Test Date = $(Get-Date)" -tags Meta

#define a private function to write the verbose messages

Function WV {

Param($prefix, $message)

$time = Get-Date -f HH:mm:ss.ffff

Write-Verbose "$time [$($prefix.padright(7,' '))] $message"

}

WV -prefix BEGIN -message "Starting $($myinvocation.MyCommand)"

if ($errorlog) {

WV BEGIN "Errors will be logged to $ErrorLog"

$outParams = @{

FilePath = $ErrorLog

Encoding = "ascii"

Append = $True

ErrorAction = "stop"

}

}

#define a ordered hashtable of ports so that the testing

#goes in the same order

$ports = [ordered]@{

WSManHTTP = 5985

WSManHTTPS = 5986

SSH = 22

}

#initialize an splatting hashtable

$testParams = @{

Port = ""

Computername = ""

WarningAction = "SilentlyContinue"

#changed variable to not be confusing with helper function

WarningVariable = "warn"

}

Handling Errors 94

#keep track of total computers tested

$total = 0

#keep track of how long testing takes

$begin = Get-Date

} #begin

Process {

foreach ($computer in $computername) {

#assume the computer can be reached

$ok = $True

$total++

#make the computername all upper case

$testParams.Computername = $computer.ToUpper()

WV PROCESS "Testing $($testParams.Computername)"

#define the hashtable of properties for the custom object

$props = [ordered]@{

Computername = $testparams.Computername

Date = Get-Date

}

#this array will be used to store passed ports

#It is used by Write-Information

$passed = @()

#enumerate the hashtable

foreach ($item in $ports.GetEnumerator()) {

$testParams.Port = $item.Value

WV "PROCESS" "Testing port $($testparams.port)"

$test = Test-NetConnection @testParams

if ($warn -match "Name resolution of $($testParams.computername) failed"\

) {

$msg = "[$(Get-Date)] $warn"

if ($ErrorLog) {

Try {

$msg | Out-File @outParams

}

Catch {

Write-Warning "Failed to log error. $($_.exception.message)"

}

Handling Errors 95

} #if errorlog

$ok = $False

#break out of the ForEach loop

break

}

WV PROCESS "Adding results"

$props.Add($item.name, $test.TCPTestSucceeded)

if ($test.TCPTestSucceeded) {

$passed += $testParams.Port

}

if (-NOT $props.Contains("RemoteAddress")) {

wv "PROCESS" "Adding RemoteAddress $($test.remoteAddress)"

$props.Add("RemoteAddress", $test.RemoteAddress)

}

} #foreach port

if ($ok) {

WV PROCESS "Generating an object for $($testparams.computername)"

Write-Information "$($testParams.Computername) = $($passed -join ',')" -\

Tags data

$obj = New-Object -TypeName PSObject -Property $props

Write-Output $obj

}

} #foreach computer

} #process

End {

$runtime = New-TimeSpan -Start $begin -End (Get-Date)

WV END "Processed $total computer(s) in $runtime"

#display a warning if errors would captured

if (Test-Path -Path $ErrorLog) {

Write-Warning "Errors were detected. See $ErrorLog."

}

WV END "Ending $($myinvocation.mycommand)"

} #end

} #Get-TMRemoteListeningConfiguration

Handling Errors 96

Again, apologies for any word-wrapping in there (indicated by backslashes); consult the download-
able code samples for a well-formatted version.

In our solution we’re using the warning variable to test if something went wrong. In this function,
the only thing that can really go wrong is if Test-NetConnection can’t resolve the computername.
We’re expecting warnings for closed ports. We didn’t use a cmdlet like this Resolve-DNSName because
that doesn’t indicate the computer is online. Nor is pinging reliable as firewall rules might prevent
ICMP traffic.

One of the major changes we made was to switch from using ForEach-Object when processing
each port to using a ForEach construct. We did this so that if the warning variable matches the
name resolution error, we can log it and then break out of the loop. It makes no sense to test any
other ports. If there is a matching warning this is where we can insert the logging mechanism. In
the End block we’ve even added a bit of code to let the user know if errors were logged. For the
sake of demonstration, we used a Try/Catch block for Out-File. Another option would be to use a
[ValidateScript()] attribute on the ErrorLog parameter and test if the location exists and can be
written to.

Let’s Review

Try answering these questions to see if you picked up the main points of this chapter:

1. What does $ErrorActionPreference do?
2. What is the purpose of the -ErrorAction parameter?
3. What is PowerShell capable of handling in a Try construct?
4. When writing code that will handle errors, why is it important to only attempt one operation,

against one target, at a time?
5. How might you handle an exception generated by a .NET Framework class method?
6. How many Catch blocks can go with a single Try block?

Review Answers

Here are our answers:

1. Sets a global behavior for non-terminating errors.
2. Overrides $ErrorActionPreference on a per-command basis.
3. Terminating exceptions, as opposed to non-terminating errors.
4. Because you have to turn errors into terminating exceptions, which could result in some targets

not being processed.
5. Set $ErrorActionPreference to Stop, if the method isn’t already returning a terminating

exception. Most will.
6. As many as you want, provided all but the last one are targeting a specific exception type.

Basic Debugging
Debugging is pretty much the bane of everyone’s existence. This chapter is designed to get you
started with the core debugging concepts and tools in PowerShell. We’ll revisit this topic in an
upcoming chapter and expand into nittier, grittier techniques and tools.

Two Kinds of Bugs

There are two kinds of software bugs on this big blue marble we all live on. The first kind of bug is
the easiest: syntax. This is literally where you mistype something, your script won’t run, and you
get a helpful error message telling you where the bug is. Funny thing is, so many people don’t read
the helpful error messages! It’s probably because they’re red and scary, so in the PowerShell console
you can do this:

$host.privatedata.errorforegroundcolor = 'green'

Now your errors will “feel” better and you will read them!. The PowerShell ISE and VS Code,
with their red-squiggly underlines and color-coding, also make it easier to spot syntax errors. Tab
completion can make it easier to avoid syntax errors, and frankly you should be doing this all the
time anywayt. Generally, these bugs are the simplest to squash, and so we will speak no more of
them.

Bug Species Two is a lot harder: the logic bug. This is where your script runs, probably without
error, but it doesn’t do what you tell it to. Or, you get errors that make no darn sense, like a “illegal
computer name” when you know perfectly well you’ve provided a legal computer name. That kind
of thing. This is the kind of bug on which we will focus this chapter.

Logic bugs come from one basic source: bad assumptions.

• A variable contained a value other than the one you assumed.
• A command produced a result other than the one you assumed.
• An object property contained a value other than the one you assumed.

Basically, you assumed one thing was happening, but it wasn’t, so bug.

Basic Debugging 98

The Ultimate Goal of Debugging

The ultimate goal of debugging, then, is to find out where your assumptions were wrong. Where
does code execution diverge from your expectations. That means two things are needed:

1. You need to have assumptions about what your script is doing. This seems like an obvious
statement, but we see a lot of people trying to debug scripts who have no cluewhat it’s supposed
to be doing. They just kind of fling themselves at the script and hope to beat it into submission
through pure force of will. This does not work. If you can’t look at a script and make some
assumptions about what variables contain, what commands are producing, andwhat properties
contain, then you cannot debug the script. Stop reading here and brush up on your PowerShell
fundamentals.

2. You need to have tools that let you validate your assumptions. Believe it or not, this is the easy
part in PowerShell. The first part, stating what you think the script is going to do, is the hard
part.

We’re going to spend a lot of time in this chapter, and again in a more advanced debugging chapter,
covering that second bit - tools. But before we do that, we’d like to run you through an exercise to
really demonstrate what we’re talking about with that first bit - assumptions.

Developing Assumptions

Take a look at the following script. Read through it. In detail. At each and every line of code, ask
yourself what is this going to do? What will be the result? and actually write that down on a piece
of paper. Seriously, this is a good exercise - get some paper and do this. Write down all the variables,
and what you think they contain. As that changes, lightly cross out your old value and write down
the new one. When the script uses a property of some kind, from an object, write down what you
think that contains, too. Don’t run any of this code. If you don’t know what a command does, that’s
fine - look up its help in PowerShell or online (use a search engine to look up the command name).
Read the help, and make a guess at what the command does or is producing.

If you don’t do this little exercise, we can’t teach you debugging. Don’t skip this. And no, we
did not include this in the downloadable code because we want you looking at it here, not cheating
and running it.

Here’s your code:

Basic Debugging 99

Get-DriveInfo

function Get-DriveInfo {

[CmdletBinding()]

Param(

[Parameter(Mandatory,ValueFromPipelineByPropertyName)]

[string[]]$ComputerName

)

PROCESS {

ForEach ($comp in $ComputerName) {

$session = New-CimSession -ComputerName $comp

$params = @{

CimSession = $session

ClassName = 'Win32_LogicalDisk'

}

$drives = Get-CimInstance @params

if ($drives.DriveType -notlike '*optical*') {

[pscustomobject]@{

ComputerName = $comp

Letter = $drives.deviceid

Size = $drives.size

Free = $drives.freespace

}

}

} #foreach

} #process

} #function

This command is intended to produce a list of drives, including size and free space, for all non-optical
drives (e.g., no DVD drives) in the system. It doesn’t work. With your set of assumptions in hand,
let’s start looking at some debugging tools.

Debugging Tool 1: Write-Debug

This is the first and perhaps easiest tool to use, especially in a very short script like this one. You
just drop some Write-Debug commands in key places, much as you would use Write-Verbose. When
you run your function, which must include [CmdletBinding()] as this one does, each Write-Debug

statement will give you a chance to stop and examine your script. We like to include them at each
point where something changes, or where the script is about to take a logical branching. So:

Basic Debugging 100

Step1.ps1

function Get-DriveInfo {

[CmdletBinding()]

Param(

[Parameter(Mandatory, ValueFromPipelineByPropertyName)]

[string[]]$ComputerName

)

PROCESS {

Write-Debug "[PROCESS] Beginning"

ForEach ($comp in $ComputerName) {

Write-Debug "[PROCESS] on $comp"

$session = New-CimSession -ComputerName $comp

$params = @{

CimSession = $session

ClassName = 'Win32_LogicalDisk'

}

$drives = Get-CimInstance @params

Write-Debug "[PROCESS] CIM query complete"

if ($drives.DriveType -notlike '*optical*') {

[pscustomobject]@{

ComputerName = $comp

Letter = $drives.deviceid

Size = $drives.size

Free = $drives.freespace

}

}

} #foreach

} #process

} #function

"localhost", "localhost" | Get-DriveInfo -Debug

That’s in the downloadable code examples as Step1.ps1 in this chapter’s folder. Run this from the
console - the ISE is a little irritating to use with Write-Debug.

Our first assumption, based on the last line in the script, is that two strings, “localhost”, will be
passed into the $ComputerName parameter.

Basic Debugging 101

Confirm

The input object cannot be bound to any parameters for the command

either because the command does not take pipeline input or the input

and its properties do not match any of the parameters that take

pipeline input.

[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help

(default is "Y"):

Apparently not. “…the command does not take pipeline input…” say what? It most certainly does…
oh, wait. Our command takes pipeline input by property name, and we didn’t pass in an object
having a “ComputerName” property. We passed in String objects. We need to modify our parameter
attribute. Here’s Step2.ps1:

Step2.ps1

function Get-DriveInfo {

[CmdletBinding()]

Param(

[Parameter(

Mandatory,

ValueFromPipelineByPropertyName,

ValueFromPipeline)]

[string[]]$ComputerName

)

PROCESS {

Write-Debug "[PROCESS] Beginning"

ForEach ($comp in $ComputerName) {

Write-Debug "[PROCESS] on $comp"

$session = New-CimSession -ComputerName $comp

$params = @{

CimSession = $session

ClassName = 'Win32_LogicalDisk'

}

$drives = Get-CimInstance @params

Write-Debug "[PROCESS] CIM query complete"

if ($drives.DriveType -notlike '*optical*') {

[pscustomobject]@{

ComputerName = $comp

Letter = $drives.deviceid

Size = $drives.size

Free = $drives.freespace

}

Basic Debugging 102

}

} #foreach

} #process

} #function

"localhost", "localhost" | Get-DriveInfo -Debug

Let’s run it again.

DEBUG: [PROCESS] Beginning

Confirm

Continue with this operation?

[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help

(default is "Y"):

This is Write-Debug in action. You can see our “Beginning” message, and the debugger is now active.
We’re going to hit S to Suspend the script. It’ll be like we’re in the script’s head, and we just want
to check that $ComputerName has something in it.

DEBUG: [PROCESS] Beginning

Confirm

Continue with this operation?

[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help

(default is "Y"):s

PS z:\Documents\GitHub\ToolmakingBook\code\PowerShell-Toolmaking\

Chapters\basic-debugging>> $computername

localhost

PS z:\Documents\GitHub\ToolmakingBook\code\PowerShell-Toolmaking\

Chapters\basic-debugging>>

OK, it looks like $ComputerName has “localhost” in it, which was exactly what we expected. Perfect.
So we’ll run Exit and let the script continue by choosing Y for Yes.

Basic Debugging 103

PS z:\Documents\GitHub\ToolmakingBook\code\PowerShell-Toolmaking\

Chapters\basic-debugging>> exit

Confirm

Continue with this operation?

[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help

(default is "Y"):y

DEBUG: [PROCESS] on localhost

Confirm

Continue with this operation?

[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help

(default is "Y"):s

PS z:\Documents\GitHub\ToolmakingBook\code\PowerShell-Toolmaking\

Chapters\basic-debugging>> $comp

localhost

PS z:\Documents\GitHub\ToolmakingBook\code\PowerShell-Toolmaking\

Chapters\basic-debugging>> exit

Confirm

Continue with this operation?

[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help

(default is "Y"):y

DEBUG: [PROCESS] CIM query complete

Confirm

Continue with this operation?

[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help

(default is "Y"):

Here, we’ve suspended again and checked the contents of $comp. “Localhost”, just as expected. We
exited and allowed the script to continue. Now we’re at our “query complete” prompt, so we’ll
suspend again and see what we got back.

Basic Debugging 104

Confirm

Continue with this operation?

[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help

(default is "Y"):s

PS z:\Documents\GitHub\ToolmakingBook\code\PowerShell-Toolmaking\

Chapters\basic-debugging>> $drives

DeviceID DriveType ProviderName VolumeName Size Fre

eSp

ace

-------- --------- ------------ ---------- ---- ---

C: 3 63898120192 470

D: 5 CCSA_X64FRE_EN-US_DV5 4380387328 0

We have a problem here. Look at what $drives contains and then look at what our script is going to
do next. Look at that If statement. See where it’s looking at the DriveType property? See how our
script is expecting “*optical*” for the DriveType? See in the output above how it isn’t “optical” at all,
but is rather a digit? Dang.

PS z:\Documents\GitHub\ToolmakingBook\code\PowerShell-Toolmaking\

Chapters\basic-debugging>> exit

Confirm

Continue with this operation?

[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help

(default is "Y"):h

Write-Debug : The running command stopped because the user selected

the Stop option.

At \\vmware-host\shared folders\Documents\GitHub\ToolmakingBook\code\

PowerShell-Toolmaking\Chapters\basic-debugging\Step2.ps1:21 char:13

+ Write-Debug "[PROCESS] CIM query complete"

+ ~~

+ CategoryInfo : OperationStopped: (:) [Write-Debug], P

arentContainsErrorRecordException

+ FullyQualifiedErrorId : ActionPreferenceStop,Microsoft.PowerSh

ell.Commands.WriteDebugCommand

Hey, no point continuing when we know it’s broken. We need to fix our script. You see, we assumed
DriveTypewould be something like “Fixed” or “Optical” or whatever, but it isn’t. Apparently 5means
an optical drive. So we’ve found a logic bug in our script, because we made ourselves aware of our
assumptions and then took the time to verify them.

Basic Debugging 105

Debugging Tool 2: Set-PSBreakpoint

We’ve fixed that line of our code, so here’s Step3.ps1:

Step3.ps1

function Get-DriveInfo {

[CmdletBinding()]

Param(

[Parameter(

Mandatory,

ValueFromPipelineByPropertyName,

ValueFromPipeline)]

[string[]]$ComputerName

)

PROCESS {

Write-Debug "[PROCESS] Beginning"

ForEach ($comp in $ComputerName) {

Write-Debug "[PROCESS] on $comp"

$session = New-CimSession -ComputerName $comp

$params = @{

CimSession = $session

ClassName = 'Win32_LogicalDisk'

}

$drives = Get-CimInstance @params

Write-Debug "[PROCESS] CIM query complete"

if ($drives.DriveType -ne 5) {

[pscustomobject]@{

ComputerName = $comp

Letter = $drives.deviceid

Size = $drives.size

Free = $drives.freespace

}

}

} #foreach

} #process

} #function

"localhost", "localhost" | Get-DriveInfo

Let’s run it:

Basic Debugging 106

PS z:\Documents\GitHub\ToolmakingBook\code\PowerShell-Toolmaking\

Chapters\basic-debugging> .\Step3.ps1

ComputerName Letter Size Free

------------ ------ ---- ----

localhost {C:, D:} {63898120192, 4380387328} {47037890560, 0}

localhost {C:, D:} {63898120192, 4380387328} {47037890560, 0}

That… that is weird. We expected two lines of results, because we have it two computer names, but…
those are not the droids we were looking for. What’s with all the curly brackets? Time to do some
more debugging. This time, let’s play with PowerShell’s built-in breakpoint feature.

Breakpoints work a lot like Write-Debug in that, when you “hit” a breakpoint, you get dumped
into “suspend mode” and can “inspect” what’s happening inside your script. Unlike Write-Debug,
breakpoints don’t display a prompt first - they just go into suspend mode. And, also unlike
Write-Debug, breakpoints can be easily set, removed, enabled, and disabled. For long scripts, that
means breakpoints can be a lot more convenient, because you don’t have to keep hitting “Yes”
through a bunch of early ones to get to the one you’re actually after at the moment.

Our problem right now is that our output isn’t whatwe expected, and sowewant to “break” the script
right before that output is produced. Breakpoints are tied to a specific script by path and filename,
and only exist for the duration of the PowerShell sessionwhere you created the breakpoint.We’ll add
some lines at the bottom of our script file, just for convenience, so that you can see the breakpoints
in the downloadable code samples. Normally, we’d just set these breakpoints right in the console
window.

This is Step4.ps1.

Step4.ps1

function Get-DriveInfo {

[CmdletBinding()]

Param(

[Parameter(

Mandatory,

ValueFromPipelineByPropertyName,

ValueFromPipeline)]

[string[]]$ComputerName

)

PROCESS {

Write-Debug "[PROCESS] Beginning"

ForEach ($comp in $ComputerName) {

Write-Debug "[PROCESS] on $comp"

$session = New-CimSession -ComputerName $comp

$params = @{

Basic Debugging 107

CimSession = $session

ClassName = 'Win32_LogicalDisk'

}

$drives = Get-CimInstance @params

Write-Debug "[PROCESS] CIM query complete"

if ($drives.DriveType -ne 5) {

[pscustomobject]@{

ComputerName = $comp

Letter = $drives.deviceid

Size = $drives.size

Free = $drives.freespace

}

}

} #foreach

} #process

} #function

Set-PSBreakpoint -Line 23 -Script ($MyInvocation.MyCommand.Source)

"localhost", "localhost" | Get-DriveInfo

Notice that $MyInvocation.MyCommand.Source trick? $MyInvocation is a built-in variable (we
mentioned it before in the chapter on Verbose, Warning, and Informational output) that contains a
bunch of stuff about the current script or command. In this case, we’re using it to nab our script’s
source file location. This way, no matter where the file lives, we’ll be attaching the breakpoint to
the right file.

Here’s our output:

PS X:\basic-debugging> .\Step4.ps1

ID Script Line Command Variable Action

-- ------ ---- ------- -------- ------

0 Step4.ps1 23

Entering debug mode. Use h or ? for help.

Hit Line breakpoint on '\\vmware-host\shared folders\Documents\GitHub\

ToolmakingBook\code\PowerShell-Toolmaking\Chapters\

basic-debugging\Step4.ps1:23'

At \\vmware-host\shared folders\Documents\GitHub\ToolmakingBook\code\

PowerShell-Toolmaking\Chapters\basic-debugging\Step4.ps1:23 char:17

+ [pscustomobject]@{'ComputerName'=$comp

Basic Debugging 108

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[DBG]: PS X:\basic-debugging>>

We’ve dropped into suspend mode at this point.

[DBG]: PS X:\basic-debugging>> $drives

DeviceID DriveType ProviderName VolumeName Size Fre

eSp

ace

-------- --------- ------------ ---------- ---- ---

C: 3 63898120192 470

D: 5 CCSA_X64FRE_EN-US_DV5 4380387328 0

Ah. See, we knew this - $drives contains multiple objects, but we’ve been behaving, in our code, as
if it contained one object. Look at line 22:

if ($drives.DriveType -ne 5) {

This is like saying, “So, I have a bunch of cars. If they is red, then do this.” Well, what if one car is
red and another isn’t? This is a nonsensical statement - just as our grammar, there, was nonsensical.
We need to be looking at one drive at a time, and outputting an object for one drive at a time, rather
than outputting one object for all the drives.

Here’s Step5.ps1.

Step5.ps1

function Get-DriveInfo {

[CmdletBinding()]

Param(

[Parameter(

Mandatory,

ValueFromPipelineByPropertyName,

ValueFromPipeline)]

[string[]]$ComputerName

)

PROCESS {

Write-Debug "[PROCESS] Beginning"

ForEach ($comp in $ComputerName) {

Write-Debug "[PROCESS] on $comp"

$session = New-CimSession -ComputerName $comp

$params = @{

Basic Debugging 109

CimSession = $session

ClassName = 'Win32_LogicalDisk'

}

$drives = Get-CimInstance @params

Write-Debug "[PROCESS] CIM query complete"

ForEach ($drive in $drives) {

if ($drive.DriveType -ne 5) {

[pscustomobject]@{

ComputerName = $comp

Letter = $drive.deviceid

Size = $drive.size

Free = $drive.freespace

}

}

} #foreach drive

} #foreach computer

} #process

} #function

Set-PSBreakpoint -Line 24 -Script ($MyInvocation.MyCommand.Source)

"localhost", "localhost" | Get-DriveInfo

Notice that we updated our breakpoint line number. Because we’re using the same console session,
the old breakpoint will still be there, so we’ll set an additional one. Now, to run it:

PS X:\basic-debugging> .\Step5.ps1

ID Script Line Command Variable Action

-- ------ ---- ------- -------- ------

3 Step5.ps1 24

Hit Line breakpoint on '\\vmware-host\shared folders\Documents\GitHub\

ToolmakingBook\code\PowerShell-Toolmaking\Chapters\

basic-debugging\Step5.ps1:24'

Hit Line breakpoint on '\\vmware-host\shared folders\Documents\GitHub\

ToolmakingBook\code\PowerShell-Toolmaking\Chapters\

basic-debugging\Step5.ps1:24'

At \\vmware-host\shared folders\Documents\GitHub\ToolmakingBook\code\

PowerShell-Toolmaking\Chapters\basic-debugging\Step5.ps1:24 char:21

+ if ($drive.DriveType -ne 5) {

Basic Debugging 110

+ ~~~~~~~~~~~~~~~~~~~~~~

[DBG]: PS X:\basic-debugging>> $drive

DeviceID DriveType ProviderName VolumeName Size FreeSpace PS

Co

mp

ut

er

Na

me

-------- --------- ------------ ---------- ---- --------- --

C: 3 63898120192 47044632576 lo

OK - much more what we expected, and $drive contains one object, with a DriveType of 3. We
would expect this to pass our If construct and produce a line of output, so we’ll continue:

[DBG]: PS X:\basic-debugging>> exit

ComputerName : localhost

Letter : C:

Size : 63898120192

Free : 47044632576

Hit Line breakpoint on '\\vmware-host\shared folders\Documents\GitHub\

ToolmakingBook\code\PowerShell-Toolmaking\Chapters\basic-debugging\

Step5.ps1:24'

Hit Line breakpoint on '\\vmware-host\shared folders\Documents\GitHub\

ToolmakingBook\code\PowerShell-Toolmaking\Chapters\basic-debugging\

Step5.ps1:24'

At \\vmware-host\shared folders\Documents\GitHub\ToolmakingBook\code\

PowerShell-Toolmaking\Chapters\basic-debugging\Step5.ps1:24 char:21

+ if ($drive.DriveType -ne 5) {

+ ~~~~~~~~~~~~~~~~~~~~~~

Got it! Now, let’s clear out all the breakpoints we’ve created - we could just close the console window
we’ve been using, but this works as well:

Get-PSBreakpoint | Remove-PSBreakpoint

Basic Debugging 111

Debugging Tool 3: The PowerShell ISE

The ISE provides a visual way of setting breakpoints. Just move to whatever line you want and press
F9; the line will turn a dark red and you’ll know where the breakpoint is. Press F9 again to clear it.
It’s really just running Set-PSBreakpoint and Remove-PSBreakpoint in the background; were you
to manually run those in the ISE’s console pane, you’d see the dark red highlights come and go.

The ISE also provides quick access to some of PowerShell’s cooler debugging features. For example,
go ahead and open Step6.ps1 in the ISE, and follow along:

Step6.ps1

function Get-DriveInfo {

[CmdletBinding()]

Param(

[Parameter(

Mandatory,

ValueFromPipelineByPropertyName,

ValueFromPipeline)]

[string[]]$ComputerName

)

PROCESS {

Write-Debug "[PROCESS] Beginning"

ForEach ($comp in $ComputerName) {

Write-Debug "[PROCESS] on $comp"

$session = New-CimSession -ComputerName $comp

$params = @{

CimSession=$session

ClassName='Win32_LogicalDisk'

}

$drives = Get-CimInstance @params

Write-Debug "[PROCESS] CIM query complete"

ForEach ($drive in $drives) {

if ($drive.DriveType -ne 5) {

[pscustomobject]@{

ComputerName=$comp

Letter=$drive.deviceid

Size=$drive.size

Free=$drive.freespace

}

}

Basic Debugging 112

} #foreach drive

} #foreach computer

} #process

} #function

"localhost","localhost" | Get-DriveInfo

1. Place your cursor anywhere on line 20 and press F9. For reference, line 20 is where Get-CimInstance
runs.

2. Press F5 to run the script.
3. The script will run down to line 20, which will turn a kind of baby-poop brown. The ISE console,

if you’re in split-screen mode, will show the [DBG] prompt, indicating you’re in suspend mode.
4. In the console pane, type $params and hit Enter to verify the contents of the variable.
5. Press F11. Line 20 will turn back to breakpoint-red, while line 21 will now be a light yellow

highlight. This indicates that line 20 has executed, and line 21 is about to.
6. Hit F11 again. In the console pane, type $drives and hit Enter to verify the contents of the
variable.

7. Hover your cursor over the highlighted $drives. You’ll see the same thing - the contents of the
variable. This is a cool and quick way to verify variables’ contents.

8. Hit Shift+F5 to stop the debugger.
9. Move to line 20 and press F9 to remove the breakpoint.

Debugging Tool 4: VS Code

If your editor of choice is VS Code, it has the same type of debugging features. Open the Step6.ps1 in
“VS Code. The keyboard shortcuts are the same is in the PowerShell ISE. Aside from possible color
changes you should be able to follow the same steps as above, including hovering your mouse over
variables to see their content.

Another nice feature of VS Code is the PSScriptAnalyzer is baked in and is always looking for
potential issues. If you click on the Problems link (Ctr+Shift+M), you can see all of the things that
might lead to bugs. This won’t help get rid of logic bugs, but it will make your code less prone to
errors and mistakes.

We’ll get into a lot more detail and depth with breakpoints in an upcoming “advanced” chapter on
debugging, but until then this should give you a great start.

Your Turn

You guessed it - it’s time to do some debugging.

Basic Debugging 113

Start Here

You’ll find this script as Exercise.ps1 in this chapter’s folder, if you’ve downloaded the code samples.
You may recognize it - it’s the script you’ve been building, or at least our version of it. But this one
is broken.

Exercise.ps1

#this version is broken in several ways

Function Get-TMRemoteListeningConfiguration {

[cmdletbinding()]

Param(

[Parameter(ValueFromPipelineByValue, Mandatory)]

[ValidateNotNullorEmpty()]

[Alias("CN")]

[string]$Computername,

[string]$ErrorLog

)

Begin {

Write-Information "Command = $($myinvocation.mycommand)" -Tags Meta

Write-Information "PSVersion = $($PSVersionTable.PSVersion)" -Tags Meta

Write-Information "User = $env:userdomain\$env:username" -tags Meta

Write-Information "Computer = $env:computername" -tags Meta

Write-Information "PSHost = $($host.name)" -Tags Meta

Write-Information "Test Date = $(Get-Date)" -tags Meta

#define a private function to write the verbose messages

Function WV {

Param($prefix, $message)

$time = Get-Date -f HH:mm:ss.ffff

Write-Verbose "$time [$($prefix.padright(7,' '))] $message"

}

WV -prefix BEGIN -message "Starting $($myinvocation.MyCommand)"

if ($errorlog) {

WV BEGIN "Errors will be logged to $ErrorLog"

$outParams = @{

FilePath = $ErrorLog

Encoding = "ascii"

Append = $True

ErrorAction = "stop"

Basic Debugging 114

}

}

#define a ordered hashtable of ports so that the testing

#goes in the same order

$ports = [ordered]@{

WSManHTTP = 5985

WSManHTTPS = 5986

SSH = 22

}

#initialize an splatting hashtable

$testParams = @{

Port = ""

Computername = ""

WarningAction = "SilentlyContinue"

#changed variable to not be confusing with helper function

WarningVariable = "warn"

}

#keep track of total computers tested

$total = 0

#keep track of how long testing takes

$begin = Get-Date

} #begin

Process {

foreach ($computerr in $computername) {

#assume the computer can be reached

$ok = $True

$total+1

#make the computername all upper case

$testParams.Computername = $computer.ToUpper()

WV PROCESS "Testing $($testParams.Computername)"

#define the hashtable of properties for the custom object

$props = [ordered]@{

Computername = $testparams.Computername

Date = Get-Date

}

#this array will be used to store passed ports

#It is used by Write-Information

$passed = @()

Basic Debugging 115

#enumerate the hashtable

foreach ($item in $ports.GetEnumerator()) {

$testParams.Port = $item.Value

WV "PROCESS" "Testing port $($testparams.port)"

$test = Test-NetConnection @testParams

if ($warn -match "Name resolution of $($testParams.computername) failed"\

) {

$msg = "[$(Get-Date)] $warn"

if ($ErrorLog) {

Try {

$msg | Out-File @outParams

}

Catch {

Write-Warning "Failed to log error. $($_.exception.message)"

}

} #if errorlog

$ok = $False

#break out of the ForEach loop

break

}

WV PROCESS "Adding results"

$props.Add($item.name, $test.TCPTestSucceeded)

if ($test.TCPTestSucceeded) {

$passed += $testParams.Port

}

if (-NOT $props.Contains("RemoteAddress")) {

wv "PROCESS" "Adding RemoteAddress $($test.remoteAddress)"

$props.Add("RemoteAddress", $test.RemoteAddress)

}

} #foreach port

if ($ok) {

WV PROCESS "Generating an object for $($testparams.computername)"

Write-Information "$($testParams.Computername) = $($passed -join ',')" -\

Tags data

$obj = New-Object -TypeName PSObject -Property $props

Write-Output $obj

Basic Debugging 116

}

} #foreach computer

} #process

End {

$runtime = New-TimeSpan -Start (Get-Date) -End $end

WV END "Processed $total computer(s) in $runtime"

#display a warning if errors would captured

if (Test-Path -Path $ErrorLog) {

Write-Warning "Errors were detected. See $ErrorLog."

}

WV END "Ending $($myinvocation.mycommand)"

} #end

} #Get-TMRemoteListeningConfiguration

Your Task

Using whichever debugging techniques you prefer, fix the script. Be sure to test different ways of
using the command, including different parameter combinations.

Our Take

Our sample solution is the same as the previous chapter’s, so we won’t repeat it here. Briefly:

1. On line 62, ‘$computer’ is spelled wrong.
2. On lines 127, the start and end values for the timespan are reversed. This is an easy and common

mistake.
3. On line 7, it should be ValueFromPipeline.
4. On line 10, the parameter should accept an array of strings, not just a single one. This too is a

common error.
5. On line 65, the total number of computers isn’t being incremented properly. The line should be

$total++.

Let’s Review

Let’s see if you picked up some of the key points of this chapter:

1. How do breakpoints differ from Write-Debug?
2. Where do most logic bugs come from?

Basic Debugging 117

Review Answers

Here are our answers:

1. Breakpoints can be set and removed programmatically, in the ISE, and VS Code. They offer
a more targeted way of suspending the script, and can be more convenient in longer scripts.
They don’t prompt before suspending.

2. A variable’s contents, a property’s contents, or a command’s output, that wasn’t what you
thought it was.

Verify Yourself
Wewant to give you an opportunity to see if you’re ready for the rest of this book. Here’s what we’re
going to do: we’ll give you a transcript from a PowerShell console session (the same one is included
in the downloadable code samples, because the line-wrapping here in the book is gonna be pretty
horrific). The transcript shows a custom PowerShell tool being used. Your job is to observe that usage,
and then recreate that tool. We’ll provide the original function in the downloadable code samples,
but do not peek - you’re only cheating yourself. At the end of this chapter, we’ll do a blow-by-blow
walk-through of what your brain should have been thinking as you read the transcript.

Here’s a tip: Read the transcript first. As you go, make notes about the things you see, and
what you’ll need to do in order to duplicate those things. Then, start coding, checking off
each thing you noted as you incorporate it into your code. The transcript file is too wide to
properly fit the page of a printed book so the slashes you see at the end of lines are really
line continuation characters.

The Transcript

Here you go:

Windows PowerShell transcript start

Start time: 20170623144152

Username: DESKTOP-7NKT52T\User

RunAs User: DESKTOP-7NKT52T\User

Machine: DESKTOP-7NKT52T (Microsoft Windows NT 10.0.14393.0)

Host Application: C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe

Process ID: 1412

PSVersion: 5.1.14393.1358

PSEdition: Desktop

PSCompatibleVersions: 1.0, 2.0, 3.0, 4.0, 5.0, 5.1.14393.1358

BuildVersion: 10.0.14393.1358

CLRVersion: 4.0.30319.42000

WSManStackVersion: 3.0

PSRemotingProtocolVersion: 2.3

SerializationVersion: 1.1.0.1

Verify Yourself 119

Transcript started, output file is .\transcript.txt

PS C:\> Get-XXSystemInfo -Computername localhost

BIOSSerial ComputerName OSVersion

---------- ------------ ---------

VMware-56 4d 03 1c 3a c5 5f a3-d6 3c 01 92 aa e7 1d 45 localhost 10.0.14393

PS C:\> Get-XXSystemInfo -Computername localhost -verbose

VERBOSE: Attempting localhost on Wsman

VERBOSE: Operation '' complete.

VERBOSE: [+] Connected

VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters,

''namespaceName' = root\cimv2,'className' = Win32_OperatingSystem'.

VERBOSE: Operation 'Enumerate CimInstances' complete.

VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters,

''namespaceName' = root\cimv2,'className' = Win32_BIOS'.

VERBOSE: Operation 'Enumerate CimInstances' complete.

BIOSSerial ComputerName OSVersion

---------- ------------ ---------

VMware-56 4d 03 1c 3a c5 5f a3-d6 3c 01 92 aa e7 1d 45 localhost 10.0.14393

PS C:\> Get-XXSystemInfo -Computername localhost -verbose -Protocol dcom

VERBOSE: Attempting localhost on dcom

VERBOSE: Operation '' complete.

VERBOSE: [+] Connected

VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters,

''namespaceName' = root\cimv2,'className' = Win32_OperatingSystem'.

VERBOSE: Operation 'Enumerate CimInstances' complete.

VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters,

''namespaceName' = root\cimv2,'className' = Win32_BIOS'.

VERBOSE: Operation 'Enumerate CimInstances' complete.

BIOSSerial ComputerName OSVersion

---------- ------------ ---------

VMware-56 4d 03 1c 3a c5 5f a3-d6 3c 01 92 aa e7 1d 45 localhost 10.0.14393

PS C:\> Get-XXSystemInfo -Computername localhost -Protocol x

Get-XXSystemInfo : Cannot validate argument on parameter 'Protocol'. The argument

"x" does not belong to the set "Dcom,Wsman" specified by the ValidateSet attribute.

Verify Yourself 120

Supply an argument that is in the set and then try the command again.

At line:1 char:52

+ Get-XXSystemInfo -Computername localhost -Protocol x

+ ~

+ CategoryInfo : InvalidData: (:) [Get-XXSystemInfo], ParameterBindingV

alidationException

+ FullyQualifiedErrorId : ParameterArgumentValidationError,Get-XXSystemInfo

PS C:\> Get-XXSystemInfo -Computername nope -verbose -Protocol dcom -TryOtherProtocol

VERBOSE: Attempting nope on dcom

PS C:\> TerminatingError(New-CimSession): "The running command stopped because the

preference variable "ErrorActionPreference" or common parameter is set to Stop:

The RPC server is unavailable. "

WARNING: Skipping nope due to failure to connect

VERBOSE: Attempting nope on wsman

PS C:\> TerminatingError(New-CimSession): "The running command stopped because the

preference variable "ErrorActionPreference" or common parameter is set to Stop:

The RPC server is unavailable. "

WARNING: Skipping nope due to failure to connect

PS C:\> Stop-Transcript

Windows PowerShell transcript end

End time: 20170623144314

Our Read-Through

Let’s go through that transcript, and we’ll tell you what should have been coming to mind for you
at each step.

PS C:\> Get-XXSystemInfo -Computername localhost

BIOSSerial ComputerName OSVersion

---------- ------------ ---------

VMware-56 4d 03 1c 3a c5 5f a3-d6 3c 01 92 aa e7 1d 45 localhost 10.0.14393

OK, this tells us that the command name is Get-XXSysteminfo, and it has a -Computername
parameter. We don’t know if it accepts just one value, or many, at this point. We can see what
it produces, so we know we’re going to have to query two CIM/WMI classes. We don’t know what
the module name is, but we could make one up if we needed to.

Verify Yourself 121

PS C:\> Get-XXSystemInfo -Computername localhost -verbose

VERBOSE: Attempting localhost on Wsman

VERBOSE: Operation '' complete.

VERBOSE: [+] Connected

VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters,

''namespaceName' = root\cimv2,'className' = Win32_OperatingSystem'.

VERBOSE: Operation 'Enumerate CimInstances' complete.

VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters,

''namespaceName' = root\cimv2,'className' = Win32_BIOS'.

VERBOSE: Operation 'Enumerate CimInstances' complete.

BIOSSerial ComputerName OSVersion

---------- ------------ ---------

VMware-56 4d 03 1c 3a c5 5f a3-d6 3c 01 92 aa e7 1d 45 localhost 10.0.14393

The above tells is that [CmdletBinding()] is in use, and that Write-Verbose is used.

PS C:\> Get-XXSystemInfo -Computername localhost -verbose -Protocol dcom

VERBOSE: Attempting localhost on dcom

VERBOSE: Operation '' complete.

VERBOSE: [+] Connected

VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters,

''namespaceName' = root\cimv2,'className' = Win32_OperatingSystem'.

VERBOSE: Operation 'Enumerate CimInstances' complete.

VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters,

''namespaceName' = root\cimv2,'className' = Win32_BIOS'.

VERBOSE: Operation 'Enumerate CimInstances' complete.

BIOSSerial ComputerName OSVersion

---------- ------------ ---------

VMware-56 4d 03 1c 3a c5 5f a3-d6 3c 01 92 aa e7 1d 45 localhost 10.0.14393

We now know that there are multiple protocols. Based on the verbose output above, at least Wsman
and Dcom are supported. We can anticipate adding a ValidateSet() to only allow those two values,
unless we encounter some more.

Verify Yourself 122

PS C:\> Get-XXSystemInfo -Computername localhost -Protocol x

Get-XXSystemInfo : Cannot validate argument on parameter 'Protocol'. The argument

"x" does not belong to the set "Dcom,Wsman" specified by the ValidateSet attribute.

Supply an argument that is in the set and then try the command again.

At line:1 char:52

+ Get-XXSystemInfo -Computername localhost -Protocol x

+ ~

+ CategoryInfo : InvalidData: (:) [Get-XXSystemInfo], ParameterBindingV

alidationException

+ FullyQualifiedErrorId : ParameterArgumentValidationError,Get-XXSystemInfo

The above confirms that a ValidateSet() is going to be needed.

PS C:\> Get-XXSystemInfo -Computername nope -verbose -Protocol dcom -TryOtherProtocol

VERBOSE: Attempting nope on dcom

PS C:\> TerminatingError(New-CimSession): "The running command stopped because

the preference variable "ErrorActionPreference" or common parameter is set to

Stop: The RPC server is unavailable. "

WARNING: Skipping nope due to failure to connect

VERBOSE: Attempting nope on wsman

PS C:\> TerminatingError(New-CimSession): "The running command stopped because

the preference variable "ErrorActionPreference" or common parameter is set to

Stop: The RPC server is unavailable. "

WARNING: Skipping nope due to failure to connect

The forgoing suggests that we have the ability to recursively call our own function to try the other
protocol. We’ll need to build that into the error-handling routine.

Our Answer

As noted earlier, our code is in the downloadable samples, but here’s a print version for your
convenience:

Verify Yourself 123

Answer.ps1
Function Get-XXSystemInfo {

[CmdletBinding()]

param(

[Parameter(

Mandatory,

ValueFromPipeline

)]

[string[]]$Computername,

[Parameter()]

[ValidateSet('Dcom', 'Wsman')]

[string]$Protocol = 'Wsman',

[Parameter()]

[switch]$TryOtherProtocol

)

BEGIN {

If ($Protocol -eq 'Dcom') {

$cso = New-CimSessionOption -Protocol Dcom

}

else {

$cso = New-CimSessionOption -Protocol Wsman

}

}

PROCESS {

ForEach ($comp in $computername) {

Try {

Write-Verbose "Attempting $comp on $protocol"

$s = New-CimSession -ComputerName $comp -SessionOption $cso -EA Stop

Write-Verbose " [+] Connected"

$os = Get-CimInstance -CimSession $s -ClassName Win32_OperatingSystem

$bios = Get-CimInstance -CimSession $s -ClassName Win32_BIOS

$props = @{

ComputerName = $comp

BIOSSerial = $bios.serialnumber

OSVersion = $os.version

}

New-Object -TypeName PSObject -Property $props

}

Catch {

Write-Warning "Skipping $comp due to failure to connect"

Verify Yourself 124

if ($TryOtherProtocol) {

If ($Protocol -eq 'Dcom') {

Get-XXSystemInfo -Protocol Wsman -Computername $comp

}

else {

Get-XXSystemInfo -Protocol Dcom -Computername $comp

}

}

} #Catch

} #ForEach

} #PROCESS

END {}

}

How’d You Do

If you were able to spot all of the major elements, and construct something at least vaguely like
our solution, then we think you’re probably “good to go” in terms of this book. If not, check out
PowerShell Scripting in a Month of Lunches from Manning.com, and thoroughly re-read Part 1 of
this book, to bring yourself up to speed.

We can’t stress that enough: if you’re not up to speed at this point, then you’re not ready to proceed
further in this book.

Part 2: Professional-Grade
Toolmaking
In this Part, we’re going to try and take your toolmaking skills a bit further. This is the stuff that sets
the beginners apart from the real pros. We’ve constructed these chapters into a kind of storyline, so
each one builds on what the previous ones taught. That said, the storyline here isn’t tightly coupled,
so feel free to dive in to whatever chapter seems of most interest or use to you. Because we’re
moving into Toolmaking areas that are more optional and as-you-need, you won’t see “Your Turn”
lab elements in every chapter - but that doesn’t mean you shouldn’t try and play along! Just follow
along with your own code. However, when we include a “Your Turn” section, we obviously strongly
suggest you follow along with that “lab.”

Going Deeper with Parameters
You should already have a strong understanding of parameters inside Advanced Functions. But
there’s more to cover, and this is the time to do it. It turns out, you can do a lot with Param() blocks.
And this isn’t even “it;” we’ve got a whole chapter on dynamic parameters coming up, as well.

Parameter Position

PowerShell has always been okay with you using parameters positionally, rather than providing
their name. For example, these two commands are equivalent:

Get-Service -Name BITS

Get-Service BITS

It is hugely important to understand why this works, so let’s pull up the help for Get-Service:

Get-Service [-ComputerName <String[]>] [-DependentServices] -DisplayName

<String[]> [-Exclude <String[]>] [-Include <String[]>] [-RequiredServices]

[<CommonParameters>]

Get-Service [-ComputerName <String[]>] [-DependentServices] [-Exclude

<String[]>] [-Include <String[]>] [-InputObject <ServiceController[]>]

[-RequiredServices] [<CommonParameters>]

Get-Service [[-Name] <String[]>] [-ComputerName <String[]>]

[-DependentServices] [-Exclude <String[]>] [-Include <String[]>]

[-RequiredServices] [<CommonParameters>]

It’s worth looking at the full help for this, which we don’t want to reproduce here - hit up the online
help page¹⁸ if you don’t have access to PowerShell, so you can follow along.

First, help files will usually list parameters in positional order. So in the above, the first parameter
set - where -Name is defined - the -Name parameter is listed first. We can confirm that by scrolling
down in the full help and looking at the details of the parameter:

¹⁸https://docs.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Service?view=powershell-5.1

https://docs.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Service?view=powershell-5.1

Going Deeper with Parameters 127

PS C:\> Help Get-Service parameter Name

-Name <String[]>

Specifies the service names of services to be retrieved. Wildcards are

permitted. By default, this cmdlet gets all of the services on the

computer.

Required? false

Position? 0

Default value None

Accept pipeline input? True (ByPropertyName, ByValue)

Accept wildcard characters? false

Position 0 (zero) is first. It’s worth noting that -ComputerName, which is listed first in the other two
parameter sets, is not positional. That is, you must specify -ComputerName to use it; you can’t just
chuck computer names in someplace and expect PowerShell to figure it out. Its own details confirm
this:

help get-service -Parameter Computername

-ComputerName <String[]>

Gets the services running on the specified computers. The default is the

local computer.

Type the NetBIOS name, an IP address, or a fully qualified domain name

(FQDN) of a remote computer. To specify the local computer, type the

computer name, a dot (.), or localhost.

This parameter does not rely on Windows PowerShell remoting. You can use

the ComputerName parameter of Get-Service even if your computer is not

configured to run remote commands.

Required? false

Position? named

Default value None

Accept pipeline input? True (ByPropertyName)

Accept wildcard characters? false

This is how PowerShell can tell that Get-Service BITS is meant to use the first parameter set.
The only parameter with position 0, which can accept a string, is -Name, and it only exists in one
parameter set, so that must be the one we meant to use. If you define multiple parameter sets, you
can in theory have more than one parameter in position 0, but only if (a) each one accepts a different
value type and (b) each one is unique to a separate parameter set.

Going Deeper with Parameters 128

If you don’t specify a position for your parameters, PowerShell automatically numbers them all in
whatever order they’re listed. So consider this short function (we’re not including these examples in
the downloadable code, because they’re not really intended to be executable):

function test {

param(

[string[]]$one,

[int]$two,

[switch]$three

)

}

help test -Full

This yields the following parameter details:

PARAMETERS

-one <string[]>

Required? false

Position? 0

Accept pipeline input? false

Parameter set name (All)

Aliases None

Dynamic? false

-three

Required? false

Position? Named

Accept pipeline input? false

Parameter set name (All)

Aliases None

Dynamic? false

-two <int>

Required? false

Position? 1

Accept pipeline input? false

Parameter set name (All)

Aliases None

Dynamic? false

Going Deeper with Parameters 129

The $one parameter is first, in position 0; $two is second in position 1, and $three is not
positional because it’s a switch. Switches can’t be positional when you’re relying on auto-generated
position numbers. Also notice that the auto-generated help isn’t very picky about the order in
which those parameters are documented! You can disable this automatic behavior by adding
[CmdletBinding(PositionalBinding=$false)] in front of your Param() block.

Now, let’s specify a position for each:

function test {

param(

[Parameter(Position=1)]

[string[]]$one,

[Parameter(Position=2)]

[int]$two,

[Parameter(Position=3)]

[switch]$three

)

}

help test -Full

The results:

PARAMETERS

-one <string[]>

Required? false

Position? 1

Accept pipeline input? false

Parameter set name (All)

Aliases None

Dynamic? false

-three

Required? false

Position? 3

Accept pipeline input? false

Parameter set name (All)

Aliases None

Dynamic? false

Going Deeper with Parameters 130

-two <int>

Required? false

Position? 2

Accept pipeline input? false

Parameter set name (All)

Aliases None

Dynamic? false

We’ve now specified position numbers for each, letting us put them in whatever position they want,
regardless of the order they’re listed. And, we can explicitly assign a position to the switch parameter.
In practice, this would be a bit awkward-looking to use:

test a b $true

With (in your mind) that $true being taken for the switch parameter (which won’t actually work,
by the way). You can’t make switches positional - so there’s no point assigning them a position.

Now, let’s share some opinions. We generally don’t declare positions for our parameters, because we
tend to use our commands in scripts, and in our scripts we like to spell out all of our parameter names.
Doing so makes them easier to follow in the future. However, sometimes we’ll have a command
where it just makes for easier reading to not have parameter names for certain parameters. In those
cases only, we will declare a position number for those parameters, so that we don’t have to rely
on PowerShell making something up. That way, if we later expand the function and accidentally
change the order in which our parameters are declared, we still get our declared positions, rather
than PowerShell re-ordering them and messing us up. We do not tend to declare a position for
every parameter, which we see some people do almost reflexively. We feel that doing so makes our
parameter block unnecessarily cluttered, and it encourages positional parameter use - which in a
script, is not the best possible practice most times.

It’s worth noting that there are times when positional parameters make a ton of sense.
Pester, the testing framework for PowerShell, is one such instance. It’s Should keyword,
for example, is just a PowerShell command. To make the end result more English-readable,
Pester’s creators chose to use positional parameters, and to use nonstandard command
naming (“Should,” versus “Should-Object” or some other verb-noun scheme). So there are
definitely times when it’s the right thing to do, but those tend to be edge cases.

Validation

Let’s run through the whole series of validation attributes. We’re just going to highlight these; the
full documentation¹⁹ has more details and examples, and we’re not trying to recreate that here.

¹⁹https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/about/about_functions_advanced_parameters

https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/about/about_functions_advanced_parameters
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/about/about_functions_advanced_parameters

Going Deeper with Parameters 131

The first three apply mainly to parameters already marked as Mandatory, allowing them to accept
empty values of some kind:

• AllowNull() - allows the parameter to accept a null value
• AllowEmptyString() - allows the parameter to accept an empty string (“”)
• AllowEmptyCollection() - allows an array parameter to accept an empty collection

The remainder are more general-purpose:

• ValidateCount(min,max) - specifies a minimum and maximum number of values, in an array,
that the parameter will accept

• ValidateLength(min,max) - specifies the maximum string length the parameter will accept.
You can specify a minimum and maximum value, and if the parameter accepts a collection
then this is applied to all members of the collection

• ValidatePattern(pattern) - specifies a regular expression that any string input must match
in order to be accepted

• ValidateRange(min,max) - specifies a range of numeric values that any inputmust fall between,
inclusive of the minimum and maximum specified

• ValidateScript({script block}) - specifies a script block; within the script, uses $_ to refer
to the proposed value for the parameter, and return $true to accept it or $false to reject it

• ValidateSet(val,val,val...) - covered earlier, this specifies a set of legal values for the
parameter

• ValidateNotNull() - the parameter will not accept null values
• ValidateNotNullOrEmpty() - the parameter will not accept null values or empty strings (“”)

Multiple Parameter Sets

This is one of the neatest, most effective, and most often screwed-up elements of PowerShell
parameters. Have a look at the help for the old Get-WmiObject command²⁰ as an example. In it, you’ll
see a default parameter set that uses the -Class parameter. As soon as you use that parameter, you’re
locked into that parameter set. You can’t use -Query, because it appears in a different parameter set.
Many parameters appear in all of the available parameter sets, but some are unique to a given set.

Here’s what people often dowrong: they’ll define some switch parameter, like “-UseAlternateCredential,”
which exists only in a given parameter set. That set will also contain a mandatory “-Credential”
parameter. The idea is, you specify the first parameter to push you into the parameter set, and
then the parameter set forces you to also provide a credential. This isn’t a great design approach,
and it certainly doesn’t fit in with PowerShell’s native patterns. Natively, you’d simply specify a
“-Credential” parameter, and if someone ran the command without using it, then you just didn’t use
it. You don’t, in other words, typically see PowerShell using a switch simply to push the user into a

²⁰https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.management/get-wmiobject

https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.management/get-wmiobject
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.management/get-wmiobject

Going Deeper with Parameters 132

parameter set. Instead, the parameters that are unique to a parameter set are typically related to one
another in some way. For example, in Get-WmiObject, the -Filter parameter exists with -Class to
help reduce the results you get back. But -Filter does not exist with -Query, because your query
could already contain a filter preposition, making a filtering parameter redundant.

You assign a parameter to a parameter set by specifying a name for the set:

[Parameter(ParameterSetName="query")]

[string]$query

Any parameters given the same set name will also belong to that set; any parameters given no set
name at all will belong to all sets. Each parameter can have only one ParameterSetName assigned
per Parameter attribute. The following, however, is legal:

[Parameter(ParameterSetName="one")]

[Parameter(ParameterSetName="two")]

[string]$something

The $something parameter, here, would belong to both set “one” and set “two,” but not any other sets
which were defined. Again, any parameter assigned to no set will be implicitly included in all sets.
And, it should go without saying but let’s say it, each parameter set must have at least one unique
parameter, which tells the shell you’re using that set.

If you are using multiple parameter sets, use Show-Command to verify your parameters are
grouped as expected. When you run the cmdlet, the graphical display will show a tab for
each parameter set with the related parameters.

PowerShell dynamically tries to figure out which parameter set you’re “in” by looking at the
parameters you’ve used. This can sometimes be hard for it if you’re using positional parameters
whose values might legitimately line up with more than one parameter set (which is another reason
we personally like to avoid positional parameters). In most cases, you’ll also want to define a default
parameter set, which is what PowerShell will try to use until it sees a parameter that forces it to
consider a different set. You specify this in your [CmdletBinding()] attribute:

[CmdletBinding(DefaultParameterSetName="whatever")]

Parameter set names appear to be case-sensitive starting in Windows PowerShell 5.0. And
as we move to a world of cross-platform scripting, watching your casing will be even more
important.

In your code you can check for parameter values of use code like this to determine what parameter
set is in use.

Going Deeper with Parameters 133

if ($PSCmdlet.ParameterSetName -eq "computer") {

`#do this

}

Value From Remaining Arguments

This is a bit of an odd duck that, honestly, you don’t see much and we’re not sure we’ve ever used. It
basically says, “for this parameter, take all the values that haven’t been assigned to other parameters,
and dump ‘em in.”

[Parameter(ValueFromRemainingArguments=$True)]

[string]$Extras

Frankly, we think you are better off carefully planning all of your parameters and if you do so you
should never need to use this attribute. It is definitely for rare, edge cases.

Help Message

The help message is intended to be a very short description of what the parameter wants. This is
mainly available from the prompt that PowerShell creates when a mandatory parameter is omitted.

[Parameter(HelpMessage="Enter a computer name or IP")]

[string[]]$ComputerName

This is the message that will be displayed at the prompt if the user types !?. If you don’t create
comment based or external help, PowerShell will use this message when displaying help.

If you are marking a parameter as mandatory, we recommend you include a meaningful
help message.

Alias

You can define a parameter alias using syntax like this:

Going Deeper with Parameters 134

[Alias("cn")]

[string[]]$Computername

Using a parameter alias is a handy technique if you have company jargon you expect people to
use but need to follow PowerShell standards with a proper parameter name. Aliases also tend to be
shorter but with improvements in tab-completion this doesn’t seem as compelling as it once might
have been. Be aware that aliases aren’t easily discovered and may not show up in auto-generated
help, especially for older PowerShell versions. You can specify them in comment-based help, or if
you use the Platyps module, which we cover in the chapter on writing help, it will discover and
document them accordingly.

More CmdletBinding

You should already know that [CmdletBinding()], when added before your Param() block, enables
common parameters. You should also know how it can enable the -WhatIf and -Confirm parameter
by adding SupportsShouldProcess and ConfirmImpact; and earlier in this chapter we showed you
how it can disable automatic positional parameter numbering and specify a default parameter set.
It can do a bit more, as described in the official docs²¹:

• Specify a HelpURI, which must begin with http:// or https://, where the command’s online
documentation can be found

• Specify SupportsPaging, enabling the -First-, -Skip, and -IncludeTotalCount parameters.
You must implement support for these; an example is included in the docs.

A Demonstration

We thought it might be useful for you to see a sample function that uses many of these concepts
and techniques. The reason for including them in your work is not to show off but to make your
tool easier for someone to use, perhaps even yourself, and to catch and potential problems at the
beginning before your command starts doing anything.

The complete function, Get-DiskCheck, is in the chapter download file. Here is the relevant
parameter section.

²¹https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_cmdletbindingattribute?view=
powershell-5.1

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_cmdletbindingattribute?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_cmdletbindingattribute?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_cmdletbindingattribute?view=powershell-5.1

Going Deeper with Parameters 135

Get-DiskCheck

Function Get-DiskCheck {

[cmdletbinding(DefaultParameterSetName = "name")]

Param(

[Parameter(

Position = 0,

Mandatory,

HelpMessage = "Enter a computer name to check",

ParameterSetName = "name",

ValueFromPipeline

)]

[Alias("cn")]

[ValidateNotNullorEmpty()]

[string[]]$Computername,

[Parameter(

Mandatory,

HelpMessage = "Enter the path to a text file of computer names",

ParameterSetName = "file"

)]

[ValidateScript({

if (Test-Path $_) {

$True

}

else {

Throw "Cannot validate path $_"

}

})]

[ValidatePattern("\.txt$")]

[string]$Path,

[ValidateRange(10, 50)]

[int]$Threshhold = 25,

[ValidateSet("C:", "D:", "E:", "F:")]

[string]$Drive = "C:",

[switch]$Test

)

We’ll admit that we are fudging a bit on best practices with this function but that is only for the sake
of demonstration.

Going Deeper with Parameters 136

The function has two primary parameter sets. One for computer names and one for the path to a
text file with computer names. The mandatory -computername parameter also has an alias of CN
and a validation to make sure the value is not null or an empty string.

The -Path parameter has multiple validation tests. The path value must end in .txt and it must exist.
This is what ValidateScript is testing. Normally, you can just use the validation attribute but you
can control the output if there is an error. In this scenario if the filename doesn’t pass Test-Path the
scriptblock throws an exception with our text. We could have written it like this:

[ValidateScript({Test-Path $_)}

But if it failed the user would see the default exception message which may not be helpful or perhaps
overly verbose. With our approach if the validation fails the error message is a bit more succinct.

The remaining parameters belong to both parameter sets and we’re using a few validation attributes.
One nice benefit of using ValidateSet is that you can cycle through the possible values with tab-
completion.

When you ask for help on the function you can see the two different parameter sets.

SYNTAX

Get-DiskCheck [-Computername] <string[]> [-Threshold <int>]

[-Drive <string> {C: | D: | E: | F:}] [-Test] [<CommonParameters>]

Get-DiskCheck -Path <string> [-Threshold <int>] [-Drive <string>

{C: | D: | E: | F:}] [-Test] [<CommonParameters>]

Because the function lacks comment-based help, PowerShell displays the values for -Drive from the
ValidateSet() attribute. And when looking at parameter details the help messages are also used.

PARAMETERS

-Computername <string[]>

Enter a computer name to check

Required? true

Position? 0

Accept pipeline input? true (ByValue)

Parameter set name name

Aliases cn

Dynamic? false

-Drive <string>

Required? false

Going Deeper with Parameters 137

Position? Named

Accept pipeline input? false

Parameter set name (All)

Aliases None

Dynamic? false

-Path <string>

Enter the path to a text file of computer names

Required? true

Position? Named

Accept pipeline input? false

Parameter set name file

Aliases None

Dynamic? false

-Test

Required? false

Position? Named

Accept pipeline input? false

Parameter set name (All)

Aliases None

Dynamic? false

-Threshold <int>

Required? false

Position? Named

Accept pipeline input? false

Parameter set name (All)

Aliases None

Dynamic? false

We’ll let you test out the function yourself to see how the different parameter techniques work.

Your Turn

In the first part of the book we had you work on a function to get computer status information from
a number of CIM classes. The function took a computer name as a parameter. But Get-CimInstance
can also use CimSessions. Why not have a function that can also accept CIMSessions?

Going Deeper with Parameters 138

Start Here

Start with the last iteration of the function which you can find in the downloads.

Get-TMComputerStatus.ps1

Function Get-TMComputerStatus {

<#

.SYNOPSIS

Get computer status information.

.DESCRIPTION

This command retrieves system information from one or more remote computers

using Get-CimInstance. It will write a summary object to the pipeline for

each computer. You also have the option to log errors to a text file.

.PARAMETER Computername

The name of the computer to query. This parameter has aliases of

CN, Machine and Name.

.PARAMETER ErrorLog

The path to the error text file. This is not implemented yet.

.PARAMETER ErrorAppend

Append errors to the error file. This is not implemented yet.

.EXAMPLE

PS C:\> Get-TMComputerStatus -computername SRV1

Computername : SRV1

TotalMem : 33080040

FreeMem : 27384236

Processes : 218

PctFreeMem : 82.7817499616083

Uptime : 11.06:23:52.7176115

CPULoad : 2

PctFreeC : 54.8730920184876

Get the status of a single computer

.EXAMPLE

PS C:\> Get-Content c:\work\computers.txt | Get-TMComputerStatus |

Export-CliXML c:\work\data.xml

Going Deeper with Parameters 139

Pipe each computer name from the computers.txt text file to this

command. Results are immediately exported to an XML file using

Export-CliXML.

.INPUTS

System.String

.NOTES

Version : 1.0.0

.LINK

Get-CimInstance

#>

[cmdletbinding()]

Param(

[Parameter(ValueFromPipeline, Mandatory)]

[ValidateNotNullorEmpty()]

[ValidatePattern("^\w+$")]

[Alias("CN", "Machine", "Name")]

[string[]]$Computername,

[string]$ErrorLog,

[switch]$ErrorAppend

)

BEGIN {

Write-Information "Command = $($myinvocation.mycommand)" -Tags Meta

Write-Information "PSVersion = $($PSVersionTable.PSVersion)" -Tags Meta

Write-Information "User = $env:userdomain\$env:username" -tags Meta

Write-Information "Computer = $env:computername" -tags Meta

Write-Information "PSHost = $($host.name)" -Tags Meta

Write-Information "Test Date = $(Get-Date)" -tags Meta

Write-Verbose "Starting $($myinvocation.mycommand)"

}

PROCESS {

foreach ($computer in $Computername) {

Write-Verbose "Querying $($computer.toUpper())"

Try {

$params = @{

Classname = "Win32_OperatingSystem"

Computername = $computer

ErrorAction = "Stop"

Going Deeper with Parameters 140

}

$OS = Get-CimInstance @params

$params.ClassName = "Win32_Processor"

$cpu = Get-CimInstance @params

$params.className = "Win32_logicalDisk"

$vol = Get-CimInstance @params -filter "DeviceID='c:'"

$OK = $True

}

Catch {

$OK = $False

$msg = "Failed to get system information from $computer. $($_.Exception.Mes\

sage)"

Write-Warning $msg

if ($ErrorLog) {

Write-Verbose "Logging errors to $ErrorLog. Append = $ErrorAppend"

"[$(Get-Date)] $msg" | Out-File -FilePath $ErrorLog -Append:$ErrorAppend

}

}

if ($OK) {

#only continue if successful

[pscustomobject]@{

Computername = $os.CSName

TotalMem = $os.TotalVisibleMemorySize

FreeMem = $os.FreePhysicalMemory

Processes = $os.NumberOfProcesses

PctFreeMem = ($os.FreePhysicalMemory/$os.TotalVisibleMemorySize)*100

Uptime = (Get-Date) - $os.lastBootUpTime

CPULoad = $cpu.LoadPercentage

PctFreeC = ($vol.FreeSpace/$vol.size)*100

}

} #if OK

} #foreach $computer

}

END {

Write-Verbose "Ending $($myinvocation.mycommand)"

}

} #Get-TMComputerStatus

Going Deeper with Parameters 141

Your Task

First, add whatever enhancements you’d like based on this chapter. Then add a second parameter
set to accept a CIMSession. Save the new function to the Toolmaking module. Don’t forget to update
your help!

Our Take

Revised Get-TMComputerStatus

Function Get-TMComputerStatus {

<#

.SYNOPSIS

Get computer status information.

.DESCRIPTION

This command retrieves system information from one or more remote computers

using Get-CimInstance. It will write a summary object to the pipeline for

each computer. You also have the option to log errors to a text file.

.PARAMETER Computername

The name of the computer to query. This parameter has aliases of

CN, Machine and Name.

.PARAMETER ErrorLog

The path to the error text file. This is not implemented yet.

.PARAMETER ErrorAppend

Append errors to the error file. This is not implemented yet.

.EXAMPLE

PS C:\> Get-TMComputerStatus -computername SRV1

Computername : SRV1

TotalMem : 33080040

FreeMem : 27384236

Processes : 218

PctFreeMem : 82.7817499616083

Uptime : 11.06:23:52.7176115

CPULoad : 2

PctFreeC : 54.8730920184876

Get the status of a single computer

Going Deeper with Parameters 142

.EXAMPLE

PS C:\> Get-Content c:\work\computers.txt | Get-TMComputerStatus |

Export-CliXML c:\work\data.xml

Pipe each computer name from the computers.txt text file to this

command. Results are immediately exported to an XML file using

Export-CliXML.

.INPUTS

System.String

.NOTES

Version : 1.0.0

.LINK

Get-CimInstance

#>

[cmdletbinding()]

Param(

[Parameter(ValueFromPipeline, Mandatory)]

[ValidateNotNullorEmpty()]

[ValidatePattern("^\w+$")]

[Alias("CN", "Machine", "Name")]

[string[]]$Computername,

[string]$ErrorLog,

[switch]$ErrorAppend

)

BEGIN {

Write-Information "Command = $($myinvocation.mycommand)" -Tags Meta

Write-Information "PSVersion = $($PSVersionTable.PSVersion)" -Tags Meta

Write-Information "User = $env:userdomain\$env:username" -tags Meta

Write-Information "Computer = $env:computername" -tags Meta

Write-Information "PSHost = $($host.name)" -Tags Meta

Write-Information "Test Date = $(Get-Date)" -tags Meta

Write-Verbose "Starting $($myinvocation.mycommand)"

}

PROCESS {

foreach ($computer in $Computername) {

Write-Verbose "Querying $($computer.toUpper())"

Going Deeper with Parameters 143

Try {

$params = @{

Classname = "Win32_OperatingSystem"

Computername = $computer

ErrorAction = "Stop"

}

$OS = Get-CimInstance @params

$params.ClassName = "Win32_Processor"

$cpu = Get-CimInstance @params

$params.className = "Win32_logicalDisk"

$vol = Get-CimInstance @params -filter "DeviceID='c:'"

$OK = $True

}

Catch {

$OK = $False

$msg = "Failed to get system information from $computer. $($_.Exception.Mes\

sage)"

Write-Warning $msg

if ($ErrorLog) {

Write-Verbose "Logging errors to $ErrorLog. Append = $ErrorAppend"

"[$(Get-Date)] $msg" | Out-File -FilePath $ErrorLog -Append:$ErrorAppend

}

}

if ($OK) {

#only continue if successful

[pscustomobject]@{

Computername = $os.CSName

TotalMem = $os.TotalVisibleMemorySize

FreeMem = $os.FreePhysicalMemory

Processes = $os.NumberOfProcesses

PctFreeMem = ($os.FreePhysicalMemory/$os.TotalVisibleMemorySize)*100

Uptime = (Get-Date) - $os.lastBootUpTime

CPULoad = $cpu.LoadPercentage

PctFreeC = ($vol.FreeSpace/$vol.size)*100

}

} #if OK

} #foreach $computer

}

END {

Write-Verbose "Starting $($myinvocation.mycommand)"

Going Deeper with Parameters 144

}

} #Get-TMComputerStatus

Using a CIMSession actually works in our favor for this function since it is making multiple calls
to Get-CimInstance. When using a computer name this means there is extra overhead, and time,
to setup each connection. Using an existing CIMSession speeds up the whole process. The new
parameter belongs to its own parameter set. The parameters that don’t have a specified parameter
set belong to all sets.

We revised the code to create a set of temporary CIMSessions to each computer. The main code was
modified to use the sessions. We’re also keeping track of temporary sessions so they can be removed
at the end of the function. We don’t want to remove a user’s existing CIMSessions.

Let’s Review

What did you learn?

1. True or False: You can only have one validation attribute per parameter?
2. How many parameter sets can you define in a function?
3. Can you have multiple parameters with Position = 0 ?

Review Answers

Did you come up with these answers?

1. False. You can have as many as make sense and the value must pass all of them.
2. You can define as many as you need. However, in our experience if you start running into more

than 4 or 5 parameter sets, you might need to re-think your design strategy.
3. Yes, but only if they are in different parameter sets. Even then you will need to test this

thoroughly.

Advanced Function Tips and Tricks
This chapter will be a kind of loose round-up of other cool, advanced, and useful things you can do
with an advanced function.

Defining an Alias

You already know that PowerShell can define aliases for commands, right? Functions are commands,
and they can have aliases. But you don’t need to run New-Alias to make them–you can define an
alias right in the function itself:

function Get-Foo {

[cmdletbinding()]

[Alias ("gf")]

Param()

}

This defines an alias gf, and PowerShell will even display that in its auto-generated help for the
command.

Specify Output Type

When you are creating a function, you are most likely creating it work with other PowerShell
commands. You might write a command that will be piped to another PowerShell object. To help
the next person, it helps to document what type of object your command is writing to the pipeline.
One way to accomplish this is to specify an[OutputType()].

Function Get-Runtime {

[CmdletBinding()]

[OutputType([timespan])]

Param([string]$Name)

...

}

When a user looks at full help for this function, they will see System.TimeSpan under OUTPUTS. You
can enter a .NET type name as we’ve done here, or as a string.

Advanced Function Tips and Tricks 146

Function Get-Runtime {

[CmdletBinding()]

[OutputType("System.Timespan")]

Param([string]$Name)

...

}

If you are writing a custom object to the pipeline of your own creation, perhaps from a class or
something with a typename that you defined, we recommend you enter the output type as a string.

Function Get-ThatThing {

[CmdletBinding()]

[OutputType("MyThing")]

Param([string]$Name)

...

}

If you had used [MyThing], PowerShell will most likely try to find that type and complain.

You are allowed to specify multiple types.

Function Set-ThatThing {

[CmdletBinding()]

[OutputType("None","MyThing")]

Param([string]$Name,[switch]$Passthru)

...

}

In this hypothetical function, it is assumed it doesn’t right anything to the pipeline because of the
-Passthru parameter. This command’s output could nothing, or it could be a MyThing object. What
about parameter sets?

You can have multiple OutputType attributes.

Function Get-SomethingElse {

[CmdletBinding(DefaultParameterSetName="Name")]

[OutputType("System.String",ParameterSetName = "Other")]

[OutputType("MyThing",ParameterSetName = "Name")]

Param()

...

}

The help output will show both types but there is no indication about parameter sets.

Advanced Function Tips and Tricks 147

Adding Labels

We have probably mentioned this elsewhere in the book and you’ve likely seen it in plenty of code
examples. Consider this snippet of code:

...

$drives = Get-CimInstance @params

Write-Verbose "[PROCESS] CIM query complete"

ForEach ($drive in $drives) {

if ($drive.DriveType -ne 5) {

[pscustomobject]@{

ComputerName = $comp

Letter = $drive.deviceid

Size = $drive.size

Free = $drive.freespace

}

}

}

}

}

}

It definitely helps that the code has been formatted and indented. But can you tell if you have
enough closing curly brackets? Or too many? Yes, there are things you do in your editor to help, but
something like this can help.

...

$drives = Get-CimInstance @params

Write-Verbose "[PROCESS] CIM query complete"

ForEach ($drive in $drives) {

if ($drive.DriveType -ne 5) {

[pscustomobject]@{

ComputerName = $comp

Letter = $drive.deviceid

Size = $drive.size

Free = $drive.freespace

} #customobject

} #if drivetype <> 5

} #foreach drive

} #foreach computer

Advanced Function Tips and Tricks 148

} #process

} #close Get-DriveInfo function

Now there’s no confusion.

Use Your Command Name Programmatically

We’ve mentioned how helpful it can be to incorporate Verbose messages into your PowerShell
commands. We find it helpful to know what command is starting and when it is ending. This is
particularly helpful if your command is calling other commands. The verbose messaging can help
you keep track of potentially complicated command flow. One thing you can do to make life easy for
you is to take advantage of the built-in $MyInvocation object. You can use this to programmatically
capture the name of your command. Don’t hard code in your command name, because you might
change it. Instead, use code like this:

Begin {

Write-Verbose "[$((Get-Date).TimeofDay) BEGIN] Starting $($myinvocation.mycomm\

and)"

} #begin

Process {

Write-Verbose "[$((Get-Date).TimeofDay) PROCESS] Processing $computername"

...

}

End {

Write-Verbose "[$((Get-Date).TimeofDay) END] Ending $($myinvocation.mycomman\

d)"

} #end

When run with verbose output you might see something like:

PS C:\> Get-SystemData -Verbose

VERBOSE: [09:26:41.6459721 BEGIN] Starting Get-SystemData

VERBOSE: [09:26:41.6469464 PROCESS] Getting system data for SRV1

VERBOSE: [09:26:41.6479456 BEGIN] Starting Get-OS

VERBOSE: [09:26:41.6489453 PROCESS] Processing SRV1

VERBOSE: [09:26:53.9988218 END] Ending Get-OS

VERBOSE: [09:26:54.0007555 PROCESS] Updating database

VERBOSE: [09:26:56.3576237 END] Ending Get-SystemData

PS C:\>

We used the same type of code to the main function and the run it calls. You should get the idea that
this would make a great snippet.

Advanced Function Tips and Tricks 149

ArgumentCompleter

One of the nice benefits of using the [ValidateSet()] attribute is that PowerShell will use it for
auto completion. But what about other situations? One possibility is to use an ArgumentCompleter.
Here’s a demo function.

Get-EventLogDetail.ps1

Function Get-EventLogDetail {

[cmdletbinding()]

Param(

[Parameter(Position = 0)]

[ArgumentCompleter({(Get-Eventlog -List).log})]

[string]$LogName

)

Write-Verbose "Getting $LogName log details"

$params = @{

ClassName = "win32_nteventlogfile"

filter = "filename='$LogName'"

ErrorAction = "Stop"

}

Try {

Get-CimInstance @params |

Select-Object -Property LogFileName, Name, FileSize, MaxFileSize,

LastModified, NumberOfRecords,@{Name="PctUsed";

Expression={[math]::Round(($_.filesize/$_.maxfilesize)*100,2)}}

}

Catch {

Write-Error $_

}

}

The LogName parameter has an ArgumentCompleter. The results of the code in the scriptblock will be
passed as possible parameter values. Ideally, this code will run very quickly. In this case, the user
will get a list of event logs. This doesn’t prevent them from manually entering a log name.

Dynamic Parameters
Dynamic parameters are ones that are only available under certain circumstances, such as when
your command is being used from a particular drive (say, a FileSystem drive, but not a Registry
drive). You see this with the -Encoding parameter of Get-Content; the parameter won’t work if
you’re focused on anything but a FileSystem drive at the time. Dynamic parameters can also be
enabled by using another, static parameter of your command, in which case they become something
like a “child parameter set.” But dynamic parameters aren’t necessarily listed in help like a static
parameter, meaning they’re harder for people to find and make use of. When possible, you want to
avoid these, and only use them when they absolutely make sense and accomplish something you
can’t do in other ways.

When someone asks for help on your command, PowerShell will try to evaluate your
dynamic parameters to see if they’re applicable, and only show them if so. That’s why they
can be harder to discover - if they’re not valid at the time, people won’t see them in help.
It is also possible to create dynamic parameters that only appear if another parameter is
specified which makes them even harder to discover.

For example, suppose you have a parameter named -UseAlternateLanguage, and you’re thinking
you also want to add a dynamic parameter named -LanguageToUse. If someone specifies the first,
they’ll be able to use the second to pick a language. That’s probably not a great use of dynamic
parameters. Instead, you’d probably just pick a default language, and offer -LanguageToUse if
someone wanted to use something different. If they didn’t specify it, you’d use the default. This
eliminates the need for a more complex parameter arrangement.

That’s actually a good general rule to follow: try not to use one parameter simply to enable
another. Instead, default to a sensible value and provide a single parameter to override that
value.

Here’s another example: suppose you write a command that will provision new users. You always
need certain information, like their name and department. But sometimes, users will need to be
provisioned in the company accounting software, where you’ll also need to know their approver
ID and spending limit. You might consider accomplishing that with a status -AddToAccounting

parameter, which in turn enables dynamic parameters for -ApproverID and -SpendingLimit.
However, you could accomplish something similar simply by having those latter two become
mandatory parameters of their own parameter set. So your command has two parameter sets: one
with the accounting stuff, and one without. Both would show up in help, making them more easily
discoverable, and making their relationship more obvious.

Dynamic Parameters 151

This isn’t to say that dynamic parameters are never appropriate, of course, because otherwise they
probably wouldn’t even be a thing. And this isn’t even to say that using them is rare. It’s just that
we see a lot of people making poor parameter design decisions because they think, “well, dynamic
parameters are a thing, and I should clearly be using them, because shiny.” Try and avoid that. if
you can accomplish your need with something simpler, do.

Declaring Dynamic Parameters

Here’s a basic dynamic parameter declaration:

Param(

[ValidateSet("User","Administrator","Guest")]

[string]$UserLevel,

)

DynamicParam {

If ($UserLevel -eq "Administrator") {

create an $AdminType parameter

}

}

Notice first that DynamicParam is a new and distinct construct from the regular Param block. In it,
you use an If construct to decide if the dynamic parameter is currently appropriate. In fact, you
need to have some sort of condition evaluation to determine if the dynamic parameter needs to be
defined. If you are basing your condition on another parameter, be aware your dynamic parameter
won’t be available until the user specifies the other parameter. And no, you shouldn’t try to define
a dynamic parameter that relies on another dynamic parameter.

In this example, the dynamic parameter will never show up in help, because when viewing the
help no other parameter will have a value assigned, and so the condition will never be met. If the
condition is met, then you manually - via code - create the parameter. The creation code isn’t hard,
but it’s a bit laborious - you’re essentially going to programmatically create .NET Framework objects
to generate and attach new parameters.

1. You create any parameter attributes you plan to use, and add them to a collection;
2. You create the main parameter and attach the attributes;
3. You return the created parameter;

It’s a bit more complex than that, so let’s do some code (this isn’t in the downloadable code because
it’s really not cut-and-pasteable; this is something you should be typing into your own functions,
not reusing as boilerplate from us):

Dynamic Parameters 152

Create Attributes

You will start with something like this:

$attr = New-Object System.Management.Automation.ParameterAttribute

$attr.HelpMessage = "Enter admin type"

$attr.Mandatory = $true

$attr.ValueFromPipelineByPropertyName = $true

Other properties include:

• ParameterSetName
• Position
• ValueFromPipeline
• ValueFromRemainingArguments

Create an Attribute Collection

Next step:

$attrColl = New-Object System.Collections.ObjectModel.Collection[System.Attribute]

$attrColl.Add($attr)

Remember, each parameter can have one, and only one, attribute collection.

Create the Parameter

Here we go:

$param = New-Object System.Management.Automation.RuntimeDefinedParameter`

('AdminType',[string],$attrColl)

Really sorry about the word-wrapping there - it’s unavoidable with a line that long. Remember, the
backslash doesn’t “exist” in the code, it’ a line-wrap character here in the PDF book. We’ve created a
new -AdminType parameter, which will accept a String object, and attached our attribute collection.
But we’re not quite done:

Dynamic Parameters 153

$dict = New-Object System.Management.Automation.RuntimeDefinedParameterDictionary

$dict.Add('AdminType',$param)

return $dict

That return keyword is what “sends” our new, dynamic parameter to PowerShell.

The Whole Picture

Here’s the whole example, which is in our downloadable code samples for this chapter:

Param(

[string]$UserLevel

)

DynamicParam {

If ($UserLevel -eq "Administrator") {

create an $AdminType parameter

$attr = New-Object System.Management.Automation.ParameterAttribute

$attr.HelpMessage = "Enter admin type"

$attr.Mandatory = $true

$attr.ValueFromPipelineByPropertyName = $true

$attrColl = New-Object System.Collections.ObjectModel.Collection[System.Attribut\

e]

$attrColl.Add($attr)

$param = New-Object System.Management.Automation.RuntimeDefinedParameter('AdminT\

ype',[string],$attrColl)

$dict = New-Object System.Management.Automation.RuntimeDefinedParameterDictionary

$dict.Add('AdminType',$param)

return $dict

}

}

Yup, that’s a lot. And each DynamicParam you define will need to do that same sequence of events.

Using Dynamic Parameters

Dynamic parameters won’t show up as “normal” variables like a static parameter will. Instead, you’d
access them like this:

Dynamic Parameters 154

if ($PsBoundParameters.ContainsKey('AdminType')) {

Write-Verbose "Admin type $($PsBoundParameters.AdminType)"

}

You’ll find another really excellent walk-through at PowerShellMagazine²², if you’re interested.

Let’s Review

Using dynamic parameters is certainly for edge cases. If you are like us you’ll have to review the
documentation to remember how to implement. But, let’s see if anything from this chapter sunk in.

1. What are some of the drawbacks to using dynamic parameters?
2. What type of object do you need to create?
3. What might be an alternative to using a dynamic parameter?

Review Answers

And our take on the answers:

1. They are hard to implement and difficult for an end user to discover.
2. System.Management.Automation.ParameterAttribute.
3. Parameter sets

²²http://www.powershellmagazine.com/2014/05/29/dynamic-parameters-in-powershell/

http://www.powershellmagazine.com/2014/05/29/dynamic-parameters-in-powershell/
http://www.powershellmagazine.com/2014/05/29/dynamic-parameters-in-powershell/

Writing Full Help
You should already know how you can add comment-based help to your tools. Typically you would
create help documentation and insert it into each command. But there are some downsides to this
approach:

• It can be particularly prone to errors, especially if you get the syntax wrong.
• It can be time consuming to write.
• If you need to update, you need to modify the script file itself which might lead to even more
work verifying you didn’t break anything in the process.

• If you need to provide help in another language, comment-base help becomes a big obstacle.

And just so you know, PowerShell itself doesn’t provide help to you via comment-based help. The
big boys and girls at Microsoft create special external help that they ship with their modules. You
can, and should, do the same thing.

There’s been a feeling for some time that comment-based help was “easier,” both in terms of
writing, and because it doesn’t create external files that you also have to distribute. We say,
“rubbish,” at least now. As we’ll show you, it’s just as easy to create, and if you’re properly
building and distributing your modules then it’s no longer harder to distribute. And it’s
easier to keep updated.

External Help

Typical commands such as Get-Service have their help content stored in special type of XML file.
The file is written in an XML dialect known as MAML (Microsoft Assistance Markup Language).
Use Get-Command to find the name of the help file.

PS C:\> Get-Command Get-Service | Select HelpFile

HelpFile

Microsoft.PowerShell.Commands.Management.dll-Help.xml

Because help from Microsoft is localized, or written in your language, you’ll find this file in
$pshome\en-uswhere the subdirectory (en-us) is your localized language (for example, en-uk would
be English, United Kingdom). The XML file will contain help for all commands in the designated
module. Here’s a taste of what that looks like.

Writing Full Help 156

Get-Command Get-Service |

Select-Object @{Name="Path";Expression={Join-Path $pshome\en-us $_.helpfile}} |

Get-Content -Head 30

Which should show something like this:

<?xml version="1.0" encoding="utf-8"?>

<helpItems xmlns="http://msh" schema="maml">

<!-- Updatable Help Version 5.0.7.0 -->

<command:command xmlns:maml="http://schemas.microsoft.com/maml/2004/10"

xmlns:command="http://schemas.microsoft.com/ma

ml/dev/command/2004/10" xmlns:dev="http://schemas.microsoft.com/maml/dev/

2004/10" xmlns:MSHelp="http://msdn.microsoft.co

m/mshelp">

<command:details>

<command:name>Add-Computer</command:name>

<maml:description>

<maml:para>Add the local computer to a domain or workgroup.

</maml:para>

</maml:description>

<maml:copyright>

<maml:para />

</maml:copyright>

<command:verb>Add</command:verb>

<command:noun>Computer</command:noun>

<dev:version />

</command:details>

<maml:description>

<maml:para>The Add-Computer cmdlet adds the local computer or remote

computers to a domain or workgroup, or moves

them from one domain to another. It also creates a domain account if the

computer is added to the domain without an account.</maml:para>

<maml:para>You can use the parameters of this cmdlet to specify an

organizational unit (OU) and domain controller or to perform an unsecure

join.</maml:para>

<maml:para>To get the results of the command, use the Verbose and

PassThru parameters.</maml:para>

</maml:description>

<command:syntax>

<command:syntaxItem>

<maml:name>Add-Computer</maml:name>

<command:parameter required="true" variableLength="false"

globbing="false" pipelineInput="false" position="1" aliases="DN,Domain">

Writing Full Help 157

<maml:name>DomainName</maml:name>

<maml:description>

<maml:para>Specifies the domain to which the computers are

added. This parameter is required when adding the computers to a domain.

</maml:para>

</maml:description>

<command:parameterValue required="true" variableLength="false">

String</command:parameterValue>

If you are like us, you are thinking “Oh, dear God in heaven what have I gotten myself into?” This
is admittedly nasty-looking stuff and not for the faint of heart. In fact, a couple of years ago, we’d
launch into a description of all the GUI-based tools you can use to create that XML, simply by
laboriously copying and pasting your help content into said tool.

But don’t run away. Things got better.

Using Platyps

Microsoft has an open source project on GitHub called Platyps²³. The project’s goal is to make it
easier to generate external (i.e. MAML-based XML) help. This is accomplished through a set of
commands that analyze your module to generate a set of Markdown help files which in turn can
be used to generate external help. The Platyps commands are packaged as a module which you can
install from the PowerShell Gallery:

Install-Module platyps

We won’t go through every command in the module, but we will walk you through the process.

Like most open source projects, Platyps is in a constant state of development. There may be
new features added after this chapter was written or new bugs introduced. If you encounter
problems we encourage you to use the Issues section on project’s GitHub repository.

Generate Markdown

The first step in the process is to generate a set of Markdown documents. If you are not familiar
with it, Markdown is way to define what a document looks like, kind of like HTML, but a billion
times easier (in fact, this book’s source is written in Markdown). Don’t worry, you don’t need to
understand much about Markdown, and what you do need to know you’ll pick up quickly. One
of the added benefits with this intermediate step is that you end up with set of help files that are

²³https://github.com/powershell/platyps

https://github.com/powershell/platyps
https://github.com/powershell/platyps

Writing Full Help 158

formatted nicely for a web browser (Markdown documents also display great in GitHub, if you’re
hosting your code there). If you take a few minutes to look at the Markdown documents for Platyps
at https://github.com/PowerShell/platyPS/tree/master/docs²⁴, you’ll see what we mean. You could
setup a web site with the help documents for your tool. Anyway, this isn’t a chapter on Markdown
so let’s move on.

To get started, change location in PowerShell to the root folder of your module. We’re assuming this
directory has your .psm1 and .psd1 files. You will want to have a separate folder for your Markdown
documents. We typically use Docs. For the sake of our demonstration we’re going to use a copy of
a module Jeff wrote for storing PSCredential objects in a json file.

PS C:\PSJsonCredential> mkdir Docs

Directory: C:\PSJsonCredential

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 1/10/2020 5:09 PM Docs

If you think you will be creating language specific versions of help, then create a separate documents
folder for each language.

One of the great benefits of Platyps is that if you already have comment-based help, it will be used
to generate the initial Markdown file. Once you have created external help, then you can delete the
comment-based help from your files. Otherwise, there’s no need to pre-generate any comment-based
help. Let the Platyps commands do it for you.

The first cmdlet you’ll use is New-MarkdownHelp. This command will create a Markdown help
document for every command in your module. You should first load your module into your
PowerShell session. Because the folder we are working with is not in one of the locations specified
in $env:PSModulepath, we’ll explicitly import the module.

PS C:\PSJsonCredential> import-module .\PSJsonCredential

Now we can create new Markdown help.

²⁴https://github.com/PowerShell/platyPS/tree/master/docs

https://github.com/PowerShell/platyPS/tree/master/docs
https://github.com/PowerShell/platyPS/tree/master/docs

Writing Full Help 159

PS C:\PSJsonCredential> New-Markdownhelp -Module PSJsonCredential `

-OutputFolder .\Docs\ -withModulePage

Directory: C:\PSJsonCredential\Docs

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 1/10/2020 5:29 PM 2136 Export-PSCredentialToJson.md

-a---- 1/10/2020 5:29 PM 749 Get-PSCredentialFromJson.md

-a---- 1/10/2020 5:29 PM 755 Import-PSCredentialFromJson.md

-a---- 1/10/2020 5:29 PM 735 PSJsonCredential.md

As you can see we get a Markdown file for each command plus one for the module which we’ll get
to later in the chapter. If you had existing comment based help for a command you should see it
in the corresponding Markdown document. Edit as necessary. Otherwise the command generates a
Markdown version of same content you would see in comment-based help. All you need to do is fill
in the blanks by replacing sections like {{Fill in the Description}} with your content.

These files are text files so you can edit in Notepad, the PowerShell ISE or any text editor. You can
also find Markdown-specific tools like MarkdownPad 2 or use VS Code. We’ll open one of the files
in the latter. Note, though, that because the Markdown is typically so simplistic (help files don’t use
boldfacing or anything fancy), there’s no specific need to get a special Markdown editor if you don’t
already have one.

Visual Studio Code has an add-in that allows it to interpret and “render” Markdown
documents, making it a pretty slick Markdown editor. Press Ctrl+Shift+P for the command
palette and start typing “Markdown”. Select “Open Preview to the Side”

Writing Full Help 160

Markdown in VS Code

As you can see, all of the help sections are created for you. Fill in the blanks and you are ready to go.
Again, you don’t have to know much about Markdown syntax. But we’ll point out a couple of tips.

In Examples sections, any code between 3 back ticks will be formatted as code (giving you more
control over your example formatting than in comment-based help). You can see the result in the
preview. After the back tick-ed section of code, add any descriptive text for your example. If you
want to show output of your command, insert it inside the back-ticked code block.

In the Related Links section, add other commands enclosed in square brackets followed by a set of
parentheses:

[Get-Credential]()

[ConvertFrom-SecureString]()

[Import-PSCredentialFromJson](Import-PSCredentialFromJson.md)

[Get-PSCredentialFromJson](Get-PSCredentialFromJson.md)

[https://msdn.microsoft.com/en-us/library/system.management.automation.pscredential(\

v=vs.85).aspx]()

Inside the parentheses you can include a link. In the example, the link for the other commands is to
the Markdown file in the same folder. The Microsoft link obviously is to MSDN, which is where they

Writing Full Help 161

keep the online version of their docs (which are also generated from the original Markdown source).
If the text in the brackets is a URL, the Markdown document will automatically turn that into a live
link. The text inside the square brackets is what will ultimately be displayed in the external help.

Repeat this process for your remaining Markdown documents. By the way, if you had created
another set of documents for another language, you would of course translate them as necessary.

The Module Page

If you followed our example above, you should have also created a Markdown document for the
module that looks like this:

Module Name: PSJsonCredential

Module Guid: a582b122-80fd-4fcb-8c01-5520737530c9

Download Help Link: {{Please enter FwLink manually}}

Help Version: {{Please enter version of help manually (X.X.X.X) format}}

Locale: en-US

PSJsonCredential Module

Description

{{Manually Enter Description Here}}

PSJsonCredential Cmdlets

[Export-PSCredentialToJson](Export-PSCredentialToJson.md)

{{Manually Enter Export-PSCredentialToJson Description Here}}

[Get-PSCredentialFromJson](Get-PSCredentialFromJson.md)

{{Manually Enter Get-PSCredentialFromJson Description Here}}

[Import-PSCredentialFromJson](Import-PSCredentialFromJson.md)

{{Manually Enter Import-PSCredentialFromJson Description Here}}

As you can see there are places to fill in the blanks. If you intend to create downloadable help, which
we’ll also get to, you can specify the online location for the “Download Help Link”. As of the time
we’re writing this chapter, this link must be HTTP. Also, you should manually enter the help version.

Or you could use the parameters -HelpVersion and -FwLinkwith New-MarkdownHelp. You can create
the module page at any time but if you’ve already started editing your command markdown files,
run the command to a temporary folder then copy the module Markdown file to your Docs folder.

Writing Full Help 162

New-MarkdownHelp -Module PSJsonCredential -OutputFolder d:\temp `

-WithModulePage -HelpVersion 1.0.0.0 `

-fwlink http://mywebserver/help -force

Copy-Item D:\temp\PSJsonCredential.md -destination c:\psjsoncredential\docs

Here’s the updated module page:

Module Name: PSJsonCredential

Module Guid: a582b122-80fd-4fcb-8c01-5520737530c9

Download Help Link: http://mywebserver/help

Help Version: 1.0.0.0

Locale: en-US

PSJsonCredential Module

Description

{{Manually Enter Description Here}}

PSJsonCredential Cmdlets

[Export-PSCredentialToJson](Export-PSCredentialToJson.md)

{{Manually Enter Export-PSCredentialToJson Description Here}}

[Get-PSCredentialFromJson](Get-PSCredentialFromJson.md)

{{Manually Enter Get-PSCredentialFromJson Description Here}}

[Import-PSCredentialFromJson](Import-PSCredentialFromJson.md)

{{Manually Enter Import-PSCredentialFromJson Description Here}}

Create External Help from Markdown

Before we create the external help we’ll need a language specific folder. We know for our module
that this is going to be en-US so you can simply run:

mkdir en-us

Or if you prefer a more agnostic approach try this:

Writing Full Help 163

PS C:\PSJsonCredential> mkdir (Get-Culture).name

Directory: C:\PSJsonCredential

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 1/10/2020 5:13 PM en-US

If you need additional languages, create them as necessary.Then create new external help from your
Markdown files.

PS C:\PSJsonCredential> New-ExternalHelp -Path .\Docs\ `

-OutputPath .\en-US\ -Force

Directory: C:\PSJsonCredential\en-US

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 1/11/2020 8:53 AM 17370 PSJsonCredential-help.xml

Use the -Force parameter to overwrite previous versions of the xml file. You then test the help to
see what it will look like in PowerShell.

Get-HelpPreview -Path .\en-US\PSJsonCredential-help.xml

Writing Full Help 164

Help preview

Congratulations! At this point your module now has professional grade help documentation.

Note that should you need to revise your module and help, you can use Update-MarkdownHelp to add
command changes to your Markdown help without losing what you’ve created previously. When
finished updating the Markdown, create new external help as before with -Force.

Supporting Online Help

Most PowerShell commands out of the box have a feature where you can go online to get the most
current version of help.

help get-ciminstance -online

Did you know you can do the same thing? It is easier than you think, assuming you have already
created the online destination. In the module or script file where your code is defined you should
have a [Cmdletbinding()] attribute. Within this you will add a HelpUri settings specifying the
online location.

Writing Full Help 165

Function Get-PSCredentialFromJson {

[cmdletbinding(HelpUri="http://bit.ly/Get-PSCredentialJson")]

You don’t have to use a shortening service but it is handy should you need to redirect users to a
new site or page. This link can point to any web page that provides online help. You might put the
Markdown document for the command online and point the HelpUri to that.

While it isn’t required, you might also want to include the URI under the Related Links section of
your Markdown document.

RELATED LINKS

[http://bit.ly/Get-PScredentialJson]()

“About” Topics

Depending on your toolset, you may also want to include an About help topic. This file can offer
more insights and guidance on how to use the commands in your tool, cover general concepts, and so
on. Adding an about topic, especially for a complex toolset, is the sign of an experienced toolmaker.

You can use the Platyps module to create this as well.

PS C:\PSJsonCredential> New-MarkdownAboutHelp -OutputFolder .\Docs\ -AboutName PSJso\

nCredential

The -AboutName value typically will be the name of your module. This will create a file called about_-
<aboutname>.md which you can edit as you did before.

Writing Full Help 166

About Markdown in VSCode

You can delete the sections wrapped in code block that are notes so that the beginning of your
document looks like this.

PSJsonCredential

about_PSJsonCredential

SHORT DESCRIPTION

{{ Short Description Placeholder }}

LONG DESCRIPTION

{{ Long Description Placeholder }}

Insert your documentation as indicated. You can use the # character to indicate heading style. Each
additional # character indicates another level (e.g., # is for level 1, ## is for level 2, and so on; there’s
not a lot of point in using more than 2 levels). You can see this easily in VSCode or anything else
you use to preview your Markdown document.

When you are finished, run New-ExternalHelp, specifying the folder with your about Markdown
document. This will create the proper text file in your culture-specific folder.

Because this is a simple text file, you could create it by hand without any intermediate Mark-
down. Just be sure to follow the same heading outline. The name of your file must be about_-

<modulename>.help.txt, and place it in your language specific folder.

Writing Full Help 167

Making Your Help Updatable

The other professional feature in PowerShell help is the ability to download or update help from an
online source. You too can use this feature. The first thing you will need is a CAB file with your
updated help documentation. This file should include compressed versions of your help XML file
and any About topics. Fortunately the Platyps module includes a command, New-ExternalHelpCab
that will handle this task for you.

If you are interested, all of the sausage-making details can be found on MSDN at
https://msdn.microsoft.com/en-us/library/hh852754(v=vs.85).aspx²⁵.

In order to use New-ExternalHelpCab you need to have a finished module Markdown page. The
related files will be named based on information in the module page.

New-ExternalHelpCab -CabFilesFolder C:\PSJsonCredential\en-US\ `

-LandingPagePath C:\PSJsonCredential\Docs\PSJsonCredential.md `

-OutputFolder c:\psJsonCredential\help

The first parameter is the path to your external XML help files. The second parameter points to the
module Markdown page and the last parameter is the location where you’ll store your files. You
might get a bunch of XML-related output which you can ignore. The important part is that you
should get files like this:

PS C:\PSJsonCredential> dir .\help\ | select-object name

Name

PSJsonCredential_a582b122-80fd-4fcb-8c01-5520737530c9_en-US_helpcontent.cab

PSJsonCredential_a582b122-80fd-4fcb-8c01-5520737530c9_en-US_helpcontent.zip

PSJsonCredential_a582b122-80fd-4fcb-8c01-5520737530c9_HelpInfo.xml

The cab file is named using the pattern:

<modulename>_<module guid>_<culture>_helpcontent.cab

The HelpInfo XML file follows a similar pattern with the module name and guid. This XML file
contains the information that tells PowerShell where to download the cab file.

²⁵https://msdn.microsoft.com/en-us/library/hh852754(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/hh852754(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/hh852754(v=vs.85).aspx

Writing Full Help 168

<?xml version="1.0" encoding="utf-8"?>

<HelpInfo xmlns="http://schemas.microsoft.com/powershell/help/2010/05">

<HelpContentURI>http://mywebserver/help</HelpContentURI>

<SupportedUICultures>

<UICulture>

<UICultureName>en-US</UICultureName>

<UICultureVersion>1.0.0.1</UICultureVersion>

</UICulture>

</SupportedUICultures>

</HelpInfo>

Typically all of these files will go into the same location on a web server. The last piece of the puzzle
is to update the module manifest and set the HelpInfoUri to this location.

HelpInfo URI of this module

HelpInfoURI = 'http://mywebserver/help'

This location should not include the name of the XML file, only to its container. When you run
one of the updatable help cmdlets, PowerShell checks the module for the HelpInfoUri address,
connects to it and downloads the module specific HelpInfo.xml file, opens up the XML file to get
the HelpContentUri which points to the location of the cab file which it then downloads.

You can test this by running Save-Help. We recommend using -Verbose so you can verify the
locations.

We mentioned this earlier, but at the time of this writing you can only use HTTP locations.
HTTPS does not work.

Your Turn

Let’s see what you can do using the Platyps cmdlets to create professional-quality help documenta-
tion. There are commercial tools you can also use for creating comment-based help but the Platyps
module is freely available which we like.

Start Here

The first thing you’ll need to do is install the Platyps module. Take a few minutes to read cmdlet
help and examples. Then make sure you download the code for this book. Open up the code for
this chapter and you should see a module called TMSample. Your job is to create external help
documentation for this module.

Writing Full Help 169

Your Task

This chapter’s downloadable code sample contains a version of theGet-TMRemoteListeningConfiguration‘
command we’ve been working with plus a related command to get TrustedHosts information. You
don’t need to worry about running the commands. Change location to the root of the module and
follow the steps we’ve described in this chapter. To import the module, change to the appropriate
folder and run this command:

import-module .\TMSample.psd1

You don’t need to create an About topic, unless you are feeling like you need an extra challenge.
Once you create your help test it in PowerShell by re-importing the module and running help on
the module commands.

import-module .\TMSample.psd1 -force

help Get-TMRemoteListeningConfiguration -full

Our Take

After you’ve finished you can compare your help with ours in the Solution folder.

Let’s Review

Let’s wrap up with a few review questions.

1. What special language is external help written in?
2. What are some of the benefits of using external help?
3. What type of help document can you create to provide additional information about your tool?
4. If you want to support updatable help, what setting do you need to configure in your module

manifest?

Review Answers

1. External help is written in a MAML flavor of XML.
2. External help makes it easier to update help separately from your code. It also makes it easier

if you need localized help for different languages.
3. You can create an About topic which can have as much detail, background or additional

examples that you need.
4. HelpInfoUri.

Unit Testing Your Code
One of the most important things you can do with your code is test it. That should go without
saying. And you’ve probably already done some testing of your scripts and commands, which is
great - except you’ve probably done it manually. That presents two problems.

1. Manual testing is inconsistent. Sometimes, you’ll remember to test certain things, and other
times you’ll inevitably forget something.

2. It’s easy, with manual testing, to have a kind of confirmation bias. You’ll deliberately forgo
testing something because testing is tedious and you “just know” that thing works anyway.

Pester - which ships with Windows 10 and later, and is available for download from PowerShell
Gallery - is designed to help with those problems. It’s a unit testing framework that can help
automate your testing. You essentially tell it what to test, and then it can test the same things, every
time. If you realize that you’ve forgotten to test something, you can just add that test, and Pester
will handle it from then on.

This chapter is intended only to be a short introduction to Pester, and to cover its most basic
syntax. The full version of this book includes a Part dedicated to Pester and PowerShell unit
testing for those who’d like to dig deeper.

Starting Point

To get going, let’s create a short script to test. Note that this script, as presented right here (and in
the code samples as Step1.ps1), is not necessarily going to work perfectly. That’s kind of the point of
it - we haven’t tested it yet. This is the kind of “I just wrote it, and I hope it works” code that you
might end up with after you’ve been in the ISE for a bit, but haven’t hit “run” yet. Also note that
this script is deliberately simplistic. We want to focus on testing it, without making this chapter into
War and Peace. Also notice that this is a script which contains a function.

Unit Testing Your Code 171

function Get-FileContents {

[CmdletBinding()]

Param(

[Parameter(Mandatory=$True,

ValueFromPipeline=$True)]

[string[]]$Path

)

PROCESS {

foreach ($folder in $path) {

Write-Verbose "Path is $folder"

$segments = $folder -split "\\"

$last = $segments[-1]

Write-Verbose "Last path is $last"

$filename = Join-Path $folder $last

$filename += ".txt"

Get-Content $filename

} #foreach folder

} #process

}

If you’re looking at the sample code, you’ll also notice an empty “Get-FileContents.Test.ps1” file.
This is where we’ll start building our tests. The intent of Get-FileContents is to accept one or more
folder paths. For each, it will take the final folder name in the path, and assume that is also the
filename of a .txt file. So, if the path is c:\test\testing, then it will attempt to read the contents of
c:\test\testing\testing.txt.

Sketching Out the Test

Our Tests file looks like this right now:

$here = Split-Path -Parent $MyInvocation.MyCommand.Path

$sut = (Split-Path -Leaf $MyInvocation.MyCommand.Path) -replace '\.Tests\.', '.'

. "$here\$sut"

Describe "Get-FileContents" {

It "does something useful" {

$true | Should Be $false

}

}

This is boilerplate that was created by running Pester’s New-Fixture command. It actually created
our Get-FileContents.ps1 file, and populated it with the function declaration that we added our

Unit Testing Your Code 172

code to. You don’t have to use New-Fixture; you can quite easily use the above boilerplate to create
a Tests script for something that you’ve already written. This boilerplate contains a Describe block,
which is the main structure that a Pester tests live inside. It also contains a single It block as a
placeholder. Essentially, each It block represents a single test that we’re going to run against our
code.

Making Something to Test

Because our function is assembling file paths and attempting to read files, we need to give it
something to test. Pester provides a TESTDRIVE: for that purpose. It’s a special FileSystem PSDrive
that Pester automatically sets up when you run your test. Under the hood, it lives in your system’s
TEMP folder, and Pester takes care not only of setting it up, but also of deleting it when your tests are
complete. That makes TESTDRIVE: a kind of sandbox, so that you’re not polluting your real filesystem
with testing artifacts. So, inside our Describe block, we’re going to set up a few folders and files to
test against. We’re moving on to the Step2 folder in our sample code.

$here = Split-Path -Parent $MyInvocation.MyCommand.Path

$sut = (Split-Path -Leaf $MyInvocation.MyCommand.Path) -replace '\.Tests\.', '.'

. "$here\$sut"

Describe "Get-FileContents" {

MkDir TESTDRIVE:\Part1

MkDir TESTDRIVE\Part1\Part2

MkDir TESTDRIVE:\Part1\Part3

"sample" | Out-File TESTDRIVE:\Part1\Part2\Part2.txt

"sample" | Out-File TESTDRIVE:\Part1\Part3\Part3.txt

"sample" | Out-File TESTDRIVE:\Part1\Part1.txt

It "does something useful" {

$true | Should Be $false

}

}

Now we need to write our first test:

Unit Testing Your Code 173

$here = Split-Path -Parent $MyInvocation.MyCommand.Path

$sut = (Split-Path -Leaf $MyInvocation.MyCommand.Path) -replace '\.Tests\.', '.'

. "$here\$sut"

Describe "Get-FileContents" {

MkDir TESTDRIVE:\Part1

MkDir TESTDRIVE\Part1\Part2

MkDir TESTDRIVE:\Part1\Part3

"sample" | Out-File TESTDRIVE:\Part1\Part2\Part2.txt

"sample" | Out-File TESTDRIVE:\Part1\Part3\Part3.txt

"sample" | Out-File TESTDRIVE:\Part1\Part1.txt

It "reads part2.txt" {

Get-FileContents -Path TESTDRIVE:\Part1\Part2 |

Should Be "sample"

}

}

We’ve used the It block to provide a brief description of what’s happening. Then, we run our
command with a given parameter, and we test to see that the output is what we expected. Should
is another Pester command, and we’ve followed it with the Be operator, indicating that we expect
Get-FileContents to return the string “sample.”

Now we’ll go to a console window and use Invoke-Pester to run our test:

PS x:\unit-testing-your-code\step2> Invoke-Pester

Describing Get-FileContents

[+] reads part2.txt 87ms

Tests completed in 87ms

Passed: 1 Failed: 0 Skipped: 0 Pending: 0 Inconclusive: 0

We can see the output of our Describe block, and our It block as a + indicator, showing us that our
test passed.

Expanding the Test

Let’s add a couple more tests, now in Step3.

Unit Testing Your Code 174

$here = Split-Path -Parent $MyInvocation.MyCommand.Path

$sut = (Split-Path -Leaf $MyInvocation.MyCommand.Path) -replace '\.Tests\.', '.'

. "$here\$sut"

Describe "Get-FileContents" {

MkDir TESTDRIVE:\Part1

MkDir TESTDRIVE:\Part1\Part2

MkDir TESTDRIVE:\Part1\Part3

"sample" | Out-File TESTDRIVE:\Part1\Part2\Part2.txt

"sample" | Out-File TESTDRIVE:\Part1\Part3\Part3.txt

"sample" | Out-File TESTDRIVE:\Part1\Part1.txt

It "reads part2.txt" {

Get-FileContents -Path TESTDRIVE:\Part1\Part2 |

Should Be "sample"

}

It "reads part3.txt with fwd slashes" {

Get-FileContents -PATH TESTDRIVE:/Part1/Part3 |

Should Be "sample"

}

It "reads 3 files from the pipeline" {

$results = "TESTDRIVE:\part1",

"TESTDRIVE:\part1\part2",

"TESTDRIVE:\part1\part3" | Get-FileContents

$results.Count | Should Be 3

}

}

The first test is making sure that forward slashes work as well as backslashes, since in PowerShell a
path may legally contain either. The second test is feeding three paths, as strings, to our command,
and capturing the results in $results. We know that our test files contain one line apiece, so reading
three files should result in three objects in $results. We test that by piping $results.Count to Should,
and checking to see that the count is indeed 3.

Unit Testing Your Code 175

PS x:\unit-testing-your-code\step3> Invoke-Pester

Describing Get-FileContents

[+] reads part2.txt 82ms

Get-Content : Cannot find path

'TestDrive:\Part1\Part3\TESTDRIVE:\Part1\Part3.txt' because it does

not exist.

At \\vmware-host\shared folders\Documents\GitHub\ToolmakingBook\code\

PowerShell-Toolmaking\Chapters\unit-testing-your-code\step3\Get-FileC

ontents.ps1:17 char:13

+ Get-Content $filename

+ ~~~~~~~~~~~~~~~~~~~~~

+ CategoryInfo : ObjectNotFound: (TestDrive:\Part...Par

t1\Part3.txt:String) [Get-Content], ItemNotFoundException

+ FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Comm

ands.GetContentCommand

[-] reads part3.txt with fwd slashes 42ms

Expected: {sample}

But was: {}

22: Should Be "sample"

at <ScriptBlock>, \\vmware-host\shared folders\Documents\GitHub\Too

lmakingBook\code\PowerShell-Toolmaking\Chapters\unit-testing-your-code

\step3\Get-FileContents.Tests.ps1: line 21

[+] reads 3 files from the pipeline 61ms

Tests completed in 186ms

Passed: 2 Failed: 1 Skipped: 0 Pending: 0 Inconclusive: 0

Whoops. Our original first test passed, and our new third test passed, but the second test - with the
forward slashes, as the Pester output clearly shows, failed. The exception thrown by our function
indicates that the filename TestDrive:\Part1\Part3\TESTDRIVE:\Part1\Part3.txt couldn’t be
found, which makes sense, because that filename is crazy.

Returning to our code, here’s the likely problem:

$segments = $folder -split "\\"

We’re breaking the path up based on backslashes, which obviously doesn’t take forward slashes into
account. We’ll fix that by converting forward slashes as a preliminary step (this is in step4 in the
sample code):

Unit Testing Your Code 176

$folder = $folder -replace "/","\"

$segments = $folder -split "\\"

And we’ll try our test again:

PS x:\unit-testing-your-code\step4> Invoke-Pester

Describing Get-FileContents

[+] reads part2.txt 220ms

[+] reads part3.txt with fwd slashes 23ms

[+] reads 3 files from the pipeline 38ms

Tests completed in 283ms

Passed: 3 Failed: 0 Skipped: 0 Pending: 0 Inconclusive: 0

Fantastic! Now we’re assured of that particular bug never creeping up unnoticed again.

But Wait, There’s More

Pester has a lot more it can do. A key concept is mocking, which means sort of overriding an
existing command so that it outputs exactly what you want. For example, if your code relies on
the Get-ChildItem cmdlet, you might not feel compelled to actually test Get-ChildItem to make
sure it’s working. After all, you didn’t write that command, so if it’s broken, there’s not much you
can do anyway. Rather than setting up a directory structure to test against (as we did in our run-
through above), you could insteadmock Get-ChildItem, temporarily replacing it, in your tests, with
your own version that always returns a specific result. It’s a way of simplifying the testing process,
removing external dependencies, and focusing just on your code.We’re not going to go into mocking
here, as it gets to be a fairly complex topic, and would instead refer you to The Pester Book, which
we mentioned at the top of this chapter. You can also visit the Pester project²⁶ for the core Pester
documentation, which covers mocks, all the other things Should can do, and much more.

Your Turn

Let’s give you a shot at making a simple Pester test of your own. First, make sure you have Pester
installed by running Import-Module Pester and making sure no errors occur. If you don’t have it,
run Install-Module Pester to install the module from PowerShell Gallery.

The Pester module is periodically updated so even if you are runningWindows 10 youmight
want to run Find-Module Pester -repository PSGallery and compare the version to your
currently installed version. Upgrade the module as necessary.

²⁶https://pester.dev/docs/quick-start

https://pester.dev/docs/quick-start
https://pester.dev/docs/quick-start

Unit Testing Your Code 177

Start Here

The following function should work, and you’ll find it in the lab-start folder, in the downloadable
code samples for this chapter. The purpose of this very simple command is to verify that a service is
started and, if not, start it. It accepts one or more service names as strings, and returns the resulting
service. If you give it a non-existent service name, it should simply skip it without error.

function Set-ServiceStatus {

[CmdletBinding()]

Param(

[string[]]$ServiceName

)

foreach ($name in $ServiceName) {

$svc = Get-Service $name -EA SilentlyContinue

if ($svc) {

if ($svc.Status -ne 'Running') {

$svc | Start-Service

}

$svc | Get-Service

}

} #foreach

}

Your Task

Write a Pester test - we’ve provided you with the boilerplate in lab-start - that tests the following:

• A non-existent service name doesn’t throw an error
• An existing, started service remains started
• An existing, stopped service is now started

Our Take

Our results are in lab-results, and look like this:

<<Set-ServiceStatus.Tests.ps1²⁷

And our Pester run:

²⁷code/PowerShell-Toolmaking/Chapters/unit-testing-your-code/lab-results/Set-ServiceStatus.Tests.ps1

code/PowerShell-Toolmaking/Chapters/unit-testing-your-code/lab-results/Set-ServiceStatus.Tests.ps1
code/PowerShell-Toolmaking/Chapters/unit-testing-your-code/lab-results/Set-ServiceStatus.Tests.ps1

Unit Testing Your Code 178

PS X:\unit-testing-your-code\lab-results> Invoke-Pester

Status Name DisplayName

------ ---- -----------

Running bits Background Intelligent Transfer Ser...

Describing Set-ServiceStatus

[+] starts BITS 1.39s

[+] starts BITS, skips FAKE 542ms

[+] starts 2 services 1.09s

Tests completed in 3.02s

Passed: 3 Failed: 0 Skipped: 0 Pending: 0 Inconclusive: 0

Notice that our third It block contains two Should tests. This is fine, because both tests are needed
to ensure a correct result from the entire block. If either Should fails, the entire It is a fail. Of course,
there are a lot of other ways you could have gone about this, so don’t be alarmed if your test code
is different.

Let’s Review

Run through these review questions to make sure you picked up the key points from this chapter:

1. What does an It block represent?
2. Why might you have code other than It blocks within a Describe block?
3. What does Should do?

Review Answers

Here are our answers:

1. A single atomic pass/fail test of your code’s output or results.
2. Code that sets up conditions which your It blocks will test against.
3. Compares a given value to an expected value, generating a Pass/Fail result.

Extending Output Types
One of the coolest things about PowerShell is its Extensible Type System, or ETS. To understand
that, we’ll need to cover a bit of boring (but important) terminology, and then we can show you
why the ETS can be so awesome.

Understanding Types

In programming, a type is a description of what some programmatic structure looks like. For example,
in .NET Framework, the System.String type includes methods for manipulating strings, counting
the number of characters in the string, and so on. These are also referred to as the interface of the
type - the means by which you, as a programmer, interact with it. You’ll also see the word class,
which refers to the means by which a type is implemented - its internal state, and the actual code
that makes it work. But what’s important here is the type.

Another important concept in programming is the so-called contract that a type represents. Just
like a legal contract, a type’s interface - its properties, methods, and other members, are meant
to be carved in stone. The contract is there to help ensure forward compatibility. For example, if
you write code based on the ToShortDateString() method of the System.DateTime type, you want
to have some assurances that Microsoft won’t eliminate that method, thus breaking your code, in
some future release. That’s why you’ll sometimes see type names with a sort of version number,
like System.DateTime2 (although such a thing doesn’t really exist yet). That defines a new type, and
Microsoft could define it in any way they wanted, without breaking the contract for the original
System.DateTime. However, it’s generally OK to add things to a type’s interface. You haven’t written
any code which depends on System.Int32 not having a method called ToFormattedString(), so
Microsoft could add such a method without breaking your old code. Adding to an interface isn’t a
great practice, because you start to have to worry about things like, “which version of .NET can my
code run on, since some versions have such-and-such a member and others don’t,” and so it’s pretty
rare for framework developers, like Microsoft, to do that.

But PowerShell represents a slightly different situation.

The Extensible Type System

PowerShell’s ETS doesn’t permanently add anything to a type’s interface. Instead, it temporarily
extends the interface, and only does so within PowerShell. In a way, you can think of it as a thin
“wrapper” around the original interface, with a few things gently stuck on for just that moment.
Most of the time, the things PowerShell adds to a type are there solely for PowerShell’s use, or to
improve consistency in a systems administration context.

Extending Output Types 180

For example,Windows services are represented by the .NET Framework System.ServiceProcess.ServiceController
type. The service’s name is found in the ServiceName property of that type. That’s all well
and good, except that most .NET Framework types have a “Name” property. Because “Name”
is so widely used, PowerShell has certain features which default to using the “Name” property.
Services being such a commonly accessed administrative thing, it would be super-inconvenient
for those features to simply not work. And so the ETS adds an AliasProperty called Name to
System.ServiceProcess.ServiceController. The old ServiceName property is still there, so the
type’s contract is still valid, but Name also exists and contains the same data, so PowerShell’s various
features will work.

The ETS supports several different members that can be added to a type:

• ScriptMethod - actual PowerShell script that executes when the method is called
• ScriptProperty - actual PowerShell script that returns a property value when the property is
accessed

• AliasProperty - points to an existing property using an alternate name
• PropertySet - a defined list of properties that can be referenced with a single name
• NoteProperty - a property containing a static value

One PropertySet that you’ll often see isDefaultDisplayPropertySet. This is a list of property names
that PowerShell should display, by default, when displaying the object. If the list contains 5 or fewer
properties, PowerShell will always attempt to use a table-style display; for more properties, it will
use a list-style display.

Extending an Object

For this example, we’ll use a slight variation of the Get-TMComputerStatus function.

Start.ps1

Function Get-TMComputerStatus {

[cmdletbinding()]

Param(

[Parameter(ValueFromPipeline, Mandatory)]

[ValidateNotNullorEmpty()]

[Alias("CN", "Machine", "Name")]

[string[]]$Computername,

[string]$ErrorLog,

[switch]$ErrorAppend

)

BEGIN {

Extending Output Types 181

Write-Verbose "Starting $($myinvocation.mycommand)"

}

PROCESS {

foreach ($computer in $Computername) {

Write-Verbose "Querying $($computer.toUpper())"

Try {

$params = @{

Classname = "Win32_OperatingSystem"

Computername = $computer

ErrorAction = "Stop"

}

$OS = Get-CimInstance @params

$params.ClassName = "Win32_Processor"

$cpu = Get-CimInstance @params

$params.className = "Win32_logicalDisk"

$vol = Get-CimInstance @params -filter "DeviceID='c:'"

$OK = $True

}

Catch {

$OK = $False

$msg = "Failed to get system information from $computer. $($_.Exception.Mes\

sage)"

Write-Warning $msg

if ($ErrorLog) {

Write-Verbose "Logging errors to $ErrorLog. Append = $ErrorAppend"

"[$(Get-Date)] $msg" | Out-File -FilePath $ErrorLog -Append:$ErrorAppend

}

}

if ($OK) {

#only continue if successful

$obj = [pscustomobject]@{

Computername = $os.CSName

TotalMem = $os.TotalVisibleMemorySize

FreeMem = $os.FreePhysicalMemory

Processes = $os.NumberOfProcesses

PctFreeMem = ($os.FreePhysicalMemory/$os.TotalVisibleMemorySize)*100

Uptime = (Get-Date) - $os.lastBootUpTime

CPULoad = $cpu.LoadPercentage

Extending Output Types 182

PctFreeC = ($vol.FreeSpace/$vol.size)*100

}

$obj

} #if OK

} #foreach $computer

}

END {

Write-Verbose "Starting $($myinvocation.mycommand)"

}

} #Get-TMComputerStatus

Get-TMComputerStatus $env:computername

Specifically, we’re going to be messing with this code:

if ($OK) {

$obj = [pscustomobject]@{

Computername = $os.CSName

TotalMem = $os.TotalVisibleMemorySize

FreeMem = $os.FreePhysicalMemory

Processes = $os.NumberOfProcesses

PctFreeMem = ($os.FreePhysicalMemory/$os.TotalVisibleMemorySize)*100

Uptime = (Get-Date) - $os.lastBootUpTime

CPULoad = $cpu.LoadPercentage

PctFreeC = ($vol.FreeSpace/$vol.size)*100

}

$obj

} #if OK

We mentioned, way back, that we’re in the habit of storing our newly created objects in a
variable ($obj in this case), in case we ever want to modify the new object prior to outputting
it. Here’s where you’ll see that practice in use. Now, this gets a little complicated, because the
DefaultDisplayPropertySet is actually a child of a PSStandardMembers member set. Here we go:

Extending Output Types 183

create a default display property set

[string[]]$props = 'ComputerName','Uptime','Processes','PctFreeMem','PctFreeC'

$ddps = New-Object -TypeName System.Management.Automation.PSPropertySet `

DefaultDisplayPropertySet, $props

$pssm = [System.Management.Automation.PSMemberInfo[]]$ddps

$obj | Add-Member -MemberType MemberSet `

-Name PSStandardMembers `

-Value $pssm

$obj

You’ll find the complete thing in End.ps1 in the code download. For comparison, here’s the output
before:

Computername : BOVINE320

TotalMem : 33442624

FreeMem : 11314680

Processes : 311

PctFreeMem : 33.833110703275

Uptime : 1.04:09:16.9994278

CPULoad : 29

PctFreeC : 30.2393308009492

And the output after:

ComputerName Uptime PctFreeMem PctFreeC

------------ ------ ---------- --------

BOVINE320 1.04:10:36.8124820 35.4735920243579 30.2408134074583

Our DefaultDisplayPropertySet is what made this happen. The other properties remain and can
be seen by piping the command to Select-Object:

Get-TMComputerStatus $env:computername | select-object *

ScriptMethods, ScriptProperties, AliasProperties, and NoteProperties are all far easier to make -
simply pipe your object to Add-Member, specify the -MemberType, give it a -Name, and a -Value. For
ScriptMethod and ScriptProperty, the value is a {script block}, meaning PowerShell code inside curly
brackets.

In the download folder you will find another copy of our function called using-add-member.ps1. In
this folder we’ve added a few more object members.

Extending Output Types 184

#adding an alias

$obj | Add-Member -MemberType AliasProperty `

-Name Memory `

-Value TotalMem

#adding a script method

$obj | Add-Member -MemberType ScriptMethod `

-Name Ping `

-Value { Test-NetConnection $this.computername }

#adding a script property

$obj | Add-Member -MemberType ScriptProperty `

-Name TopProcesses `

-Value {

Get-Process -ComputerName $this.computername |

Sort-Object -Property WorkingSet -Descending |

Select-Object -first 5

}

$obj

Now when we run the function for the local host we can see these additions with Get-Member.

TypeName: System.Management.Automation.PSCustomObject

Name MemberType Definition

---- ---------- ----------

Memory AliasProperty Memory = TotalMem

PSStandardMembers MemberSet PSStandardMembers {DefaultDisplayPropertySet}

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string ToString()

Computername NoteProperty string Computername=BOVINE320

CPULoad NoteProperty uint16 CPULoad=7

FreeMem NoteProperty uint64 FreeMem=11732260

PctFreeC NoteProperty double PctFreeC=30.2406928049765

PctFreeMem NoteProperty double PctFreeMem=35.0817567425331

Processes NoteProperty uint32 Processes=305

TotalMem NoteProperty uint64 TotalMem=33442624

Uptime NoteProperty timespan Uptime=1.04:14:28.8250846

Mem PropertySet Mem {Computername, TotalMem, FreeMem, PctFreeMem}

Ping ScriptMethod System.Object Ping();

TopProcesses ScriptProperty System.Object TopProcesses {get= ...

Extending Output Types 185

If we save the command output to a variable we can see these new object properties and methods.

The alias is an alternate property name:

PS C:\> $o = Get-TMComputerStatus $env:computername

PS C:\> $o.memory

33442624

PS C:\> $o.TotalMem

33442624

The property set is a way of predefining a group of properties so that instead of running this:

PS C:\> $o | Select-object Computername,TotalMem,FreeMem,PctFreeMem

Computername TotalMem FreeMem PctFreeMem

------------ -------- ------- ----------

BOVINE320 33442624 12348324 36.9239088416029

We can run this:

PS C:\> $o | Select-object Mem

Computername TotalMem FreeMem PctFreeMem

------------ -------- ------- ----------

BOVINE320 33442624 12348324 36.9239088416029

The script property uses PowerShell to get a value. The code is invoked anytime you access the
property. In our function, we created a property that reflects the top 5 processes.

PS C:\> $o.TopProcesses

$o.TopProcesses

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName

------- ------ ----- ----- ------ -- -- -----------

0 0 4416 1700048 237.52 2480 0 Memory Compression

283 46 1857712 1350032 3,738.92 29556 1 TabNine

1570 217 978384 842932 2,322.17 22960 1 firefox

1467 86 612828 440168 427.52 5952 1 powershell_ise

0 0 1218936 426460 573.06 14504 0 vmmem

Finally the script method can be invoked to do something.

Extending Output Types 186

PS C:\> $o.ping()

ComputerName : BOVINE320

RemoteAddress : fe80::ddae:8ade:c3ff:e584%19

InterfaceAlias : vEthernet (LabNet)

SourceAddress : fe80::ddae:8ade:c3ff:e584%19

PingSucceeded : True

PingReplyDetails (RTT) : 0 ms

Using Update-TypeData

There’s nothing wrong with using Add-Member for simple extensions. It is certainly much easier than
the traditional way of using complicated XML files, which we’re going to spare you. But, we want
to mention another cmdlet that you might also consider, especially if you are building a toolset that
will be working with custom objects.

You can use Update-TypeData to achieve many of the same results that we showed with Add-Member.
The primary difference is that you will need to explicitly specify a type name. Open up the
downloaded files for this chapter and you’ll find the beginnings of a module file (Info.psm1). This
module has the same function, with modifications.

The most important change is that we have inserted a custom type name into the output object.

$obj.psobject.TypeNames.Insert(0,"TMComputerStatus")

The command tells PowerShell to insert ‘TMComputerStatus’ as the primary type name. If you
create an object with this function and pipe it to Get-Member you’ll see this as the typename instead
of PSCustomObject.

We will use this name to update the type. We’ve removed most of the Add-Member commands from
the function and used Update-TypeData later in the psm1 file.

$myType = "myMachineInfo"

Update-TypeData -TypeName $myType -DefaultDisplayPropertySet 'ComputerName',

'OSVersion','Cores','RAM' -force

Update-TypeData -TypeName $myType -MemberType AliasProperty -MemberName Free `

-Value SysDriveFreeSpace -force

Update-TypeData -TypeName $myType -MemberType ScriptMethod -MemberName Ping `

-Value {

Extending Output Types 187

Test-NetConnection $this.computername

} -force

Update-TypeData -TypeName $myType -MemberType ScriptProperty -MemberName `

TopProcesses -Value {

Get-Process -ComputerName $this.computername |

Sort-Object -Property WorkingSet -Descending |

Select-Object -first 5

} -force

We use the -force parameter to overwrite any previous updates to this typename. The only type
extension we left in the function with Add-Member was the PropertySet. There appears to a bug with
Update-TypeData and this property extension. When working in the PowerShell ISE it looks like it
should work, but when PowerShell goes to execute the command it errors.

One advantage to this approach is that the type extension is now separate from the function. We
can now extend or modify the object type without having to edit the function and run the risk of
screwing something up. Technically we could also dynamically extend the type after the fact for any
objects previously created.

Define a PSTypename

You will find plenty of code samples in the wild that use the Insert() method which is why we
showed it. However when defining a custom object, you can also define the type name as part of
the property hashtable.

$obj = [pscustomobject]@{

PSTypeName = "TMComputerStatus"

Computername = $os.CSName

TotalMem = $os.TotalVisibleMemorySize

FreeMem = $os.FreePhysicalMemory

Processes = $os.NumberOfProcesses

PctFreeMem = ($os.FreePhysicalMemory/$os.TotalVisibleMemorySize)*100

Uptime = (Get-Date) - $os.lastBootUpTime

CPULoad = $cpu.LoadPercentage

PctFreeC = ($vol.FreeSpace/$vol.size)*100

}

Write-Output $obj

With this approach you don’t need to insert anything and all of your type extension commands
using Update-TypeData can be handled elsewhere in your module.

You might also want to take a look at Jeff’s PSTypeExtensionTools²⁸ module.

²⁸https://github.com/jdhitsolutions/PSTypeExtensionTools

https://github.com/jdhitsolutions/PSTypeExtensionTools
https://github.com/jdhitsolutions/PSTypeExtensionTools

Extending Output Types 188

Next Steps

Because this was a pretty straightforward exercise, we’re not going to include a formal hands-on
exercise. We encourage you to try out the sample code. Any code you need to add to your work can
be simple cut-and-paste job of what we did. In fact, encourage you to try this out in one of your
own functions that produce a custom object.

Advanced Debugging
You should already be familiar with the main debugging mechanisms in PowerShell. Those will get
you through a lot of different scenarios, but there will definitely be times when you need a little
more power in your debugging toolset. With that in mind, we’ll build on those basic debugging
concepts and tools.

Getting Fancy with Breakpoints

The most basic use of breakpoints is their “interactive” mode. That is, when we set a breakpoint on
a line number, and script execution reached that line number, the script stops and we drop into the
debug console. Again sticking with basic usage, you might only set breakpoints on particular line
numbers, which is a pretty common need. But we can do so much more!

Types of Breakpoints

PowerShell actually supports different breakpoint triggers:

• Breaking on a given line number, or on a line and a given column number. The latter lets you
break at a specific point in a long, multi-command pipeline, for example. You engage these
using the -Line and -Column parameters of Set-PSBreakpoint, and can also manage these
visually in the ISE.

• Breaking on a given command. This triggers the breakpoint whenever the specified command
is about to run. This is really useful for long scripts where you need to stop before, say, each
use of Write-Output, but you don’t want to manually create breakpoints on each line. Use the
-Command parameter to create these.

• Breaking on a variable. This triggers the breakpoint when a given variable is read, changed
(written), or either of those. Specify the variable name with -Variable (keeping in mind that
you only specify the name, not the $), and use -Mode to specify Read, Write, or ReadWrite.

Variable breakpoints in particular are like magic, and they’re similar to “watches” that some
integrated development environments (like Visual Studio) let you create in “real” programming
languages. Remember, script logic errors are nearly always caused by a variable (or property value)
containing something other than you expected, and so breaking when a variable changes is a perfect
time to validate your assumptions about what the variable contains.

Advanced Debugging 190

Breakpoint Actions

When triggered, a breakpoint’s default action is to dump you into the DBG\> debug console. But you
can always specify a separate -Action, by passing a script block to the parameter. That script block
can run any legal PowerShell code, and specifying an action disables the dump-to-debug-console
behavior. You might write action code that logs some message to a file, or even dumps the entire
VARIABLE: drive to a text file so that you can analyze it later. This is a great tool for unattended
debugging, such aswith scripts that work fine interactively, but that fail when run as a scheduled task.
By having automated breakpoints, you can gather evidence about the actual execution environment,
even though you can’t “personally” be there while the code is running.

For example:

Set-PSBreakpoint -Script .\Mine.ps1

-Variable data

-Mode ReadWrite

-Action { Dir VARIABLE: | Out-File .\vars.txt -Append }

This would dump the entire VARIABLE: drive each time $datawas read or changed. After the script
ran, you could analyze that file while walking through your code, and you’d know, at each step,
what each variable contained.

There are a couple of rules about action scripts:

• The script block will run each time the breakpoint is triggered.
• If you run the break keyword in the script, you’ll stop execution of your code.
• If you run continue in the script, the action code will exit and your script will resume execution.

Getting Strict

The Set-StrictMode command isn’t a debugging technique per se; it’s actually designed to help
prevent certain types of bugs. Consider this command (we’ll truncate the output to save space, but
it’s the columns to focus on):

Advanced Debugging 191

PS C:\> get-service | select name,satus

Name satus

---- -----

AJRouter

ALG

AppIDSvc

Appinfo

AppMgmt

AppReadiness

AppVClient

You see the problem, right? We misspelled “status,” and got a blank “satus” column. Typos like this
cause problems all the time. Here’s another:

PS C:\> $a = 3

PS C:\> $b = 4

PS C:\> $a + $v

3

Clearly, not what we intended, but we hit “v” because it’s next to “b” on the keyboard. Oops. The
point is that, in a script, PowerShell’s casual treatment of non-existent variables and property names
can cause difficult-to-diagnose problems.

PS C:\> Set-StrictMode -Version Latest

PS C:\> $a = 3

PS C:\> $b = 4

PS C:\> $a + $v

The variable '$v' cannot be retrieved because it has not been set.

At line:1 char:6

+ $a + $v

+ ~~

+ CategoryInfo : InvalidOperation: (v:String) [], Runti

meException

+ FullyQualifiedErrorId : VariableIsUndefined

You should take the time to read full help and examples for Set-StrictMode. The best way
to avoid the most problems is to set the -version parameter to “Latest”

This is much more desirable behavior. Now, instead of blithely accepting $v and treating it as if it
contains zero, the shell is telling us that the variable hasn’t been created.

Advanced Debugging 192

PS C:\> get-service | select name,satus

Name satus

---- -----

AJRouter

ALG

AppIDSvc

Appinfo

AppMgmt

AppReadiness

Sadly, strict mode doesn’t affect the Select-Object command the same way. But it will throw an
error in a script that:

• Tries to access an uninitialized variable
• Tries to access a property that doesn’t exist (commands like Select-Object get a pass for a
couple of somewhat arcane reasons)

• Tries to call a function using method-like syntax such as Get-Service('something')
• Tries to create a nameless variable (${})

You can throw the strict mode setting right at the top of your functions to take advantage of these
extra protections.

Getting Remote

Finally, PowerShell 4.0 and later supports remote debugging. This is useful when a script is running
on a remote machine, which may also have modules and other dependencies that your local
computer does not. Remote debugging makes it easier to debug a script in its “natural habitat,” so to
speak, since things like property values, OS features, and so on will differ from machine to machine.
Whenever possible, we try to debug a script when it’s running on the same machine we plan to run it
on in production. Remote debugging aids in this tremendously, but it does require PowerShell v4 or
later on both ends. The machine the script will run on must also be configured to accept Remoting
sessions.

Really, you’re just going to be using the standard -PSBreakpoint commands, but you’ll work with
them in a remote session that’s connected to the machine where your script will run. Also note that
this is designed (presently) to work in the PowerShell console, not the ISE.

1. Start by opening a remote session to the machine in question, by using Enter-PSSession.
2. Create breakpoints as usual by running Set-PSBreakpoint.
3. Run your script.

Advanced Debugging 193

4. When you trigger a breakpoint, you’ll have the usual DBG\> debugging console prompt.

In a remote debugging prompt, you’ll have a new set of special commands:

• The Help command (?) lists all of these commands
• The List command will list your script’s source
• The Show Call Stack (‘k’) command will show the current call stack
• The Continue, StepInto, and StepOver commands control debug execution

PowerShell 4.0 (and later) also supports disconnected sessions, and these are permitted for remote
debugging. With this feature, you can disconnect a session that’s in the DBG\> debugging prompt,
and then later reconnect and resume debugging. You may actually run into this feature accidentally,
as sometimes triggering a breakpoint will interrupt the remote session connection, forcing you to
use Enter-PSSession or Connect-PSSession to reconnect.

Microsoft has a great blog article²⁹ with more examples on remote debugging.

Let’s Review

We don’t really have a challenge for you to try but we do want to make sure you picked up on a few
key points.

1. What are the different breakpoint triggers?
2. What cmdlet can you use to help you avoid or minimize problems with something as simple

as mistyping a variable name?

Review Answers

Did you come up with these answers?

1. Line number, command, or variable
2. Set-StrictMode

²⁹https://blogs.technet.microsoft.com/heyscriptingguy/2013/11/17/remote-script-debugging-in-windows-powershell/

https://blogs.technet.microsoft.com/heyscriptingguy/2013/11/17/remote-script-debugging-in-windows-powershell/
https://blogs.technet.microsoft.com/heyscriptingguy/2013/11/17/remote-script-debugging-in-windows-powershell/

Command Tracing
This is another advanced debugging technique that we’ve used time and time again. It’s absolutely
invaluable for figuring out what PowerShell is doing with all the input you pass to a given command,
whether via parameters or via the pipeline. As an example, we’ll run through one of PowerShell’s
native commands, but this is just as useful for debugging your own commands.

Getting in PowerShell’s Brain

Consider this command:

"g*","s*" | Get-Alias

It’s our hope that the array of strings, g* and s*, will be connected to the -Name parameter of
Get-Alias. But we want to see it happening. We want inside PowerShell’s brain, to see it making
that connection. Fortunately, PowerShell includes an X-Ray like cmdlet called Trace-Command. With
this command we can look inside PowerShell and see what is happening.

trace-command -expression {"g*","s*" | Get-Alias } -name parameterbinding -pshost

We’re telling PowerShell to trace the same command which we are defining inside a scriptblock.
We’ve asked it specifically to show us parameter binding information in the host window; review
the command’s help for other things it can display. If you try this command, (and why wouldn’t
you), this generates a truly horrifying amount of output, so we’ll run through the relevant chunks
with you.

First up, we see that PowerShell always binds named parameters first, followed by positional ones.
We didn’t technically use either; we relied on pipeline input. PowerShell then checks to make sure
all of the command’s mandatory parameters have received input:

ParameterBinding Information: 0 : BIND NAMED cmd line args [Get-Alias]

ParameterBinding Information: 0 : BIND POSITIONAL cmd line args [Get-Alias]

ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on cmdlet [Get-Alias]

This teaches us something: named and positional parameters will override pipeline input, because
they happen before pipeline input is processed.

Next, PowerShell calls the BEGIN block of every command in the pipeline. This is how commands
can “bootstrap” themselves, and it teaches us that BEGIN blocks won’t have access to piped-in input
values, because the pipeline hasn’t been engaged yet.

Command Tracing 195

ParameterBinding Information: 0 : CALLING BeginProcessing

Next, the shell starts working on the pipeline. It sees that the pipeline contains objects of the String
type, and it looks for a parameter that can accept that type, ByValue, from the pipeline.

ParameterBinding Information: 0 : BIND PIPELINE object to parameters: [Get-Alias]

ParameterBinding Information: 0 : PIPELINE object TYPE = [System.String]

ParameterBinding Information: 0 : RESTORING pipeline parameter's original values

The shell finds the -Name parameter will meet the needs without converting, or coercing, the data
into another type, and so it attaches, or binds, the first input value, g*, to the -Name parameter. This
behavior confirms that only one value at a time is sent through the pipeline.

ParameterBinding Information: 0 : Parameter [Name] PIPELINE INPUT ValueFromPipel\

ine NO COERCION

ParameterBinding Information: 0 : BIND arg [g*] to parameter [Name]

We see that -Name expects an array of values, but the pipeline only contains one value. So PowerShell
creates a single-item array, and then attaches it to the parameter.

ParameterBinding Information: 0 : Binding collection parameter Name: argumen\

t type [String], parameter type [System.String[]], collection type Array, element ty\

pe [System.String], no coerceElementType

ParameterBinding Information: 0 : Creating array with element type [System.S\

tring] and 1 elements

ParameterBinding Information: 0 : Argument type String is not IList, treatin\

g this as scalar

ParameterBinding Information: 0 : Adding scalar element of type String to ar\

ray position 0

PowerShell then runs the command’s parameter validation attributes, if any, and we see that the
value binding was successful.

ParameterBinding Information: 0 : Executing VALIDATION metadata: [System.Man\

agement.Automation.ValidateNotNullOrEmptyAttribute]

ParameterBinding Information: 0 : BIND arg [System.String[]] to param [Name]\

SUCCESSFUL

ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on cmdlet [Get-Alias]

There’s another value in the pipeline, so the process repeats:

Command Tracing 196

ParameterBinding Information: 0 : BIND PIPELINE object to parameters: [Get-Alias]

ParameterBinding Information: 0 : PIPELINE object TYPE = [System.String]

ParameterBinding Information: 0 : RESTORING pipeline parameter's original values

ParameterBinding Information: 0 : Parameter [Name] PIPELINE INPUT ValueFromPipel\

ine NO COERCION

ParameterBinding Information: 0 : BIND arg [s*] to parameter [Name]

ParameterBinding Information: 0 : Binding collection parameter Name: argumen\

t type [String], parameter type [System.String[]], collection type Array, element ty\

pe [System.String], no coerceElementType

ParameterBinding Information: 0 : Creating array with element type [System.S\

tring] and 1 elements

ParameterBinding Information: 0 : Argument type String is not IList, treatin\

g this as scalar

ParameterBinding Information: 0 : Adding scalar element of type String to ar\

ray position 0

ParameterBinding Information: 0 : Executing VALIDATION metadata: [System.Man\

agement.Automation.ValidateNotNullOrEmptyAttribute]

ParameterBinding Information: 0 : BIND arg [System.String[]] to param [Name]\

SUCCESSFUL

Trace-Command can return a wealth of information based on type of information you are looking for.
This is what the -Name parameter is providing. Run Get-TraceSource to see all of your options. Or
to get the complete picture, run a trace command like this:

trace-command -expression {"g*","s*" | Get-Alias } -name * -pshost

The Debug output should show you everything PowerShell is doing when processing your expres-
sion. If you prefer to save the trace information to a file use the -FilePath parameter.

trace-command -expression {"g*","s*" | Get-Alias } -name * -filepath trace.txt

Command tracing is a useful tool for seeing exactly how PowerShell is dealing with parameter input,
and has helped us out of many sticky situations by helping us better understand what’s happening
in PowerShell’s head.

Analyzing Your Script
One of the neater projects that have come out of Microsoft is the PowerShell Script Analyzer. This
is available as PSScriptAnalyzer in PowerShell Gallery (meaning you can use Install-Module to
install it). It’s a static code analyzer, which means it doesn’t run your code; it merely gazes upon
your code and offers suggestions related to best practices, coding style, and so on. It can analyze
code inside .ps1 and .psm1 files.

Performing a Basic Analysis

We’re going to start with the code from our “Extending Output Types” chapter, but we’ll provide a
standalone copy as Script.ps1 in the downloadable code for this chapter (just as a convenience, if
you’re following along).

The PowerShell Script Analyzer consists of a set of rules. You can run an analysis using only specific
rules, or excluding certain rules. We’ll run against the full rule set.

You can also create custom rules, and there are a few community projects that define new
Script Analyzer rules for various purposes.

PS C:\analyzing-your-script> Invoke-ScriptAnalyzer .\Script.ps1

PS C:\analyzing-your-script>

WHAAAT? That’s awesome! “No news is good news,” meaning the analysis didn’t find anything it
felt it needed to recommend. WE ARE AMAZING CODERZ. Well… sort of. You see, the analysis is
only as good as the rules it supports. Let’s do this: we’ll add a $Password parameter to our script.

[cmdletbinding()]

Param(

[Parameter(ValueFromPipeline, Mandatory)]

[ValidateNotNullorEmpty()]

[Alias("CN", "Machine", "Name")]

[string[]]$Computername,

[string]$ErrorLog,

[switch]$ErrorAppend,

[string]$Password

)

And try again:

Analyzing Your Script 198

PS C:\analyzing-your-script> Invoke-ScriptAnalyzer .\Script.ps1 |

Select -expand message

Parameter '$Password' should use SecureString, otherwise this will exp

ose sensitive information. See ConvertTo-SecureString for more informa

tion.

The Analyzer has a rule about parameters named $Password which accept a [string], because that
implies you’re passing passwords in clear text, which is obviously a Bad Idea. We triggered that rule,
so you can see what it does. The Analyzer presently comes with just under 50 rules. You can see
them all by running Get-ScriptAnalyzerRule.

Analyzing the Analysis

A thing to remember is that the Analyzer can’t catch every possible bad thing you might do in your
code. It’s largely just matching regular expressions against known problem conditions, and alerting
you to them. But it’s a good “first pass” on making sure you haven’t egregiously broken any really
obvious best practices.

The rule collection has been cultivated over the years by a group of PowerShell subject
matter experts and MVPs, many of them drawn from community best practices. However,
you do not need to treat them as gospel. We’ve encountered warnings that don’t take into
account what the rest of the command might be doing or how the command will be used.
But for beginners, the rules do make a good sanity check.

If you plan on publishing your project to the PowerShell Gallery, you will want to make sure you
are compliant with the script analyzer. Microsoft will run your submission through the analyzer
automatically and kick it back to you if there are problems.

If you are interested in learning more about this tool, head over to the project’s GitHub repository
at https://github.com/PowerShell/PSScriptAnalyzer³⁰.

Your Turn

Let’s see how Script Analyzer can help improve your code.

Start Here

In the downloadable sample code for this chapter, we’ve provided you with a Start.ps1 script. Load
it up in the ISE and take a look at it.

³⁰https://github.com/PowerShell/PSScriptAnalyzer

https://github.com/PowerShell/PSScriptAnalyzer
https://github.com/PowerShell/PSScriptAnalyzer

Analyzing Your Script 199

Start.ps1

function Query-Disks {

[CmdletBinding(SupportsShouldProcess)]

Param(

[Parameter(Mandatory)]

[string[]]$ComputerName = 'localhost'

)

foreach ($comp in $computername) {

$logfile = "errors.txt"

write-host "Trying $comp"

try {

gcim win32_logicaldisk -comp $comp -ea stop

} catch {

}}

}

Your Task

Use Script Analyzer to analyze the script. Improve the script based on the Script Analyzer’s feedback.

Our Take

We’ve presented a possible solution in Improved.ps1, located in the same folder as the script you
analyzed. This addresses all of Script Analyzer’s concerns - try running an analysis and see what
you get.

Analyzing Start.ps1, we had the following complaints:

• Mandatory Parameter ‘ComputerName’ is initialized in the Param block. To fix a violation of
this rule, please leave it unintialized.

• File ‘Start.ps1’ uses Write-Host. Avoid using Write-Host because it might not work in all hosts,
does not work when there is no host, and (prior to PS 5.0) cannot be suppressed, captured, or
redirected. Instead, use Write-Output, Write-Verbose, or Write-Information.

• The cmdlet ‘Query-Disks’ uses an unapproved verb.
• The variable ‘logfile’ is assigned but never used.
• ‘Query-Disks’ has the ShouldProcess attribute but does not call ShouldProcess/ShouldCon-
tinue.

• The cmdlet ‘Query-Disks’ uses a plural noun. A singular noun should be used instead.
• ‘gwmi’ is an alias of ‘Get-WmiObject’. Alias can introduce possible problems and make scripts
hard to maintain. Please consider changing alias to its full content.

Analyzing Your Script 200

• Empty catch block is used. Please use Write-Error or throw statements in catch blocks.

Here’s what we did to address them:

• We removed the default value for -ComputerName. It would never be used anyway, as the
parameter was marked as mandatory.

• We switched Write-Host to Write-Verbose, thus saving a puppy.
• We changed our verb to the approved Get verb, and our noun to a singular.
• We added error logging in the Catch block.
• We got rid of Get-WmiObject, resolving the alias complaint. The next complaint would have
been to not use the deprecated WMI commands, so we switched to Get-CimInstance.

• We removed the SupportsShouldProcess attribute. We see a lot of people throw that in when
it isn’t needed, and in this case, it isn’t.

We also cleaned up the indentation, which Analyzer should honestly have complained about, but
didn’t, when we ran it.

Result.ps1

function Get-Disk {

[CmdletBinding()]

Param(

[Parameter(Mandatory)]

[string[]]$ComputerName

)

foreach ($comp in $computername) {

$logfile = "errors.txt"

Write-Verbose "Trying $comp"

try {

Get-CimInstance -ClassName win32_logicaldisk -ComputerName $comp -ea stop

} catch {

$comp | Out-File $logfile -Append

}

}

}

Once huge advantage and reason to use VS Code as your primary development tool is that
the Script Analyzer is built in. You get real time scanning as you write you code. And if there
is an update to rules, you should get them in the next VS Code update.

Controlling Your Source
We’re going to go out on a limb and say that if are spending time and energy in creating a PowerShell-
based tool, you would hate to see all that work go to waste or get lost. Yet for many IT Pros that is
the exactly the risk they are taking every day. The real reason is that for the longest time IT Pros,
and often their managers, treated scripting as an ad-hoc and throwaway activity. We cranked out a
script to solve an immediate problem then went on to the next fire.

Recently though, IT Pros and their more enlightened managers, have come to understand that
scripting and automation are key components to how they run their organization. For groupsmoving
to a DevOps paradigm this is even more important. Even if you aren’t moving to the DevOps model,
you need to begin thinking like a developer. The effort you are investing in your module or toolset
is just as important as a developer in your company working on a new application.

This means you need to place equal importance on documentation, testing and source control which
is the focal point of this chapter.

The Process

When we talk about source control the name should say it all. You need to have a mechanism to
control the source code of your PowerShell tool. It doesn’t matter if you are writing a PowerShell
function in Notepad or developing a full-blown module in Visual Studio Code. It also doesn’t matter
if you are developing PowerShell solutions in a collaborative environment, or working alone. You
need to protect yourself with source control.

The important thing to understand is that source control is a model. There are many, many ways to
implement it (we’ll review a few in a moment) but all solutions incorporate these concepts

• Check in
• Check out
• Version history
• Rollback

In short you write some code and check it in to a source control system. Later you, or a teammate,
can check out the code for further work. The changed code is put back into source control, often
with some description about what changed and why. This versioning information is what makes
it possible to go back to earlier versions. Again, this description is merely intended as a generic
overview.

Controlling Your Source 202

Tools and Technologies

Source control tools generally fall into two categories, centralized and de-centralized. A centralized
system tends to have a central server or repository that everyone connects to get and put code. Often
in a centralized system only one person can work on a given piece of code at once. No one else can
make any changes while the code is checked out. Visual Source Safe is a good example.

In a decentralized system, everyone has a copy and anyone can make any changes they want. Of
course, there needs to be a mechanism to synchronize everyone’s code and handle conflicts. Git is
perhaps the best well known example of this model.

We’re not going to tell youwhat to use. Your companymay already have a source control mechanism
in place that you will want, or have, to use. But you should use something. Between the two of use
we’ve used a variety of source control platforms over the years. Yes, there will be a bit of a learning
curve but accept it as the cost of being a professional PowerShell toolmaker. The point is, if you are
not using some sort of source control today, you should be.

Here are a source control solutions you might consider. Obviously there are many on the market
and we aren’t recommending anything.

git and GitHub

Without a doubt one of the most popular source control systems today is git. This is an open source
product originally developed to manage the source code for the Linux kernel so you can imagine
how robust this has to be. In the git model, you have a repository of all related files for your project.
The repository itself is handled with some complex file system voodoo which you don’t have to
worry too much about.

In a git environment you commit your changed files to the repository. Other people can clone your
repository which gives them a working copy. They can then fetch and pull any of your changes.
Otherwise, changes they make locally are committed to their repository which can be pushed to the
remote repository. Depending on permissions, they might send you a pull request which basically
says, “I made some changes you might like to have so pull them from my repository.”

For many IT Pros, this collaboration is implemented through the GitHub web site. This free service
lets you set up your own repositories which other people can clone or fork. It is entirely possible to
manage everything from the web, but most people will have a Github master repository and a local
clone. This way you can work and test your code locally and push changes to GitHub.

For example, Jeff wrote a PowerShell tool that adds remote tab functionality to the PowerShell ISE.
The tool has been published to the PowerShell Gallery as ISRemoteTab but the source code is an open
source project on GitHub. Locally, he has a copy of the files in git repository which is configured
with a remote branch.

Controlling Your Source 203

PS S:\ISERemoteTab> git status

On branch master

Your branch is up-to-date with 'origin/master'.

nothing to commit, working tree clean

PS S:\ISERemoteTab> git branch

dev

* master

* PS S:\ISERemoteTab> git log -1

commit cd473151cf24c15304fdb21acf2e99147918192b

Author: jdhitsolutions <jhicks@jdhitsolutions.com>

Date: Thu Jan 12 12:18:27 2017 -0500

revised license

PS S:\ISERemoteTab> git remote

origin

PS S:\ISERemoteTab> git remote -v

origin https://github.com/jdhitsolutions/New-ISERemoteTab.git (fetch)

origin https://github.com/jdhitsolutions/New-ISERemoteTab.git (push)

When he makes changes he can commit them locally and then push them to Github.

As you might expect there is much to learn about using git and GitHub. Fortunately, because these
platforms are so widely used there is a ton of reference and training material online. You can also
find a number of PowerShell related projects in the PowerShell gallery:

find-module -tag git -Repository PSGallery

Jeff also has a PowerShell function to create a GitHub repository from the command line which he
blogged about³¹.

You can get started as well as download the current version of git³².

Azure DevOps Server

Formerly known as TeamFoundationServer or TFS, is a Microsoft product related to its Visual Studio
product line. The new version is an Azure service that allows you to track and share code in team or
collaborative environment. Because it runs in Azure, some of the setup is not as complicated as the
older TeamFoundationServer product. Microsoft offers a free version for individuals or small teams
that can run on your local computer.

Learn more about Azure DevOps Server³³.

³¹bit.ly/2jgskzo
³²https://git-scm.com/
³³https://azure.microsoft.com/en-us/services/devops/server/

https://git-scm.com/
https://azure.microsoft.com/en-us/services/devops/server/
https://git-scm.com/
https://azure.microsoft.com/en-us/services/devops/server/

Controlling Your Source 204

Subversion

Another popular source control system is Subversion, also known as SVN. This is an open source
project from the Apache Software Foundation. SVN is similar to git in that you have a repository
where you can commit changes. You can also have multiple branches for different development
efforts.

You use a subversion client to check code in and out of the repository. SVN only maintains command
line clients but you can find a number of graphical clients online.

Learn more about Subversion³⁴.

Mercurial

One last project we want to at least introduce you to is Mercurial. This is a decentralized source
control system based on Python. It is similar to git in that you can have a server based master
repository and local versions. Even though the underlying technology differs you have the same
concepts of forking, committing, pulling and pushing. Typically the server component is hosted by
a site like Bitbucket which has free and paid accounts. You would then use the Mercurial client to
interact with the local and remote repositories.

You can find a number of PowerShell-related modules in the Chocolatey gallery if you have that
defined.

find-module -tag mercurial -Repository chocolatey

And lest you think Mercurial can’t handle your PowerShell module, Facebook apparently uses
Mercurial for its source control!

You can learn more and download Mercurial³⁵.

Let’s Review

We hope you gleaned a few tidbits from this chapter. Let’s check.

1. True or False: source code is for developers only
2. What are the two different source control models?
3. What are some of the benefits of using source control?
³⁴http://subversion.apache.org/
³⁵https://www.mercurial-scm.org/

http://subversion.apache.org/
https://www.mercurial-scm.org/
http://subversion.apache.org/
https://www.mercurial-scm.org/

Controlling Your Source 205

Review Answers

Did you come close to these answers?

1. A very big FALSE. Even as an IT Pro you need to start thinking and acting like a developer.
2. Centralized and de-centralized.
3. Built-in versioning and history so that you can roll back to a prior version if necessary. In a team

environment you can usually track whomade what change and when so there is accountability.
Finally, source control can serve as a backupmechanism, especially if you have a remote version
somewhere of your local repository.

Converting a Function to a Class
Classes were a new feature introduced in PowerShell v5. They’ve continued to evolve since then,
and we get asked about them all the time - hence, this chapter. On the surface, they’re really really
similar to a function, and so converting a function to a class is usually straightforward although a
more accurate description might be transforming.

Class Background

But before we go any further, let’s talk about what these are and set some expectations. We see a lot
of people diving into classes because they’re the new shiny and because all the “real” developers are
using them. There are reasons to use classes, and certain things they do, but they will not magically
make your PowerShell commands “better” somehow.

Most of the time, you will find that functions are entirely adequate for creating the PowerShell
commands you need. Classes come into play when you need to create a much more formal
programming structure that requires object-oriented programming features. And, if you’ve used
classes in other languages, know that PowerShell ain’t other languages. Its classes are their own
things, and assuming that they “just work” like some other language will lead you to a bad, dark
place in life. Classes were introduced mainly to improve DSC resource authoring, and if you’re
working outside the DSC space (which we don’t touch on in this book), classes are less “polished” in
some ways than you might hope. For example, debugging classes is a bit trickier prior to PowerShell
5.1, which improved debugging support.

A Class is kind of like a blueprint of something, or a template. A blueprint is wonderful, but you
can’t live in one, right? When you create an instance of the blueprint - that is, a house - you have
something to live in. And that same blueprint can create multiple instances, giving you multiple,
identical houses. The class simply describes what your thing should look like and how it might
behave.

A Property is one of themembers that a class can contain. A property contains a bit of information,
and it may permit you to read that information, change the information, or both. Reading and
writing - that is, getting and setting - are accomplished by two hidden methods. You don’t need to
worry about these when using an object, because as you’ve seen in working with PowerShell, .NET
Framework just “makes it work.” However, when creating a class, you sometimes do need to worry
about these “getter” and “setter” methods, although PowerShell does handle them for you if you just
need basic implementations. A property consists of a data type, a name, and sometimes a default
value.

AMethod is another member that a class can contain. A method tells the class to take some action
- basically, it’s a mini-function contained within the class. Like functions, methods can accept input
arguments, and they can produce results.

Converting a Function to a Class 207

Think of it this way: you may have made a module to help manage some line-of-business ap-
plication. Your module contains commands like Get-AppUser, Set-AppUser, Remove-AppUser,
and New-AppUser. Alternatively, you could create an AppUser class. It would containmethods
for retrieving users, changing their attributes, deleting them, and creating them. The code
would look remarkably familiar either way, but the class structure is more formal and a bit
more complex than the module structure, which is just a bunch of functions.

A Constructor is a special method that’s used to create a new instance of a class. Constructs can
accept input parameters. So, using the example above, youmight be able to run AppUser(‘username’)
to create a new instance of your AppUser class, pre-populated with a given user’s information.

Here’s a very simple class definition:

class AppUser {

Properties

[string]$UserName

[int]$EmployeeID

Constructors

AppUser () {

#your code

}

AppUser ([string]$UserName) {

#your code

}

Methods

[void] Delete() {

#your code

}

[void] Update() {

#your code

}

}

$x = New-Object -Type AppUser

We’ve defined a class with two properties, two ways of instantiating it, and two methods. This is
obviously just the framework; we’d need to add code to make all this work. At the bottom, you’ll see
where we instantiated the class using New-Object. You can also create a new instance by invoking
the built-in New() static method: [AppUser]::new().

This brings up an interesting point. Right now, PowerShell doesn’t “know” where your classes live.
It’s not like functions where, if they’re stored in a module that’s in the right folder, PowerShell can

Converting a Function to a Class 208

magically load up the function on-demand. With classes, you have to make sure the class definition
is loaded, or PowerShell won’t know what it is. For example, in the above, we’re using the class in
the same script that defines the class, which will work. This can make classes a bit less convenient.
Most of the time, you’re stuck with dot-sourcing the class definition into whatever script needs to
use it.

PowerShell supports inheritance. That means you could take the AppUser class we created, and
inherit it in your own class definition. Your definition could add new properties and methods, and
the ones we created would still function.

There’s a great overview³⁶ of classes that goes into more detail and is especially useful if you
have a background in another class-based language. We’re glossing over some fine detail
and a lot of permutations in this chapter.

Another key thing in classes is the return keyword. In a normal PowerShell function, return is
basically an alias to Write-Output: it writes objects to the pipeline. In a class method, however,
return writes to the pipeline and then exits the method immediately. This is consistent with the
keyword’s behavior in almost every other programming language, ever. In a PowerShell class, you
must specify the type of object the method will emit, if any, and use the return keyword. In our
example, the two methods don’t write anything to the pipeline so we use [void]. But if we want a
method to write something to the pipeline we need to specify the datatype and return it.

[timespan]GetAge() {

$t = <code to calculate timespan>

return $t

}

A major upside to classes is that they are objects (well, an instance of a class is an object). So instead
of your functions outputting “static” objects that only have properties, which only contain static
information, classes can be very dynamic. You could create a class that was capable of refreshing
its property values, for example, or that provided helpful methods for working with whatever it is
the object represents. However, if all your command needs to do is do something, or produce static
output, then classes can be harder to work with than functions while giving you no advantages.
There’s a good introductory writeup³⁷ on classes that creates a Computer object, essentially creating
a wrapper around some existing AD commands. It’s a good introduction to class syntax, but it
doesn’t create a lot of functional advantages over just running commands - that’s important to
realize, from a design perspective.

With all that in mind,we almost never “convert” a function into a class. A class is something we kind
of design. But, we’re going to go through the “conversion” routine here, because it’s a useful way
of taking something we’ve already done with you, and leveraging that knowledge to do something
new. So think of this as “conversion for teaching’s sake,” rather than, “oh, yeah, we convert all the
time.” OK?

³⁶https://xainey.github.io/2016/powershell-classes-and-concepts/
³⁷http://powershelldistrict.com/powershell-class/

https://xainey.github.io/2016/powershell-classes-and-concepts/
http://powershelldistrict.com/powershell-class/
https://xainey.github.io/2016/powershell-classes-and-concepts/
http://powershelldistrict.com/powershell-class/

Converting a Function to a Class 209

Starting Point

We’re going to take the function from the end of the error handling chapter as our starting point. It’s
here for your reference, and more easily readable in the code downloads for this chapter. It is very
similar to the Get-TMComputerStatus function.

Function Get-MachineInfo {

[CmdletBinding()]

Param(

[Parameter(ValueFromPipeline,

Mandatory)]

[Alias('CN', 'MachineName', 'Name')]

[string[]]$ComputerName

)

BEGIN {}

PROCESS {

foreach ($computer in $computername) {

Try {

Write-Verbose "Connecting to $computer"

$params = @{

ComputerName = $Computer

ErrorAction = 'Stop'

}

$session = New-CimSession @params

Write-Verbose "Querying $computer"

#define a hashtable of parameters to splat

#to Get-CimInstance

$cimparams = @{

ClassName = 'Win32_OperatingSystem'

CimSession = $session

ErrorAction = 'stop'

}

$os = Get-CimInstance @cimparams

$cimparams.Classname = 'Win32_ComputerSystem'

$cs = Get-CimInstance @cimparams

Converting a Function to a Class 210

$cimparams.ClassName = 'Win32_Processor'

$proc = Get-CimInstance @cimparams | Select-Object -first 1

$sysdrive = $os.SystemDrive

$cimparams.Classname = 'Win32_LogicalDisk'

$cimparams.Filter = "DeviceId='$sysdrive'"

$drive = Get-CimInstance @cimparams

Write-Verbose "Outputting for $($session.computername)"

$obj = [pscustomobject]@{

ComputerName = $session.computername.ToUpper()

OSVersion = $os.version

OSBuild = $os.buildnumber

Manufacturer = $cs.manufacturer

Model = $cs.model

Processors = $cs.numberofprocessors

Cores = $cs.numberoflogicalprocessors

RAM = $cs.totalphysicalmemory

Architecture = $proc.addresswidth

SystemFreeSpace = $drive.freespace

}

Write-Output $obj

Write-Verbose "Closing session to $computer"

$session | Remove-CimSession

}

Catch {

Write-Warning "FAILED to query $computer. $($_.exception.message)"

}

} #foreach

} #PROCESS

END {}

} #end function

Get-MachineInfo -ComputerName $env:COMPUTERNAME

It’s worth noting that classes don’t support comment-based help, nor are they supported by the help
system at all, so we’re going to lose that. We’d need to publish instead some kind of “about” help
file along with our code to document how to use it.

Converting a Function to a Class 211

Doing the Design

We need to look at this function and decide on a class design.

• We will call the class TMMachineInfo. It is a Bad Idea to choose an existing class name (and
there are quadrillions) for your new class.

• We have a list of 10 properties that our class will expose. These are the 10 properties that our
function’s output objects contain.

• We will have a constructor that accepts a computer name as its input argument. Note that our
design will only query one computer at a time; this is the usual pattern for classes because each
instance of the class can only represent one thing. If we need to query multiple computers, we’d
write a script that created multiple instances of the class, using something like a ForEach loop.

You can see that we’re moving some of our functionality into the class, but not everything. Classes
are meant to be pretty tightly scoped, and should only include things that represent something. In
our case, the class represents machine information for a single machine, and so we’re scoping our
functionality to that.

Making the Class Framework

Here’s our basic framework (in ClassFramework.ps1 in the sample code):

class TMMachineInfo {

Properties

[string]$ComputerName

[string]$OSVersion

[string]$OSBuild

[string]$Manufacturer

[string]$Model

[string]$Processors

[string]$Cores

[string]$RAM

[string]$SystemFreeSpace

[string]$Architecture

Methods

none at this time

Constructors

TMMachineInfo([string]$ComputerName) {

Converting a Function to a Class 212

insert code to create a new instance of $this

}

} #class definition

Some notes:

• Even though this looks like a function, the properties are not parameters so don’t try to separate
them by commas.

• All of our properties will be writable, which is not really correct. We can’t change the RAM
on a machine just by setting this property, so it should be read-only. Unfortunately, without
getting into some odd, convoluted code, read-only properties aren’t currently a thing. Users
will be able to change any of our properties, and those changes will appear to have “taken”,
but they will obviously not change the actual environment. If you really want to limit access,
there is an option to mark a property as hidden.

• Technically, adding a constructor is entirely optional. An instance of The class can still be
created. But since the class makes no sense without the computer name we’re going to build a
specific constructor.

• There is no provision for defining a default value in the constructor.

It’s possible to create our own “setter,” rather than using PowerShell’s implied one, for
each property. We could then throw an error if someone tried to set the property. That’s…
interesting, but not the same as creating a read-only property.

It’s also worth noting that, inside the constructor, $ComputerName is the argument passed to the
constructor. $this.ComputerName would be used to modify the property of the class. That can be a
confusing scoping issue, and it’s worth paying attention to.

Coding the Class

You’ll find this in the downloadable code as Coded.ps1.

Converting a Function to a Class 213

class TMMachineInfo {

Properties

[string]$ComputerName

[string]$OSVersion

[string]$OSBuild

[string]$Manufacturer

[string]$Model

[string]$Processors

[string]$Cores

[string]$RAM

[string]$SystemFreeSpace

[string]$Architecture

hidden[datetime]$Date

Constructors

TMMachineInfo([string]$ComputerName) {

Try {

$params = @{

ComputerName = $Computername

ErrorAction = 'Stop'

}

$session = New-CimSession @params

#define a hashtable of parameters to splat

#to Get-CimInstance

$cimparams = @{

ClassName = 'Win32_OperatingSystem'

CimSession = $session

ErrorAction = 'stop'

}

$os = Get-CimInstance @cimparams

$cimparams.Classname = 'Win32_ComputerSystem'

$cs = Get-CimInstance @cimparams

$cimparams.ClassName = 'Win32_Processor'

$proc = Get-CimInstance @cimparams | Select-Object -first 1

$sysdrive = $os.SystemDrive

$cimparams.Classname = 'Win32_LogicalDisk'

Converting a Function to a Class 214

$cimparams.Filter = "DeviceId='$sysdrive'"

$drive = Get-CimInstance @cimparams

$session | Remove-CimSession

#use the computername from the CIM instance

$this.ComputerName = $os.CSName

$this.OSVersion = $os.version

$this.OSBuild = $os.buildnumber

$this.Manufacturer = $cs.manufacturer

$this.Model = $cs.model

$this.Processors = $cs.numberofprocessors

$this.Cores = $cs.numberoflogicalprocessors

$this.RAM = ($cs.totalphysicalmemory / 1GB)

$this.Architecture = $proc.addresswidth

$this.SystemFreeSpace = $drive.freespace

$this.date = Get-Date

}

Catch {

throw "Failed to connect to $computername. $($_.exception.message)"

} #try/catch

}

} #class

New-Object -TypeName TMMachineInfo -ArgumentList "localhost"

We’ve included a line at the end of the script to try it out, which gave us:

ComputerName : BOVINE320

OSVersion : 10.0.19041

OSBuild : 19041

Manufacturer : LENOVO

Model : 30C2CTO1WW

Processors : 1

Cores : 8

RAM : 31.8933715820313

SystemFreeSpace : 79033331712

Architecture : 64

We decided to add an additional property called Date but it is hidden, although it’s only “lightly”
hidden. Passing our object to Get-Member -force can still show the hidden property. This is just
a display convenience, not a security thing. It won’t show up in the default display, but it can be
accessed by the property name.

Converting a Function to a Class 215

PS C:\> New-Object -TypeName TMMachineInfo -argumentlist ThinkP1 | Select Date,Compu\

tername,OS*

Date ComputerName OSVersion OSBuild

---- ------------ --------- -------

6/3/2020 12:52:34 PM THINKP1 10.0.18363 18363

So it works - but because a class is a lower-level beastie than a function, in many ways, we’ve “lost”
some functionality. We’d have to make up for that in the script itself. Notice that, to create our
output, we simply set the properties of $this, which represents the current instance of the class.

Adding a Method

Let’s try one more thing. Now, this isn’t because we think this is a good idea - it’s more to show you
a couple of things. First, here’s a revision to our code.

class TMMachineInfo {

Properties

[string]$ComputerName

[string]$OSVersion

[string]$OSBuild

[string]$Manufacturer

[string]$Model

[string]$Processors

[string]$Cores

[string]$RAM

[string]$SystemFreeSpace

[string]$Architecture

hidden[datetime]$Date

#Methods

[void]Refresh() {

Try {

$params = @{

ComputerName = $this.Computername

ErrorAction = 'Stop'

}

$session = New-CimSession @params

Converting a Function to a Class 216

#define a hashtable of parameters to splat

#to Get-CimInstance

$cimparams = @{

ClassName = 'Win32_OperatingSystem'

CimSession = $session

ErrorAction = 'stop'

}

$os = Get-CimInstance @cimparams

$cimparams.Classname = 'Win32_ComputerSystem'

$cs = Get-CimInstance @cimparams

$cimparams.ClassName = 'Win32_Processor'

$proc = Get-CimInstance @cimparams | Select-Object -first 1

$sysdrive = $os.SystemDrive

$cimparams.Classname = 'Win32_LogicalDisk'

$cimparams.Filter = "DeviceId='$sysdrive'"

$drive = Get-CimInstance @cimparams

$session | Remove-CimSession

#use the computername from the CIM instance

$this.ComputerName = $os.CSName

$this.OSVersion = $os.version

$this.OSBuild = $os.buildnumber

$this.Manufacturer = $cs.manufacturer

$this.Model = $cs.model

$this.Processors = $cs.numberofprocessors

$this.Cores = $cs.numberoflogicalprocessors

$this.RAM = ($cs.totalphysicalmemory / 1GB)

$this.Architecture = $proc.addresswidth

$this.SystemFreeSpace = $drive.freespace

$this.date = Get-Date

}

Catch {

throw "Failed to connect to $this.computername. $($_.Exception.message)"

} #try/catch

}

Constructors

TMMachineInfo([string]$ComputerName) {

$this.ComputerName = $ComputerName

Converting a Function to a Class 217

$this.Refresh()

}

} #class

Clear-Host

$obj = New-Object -TypeName TMMachineInfo -ArgumentList "localhost"

$obj | Select Date,Computername,SystemFreeSpace

Get-Process | Out-File "$Home\delete_me.txt"

$obj.Refresh()

$obj | Select Date,Computername,SystemFreeSpace

• In our constructor, we’ve removed most of the code. The constructor now passes its arguments
into properties, and calls a new Refresh() method.

• The Refresh() method has all of our original code, although we now use $this to access the
computer name we’re supposed to query

In the script, we’re writing a tiny text file out, just to change the free space number on the drive:

PS C:\> $obj = New-Object -TypeName TMMachineInfo -ArgumentList "localhost"

PS C:\> $obj | Select Date,Computername,SystemFreeSpace

PS C:\> Get-Process | Out-File "$Home\delete_me.txt"

PS C:\> $obj.Refresh()

PS C:\> $obj | Select Date,Computername,SystemFreeSpace

Date ComputerName SystemFreeSpace

---- ------------ ---------------

6/3/2020 1:10:21 PM BOVINE320 79029981184

As you can see, Refresh() does indeed re-query the information. The method doesn’t need to return
anything, because all it’s doing is changing the properties of the instance itself.

Making Classes Easy To Use

The scripts we’ve been showing you are for educational purposes. In order to use our class definitions
you would need to know how to use New-Object and know the type name. But that might be a bit
much to ask of a help desk user you want to use your tool. Instead, you might give them a command
like Get-MachineInfo which still uses all of the class goodness, but hides all the messy dev-stuff.

In the chapter download file you will find a module version of the code we’ve been using called
TMMachineInfo. If you look at the psm1 file you will find the class definition and two functions. The
first function is essentially a wrapper for the New() constructor:

Converting a Function to a Class 218

Function Get-MachineInfo {

[cmdletbinding()]

[alias("gmi")]

Param(

[Parameter(Position = 0, ValueFromPipeline)]

[Alias("cn")]

[ValidateNotNullorEmpty()]

[string[]]$Computername = $env:COMPUTERNAME

)

Begin {

Write-Verbose "[BEGIN] Starting: $($MyInvocation.Mycommand)"

} #begin

Process {

foreach ($computer in $computername) {

Write-Verbose "[PROCESS] Getting machine information from $($computer.to\

Upper())"

New-Object -TypeName TMMachineInfo -ArgumentList $computer

}

} #process

End {

Write-Verbose "[END] Ending: $($MyInvocation.Mycommand)"

} #end

}

By creating a function around it we can parameterize it, support processing pipelined input and
more. The function will write an object to the pipeline that has a type name based on the class
name.

PS C:\> $c = get-machineinfo

PS C:\> $c | get-member

TypeName: TMMachineInfo

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

Refresh Method void Refresh()

ToString Method string ToString()

Converting a Function to a Class 219

Architecture Property string Architecture {get;set;}

ComputerName Property string ComputerName {get;set;}

Cores Property string Cores {get;set;}

Manufacturer Property string Manufacturer {get;set;}

Model Property string Model {get;set;}

OSBuild Property string OSBuild {get;set;}

OSVersion Property string OSVersion {get;set;}

Processors Property string Processors {get;set;}

RAM Property string RAM {get;set;}

SystemFreeSpace Property string SystemFreeSpace {get;set;}

We didn’t want to force the user to have to invoke an object method. Instead we wrote a function.

Function Update-MachineInfo {

[cmdletbinding()]

[alias("umi")]

Param(

[Parameter(Position = 0, ValueFromPipeline)]

[ValidateNotNullorEmpty()]

[TMMachineInfo]$Info,

[switch]$Passthru

)

Begin {

Write-Verbose "[BEGIN] Starting: $($MyInvocation.Mycommand)"

} #begin

Process {

Write-Verbose "[PROCESS] Refreshing: $(($Info.ComputerName).ToUpper())"

$info.Refresh()

if ($Passthru) {

#write the updated object back to the pipeline

$info

}

} #process

End {

Write-Verbose "[END] Ending: $($MyInvocation.Mycommand)"

} #end

}

Again, a function offers the benefits of help documentation, parameters, validation and verbose

Converting a Function to a Class 220

output. We are even able in the function to write the updated object back to the pipeline with the
-Passthru parameter, even though the Refresh() method doesn’t return anything. You should also
notice the typename on the -Info parameter.

[TMMachineInfo]$Info,

We wrote this thinking the help desk might use the command to get some information:

$info = get-content c:\work\servers.txt | get-machineinfo

Then later in the day, they update it:

$info | update-machineinfo -passthru

We think a key takeaway is that in some ways the class simplified the process of working with
objects in PowerShell. But you need to think about how they will be used which might mean some
additional tooling in the form of some wrapper or “helper” functions.

Wrapping Up

Classes have their place. The ones in PowerShell are a little under-baked compared tomost languages,
and understanding that classes aren’t a direct replacement for functions is important. Classes are
lower-level, meaning PowerShell does less (like validation) for you. They’re also a different way of
packaging functionality, and they don’t make sense in every case. In fact, as we admitted upfront, in
our example above classes didn’t make sense. Our function did a much better job of accomplishing
the job. But now you can at least get a side-by-side comparison of functions and classes, and
hopefully a real feel for when they may make sense or not.

If you want to play with PowerShell class-based tools further or see how you might build a
tool around a class, you might want to take a look at Jeff’s PSChristmas module on Github
at https://github.com/jdhitsolutions/PSChristmas³⁸ or the myStarship³⁹ module. Yes, a little
silly but hopefully educational.

³⁸https://github.com/jdhitsolutions/PSChristmas
³⁹https://github.com/jdhitsolutions/myStarShip

https://github.com/jdhitsolutions/PSChristmas
https://github.com/jdhitsolutions/myStarShip
https://github.com/jdhitsolutions/PSChristmas
https://github.com/jdhitsolutions/myStarShip

Publishing Your Tools
Inevitably, you’ll come to point where you’re ready to share your tools. Hopefully, you’ve put those
into a PowerShell module, as we’ve been advocating throughout this book, because in most cases
it’s a module that you’ll share.

Begin with a Manifest

You’ll typically need to ensure that your module has a .psd1 manifest file, since most repositories
will use information from that to populate repository metadata. Here’s the manifest from our
downloadable sample code.

#

Module manifest for module 'PowerShell-Toolmaking'

#

Generated by: Don Jones & Jeffery Hicks

#

@{

Script module or binary module file associated with this manifest.

RootModule = 'PowerShell-Toolmaking.psm1'

Version number of this module.

ModuleVersion = '2.0.0.0'

Supported PSEditions

CompatiblePSEditions = @("Desktop")

ID used to uniquely identify this module

GUID = '3926b244-469c-4434-a4b1-70ce3b0bfb5d'

Author of this module

Author = 'Don Jones & Jeffery Hicks'

Company or vendor of this module

CompanyName = 'Unknown'

Publishing Your Tools 222

Copyright statement for this module

Copyright = '(c) 2017-2020 Don Jones & Jeffery Hicks. All rights reserved.'

Description of the functionality provided by this module

Description = "Sample for for 'The PowerShell Scripting and Toolmaking Book' by Don \

Jones and Jeffery Hicks published on Leanpub.com."

Minimum version of the Windows PowerShell engine required by this module

PowerShellVersion = ''

Name of the Windows PowerShell host required by this module

PowerShellHostName = ''

Minimum version of the Windows PowerShell host required by this module

PowerShellHostVersion = ''

Minimum version of Microsoft .NET Framework required by this module. This prerequi\

site is valid for the PowerShell Desktop edition only.

DotNetFrameworkVersion = ''

Minimum version of the common language runtime (CLR) required by this module. This\

prerequisite is valid for the PowerShell Desktop edition only.

CLRVersion = ''

Processor architecture (None, X86, Amd64) required by this module

ProcessorArchitecture = ''

Modules that must be imported into the global environment prior to importing this \

module

RequiredModules = @()

Assemblies that must be loaded prior to importing this module

RequiredAssemblies = @()

Script files (.ps1) that are run in the caller's environment prior to importing th\

is module.

ScriptsToProcess = @()

Type files (.ps1xml) to be loaded when importing this module

TypesToProcess = @()

Format files (.ps1xml) to be loaded when importing this module

FormatsToProcess = @()

Publishing Your Tools 223

Modules to import as nested modules of the module specified in RootModule/ModuleTo\

Process

NestedModules = @()

Functions to export from this module, for best performance, do not use wildcards a\

nd do not delete the entry, use an empty array if there are no functions to export.

FunctionsToExport = '*'

Cmdlets to export from this module, for best performance, do not use wildcards and\

do not delete the entry, use an empty array if there are no cmdlets to export.

CmdletsToExport = '*'

Variables to export from this module

VariablesToExport = '*'

Aliases to export from this module, for best performance, do not use wildcards and\

do not delete the entry, use an empty array if there are no aliases to export.

AliasesToExport = '*'

DSC resources to export from this module

DscResourcesToExport = @()

List of all modules packaged with this module

ModuleList = @()

List of all files packaged with this module

FileList = @()

Private data to pass to the module specified in RootModule/ModuleToProcess. This m\

ay also contain a PSData hashtable with additional module metadata used by PowerShel\

l.

PrivateData = @{

PSData = @{

Tags applied to this module. These help with module discovery in online ga\

lleries.

Tags = @()

A URL to the license for this module.

LicenseUri = ''

Publishing Your Tools 224

A URL to the main website for this project.

ProjectUri = ''

A URL to an icon representing this module.

IconUri = ''

ReleaseNotes of this module

ReleaseNotes = ''

} # End of PSData hashtable

} # End of PrivateData hashtable

HelpInfo URI of this module

HelpInfoURI = ''

Default prefix for commands exported from this module. Override the default prefix\

using Import-Module -Prefix.

DefaultCommandPrefix = ''

}

A lot of this is commented out, which is the default when you use New-ModuleManifest. The specifics
youmust provide will differ based on your repository’s requirements, but in general we recommend
at least the following be completed:

• RootModule. This is actually mandatory for the .psd1 to work, and it should point to the “main”
.psm1 file of your module.

• ModuleVersion. This is generally mandatory, too, and is at the very least a very good idea.
• GUID. This is mandatory, and generated automatically by New-ModuleManifest.
• Author.
• Description.

Take note of your author name and try to be consistent. You want to make it easy for people
to find the other amazing tools you have published.

These are, incidentally, the minimums for publishing to PowerShell Gallery. we also recommend, in
the strongest possible terms, that you specify the FunctionsToExport array, as well as VariablesTo-
Export, CmdletsToExport, and AliasesToExport if those are applicable. Ours, as you’ll see above, are
set to *, which is a bad idea. In our specific example here, it makes sense, because our root module is
actually empty - we aren’t exporting anything; the module is just a kind of container for our sample

Publishing Your Tools 225

code to live in. But in your case, the recommended best practice is to explicitly list function, alias
and variable (without the $ sign) names which will achieve two benefits:

• Auto-discovery of your commands will be faster, since PowerShell can just read the .psd1 rather
than parsing the entire .psm1.

• Some repositories may be able to provide per-command search capabilities if you specify which
commands your module offers.

Publishing to PowerShell Gallery

PowerShellGallery.com is a Microsoft-owned, public NuGet repository for released code. It can
host PowerShell modules, DSC resources, and other artifacts. Start by heading over to PowerShell-
Gallery.com and logging in or registering, using your Microsoft ID. Once signed in, click on your
name. As part of your Gallery profile, you’ll be able to request, view, and see your API key. This is
a long hexadecimal identifier that you’ll need when publishing code. Keep this secure.

With yourAPI key in hand, it’s literally as easy as going into PowerShell and running Publish-Module
(which is part of the PowerShellGet module, which ships with PowerShell v5 and later and can be
downloaded from PowerShellGallery.com for other PowerShell versions). Provide the name of your
module, and your API key (via the -NuGetApiKey parameter), and you’re good to go.

Publish-Module -path c:\scripts\MyAwesomeModule -nugetapikey $mykey

You may be prompted for additional information if it can’t be found in your module manifest.

Be aware that publishing a module will include all files and folders in your module location.
Hidden files and folders should be ignored but make sure you have cleaned up any scratch,
test or working files.

You’ll likely receive a confirmation email from the Gallery, which may include a number of
PSScriptAnalyzer notifications. As we describe in the chapter on Analyzing Your Script, the Gallery
automatically runs a number of PSScriptAnalyzer best practices rules on all submitted code, and
you should try hard to confirm with these unless you’ve a specific reason not to.

So what’s appropriate for PowerShell Gallery publication?

• Production-ready code. Don’t submit untested, pre-release code unless you’re doing so as part
of a public beta test, and be sure to clearly indicate that the code isn’t production-ready (for
example, using Write-Warning to display a message when the module is loaded).

• Open-source code. Gallery code is, by implication, open-source; you should consider hosting
your development code in a public OSS repository like GitHub, and only publish “released”
code to the Gallery. Be sure not to include any proprietary information.

Publishing Your Tools 226

• Useful code. There are like thirty seven million 7Zip modules in the Gallery. More are likely
not needed. Try to publish code that provides unique value.

Items can be removed from Gallery if you change your mind, but Microsoft doesn’t have the ability
to go out and delete whatever people may have already downloaded. Bear that in mind before
contributing.

Publishing to Private Repositories or Galleries

Microsoft’s vision is that organizations will host private and internal repositories. You may want
to use a private repository merely for testing purposes. Ideally these internal repositories will be
based on Nuget. Setting up one of these is outside the scope of this book. However you can setup a
repository with a simple file share.

We’ve created a local file share and made sure that the admins group has write access.

New-SMBShare -name MyRepo -path c:\MyRepo -FullAccess Administrators `

-ReadAccess Everyone

Don’t put any other files in this folder other than what you publish otherwise you will get
errors when using Find-Module.

Next, you can register this file share as a repository.

Register-PSRepository -name MyRepo -SourceLocation c:\MyRepo `

-InstallationPolicy Trusted

We set the repository to be trusted because we know what is going in and we don’t want to be
bothered later when we try to install from it. If you forget, you can modify the repository later:

Set-PSRepository -Name MyRepo -InstallationPolicy Trusted

Now you can publish locally:

Publish-Module -Path c:\scripts\onering -Repository MyRepo

This local repository can be used just like the PowerShell gallery.

Publishing Your Tools 227

PS C:\> find-module -Repository MyRepo

Version Name Type Repository Description

------- ---- ---- ---------- -----------

0.0.1.0 onering Module MyRepo The module that ...

You can even install locally to verify everything works as expected.

PS C:\> install-module onering -Repository MyRepo

PS C:\> get-command -module OneRing -ListImported

CommandType Name Version Source

----------- ---- ------- ------

Function Disable-Ring 0.0.1.0 OneRing

Function Enable-Ring 0.0.1.0 OneRing

Function Get-Ring 0.0.1.0 OneRing

Function Remove-Ring 0.0.1.0 OneRing

Function Set-Ring 0.0.1.0 OneRing

We set this up locally as a proof of concept. It shouldn’t take that much more work to setup a
repository on a company file share. Just mind your permissions.

Your Turn

We aren’t going to offer a real hands-on lab in this chapter, mainly because we think it’s a bad idea
to use a public repo like PowerShell Gallery as a “lab environment!” It’s also non-trivial to set up
your own private repository, and if you go through that trouble, we think you’ll want it to be in
production, not in a lab, so that you can benefit from that work.

That said, we do want to encourage you to sign into the PowerShell Gallery and create your API
key, as we’ve described doing in this chapter. It’s a first step toward getting ready to publish your
own code.

Let’s Review

We aren’t going to ask you publish anything to the gallery. You may never have a need to publish
or share your work. But let’s see if you picked up anything in this chapter.

1. The Microsoft PowerShell Gallery is based on what technology?
2. What important file is required to publish to the gallery that contains critical module metadata?
3. What should you publish to any repository?

Publishing Your Tools 228

Review Answers

Hopefully you came up with answers like this:

1. Nuget
2. A module manifest.
3. Any unique project that offers value and is production ready. You can publish your project

that might be in beta or under development but that should be made clear to any potential
consumer such as through version numbering.

Part 3: Controller Scripts and
Delegated Administration
With your tools constructed and tested, it’s time to put them to work - and that means writing
controller scripts. Not sure what that means? Keep reading. We’ll look at several kinds, from simple
to complex, and look at a couple of other, unique ways in which you can put your tools to work.

Basic Controllers: Automation Scripts
and Menus
We’ve written a lot about tools and toolmaking in the first two parts of this book; this part is more
about the controllers that use those tools. Just like a human hand controls a hammer to some useful
purpose, like building a house, a controller script takes your tools and puts them to some useful
purpose. In this chapter, we’ll start with two very basic kinds of controller scripts.

Building a Menu

One of the simplest things you can do to expose tools to less-technical colleagues is through a simple,
text-based menu - a scenario where Read-Host and Write-Host are totally important. Well-designed
tools will prompt for mandatory parameters automatically, makingmenu-driven tool use even easier.
You can write your own prompts for any non-mandatory parameters, if desired.

We’re going to assume your menu-driven script is going to invoke your own commands and
functions. For our demonstrations we’re going to use out-of-the-box cmdlets. In the download files
for this chapter you’ll find a copy of basicmenu.ps1.

<<BasicMenu.ps1⁴⁰

This script isn’t perfect but it demonstrates some basic concepts. It uses a here string to define a
set of menu choices. This menu is display as the prompt for Read-Host. We’ve also prompted for a
computer name. Once the user has entered a value you need to take some action based on the value.
For that we use a simple Switch construct.

PS C:\> c:\scripts\basicmenu.ps1

MyMenu

1. Get services

2. Get processes

3. Get System event logs

4. Check free disk space (MB)

5. Quit

Select a menu choice: 4

⁴⁰code/PowerShell-Toolmaking/Chapters/basic-controller-scripts-and-menus/basicmenu.ps1

code/PowerShell-Toolmaking/Chapters/basic-controller-scripts-and-menus/basicmenu.ps1
code/PowerShell-Toolmaking/Chapters/basic-controller-scripts-and-menus/basicmenu.ps1

Basic Controllers: Automation Scripts and Menus 231

Enter a computername or press Enter to use the localhost:

27005.375

PS C:\>

As we said there are some issues. Primarily you may want to repeat the menu until the user is
finished. The first version also didn’t do a good job of validating choices which is very important.
In basicmenu-improved.ps1 you’ll find this function.

<<BasicMenu-Improved.ps1⁴¹

This version adds the necessary validation and clears the screen each time making it visually more
appealing. The key difference though is that after executing code in the Switch construct, the
function calls itself again.

Of course since the menu is just a display on the screen, you can dress up with Write-Host.
FancyMenu.ps1 has a more elaborate version.

<<FancyMenu.ps1⁴²

This version will center the menu title and display it in Cyan. The menu itself is displayed in yellow.
We’ll let you load the function into your PowerShell session and see for yourself.

You could also dress up the menu using ANSI escape sequences or adding borders. Take a
look at Jeff’s PSScriptTools⁴³ module which you can download from the PowerShell Gallery.

Using UIChoice

For longish menus, the approach we just showed works best. But there is another option for a
selection menu of sorts. You’ve probably seen it whenever you get a confirmation prompt. You
can create a similar menu command.

For each choice you need to create an object like this:

$a = [System.Management.Automation.Host.ChoiceDescription]::new("Running &Services")

The parameter value is the text that will be displayed. Put an & in front of the character you want
the user to type to select that choice.

Optionally, you can create a help message:

⁴¹code/PowerShell-Toolmaking/Chapters/basic-controller-scripts-and-menus/basicmenu-improved.ps1
⁴²code/PowerShell-Toolmaking/Chapters/basic-controller-scripts-and-menus/FancyMenu.ps1
⁴³https://github.com/jdhitsolutions/PSScriptTools

code/PowerShell-Toolmaking/Chapters/basic-controller-scripts-and-menus/basicmenu-improved.ps1
code/PowerShell-Toolmaking/Chapters/basic-controller-scripts-and-menus/FancyMenu.ps1
https://github.com/jdhitsolutions/PSScriptTools
code/PowerShell-Toolmaking/Chapters/basic-controller-scripts-and-menus/basicmenu-improved.ps1
code/PowerShell-Toolmaking/Chapters/basic-controller-scripts-and-menus/FancyMenu.ps1
https://github.com/jdhitsolutions/PSScriptTools

Basic Controllers: Automation Scripts and Menus 232

$a.HelpMessage = "Get Running Services"

Now for the cool part. Eventually, the user will make a choice which will select the a choice object.
We’re going to add a new member to the object and define a ScriptMethod.

$a | Add-Member -MemberType ScriptMethod -Name Invoke -Value {

Get-Service | where {$_.status -eq "running"}

} -force

When this object is selected we can run the Invoke() method and execute the scriptblock. You’ll
repeat this process for all choices, adding each one to an array.

To run, use the PromptForChoice() method specifying a title, message, the array variable and the
default choice which is the corresponding index number from the array.

$r = $host.ui.PromptForChoice("TITLE HERE","MESSAGE:",$collection,0)

In the code samples dot source choicemenu.ps1 to load the Invoke-Choice function.

<<ChoiceMenu.ps1⁴⁴

Here’s a taste of what it looks like in the console.

Choice menu

⁴⁴code/PowerShell-Toolmaking/Chapters/basic-controller-scripts-and-menus/ChoiceMenu.ps1

code/PowerShell-Toolmaking/Chapters/basic-controller-scripts-and-menus/ChoiceMenu.ps1
code/PowerShell-Toolmaking/Chapters/basic-controller-scripts-and-menus/ChoiceMenu.ps1

Basic Controllers: Automation Scripts and Menus 233

If you run this in the PowerShell ISE you’ll get a graphical popup for the menu.

Writing a Process Controller

The tools that you have been building are essentially building blocks that you can assemble with
other commands in order to achieve some end result. A command like Get-Service is useful we
suppose on its own. But its real value comes from how you might integrate it into a larger process.
The same should be true of your commands. Often you may have a process built around them.
If you’ve been smart about it, you’ve probably figured out how to execute those commands in a
number of pipelined expressions at a PowerShell prompt. But let’s go a step further.

Again, we’re going to use some common cmdlets to demonstrate concepts. You of course would be
using your own tools. Let’s say that each Monday morning you need to go through a list of servers
and find all errors and warning from the System event log that occurred in the last 48 hours and
that you need to email a report to the server management team.

You might open up PowerShell every Monday morning and run a command like this:

$body = Get-Content s:\servers.txt |

Where-Object { Test-Wsman $_ -erroraction silentlycontinue } |

Foreach-Object {

Get-Eventlog -LogName System -EntryType Error,Warning `

-After (Get-Date).AddHours(-48) -ComputerName $_ } |

Select-Object Machinename,EntryType,TimeGenerated,Source,Message |

Out-string

Send-MailMessage -to team@company.com -Subject "Weekend Error Report" `

-Body $body

Yeah, it might get the job done, but do you really want to type that every week? And what about
when you are on vacation or out sick? How flexible is this? What you need is a controller script that
orchestrates the commands. Here is a possible solution, which you’ll also find in the chapter code
downloads as ProcessController.ps1.

<<ProcessController.ps1⁴⁵

Can you see some advantages in a controller script? We’ve parameterized a lot of it and set some
defaults. These are settings we would expect to use most of the time. Now every Monday, someone
on the team can run this command:

⁴⁵code/PowerShell-Toolmaking/Chapters/basic-controller-scripts-and-menus/processcontroller.ps1

code/PowerShell-Toolmaking/Chapters/basic-controller-scripts-and-menus/processcontroller.ps1
code/PowerShell-Toolmaking/Chapters/basic-controller-scripts-and-menus/processcontroller.ps1

Basic Controllers: Automation Scripts and Menus 234

s:\eventlogreport.ps1 -computername (Get-Content s:\servers.txt) `

-after (Get-Date).AddHours(36) -sendto admins@company.com

But the controller script allows the flexibility to specify different a different set of computers and
event logs.

s:\eventlogreport.ps1 -computer $web -logname application -entrytype error `

-after (Get-Date).AddHours(-12)

Even better - once you have a controller script you could setup a PowerShell scheduled job and never
have to worry about it again!

Your Turn

Let’s see how much you picked up in this chapter. We’re going to have you create a controller/menu
type script. We’ve given you plenty of examples to take as a starting point. The sample scripts are
in the code downloads so feel free to copy and paste.

Start Here

We’d like to see you build something that the help desk could run to provide system information
using Get-CimInstance. You can assume they already have the necessary credentials to remotely
query a machine. You will also need to prompt the user for a computername.

Your Task

Create a menu with these items:

• LogicalDisks
• Services
• Operating system
• Computer system
• Processes

Prompt the user to select one and then run corresponding Get-Ciminstance command to display
the results. You should include some way for the user to specify a computername. Ideally, the menu
should re-display until the user decides to quit

Basic Controllers: Automation Scripts and Menus 235

Our Take

If you wrote something that displayed a menu and executed a corresponding command, you
succeeded. Our solution is probably “over-engineered” but we wanted to demonstrate as many
techniques as possible.

<<CimMenuSolution.ps1⁴⁶

Our solution displays a menu using Write-Host and then uses the choice prompt technique. After
the command is executed, the script is re-run until the user opts to quit.

System Information Menu

Let’s Review

We really don’t have much in the way of review questions for this chapter. The primary take away
is that you may want to wrap your tools in some sort of controller or “menu-ing” function. Again,
think about who will be using your toolset and how they might interact with it. If you go down the
path we’ve demonstrated in this chapter be sure to include plenty of documentation or training.

⁴⁶code/PowerShell-Toolmaking/Chapters/basic-controller-scripts-and-menus/CimMenuSolution.ps1

code/PowerShell-Toolmaking/Chapters/basic-controller-scripts-and-menus/CimMenuSolution.ps1
code/PowerShell-Toolmaking/Chapters/basic-controller-scripts-and-menus/CimMenuSolution.ps1

Graphical Controllers in WPF
Formany IT Pros, PowerShell means running scripts and commands from a command line.While we
appreciate the elegance of the pipeline, that doesn’t mean the GUI is dead. The PowerShell model
has always been to first “do it” at the prompt. If you need a GUI, then build one on top of your
command line version. Microsoft has followed this model for years.

You may want to do something similar. Perhaps you want to provide a graphical interface for a user
to enter some values that can be passed to an underlying PowerShell command. Or maybe you want
to build a complete, stand-alone GUI for a less-PowerShell savvy user. As with the rest of PowerShell
toolmaking, you have to determine who will be using your graphical tool and their expectations.

Design First

We named this chapter “graphical controllers” for a reason. We don’t regard a GUI as a tool in
the sense that we’ve used the word in this book. A GUI doesn’t do things; it provides a means of
accessing tools. That means your functional code - the code doing something for you - should be
written as functions. Your GUI should provide an interface to those tools. The code in your GUI
should be the bare minimum necessary to collect input, run tools using that input, and display
output. The less code in your GUI, the better a pattern you’ll have. You’ll have an easier time testing
and troubleshooting, too.

WinForms or WPF

You’ve probably heard a lot of talk aboutWinForms (Windows Forms) in the PowerShell community.
We’re sure that if you searched, you would find a lot of valuable examples and tips. WinForms are
also based on .NET classes which, make them easy to use in PowerShell.WinForms have been around
for a long time. So why would you choose WPF (Windows Presentation Foundation)?

There are two primary reasons.

First, WinForms doesn’t scale. And by scaling, we mean video resolution. Today, it is not uncommon
to have very high-resolution monitors, now pushing 4K and beyond. If you have one of these
displays, you may have run an older application that didn’t display well. The font was probably way
too small to read without resorting to some sort of display jujitsu–more than likely, that application
was written with WinForms.

WPF, on the other hand, is designed to display the same way regardless of screen resolution. You
don’t have toworry about how your formwill be displayed. Plus, we thinkWPF has amore “modern”
look-and-feel.

Graphical Controllers in WPF 237

The second reason is that with WPF, it is much easier to separate your display code from any logic
(meaning, tools) behind it. It isn’t required, but you can have the code that creates your form in a
separate file from your code that implements it. We’ll get to that in a bit.

Again, regardless of which approach you take, there is an important design pattern we want
to stress. WPF itself is not the tool. The tool is the underlying PowerShell command that
you have created. WPF is merely a graphical layer. This has always been the model going all
the way back to the days of Exchange 2007. The GUI sits on top of the PowerShell commands.
Now, creating the GUI, in this case, WPF will take its own chunk of PowerShell coding. We
will spend the first part of this chapter explaining those nuts and bolts, and then we’ll pull
everything together.

Coding with WPF is a huge topic and typically very developer-oriented. We’re going to give
you enough information packaged for IT Pros who are just getting started with this stuff. We
are intentionally glossing over a number of features that more experienced WPF developers
would use. We wanted to keep this chapter as manageable as possible for you.

WPF Architecture

At its simplest, WPF is based on a concept of layers with nested objects. At the top is a window.
Within the window, you will typically add either a stack panel or a grid. At this level, insert all of
the graphical elements such as text boxes and buttons to the stack panel or grid and then add that
to the window. Once everything is assembled, you can display it.

There are a few potential “gotchas”. First, your PowerShell session must be running in single-
threaded apartment (STA) mode. That is the default, but if you started PowerShell in multi-threaded
(MTA) mode, you’d most likely see errors when you start to create WPF elements.

The second thing to watch for is the need to load any required .NET libraries. If you are using
the PowerShell ISE to develop and run your WPF-based scripts, you might find that everything
works fine. But in the PowerShell console, you might get errors telling you that you need to load an
assembly or two. If so, insert these lines at the beginning of your script.

Add-Type -AssemblyName PresentationFramework

Add-Type -AssemblyName PresentationCore

Add-Type -AssemblyName WindowsBase

That should cover just about everything, and it won’t hurt to include them.

PowerShell Core (6.x) does not support WPF. Nor does PowerShell 7.x on non-Windows
platforms. Andwhile you could useWPF on a Server Core installation, you shouldn’t. Create
your graphical tool to run from a client desktop that manages remote servers.

Graphical Controllers in WPF 238

Using .NET

Let’s start with the most basic of WPF scripts, and we’re going to do it all with .NET code. One of
the added benefits of this approach is that you can pipe objects as you create them to Get-Member to
learn more about their properties.

You can find all of our examples in the chapter’s code downloads. Remember, all we’re doing
right now is demonstrating the mechanics of WPF.

First, we need to create a top-level form or window.

$form = New-Object System.Windows.Window

We should give the form a title and specify how large we want it to be.

$form.Title = "Hello WPF"

$form.Height = 200

$form.Width = 300

Nothing too complicated. Next, let’s add a button.

$btn = New-Object System.Windows.Controls.Button

What text should we put on it?

$btn.Content = "_OK"

The underscore in front of the O is an accelerator and completely optional. When displayed, you
could hit Alt+O instead of clicking the button. We should also define how large the button should
be and how to position it.

$btn.Width = 65

$btn.HorizontalAlignment = "Center"

$btn.VerticalAlignment = "Center"

Where did we get these values? Search for the class name, like
System.Windows.Controls.Button and you’ll see links to the MSDN documentation.
That’s a good place to get started. If you get stuck building your WPF tool, head to the
forums at PowerShell.org to get a nudge in the right direction. But expect to go through a
lot of trial and error when using .NET code like this.

Graphical Controllers in WPF 239

We have a button, but it won’t do anything unless we program it. Windows is an event-driven
operating system. We click, drag, and drop all the time, and when these events happen (fire),
Windows responds accordingly. We need to provide instruction about what to do if the button is
clicked. This is accomplished through an event handler.

The handler is essentially a PowerShell scriptblock. This scriptblock can be as simple or as complex
as you need it to be, and you can reference other form elements (we’ll give you an example later in
the chapter). All you need to do is add something to the _Click event.

$btn.Add_click({

$msg = "Hello, World and $env:username!"

Write-Host $msg -ForegroundColor Green

})

Once the button is finished, we can add it to the parent container, in this case, the window itself.

$form.AddChild($btn)

To display the form, invoke the ShowDialog() method.

There is a Show() method, but if you use it, you’ll have to close the PowerShell session to
get rid of the form.

hello world

Notice that while the form is displayed, the script is still running, which means you don’t get your
prompt back. However, if you click OK, you should get a message written in green to the host. Click
the X to close the form and get your prompt back.

In our sample form, you’ll also see an alternate command in the click handler. Uncomment the
Write-Output command so you end up with this:

Graphical Controllers in WPF 240

Write-Output $msg

You should comment out the Write-Host statement. Re-run the demo and click OK.What happened?
Nothing. While a WPF script is running, you are blocked from the rest of the pipeline. We’ll show
you some ways around this, but this is an important piece of information.

Let’s look at another example that is a bit more practical, plus we can demo the stack panel element.
This is Stack-Services.ps1.

#WPF Demonstration using a stack panel

#add the assembly

Add-Type -AssemblyName PresentationFramework

#create the form

$form = New-Object System.Windows.Window

#define what it looks like

$form.Title = "Services"

$form.Height = 200

$form.Width = 300

#create the stack panel

$stack = New-Object System.Windows.Controls.StackPanel

#create a label and assign properties

$label = New-Object System.Windows.Controls.Label

$label.HorizontalAlignment = "Left"

$label.Content = "Enter a Computer name:"

#add to the stack

$stack.AddChild($label)

#create a text box and assign properties

$TextBox = New-Object System.Windows.Controls.TextBox

$TextBox.Width = 115

$TextBox.HorizontalAlignment = "Left"

#set a default value

$TextBox.Text = $env:COMPUTERNAME

#add to the stack

$stack.AddChild($TextBox)

Graphical Controllers in WPF 241

#create a button and assign properties

$btn = New-Object System.Windows.Controls.Button

$btn.Content = "_OK"

$btn.Width = 75

$btn.VerticalAlignment = "Bottom"

$btn.HorizontalAlignment = "Center"

#this will sort of work

$OK = {

Write-Host "Getting services from $($textbox.Text)" -ForegroundColor Green

Get-Service -ComputerName $textbox.Text | Where-Object status -eq 'running'

}

#add an event handler

$btn.Add_click($OK)

#add to the stack

$stack.AddChild($btn)

#add the stack to the form

$form.AddChild($stack)

#show the form

[void]($form.ShowDialog())

The script comments should explain what we’re doing. Notice in the $OK scriptblock how we’re
referencing the computername from the $textbox variable. Go ahead and run the script.

get service with WPF

In a stack panel, all of the child objects are “stacked” like building blocks. Not necessarily elegant,
but for a simple form, it is easy to pull together. What happens when you click OK? We want to

Graphical Controllers in WPF 242

display all the running services for the specified computer. The Write-Host command runs but not
Get-Service. Again, this is because of blocking. Why not use WPF to also display the results.

Our WPF examples using Get-Service won’t work in PowerShell 7 because the
-ComputerName parameter has been removed.

Here’s a revised version called Display-Services.ps1 which uses a new control, a datagrid, to
display the results.

Display-Services.ps1

Add-Type -AssemblyName PresentationFramework

$form = New-Object System.Windows.Window

#define what it looks like

$form.Title = "Services Demo"

$form.Height = 400

$form.Width = 500

$stack = New-Object System.Windows.Controls.StackPanel

#create a label

$label = New-Object System.Windows.Controls.Label

$label.HorizontalAlignment = "Left"

$label.Content = "Enter a Computer name:"

#add to the stack

$stack.AddChild($label)

#create a text box

$TextBox = New-Object System.Windows.Controls.TextBox

$TextBox.Width = 110

$TextBox.HorizontalAlignment = "Left"

$TextBox.Text = $env:COMPUTERNAME

#add to the stack

$stack.AddChild($TextBox)

#create a datagrid

$datagrid = New-Object System.Windows.Controls.DataGrid

$datagrid.HorizontalAlignment = "Center"

Graphical Controllers in WPF 243

$datagrid.VerticalAlignment = "Bottom"

$datagrid.Height = 250

$datagrid.Width = 441

$datagrid.CanUserResizeColumns = "True"

$stack.AddChild($datagrid)

#create a button

$btn = New-Object System.Windows.Controls.Button

$btn.Content = "_OK"

$btn.Width = 75

$btn.HorizontalAlignment = "Center"

#this will now work

$OK = {

Write-Host "Getting services from $($textbox.Text)" -ForegroundColor Green

$data = Get-Service -ComputerName $textbox.Text |

Select-Object -Property Name, Status, Displayname

$datagrid.ItemsSource = $data

}

#add an event handler

$btn.Add_click($OK)

#add to the stack

$stack.AddChild($btn)

#add the stack to the form

$form.AddChild($stack)

#run the OK scriptblock when form is loaded

$form.Add_Loaded($OK)

$btnQuit = New-Object System.Windows.Controls.Button

$btnQuit.Content = "_Quit"

$btnQuit.Width = 75

$btnQuit.HorizontalAlignment = "center"

#add the quit button to the stack

$stack.AddChild($btnQuit)

#close the form

$btnQuit.add_click({$form.Close()})

Graphical Controllers in WPF 244

#show the form and suppress the boolean output

[void]($form.ShowDialog())

In the OK scriptblock, we can now run Get-Service and select the properties we want to display.
The data can be used the ItemsSource for the datagrid object. We’ve also added a handler for when
the form is loaded. We decided that when the form is loaded use the local host to go ahead and
display the service information.

Services form

If you have another computer to test, enter the name and click the OK button or use the Alt+O
shortcut. When finished, use the Quit button we added.

Using XAML

We showed you the .NET pieces so that you would understand the objects behind WPF. For simple
projects, using native classes isn’t too bad. For more complicated layouts, you’ll end up with so much
trial and error that you’ll put a permanent head-shaped dent into your desk. You’ll also recall at the
beginning of the chapter, we mentioned the concept of separating the presentation from the logic.
That’s where XAML comes into play.

Graphical Controllers in WPF 245

If you were a developer creating a WPF application, you would end up with some specialized XML
called XAML that describes the graphical layout.

XAML Sample

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Title="Disk Report" Height="355" Width="535" Background="#FFBDB3B3">

<Grid>

<Button x:Name="btnRun" Content="_Run" HorizontalAlignment="Left"

Height="20" Margin="343,291,0,0" VerticalAlignment="Top" Width="74"/>

<Button x:Name="btnQuit" Content="_Quit" HorizontalAlignment="Left"

Margin="433,291,0,0" VerticalAlignment="Top" Width="75"

RenderTransformOrigin="0.365,-0.38"/>

<ComboBox x:Name="comboNames" HorizontalAlignment="Left" Height="20"

Margin="11,25,0,0" VerticalAlignment="Top" Width="166"/>

<Label x:Name="label" Content="Select a computer"

HorizontalAlignment="Left" Height="27" Margin="9,3,0,0"

VerticalAlignment="Top" Width="206"/>

<DataGrid x:Name="dataGrid" HorizontalAlignment="Left" Height="229"

Margin="10,55,0,0" VerticalAlignment="Top" Width="498"/>

</Grid>

</Window>

Now, before you begin skipping to the next chapter, let us explain something. While you could write
this off the top of your head, and there are free XAML editors that can help, you don’t need to. What
you are really looking for is a graphical editor where you can drag and drop the graphical elements
and in turn, generate the XAML.

The tool you are looking for is Visual Studio Community Edition, and it is a free download. Visit
https://visualstudio.microsoft.com/vs/community/⁴⁷ to get the most current version.

When you install Visual Studio Community Edition, it will want to include a ton of stuff.
Unless you intend to develop other applications, you don’t need to include anything extra.
The last time we installed the application, we selected only the .NET desktop development
workload. Be aware that even this may require a multi-gig install. You might be able to trim
this down by deselecting optional packages.

Once installed, open the application and select File - New Project, then select WPF Application.
Visual Studio will create a new project, although you won’t be using it.

⁴⁷https://visualstudio.microsoft.com/vs/community/

https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/

Graphical Controllers in WPF 246

Visual Studio Community Edition

On the left side is your tool palette. Grab a grid control and drag and drop it on the main form. Next,
do the same for a button control. As each item is selected, the XAML is updated. You can set control
properties such as the name directly in the XAML or in the Properties panel on the right side. It will
take a bit of time to learn where everything is.

Visual Studio will automatically name controls like Button and Button1. You should rename
them to reflect what they will eventually do. We like to use some type of prefix like “btn”
which would lead us to rename them “btnRun” and “btnQuit”. Eventually you will need to
“find” these controls so proper naming is important.

Continue dragging and dropping controls as necessary to get the look and feel you need. You aren’t
putting any logic or commands to this project. All you need is the XAML that Visual Studio is
generating. When you are finished, save your project. You can now either copy the XAML from
Visual Studio and paste it into a new file or under File there is a menu choice to save the main
window XAML.

The Visual Studio XAML includes references that you won’t need in PowerShell. In the XAML file
you will find something like this:

Graphical Controllers in WPF 247

<Window x:Class="WpfDiskReport.MainWindow"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

xmlns:local="clr-namespace:WpfDiskReport"

You can edit it down to:

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

When you start using the XAML in PowerShell, you’ll get an error message about some namespace
if you missed something. Delete the corresponding line in the XAML and try again.

How do we use it?

A Complete Example

First, we’re starting with a PowerShell command that we already know works from the console. It
could be a script you’ve developed or a function that is part of your module. We have a sample script
called DiskStats.ps1.

$cimParams = @{

Computername = "localhost", $env:computername

classname = "win32_logicaldisk"

filter = "drivetype=3"

}

Get-CimInstance @cimParams |

Select-Object -Property @{Name = "Computername";Expression = {$_.SystemName}},

DeviceID, @{Name = "SizeGB";Expression = {$_.Size/1GB -as [int]}},

@{Name = "FreeGB";Expression = { [math]::Round($_.Freespace/1GB, 2)}},

@{Name = "PctFree";Expression = { ($_.freespace/$_.size)*100 -as [int]}}

We designed the form so that the user could select a computer name from a drop-down box, get the
disk usage data and display it directly in the form.

Graphical Controllers in WPF 248

Disk Report form

Now that you know the goal let’s get there.

First, we need to bring in the XAML content into an XML document. If the XAML is in an external
file we can use a line like this:

[xml]$xaml = Get-Content $psscriptroot\diskstat.xaml

Or you can include it directly into the PowerShell script file.

DiskStats XAML

[xml]$xaml = @"

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Title="Disk Report" Height="355" Width="535" Background="#FFBDB3B3">

<Grid>

<Button x:Name="btnRun" Content="_Run" HorizontalAlignment="Left"

Height="20" Margin="343,291,0,0" VerticalAlignment="Top" Width="74"/>

<Button x:Name="btnQuit" Content="_Quit" HorizontalAlignment="Left"

Margin="433,291,0,0" VerticalAlignment="Top" Width="75"

RenderTransformOrigin="0.365,-0.38"/>

<ComboBox x:Name="comboNames" HorizontalAlignment="Left" Height="20"

Margin="11,25,0,0" VerticalAlignment="Top" Width="166"/>

<Label x:Name="label" Content="Select a computer"

Graphical Controllers in WPF 249

HorizontalAlignment="Left" Height="27" Margin="9,3,0,0"

VerticalAlignment="Top" Width="206"/>

<DataGrid x:Name="dataGrid" HorizontalAlignment="Left"

Height="229" Margin="10,55,0,0" VerticalAlignment="Top" Width="498"/>

</Grid>

</Window>

"@

To use this XAML, we need a special object to read it.

$reader = New-Object system.xml.xmlnodereader $xaml

$form = [windows.markup.xamlreader]::Load($reader)

Remember, all the XAML does is describe what the GUI bits look like. We need to provide the logic,
which means we need to assign handlers to the different elements. The next step is to discover those
elements in the form and create the objects.

$grid = $form.FindName("dataGrid")

$run = $form.FindName("btnRun")

$quit = $form.FindName("btnQuit")

$drop = $form.FindName("comboNames")

Now you can see why we stressed the importance of good control names.

When the Run button is clicked, obviously, we want to run our code using the computer name from
the combo box. So we’ll add a _Click handler as we did earlier in this chapter.

$run.Add_Click({

$grid.clear()

#or call your external command

$data = @(Get-CimInstance -class win32_logicaldisk -filter "drivetype=3"

-ComputerName $drop.Text |

Select-Object -property @{Name="Computername";Expression={$_.SystemName}},

DeviceID,@{Name="SizeGB";Expression={$_.Size/1GB -as [int]}},

@{Name="FreeGB";Expression = {[math]::Round($_.Freespace/1GB,2)}},

@{Name="PctFree";Expression = {($_.freespace/$_.size)*100 -as [int]}})

$grid.ItemsSource = $data

})

The Quit button needs to close the form.

Graphical Controllers in WPF 250

$quit.Add_Click({$form.Close()})

For the combo box we want to read in a list of computer names and allow the user to enter a separate
value. We also want the combo box to have focus when the form is launched.

$drop.IsEditable = $True

#hard coded demo names

$names = $env:computername,"localhost"

$names | foreach {

$drop.Items.Add($_) | Out-Null

}

$drop.focus()

And that’s it! The only thing that remains is to show the form.

$form.ShowDialog() | Out-Null

We’ll let you play with the sample script to see it in action.

Just the Beginning

As you probably figured out, there is a lot to WPF. We’ve only scratched the surface. There are so
many more controls to learn how to use plus things like running WPF in a separate runspace, or
using synchronized hashtables. This is a topic we hope we can cover in more detail at some point
since it comes up often.

If you’d like to see another example, install Jeff’s ISERemoteTab module from the PowerShell gallery
and dig through the source code. You’ll see the console-oriented function to create a specialized
remote tab in the PowerShell ISE plus a separate function that creates a WPF controller for the
command that makes it easier to use. Or for something a bit more advanced, look at the source code
for ConvertTo-WPFGrid⁴⁸ in his PSScriptTools module.

Recommendations

As you have probably gathered by now, creating a WPF based PowerShell tool is not a “quick and
dirty” task. Creating a well-designed tool will take some time and experience. With that in mind,
here are a few recommendations:

⁴⁸https://github.com/jdhitsolutions/PSScriptTools/blob/master/functions/ConvertTo-WPFGrid.ps1

https://github.com/jdhitsolutions/PSScriptTools/blob/master/functions/ConvertTo-WPFGrid.ps1
https://github.com/jdhitsolutions/PSScriptTools/blob/master/functions/ConvertTo-WPFGrid.ps1

Graphical Controllers in WPF 251

• Start simple and small. Don’t try to create a mammoth WPF-based tool on your first attempt.
• Start with a command that you already know works in the PowerShell console. You’ll drive
yourself nuts trying to write and troubleshoot a PowerShell command while you are trying to
create WPF code.

• Consider who will be using your graphical tool and their expectations.
• How will your tool be maintained? The answer might determine if you keep the XAML in the
same file as your script or as an external file. Or you might use .NET classes directly.

Your Turn

Naturally, the best way to learn this is to get your hands dirty so let’s see what you’ve picked up
from the chapter. Can you create a graphical PowerShell tool?

Start Here

Back in the chapter on converting functions to classes, you should have created a module with a
function to get computer information. Or check in the code downloads for that chapter looking at
the TMMachineInfo module.

Your Task

Create a new function called Show-MachineInfo that will create aWPF GUI where the user can enter
a computer name and see the results in the form. You can keep things simple and display the results
in a TextBlock control. We wanted to keep this simple enough that you could use .NET classes or
feel free to try out using XAML.

Our Take

We hope you had fun with this exercise. We’ve included a sample module solution in the chapter’s
download files. Our approach was to use a stack panel and .NET to keep it simple. Once we got the
form code working, we wrapped it into a function.

Graphical Controllers in WPF 252

Show-MachineInfo
Function Show-MachineInfo {

[cmdletbinding()]

[alias("smi")]

Param(

[Parameter(Position = 0)]

[Alias("cn")]

[ValidateNotNullorEmpty()]

[string]$Computername = $env:COMPUTERNAME

)

$form = New-Object System.Windows.Window

$form.Title = "TMMachine Info"

$form.Width = 300

$form.Height = 350

$stack = New-Object System.Windows.Controls.StackPanel

$txtInput = New-Object System.Windows.Controls.TextBox

$txtInput.Width = 100

$txtInput.HorizontalAlignment = "left"

$txtInput.Text = $Computername

$stack.AddChild($txtInput)

$txtResults = New-Object System.Windows.Controls.TextBlock

$txtResults.FontFamily = "Consolas"

$txtResults.HorizontalAlignment = "left"

$txtResults.Height = 200

$stack.AddChild($txtResults)

$btnRun = New-Object System.Windows.Controls.Button

$btnRun.Content = "_Run"

$btnRun.Width = 60

$btnRun.HorizontalAlignment = "Center"

$OK = {

#get machine info from the name in the text box.

#we're trimming the value in case there are extra spaces

$data = Get-MachineInfo -Computername ($txtInput.text).trim()

Graphical Controllers in WPF 253

#set the value of the txtResults to the data as a string

$txtResults.text = $data | Out-String

}

$btnRun.Add_click($OK)

$stack.AddChild($btnRun)

$btnQuit = New-Object System.Windows.Controls.Button

$btnQuit.Content = "_Quit"

$btnQuit.Width = 60

$btnQuit.HorizontalAlignment = "center"

$btnQuit.Add_click({$form.close()})

$stack.AddChild($btnQuit)

$form.AddChild($stack)

$form.add_Loaded($ok)

[void]($form.ShowDialog())

}

Now the help desk could run the command, which will default to the local computer or they could
enter a computer name.

PS C:\> show-machineinfo srv1

Graphical Controllers in WPF 254

Show-MachineInfo

As long as the form is running, they can enter any other computer name and click Run.

Let’s Review

Before we go, let’s make sure you’ve understood some of the key concepts from this chapter.

1. What are some of the benefits of using WPF instead of WinForms?
2. What are some reasons for creating graphical PowerShell tools?
3. What type of file contains the form description?
4. What is the design pattern when it comes to WPF and PowerShell?

Review Answers

We came up with these answers.

1. WPF scales better at higher resolutions and gives your tool a more modern feel.
2. You might want to provide a graphical input form for your command. You might want to

display results in a graphical form. Or you may need to have a PowerShell-based tool that does
not require the user to type anything at a PowerShell prompt other than perhaps a command
to launch the WPF script.

3. XAML
4. WPF itself is not the tool. It is merely a graphical enabler or interface to an underlying

PowerShell command.

Proxy Functions
In PowerShell, a proxy function is a specific kind of wrapper function. That is, it “wraps” around an
existing command, usually with the intent of either:

• Removing functionality
• Hard-coding functionality and removing access to it
• Adding functionality

In some cases, a proxy command is meant to “replace” an existing command. This is done by giving
the proxy the same name as the command it wraps; since the proxy gets loaded into the shell last,
it’s the one that actually gets run when you run the command name.

There’s a way, using a fully-qualified command name, to regain access to the wrapped
command, so proxy functions shouldn’t be seen as security mechanism. They’re more of
a functional convenience.

For Example

You’re probably familiar with PowerShell’s ConvertTo-HTML command. We’d like to make a version
that “replaces” the existing command, providing full access to it but always injecting a particular
CSS style sheet, so that the resulting HTML can be a bit prettier.

Creating the Proxy Base

PowerShell actually automates the first step, which is generating a “wrapper” that exactly duplicates
whatever command you’re wrapping. Here’s how to use it (we’ll put our results into a Step1 subfolder
in this chapter’s sample code):

$cmd = New-Object System.Management.Automation.CommandMetaData (Get-Command ConvertT\

o-HTML)

[System.Management.Automation.ProxyCommand]::Create($cmd) |

Out-File ConvertToHTMLProxy.ps1

Here’s the rather-lengthy result (once again, apologies for the backslashes, which represent line-
wrapping; it’s unavoidable in this instance, but the downloadable sample code won’t show them):

Proxy Functions 256

[CmdletBinding(DefaultParameterSetName='Page',

HelpUri='http://go.microsoft.com/fwlink/?LinkID=113290',

RemotingCapability='None')]

param(

[Parameter(ValueFromPipeline=$true)]

[psobject]

${InputObject},

[Parameter(Position=0)]

[System.Object[]]

${Property},

[Parameter(ParameterSetName='Page', Position=3)]

[string[]]

${Body},

[Parameter(ParameterSetName='Page', Position=1)]

[string[]]

${Head},

[Parameter(ParameterSetName='Page', Position=2)]

[ValidateNotNullOrEmpty()]

[string]

${Title},

[ValidateNotNullOrEmpty()]

[ValidateSet('Table','List')]

[string]

${As},

[Parameter(ParameterSetName='Page')]

[Alias('cu','uri')]

[ValidateNotNullOrEmpty()]

[uri]

${CssUri},

[Parameter(ParameterSetName='Fragment')]

[ValidateNotNullOrEmpty()]

[switch]

${Fragment},

[ValidateNotNullOrEmpty()]

[string[]]

Proxy Functions 257

${PostContent},

[ValidateNotNullOrEmpty()]

[string[]]

${PreContent})

begin

{

try {

$outBuffer = $null

if ($PSBoundParameters.TryGetValue('OutBuffer', [ref]$outBuffer))

{

$PSBoundParameters['OutBuffer'] = 1

}

$wrappedCmd = $ExecutionContext.InvokeCommand.GetCommand('Microsoft.PowerShe\

ll.Utility\ConvertTo-Html',

[System.Management.Automation.CommandTypes]::Cmdlet)

$scriptCmd = {& $wrappedCmd @PSBoundParameters }

$steppablePipeline = $scriptCmd.GetSteppablePipeline($myInvocation.CommandOr\

igin)

$steppablePipeline.Begin($PSCmdlet)

} catch {

throw

}

}

process

{

try {

$steppablePipeline.Process($_)

} catch {

throw

}

}

end

{

try {

$steppablePipeline.End()

} catch {

throw

}

}

Proxy Functions 258

<#

.ForwardHelpTargetName Microsoft.PowerShell.Utility\ConvertTo-Html

.ForwardHelpCategory Cmdlet

#>

This isn’t wrapped in a function, so that’s the first thing we’ll do in the next step (which we’ll put
into a file in Step2, so you can differentiate).

Modifying the Proxy

In addition to wrapping our proxy code in a function, we’re going to play with the -Head parameter.
We’re not going to remove access to it; wewant users to be able to pass content to -Head.We just want
to intercept it, and add our stylesheet to it, before letting the underlying ConvertTo-HTML command
take over. So we’ll need to test and see if our command was even run with -Head or not, and if it
was, grab that content and concatenate our own. The final result:

function NewConvertTo-HTML {

[CmdletBinding(DefaultParameterSetName='Page',

HelpUri='http://go.microsoft.com/fwlink/?LinkID=113290',

RemotingCapability='None')]

param(

[Parameter(ValueFromPipeline=$true)]

[psobject]

${InputObject},

[Parameter(Position=0)]

[System.Object[]]

${Property},

[Parameter(ParameterSetName='Page', Position=3)]

[string[]]

${Body},

[Parameter(ParameterSetName='Page', Position=1)]

[string[]]

${Head},

[Parameter(ParameterSetName='Page', Position=2)]

[ValidateNotNullOrEmpty()]

[string]

Proxy Functions 259

${Title},

[ValidateNotNullOrEmpty()]

[ValidateSet('Table','List')]

[string]

${As},

[Parameter(ParameterSetName='Page')]

[Alias('cu','uri')]

[ValidateNotNullOrEmpty()]

[uri]

${CssUri},

[Parameter(ParameterSetName='Fragment')]

[ValidateNotNullOrEmpty()]

[switch]

${Fragment},

[ValidateNotNullOrEmpty()]

[string[]]

${PostContent},

[ValidateNotNullOrEmpty()]

[string[]]

${PreContent})

begin

{

try {

$outBuffer = $null

if ($PSBoundParameters.TryGetValue('OutBuffer', [ref]$outBuffer))

{

$PSBoundParameters['OutBuffer'] = 1

}

$wrappedCmd = $ExecutionContext.InvokeCommand.GetCommand('Microsoft.PowerShe\

ll.Utility\ConvertTo-Html',

[System.Management.Automation.CommandTypes]::Cmdlet)

create our css

$css += @'

<style>

th { color:white; background-color: black;}

body { font-family: Calibri; padding: 2px }

Proxy Functions 260

</style>

'@

was -head specified?

if ($PSBoundParameters.ContainsKey('head')) {

$PSBoundParameters.head += $css

} else {

$PSBoundParameters += @{'Head'=$css}

}

$scriptCmd = {& $wrappedCmd @PSBoundParameters }

$steppablePipeline = $scriptCmd.GetSteppablePipeline($myInvocation.CommandOr\

igin)

$steppablePipeline.Begin($PSCmdlet)

} catch {

throw

}

}

process

{

try {

$steppablePipeline.Process($_)

} catch {

throw

}

}

end

{

try {

$steppablePipeline.End()

} catch {

throw

}

}

<#

.ForwardHelpTargetName Microsoft.PowerShell.Utility\ConvertTo-Html

.ForwardHelpCategory Cmdlet

#>

}

Proxy Functions 261

Our changes begin at around line 63, with the #create our css comment. Under that, we check to
see if -head had been specified; if it was, we append our CSS to it. If not, we add a “head” parameter
to $PSBoundParameters. Then we let the proxy function continue just as normal.

You may want to clean up references to the original version by deleting the HelpUri link in
cmdletbinding as well as the forwarded help link at the end. Or if you have created your
own help documentation you can delete the forward links altogether.

Adding or Removing Parameters

You’re likely to run into occasions when you do want to add or remove a parameter. For example,
a new parameter might simplify usage or unlock functionality; removing a parameter might enable
you to hard-code a value than the ultimate user shouldn’t be changing. The real key is the
$PSBoundParametersCollection.

Adding a Parameter

Adding a parameter is as easy as declaring it in your proxy function’s Param() block. Add whatever
attributes you like, and you’re good to go. You just want to remove the added parameter from
$PSBoundParameters before the underlying command executes, since that command won’t know
what to do with your new parameter.

$PSBoundParameters.Remove('MyNewParam')

$scriptCmd = {& $wrappedCmd @PSBoundParameters }

Just remove it before that $scriptCmd line, and you’re good to go.

Removing a Parameter

This is even easier - just delete the parameter from the Param() block! If you’re removing a parameter
that’s mandatory, you’ll need to internally provide a value with it. For example:

$PSBoundParameters += @{'RemovedParam'=$MyValue}

$scriptCmd = {& $wrappedCmd @PSBoundParameters }

This will re-connect the -RemovedParam parameter, feeding it whatever’s in $MyValue, before
running the underlying command.

Proxy Functions 262

Your Turn

Now it’s your turn to create a proxy function.

Start Here

In this exercise, you’ll be extending the Export-CSV command. However, you’re not going to
“overwrite” the existing command. Instead, you’ll be creating a new command that uses Export-CSV
under the hood.

Your Task

Create a proxy function named Export-TDF. This should be a wrapper around Export-CSV, and
should not include a -Delimiter parameter. Instead, it should hard-code the delimiter to be a tab.
Hint: you can specify a tab by putting a backtick, followed by the letter “t,” inside double quotes.

Our Take

Here’s what we came up with - also in the lab-results folder in the downloadable code.

function Export-TDF {

[CmdletBinding(DefaultParameterSetName='Delimiter',

SupportsShouldProcess=$true,

ConfirmImpact='Medium',

HelpUri='http://go.microsoft.com/fwlink/?LinkID=113299')]

param(

[Parameter(

Mandatory=$true,

ValueFromPipeline=$true,

ValueFromPipelineByPropertyName=$true

)]

[psobject]$InputObject,

[Parameter(Position=0)]

[ValidateNotNullOrEmpty()]

[string]$Path,

[Alias('PSPath')]

[ValidateNotNullOrEmpty()]

[string]$LiteralPath,

Proxy Functions 263

[switch]$Force,

[Alias('NoOverwrite')]

[switch]$NoClobber,

[ValidateSet('Unicode','UTF7','UTF8','ASCII','UTF32',

'BigEndianUnicode','Default','OEM')]

[string]$Encoding,

[switch]$Append,

[Parameter(ParameterSetName='UseCulture')]

[switch]$UseCulture,

[Alias('NTI')]

[switch]$NoTypeInformation

)

begin

{

try {

$outBuffer = $null

if ($PSBoundParameters.TryGetValue('OutBuffer', [ref]$outBuffer))

{

$PSBoundParameters['OutBuffer'] = 1

}

$wrappedCmd = $ExecutionContext.InvokeCommand.GetCommand('Microsoft.PowerShe\

ll.Utility\Export-Csv',

[System.Management.Automation.CommandTypes]::Cmdlet)

$PSBoundParameters += @{'Delimiter'="`t"}

$scriptCmd = {& $wrappedCmd @PSBoundParameters }

$steppablePipeline = $scriptCmd.GetSteppablePipeline($myInvocation.CommandOr\

igin)

$steppablePipeline.Begin($PSCmdlet)

} catch {

throw

}

}

process

{

try {

$steppablePipeline.Process($_)

Proxy Functions 264

} catch {

throw

}

}

end

{

try {

$steppablePipeline.End()

} catch {

throw

}

}

} #close function

We really just removed one parameter definition and added one line of code to hard-code the
delimiter. We removed the {} around the parameter names and lined things up in the Param() block
the way we would normally write code. We also removed the forwarded help links. We would still
need to create new comment based help for this command. Probably copying a lot of the help from
the original command.

Once you understand the concepts, you can use Jeff’s Copy-Command⁴⁹ function from the
PSScriptTools module.

Let’s Review

See if you can answer a couple of questions on proxy functions:

1. The boilerplate proxy function behaves exactly like what?
2. If you define an additional parameter in a proxy function, whatmust you do before thewrapped

command is allowed to run?
3. If you delete a non-mandatory parameter definition in a proxy function, what must you do

before the wrapped command is allowed to run?

Review Answers

Here are our answers:
⁴⁹https://github.com/jdhitsolutions/PSScriptTools/blob/master/docs/Copy-Command.md

https://github.com/jdhitsolutions/PSScriptTools/blob/master/docs/Copy-Command.md
https://github.com/jdhitsolutions/PSScriptTools/blob/master/docs/Copy-Command.md

Proxy Functions 265

1. The command it wraps.
2. Remove the new parameter from $PSBoundParameters.
3. You don’t need to do anything since the wrapped command can run without the removed

parameter.

Just Enough Administration: A Primer
This is going to be an interesting chapter. On one hand, the topic doesn’t have anything to do with
creating better PowerShell tools and scripts. But it does affect why you might be creating something
in the first place and how it might be used. This is, in other words, about using your tools, much
like a controller script.

We’re sure you are familiar with the concept of “least privilege.” Microsoft believes this should apply
to admins as well. PowerShell is an awesome tool for getting things done, especially across remote
computers. But by default you have to have full admin rights on the remote server and you have
access to everything. That may not always be desirable. Perhaps you want to give the help desk
access to manage a few key services and nothing else. Or you want to give a department secretary
a tool to manage the print spooler on the department print server? Or you need to give a developer
team PowerShell remote access to a dev server.

This is where the idea of Just Enough Administration, or JEA, comes into play. To be honest, we’ve
had something like this for quite awhile, but it was difficult to implement. Today the PowerShell
team has made this much easier. We’re going to cover enough basics to get you started. A good place
to get started online for more information is at https://docs.microsoft.com/en-us/powershell/script-
ing/learn/remoting/jea/overview⁵⁰, or https://msdn.microsoft.com/en-us/library/dn896648.aspx⁵¹.

Requirements

In order to work with JEA you will need aWindows platform (both client and server) withWindows
Management Framework 5.1. You’ll need full admin rights on the remote server to set up the JEA
configuration. The original version of JEA depended on PowerShell’s Desired State Configuration
(DSC); the version we’re working with is now standalone, and does not require DSC. Keep that in
mind as you’re exploring online, as the information you find won’t necessarily be applicable in every
case.

JEA support is included in PowerShell v5 and later, so you’ll need that as well. If you’ve installed
the WMF 5.1 you’re good to go.

Working with JEA is not always simple as there are a lot of moving parts to get right. And
since the whole point of JEA is to minimize access which should improve security, you
definitely should be testing everything in a non-production setting. The last thing you want
is a poorly developed JEA solution that leaves the server vulnerable.

⁵⁰https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/overview?view=powershell-7
⁵¹https://msdn.microsoft.com/en-us/library/dn896648.aspx

https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/overview?view=powershell-7
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/overview?view=powershell-7
https://msdn.microsoft.com/en-us/library/dn896648.aspx
https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/overview?view=powershell-7
https://msdn.microsoft.com/en-us/library/dn896648.aspx

Just Enough Administration: A Primer 267

Theory of Operation

Hopefully, you’re familiar with PowerShell Remoting. Normally, when you run a command like
Invoke-Command or Enter-PSSession, you connect to the default endpoint on your target computer.
That endpoint is wide-open, and allows only Administrators (by default) to connect. It basically lets
you do anything you have permission to do.

But Remoting can define many endpoints on a single computer, and each endpoint can be deeply
customized. An endpoint has an Access Control List, or ACL, which determines who can connect.
Instead of being wide-open, it can have only a tiny set of commands that you define. It can be
configured to run those commands under an alternate “Run As” account, the credentials to which
are stored as part of the endpoint. These features are a little tricky to set up, and what JEA really
does is make all that easier to use and manage. The idea is to set up a kind of “jump server”
filled with JEA-managed endpoints. Each endpoint has very tightly locked-down capabilities, and
only permits connections from specific users or groups. By connecting to a JEA endpoint, you can
accomplish tasks that your normal account doesn’t have permission to, and you can do it in a way
that minimizes danger and damage if a piece of malware compromises your account. JEA is heavily
used in Microsoft products like Azure Stack, and you’ll see more of it in the coming years.

These endpoints can contain your tools as well as native PowerShell ones - and that’s why this
chapter is included in this book. This chapter is meant only to be a primer to JEA - an introduction.
If it interests you, there’s a lot more to learn about, and we’ll continue to provide reference URLs as
appropriate.

Roles

JEA can be considered a role-based administrative system. You decide what type of role to create,
and what commands that role will be able to execute. These details are stored in a role capability
file which, is a special type of PowerShell file that has a .psrc file extension. Remember, your goal
here is to provide access to the tools and commands needed to achieve some role-related task, such
as clearing a print queue, and nothing more.

Fortunately, you don’t have to create the .psrc file by hand. Instead you’ll use the New-PSRoleCapabilityFile
cmdlet. At a minimum all you need to specify is a path.

New-PSRoleCapabilityFile -Path .\MyRoleFile.psrc

If you open the file you’ll see that it looks a lot like a module manifest which makes sense because
the file is describing the limitations. You may want to restrict access to:

• Providers like the registry
• specific cmdlets

Just Enough Administration: A Primer 268

• specific parameters with specific cmdlets
• specific external commands
• specific functions
• specific aliases
• specific variables

Essentially, unless you specify it, it won’t be included in the role capability file. We’re going to setup
a role for the help desk to manage shares but in a limited manner.

New Role Capability File

$params = @{

Path = ".\ShareAdmins.psrc"

Description = "Share Admin"

VisibleFunctions = @("Get-SMBShare", "Get-SMBShareAccess", "Get-ShareSize")

VisibleAliases = "gcim"

ModulesToImport = "ShareAdmin"

VisibleCmdlets = @{Name = "Get-CimInstance"; Parameters = @{ Name = 'classname\

';

ValidateSet = 'win32_share'

}, @{Name = "filter"}

}

Note that even though you could use wildcards with command names the recommended best
practice is to explicitly list each command. This eliminates the possibility of providing access to
an unanticipated command.

You may be wondering why Get-SMBShare and Get-SMBShareAccess are listed as functions
and not cmdlets. If you run Get-Command get-smbshare you’ll see that this command is
actually a function.

Now for the tricky part. Your role configuration file needs to be part of a module. The module
doesn’t even have to do anything. You could have an empty .psm1 file, but the module have a
subfolder called RoleCapabilities. In our case though, and most likely yours, we are going to include
some custom tools in this module. The functions you define can use any command and won’t be
restricted. Although we do recommend you use the full cmdlet name to avoid any problems. We
added this function to the module.

Just Enough Administration: A Primer 269

Get-ShareSize

Function Get-ShareSize {

[cmdletbinding()]

Param(

[Parameter(

Position = 0,

Mandatory,

ValueFromPipelineByPropertyName

)]

[string]$Path

)

Begin {

Write-Verbose "[BEGIN] Starting: $($MyInvocation.Mycommand)"

} #begin

Process {

Write-Verbose "[PROCESS] Getting share size for $path"

#use full cmdlet names to avoid problems

#these commands do not need to be specified in the psrc file

$stats = Microsoft.PowerShell.Management\Get-Childitem -Path $Path -Recurse `

-file | Microsoft.PowerShell.Utility\Measure-Object -Property Length -sum

Microsoft.PowerShell.Utility\New-Object -TypeName PSObject -Property @{

Path = $path

FileCount = $stats.count

FileSize = $stats.sum

}

}

End {

Write-Verbose "[END] Ending: $($MyInvocation.Mycommand)"

} #end

}

If you recall from the role file, we included this function name in the visible functions.

When you are finished, the module will need to be copied to the remote computer. For now, we’ll
create it in our working directory and copy files to the required locations.

Just Enough Administration: A Primer 270

Copy to module

#region copy to module

Create a folder for the module

$modulename = "ShareAdmin"

#the path could also be a directory in $env:psmodulepath

$modulePath = Join-Path -path . -ChildPath $modulename

New-Item -ItemType Directory -Path $modulePath

<# Create an empty script module and module manifest. At least one file in the

module folder must have the same name as the folder itself.

#>

$path = (Join-Path -path $modulePath -ChildPath "$modulename.psm1")

New-Item -ItemType File -Path $path

$manifest = (Join-Path -path $modulePath -ChildPath "$modulename.psd1")

New-ModuleManifest -Path $manifest -RootModule "$modulename.psm1"

Create the RoleCapabilities folder and copy in the PSRC file

$rcFolder = Join-Path -path $modulePath -ChildPath "RoleCapabilities"

Endpoints

Next, you need to create the endpoint. This is the PowerShell remoting configuration that you will
create. You can see all current endpoints with the Get-PSSessionConfiguration cmdlet. Creating a
new endpoint used to be much harder, but now we have an easy to use cmdlet. You will need to
create a file with a .pssc file extension.

New-PSSessionConfigurationFile -Path .\MyEndpoint.pssc

Well - easy but not necessary simple. You could open up the file and manually edit it, assuming you
knew what you were doing.

Perhaps the most important step here is to define the session type. For JEA you want to use
RestrictedRemoteServer. This means the session will operate in something called NoLanguagemode
which severely restricts what the user has access to. This mode will provide access to these cmdlets
and aliases, which means you do not have to include them in your role configuration:

• The Clear-Host (cls, clear) command
• The Exit-PSSession (exsn, exit) command
• The Get-Command (gcm) command

Just Enough Administration: A Primer 271

• The Get-FormatData command
• The Get-Help command
• The Measure-Object (measure) command
• The Out-Default command
• The Select-Object (select) command

You also need to specify what account to run under. If at all possible, you should use a local
virtual account (read up on those if you’re not familiar with them). If you’ll need a greater level
of permissions, check the documentation for using different types of accounts.

The last bit is to tie in the role capabilities defined earlier as that’s the whole point. You’ll do this
with a hashtable of a group, which the delegated user will belong to, and an hashtable that indicates
the role capabilities. The value must be the name of the .psrc file but without the extension.

$roles = @{

"Company\JEA_ShareAdmins" = @{RoleCapabilities = 'ShareAdmins'}

}

You can have multiple roles defined, and someone could belong to multiple groups. For your primer
purposes we’re keeping it simple.

When you are ready, go ahead and create the .pssc file.

$params = @{

Path = ".\ShareAdmin.pssc"

SessionType = "RestrictedRemoteServer"

RunAsVirtualAccount = $True

RoleDefinitions = $roles

Description = "JEA Share Admin endpoint"

}

New-PSSessionConfigurationFile @params

Once you’ve completed your configuration you should test it.

Test-PSSessionConfigurationFile .\ShareAdmin.pssc

The configuration needs to be set up on the remote server so you’ll need to copy the necessary files
to the server.

Just Enough Administration: A Primer 272

$s = New-PSSession -ComputerName chi-fp02

#copy the pssc file to C:\

copy .\shareadmin.pssc -Destination C:\ -ToSession $s

#copy the module with the role configuration

copy .\ShareAdmin -Container -Recurse `

-Destination 'C:\Program Files\WindowsPowerShell\Modules' -ToSession $s

The last step is to register it and bring the special endpoint to life with Register-PSSessionConfiguration.

invoke-command {

Register-PSSessionConfiguration -Path c:\shareadmin.pssc -Name "ShareAdmins"

} -Session $s

This will restart with WinRM service on the remote computer, breaking any open sessions.

You can try it out using an account that is a member of the specified group.

$enter = @{

ComputerName = "chi-fp02"

ConfigurationName =-"ShareAdmins"

Credential = "company\jshields"

}

Enter-PSSession @enter

The user will only have access to the commands you’ve specified.

[chi-fp02]: PS>get-command | select name

Name

Clear-Host

Exit-PSSession

Get-CimInstance

Get-Command

Get-FormatData

Get-Help

Get-ShareSize

Get-SmbShare

Get-SmbShareAccess

Just Enough Administration: A Primer 273

Measure-Object

Out-Default

Select-Object

You can only run what has been specified in the role capability file, including the Get-ShareSize

function from our module.

[chi-fp02]: PS>gcim win32_share -filter "name='it'"

Name Path Description

---- ---- -----------

IT E:\Shared IT Data Share

[chi-fp02]: PS>gcim win32_bios

Cannot validate argument on parameter 'ClassName'. The argument "win32_bios"

does not belong to the set "win32_share" specified by the ValidateSet

attribute. Supply an argument that is in the set and then try the command again.

+ CategoryInfo : InvalidData: (:) [Get-CimInstance],

+ ParameterBindingValidationException

+ FullyQualifiedErrorId : ParameterArgumentValidationError,Get-CimInstance

[chi-fp02]: PS>get-smbshare public | get-sharesize

Path FileSize FileCount

---- -------- ---------

E:\shared\Public 8932930 121

[chi-fp02]: PS>get-childitem e:\shared\public

The term 'Get-ChildItem' is not recognized as the name of a cmdlet, function,

script file, or operable program. Check

the spelling of the name, or if a path was included, verify that the path

is correct and try again.

+ CategoryInfo : ObjectNotFound: (Get-ChildItem:String) [],

+ CommandNotFoundException

+ FullyQualifiedErrorId : CommandNotFoundException

Should you need to update the role or module, you can make the changes to those files and copy
them again to the server. They should take affect the next time a JEA session is opened. If you want
to wipe the entire configuration and start all-over, unregister the configuration.

Just Enough Administration: A Primer 274

Invoke-command {

Unregister-PSSessionConfiguration -Name shareadmins

} -computername chi-fp02

Because this is such a specialized topic, and we’ve only provide some basic guidance we’ll save you
the frustration of creating a JEA based tool. And it can be frustrating because nothing is available
for the user to run, unless it is specified as part of the endpoint.

Let’s Review

Let’s review and see what you picked up in the chapter.

1. What type of PowerShell file contains the role definitions?
2. What type of PowerShell file contains the session configuration?
3. Where does the role capability file need to be stored?
4. Are your custom module functions limited in scope or execution?

Review Answers

Did you come up with answers like these?

1. A .psrc file.
2. A .pssc file.
3. The .psrc file must be copied to the RoleCapabilities file of a module which is then copied to

the remote server.
4. Generally not. These functions can use commands even if not explicitly granted in the .psrc

file. Although we recommend using the fully cmdlet name and including the function in the
VisibleFunctions setting.

PowerShell in ASP.NET: A Primer
One interesting fact about PowerShell’s construction is that PowerShell itself - the engine that runs
commands - is a .NET Framework class. The PowerShell you’re used to - either the console or the
ISE, perhaps - is actually a hosting application. These applications give you a way of feeding stuff
to the actual engine, and a way for the engine’s output to be shown to you. Technically, any .NET
Framework application can “host” the PowerShell engine - including ASP.NET.

Hosting the engine in an ASP.NET web application is a cool way to create web-based self-service
tools - a different kind of GUI than WPF or WinForms, basically. PowerShell would run on the web
server, under whatever identity you’ve configured IIS to run ASP.NET as. This opens up a ton of
useful possibilities.

Caveats

There are a few things we need to make clear:

• This chapter isn’t going to teach you ASP.NET. There are entire series of books that will do
that; we’re assuming that you know ASP.NET already.

• The content in this chapter is written for “full” ASP.NET. As of this writing, ASP.NET Core 1.0
can’t host PowerShell all that well or easily. Therefore, this chapter applies only to Microsoft
Windows, not other operating systems which may support ASP.NET Core.

• This chapter isn’t going to teach you IIS, either. We expect that you know how to configure IIS
to run ASP.NET, including dealing with credentials, identities, and so on.

You also need to know that using the “raw” engine is a little different from what you’re used to in
the ISE or PowerShell console. The runspaces created by the engine aren’t populated with all the
global variables that you’re used to, for example - it’s the console (or ISE) which creates those, not
PowerShell itself. So you may find that you need to do a little more work to set up some commands
to run properly.

The Basics

You’ll need to start by making sure you have the PowerShell Reference Assemblies in your IDE
(e.g., Visual Studio). Specifically, you need the System.Management.Automation reference assembly.
Beware of unofficial NuGet packages - these can be outdated or even contain malware. The official
one⁵² is owned by “PowerShellTeam,” which is what you want to look for.

⁵²https://www.nuget.org/packages/System.Management.Automation

https://www.nuget.org/packages/System.Management.Automation
https://www.nuget.org/packages/System.Management.Automation
https://www.nuget.org/packages/System.Management.Automation

PowerShell in ASP.NET: A Primer 276

You’ll then need to add, in yourASP.NET code, a Using reference for System.Management.Automation.

Then you need to think about what you’ll do with the eventual command output. PowerShell returns
everything as collections of objects; you’ll need to plan for a way to display that information. You
could, for example, pipe your command to Out-String, which will cause PowerShell to render the
objects as text using its own formatting subsystem - more or less what the console host application
does when you run a command. Or, you could construct some big graphical display, like the
Exchange Management Console, complete with icons and whatever information you want. It’s up
to you.

When you’re ready, it’s pretty easy to run a command:

var shell = PowerShell.Create();

shell.Commands.AddScript("Get-Service | Out-String");

// this also works and is equivalent:

// shell.AddCommand("Get-Service");

// shell.AddCommand("Out-String");

var results - shell.Invoke();

foreach (var psObject in results) {

// use psObject

}

The AddCommand technique is a bit harder to use, as each command is added individually. You chain
an AddParameter() call to specify parameters:

shell.AddCommand("Get-Service").

AddParameter("Name","WinRM")

The above also assumes you want to use the default runspace, which loads most of the core
PowerShell command automatically. But you can also instantiate runspaces that contain only a
custom set of commands - the official docs have examples on doing so.

Simply enumerate the results and you’re done. Here’s a good walk-through⁵³ if you’d like to explore
more, and the Microsoft documentation⁵⁴ is definitely worth a read.

Beyond ASP.NET

There are third-party products that allow PowerShell scripts to be run by IIS, enabling those scripts
to create web pages which are transmitted to requesting clients. In other words, you basically use
PowerShell instead of ASP.NET on the web server. PowerShell Server⁵⁵ is one such third-party tool,
Posh Server⁵⁶ is another.

⁵³http://jeffmurr.com/blog/?p=142
⁵⁴https://dotnet.microsoft.com/learn/aspnet/what-is-aspnet
⁵⁵http://powershellserver.com
⁵⁶http://poshserver.net

http://jeffmurr.com/blog/?p=142
https://dotnet.microsoft.com/learn/aspnet/what-is-aspnet
http://powershellserver.com/
http://poshserver.net/
http://jeffmurr.com/blog/?p=142
https://dotnet.microsoft.com/learn/aspnet/what-is-aspnet
http://powershellserver.com/
http://poshserver.net/

Part 4: The Data Connection
In this Part, we’ll look at various kinds of structured data that you may need to work with from
within PowerShell. It might mean grabbing something from some type of data source, or perhaps
putting something into a particular data type.We’ll try and use some realistic examples that illustrate
how to use these different structured data constructs, and give you some tips for keeping out of
trouble.

Working with SQL Server Data
We often see people struggle - really hard, in some cases - to store data in Microsoft Excel, using
PowerShell to automate the process. This makes us sad. Programmatically, Excel is kind of a hunk
of junk. Sure, it can make charts and graphs - but only with significant effort and a lot of delicacy.
But, people say, “I already have it!” This also makes us sad, because for the very reasonable price
of $FREE, you can have SQL Server (Express), and in fact you probably have some flavor of SQL
Server on your network that you could use. But why?

• SQL Server is easy to use from PowerShell code. Literally a handful of lines, and you’re done.
• SQL Server Reporting Services (also free in the Express edition) can turn SQL Server data into
gorgeous reports with charts and graphs - and can automate the production and delivery of
those reports with zero effort from you.

• SQL Server is something that many computers can connect to at once, meaning you can write
scripts that run on servers, letting those servers update their own data in SQL Server. This is
faster than a script which reaches out to query many servers in order to update a spreadsheet.

We don’t know how to better evangelize using SQL Server for data storage over Microsoft Excel.

SQL Server Terminology and Facts

Let’s quickly get some terminology and basic facts out of the way.

• SQL Server is a service that runs on a server. Part of what you’ll need to know, to use it, is the
server’s name. A single machine (physical or VM) can run multiple instances of SQL Server,
so if you need to connect to an instance other than the default, you’ll need the instance name
also. The naming pattern is SERVER\INSTANCE.

• A SQL Server instance can host one or more databases. You will usually want a database
for each major data storage purpose. For example, you might ask a DBA to create an
“Administration Data” database on one of your SQL Server computers, giving you a place to
store stuff.

• Databases have a recovery mode option. Without getting into a lot of details, you can use the
“Simple” recovery mode (configurable in SQL Server Management Studio by right-clicking the
database and accessing its Options page) if your data isn’t irreplaceable and you don’t want to
mess with maintaining the database’s log files. For anything more complex, either take a DBA
to lunch, or read Don’s Learn SQL Server Administration in a Month of Lunches.

• Databases contain tables, each of which is analogous to an Excel worksheet.

Working with SQL Server Data 279

• Tables consist of rows (entities) and columns (fields), which correspond to the rows and columns
of an Excel sheet.

• Columns have a data type, which determines the kind of data they can store, like text
(NVARCHAR), dates (DATETIME), or numbers (INT). The data type also determines the data
ranges. For example, NVARCHAR(10) can hold 10 characters; NVARCHAR(MAX) has no limit.
INT can store smaller values than BIGINT, and bigger values than TINYINT.

• SQL Server defaults to Windows Authentication mode, which means the domain user account
running your scripts must have permission to connect to the server (a login), and permission
to use your database (a database user). This is the safest means of authentication as it doesn’t
require passwords to be kept in your script. If running a script as a scheduled task, the task can
be set to “run as” a domain user with the necessary permissions.

Just seven little things to know, and you’re good to go.

Even if you are the only person who will ever interact with stored data, you are still better
off installing SQL Server Express (did we mention it is free?) instead of relying on Excel.

Connecting to the Server and Database

You’ll need a connection string to connect to a SQL Server computer/instance, and to a specific
database. If you’re not usingWindows Authentication, the connection string can also contain a clear-
text username and password, which is a really horrible practice. We use ConnectionStrings.com⁵⁷
to look up connection string syntax, but here’s the one you’ll use a lot:

Use Server=SERVER\INSTANCE;Database=DATABASE;Trusted_Connected=True; to connect to a given
server and instance (omit the \INSTANCE if you’re connecting to the default instance) and database.
Note that SQL Server Express usually installs, by default, as an instance named SQLEXPRESS. You can
run Get-Service in PowerShell to see any running instances on a computer, and the service name
will include the instance name (or just MSSQLSERVER if it’s the default).

With that in mind, it’s simple to code up a connection:

$conn = New-Object -Type System.Data.SqlClient.SqlConnection

$conn.ConnectionString = 'Server=SQL1;Database=MyDB;Trusted_Connection=True;'

$conn.Open()

You can leave the connection open for your entire script; be sure to run $conn.Close()when you’re
done, though. It’s not a tragedy to not close the connection; when your script ends, the connection
object will vanish, and SQL Server will automatically close the connection a bit later. But if you’re
using a server that’s pretty busy, the DBA is going to get in your face about leaving the connection

⁵⁷http://connectionstrings.com

http://connectionstrings.com/
http://connectionstrings.com/

Working with SQL Server Data 280

open. And, if you run your script multiple times in a short period of time, you’ll create a new
connection each time rather than re-using the same one. The DBAs will definitely notice this and
get agitated.

You do not need to have any SQL Server software installed locally for these steps as they
are relying on out-of-the-box bits from the .NET Framework. And even if you are working
with a local SQL installation, you should still follow SQL Server best practices.

Writing a Query

The next thing you need to do is retrieve, insert, update, or remove some data. This is done bywriting
queries in the Transact-SQL (T-SQL) language, which corresponds with the ANSI SQL standard,
meaning most queries look basically the same on most database servers. There’s a great free online
SQL tutorial⁵⁸ if you need one, but we’ll get you started with the basics.

To do this, you’ll need to know the table and column names from your database. SQL Server
Management Studio is a good way to discover these.

For the following sections, we’re going to focus on query syntax, and then give you an example of
how we might build that query in PowerShell. Once your query is in a variable, it’s easy enough
to run it - and we’ll cover how to do that in a bit. Also, we’re not going to be providing exhaustive
coverage of SQL syntax; we’re covering the basics. There are plenty of resources, including the
aforementioned online tutorial, if you need to dig deeper.

Adding Data

Adding data is done by using an INSERT query. The basic syntax looks like this:

INSERT INTO <tablename>

(Column1, Column2, Column3)

VALUES (Value1, Value2, Value3)

So you’ll need to know the name of the table you’re adding data to, and you’ll need to know the
column names. You also need to know a bit about how the table was defined. For example, if a
“Name” column is marked as mandatory (or “NOT NULL”) in the table design, then you must list
that column and provide a value for it. Sometimes, a table may define a default value for a column,
in which case you can leave the column out if you’re okay with that default value. Similarly, a table
can permit a given column to be empty (NULL), and you can omit that column from your list if you
don’t want to provide a value.

⁵⁸http://www.w3schools.com/sql/

http://www.w3schools.com/sql/
http://www.w3schools.com/sql/
http://www.w3schools.com/sql/

Working with SQL Server Data 281

Whatever order you list the columns in, your values must be in the same order. You’re not forced to
use the column order that the table defines; you can list them in any order.

Numeric values aren’t delimited in T-SQL. String values are delimited in single quotes; any single
quotes within a string value (like “O’Leary”) must be doubled (“O’‘Leary”) or your query will fail.
Dates are treated as strings, and are delimited with single quotes.

It’s dangerous to build queries from user-entered data. Doing so opens your code to a kind
of attack called SQL Injection. We’re assuming that you plan to retrieve things like system
data, which shouldn’t be nefarious, rather than accepting input from users. The safer way
to deal with user-entered data is to create a stored procedure to enter the data, but that’s
well beyond the scope of this book.

We might build a query in PowerShell like this:

$ComputerName = "SERVER2"

$OSVersion = "Win2012R2"

$query = "INSERT INTO OSVersion (ComputerName,OS) VALUES('$ComputerName','$OSVersion\

')"

This assumes a table named OSVersion, with columns named ComputerName and OS. Notice that
we’ve put the entire query into double quotes, allowing us to just drop variables into the VALUES list.

We always put our query in a variable, because that makes it easy to output the query text
by using Write-Verbose. That’s a great way to debug queries that aren’t working, since you
get to see the actual query text with all the variables “filled-in.”

Removing Data

A DELETE query is used to delete rows from a table, and it is almost always accompanied by a WHERE
clause so that you don’t delete all the rows. Be really careful, as there’s no such thing as an “UNDO”
query!

DELETE FROM <tablename> WHERE <criteria>

So, suppose we’re getting ready to insert a new row into our table, which will list the OS version of
a given computer. We don’t know if that computer is already listed in the table, so we’re going to
just delete any existing rows before adding our new one. Our DELETE query might look like this:

Working with SQL Server Data 282

$query = "DELETE FROM OSVersions WHERE ComputerName = '$ComputerName'"

There’s no error generated if you attempt to delete rows that don’t exist.

Changing Data

An UPDATE query is used to change an existing row, and is accompanied by a SET clause with the
changes, and a WHERE clause to identify the rows you want to change.

UPDATE <tablename>

SET <column> = <value>, <column> = <value>

WHERE <criteria>

For example:

$query = "UPDATE DiskSpaceTracking `

SET FreeSpaceOnSysDrive = $freespace `

WHERE ComputerName = '$ComputerName'"

We’d ordinarily do that all on one line; we’ve broken it up here just to make it fit more easily in the
book. This assumes that $freespace contains a numeric figure, and that $ComputerName contains a
computer name.

In SQL Server, column names aren’t case-sensitive.

Retrieving Data

Finally, the big daddy of queries, the SELECT query. This is the only one that returns data (although
the other three will return the number of rows they affected). This is also the most complex query
in the language, so we’re really only tackling the basics.

SELECT <column>,<column>

FROM <tablename>

WHERE <criteria>

ORDER BY <column>

Working with SQL Server Data 283

The WHERE and ORDER BY clauses are optional, and we’ll come to them in a moment.

Beginning with the core SELECT, you follow with a list of columns you want to retrieve. While the
language permits you to use * to return all columns, this is a poor practice. For one, it performs
slower than a column list. For another, it makes your code harder to read. So stick with listing the
columns you want.

The FROM clause lists the table name. This can get a ton more complex if you start doing multi-table
joins, but we’re not getting into that in this book.

A WHERE clause can be used to limit the number of rows returned, and an ORDER BY clause can be used
to sort the results on a given column. Sorting is ascending by default, or you can specify descending.
For example:

$query = "SELECT DiskSpace,DateChecked `

FROM DiskSpaceTracking `

WHERE ComputerName = '$ComputerName' `

ORDER BY DateChecked DESC"

Creating Tables Programmatically

It’s also possible to write a data definition language (DDL) query that creates tables. The four
queries we’ve covered up to this point are data manipulation language (DML) queries. The ANSI
specification doesn’t cover DDL as much as DML, meaning DDL queries differ a lot between server
brands. We’ll continue to focus on T-SQL for SQL Server; we just wanted you to be aware that you
won’t be able to re-use this syntax on other products without some tweaking.

CREATE TABLE <tablename> (

<column> <type>,

<column> <type>

)

You list each column name, and for each, provide a datatype. In SQL Server, you’ll commonly use:

• Int or BigInt for integers
• VarChar(x) or VarChar(MAX) for string data; “x” determines the maximum length of the field
while “MAX” indicates a binary large object (BLOB) field that can contain any amount of text.

• DateTime

You want to use the smallest data type possible to store the data you anticipate putting into the table,
because oversized columns can cause a lot of wasted disk space.

Working with SQL Server Data 284

Running a Query

You’ve got two potential types of queries: ones that return data (SELECT) and ones that don’t (pretty
much everything else). Running them starts the same:

$command = New-Object -Type System.Data.SqlClient.SqlCommand

$command.Connection = $conn

$command.CommandText = $query

This assumes $conn is an open connection object, and that $query has your T-SQL query. How you
run the command depends on your query. For queries that don’t return results:

$command.ExecuteNonQuery()

That can produce a return object, which you can pipe to Out-Null if you don’t want to see it. For
queries that produce results:

$reader = $command.ExecuteReader()

This generates a DataReader object, which gives you access to your queried data. The trick with
these is that they’re forward-only, meaning you can read a row, and then move on to the next row
- but you can’t go back to read a previous row. Think of it as an Excel spreadsheet, in a way. Your
cursor starts on the first row of data, and you can see all the columns. When you press the down
arrow, your cursor moves down a row, and you can only see that row. You can’t ever press up arrow,
though - you can only keep going down the rows.

You’ll usually read through the rows using a While loop:

while ($reader.read()) {

#do something with the data

}

The Read() method will advance to the next row (you actually start “above” the first row, so
executing Read() the first time doesn’t “skip” any data), and return True if there’s a row after that.

To retrieve a column, inside the While loop, you run GetValue(), and provide the column ordinal
number of the column you want. This is why it’s such a good idea to explicitly list your columns
in your SELECT query; you’ll know which column is in what position. The first column you listed in
your query will be 0, the one after that 1, and so on.

So here’s a full-fledged example:

Working with SQL Server Data 285

$conn = New-Object -Type System.Data.SqlClient.SqlConnection

$conn.ConnectionString = 'Server=SQL1;Database=MyDB;Trusted_Connection=True;'

$conn.Open()

$query = "SELECT ComputerName,DiskSpace,DateTaken FROM DiskTracking"

$command = New-Object -Type System.Data.SqlClient.SqlCommand

$command.Connection = $conn

$command.CommandText = $query

$reader = $command.ExecuteReader()

while ($reader.read()) {

[pscustomobject]@{'ComputerName' = $reader.GetValue(0)

'DiskSpace' = $reader.GetValue(1)

'DateTaken' = $reader.GetValue(2)

}

}

$conn.Close()

This snippet will produce objects, one object for each row in the table, and with each object having
three properties that correspond to three of the table columns.

If by chance you don’t remember your column positions, you can use something like this to auto-
discover the column number.

while ($reader.read()) {

[pscustomobject]@{

'ComputerName' = $reader.GetValue($reader.getordinal("computername"))

'DiskSpace' = $reader.GetValue($reader.getordinal("diskspace"))

'DateTaken' = $reader.GetValue($reader.getordinal("datetaken"))

}

}

Regardless of the approach we’d usually wrap this in a Get- function, so that we could just run the
function and get objects as output. Or a corresponding Set-, Update- or Remove- function depending
on your SQL query.

Invoke-Sqlcmd

If you by chance have installed a local instance of SQL Server Express, you will also have a set of
SQL-related PowerShell commands and a SQLSERVER PSDrive. We aren’t going to cover them as
this isn’t a SQL Server book. But you will want to take advantage of Invoke-Sqlcmd.

Working with SQL Server Data 286

Instead of dealing with the .NET Framework to create a connection, command and query, you can
simply invoke the query.

Invoke-Sqlcmd "Select Computername,Diskspace,DateTaken from DiskTracking" `

-Database MyDB

You can use any of the query types we’ve shown you in this chapter. One potential downside to this
approach in your toolmaking is that obviously this will only work locally, or where the SQL Server
modules have been installed. And there is a bit of a lag while the module is initially loaded.

Thinking About Tool Design Patterns

If you’ve written a tool that retrieves or creates some data that you intend to put into SQL Server,
then you’re on the right track. A next step would be a tool that inserts the data into SQL Server
(Export-Something), and perhaps a tool to read the data back out (Import-Something). This approach
maintains a good design pattern of each tool doing one thing, and doing it well, and lets you create
tools that can be composed in a pipeline to perform complex tasks. You can read a bit more about
that approach, and even get a “generic” module for piping data in and out of SQL Server databases
in Ditch Excel: Making Historical & Trend Reports in PowerShell⁵⁹, a free ebook.

Let’s Review

Because we don’t want to assume that you have access to a SQL Server computer, we aren’t going
to present a hands-on experience in this chapter. However, we do encourage you to try and answer
these questions:

1. How to you prevent DELETE from wiping out a table?
2. What method do you use to execute an INSERT query?
3. What method reads a single database row from a reader object?

Review Answers

Here are our answers:

1. Specify a WHERE clause to limit the deleted rows.
2. The ExecuteNonQuery() method.
3. The Read() method.

⁵⁹https://www.gitbook.com/book/devopscollective/ditch-excel-making-historical-trend-reports-in-po

https://www.gitbook.com/book/devopscollective/ditch-excel-making-historical-trend-reports-in-po
https://www.gitbook.com/book/devopscollective/ditch-excel-making-historical-trend-reports-in-po

Working with XML Data
As a PowerShell toolmaker you may have a need to work with a variety of file types and sources.
One such type, which can appear daunting at first, is XML. Perhaps you need to get data from XML
to use it with your tool. Or perhaps your tool needs to create an XML document. In this chapter,
we’ll explore a variety of ways you might interact with XML in your toolmaking.

Simple: CliXML

If you need to store results from a PowerShell command in a rich format that you intend to use
again in a future PowerShell session, this is easily managed with the Clixml cmdlets Export-Clixml
and Import-Clixml.

Remember that PowerShell tools should do one thing and typically they write objects to the
pipeline. You shouldn’t really need to incorporate these cmdlets in your functions except for
rare exceptions. Although you might include them in a controller script.

A great benefit of using Export-Clixml is that it also stores type information along with the data.
When you import the file PowerShell recreates the objects. Note that these files can only be used in
PowerShell.

You might decide to export drive information.

Get-CimInstance win32_logicaldisk -filter "drivetype=3" |

Export-Clixml .\disks.xml

You can view the file in Notepad but you shouldn’t need to modify it. Later, perhaps as part of
another scripted process, you may want to work with the results. Easy. Import the file.

$d = import-clixml .\disks.xml

The variable $d now holds the same values as the original command and you can work with it the
same way. If you need to work with data between PowerShell sessions, these are the best cmdlets.

Working with XML Data 288

Importing Native XML

Of course XML is a long-standing industry format and youmay need to consume orworkwith native
XML files, perhaps something created outside of PowerShell. Since the XML data is irrelevant for
our purposes, we’ll have some fun with an XML file called BandData.xml which you can find in the
corresponding code chapter.

To bring this data into PowerShell all we need to do is get the content and tell PowerShell to treat it
as an XML document.

[xml]$data = Get-content .\BandData.xml

The variable $data is now an XML document which we can navigate like any rich object. We
recommend using tab completion to help properly format names with special characters or spaces.

PS C:\> $data

xml #comment Bands

--- -------- -----

version="1.0" encoding="UTF-8" ... Bands

PS C:\> $data.'#comment'

This is a demonstration XML file

PS C:\> $data.Bands

Band

{Name, Name, Name, Name...}

PS C:\> $data.bands.band

Name Lead Members

---- ---- -------

Name Steven Tyler Members

Name Geddy Lee Members

Name Ozzie Osbourne Members

Name Joe Elliott Members

Name Bret Michaels Members

Name Vince Neil Members

Working with XML Data 289

Name Jim Morrison Members

Name Kurt Cobain Members

Name Ian Gillan Members

...

PS C:\> $data.bands.band[0]

Name Lead Members

---- ---- -------

Name Steven Tyler Members

PS C:\> $data.bands.band[0].name

Year City #text

---- ---- -----

1970 Boston, MA Aerosmith

PS C:\> $data.bands.band[0].members

Member

{Tom Hamilton, Joey Kramer, Joe Perry, Brad Whitford}

In this file the core data is a Band object. In XML-speak this is a node. The tricky part is turning this
data back into a meaningful object you can use in PowerShell.

$data.bands.band |

Select-Object -property @{Name="Name";Expression = {$_.name.'#text'}},

@{Name="Founded";Expression={$_.name.Year}},

@{Name="Lead";Expression={$_.lead}},

@{Name="Members";Expression={$_.members.member}}

This should give you output like this:

Name Founded Lead Members

---- ------- ---- -------

Aerosmith 1970 Steven Tyler {Tom Hamilton, Joey Kramer, Joe Perry,

Brad Whitford}

Rush 1968 Geddy Lee {Alex Lifeson, Neil Peart}

Black Sabbath 1968 Ozzie Osbourne {Tony Iommi, Geezer Butler, Bill Ward}

Def Leppard Joe Elliott {Rick Allen, Phil Collen, Tony Kenning,

Rick Savage}

Poison Bret Michaels {Rikki Rockett, C.C. DeVille,

Working with XML Data 290

Bobby Dall}

...

Modify XML Data

Let’s say you are a big Poison fan and need to update missing information. First, you need to select
the specific node. You can use Where-Object to filter the nodes:

PS C:\> $p = $data.bands.band | where {$_.Name.'#text' -eq 'Poison'}

PS C:\> $p

Name Lead Members

---- ---- -------

Name Bret Michaels Members

Or if you have experience with InfoPath and XML queries (which is outside the scope of this book)
you can use Select-XML:

PS C:\> $data.SelectNodes("//Bands/Band[Name='Poison']")

Name Lead Members

---- ---- -------

Name Bret Michaels Members

The Year property is a child of the Name property.

PS C:\> $p.name

Year City #text

---- ---- -----

Poison

The band was founded in 1983 in Mechanicsburg, Pennsylvania so let’s update.

Working with XML Data 291

PS C:\> $p.name.year = '1983'

PS C:\> $p.name.city = 'Mechanicsburg, PA'

PS C:\> $p.name

Year City #text

---- ---- -----

1983 Mechanicsburg, PA Poison

Add XML Data

Or let’s say you need to add something to this XML file. To do this, you need to have some
understanding of how the XML file is laid out. In looking at the file in a text editor, we can determine
that if we want to add an band object for the group Cream, we will need to eventually have XML
that looks like this:

<Band>

<Name Year="1966" City="London, England">Cream</Name>

<Lead>Eric Clapton</Lead>

<Members>

<Member>Ginger Baker</Member>

<Member>Jack Bruce</Member>

</Members>

</Band>

The first step is to create an empty XML element called ‘Band’.

Don’t forget that XML is case-sensitive.

$band = $data.CreateNode("element","Band","")

This node has child elements of Name, Lead and Members. The Name element has additional
properties called attributes for the founding year and location. We’ll have to accommodate those as
well. In fact, let’s create the Name element.

$name = $data.CreateElement("Name")

The band name will be the text value of this node so that is easily set:

Working with XML Data 292

$name.InnerText = "Cream"

The attributes are a bit trickier. You create them as distinct elements:

$y = $data.CreateAttribute("Year")

$y.InnerText = "1966"

$c = $data.CreateAttribute("City")

$c.InnerText = "London, England"

And then add them to their parent element, in this case the Name element.

$name.Attributes.Append($y)

$name.Attributes.Append($c)

You can verify by checking the OuterXML property.

PS C:\> $name.OuterXml

<Name Year="1966" City="London, England">Cream</Name>

If this looks good you can append this to the Band element.

$band.AppendChild($name)

Follow the same steps to add the Lead element.

$LeadMember = $data.CreateElement("Lead")

$LeadMember.InnerText = "Eric Clapton"

$band.AppendChild($LeadMember)

The Members node is a bit more complicated since it has child objects of Member but hopefully by
now you’ve recognized the pattern.

Working with XML Data 293

$members = $data.CreateNode("element","Members","")

$people = "Ginger Baker", "Jack Bruce"

foreach ($item in $people) {

$m = $data.CreateElement("Member")

$m.InnerText = $item

$members.AppendChild($m)

}

#add members to the band node

$band.AppendChild($members)

Finally, add the new band object to the collection.

$data.Bands.AppendChild($band)

Saving XML

All we’ve done to this point is update the object. To update the file itself, we need to save it by
specifying a path.

$data.Save('c:\work\banddata.xml')

You specify the original file if you want to update it. We recommend using complete and absolute
path names. Relative paths and shortcut PSDrives may not work.

ConvertTo-Xml

We mentioned at the beginning of this chapter that the -Clixml cmdlets are an easy way to convert
PowerShell data to XML. But those files are intended primarily for use within PowerShell. What if
you need to create XML files to be used outside of PowerShell? That’s where ConvertTo-Xml comes
into play.

You can convert any output but we’ll keep it simple and limit ourselves to data from the local
computer. Pipe any cmdlet to ConvertTo-Xml to create an XML document.

Get-CimInstance win32_service | ConvertTo-Xml

If you look through the document you’ll realize the cmdlet converted all properties, not just what
you see by default. Most likely you will want to be a little more selective.

Working with XML Data 294

$s = Get-CimInstance win32_service -ComputerName $env:computername |

Select-Object * -ExcludeProperty CimClass,Cim*Properties |

ConvertTo-Xml

This cmdlet will create generic Object nodes.

PS C:\> $s.objects.object[0]

Type Property

---- --------

System.Management.Automation.PSCustomObject {PSShowComputerName, Name, S...}

The cmdlet also does a decent job of capturing each property type.

PS C:\> $s.objects.object[0].Property

Name Type #text

---- ---- -----

PSShowComputerName System.Boolean True

Name System.String AdobeFlashPlayerUpdateSvc

Status System.String OK

ExitCode System.UInt32 0

DesktopInteract System.Boolean False

ErrorControl System.String Normal

PathName System.String C:\windows\SysWOW64\Macromed\Flash

\FlashPlayerUpdateService.exe

ServiceType System.String Own Process

StartMode System.String Manual

Caption System.String Adobe Flash Player Update Service

Description System.String This service keeps your Adobe Flash

Player installation up to...

InstallDate System.Object

CreationClassName System.String Win32_Service

Started System.Boolean False

SystemCreationClassName System.String Win32_ComputerSystem

SystemName System.String WIN81-ENT-01

AcceptPause System.Boolean False

AcceptStop System.Boolean False

DisplayName System.String Adobe Flash Player Update Service

ServiceSpecificExitCode System.UInt32 0

StartName System.String LocalSystem

State System.String Stopped

Working with XML Data 295

TagId System.UInt32 0

CheckPoint System.UInt32 0

ProcessId System.UInt32 0

WaitHint System.UInt32 0

PSComputerName System.String WIN81-ENT-01

While the XML document is still stored as a variable you could modify using the steps we showed
earlier. When you are ready to save the data to a file use the Save() method.

$s.Save("c:\work\services.xml")

Creating native XML from scratch

The ConvertTo-Xml cmdlet is handy although it is a bit generic. If you truly need to create more
meaningful XML you can build your own from scratch. Let’s say you need to create an XML file
for an external application with update (or hotfix) information. The application is expecting a per
computer node with this hotfix information:

• update-id
• update-type
• install-date
• installed-by
• caption

First, we need data.

$data = Get-HotFix -ComputerName $env:computername |

Select-Object -Property Caption,InstalledOn,InstalledBy,HotfixID,Description

Because the XML node names won’t always align with the PowerShell property names, and we
want avoid a lot of hard coding, we’ll create a “mapping” hashtable.

Working with XML Data 296

$map = [ordered]@{

'update-id' = 'HotFixID'

'update-type' = 'Description'

'install-date' = 'InstalledOn'

'install-by' = 'InstalledBy'

caption = 'Caption'

}

You’ll see how we use this in a bit. But we need an XML document.

[xml]$Doc = New-Object System.Xml.XmlDocument

While it is not an absolute requirement, you should create an XML declaration for the version and
encoding and append it to the document.

$dec = $Doc.CreateXmlDeclaration("1.0","UTF-8",$null)

$doc.AppendChild($dec) | Out-Null

You’ll see us starting to use Out-Null to suppress the XML output since we don’t really want to see
it.

Optionally, you might want to include a comment in your XML document. And for the sake of
variety, we’ll even create and append it all in one command.

$text = @"

Hotfix Inventory

$(Get-Date)

"@

$doc.AppendChild($doc.CreateComment($text)) | Out-Null

Now to the heart of the document. We want to have a computer node to show the computername.
The process should be looking familiar by now.

$root = $doc.CreateNode("element","Computer",$null)

$name = $doc.CreateElement("Name")

$name.InnerText = $env:computername

$root.AppendChild($name) | Out-Null

We’re creating, defining and appending to the parent. Where this gets interesting is where you have
to create multiple, nested entries. You don’t want to have to manually create everything one item at
a time. Let PowerShell do the work for you.

We know we’re going to need an outer node for Updates.

Working with XML Data 297

$hf = $doc.CreateNode("element","Updates",$null)

Within this node, we need to create an entry for each update. This is where the mapping table comes
into play. We can loop through each update from $data and create an update entry. Then we can use
a nested loop to go through the mapping hashtable to create the corresponding entries.

foreach ($item in $data) {

$h = $doc.CreateNode("element","Update",$null)

#create the entry values from the mapping hash table

$map.GetEnumerator() | foreach {

$e = $doc.CreateElement($_.Name)

$e.innerText = $item.$($_.value)

#append to Update

$h.AppendChild($e) | Out-Null

}

#append the element

$hf.AppendChild($h) | Out-Null

}

This performs the bulk of the work. All that remains is to append and save the file.

$root.AppendChild($hf) | Out-Null

$doc.AppendChild($root) | Out-Null

$doc.Save("c:\work\hotfix.xml")

The end result is something like this:

<?xml version="1.0" encoding="UTF-8"?>

<!--

Hotfix Inventory

06/04/2020 11:56:15

-->

<Computer>

<Name>DESK01</Name>

<Updates>

<Update>

<update-id>KB4552925</update-id>

<update-type>Update</update-type>

<install-date>06/02/2020 00:00:00</install-date>

<install-by>NT AUTHORITY\SYSTEM</install-by>

<caption>http://support.microsoft.com/?kbid=4552925</caption>

</Update>

Working with XML Data 298

<Update>

<update-id>KB4537759</update-id>

<update-type>Security Update</update-type>

<install-date>05/30/2020 00:00:00</install-date>

<install-by>NT AUTHORITY\SYSTEM</install-by>

<caption>http://support.microsoft.com/?kbid=4537759</caption>

</Update>

<Update>

<update-id>KB4557968</update-id>

<update-type>Security Update</update-type>

<install-date>05/30/2020 00:00:00</install-date>

<install-by>NT AUTHORITY\SYSTEM</install-by>

<caption>http://support.microsoft.com/?kbid=4557968</caption>

...

</Updates>

</Computer>

You can find the complete demo script in the code downloads for this chapter.

Your Turn

We’d like to see what you can do with creating an XML-oriented tool. Let’s say that your boss has
decided she would like to start tracking disk usage using XML. Her plan is to take a usage snapshot
on a weekly basis. She wants to maintain data for all reports and computers in a single XML file. (You
might need to educate her about the use of a database!). On one hand you could easily accomplish
this using Export-Clixml except that there is no parameter for appending.

Start Here

We’ll help you out and give you a PowerShell expression that provides the necessary information
using the local computer. You’ll need to adjust to handle remote computers.

Get-CimInstance win32_logicaldisk -Filter "drivetype=3" |

Select-Object -property @{Name="Date";

Expression={(Get-Date).ToShortDateString()}},

PSComputername,DeviceID,Size,Freespace,@{Name="PercentFree";

Expression = {($_.freespace/$_.size)*100 -as [int]}}

Your Task

You will need to create a function to update the an xml file for multiple computers with the required
information. You might consider creating several functions to handle the different aspects of this
task.

Working with XML Data 299

Our Take

Given the manager’s requirements we thought it might be best to create an XML file from scratch.
We could have probably achieved similar results with ConvertTo-Xml. Our solution consists of
several functions which could be packaged together as a module. You can find our functions in
the chapter’s code downloads.

The first function, Get-DiskUsage, uses Get-CimInstance to retrieve the disk information and writes
an object to the pipeline. This function could be reused to send information to a CSV file, or anything
else. The core function is Update-DiskXml. The function needs a parameter for the XML file and a
group of computernames. If the XML file doesn’t exist, we wrote another function, New-DiskXML, to
create an empty XML document that meets our requirements.

The Update-DiskXml command calls Get-DiskUsage to get drive information and then creates
snapshot information which it appends to the main document. Usage syntax looks like this:

Get-Content servers.txt | Update-DiskXml -path c:\work\diskhistory.xml

From a design perspective we could have written the update command to take pipeline input from
Get-DiskUsage.

Get-Content servers.txt | Get-DiskUsage |

Update-DiskXml -path c:\work\diskhistory.xml

Ultimately the correct choice depends on how you think the consumer of your PowerShell tool will
use it. But notice that we didn’t build one function that did everything. This is a good reminder that
in PowerShell toolmaking you build single purpose tools that do one thing but can work together in
the PowerShell pipeline.

The other missing element is a command to process the XML and presenbt a formatted
report. Or maybe this would be a controller script. It also might make sense to turn all of
this into a module. We’ll leave these tasks to you as additional learning opportunities.

Let’s Review

Before you go, how about a quick test to see what you learned?

1. What is one of the major benefits of using XML?
2. If you only need to work with serialized data between PowerShell sessions, what are the best

set of commands to use?
3. What command would you use to create native XML?
4. What is the easiest way to import a native XML document?

Working with XML Data 300

Review Answers

Here’ how we would have answered the questions.

1. It is a great vehicle for storing hierarchical data.
2. Import-Clixml and Export-Clixml

3. ConvertTo-Xml
4. [xml]$doc = Get-Content data.xml

Working with JSON Data
As you build your PowerShell tools, you might have a need to store stuff in separate files. This
might be configuration data for your command. Or perhaps you need to store the results in a file
that will be used by another process or program. Perhaps even outside of PowerShell. This use to
mean using things like INI or XML files. But over the last few years a new format has entered the
world of PowerShell, JSON. Processing JSON instead of XML is often faster and typically can result
in smaller file sizes. JSON files also tend to be a lot easier for humans to read compared to XML.

Now, JSON has been around for quite a while in the developer world as a data storage mechanism.
You can learn all the gritty details at http://json.org⁶⁰. But we’ll keep this simple. A JSON file is a
text file that serializes an object, much like XML. The object is wrapped in a set of curly braces and
contains one or more sets of name/value pairs.

{

"Name": "bits",

"DisplayName": "Background Intelligent Transfer Service",

"Status": 4

}

The name is essentially the property name and the value is self-evident. Because this is a text file,
all of the values are strings. This will become important when you attempt to bring a JSON file into
PowerShell.

JSON files can include multiple objects separated by commas and enclosed in a set of square brackets
to indicate an array.

[

{

"Name": "BITS",

"DisplayName": "Background Intelligent Transfer Service",

"Status": 4

},

{

"Name": "Bluetooth Device Monitor",

"DisplayName": "Bluetooth Device Monitor",

"Status": 4

},

{

⁶⁰http://json.org

http://json.org/
http://json.org/

Working with JSON Data 302

"Name": "Bluetooth OBEX Service",

"DisplayName": "Bluetooth OBEX Service",

"Status": 4

},

{

"Name": "BrokerInfrastructure",

"DisplayName": "Background Tasks Infrastructure Service",

"Status": 4

},

{

"Name": "Browser",

"DisplayName": "Computer Browser",

"Status": 4

},

{

"Name": "BthHFSrv",

"DisplayName": "Bluetooth Handsfree Service",

"Status": 1

},

{

"Name": "bthserv",

"DisplayName": "Bluetooth Support Service",

"Status": 4

}

]

Finally, the JSON format supports nested objects.

{

"Name": "bits",

"DisplayName": "Background Intelligent Transfer Service",

"Status": 4,

"RequiredServices": [

{

"CanPauseAndContinue": false,

"CanShutdown": false,

"CanStop": false,

"DisplayName": "Remote Procedure Call (RPC)",

"DependentServices": null,

"MachineName": ".",

"ServiceName": "RpcSs",

"ServicesDependedOn": "DcomLaunch RpcEptMapper",

"ServiceHandle": null,

Working with JSON Data 303

"Status": 4,

"ServiceType": 32,

"StartType": 2,

"Site": null,

"Container": null

},

{

"CanPauseAndContinue": false,

"CanShutdown": false,

"CanStop": true,

"DisplayName": "COM+ Event System",

"DependentServices": "igfxCUIService1.0.0.0

COMSysApp SENS BITS",

"MachineName": ".",

"ServiceName": "EventSystem",

"ServicesDependedOn": "rpcss",

"ServiceHandle": null,

"Status": 4,

"ServiceType": 32,

"StartType": 2,

"Site": null,

"Container": null

}

]

}

We showed you these examples so you would knowwhat a JSON file looks like, but you should never
have to create one by hand. Instead you can call upon the PowerShell JSON cmdlets, ConvertTo-Json
and ConvertFrom-Json.

Converting to JSON

You can take the output from any PowerShell expression that writes to the pipeline and turn it into
JSON.

Get-CimInstance win32_computersystem | ConvertTo-Json

If you try that command you’ll notice right away that you don’t get a file. The cmdlet is doing
exactly what it is designed to do, convert objects to a json format. To save the results to a file you
can pipe to Out-File or Set-Content.

Working with JSON Data 304

Get-CimInstance win32_computersystem | ConvertTo-Json |

Out-File wmics.json

Get-CimInstance win32_computersystem | ConvertTo-Json |

Set-Content .\wmics2.json

By default, you’ll end up with easy to read and formatted JSON. However, there is also an option to
compress the converted json.

Get-CimInstance win32_computersystem | ConvertTo-Json -compress

You’ll notice that this removes all the spaces and indentations. The resulting file will be smaller but
still valid JSON. We can’t think of any reason to compress unless you are creating very large files
that you intend to copy between systems. Of course, you can also keep things manageable by only
converting what you actually need.

Get-CimInstance win32_computersystem -computername $env:computername |

Select-Object -property PSComputername,Manufacturer,

@{Name="MemoryGB";Expression={$_.totalPhysicalmemory/1GB -as [int]}},

Number* | ConvertTo-Json

This should create output like this:

{

"PSComputerName": "CLIENT01",

"Manufacturer": "LENOVO",

"MemoryGB": 8,

"NumberOfLogicalProcessors": 4,

"NumberOfProcessors": 1

}

We’re assuming you know what you’ll do with the final file and will plan accordingly.

One tip we’ll point out is that if you want to create a json file, perhaps to hold configuration data or
something similar, don’t try to manually create the file. Instead, “objectify” your data in PowerShell
and then convert to JSON.

Working with JSON Data 305

[pscustomobject]@{

Path = "C:\Scripts"

LastModified = 6/1/2020"

Count = 20

Types = @(".ps1","psm1","psd1","json","xml")

} | ConvertTo-Json

You don’t have to muck about trying to get the formatting right. Let the cmdlet do the work for you.

{

"Path": "C:\\Scripts",

"LastModified": "6/1/2020",

"Count": 20,

"Types": [

".ps1",

"psm1",

"psd1",

"json",

"xml"

]

}

We’ve already mentioned that the JSON format is essentially one long string. The format does not
have any mechanism for comments or metadata like you can include in an XML file. That’s not to
say you can’t incorporate such a feature but you’ll have to design your own implementation. Using
our example above, you could try something like this:

[pscustomobject]@{

Created = (Get-Date)

Comment = "config data for script tool"

},

[pscustomobject]@{

Path = "C:\Scripts"

LastModified = "6/1/2020"

Count = 20

Types = @(".ps1","psm1","psd1","json","xml")

} | ConvertTo-Json

You’ll end up with this JSON:

Working with JSON Data 306

[

{

"Created": {

"value": "\/Date(1591287561241)\/",

"DisplayHint": 2,

"DateTime": "Thursday, June 4, 2020 12:19:21 PM"

},

"Comment": "config data for script tool"

},

{

"Path": "C:\\Scripts",

"LastModified": "6/1/2020",

"Count": 20,

"Types": [

".ps1",

"psm1",

"psd1",

"json",

"xml"

]

}

]

As you can see, PowerShell transforms the date object into something a bit more complicated in
JSON. Knowing that everything is going to be a string you might modify the first part:

[pscustomobject]@{

Created = (Get-Date).ToString()

Comment = "config data for script tool"

},

Now the JSON is a bit easier to read.

{

"Created": "6/4/2020 12:20:33 PM",

"Comment": "config data for script tool"

}

Converting from JSON

By now you can probably guess the name of the cmdlet that turns JSON content into something you
can use in PowerShell: ConvertFrom-Json. If you read the help for the cmdlet, which you should by

Working with JSON Data 307

the way, you’ll recognize that the cmdlet doesn’t use a file. Rather, you have to get the json content
and then convert it.

We have a json file (which we’ve included in the code samples for this chapter) with entries like this:

{

"Name": "wuauserv",

"DisplayName": "Windows Update",

"Status": 1,

"MachineName": "chi-dc04",

"Audit": "06/04/20"

},

To bring this into PowerShell we’ll run this command:

PS C:\> $in = Get-Content c:\work\audit.json | ConvertFrom-Json

Nothing too surprising here. You have to get the content before you can convert it. The conversion
will create a custom object.

PS C:\> $in | Get-Member

TypeName: System.Management.Automation.PSCustomObject

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string ToString()

Audit NoteProperty string Audit=06/01/20

DisplayName NoteProperty string DisplayName=Microsoft Monitoring Agent

Audit Forwarding

MachineName NoteProperty string MachineName=chi-dc04

Name NoteProperty string Name=AdtAgent

Status NoteProperty int Status=1

As you can see everything is treated as a string which may not be an issue for you.

Working with JSON Data 308

PS C:\> $in[0..2]

Name : AdtAgent

DisplayName : Microsoft Monitoring Agent Audit Forwarding

Status : 1

MachineName : chi-dc04

Audit : 06/04/20

Name : ADWS

DisplayName : Active Directory Web Services

Status : 4

MachineName : chi-dc04

Audit : 06/04/20

Name : AeLookupSvc

DisplayName : Application Experience

Status : 1

MachineName : chi-dc04

Audit : 06/04/20

One option to make this more accurate might be to “reformat” using Select-Object.

PS C:\> $in[0..2] | Select-Object -property Name,Displayname,

@{Name="Status";

Expression = { $_.Status -as [System.ServiceProcess.ServiceControllerStatus]}},

@{Name="Audit";Expression= { $_.Audit -as [datetime]}},

@{Name="Computername";Expression = {$_.Machinename}}

Name : AdtAgent

DisplayName : Microsoft Monitoring Agent Audit Forwarding

Status : Stopped

Audit : 6/4/2020 12:00:00 AM

Computername : chi-dc04

Name : ADWS

DisplayName : Active Directory Web Services

Status : Running

Audit : 6/4/2020 12:00:00 AM

Computername : chi-dc04

Name : AeLookupSvc

DisplayName : Application Experience

Working with JSON Data 309

Status : Stopped

Audit : 6/4/2020 12:00:00 AM

Computername : chi-dc04

With this approach the objects are richer and can be properly sorted, filtered or whatever.

Now, you may be thinking, “why not do this reformatting during the conversion?” That’s an
excellent an idea. Your initial idea is to use an expression like this:

Get-Content audit.json |

ConvertFrom-Json | Select Name,Displayname,

@{Name="Status";Expression = { $_.Status -as [System.ServiceProcess.ServiceControlle\

rStatus]}},

@{Name="Audit";Expression= { $_.Audit -as [datetime]}},

@{Name="Computername";Expression = {$_.Machinename}}

Only to realize you don’t get the expected results.

Name :

Displayname :

Status : ContinuePending

Audit :

Computername : {chi-dc04, chi-dc04, chi-dc04, chi-dc04...}

This is because the ConvertFrom-Json cmdlet writes a single object to the pipeline. If you use
Get-Member you’ll see that it is a System.Object[]. The workaround is to use ForEach-Object.

Get-Content .\audit.json |

ConvertFrom-Json |

ForEach-Object { $_ | Select-Object -Property Name,Displayname,

@{Name="Status";

Expression = { $_.Status -as [System.ServiceProcess.ServiceControllerStatus]}},

@{Name="Audit";Expression= { $_.Audit -as [datetime]}},

@{Name="Computername";Expression = {$_.Machinename}}

}

For experienced and advanced readers, you could also insert a custom type name into the converted
objects and then use custom type and format extensions. The bottom line when it comes to working
with JSON is you still want to think about working with objects in the pipeline but you have to
know what that data will look like and how you will use it.

Working with JSON Data 310

In PowerShell 7, this annoying problem has been fixed and you don’t need to use this
ForEach-Object hack. In fact, the Json cmdlets have a few more features in PowerShell
7. We are always harping about reading the help, even for commands you think you know.
PowerShell is still a growing technology. Perhaps even more so now with PowerShell 7. You
absolutely need to look at help and examples.

Your Turn

Let’s see what you’ve picked up in this chapter and see if you can build a simple PowerShell tool
that utilizes JSON files.

Start Here

One of the great benefits of PowerShell is that you can use it with just about anything. So we are
going to put you in a company that has an external process which processes widgets and generates
a JSON summary report. Each file will have JSON like this:

{

"JobID": 214699,

"Items processed": 78,

"Errors": 2,

"Warnings": 0,

"RunDate": "6/2/2020 9:53:45 PM"

}

All of the files are created in a single folder. We’ve provided some files in the code folder under
\codeChapters\working-with-jsonSampleData. Your manager has asked you to create a PowerShell
tool which will process these files and generate a summary report.

Your Task

Knowing how fickle your manager is, your tool should just write a summary object to the pipeline.
This way you can run your command and then pipe it to anything else to generate a specific type
of report such as a text file or HTML, although that’s not the real goal. Instead, you should create
a stand-alone PowerShell script that will process all of the JSON files in the SampleData directory
and write a summary object to the pipeline with this information.

• Number of files processed
• Total number of items processed
• Average number of items processed

Working with JSON Data 311

• Total number of Errors
• Average number of Errors
• Total number of Warnings
• Average number of Warnings
• StartDate (the earliest run date value)
• EndDate (the last run date value)

Our Take

You can find our complete solution in the downloadable code samples, under this book’s folder in
the Chapters subfolder. Below is a stripped down version.

Summary Report

[cmdletbinding()]

Param(

[Parameter(

Position = 0,

Mandatory,

HelpMessage = "Enter the path with the json test data"

)]

[ValidateNotNullorEmpty()]

[string]$Path

)

Write-Verbose "Starting $($MyInvocation.MyCommand)"

Write-Verbose "Processing files from $Path"

$files = Get-ChildItem -Path $path -Filter *.dat

Write-Verbose "Found $($files.count) files."

$data = foreach ($file in $files) {

Write-Verbose "Converting $($file.name)"

Get-Content -Path $file.fullname |

ConvertFrom-Json |

Select-Object -Property Errors,Warnings,

@{Name = "Date"; Expression = {$_.RunDate -as [datetime]}},

@{Name = "ItemCount"; Expression = {$_.'Items processed'}}

}

#sort the data to get the first and last dates

$sorted = $data | Sort-Object Date

Working with JSON Data 312

$first = $sorted[0].Date

$last = $sorted[-1].Date

Write-Verbose "Measuring data"

The $stats variable will be an array of measurements for each property

$stats = $data | Measure-Object errors, warnings, ItemCount -sum -average

Write-Verbose "Creating summary result"

[PSCustomObject]@{

NumberFiles = $data.count

TotalItemsProcessed = $stats[2].sum

AverageItemsProcessed = $stats[2].Average

TotalErrors = $stats[0].sum

AverageErrors = $stats[0].average

TotalWarnings = $stats[1].sum

AverageWarnings = $stats[1].Average

StartDate = $first

EndDate = $last

}

Naturally the trickiest part is converting the JSON files. Each file has a single entrywhichmeans each
file has to be converted separately. And we also need to converted objects to be “good” PowerShell
which means no spaces in property names and they should be properly typed. That’s why we use
Select-Object and custom hash tables to rename the JSON property that contains a space and treat
the RunDate as a [DateTime] object.

The rest of the script is merely using Measure-Object to calculate the necessary values and write a
custom object to the pipeline.

PS C:\> c:\work\SampleReport.ps1 -path c:\work\SampleData

NumberFiles : 20

TotalItemsProcessed : 1151

AverageItemsProcessed : 57.55

TotalErrors : 21

AverageErrors : 1.05

TotalWarnings : 50

AverageWarnings : 2.5

StartDate : 5/3/2020 1:55:45 AM

EndDate : 6/3/2020 6:06:45 AM

Working with JSON Data 313

Let’s Review

We readily admit that working with JSON files will be limited to some very specific use cases. But
let’s make sure you still understand the basics.

1. The JSON format is similar to what other serialization format?
2. The ConvertTo-Json cmdlet will also create a file for you. True or False?
3. PowerShell will automatically determine property types when converting from JSON. True or

False.
4. What are some of the benefits of using JSON instead of XML?

Review Answers

Here are some likely answers.

1. XML
2. False.
3. False. If you need properties to be other than [String] youwill have to add relevant PowerShell

code.
4. JSON tends to produce smaller files, can be faster and is easier to read.

Working With CSV Data
For the sake of completeness, it only made sense to do a chapter on working with CSV data. If there
was one data format that comes up all the time, it is this. On one hand it is a pretty simple format.
But looks can be deceiving which is probably why we see a lot of questions about it.

I Want to Script Microsoft Excel

No you don’t. Probably not really. What you really want to do is work with CSV data. Sure, use
Microsoft Excel to get you started by exporting a CSV file. Or get your CSV file from PowerShell
and open it in Excel for anything else you want to do. But for the love of Jeffrey Snover don’t try to
write PowerShell to update cells in a worksheet. Yes, you can but it is interminable. After spending
a few minutes counseling a wayward sole, we usually find that they really just need to work with a
CSV file.

Know Your Data

When it comes to working with any data type, you have to know what you are exporting or
importing. A CSV file is a plain text file with values separated by commas. Typically, the first line
in the file is a header.

Name,Size,Color

john,12,green

george,3,yellow

paul,1,purple

ringo,7,white

The most important thing to know about a CSV file is that it is considered a “flat” file. All you can
have is collection of values. You can’t have a column with a service object. That object has its own
hierarchy of property values. It would be impossible to add it to the CSV sample above. For rich
object types, you need to use a hierarchical format such as XML or JSON.

If you try this:

Working With CSV Data 315

Get-Service win* | Export-CSV win.csv

Import-CSV win.csv

Youwon’t get the result you expect. You’ll see values like "System.ServiceProcess.ServiceController[]"
which indicates a nested object. You can use the PowerShell CSV cmdlets, but you have to knowwhat
you are exporting.

Get-Service win* -ComputerName SRV1 |

Select-Object -property Name,Displayname,Status,StartType,

@{Name="Computername";Expression={$_.machinename}} |

Export-CSV win-srv1.csv

We’re going to trust that you’ll read the full help and examples for all the cmdlets we cover
in this chapter.

Looking at the raw CSV file, we now have a simple collection of flat values.

#TYPE Selected.System.ServiceProcess.ServiceController

"Name","DisplayName","Status","StartType","Computername"

"WinDefend","Windows Defender Service","Running","Automatic","SRV1"

"WinHttpAutoProxySvc","WinHTTP Web Proxy Auto-Discovery Service","Running","Manual",\

"SRV1"

"Winmgmt","Windows Management Instrumentation","Running","Automatic","SRV1"

"WinRM","Windows Remote Management (WS-Management)","Running","Automatic","SRV1"

Knowing your data also applies to your export. Assuming you’ve sent it to a file with Export-CSV

how are you going to use it? Are you going to import back into PowerShell? You don’t have to do
anything. But if you plan on using the data in a non-PowerShell application, such as importing it
into a SQL table, then you might want to get rid of that #TYPE header.

... | Export-CSV file.csv -NoTypeInformation

Custom Headers

Here’s a little trick that can make your life easier. Often we get CSV files from external sources.
We may have no control over how they are created. But we still want to incorporate them into
PowerShell. Here’s a sample CSV file that lacks a header line.

Working With CSV Data 316

Dom1,DC,DB9097,3/16/18

Srv1,Member,CC2365,1/22/19

Srv2,Member,CC2369,1/22/19

Win10,Client,WX3487,12/4/18

Remember our comment that you need to know your data? We know that the first column is the
computername, the second is type, the third is an asset tag and the last column is the acquisition
date. We can tell PowerShell to import the data using a custom header.

$head = "Computername","Type","AssetTag","Acquired"

Import-Csv .\data-nohead.csv -Header $head

Which gives us this output:

Computername Type AssetTag Acquired

------------ ---- -------- --------

Dom1 DC DB9097 3/16/18

Srv1 Member CC2365 1/22/19

Srv2 Member CC2369 1/22/19

Win10 Client WX3487 12/4/18

Now we have objects in the pipeline with the right property names.

If your CSV file does have a header but you don’t want to use it, you have a few options. We have
a variation of the above file that has a header of Server,Class,Asset,Inventory. We want to use
the data as a source of computer names that we can pipe to Get-Service.

When you read the help and look at the Computername parameter, you’ll see that it accepts pipeline
input by property name.

Required? false

Position? named

Default value None

Accept pipeline input? True (ByPropertyName)

Accept wildcard characters? false

Weneed tomake sure that the objects coming from Import-CSV include a property called Computername.
But the CSV heading is Server. No problem. We’ll rename it on the fly.

Working With CSV Data 317

Import-Csv .\data.csv |

Select-Object @{Name="computername";Expression={$_.server}} |

Get-Service Bits | Select-Object Machinename,Name,Status

Or you can use the custom header but you need to take an extra step to strip it off. In this situation
you have to parse the CSV file and then convert the results from CSV.

Get-Content .\data.csv | Select-Object -Skip 1 |

ConvertFrom-CSV -Header $head |

Get-Service Bits |

Select-Object Machinename,Name,Status

Importing Gotchas

One huge gotcha when working with CSV files is that everything is treated as a string. You might
try this:

PS C:\> Import-Csv .\data.csv | Sort-Object Inventory

Server Class Asset Inventory

------ ----- ----- ---------

Srv1 Member CC2365 1/22/19

Srv2 Member CC2369 1/22/19

Win10 Client WX3487 12/4/18

Dom1 DC DB9097 3/16/18

But that didn’t work. If you use Get-Member you’ll see what we’re talking about.

PS C:\> import-csv .\data.csv | Get-member

TypeName: System.Management.Automation.PSCustomObject

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string ToString()

Asset NoteProperty string Asset=DB9097

Class NoteProperty string Class=DC

Inventory NoteProperty string Inventory=3/16/18

Server NoteProperty string Server=Dom1

Working With CSV Data 318

This comes back to the mantra “know your data”. One solution is to re-define your properties using
Select-Object.

Import-Csv .\data.csv |

Select-Object @{Name="ComputerName";Expression={$_.server}},

Asset,Class,

@{Name="InventoryDate";Expression = {$_.Inventory -as [datetime]}} |

Sort-Object InventoryDate

Now we get the results we’re expecting.

ComputerName Asset Class InventoryDate

------------ ----- ----- -------------

Dom1 DB9097 DC 3/16/2018 12:00:00 AM

Win10 WX3487 Client 12/4/2018 12:00:00 AM

Srv1 CC2365 Member 1/22/2019 12:00:00 AM

Srv2 CC2369 Member 1/22/2019 12:00:00 AM

Although, for sorting purposes we could have done this:

Import-Csv .\data.csv | Sort-Object {$_.Inventory -as [datetime]}

Regardless, we had to take steps to turn the string value into the proper type.

Your Turn

You should spend a little time with CSV files to make sure you understand the concepts and
techniques.

Start Here

Export a group of files from a directory of your choice to a CSV file selecting these properties:

• name
• extension
• fullname (exported as Path)
• length (exported as Size)
• CreationDate (exported as Created)
• LastWriteTime (exported as Modified)

Working With CSV Data 319

Your Task

Write a PowerShell expression to export the files to a CSV file. Create a file that you could use outside
of PowerShell. Then write code to import the CSV file and sort by length in descending order. The
timestamp properties should also be treated as [datetime] values.

Our Take

We used a relatively simple one-line command to create the CSV file.

Exporting Data

Get-ChildItem c:\work -file |

Select-Object Name,Extension,

@{Name="Path";Expression = {$_.fullname}},

@{Name="Size";Expression = {$_.length}},

@{Name="Created";Expression = {$_.Creationtime}},

@{Name="Modified";Expression = {$_.LastWriteTime}} |

Export-CSV -Path .\files.csv -NoTypeInformation

Our results file should be in the downloads.

To restore the data, we did something a little bit different. We wrote a function to create a new type
of object from the CSV file. Again, “know your data”.

New-FileData

Function New-FileData {

[cmdletbinding()]

Param(

[Parameter(Mandatory,ValueFromPipeline)]

[object[]]$InputObject

)

Begin {}

Process {

[PSCustomObject]@{

PSTypeName = "FileData"

Name = $_.Name

Extension = $_.Extension

Path = $_.Path

Size = $_.Size -as [int]

CreationTime = $_.Created -as [datetime]

LastWritetime = $_.Modified -as [datetime]

}

Working With CSV Data 320

}

End {}

}

Now we can import the data back into PowerShell.

$filedata = Import-CSV .\files.csv | New-FileData

We can verify that properties are of the correct type.

PS C:\> $filedata | Get-Member

TypeName: FileData

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string ToString()

CreationTime NoteProperty datetime CreationTime=10/10/2019 10:21:17 AM

Extension NoteProperty string Extension=.vhdx

LastWritetime NoteProperty datetime LastWritetime=10/10/2019 10:21:17 AM

Name NoteProperty string Name=dummy.vhdx

Path NoteProperty string Path=C:\work\dummy.vhdx

Size NoteProperty int Size=4194304

And the sort works.

PS C:\> $fileData | Sort-Object size -Descending | Select-Object Name,Size

Name Size

---- ----

dummy.vhdx 4194304

handbrake_2019-04-03-1336.txt 780500

psconfcover.jpg 368578

AZUser.xml 206358

handbrake_2019-04-03-1337.txt 116054

get-psreleaseasset-macos.png 105876

...

Working With CSV Data 321

Let’s Review

1. What is best way to describe data stored in a CSV file?
2. How is data treated in a CSV file?
3. What parameter would you use with Export-CSV to suppress the type information?
4. We didn’t explicitly cover it, but since we know you read the help, what parameter would you

use to import a CSV file that used a semi-colon instead of a comma?

Review Answers

1. Flat.
2. Everything is treated as a string
3. -NoTypeInformation
4. -Delimiter ';'

Part 5: Seriously Advanced
Toolmaking
In this Part of the book, we’ll dive into some deep, “extra” topics. These are all things we’re pretty
sure you should know, but that you might not use right away, especially if you are an apprentice
toolmaker. This Part isn’t constructed in a storyline, so you can just pick and choose the bits you
think you’ll need or you find interesting.

Tools for Toolmaking
If you look at any master craftsman from carpenter to chef and one thing they have in common is
their toolkit. A carpenter is going to invest in high quality tools that help them do their job such
as hammers and power tools. A chef will often invest hundreds of dollars for a single knife, but it
is a knife they will use every day and it makes them more productive. As a PowerShell toolmaker,
you need to take the same approach. Sure, you could build all the PowerShell tools you need with
nothing more than Notepad but you will be far from efficient and you’ll dread your work. One
feature of high quality tools is that they often make the job easier and more fun.

So, as the commercial line goes, “What’s in your toolbox?” In this chapter we want to share some
suggestions for items you might consider adding. Don’t take any of these as absolute recommenda-
tions. Just because something works for us doesn’t mean it works for you. And obviously we don’t
know about every tool in the PowerShell universe, but we need to start somewhere.

Some of the items we’re going to discuss are free and others are commercial products. Don’t
assume anything. A free tool might be a buggy piece of junk while a commercial tool might
save you hundreds of hours and pay for itself in short order. Most commercial tools have a
trial period which we encourage you to take advantage of. Only then can you determine if
the expense is justified.

Editors

The first tool you will need is an editor. You want something that accelerates your toolmaking. For
us, these are the critical elements we look for in an editor:

• Intellisense or some sort of command/parameter completion
• At least basic debugging features
• Color coded syntax
• line numbering
• Support for some type of snippet
• The ability to execute or evaluate code within the editor

You may also have to evaluate what other tasks your editor might need to accomplish based on your
job duties. Do you need to write Python scripts? Do you often need to create graphical tools with
WPF or WinForms? Do you need to create C# utilities? Do you need to support Windows only or
are you a cross-platform kind of person?

Let’s look at a few options you might want to consider.

Tools for Toolmaking 324

PowerShell ISE

The PowerShell ISE is an option you don’t really have to think about. On client operating systems
you just have it. One of the reasons the ISE was developed was so that you wouldn’t have to use
Notepad to write your PowerShell scripts and tools.

The PowerShell ISE offers all of the features we listed above. The layout and display are customizable.
You can run the entire script or selected pieces of code directly in the editor and its integrated shell.
You can run multiple and distinct PowerShell sessions through its tab interface as well as create
sessions to remote computers. We also like that the PowerShell ISE has its own object model which
means you can create your own ISE-tools and shortcuts. You will also find a number of plugins and
extensions that have been developed over the years such as ISE Steroids.

At the very least, you should learn how to take advantage of the PowerShell ISE to create better code
faster. The ISE is already installed and comes with a free copy of Windows!

Now for the buzz kill. With the release of PowerShell 7, the PowerShell ISE should be
considered deprecated. It isn’t going away anytime soon. But it also isn’t getting any updates
or fixes, aside from critical security problems that might arise. What you see is what you get.
If you’ve already invested in mastering the ISE you don’t have to give it up. Just know that
there’s nothing new on the horizon for it. If you are just getting started and need to learn
how to use an editor, you might as well jump in with VS Code.

Visual Studio Code

As useful as the PowerShell ISE might be, it only runs on Windows and PowerShell is extending
in the enterprise to Linux and Mac. To meet this need, Microsoft has been working on a concept
of editor services. We’re not interested in APIs and architecture drawings. What can we use? The
answer is a free download from Microsoft called Visual Studio Code, also known as VS Code.

You can download the latest version from https://code.visualstudio.com/download⁶¹ for
Windows, a few Linux distros and MacOS. After it is installed, the application can auto-
update as needed.

VS Code is the Microsoft source editor going forward. Microsoft Technical Fellow Jeffrey Snover
has publicly stated that their investment is in VS Code. VS Code is designed to be a cross-platform
product and supports multiple languages. For your purposes the first thing you’ll need to do is
install the PowerShell extension. In VS Code type Ctrl+Shift+P and start typing “extensions”. Select
“Install Extensions” and search for “PowerShell”. After you install the extension, you’ll get syntax
highlighting and Intellisense-like completion in PowerShell script files. You can also run selected
lines of code with F8 just like the ISE.

⁶¹https://code.visualstudio.com/download

https://code.visualstudio.com/download
https://code.visualstudio.com/download

Tools for Toolmaking 325

VS Code can be customized, has good debugging features and a nice git integration. For many IT
Pros comfortably familiar with the ISE, VS Code still has a few shortcomings but Microsoft is aware
of them and is actively working on them. Right now they are releasing monthly updates.

Expect a steeper learning curve than with the PowerShell ISE, but that is because VS Code is a much
richer and feature-loaded application.

Visual Studio

So far we’ve been looking at editors with an eye towards scripting. If you need something more
developer oriented clearly Visual Studio is the way to go. This is a very rich product that should
cover just about any development or need you might have. As such, the installation can be hefty.
Your organization may already have licenses for Visual Studio or you can download the free Visual
Studio Community Edition.

You can find information about downloading all the Visual Studio products at
https://www.visualstudio.com/downloads/⁶².

One reason you might want some flavor of Visual Studio is support for WPF. Visual Studio makes
it much easier to design the graphical interface for your PowerShell tool. You can take the XAML
and build your tool around it. We covered this in the WPF chapter.

There is an excellent PowerShell extension for Visual Studio from fellow MVP Adam Driscoll.
According to the extension’s description it offers these features:

• Edit, run and debug PowerShell scripts locally and remotely using the Visual Studio debugger
• Create projects for PowerShell scripts and modules
• Leverage Visual Studioâ€™s locals, watch, call stack for your scripts and modules
• Use the PowerShell interactive REPLwindow to execute PowerShell scripts and command right
from Visual Studio

• Automated testing support using Pester

Finally, if you are thinking about gliding from PowerShell into C#, you’ll want something like Visual
Studio. This is certainly the most complex tool we’ve mentioned but if it fulfills a need it is worth
your investment.

3rd Party

To properly fill out your toolbox you might need to spend a few bucks, or maybe more than a few
bucks, for something that meets a need or increases your productivity. If you have to spend some
money for something but it cuts your development time that might be a worthwhile investment.

⁶²https://www.visualstudio.com/downloads/

https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/

Tools for Toolmaking 326

ISESteroids

One of the more popular add-ons for the PowerShell ISE is ISESteroids developed byMVP Dr. Tobias
Weltner. The product ships as a PowerShell module. You can find it in the PowerShell gallery.

Find-Module ISESteroids

Themodule adds a number of features and tools to the ISE thatmake it easier to develop, troubleshoot
and debug your PowerShell projects. You can use the product free for 10 days. After that you will
need to acquire a license. There are a variety of license options and for many IT Pros the cost has
been more than offset by increased proficiency.

You can learn more at http://www.powertheshell.com/isesteroids/⁶³ including licensing details.

PowerShell Studio

Another popular commercial tool is PowerShell Studio from SAPIEN. They have been making
scripting tools for long time going all the way back to the days of PrimalScript. PowerShell Studio is
a very feature rich application that makes it easier to create PowerShell scripts, tools and modules.

One of the more compelling features is the ability to easily create WinForms-based PowerShell tools
through a graphical drag-and-drop editor. This greatly simplifies the tedious process of developing
the PowerShell code to display the graphical elements.

Another popular feature is the ability to “package” your PowerShell script as an executable.

PowerShell Studio is available in both 32 and 64 bit flavors and has a 45 day trial period. Learn more
at https://www.sapien.com/software/powershell_studio⁶⁴.

PowerShell Community Modules

You might also find a number of useful tools from the PowerShell community. Many of these have
been published to the PowerShell Gallery.

Find-Module -tag scripting

Jeff has published a number of modules to the PowerShell Gallery. Many of them designed to make
scripting easier. Take a look at his GitHub repository⁶⁵ for more information.

And of course, you should consider using the PowerShell Script Analyzer if you aren’t using VS
Code, where it is baked in.

⁶³http://www.powertheshell.com/isesteroids/
⁶⁴https://www.sapien.com/software/powershell_studio
⁶⁵https://github.com/jdhitsolutions

http://www.powertheshell.com/isesteroids/
https://www.sapien.com/software/powershell_studio
https://github.com/jdhitsolutions
http://www.powertheshell.com/isesteroids/
https://www.sapien.com/software/powershell_studio
https://github.com/jdhitsolutions

Tools for Toolmaking 327

Install-module PSScriptAnalyzer

This module includes commands that will analyze your code and alert you to potential problems or
those bits of code that run counter to currently accepted best practices. This functionality is built
into Visual Studio Code where the analysis runs in real-time as you’re writing your code.

Books, Blogs and Buzz

Lastly, we are always asked about books and other learning material. Educational material should
definitely be considered tools and you should be constantly adding to your bookshelf.

We’ve authoredmany,many books over our career. You can find current books fromhttp://manning.com⁶⁶
and http://leanpub.com⁶⁷. On LeanPub you can also find a number of ebooks you can get for free or
a very modest price.

Both of us blog, http://donjones.com⁶⁸ and https://jdhitsolutions.com⁶⁹. Jeff has also contributed
for years to the Petri IT Knowledge base. Checkout https://petri.com/category/PowerShell⁷⁰ for the
latest. You should also check out https://mcpmag.com/pages/topic-pages/powershell.aspx⁷¹ which
has a good PowerShell section authored by other MVPs such as Adam Bertram and Boe Prox.

The other web source we recommend is Powershell.org⁷². Yes, we are actively involved in the
organization behind it, but don’t let that sway you. The forums on the site are very lively and
actively monitored. If you need help getting over a roadblock in your tool development, this is the
place to go for answers.

Lastly, you may not be into this sort of thing, but social media is a fantastic source of PowerShell
information. We’re both active on Twitter (@concentrateddon and @jeffhicks). We strongly
recommend you setup a filter in your Twitter client for #PowerShell. This is the best way to keep up
with what is new in the PowerShell world. There are also PowerShell-related groups in Facebook.

Recommendations

Where does all of this leave you? First off, if you want to consider yourself a professional PowerShell
toolmaker you will need to invest time and perhaps money in tools for your toolbox. This might
mean software. It might mean coughing up a few bucks for a couple books or some training videos.
PowerShell and its related technologies like DSC are constantly evolving and you need to stay with
the curve.

⁶⁶http://manning.com
⁶⁷http://leanpub.com
⁶⁸http://donjones.com
⁶⁹https:/jdhitsolutions.com
⁷⁰https://petri.com/category/PowerShell
⁷¹https://mcpmag.com/pages/topic-pages/powershell.aspx
⁷²https://PowerShell.org

http://manning.com/
http://leanpub.com/
http://donjones.com/
https:/jdhitsolutions.com
https://petri.com/category/PowerShell
https://mcpmag.com/pages/topic-pages/powershell.aspx
https://powershell.org/
http://manning.com/
http://leanpub.com/
http://donjones.com/
https:/jdhitsolutions.com
https://petri.com/category/PowerShell
https://mcpmag.com/pages/topic-pages/powershell.aspx
https://powershell.org/

Tools for Toolmaking 328

You should be using at least the PowerShell ISE for your development efforts with an eye towards
moving to VS Code. That’s where Microsoft is making the investment so you probably should as
well.

Finally, your most valuable tool is curiosity. You have to be willing and interested to read about
PowerShell, how people are using it and what they are bringing to the party. The more you learn,
the better toolmaker you become and the more rewarding your career will become.

Measuring Tool Performance
We PowerShell geeks will often get into late-night, at-the-pub arguments about which bits of Pow-
erShell perform best under certain circumstances. You’ll hear arguments like, “the ForEach-Object
cmdlet is slower because its script block has to be parsed each time” or, “storing all those objects in
a variable will make everything take longer because of how arrays are managed.” At the end of the
day, if performance is important to you, this is the chapter for you.

Is Performance Important

Well, maybe. Why is performance important to you? Look, if you’ve written a command that will
have to reboot a dozen computers, then we’re going to be splitting hairs all night about which way
is faster or slower. It won’t matter. But if you’re writing code that needs to manipulate thousands
of objects, or tens of thousands or more, then a minute performance gain per-object will add up
quickly. The point is, before you sweat this stuff, know that tweaking PowerShell for millisecond
performance gains isn’t useful unless there are a lot of milliseconds to be saved.

Measure What’s Important

But if performance is important, then you need to measure it. Forget every possible argument for
or against any given technique, and measure it. And, as you measure, make sure you’re measuring
to the scale that your command will eventually run. That is, don’t test a command with five objects
when the plan is to run against five hundred thousand. Pressures like memory, disk I/O, network,
and CPU won’t interact in meaningful ways at small scale, and so small-scale measurements won’t
prove out as you scale up your workload.

Think of it this way: just because a one-lane road can carry 100 cars an hour, doesn’t mean a 4-lane
road can carry 400 an hour. It’s a different situation, with different dynamics. So measure against
the workload you plan to run.

You’ll perform that measurement using the Measure-Command cmdlet. Feed it your command, script,
pipeline, or whatever, and it’ll run it - and spit out how long it took it to complete. Take this short
script as an example (this is test.ps1 in the sample files):

Measuring Tool Performance 330

Test.ps1

Write-Host "Round 1" -ForegroundColor Green

Measure-Command -Expression {

Get-Service |

ForEach-Object { $_.Name }

}

Write-Host "Round 2" -ForegroundColor Yellow

Measure-Command -Expression {

Get-Service |

Select-Object Name

}

Write-Host "Round 3" -ForegroundColor Cyan

Measure-Command -Expression {

ForEach ($service in (Get-Service)) {

$service.name

}

}

This basically does the same thing in different ways. Let’s run that to see what happens:

Round 1

Days : 0

Hours : 0

Minutes : 0

Seconds : 0

Milliseconds : 148

Ticks : 1486572

TotalDays : 1.72056944444444E-06

TotalHours : 4.12936666666667E-05

TotalMinutes : 0.00247762

TotalSeconds : 0.1486572

TotalMilliseconds : 148.6572

Round 2

Days : 0

Hours : 0

Minutes : 0

Seconds : 0

Milliseconds : 37

Measuring Tool Performance 331

Ticks : 379826

TotalDays : 4.39613425925926E-07

TotalHours : 1.05507222222222E-05

TotalMinutes : 0.000633043333333333

TotalSeconds : 0.0379826

TotalMilliseconds : 37.9826

Round 3

Days : 0

Hours : 0

Minutes : 0

Seconds : 0

Milliseconds : 38

Ticks : 389199

TotalDays : 4.50461805555556E-07

TotalHours : 1.08110833333333E-05

TotalMinutes : 0.000648665

TotalSeconds : 0.0389199

TotalMilliseconds : 38.9199

There’s a significant penalty, time-wise, for the first method, while the second two are almost tied.
Neat, right?

Be Careful!
The thing to remember is that whatever you’re measuringwill actually run andwill actually
do stuff. This isn’t a “safe test mode” or something. So you may need to modify your script a
bit, so that you can test it without actually performing the task at hand. Of course, that can
backfire, too. You can imagine that a tool designed tomodify Active Directorymight run a lot
faster if it wasn’t actually communicating with Active Directory, and so your measurement
wouldn’t really be real-world or useful.

One thing to watch for when running Measure-Command is that a single test isn’t necessarily absolute
proof. There could be any number of factors that might influence the result. Sometimes it helps to
run the test several times. Jeff wrote a command Test-Expression in the PSScriptTools module that
allows you to run a test multiple times, giving you (hopefully) a more meaningful result. There’s
even a GUI version.

Factors Affecting Performance

There are a bunch of things that can impact a tool’s performance.

Measuring Tool Performance 332

Collections and arrays can get really slow if they get really big and you keep adding objects to them
one at a time. This slowdown has to do with how .NET allocates and manages memory for these
things.

Anything storing a lot of data in memory can get a slowdown if .NET has to stop and garbage-collect
variables that are no longer referenced. Generally, you want to try and manage reasonable amounts
of data in-memory, not great huge wodges of 60GB text files.

Compiling script blocks - as ForEach-Object requires - can incur a performance penalty. It’s not
always avoidable, but it isn’t the fastest operation on the planet in some cases.

Wasting memory can result in disk paging, which can slow things down. For example, in the below
fragment, we’re still storing a potentially and unnecessarily huge list of users in $users long past the
point where we’re done with it.

$users = Get-ADUser -filter *

$filtered = $users | Where { $_.Department -like '*IT*' }

$final = $filtered | Select Name,Cn

$final | Out-File names.txt

It’d be better do to this entirely without variables, and getting the filtering happening on the domain
controller:

Get-ADUser -filter "Department -like '*IT*'" |

Select Name,Cn |

Out-File names.txt

Nowwe’re gettingmassively less data back fromActive Directory, and storing none of it in persistent
variables. Or to put it more precisely, this is an example of the benefits filtering early.

Here’s the problem - We often see beginners write a command like this:

Get-CimInstance win32_service -computername server01 |

where state -eq 'running'

This may not seem like a big deal but imagine the CIM command was going to return 1000 objects.
With the approach we just showed, the first command has to complete and send all 1000 objects, in
this case across the wire and then the results are figured. Compared to letting Get-CimInstance do
the filtering in place - on the server - and then only sending the filtered results back.

Get-CimInstance win32_service -computername server01 -filter "state = 'running'"

There’s one other feature you should take advantage of when using Get-CimInstance and not many
people do. Let’s say you are using code like this:

Measuring Tool Performance 333

Get-CimInstance win32_service -computername $computers-filter "state = 'running'" |

Select-Object -property Name,StartMode,StartName,ProcessID,SystemName

The $Computers variable is a list of computernames. This pattern is pretty common. Get something
and then select the things that matter to you. However, the remote server is assembling a complete
Win32_Server instance with all the properties. But you are throwing most of them away. The better
approach is to limit what Get-CimInstance will send back.

$cimParams=@{

Classname = 'win32_service'

ComputerName = $computers

Filter = "state = 'running'"

Property = 'Name','StartMode','StartName','ProcessID','SystemName'

}

Get-CimInstance @cimParams | Select-Object -property Name,StartMode,StartName,

ProcessID,@{Name="Computername";Expression={$_.SystemName}}

PowerShell will want to display the results using its default formatting. You’ll most likely use
Select-Object or create your own custom object. Regardless, this approach should run slightly
faster. It may be small, but it can add up. You’ll really appreciate this when you are querying 500
servers.

Always look for ways to limit or filter as early in your command as possible. Take advantage
of parameters like Filter, Include, Exclude, ID and Name.

Key Take-Away

You should get used to using Measure-Command to testing your code, especially if there are several
ways you could go. We’ll look at other performance related concepts in the Scripting at Scale chapter.
But for now your key take-away should be that good coding practices can go a long way toward
avoiding performance problems!

PowerShell Workflows: A Primer
Introduced in PowerShell v3, Workflows are at attempt to make “scripts” that can take a long time
to run, and might need to be interrupted and resumed where they left off. The idea of workflow
has been around for a while but it required serious developer skills and Visual Studio. PowerShell
workflow was intended as a way for IT Pros to leverage their scripting skills to create a a workflow,
which most likely was going to run on remote servers. We have mixed feelings about workflows.
Generally speaking, while we appreciate the sentiment, we think the execution is a little lacking,
and very confusing.

Note that the feature we’re discussing here is not the same as workflows in Azure
Automation, which look and behave the same (making this chapter totally relevant), but
which use a different underlying engine. Our commentary below applies to the “on-prem”
workflows bundled in PowerShell itself.

Workflow seems like PowerShell scripting. It isn’t. You’re using a PowerShell-like language to code
for Windows Workflow Foundation, or WWF. That is, when you “run” your workflow, it’s literally
being translated into WWF, which then runs it. PowerShell does not run workflows. This fact
is, without a doubt, where almost all pain, confusion, and panic comes from when dealing with
workflows. It is easy to think you are writing PowerShell but you aren’t.

Terminology

Let’s start with some terminology.

• Aworkflow is a special script, nominally written in the PowerShell language, which is compiled
into XAML when run. The XAML is handed off to WWF, which actually executes it. WWF is
a core part of the .NET Framework.

• Aworkflow consists of one or more activities. These are special little chunks of executable code,
written in .NET, and designed to work with WWF (much like cmdlets are written in .NET and
designed to work with PowerShell).

• A workflow can also include logical constructs, like If and Switch blocks - although some
WWF constructs work differently from their PowerShell counterparts.

To make things interesting (or confusing), many native (that is, “core”) PowerShell cmdlets have an
equivalent activity. So a workflow can contain the command Get-ChildItem, because an activity of
that name exists. There is not an easy way to see which activities there are, outside of Visual Studio’s
workflow designer surface.

PowerShell Workflows: A Primer 335

Theory of Execution

It’s important to remember that your workflow script will be compiled into something else and
handed off to WWF for execution. WWF may, in turn, need to run instances of PowerShell in order
to run certain commands within your workflow, butWWF is in fact the one “in charge” of execution.
This means the contents of your workflow are governed by WWF rules, which are a bit different
from a PowerShell script.

Logical constructs in workflow work the way you’d expect them to, with a couple of differences:

• The switch construct doesn’t support PowerShell’s fancier variations; you need to stick with a
simple, basic switch.

• The foreach construct supports a -parallel switch, which enables the contents of the loop to
run across multiple threads, effectively processing multiple items at once. You need to ensure
that the contents of the loop can run simultaneously, and won’t get into resource contention
or something (like all attempting to append to a given file at the same time).

Activities are a bit odder. First, you cannot use positional parameters. Can. Not. You also need to spell
out cmdlet names (aliases are also supported) and parameter names. That’s actually all good practice
regardless. The oddity comes up when you try to run a command that doesn’t have a corresponding
workflow activity. In that case, WWF starts up an instance of PowerShell to run your command. This
is notable, because once your command finishes, that PowerShell instance is shut down - meaning
any state changes that your command created, like new variables, will be gone.

Variables are the big confusing point. Variables inside the workflow do persist, and they are available
to each activity within the workflow. Variables created by a distinct PowerShell instance - as in the
above case of running a non-activity command - will not persist back into the workflow scope. So if
you have a bunch of non-activity commands that need to share information, you end up wrapping
them all in an InlineScript{} block (which will discuss in a bit) so they can “see” each other. That
partially defeats the point of a workflow, because if your code is interrupted, you can only resume
to an activity - not midway into an InlineScript{} block.

So you can see why workflows can be confusing, and tend to not behave as you might initially
expect them to. A workflow can persist data, shut down, and resume later with all the data intact -
but only if that data existed in the workflow itself and not in some separate PowerShell process that
got spawned.

We suggest reviewing the official reference docs⁷³ before you dive in as well as the workflow
about topics.

⁷³https://technet.microsoft.com/en-us/library/jj574142(v=ws.11).aspx

https://technet.microsoft.com/en-us/library/jj574142(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/jj574142(v=ws.11).aspx

PowerShell Workflows: A Primer 336

A Quick Illustration

Let’s look at a quick example and discuss some important features. We’re providing this as
Example1.ps1 in the code samples, but this is not intended to run. It’s just a compilation of several
points, so we can discuss them all at once.

Example

workflow Example {

Param(

[string]$Value

)

$procs = Get-Process

$total_ram = 0

$services = $null

$events = $null

$result = ""

foreach -parallel ($proc in $procs) {

$workflow:total_ram += $proc.ws

} #foreach

Write-Output "Total RAM used $total_ram"

sequence {

$folders = Get-ChildItem -Path $value -Directory

parallel {

$workflow:services = Get-Service

$workflow:events = Get-EventLog -LogName Security

} #parallel

$workflow:result = InLineScript {

"Hello it is $(Get-Date)"

} #inline script

Write-Output "Check $workflow:result"

$nics = Get-NetAdapter

} #sequence

Write-Output $result

PowerShell Workflows: A Primer 337

Write-Output "$($folders.count) folders"

Write-Output "$($services.count) services"

Write-Output "$($events.count) events"

Write-Output "$($nics.count) NICs"

} #workflow

Example -Value "c:\"

You can run this, by the way - it just doesn’t do anything useful. It’s instructional to see how long
it takes to run, though - showing that workflows aren’t necessarily about speed.

You cannot run a workflow from a PSDrive that is not a logical disk. Suppose you have
a PSDrive called Scripts which is pointing to C:Scripts. You can’t execute the workflow
command form Scripts:. You would need to change to some folder on the C:\ drive, or any
other logical disk.

Here’s the output:

0 folders

218 services

13293 events

0 NICs

And here’s what to note:

• Workflows can have input parameters, in addition to a slew of automagically-created common
parameters, which we’ll get into in a bit.

• Get-Process is available as an activity, and so it runs “as-is.” The resulting process objects go
into $procs. Notice that, by declaring $total_ram in the workflow, we define it as a workflow-
level variable. That’s why you later see us referring to it as $workflow:total_ram. Doing so
allows us to “feed” the variable into what becomes an inline script.

• Our mathematics in adding up the ws (working set) property can’t be done in workflow, and
so it becomes an implicit inline script. By using the $workflow: variable modifier, we “inject”
the workflow-level variable into the inline script, enabling us to capture those results.

• The Write-Output command is still the correct way to output from a workflow.
• The sequence block encloses a list of activities that must be run in exactly the order shown.
Sequential execution is actually the default, but you could nest a block of sequence inside of a
parallel. By contrast, a parallel block will execute its contents in any order, with no way to
know up front what that order will be.

• Notice our use of $workflow: for $services and $events but not for $folders and $nics, and
how that affects the output.

PowerShell Workflows: A Primer 338

• We have one explicit InlineScript, which again is a new PowerShell process. Get-NetAdapter,
which is not an activity, is an implicit inline script.

Variable scope gets tricky.

• Inside a loop - such as our run-in-parallel foreach - workflow variables are visible automat-
ically, and the loop does not constitute its own scope. We only had to use $workflow: inside
the loop because our math statement is an implicit inline script, spawning a new instance of
PowerShell. Using the modifier enables us to persist the data from those separate processes.

• Inside a sequence or parallel block, you can see workflow-level variables, but you must use
the $workflow: modifier in order to change a workflow-level variable. This is why $services

and $events can be used in our output, but $nic and $folders and $result don’t.

The variable stuff - which is how you pass information from place to place, of course - is what makes
workflows especially challenging. For example, we’ll see folks try to make this change:

$result = ""

InLineScript {

$result = "Hello it is $(Get-Date)"

} #inline script

Write-Output "Check $result"

This will simply result in “Check” being output - $result is still empty at that point. It was changed
inside an inline script, and as soon as the inline script’s PowerShell process ended, whatever was
inside the InlineScript block ceased to exist.We can’t use the $workflow:modifier because $result
isn’t defined at the workflow level; it’s defined in a sequence block, which is its own scope. Here’s
how to do what we’re attempting (this is Example2.ps1):

Example2

workflow Example {

Param(

[string]$Value

)

$procs = Get-Process

$total_ram = 0

$services = $null

$events = $null

$result = ""

foreach -parallel ($proc in $procs) {

$workflow:total_ram += $proc.ws

PowerShell Workflows: A Primer 339

} #foreach

Write-Output "Total RAM used $total_ram"

sequence {

$folders = Get-ChildItem -Path $value -Directory

parallel {

$workflow:services = Get-Service

$workflow:events = Get-EventLog -LogName Security

} #parallel

$workflow:result = InLineScript {

"Hello it is $(Get-Date)"

} #inline script

Write-Output "Check $workflow:result"

$nics = Get-NetAdapter

} #sequence

Write-Output $result

Write-Output "$($folders.count) folders"

Write-Output "$($services.count) services"

Write-Output "$($events.count) events"

Write-Output "$($nics.count) NICs"

} #workflow

Example -Value "c:\"

Now, we’ve defined $result as a workflow-level script, right at the top. We _assign the results of
the InlineScript to $result, using the $workflow:modifier because we’re inside a sequence block.
Again - it’s tricky stuff, and can require a lot of experimentation.

Within an InlineScript, you cannot use the $workflow: modifier, just to keep things fun. Instead,
use the $using: modifier. Here’s another revision1:

PowerShell Workflows: A Primer 340

Example3

workflow Example {

Param(

[string]$Value

)

$procs = Get-Process

$total_ram = 0

$services = $null

$events = $null

$result = ""

foreach -parallel ($proc in $procs) {

$workflow:total_ram += $proc.ws

} #foreach

Write-Output "Total RAM used $total_ram"

sequence {

$folders = Get-ChildItem -Path $value -Directory

parallel {

$workflow:services = Get-Service

$workflow:events = Get-EventLog -LogName Security

} #parallel

$workflow:result = InLineScript {

"Hello it is $(Get-Date)"

"There are $($using:procs.count) Processes"

} #inline script

$nics = Get-NetAdapter

} #sequence

Write-Output $result

Write-Output "$($folders.count) folders"

Write-Output "$($services.count) services"

Write-Output "$($events.count) events"

Write-Output "$($nics.count) NICs"

} #workflow

PowerShell Workflows: A Primer 341

Example -Value "c:\"

Go ahead and run this, if you like. Here’s the output on our machine:

Total RAM used 1620455424

Hello it is 06/21/2020 09:06:37

There are 62 Processes

0 folders

218 services

13310 events

0 NICs

As you can see, the $using: modifier inside the InlineScript block enabled us to “pass in”
a workflow-level variable. Because we captured the InlineScript block output into another
workflow-level variable, we were able to display that result at the end.

So in the end, you wind up declaring a lot of variables up-front, and then referencing them using
the appropriate modifiers:

• Use $workflow: to reference a top-level variable in a sub-block, excepting an InlineScript.
• Use $using: to reference a top-level variable in an InlineScript.

When to Workflow

We differ a bit from the official documentation in when you might want to use a workflow. We feel
they’re best used when:

• You have some long-running process that may need to be interrupted and resumed. This
isn’t necessarily something like computer provisioning, though, which we do feel is better
accomplished by DSC.

• You have a large amount of data to process and want to parallelize it. However, workflow
isn’t the only means of doing so, and depending on the exact task, workflow may not be the
least complicated. Workflow also isn’t specifically intended to be fast - WWF imposes some
performance overhead that other means (which we discuss in “Scripting at Scale”) might not.

• You’re using Azure Automation.

We don’t necessarily feel that workflow is a go-to simply when you need some task run on multiple
remote machines. To do that, PowerShell just uses Remoting, and you could accomplish more or less
the same thing using Invoke-Command and its -AsJob parameter. So the above criteria are really the
points where we start considering workflow.

PowerShell Workflows: A Primer 342

Sequences and Parallels are Standalone Scopes

Another element that sets workflows apart from the type of scripting you are used to is a Sequence
and a Parallel block. The whole point of a workflow is to orchestrate some set of steps; sometimes
these steps need to be in a specific order, and other times they can be run in parallel. That’s what the
Sequence and Parallel blocks, which we introduced in the illustration above, are for. And, as we
pointed out, tricky part is that you need to think about each sequence or parallel as its own stand-
alone variable scope. The only way to pass variables between scopes is to first define the variable in
the workflow (outside of a block), and then reference them inside the block by using the $workflow:
prefix.

Workflow Example

Now let’s do something a bit more functional. We want to add up the amount of space a given set of
user home folders take up on disk. This is one of the better examples we’ve come up with, because
it is realistic, and it does take a long time to run if you do them all sequentially. This is DirSizer.ps1
in the sample code. The presumption is that you can provide a root path, whose immediate child
directories are each a user’s home folder.

Get-UserFolderSizes

workflow Get-UserFolderSizes {

Param(

[string[]]$RootPath

)

foreach -parallel ($path in $RootPath) {

Write-Verbose "Scanning $path"

Get subdirectories

$subs = Get-ChildItem -Path $path -Directory

Write-Verbose "$($subs.count) user folders"

foreach -parallel ($sub in $subs) {

Write-Verbose "Scanning $($sub.FullName)"

$size = Get-ChildItem -recurse -Path ($sub.FullName) -File |

Measure-Object -Property Length -Sum |

Select-Object -ExpandProperty Sum

Write-Verbose "Size of $($sub.FullName) is $size"

PowerShell Workflows: A Primer 343

$props = @{Path=$sub.FullName

Size=$size}

$obj = New-Object -TypeName PSObject -Property $props

Write-Output $obj

} #foreach subdirectory

} #foreach path

}

Get-UserFolderSizes -RootPath c:\Users

You’ll notice that Write-Verbose works quite well, and in fact prefixes each line of output with the
name of the computer it came from:

VERBOSE: [localhost]:Size of C:\Users\User is 3160

That behavior recognizes the fact that workflows are intended to be pushed out to multiple
computers, so most output gets tagged with the name of the computer that produced it. For example:

Path : C:\Users\User

Size : 3160

PSComputerName : localhost

PSSourceJobInstanceId : 0448746e-a2c8-4e44-b1ff-92aa32851062

We only created two of those four properties; the other two were magically added by the workflow
engine.

Notice that we didn’t have a lot of fussing with variable scope? If you’re careful with your design,
you can avoid having to persist data across scopes. Here, because we only use the scope-less foreach
loop, everything is basically a workflow-level variable. We’re pretty sure all the commands we used
exist as activities, too, which eliminates implicit inline scripts. Although New-Objectmay be running
in an inline script. We’re not sure, but at least our usage assigns the result of the inline script to a
variable ($obj), getting that result into the workflow’s scope.

Workflow Common Parameters

Every workflow picks up a whole slew of common parameters, reflecting some of the built-in
functionality that the workflow engine provides. A big one is -PSComputerName, which accepts a list
of computer names. Each computer named will be sent a copy of the workflow, and asked to execute
it. The local computer will not execute the workflow unless it’s in the list of names. Communication
happens via PowerShell Remoting, which must be enabled and working.

PowerShell Workflows: A Primer 344

The -PSCredential parameter specifies an alternate credential to run the workflow under, and
is only valid along with -PSComputerName. You can also use -PSParameterCollection, which is a
hashtable, to provide different input arguments to each named computer, allowing workflow to be
customized on each.

This means we could define the dirsizer workflow locally and invoke it remotely specifying a path
that is relative to the remote machine.

Get-UserFolderSizes -RootPath c:\Users `

-PSComputername server01 `

-PSCredential company\administrator

Another gotcha is that if you are running PowerShell v5 or later locally but the remote server
is running v3 or v4, you’ll most likely get an error.

Find more common parameters in the docs⁷⁴.

One of the reasons workflows held any interest was for it’s ability to run tasks in parallel.
PowerShell 7 now supports this feature with ForEach-Object‘.

Checkpointing Workflows

This is kinda the whole magic point about workflows: they can be interrupted, and can pick up
later where they left off. A checkpoint saves the “state” of the workflow, which includes workflow-
level variables, any output created to that point, and so on. Checkpoints actually get saved to disk
(within the user profile directory), meaning they can survive a reboot of the computer the workflow
is running on.

Writing a checkpoint incurs processing overhead, so you don’t want to just drop these things in
every other line of your code. Focus on checkpointing after major areas of work are done, especially
long-running ones you’d hate to have to repeat. Also place them after sections which would be
impractical to repeat, such as joining a machine to a domain.

If you run a workflow with the -PSPersist:$true common parameter, you’ll get automatic
checkpoints at the beginning and end of the workflow, plus whichever ones you specify manually.
To specify one manually, either add the -PSPersist:$true common parameter to any activity,
and you’ll get a checkpoint after that activity completes. You can’t use that on InlineScript

blocks, though. You can also run Checkpoint-Workflow anywhere within a workflow (but not in
an InlineScript) to manually create a checkpoint at that spot.

Checkpoints that are part of a pipeline won’t be taken until the entire pipeline completes. Check-
points in a Parallel block are taken when the entire block completes. Checkpoints in a Sequence

are taken immediately.
⁷⁴https://docs.microsoft.com/en-us/powershell/module/psworkflow/about/about_activitycommonparameters?view=powershell-5.1

https://docs.microsoft.com/en-us/powershell/module/psworkflow/about/about_activitycommonparameters?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/psworkflow/about/about_activitycommonparameters?view=powershell-5.1

PowerShell Workflows: A Primer 345

Workflows and Output

PowerShell workflows were intended to be executed across multiple remote servers, sight unseen.
Workflows don’t need to write anything back to the pipeline, and a good argument could be made
that they shouldn’t. Their task is to get a bunch of steps accomplished in the most efficient matter
possible. They are intended to do stuff, not get stuff. Using Write-Verbose statements is still a good
practice for troubleshooting but don’t try to use Write-Host or feel you need something written to
the pipeline.

This is a really important concept. If a workflow does need to create some output, you need to think
about where it will go. You won’t personally be there to see it run, in most cases, and so you need
to consider writing output to disk, to a central database, or some other location, so that you can get
to the output later.

Your Turn

If you are up for a challenge we have one for you. We haven’t gone into tremendous detail about
workflow because they still are a special case in our opinion, but we’ve given you pointers to
additional resources. We’re also going to assume that you can run the workflow on a computer
where you can make changes and manually reverse them.

Start Here

Let’s say that your company is deploying a special management application to your servers. In order
to prepare for deployment, you need to create a workflow that accomplishes these tasks.

• Create a local user account called ITApp with a default password.
• Create a folder called C:ITApp and share it as ITApp giving Everyone ReadAccess and the
ITApp user full control.

• Under C:ITApp create folders Test_1 to Test_10
• Set the Remote Registry service to auto start
• Log each step to a text file called C:ITAppWF.txt

Your Task

You will need to think about what order these activities need to run and what variables you might
need to pass through the workflow. Remember, it may look like you are using cmdlet names, but
they are actually activities. And we’ll give you a tip that the common -PSCredential parameter is
used to authenticate to the remote server. As you work on this exercise you will almost certainly get
errors. Read the error message as it will often explain what you need to do to fix the problem.

PowerShell Workflows: A Primer 346

Our Take

You can find our solution in the chapter downloads.

Solution.ps1

Workflow ITAppSetup {

Param(

[Parameter(Mandatory)]

[string]$Password,

[string]$Log = "c:\ITAppWF.txt"

)

Set-Content -Value "[$((Get-Date).timeofDay)] Starting Setup" -Path $log

Add-Content -Value "[$((Get-Date).timeofDay)] Configuring Remote Registry service" -\

Path $log

Set-Service -Name RemoteRegistry -StartupType Automatic

Sequence {

Add-Content -Value "[$((Get-Date).timeofDay)] Creating local user" -Path $log

net user ITApp $Password /add

}

Sequence {

Add-Content -Value "[$((Get-Date).timeofDay)] Testing for C:\ITApp folder" -Path\

$log

if (Test-Path -Path "C:\ITApp") {

Add-Content -Value "[$((Get-Date).timeofDay)] Folder already exists." -Path \

$log

$folder = Get-Item -Path "C:\ITApp"

}

else {

Add-Content -Value "[$((Get-Date).timeofDay)] Creating C:\ITApp folder" -Pat\

h $log

$folder = New-Item -Path C:\ -Name ITApp -ItemType Directory

Add-Content -Value "[$((Get-Date).timeofDay)] Created $($folder.fullname)" -\

Path $log

}

Add-Content -Value "[$((Get-Date).timeofDay)] Testing for ITApp share" -Path $log

if (Get-SmbShare ITApp -ErrorAction SilentlyContinue) {

Add-Content -Value "[$((Get-Date).timeofDay)] File share already exists" -Pa\

PowerShell Workflows: A Primer 347

th $log

}

else {

Add-Content -Value "[$((Get-Date).timeofDay)] Creating file share" -Path $log

New-SmbShare -Name ITApp -Path $folder.FullName -Description "ITApp data" -Ful\

lAccess "$($env:computername)\ITApp" -ReadAccess Everyone

}

Add-Content -Value "[$((Get-Date).timeofDay)] Creating subfolders" -Path $log

foreach -parallel ($i in (1..10)) {

$path = Join-Path -Path $folder.FullName -ChildPath "Test_$i"

#add a random offset to avoid contention for the log file

$offset = Get-Random -Minimum 500 -Maximum 2000

Start-Sleep -Milliseconds $offset

Add-Content -Value "[$((Get-Date).timeofDay)] Creating $path" -Path $log

$out = New-Item -Path $folder.FullName -Name "Test_$i" -ItemType Directory

}

}

Add-Content -Value "[$((Get-Date).timeofDay)] Setup complete" -Path $log

} #close workflow

If you came up with something like this you probably ran into some issues such as contention for
the log file or trying to use the -Not operator. While a command like this works as you expect it:

if (-Not (Test-Path -path C:\foo)) {

...

}

When executed in a Workflow the operator doesn’t appear to be evaluated. We ended up writing
our solution to avoid using -Not.

We want to point out that there’s no reason you couldn’t have written a traditional PowerShell script
to accomplish these same tasks. Or used DSC. That’s why we think many IT Pros mis-use workflow.
You do get to take advantage of built-in parameters like -PSComputername and parallelism but you’ll
have to decide if it is worth the trade-off.

Let’s Review

Ok. Quick review time.

1. In a workflow, most cmdlets are treated as what type of workflow element?
2. What are some of the benefits of using a workflow?
3. What feature saves the state of a workflow so that it can be resumed later?

PowerShell Workflows: A Primer 348

Review Answers

We answered like this:

1. Activity.
2. The most attractive feature is the use of parallelism. We also like that you built-in support for

remoting and jobs.
3. Checkpoints.

Globalizing Your Tools
This is a bit of a specialized chapter, and we realize up front that a lot of folks won’t ever need it.
With that in mind, we’ll also try to keep it concise.

Globalization is the process of writing your tools in a way that makes them easier to localize.
Localization is translating parts of your tool to reflect a specific culture. A culture is more than a
language; it can also incorporate widely understood colors, iconography, and other communication
elements. Because most PowerShell scripts are text-only, localization does tend to come down to
language, which means you translate the text strings - error messages, verbose messages, and the
like - into another language.

Neither of us are fluent in anything but English, and even that fluency is debatable
sometimes. For our examples, we’re relying on machine translation, so please forgive us
if anything is horribly amiss.

Starting Point

We’re going to go back a few chapters and start with a script that we’ve used previous. For this
chapter’s downloadable sample code, we’ll call it StartingPoint.ps1.

StartingPoint.ps1

Function Get-MachineInfo {

[CmdletBinding()]

Param(

[Parameter(ValueFromPipeline,

Mandatory)]

[Alias('CN', 'MachineName', 'Name')]

[string[]]$ComputerName

)

BEGIN {}

PROCESS {

foreach ($computer in $computername) {

Try {

Write-Verbose "Connecting to $computer"

Globalizing Your Tools 350

$params = @{

ComputerName = $Computer

ErrorAction = 'Stop'

}

$session = New-CimSession @params

Write-Verbose "Querying $computer"

#define a hashtable of parameters to splat

#to Get-CimInstance

$cimparams = @{

ClassName = 'Win32_OperatingSystem'

CimSession = $session

ErrorAction = 'stop'

}

$os = Get-CimInstance @cimparams

$cimparams.Classname = 'Win32_ComputerSystem'

$cs = Get-CimInstance @cimparams

$cimparams.ClassName = 'Win32_Processor'

$proc = Get-CimInstance @cimparams | Select-Object -first 1

$sysdrive = $os.SystemDrive

$cimparams.Classname = 'Win32_LogicalDisk'

$cimparams.Filter = "DeviceId='$sysdrive'"

$drive = Get-CimInstance @cimparams

Write-Verbose "Outputting for $($session.computername)"

$obj = [pscustomobject]@{

ComputerName = $session.computername.ToUpper()

OSVersion = $os.version

OSBuild = $os.buildnumber

Manufacturer = $cs.manufacturer

Model = $cs.model

Processors = $cs.numberofprocessors

Cores = $cs.numberoflogicalprocessors

RAM = $cs.totalphysicalmemory

Architecture = $proc.addresswidth

SystemFreeSpace = $drive.freespace

}

Write-Output $obj

Globalizing Your Tools 351

Write-Verbose "Closing session to $computer"

$session | Remove-CimSession

}

Catch {

Write-Warning "FAILED to query $computer. $($_.exception.message)"

}

} #foreach

} #PROCESS

END {}

} #end function

Get-MachineInfo -ComputerName $env:COMPUTERNAME

Notice that we’ve explicitly removed the comment-based help from this script? That’s on purpose,
as comment-based help isn’t really globalized. Instead, we’d rely on “full” help files, created with
Platyps, which we’ve discussed in an earlier chapter.

Make a Data File

Our first step will be to create a separate file containing our English-language (specifically, US
English) text strings. We use a separate file because that makes it easier to hand just that file off
to a professional translator. They can create equivalents for whatever other languages we might
need.

PowerShell’s data language provides a really minimal set of instructions, meaning these files aren’t
scripts per se. That helps prevent malicious code from sneaking in. Add anything illegal, and the
module won’t load.

File naming is important with data files. But, in our downloadable sample code, we aren’t
really able to arrange the files into a proper module form. So here’s what we’re going to do:
in the folder for this chapter, we’ll have a Modules folder that represents a normal module
location, like Program Files\WindowsPowershell\Modules. Within it, we’ll create a folder
named GloboTools, which represents a module named GloboTools.

In that folder, we’ll obviously have GloboTools.psm1 and GloboTools.psd1, which are the
module file and the module manifest. You could load this module to try it out by running
Import-Module and providing the full path to the .psd1 file.

The following, then, is en/GloboTools.psd1. The en part is a partial culture code, as in en-US. There’s
a full list on MSDN⁷⁵, and it’s the first, lowercase two-letter part we’re using for the folder name.

⁷⁵https://msdn.microsoft.com/en-us/library/ee825488(v=cs.20).aspx

https://msdn.microsoft.com/en-us/library/ee825488(v=cs.20).aspx
https://msdn.microsoft.com/en-us/library/ee825488(v=cs.20).aspx

Globalizing Your Tools 352

ConvertFrom-StringData @'

connectingTo = Connecting to

queryingFrom = Querying

closingSessionTo = Closing session to

outputFor = Output for

failed = FAILED to query

'@

Basically, we created a hash table of sorts. Each pair consists of amessage identifier (that’s our word
for it, not an official term), which has no spaces. Each identifier is followed by the appropriate words
for this culture.

Don’t confuse the language .psd1 files for the module manifest .psd1 file. They’re both the
same file extension, but they have different purposes. Language .psd1 files are stored under
a culture-specific subfolder in the module folder.

Use the Data File

Of course, we need to actually use that data file. So here’s our GloboTools.psm1, and you can see that
we’ve replaced our static messages with references to $msgTable, along with a message identifier.

Notice in the below howwe use a subexpression to access specific messages from $msgTable.

GloboTools.psm1

Import-LocalizedData -BindingVariable msgTable

Function Get-MachineInfo {

[CmdletBinding()]

[alias("gmi")]

Param(

[Parameter(ValueFromPipeline, Mandatory)]

[Alias('CN', 'MachineName', 'Name')]

[string[]]$ComputerName

)

BEGIN {}

PROCESS {

Globalizing Your Tools 353

foreach ($computer in $computername) {

Try {

Write-Verbose "$($msgTable.connectingTo) $computer"

$params = @{

ComputerName = $Computer

ErrorAction = 'Stop'

}

$session = New-CimSession @params

Write-Verbose "$($msgTable.queryingFrom) $computer"

#define a hashtable of parameters to splat

#to Get-CimInstance

$cimparams = @{

ClassName = 'Win32_OperatingSystem'

CimSession = $session

ErrorAction = 'stop'

}

$os = Get-CimInstance @cimparams

$cimparams.Classname = 'Win32_ComputerSystem'

$cs = Get-CimInstance @cimparams

$cimparams.ClassName = 'Win32_Processor'

$proc = Get-CimInstance @cimparams | Select-Object -first 1

$sysdrive = $os.SystemDrive

$cimparams.Classname = 'Win32_LogicalDisk'

$cimparams.Filter = "DeviceId='$sysdrive'"

$drive = Get-CimInstance @cimparams

Write-Verbose "$($msgTable.outputFor) $($session.computername)"

$obj = [pscustomobject]@{

ComputerName = $os.CSName

OSVersion = $os.version

OSBuild = $os.buildnumber

Manufacturer = $cs.manufacturer

Model = $cs.model

Processors = $cs.numberofprocessors

Cores = $cs.numberoflogicalprocessors

RAM = $cs.totalphysicalmemory

Architecture = $proc.addresswidth

SystemFreeSpace = $drive.freespace

Globalizing Your Tools 354

}

Write-Output $obj

Write-Verbose "$($msgTable.ClosingSessionTo) $computer"

$session | Remove-CimSession

}

Catch {

Write-Warning "$($msgTable.failed) $computer. $($_.exception.message)"

}

} #foreach

} #PROCESS

END {}

} #end function

Notice the first line in our module, which is outside of any function. The Import-LocalizedData

command magically checks our system’s configured culture, which happens to be en-US. It then
looks in the \en subfolder for a .psd1 file having the module’s name, imports it, and stores the results
in $msgTable, which is the -BindingVariable we specified (note that the variable name, when used
with the parameter, doesn’t include the dollar sign). In our script, $msgTable now represents all of
our localized strings, and we can access each one as a property of that variable.

If you Import-Module GloboTools.psd1, and then run Get-GloboMachineInfo -ComputerName

localhost -Verbose, you’ll see the localized strings in action.

Adding Languages

We’ll save the following as de\GloboTools.psd1 and again apologize for machine translations. We
have several German friends and we hope they’re giggling.

ConvertFrom-StringData @'

connectingTo = Verbinden mit

queryingFrom = Abfrage von

closingSessionTo = Abschlusssitzung zu

outputFor = Ausgabe f�r

failed = gescheitert

'@

Testing this is a little tricky; you basically have to add a -UICulture parameter to Import-LocalizedData
to force it to import something other than what your system is configured to do.

Globalizing Your Tools 355

Another option is to use the Test-WithCulture command from the Jeff’s PSScriptTools
module. Adjust paths in the following as needed.

Test-WithCulture -Culture de-de -Scriptblock { import-module .\GloboTools.psd1

-force get-machineinfo localhost -Verbose }

Defaults

Now, there’s a downside to this approach we’ve shown you, which is that Import-LocalizedData
will simply not do anything if the culture it needs isn’t present. So you can take another step to
provide a default - say, in English. Just add this to the top of the module script file, before the call to
Import-LocalizedData:

$msgTable = Data {

culture-en-US

ConvertFrom-StringData @'

connectingTo = Connecting to

queryingFrom = Querying

closingSessionTo = Closing session to

outputFor = Output for

failed = FAILED to query

'@

}

This pre-populated $msgTable with English strings, and allows Import-LocalizedData to overwrite
those with another culture, if needed and if that other culture has a file present.

Let’s Review

We don’t really have an exercise for you with this chapter. But let’s at least ask a few review
questions.

1. What type of file do you use for text translations?
2. What cmdlet imports the localized data?
3. Where do you put your localized data files?

Review Answers

And some answers are:

1. A PowerShell data file or .psd1 file.
2. Import-LocalizedData. That was easy.
3. In culture-specific subfolders like de-DE or vi-VN

Using “Raw” .NET Framework
This topic comes up a lot. So let’s break it down a bit: our overwhelming preference is to use “native”
PowerShell whenever possible. That means running commands - cmdlets, functions, and so on -
versus external applications, or using .NET Framework classes. We have three core reasons for this
preference:

1. Commands are easier to read in a script, can be more admin-focused, support discoverability
and help, and are usually more consistently designed.

2. Commands can be mocked in Pester tests, which is hugely useful.
3. Commands can consistently use a set of common parameters that enable verbose output, error

handling, pipeline capturing, and much more.

But you’ll run into times when there just isn’t a command for what you need to do - and that’s what
this chapter is all about.

Understanding .NET Framework

The .NET Framework consists of a set of classes that perform an enormous variety of tasks. There
are simple classes for manipulating strings, complex classes for working with Active Directory, and
super-complex classes for dealing with databases and data structures. The Framework is huge. The
Framework is accessible from any language that can run in the .NET Common Language Runtime
(or CLR) or Dynamic Language Runtime (DLR), which means PowerShell is “in.”

However: just because you’re using .NET in PowerShell doesn’t mean you’re “scripting in Power-
Shell” or that you’re “.NET scripting.” The Framework is a hugely different beast from PowerShell.
It’s more complex, it’s very developer-centric, it’s documented differently, and so on. You may find
that your favorite Q&A forums for PowerShell can’t help as much when you start doing .NET, and
that you have to take your questions to a developer-centric site like StackOverflow.com.

Let’s be clear about something: if .NET was a good administrator tool, PowerShell would literally
not exist, and we’d all be “scripting” in C# instead. In fact, we regularly see people struggling to
make complex .NET stuff work in PowerShell, and wonder why they don’t just fire up Visual Studio
and start a new C# project, because we know what they’re doing would be faster and easier that
way. PowerShell is not a “first class citizen” in the .NET world. It lacks many crucial .NET language
features that much of the Framework takes for granted - things like proper event management,
asynchronous callbacks, generics, and more. It is not accurate to say that “PowerShell can do
anything in .NET.” It can’t, always, and you’ll get a bloody forehead banging your head against
that wall.

Using “Raw” .NET Framework 357

But there are times when something you need exists within .NET, doesn’t exist in PowerShell
command, and will work fine in PowerShell. For those instances, this chapter exists.

Let’s start with some terminology:

• A type is a blueprint for the way a piece of software can be used. A type typically defines an
interface, the means by which you tell the software what to do.

• A class is an actual implementation of a type, including all the code that makes the interface
actually work.

• A class, through its type definition, usually has members. These members are the individual
elements of the interface. A class is meant to be a bit of a black box. The members are the
buttons you push and dials you read, while what goes on inside - the code - is a mystery. The
main kinds of members include:
– Properties, which expose information about the class.
– Methods, which ask the class to perform a task.
– Events, which enable you to respond to things that happen to the class.

• Some properties and methods are static, which means the class can operate these without
additional information, and without having to create an instance of the class. On the other
hand, most members are instance, which means they can only be used once you’ve instantiated
the class. Think of a television: you can’t just stand up and announce “turn on the TV.” First,
you have to go get a TV. That is, you have to get a concrete instance of the abstract “TV” type.
Once you have a particular TV, you can turn it on.

Interpreting .NET Framework Docs

Always run $PSVersionTable in PowerShell to seewhat version of the .NET Framework you’re using.
Then, make sure whatever docs you read are for the same version. We can’t tell you how much time
we’ve wasted trying to get something to work, only to realize we were reading instructions from a
different version!

MSDN.Microsoft.com is the base point for .NET Framework’s documentation. We find, however,
that it’s often easier to start with a search engine, using a .NET type name if possible. That way, you
can jump straight to what you need.

Let’s use the documentation for System.DateTime⁷⁶ as an example.

• Notice the “Other Versions” dropdown, where you can select documentation for a specific
version of .NET.

• You’ll first see several constructors. These are basically static methods of the class, which can
be used to create a new instance of the class. Constructors often take input arguments, which
usually control how the new instance is created.

⁷⁶https://msdn.microsoft.com/en-us/library/system.datetime.aspx

https://msdn.microsoft.com/en-us/library/system.datetime.aspx
https://msdn.microsoft.com/en-us/library/system.datetime.aspx

Using “Raw” .NET Framework 358

• Next you’ll see properties. Ones with a big red “S” icon are static, and can be used without
running a constructor to create an instance. For example, the Now property is static - you don’t
need a particular date or time to get the current date or time. However, TimeOfDay is an instance
property - until you have a date, you can’t find out what time of day that date is.

• Next are methods, which can again be instance or static.
• You may also see operators, which are tiny bit like methods in that they ask the class to perform
something, although in this case they only perform comparisons.

• There are sometimes fields, which usually contain static information about the class’ capabili-
ties or features.

You can click through on any member to read more about it. Go ahead and take a second to look up
System.DateTime and make sure you can identify the above items.

Coding .NET Framework in PowerShell

Now let’s talk about using these things!

Static Members

Remember, a static member (which appears in the docs with a big red “S” icon) doesn’t require you
to instantiate the class. That is, you don’t need to create an object. You simply use the class name,
in square brackets, followed by two colons, and then the member:

[System.DateTime]::Now

Or a method:

[System.DateTime]::DaysInMonth(2020,2)

We looked that up in the documentation, by theway, to figure out how to use it. It says DaysInMonth()
takes on integer for the year, and another for the month, and then tells you how many days that
month has.

Instance Members

These require you to instantiate the class - or, in PowerShell terms, to create an object. To do so, you’ll
use New-Object along with the class’ type name. You have to pick a constructor in order to create the
new object! Some types will allow you to create a new instance using zero input arguments; other
classes can’t create a new instance of themselves unless you provide some kind of input. Perusing the
constructors for System.DateTime, for example, they all appear to require one or more arguments,
which means we’ll have to provide them:

Using “Raw” .NET Framework 359

$dt = New-Object -TypeName System.DateTime -ArgumentList 1

Now, here’s how arguments work: if you look at the docs, you’ll see that arguments are simply a
comma-separated list inside parentheses. From PowerShell’s perspective, you just provide a comma-
separated list of arguments to the -ArgumentList parameter. .NET magically figures out which
constructor you’re using, based on the data types of your arguments, and the number of arguments
you provide. There’s no other way to specify a constructor, so you have to get the arguments spot-on.

For example, System.DateTime has five constructors:

• One accepts a number
• One accepts a number and a “DateTimeKind” enumeration
• One accepts three numbers
• One accepts six numbers
• One accepts seven numbers

You’ll never, ever see two constructors that accept the same number of arguments all of the same
data type, in the same order.

Wait - “enumerations?” Yeah. These are basically like a ValidateSet() parameter attribute, in that
the enumeration is a list of acceptable values. Under the hood, they’re always numbers, but to you,
they’re friendly-looking names. They just look a bit funky in PowerShell code. We had to look up
the DateTimeKind enumeration⁷⁷ by clicking through from the constructor’s help page.

$dt = New-Object -Type System.DateTime -Arg (500, [System.DateTimeKind]::Utc)

Once you’ve got your new instance, you can use its members:

$dt.DayOfWeek

$dt.ToLocalTime()

And that’s about it. It’s a lot harder to find stuff in .NET than it is to use it!

Loading Assemblies

PowerShell can access most of the “core” .NET stuff (like, in the System namespace) without needing
to load anything. But other times, you’ll first need to load the .NET assembly into memory, so
PowerShell knows what you’re trying to use. If you know the path and filename of your DLL, it’s
easy:

⁷⁷https://msdn.microsoft.com/en-us/library/shx7s921.aspx

https://msdn.microsoft.com/en-us/library/shx7s921.aspx
https://msdn.microsoft.com/en-us/library/shx7s921.aspx
https://msdn.microsoft.com/en-us/library/shx7s921.aspx

Using “Raw” .NET Framework 360

[System.Reflection.Assembly]::LoadFile("Mydll.dll")

If you don’t - say, if you’re trying to use something from the Global Assembly Cache (GAC) - it’s
sometimes a bit tougher. Ideally, you should be able to use the Add-Type command. In theory, the
GAC knows where the DLL files are for every type in the GAC.

Add-Type -Assembly My.Big.Crazy.Framework

Notice you’re just providing the type name, not a filename. But if this doesn’t work - and sometimes,
it doesn’t - try:

[System.Reflection.Assembly]::LoadWithPartialName('My.Big.Crazy.Framework')

The LoadWithPartialName() method can be a little bit of a bad practice (it’s actually deprecated),
and if you have a lot of side-by-side versioning going on, it can potentially load a version you didn’t
mean to load. So you want to try and avoid it and stick with Add-Type instead, which actually lets
you be very specific about what to load:

Add-Type -AssemblyName "Microsoft.SqlServer.Smo, `

Version=12.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"

What’s fun is that Add-Type has a -Path parameter, meaning it can also replace the LoadFile()

method, too! And it makes for easier reading in your scripts!

Wrap It

OK, let’s say you’ve found a magical .NET type that’ll do everything you’ve always dreamed of,
and more. You’ve found its docs, you figured out how to use it, and you’ve got some working code.
You’re done!

Not so fast.

A true Toolmaker isn’t done. Not until that thing has been wrapped into a PowerShell command,
so that future generations don’t have to go through all that figuring-out pain, ever again. Let’s run
through a quick example.

PowerShell 5 (and later) has an [enum] type accelerator that makes it easier to work with
enumerations. It has two static methods, GetValues() and GetNames(). Given an enumeration type,
it can get you the names (that is, the possible choices) in the enumeration, or the underlying values.
For example:

Using “Raw” .NET Framework 361

[enum]::GetNames([System.Environment+SpecialFolder])

So this [enum] bit works like a normal type; it’s essentially a shortcut to a .NET Framework type
that has a longer and less-convenient name. Two colons indicates we’re using a static member, and
we’ve used the GetNames() method. According to the docs⁷⁸, the method needs a type as its input
argument, and it’ll get the enumerations for that type. In PowerShell, type names go inside [square
brackets], like [System.DateTime]. In our case, we wanted the SpecialFolder enumeration from the
System.Environment class.

We told you, the toughest part was figuring out .NET, not using it.

Anyway, the docs for System.Environment⁷⁹ links to the SpecialFolder enumeration⁸⁰, and so we
constructed [System.Environment from the type name, and +SpecialFolder] from the name of the
enumeration itself. That is, System.Environment contains the SpecialFolder enumeration.

So we came up with this (which is Example.ps1 in the sample code):

Example.ps1

function Get-SpecialFolders {

[CmdletBinding()]

Param()

$folders = [enum]::GetNames([System.Environment+SpecialFolder])

Write-Verbose "Got $($folders.count) folders"

foreach ($folder in $folders) {

[pscustomobject]@{

Name = $folder

Path = [environment]::GetFolderPath($folder)

}

}

}

Get-SpecialFolders

Notice the empty Param() block? That’s so we could still have [CmdletBinding()] even though we
don’t need any input parameters for this function. Notice that we’ve turned this obscure .NET-ish
code into a simple PowerShell function that returns familiar-looking objects as its output. This is
the goal of a Toolmaker!

Your Turn

This is great toolmaking practice, so prepare to dive in and make something cool!

⁷⁸https://msdn.microsoft.com/en-us/library/system.enum.getnames(v=vs.110).aspx
⁷⁹https://msdn.microsoft.com/en-us/library/system.environment(v=vs.110).aspx
⁸⁰https://msdn.microsoft.com/en-us/library/system.environment.specialfolder.aspx

https://msdn.microsoft.com/en-us/library/system.enum.getnames(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.environment(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.environment.specialfolder.aspx
https://msdn.microsoft.com/en-us/library/system.enum.getnames(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.environment(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.environment.specialfolder.aspx

Using “Raw” .NET Framework 362

Start Here

The System.Math class (Google it!) has a ton of static members. In fact, that’s all it has - you can’t
actually instantiate the type, because it doesn’t have any constructors. Cool, right? It’s not hard to
use already:

System.Math::Abs(-5)

That’ll return the absolute value of -5, which is 5.

Your Task

We want you to figure out how to use the Round() method from System.Math. When you do, build
a function around it. We’ll suggest a command name of ConvertTo-RoundNumber. Your command
should:

• Accept a number (of type [double]) to be rounded
• Optionally, accept the number (as an [int]) of decimal places to round to

Good luck!

Our Take

Here’s what we did (it’s in Solution.ps1 in the downloadable sample code for this chapter):

Solution.ps1

function ConvertTo-RoundNumber {

[CmdletBinding()]

Param(

[Parameter(Mandatory)]

[double]$Number,

[int]$DecimalPlaces

)

if ($PSBoundParameters.ContainsKey('DecimalPlaces')) {

[System.Math]::Round($Number, $DecimalPlaces)

}

else {

[System.Math]::Round($Number)

}

Using “Raw” .NET Framework 363

}

ConvertTo-RoundNumber -Number 5.55345 -DecimalPlaces 2

ConvertTo-RoundNumber -Number 5.6748

Let’s Review

Answer these questions, and you’ll know you picked up the main point of the chapter:

1. What differentiates a static member and an instance member of a type?
2. What does a constructor do?
3. How to you pass arguments to a constructor?
4. How do you determine which constructor will run, when a type has multiples?
5. What one command can be used to load .NET assemblies from any location?

Review Answers

Here are the answers:

1. Static members (shown with a red “S” icon in the docs) don’t require you to instantiate the
class; instance members do.

2. Creates an instance of a type.
3. By using the -ArgumentList parameter of New-Object.
4. .NET figures this out based on the number and data types of your arguments.
5. The Add-Type command.

Scripting at Scale
We’ve always felt that one of PowerShell’s greatest strengths was that if you could do something
with one thing, be it a file, event log, computer or user account, you could do it for 10, 100 or 1000.
In most cases, your PowerShell code would be essentially the same. This notion should also be
influencing the way you do your work as an IT Pro.

For the longest time we usually approached our work on a singular basis. Say you had to check free
disk space on 10 servers. In the last century, you’d go through your list one at a time and get the
data you needed. But today, you should be thinking about managing at scale. Don’t think about
getting disk space for 1 server at a time, think about how to do it for all 10 at the same time. Don’t
check individual event logs on 100 servers, check them all at once. Once you start looking at your
work from this perspective, you’ll realize you need to change your tool set or how you are using it.
Fortunately, PowerShell makes it relatively easy to take this approach.

However, even with all of that we’re also going to offer up this potentially heresy, “PowerShell isn’t
always the answer.” If you need to manage 10,000 servers in near real-time, PowerShell is probably
not going to be the best tool. We’re not saying it won’t work, but the scripting effort may be beyond
your abilities or performance won’t be what you need. PowerShell is always going have overhead,
which is not necessarily a bad thing. That “overhead” makes it easy to find and use well-defined
commands and parameters in a meaningful pipelined expression. We want you to realize that at
some point you may need to move beyond PowerShell to compiled C# applications or full-blown
software management solutions.

So what’s the point of this chapter? Well, this is for the majority of you that want to use PowerShell
to manage more than a few things at a time. When you are building your PowerShell tools, you may
want to take large-scale operations into account. To that end we wanted to provide some advice and
techniques for scripting at scale but with a few caveats.

Depending on your tool, performance at scale may be influenced by factors outside of your control
such as network or server loads, limitations with cmdlets you are using within your PowerShell tool
and how a user, maybe even you, are expecting to use it. The best we can say is keep the following
things in mind and test.

In this chapter you’ll see us use Measure-Command quite a bit. But you shouldn’t rely on a
single test as an absolute metric. Any number of factors could influence the value. Plus, there
is often a caching effect which can throw off consecutive test results. You might consider
testing in new PowerShell sessions. You can also use Jeff’s Test-Expression module which
you can find in the PowerShell Gallery.

Scripting at Scale 365

To Pipeline or not

Without a doubt the pipeline makes PowerShell easy to use. It is pretty easy to run a command like
this:

Get-Content services-to-test.txt | Get-Service

However, you could also have written the expression like this:

Get-Service -name (Get-Content services-to-test.txt)

For a small list the differences are irrelevant. But once you start scaling, this type of performance
difference begins to add up. Using the pipeline will always involve some degree of overhead which
is the price we pay for the convenience. Let’s look at the cost.

Here’s a bunch of service names.

$names = Get-Service | Select-Object -expandproperty name

Now let’s see the difference in how we use it:

Measure-Command {

$names | Get-Service

}

Measure-Command {

Get-Service $names

}

In our test, the first command took 57ms to complete and the latter only 40ms. Not that much really.
So let’s make a bigger list of names.

$big = $names+$names+$names+$names+$names

Now we’ll re-run the tests with $big instead of $names. Now we’re at 253ms vs 169ms which is
beginning become noticeable. And we’re going to assume that as the amount of data to process goes
up the differences will become more noticeable.

All of our talk about scripting at scale assumes you are running your toolset interactively
and efficiency is paramount. If the typical usage will be to run your command in background
job where you’ll get the data when you get around to it, then everything we’re covering may
not really matter.

Or let’s look at a larger pipelined process.

Scripting at Scale 366

$data = Get-ChildItem -path $env:temp -file -Recurse |

Group-Object -property extension |

Sort-Object -property Count |

Select-Object -property Count,Name,

@{Name="Size";Expression = {($_.group | Measure-Object -Property length -sum).sum}}

There’s nothing inherently wrong with this approach. It works and on our test system with a very
cluttered temp folder it took about 860ms. Compare the previous command to this:

$files = Get-ChildItem $env:temp -file -Recurse

$grouped = $files | Group-Object -Property extension

$sorted = $grouped | Sort-Object -Property Count

$data = $sorted | Select-Object -Property Count,Name,

@{Name="Size";Expression = {($_.group | Measure-Object -Property length -sum).sum}}

The end result is the same, but in this case the commands ran in about 780ms. This version might
even be easier to understand.

Let’s look at this from a toolmaking perspective. We have a function, which you can find in the
chapter’s code downloads, to calculate the square root of a number.

SquareRoot.ps1

Function SquareRoot {

[cmdletbinding()]

Param(

[Parameter(Position = 0, Mandatory, ValueFromPipeline)]

[int[]]$Value

)

Begin {

Write-Verbose "[BEGIN] Starting: $($MyInvocation.Mycommand)"

} #begin

Process {

foreach ($item in $value) {

[pscustomobject]@{

Value = $item

SquareRoot = [math]::Sqrt($item)

}

}

} #process

End {

Scripting at Scale 367

Write-Verbose "[END] Ending: $($MyInvocation.Mycommand)"

} #end

}

The command is written so that the user can pipe in a list of numbers or pass the list with the
parameter.

$n = 1..1000

Measure-Command {$n | squareroot}

Measure-Command {squareroot $n }

In this simple comparison we scored 52ms vs 38ms respectively. Let’s see the difference with varying
sets of numbers between using the pipeline and using the parameter.

10,100,500,1000,5000,10000 | ForEach-Object {

$n = 1..$_

$pipe = (Measure-Command {$n | squareroot}).totalMilliseconds

$param = (Measure-Command {squareroot $n}).TotalMilliseconds

[pscustomobject]@{

ItemCount = $_

PipelineMS = $pipe

ParameterMS = $param

PctDiff = 100 - (($param/$pipe) * 100 -as [int])

}

}

The results speak for themselves:

ItemCount PipelineMS ParameterMS PctDiff

--------- ---------- ----------- -------

10 1.1204 0.7462 33

100 3.1137 1.5254 51

500 16.268 9.499 42

1000 48.8335 32.456 34

5000 207.8208 119.046 43

10000 395.9118 290.6119 27

In this case, we may want to consider revising the tool and removing the option of accepting
pipelined input, thus forcing the use to pass values with the parameter. Although this might make
the tool more difficult for the user who might be expecting to pipe in a set of numbers.

This is not to say you should never use the pipeline in your toolmaking, only that you might want
to consider if you are using it wisely.

Scripting at Scale 368

Foreach vs ForEach-Object

Another scaling factor might be whether you rely on the Foreach enumerator or the ForEach-Object
cmdlet. Let’s demonstrate with a large number of items to process.

$n = 1..10000

Let’s do something with each item and measure:

Measure-Command {

$a = 0

foreach ($i in $n) {

$a+=$i

}

}

This took about 50ms to complete compared to the alternative:

Measure-Command {

$n | ForEach-Object -Begin { $a = 0 } -process {

$a+=$_

}

}

Which took about 227ms to get the same result. Again there may be other reasons you might want
to use one technique over the other but once you start scaling, there are differences to consider.

Write-Progress

Another design consideration for tools that need to work at scale is user feedback. If you have a long
running command, it is often helpful to let the user know what is happening. You could sprinkle a
bunch of Write-Host commands throughout your function but that’ll get ugly pretty quickly. Instead,
you should use a cmdlet that doesn’t get a lot of love, Write-Progress.

You’ve probably seen a text-style progress bar when running some commands. That comes from
Write-Progress. The tricky part is that you have to write your code to include it from the beginning.
The cmdlet requires at least an activity description. Here’s a quick one-liner that demonstrates it:

Scripting at Scale 369

1..5 | foreach {

Write-Progress "Counting"

Start-Sleep -Seconds 1

}

You can also include a Status which will display just below it.

1..5 | foreach {

Write-Progress -activity "Counting" -status "Processing"

Start-Sleep -Seconds 1

}

And if you want to get very granular there is a provision to display the current operation.

1..5 | foreach {

Write-Progress -activity "Counting" -status "Processing" -currentOperation $_

Start-Sleep -Seconds 1

}

You’ll find many of our demos in the chapter download.

Here’s more complete example. We’ve thrown in a Start-Sleep command to make it easier to see
the progress display.

$out = Get-Process | Where-Object starttime | ForEach-Object {

Write-Progress -Activity "Get-Process" `

-Status "Processing" `

-CurrentOperation "process: $($_.name) [$($_.id)]"

$_ | Select-Object ID, Name,StartTime,

@{Name="Runtime";Expression = {(Get-Date) - $_.starttime}}

Start-Sleep -Milliseconds 50

}

Now, if you know in advance howmuch data you need to process, you can provide a time remaining
value or a percent complete.

Scripting at Scale 370

$i = 20

1..$i | foreach -Begin {

[int]$seconds = 21

} -process {

Write-Progress -Activity "My main activity" -Status "Calculating square roots" `

-CurrentOperation "processing: $_" -SecondsRemaining $seconds

[math]::Sqrt($_)

Start-Sleep -Seconds 1

$seconds-= 1

}

It is up to you to come up with code to figure out the seconds remaining value. You don’t have
to be 100% accurate but “close enough”. When the loop finishes, the Write-Progress display will
automatically dismiss.

There is a -Completed switch parameter for the cmdlet which will force the display to
disappear, but we’ve never had to use it.

Maybe it’s because of the type of commands we write, but when we use Write-Progress we tend
to show a percent complete value.

$i = 20

1..$i | ForEach-ObjectNotFound -Begin {

[int]$count = 0

} -process {

#calculate percent complete

$count++

$pct = ($count/$i) * 100

Write-Progress -Activity "My main activity"

-Status "Calculating square roots" `

-CurrentOperation "processing: $_" -PercentComplete $pct

[math]::Sqrt($_)

Start-Sleep -Milliseconds 200

}

Usually when using Write-Progress most values like activity and status will remain unchanged
or rarely change This is a good use case for splatting a hashtable of parameters. We’ve included a
sample function in the GetFolderSize.ps1 file.

Scripting at Scale 371

GetFolderSize.ps1
Function Get-FolderSize {

[cmdletbinding()]

Param(

[Parameter(

Position = 0,

ValueFromPipeline,

ValueFromPipelineByPropertyName

)]

[ValidateNotNullorEmpty()]

[string]$Path = $env:temp

)

Begin {

Write-Verbose "[BEGIN] Starting: $($MyInvocation.Mycommand)"

} #begin

Process {

Write-Verbose "[PROCESS] Analyzing: $path"

#define hash table of parameter values for Write-Progress

$progParam = @{

Activity = $MyInvocation.MyCommand

Status = "Querying top level folders"

CurrentOperation = $path

PercentComplete = 0

}

Write-Progress @progParam

Write-Verbose "[PROCESS] Get top level folders"

$top = Get-ChildItem -Path $path -Directory

#sleeping enough to see the first part of Write-Progress

Start-Sleep -Milliseconds 300

#initialize a counter

$i = 0

#get the number of files and their total size for each

#top level folder

foreach ($folder in $top) {

Scripting at Scale 372

#calculate percentage complete

$i++

[int]$pct = ($i/$top.count)*100

#update the param hashtable

$progParam.CurrentOperation = "Measuring folder size: $($folder.Name)"

$progParam.Status = "Analyzing"

$progParam.PercentComplete = $pct

Write-Progress @progParam

Write-Verbose "[PROCESS] Calculating folder statistics for $($folder.name)\

."

$stats = Get-ChildItem -path $folder.fullname -Recurse -File |

Measure-Object -Property Length -Sum -Average

if ($stats.count) {

$fileCount = $stats.count

$size = $stats.sum

}

else {

$fileCount = 0

$size = 0

}

#write a custom object result to the pipeline

[pscustomobject]@{

Path = $folder.fullName

Modified = $folder.LastWriteTime

Files = $fileCount

Size = $Size

SizeKB = [math]::Round($size/1KB, 2)

SizeMB = [math]::Round($size/1MB, 2)

Avg = [math]::Round($stats.average, 2)

}

} #foreach

} #process

End {

Write-Verbose "[END] Ending: $($MyInvocation.Mycommand)"

} #end

}

In the beginning you can see where we defined a hashtable of values for Write-Progress.

Scripting at Scale 373

$progParam=@{

Activity = $MyInvocation.MyCommand

Status = "Querying top level folders"

CurrentOperation = $path

PercentComplete = 0

}

Later, as the script processes folders we can update the hashtable on the fly.

#calculate percentage complete

$i++

[int]$pct = ($i/$top.count)*100

#update the param hashtable

$progParam.CurrentOperation = "Measuring folder size: $($folder.Name)"

$progParam.Status = "Analyzing"

$progParam.PercentComplete = $pct

Write-Progress @progParam

You can change the progress bar color scheme in the console
by modifying $host.privatedata.progressforegroundcolor and
$host.privatedata.progressbackgroundcolor. Use the same values you’d use with
Write-Host.

For your commands that need to process a lot of data, or might take a bit longer to run, using
Write-Progress will make you look like a real professional.

Leverage Remoting

Perhaps the idea of scripting at scale is most important when your tool needs to process hundreds
or thousands of computers. PowerShell cmdlets make it easy to pass in multiple computer names,
but there are some things you might want to consider.

When you see a cmdlet with a -Computername parameter, more than likely that command is
connecting to each computer sequentially over legacy protocols like RPC and DCOM. If one of
the computers is slow to respond or offline, you can’t get to the rest of the list until it responds or
errors out. We did a quick test with 5 computers we knew to be online.

Scripting at Scale 374

Measure-Command {

Get-Service bits,wuauserv -ComputerName $computers

}

This took about 917ms. We’re working with the assumption that as the number of computers
increases the time required will increase proportionally. Compare this to running the same
Get-Service command but this time using Invoke-Command which means it runs essentially
simultaneously on all the computers.

Measure-Command {

Invoke-Command {Get-Service bits,wuauserv} -ComputerName $computers

}

This version took a bit longer at 1348ms, primarily because of the overhead in setting up and tearing
down a PSSession. But let’s say you already had a PSSession created.

$ps = New-PSSession -ComputerName $computers

Measure-Command {

Invoke-Command {Get-Service bits,wuauserv} -session $ps

}

Now the command completes in 161ms! And this improves if your list of computers contains items
that are offline or otherwise might error out. We added an offline computer to the list and re-ran the
first test. That took over 6 seconds to complete. But using Invoke-Command and the computername
took 581ms AND we got an error we could have handled. Or course, if you use a PSSession you
know that Invoke-Command will run without error.

Our tests with 5 computers hardly posed any sort of impact on the network. But what if we
were querying 50 or 500 computers? By default Invoke-Command will throttle connections to
32 at a time. That means if we gave it 50 computers, it would make a connection to the first
32, then as servers responded, the remaining list would be processed up to a max of 32 at a
time. You can raise or lower this limit with the -ThrottleLimit parameter.

So what does this mean with your toolmaking?

Assuming your underlying code relies on remoting anyway, you might consider running that code
through Invoke-Command. For example, look at this simple function that gets drive info:

Scripting at Scale 375

GetDiskSpace.ps1

Function Get-DiskSpace {

[cmdletbinding()]

Param(

[Parameter(Position = 0, Mandatory)]

[string[]]$Computername

)

Invoke-Command -scriptblock {

Get-CimInstance -ClassName win32_logicaldisk -filter "deviceid='c:'" |

Select-Object -property @{Name="Computername";Expression={$_.SystemName}},

DeviceID,Size,Freespace,

@{Name="PctFree";Expression={ "{0:p2}" -f $($_.freespace/$_.size)}}

} -ComputerName $computername -HideComputerName |

Select-Object -Property * -ExcludeProperty RunspaceID

Or if you need to handle errors with offline computers or access issues you could use something like
this version:

With Error Handling

Function Get-DiskSpace {

[cmdletbinding()]

Param(

[Parameter(Position = 0, Mandatory)]

[string[]]$Computername

)

foreach ($computer in $computername) {

Write-Verbose "Querying $computer"

Try {

Invoke-Command -scriptblock {

Get-CimInstance -ClassName win32_logicaldisk -filter "deviceid='c:'" |

Select-Object -Property @{Name="Computername";Expression={$_.SystemName}},

DeviceID,Size,Freespace,

@{Name="PctFree";Expression={ "{0:p2}" -f $($_.freespace/$_.size)}}

} -ComputerName $computer -HideComputerName -ErrorAction stop |

Select-Object -Property * -ExcludeProperty RunspaceID

}

Catch {

Write-Warning "[$($computer.toupper())] $($_.exception.message)"

}

Scripting at Scale 376

} #foreach

}

Need to support pipelining a bunch of computer names? You might consider this variation.

From the pipeline

Function Get-DiskSpace {

[cmdletbinding()]

Param(

[Parameter(Position = 0, Mandatory, ValueFromPipeline)]

[string[]]$Computername

)

Begin {

#initialize an array

$computers=@()

}

Process {

#add each computer to the array

$computers+=$Computername

}

End {

#run the actual command here for all computers

Invoke-Command -scriptblock {

Get-CimInstance -ClassName win32_logicaldisk -filter "deviceid='c:'" |

Select-Object -Property @{Name="Computername";Expression={$_.SystemName}},

DeviceID,Size,Freespace,

@{Name="PctFree";Expression={ "{0:p2}" -f $($_.freespace/$_.size)}}

} -ComputerName $computers -HideComputerName |

Select-Object -Property * -ExcludeProperty RunspaceID

}

}

All of the work is done at once in the End scriptblock.

Notice that in all cases, we’re doing as much processing, such as selecting properties, on the remote
computer to take advantage of its processing resources and to limit what has to come back across
the wire.

Scripting at Scale 377

If your function is running a single command in a remoting session, there’s no advantage to
creating a session, running Invoke-Command and then removing the session. But if you are
doing something that requires multiple commands on a remote server, then we recommend
creating a PSSession and re-using that as necessary. Just remember to clean it up at then
end.

Leverage Jobs

Another option for scaling your commands might be to take advantage of PowerShell’s background
job infrastructure. Certainly anyone should be able to run your tool with Start-Job but perhaps
you’d like to make this easier or you know your commands will take a long, long time to complete
and jobs make sense.

Here’s a version of the diskspace function that simply passes the -AsJob parameter to the underlying
Invoke-Command.

AsJob

Function Get-DiskSpace {

[cmdletbinding()]

Param(

[Parameter(Position = 0, Mandatory, ValueFromPipeline)]

[string[]]$Computername,

[switch]$AsJob

)

Begin {

#initialize an array

$computers=@()

}

Process {

#add each computer to the array

$computers+=$Computername

}

End {

#add a parameter

$psboundParameters.Add("HideComputername",$True)

#run the actual command here for all computers

Invoke-Command -scriptblock {

Get-CimInstance -ClassName win32_logicaldisk -filter "deviceid='c:'" |

Scripting at Scale 378

Select-Object -Property @{Name="Computername";Expression={$_.SystemName}},

DeviceID,Size,Freespace,

@{Name="PctFree";Expression={ "{0:p2}" -f $($_.freespace/$_.size)}}

} @psboundParameters |

Select-Object -Property * -ExcludeProperty RunspaceID

}

}

One potential “gotcha”, that you’d have to document or train, is that if there are errors, the job might
show as failed but there will be results from computers where it was successful.

Or you might want to internally spin off a bunch of jobs in order scale. Here’s a template of what
such a function might look like:

Job Template

Function Get-Foo {

[cmdletbinding()]

Param(

[Parameter(Position = 0, ValueFromPipeline)]

$This,

$That,

$TheOtherThing

)

Begin {

#initialize an array to hold job objects

$jobs = @()

$mycode = {

#define your code to run with parameters if necessary

#parameters will need to be passed positionally

Param($this, $that)

#awesome PowerShell code goes here

}

}

Process {

#add the job to the array

$jobs += Start-Job -ScriptBlock $mycode -ArgumentList $this, $that

}

End {

#wait for all jobs to complete

Scripting at Scale 379

Write-Host "Waiting for background jobs to complete" -ForegroundColor Yellow

$jobs | Wait-Job

#receive job results

#or bring job results back in to the function and do

#something with them

$jobs |

Get-Job -ChildJobState Completed -HasMoreData $True |

Receive-Job -keep

}

}

Consider this nothing more than a starting point and we’ve included this in the chapter downloads.

Leverage Runspaces

Background jobs are convenient but there is a price to pay. Although by this point in the book we
hope you realize everything in PowerShell toolmaking is a trade-off. One final option for scripting
at scale is the use of a PowerShell runspace. Frankly, we were a little hesitant in covering this topic
as it is advanced stuff and borders on .NET systems programming. But the concept comes up often
enough that we figured we’d at least get you started, with the caveat that using runspaces should
be for exceptional situations and not the norm.

Before we dive into the gnarly details let’s get some context. We built a list of 85 computernames
and ran Test-WSMan through a few different approaches and used Measure-Command.

$all = foreach ($item in $computers) {

Test-WSMan $item

}

Testing sequentially took 4 minutes and 45 seconds.

Measure-Command {

$all=@()

$all+= foreach ($item in $computers) {

Start-Job {Test-WSMan $item}

}

$all | Wait-job | Receive-Job -Keep

}

Scripting at Scale 380

Using background jobs was a bit faster at 4 minutes 32 seconds. Using runspaces we were able to
test in about 18 seconds. That probably got your attention. Here’s what we did.

First, you need to create a runspace object.

$run = [powershell]::Create()

The runspace is basically an empty PowerShell session that you fill with commands and scripts. We
added the Test-WSMan cmdlet and the computername parameter.

$run.AddCommand("Test-WSMan").addparameter("computername",$env:computername)

The main reason to use runspaces is the ability to run commands asynchronously. In other words,
we can very quickly spin off a runspace, even faster than a background job. This will require using
the BeginInvoke() method.

$handle = $run.beginInvoke()

You can test this handle to see if the task is completed with $handle.IsCompleted. If so, stop the
asynchronous process by invoking EndInvoke() with the handle object.

$results = $run.EndInvoke($handle)

This will give you the command results. The last step you should do is clean up after yourself.

$run.Dispose()

As you can tell, there’s a lot of .NET stuff here. But if your comfortable with that, you can come up
with code like we did to test all 85 computers.

#initialize an array to hold runspaces

$rspace = @()

#create a runspace for each computer

foreach ($item in $computers) {

$run = [powershell]::Create()

$run.AddCommand("Test-WSMan").addparameter("computername",$item)

$handle = $run.beginInvoke()

#add the handle as a property to make it easier to reference later

$run | Add-Member -MemberType NoteProperty -Name Handle -Value $handle

$rspace+=$run

}

Scripting at Scale 381

While (-Not $rspace.handle.isCompleted) {

#an empty loop waiting for everything to complete

}

#get results

$results=@()

for ($i = 0;$i -lt $rspace.count;$i++) {

$results+= $rspace[$i].EndInvoke($rspace[$i].handle)

}

#cleanup

$rspace.ForEach({$_.dispose()})

For an interesting take on working with runspaces take a look at
https://smsagent.wordpress.com/2017/02/17/powershell-tip-create-back-
ground-jobs-with-a-custom-class/⁸¹. You’ll find some great tutorials at
https://devblogs.microsoft.com/scripting/beginning-use-of-powershell-runspaces-part-
1/⁸²]. There is also the popular PoshRSJob module in the PowerShell Gallery which might
help you out.

With this in mind here’s a version of the Get-DiskSpace function that uses runspace.

Using Runspaces

Function Get-DiskSpace {

[cmdletbinding()]

Param(

[Parameter(Position = 0, Mandatory)]

[string[]]$Computername

)

$rspace = @()

foreach ($computer in $computername) {

Write-Verbose "Creating runspace for $Computer"

$run = [powershell]::Create()

[void]$run.AddCommand("Get-CimInstance").addparameter("computername",$computer)

[void]$run.Commands[0].AddParameter("classname","win32_logicaldisk")

[void]$run.commands[0].addParameter("filter","deviceid='c:'")

$handle = $run.beginInvoke()

⁸¹https://smsagent.wordpress.com/2017/02/17/powershell-tip-create-background-jobs-with-a-custom-class/
⁸²https://devblogs.microsoft.com/scripting/beginning-use-of-powershell-runspaces-part-1/

https://smsagent.wordpress.com/2017/02/17/powershell-tip-create-background-jobs-with-a-custom-class/
https://smsagent.wordpress.com/2017/02/17/powershell-tip-create-background-jobs-with-a-custom-class/
https://devblogs.microsoft.com/scripting/beginning-use-of-powershell-runspaces-part-1/
https://devblogs.microsoft.com/scripting/beginning-use-of-powershell-runspaces-part-1/
https://smsagent.wordpress.com/2017/02/17/powershell-tip-create-background-jobs-with-a-custom-class/
https://devblogs.microsoft.com/scripting/beginning-use-of-powershell-runspaces-part-1/

Scripting at Scale 382

#add the handle as a property to make it easier to reference later

$run | Add-member -MemberType NoteProperty -Name Handle -Value $handle

$rspace+=$run

} #foreach

#wait for everything to complete

While (-Not $rspace.handle.isCompleted) {

#an empty loop waiting for everything to complete

}

Write-Verbose "Getting results"

$results=@()

for ($i = 0;$i -lt $rspace.count;$i++) {

#stop each runspace

$results+= $rspace[$i].EndInvoke($rspace[$i].handle)

}

Write-Verbose "Cleaning up runspaces"

$rspace.ForEach({$_.dispose()})

Write-Verbose "Process the results"

$Results |

Select-Object -property @{Name="Computername";Expression={$_.SystemName}},

DeviceID,Size,Freespace,

@{Name="PctFree";Expression={ "{0:p2}" -f $($_.freespace/$_.size)}}

}

There’s no guarantee that this approach is any faster. We ran the very first version that used
Invoke-Commandwith our list of 85 computer names in just a bit over 26 seconds. Using the runspace
version took 1 minute 19 seconds so perhaps it isn’t the right choice for this particular task.

If you are using PowerShell 7 you can use ForEach-Object with it’s -Parallel parameter.
But don’t get carried away. As we’ve pointed out there is overhead in setting up and tearing
down the runspaces. You want to make sure that the commands you want to run warrant
the overhead.

Design Considerations

Is your head spinning yet? There’s a lot to digest here and no absolute answers. But we can give you
some design guidelines.

Scripting at Scale 383

• Do you have to even worry about scale?
• How will people use your tool? Will they expect to pipe stuff in or pass values through
parameters?

• What is your scripting skill level?
• What version of PowerShell is running or available to you?
• Do you need to handle other requirements such as credentials?
• What is an acceptable performance window? Is it really that big a deal if something takes 1
minute versus 45 seconds?

Everything in toolmaking is a balancing act and trade-off. Only you can decide what approach will
work best in your environment. Using tools like Measure-Command can help. Or take advantage of
the expertise in the PowerShell.org forum and solicit feedback on your project.

Your Turn

Let’s see how much you’ve picked up in this chapter by re-visiting a PowerShell tool from an earlier
chapter.

Start Here

In the chapter on creating Basic Controller Scripts and Menus we looked at a process script that
checked for recent eventlog entries on remote servers and created an HTML report. That version
ran through the list of computers sequentially which could potentially take a long time to run. We’ve
included a copy in this chapter’s downloads called GetEventlogs-Start.ps1.

Your Task

Modify it to perform better at scale using content from this chapter as inspiration. If you have a
bunch of computers you can test with, measure how long each version takes to complete.

Our Take

We ran the starting version against a list of 10 computers, some of which we knew would fail and
script took 2 minutes and 22 seconds to complete. Then we tested with this version.

Scripting at Scale 384

GetEventLogs.ps1
#Requires -version 5.0

[cmdletbinding()]

Param(

[Parameter(Position = 0, Mandatory)]

[ValidateNotNullorEmpty()]

[string[]]$Computername,

[ValidateSet("Error", "Warning", "Information", "SuccessAudit",

"FailureAudit")]

[string[]]$EntryType = @("Error", "Warning"),

[ValidateSet("System", "Application", "Security",

"Active Directory Web Services", "DNS Server")]

[string]$Logname = "System",

[datetime]$After = (Get-Date).AddHours(-24),

[Alias("path")]

[ValidateScript({Test-Path $_})]

[string]$OutputPath = "."

)

#define a hashtable of parameters for Write-Progress

$progParam = @{

Activity = $MyInvocation.MyCommand

Status = "Gathering $($EntryType -join ",") entries from $logname after $\

after."

CurrentOperation = $null

}

Write-Progress @progParam

#invoke the command remotely as a job

$jobs = @()

foreach ($computer in $computername) {

$progParam.CurrentOperation = "Querying: $computer"

Write-Progress @progParam

$jobs += Invoke-Command {

$logParams = @{

LogName = $using:logname

Scripting at Scale 385

After = $using:after

EntryType = $using:entrytype

}

Get-EventLog @logParams

} -ComputerName $Computer -AsJob

} #foreach

do {

$count = ($jobs | Get-Job | Where-Object state -eq 'Running').count

$progParam.CurrentOperation = "Waiting for $count remote commands to complete"

Write-Progress @progParam

} while ($count -gt 0)

$progParam.CurrentOperation = "Receiving job results"

Write-Progress @progParam

$data = $jobs | Receive-Job

if ($data) {

$progParam.CurrentOperation = "Creating HTML report"

Write-Progress @progparam

#create html report

$fragments = @()

$fragments += "<H1>Summary from $After</H1>"

$fragments += "<H2>Count by server</H2>"

$fragments += $data | Group-Object -Property Machinename |

Sort-Object -property Count -Descending |

Select-Object -property Count, Name |

ConvertTo-Html -As table -Fragment

$fragments += "<H2>Count by source</H2>"

$fragments += $data | Group-Object -Property source |

Sort-Object Count -Descending |

Select-Object -property Count, Name |

ConvertTo-Html -As table -Fragment

$fragments += "<H2>Detail</H2>"

$fragments += $data |

Select-Object -property Machinename, TimeGenerated, Source, EntryType,

Message | ConvertTo-Html -as Table -Fragment

the here string needs to be left justified

$head = @"

Scripting at Scale 386

<Title>Event Log Summary</Title>

<style>

h2 {

width:95%;

background-color:#7BA7C7;

font-family:Tahoma;

font-size:10pt;

font-color:Black;

}

body { background-color:#FFFFFF;

font-family:Tahoma;

font-size:10pt; }

td, th { border:1px solid black;

border-collapse:collapse; }

th { color:white;

background-color:black; }

table, tr, td, th { padding: 2px; margin: 0px }

tr:nth-child(odd) {background-color: lightgray}

table { width:95%;margin-left:5px; margin-bottom:20px;}

</style>

"@

$convert = @{

Body = $fragments

PostContent = "<h6>$(Get-Date)</h6>"

Head = $head

}

$html = ConvertTo-Html @convert

#save results to a file

$file = "$(Get-Date -UFormat '%Y%m%d_%H%M')_EventlogReport.htm"

$filename = Join-Path -Path $OutputPath -ChildPath $file

$progparam.CurrentOperation = "Saving file to $filename"

Write-Progress @progParam

Start-Sleep -Seconds 1

Set-Content -Path $filename -Value $html -Encoding Ascii

#write the result file to the pipeline

Get-Item -Path $filename

} #if data

else {

Write-Host "No matching event entries found." -ForegroundColor Magenta

Scripting at Scale 387

}

#clean up jobs if any

if ($jobs) {

$jobs | Remove-Job

}

You’ll see that we took advantage of Write-Progress to keep the user informed and Invoke-Command

to run the event log queries remotely. We decided to run the remote commands as background jobs
so that we could keep track of how many computers we were waiting on. Using the same list of
computers this script completed in under 25 seconds!

Let’s Review

Did you learn anything in this chapter?

1. What is a good alternative to Write-Host for providing feedback to a user of your tool?
2. What cmdlet should you use to evaluate performance?
3. Is using a pipeline expression always the best solution?
4. You should always use the Foreach enumerator instead of ForEach-Object. True or False?
5. What are some of the potential disadvantages of using commands with a -Computername

parameter?

Review Answers

Did you come up with answers like these?

1. Write-Progress
2. Measure-Command
3. Ok. This was kind of a trick question. Performance wise, there is always overhead when using

the pipeline, especially with large number of objects. But it may make the most logical sense
in using your tool.

4. Sorry, another tricky one. This also depends. The cmdlet makes it easier to write to the pipeline
and you get the Begin, Process and End scriptblocks but the enumerator often performs faster.
I guess that answer then is False.

5. These cmdlets tend to connect with legacy protocols such as RPC and DCOM which aren’t
necessarily fast or firewall friendly. Plus, parameter values are processed sequentially which
may means you can only get one result at a time.

Scaffolding a Project with Plaster
By this point, you shouldn’t be thinking about your PowerShell code so much in terms of “scripts” as
you are in terms of “projects.” Your code is going to need a lot more than just a .psm1 file - there’ll be
a manifest, automated unit tests, Visual Studio Code configuration files, and lots more. We find that
a lot of people skip some of these professional-grade “extras” in their eagerness to “just get scripting,”
which, if we’re being honest, we do too, a lot of the time. Plaster is an open-source PowerShell tool
that’s designed to help you do things the right way, without slowing you down. It helps scaffold a
project. That is, it’s designed to create a complete, pro-grade “structure” for a project, so that all the
right things are in all the right places and you can focus on writing your code quickly. It’ll create
the right folders for help files (PlatyPS!), unit tests (Pester!), and more, all based on customizable
templates.

Getting Started

The first thing you need to do is install the latest version of Plaster from the PowerShell Gallery.

Install-Module Plaster

Plaster is still in development and is an open source project. If you encounter issues or wish to learn
more, head to the project’s Github repository at https://github.com/PowerShellOrg/Plaster⁸³. The
current version of the module only has a handful of commands.

PS C:\> get-command -module plaster

CommandType Name Version Source

----------- ---- ------- ------

Function Get-PlasterTemplate 1.1.3 plaster

Function Invoke-Plaster 1.1.3 plaster

Function New-PlasterManifest 1.1.3 plaster

Function Test-PlasterManifest 1.1.3 plaster

We’ll take a look at these commands throughout the chapter.

Plaster was created by Microsoft and maintained by them for a number of years. In June of
2020 project ownership was transferred to PowerShell.org.

⁸³https://github.com/PowerShellOrg/Plaster

https://github.com/PowerShellOrg/Plaster
https://github.com/PowerShellOrg/Plaster

Scaffolding a Project with Plaster 389

Plaster Fundamentals

Plaster works by parsing an XML manifest (think of it as a template) that you create which in turn
generates a file and folder structure for your commands and module. Creating the template is the
most time-consuming task, but once completed it makes spinning up new projects incredibly easy
to do in a consistent manner.

Plaster’s concept is that you set up a template folder structure and an XML manifest file. When you
invoke the manifest, Plaster will create a new folder, copying and creating files or folders as needed.
The great feature in Plaster is that everything happens dynamically based on information gathered
from the template. Let’s walk through the process.

Invoking a Plaster Template

Before we create our own it might help to see the Plaster in action. To invoke Plaster we need the path
to a Plaster manifest or template file. Running Get-PlasterTemplate will show available templates.

PS C:\> Get-PlasterTemplate

Title : AddPSScriptAnalyzerSettings

Author : Plaster project

Version : 1.0.0

Description : Add a PowerShell Script Analyzer settings file to the root of your wo\

rkspace.

Tags : {PSScriptAnalyzer, settings}

TemplatePath : C:\Program Files\WindowsPowerShell\Modules\Plaster\1.1.3\Templates\Ad\

dPSScriptAnalyzerSettings

Title : New PowerShell Manifest Module

Author : Plaster

Version : 1.1.0

Description : Creates files for a simple, non-shared PowerShell script module.

Tags : {Module, ScriptModule, ModuleManifest}

TemplatePath : C:\Program Files\WindowsPowerShell\Modules\Plaster\1.1.3\Templates\Ne\

wPowerShellScriptModule

These are the templates included with the Plaster module. The important piece of information you
need is the TemplatePath property. Let’s use the module template.

Scaffolding a Project with Plaster 390

PS C:\> $temp = Get-PlasterTemplate | select-object -last 1

PS C:\> dir $temp.TemplatePath

Directory: C:\Program

Files\WindowsPowerShell\Modules\Plaster\1.1.3\Templates\NewPowerShellScriptModule

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 1/30/2018 12:25 PM editor

d----- 1/30/2018 12:25 PM test

-a---- 10/27/2017 6:10 AM 323 Module.psm1

-a---- 10/27/2017 6:10 AM 3129 plasterManifest.xml

To make it easy we’ll save it to a variable. Now we can invoke it using Invoke-Plaster. We’ll need
to supply the path to the template file and a destination for our new module.

PS C:\> Invoke-Plaster -TemplatePath $temp.TemplatePath -DestinationPath C:\TestModu\

le

____ _ _

| _ \| | __ _ ___| |_ ___ _ __

| |_) | |/ _` / __| __/ _ \ '__|

| __/| | (_| __ \ || __/ |

|_| |_|__,_|___/_____|_|

v1.1.3

==

Enter the name of the module:

The first thing we get is a prompt for the name of our module. We’ll call it TestModule to match the
destination folder. Plaster will then prompt us for additional information.

Scaffolding a Project with Plaster 391

Invoking a Plaster Manifest

Within a matter of seconds, a new module directory has been created, complete with the beginnings
of a Pester test.

PS C:\> dir C:\TestModule\

Directory: C:\TestModule

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 2/8/2018 5:42 PM .vscode

d----- 2/8/2018 5:42 PM test

-a---- 2/8/2018 5:42 PM 3867 TestModule.psd1

-a---- 10/27/2017 6:10 AM 323 TestModule.psm1

How did all of this work and how can you make it work for you? This is where the real fun begins.

Scaffolding a Project with Plaster 392

Creating a Plaster Module Template

The first step is to create a simple manifest using the New-PlasterManifest cmdlet. You will need
to provide a name for the template and ideally a description. You also should specify the path. This
is where the manifest XML file will be created. If you don’t specify a path everything goes into the
current directory. You should create the directory before creating the manifest

PS C:\> New-PlasterManifest -TemplateName MySample -TemplateType Project -Author "Ar\

t Deco" -Description "my sample template" -Path C:\mySample\plastermanifest.xml

The Plaster manifest is always called plastermanifest.xml. All we did was create it in our new
directory with the file.

PS C:\> dir .\mySample\

Directory: C:\mySample

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 2/8/2018 5:29 PM 511 plastermanifest.xml

The only thing in this file is the Plaster metadata.

<?xml version="1.0" encoding="utf-8"?>

<plasterManifest

schemaVersion="1.1"

templateType="Project" xmlns="http://www.microsoft.com/schemas/PowerShell/Plaster/\

v1">

<metadata>

<name>MySample</name>

<id>c6cc56bb-e3cc-4af5-a38b-d97b9649ecef</id>

<version>1.0.0</version>

<title>MySample</title>

<description>my sample template</description>

<author>Art Deco</author>

<tags></tags>

</metadata>

<parameters></parameters>

<content></content>

</plasterManifest>

Scaffolding a Project with Plaster 393

The only items you might want to change going forward are the version or description. As it stands
now this Plaster manifest doesn’t do anything. It needs some content. While you can specify content
with the New-PlasterManifest command, we think you’ll find it easier to open the file in your
scripting editor. Remember, that this is an xml file so watch the case in your tags.

Adding Prompts

As you saw when we ran the sample template, Plaster can prompt you for key pieces of information.
We can do the same thing by defining entries in the <parameters></parameters> section. First, we’ll
prompt for the name of the module.

<parameter name='ModuleName' type='text' prompt='Enter the name of the module'/>

It might also be helpful to include a version.

<parameter name='Version' type='text' prompt='Enter the initial module version' defa\

ult = '0.1.0'/>

Notice that with this parameter we are also including a default value. We’ll also prompt the an
author name and description.

<parameter name='Description' type='text' prompt='Enter a description of this mo\

dule'/>

<parameter name="ModuleAuthor" type='user-fullname' prompt='Enter the module aut\

hor name'/>

The ‘user-fullname’ type will use the name associated with your git configuration. Here’s the current
state of the Plaster manifest.

Scaffolding a Project with Plaster 394

The Plaster Manifest with Parameters

If we run Plaster we can see the prompts in action.

Testing Plaster Parameters

As you can tell from the PowerShell session, the manifest didn’t do anything because we haven’t
defined any actual content. That is, we haven’t told it what files or folders to create or copy.

Scaffolding a Project with Plaster 395

Adding Files and Folders

Since we are creating a new module, we most likely need a module manifest. Plaster can create that
file for us with an XML declaration like this:

<newModuleManifest

destination='${PLASTER_PARAM_ModuleName}.psd1'

moduleVersion = '$PLASTER_PARAM_Version'

rootModule = '${PLASTER_PARAM_ModuleName}.psm1'

encoding = 'UTF8-NoBOM'

author = '$PLASTER_PARAM_ModuleAuthor'

description = '$PLASTER_PARAM_Description'

openInEditor = "true"

/>

The newModuleManifest tag is essentially a proxy for the New-ModuleManifest cmdlet. You’ll also
notice that Plaster has a way for us to pass the parameter values. The format is $PLASTER_PARAM_-
[your parameter name].

Next, we might want a consistent folder structure. We can instruct Plaster to create new folders for
us. Because we intend to create help documentation with Platyps we’ll create the necessary folders.

<file destination='docs' source=''/>

<file destination='en-us' source=''/>

However the Plaster philosophy is to have a model folder that you can build from. Any files and
folders you want to reference are relative to the plastermanifest.xml file. We’ll add a few files to the
directory and update the Plaster manifest.

<file source='Module.psm1' destination='${PLASTER_PARAM_ModuleName}.psm1'/>

<file source='changelog.txt' destination='changelog.txt'/>

<file source='README.md' destination='README.md'/>

<file source='license.txt' destination='license.txt'>

Notice how we are using Plaster parameters to change the name of of module.psm1 file.

Before we see how this works so far, and because we’re working with XML which can be picky, let’s
test the manifest.

Scaffolding a Project with Plaster 396

Testing the Plaster Manifest

Sure enough we goofed and it is a common mistake. Looking at the file in VS Code we see that we
forgot to close a tag.

Manifest XML Error

We fix the error, save the file and re-run the test. Now, there are no errors.

Successful Plaster Manifest Test

Let’s invoke the manifest and see what happens.

Scaffolding a Project with Plaster 397

Invoking a Custom Plaster Template

Checking the project folder we specified we see the new files and folders.

PS C:\> dir .\MyProject\

Directory: C:\MyProject

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 2/12/2018 4:30 PM docs

d----- 2/12/2018 4:30 PM en-us

-a---- 2/12/2018 4:12 PM 14 changelog.txt

-a---- 2/12/2018 4:16 PM 2198 license.txt

-a---- 2/12/2018 4:30 PM 3906 MyProject.psd1

-a---- 2/12/2018 4:16 PM 145 MyProject.psm1

-a---- 2/12/2018 4:13 PM 16 README.md

PS C:\>

Your source folder can be as complex as you need it to be. You configure the Plaster template to
create and copy files as needed.

Scaffolding a Project with Plaster 398

Using Template Files

If copying PSl files was all Plaster did, that still puts you ahead. But that is just the beginning. Plaster
also has the ability to create dynamic content. That is, content based on parameter values or other
conditions. If you read through the Plaster documentation on GitHub, you’ll learn that you can
modify files using regular expressions. However, we think you’ll want to use template files.

In a template, you define sections of the file as replaceable parameters wrapped in <% %> tags. Plaster
will replace the contents with corresponding parameter value. We’re going to add a Test folder to
be copied with the beginnings of a Pester test. But we want the final file to have the module name.
Here’s the template file.

$ModuleManifestName = '<%=$PLASTER_PARAM_ModuleName%>.psd1'

$ModuleManifestPath = "$PSScriptRoot\..\$ModuleManifestName"

Describe '<%=$PLASTER_PARAM_ModuleName%> Manifest Tests' {

It 'Passes Test-ModuleManifest' {

Test-ModuleManifest -Path $ModuleManifestPath | Should Not BeNullOrEmpty

$? | Should Be $true

}

}

In the manifest, we need to tell Plaster to use this file. Instead of the ‘file’ directive we use
‘templatefile’.

<templateFile source='test\Module.T.ps1' destination='test\${PLASTER_PARAM_ModuleNam\

e}.Tests.ps1' />

Be very careful here as ‘templateFile’ is case-sensitive.

We’ll save the manifest and re-run the template. The Pester test file now looks like this:

$ModuleManifestName = 'myProject.psd1'

$ModuleManifestPath = "$PSScriptRoot\..\$ModuleManifestName"

Describe 'myProject Manifest Tests' {

It 'Passes Test-ModuleManifest' {

Test-ModuleManifest -Path $ModuleManifestPath | Should Not BeNullOrEmpty

$? | Should Be $true

}

}

You can use Plaster parameters that you define as well as a set of hard-coded variables.

Scaffolding a Project with Plaster 399

• PLASTER_TemplatePath : The absolute path to the template directory.
• PLASTER_DestinationPath : The absolute path to the destination directory.
• PLASTER_DestinationName : The name of the destination directory.
• PLASTER_FileContent : The contents of a file be modified via the <modify> directive.
• PLASTER_DirSepChar : The directory separator char for the platform.
• PLASTER_HostName : The PowerShell host name e.g. $Host.Name
• PLASTER_Version : The version of the Plaster module invoking the template.
• PLASTER_Guid1 : Randomly generated GUID value
• PLASTER_Guid2 : Randomly generated GUID value
• PLASTER_Guid3 : Randomly generated GUID value
• PLASTER_Guid4 : Randomly generated GUID value
• PLASTER_Guid5 : Randomly generated GUID value
• PLASTER_Date : Date in short date string format e.g. 10/31/2016
• PLASTER_Time : Time in short time string format e.g. 5:11 PM
• PLASTER_Year : The four digit year

Armed with this information, we can turn the other static files into dynamic templates. For example,
the README.md template file now looks like this:

<%=$PLASTER_PARAM_ModuleName%>

last updated <%=$PLASTER_Date%>

As long as the manifest has the correct settings, Plaster will make the substitutions.

<templateFile source='changelog.txt' destination='changelog.txt'/>

<templateFile source='README.md' destination='README.md'/>

<templateFile source='license.txt' destination='license.txt'/>

<templateFile source='test\Module.T.ps1' destination='test\${PLASTER_PARAM_ModuleNam\

e}.Tests.ps1' />

We’ve included a version of the mySample folder with the template file changes in the code
download.

Adding Messages

Plaster does a pretty good job at letting you knowwhat is going on. But you can also write additional
messages in the <content/> block.

Scaffolding a Project with Plaster 400

<content>

<message>Scaffolding your PowerShell Project</message>

<file destination='docs' source=''/>

<file destination='en-us' source=''/>

...

</content

Content items are processed sequentially. Here’s a manifest excerpt:

<content>

<message>

| Scaffolding your PowerShell project |

| |\ /| | /| /| |\ | | / \ |

| |/ \| | / |/ | | \ | |/ \|

</message>

<message>Creating your module manifest for ${PLASTER_PARAM_ModuleName}</messag\

e>

<newModuleManifest

destination='${PLASTER_PARAM_ModuleName}.psd1'

moduleVersion = '$PLASTER_PARAM_Version'

rootModule = '${PLASTER_PARAM_ModuleName}.psm1'

encoding = 'UTF8-NoBOM'

author = '$PLASTER_PARAM_ModuleAuthor'

description = '$PLASTER_PARAM_Description'

openInEditor = "true"

/>

<file source='Module.psm1' destination='${PLASTER_PARAM_ModuleName}.psm1'/>

<message>Creating required folders</message>

<file destination='docs' source=''/>

<file destination='en-us' source=''/>

<message>Creating template files</message>

<templateFile source='changelog.txt' destination='changelog.txt'/>

<templateFile source='README.md' destination='README.md'/>

<templateFile source='license.txt' destination='license.txt'/>

<templateFile source='test\Module.T.ps1' destination='test\${PLASTER_PARAM_Modul\

eName}.Tests.ps1' />

<message>

Your new PowerShell module project '$PLASTER_PARAM_ModuleName' has been created at $\

PLASTER_DestinationPath

Scaffolding a Project with Plaster 401

</message>

</content>

As you can see, you can include Plaster variables and parameters in your message text. This is the
output from invoking the template manifest:

Plaster template messages

Creating a Plaster Function Template

Creating a folder structure for a new PowerShell project is very helpful. But you can leverage the
template file feature to create function code. This needs a different type of Plaster manifest - an Item
manifest. The concepts are still the same. We’ll end up with a plastermanifest.xml file in the root of
a folder with supporting files.

PS C:\myFunction> New-PlasterManifest -TemplateName myFunction -TemplateType Item -D\

escription "Function scaffolding" -author "Art Deco"

This gives us the beginning of a manifest.

Scaffolding a Project with Plaster 402

<?xml version="1.0" encoding="utf-8"?>

<plasterManifest

schemaVersion="1.1"

templateType="Item" xmlns="http://www.microsoft.com/schemas/PowerShell/Plaster/v1">

<metadata>

<name>myFunction</name>

<id>4a3def64-dd0a-4b46-b959-1fb56a525c19</id>

<version>1.0.0</version>

<title>myFunction</title>

<description>Function scaffolding</description>

<author>Art Deco</author>

<tags></tags>

</metadata>

<parameters></parameters>

<content></content>

</plasterManifest>

We’re going to need some information which we can get through a set of parameters.

<parameter name='Name' type='text' prompt='Enter the name of your function.'/>

<parameter name='Version' type='text' prompt='What is the function version?' default\

='0.1.0'/>

<parameter name='OutputType' type='text' prompt='What type of output is expected' de\

fault="[PSCustomObject]"/>

Even though we didn’t mention it with the module-based manifests, you can create parameters that
offer a choice of possible values. This will come in handy when scaffolding a function. For example,
we might want to ask if the function needs to include code for SupportsShouldProcess.

<parameter name="ShouldProcess" type="choice" prompt="Do you need to support -WhatIf\

" default='1'>

<choice label="&Yes" help="Adds SupportsShouldProcess" value="Yes" />

<choice label="&No" help="Does not add SupportsShouldProcess" value="No" />

</parameter>

Within the parameter tag you’ll define a set of <choice> tags. The & helps identify an accelerator
character and goes in front of the desired character. The end result will be _Yes and _No where the
user only needs to type Y or N. The Default value is based on a 0-based array. In our example, the
default is No.

Here is the finished manifest which you’ll also find in the code downloads.

Scaffolding a Project with Plaster 403

<?xml version="1.0" encoding="utf-8"?>

<plasterManifest

schemaVersion="1.1"

templateType="Item" xmlns="http://www.microsoft.com/schemas/PowerShell/Plaster/v1">

<metadata>

<name>myFunction</name>

<id>4a3def64-dd0a-4b46-b959-1fb56a525c19</id>

<version>1.0.0</version>

<title>myFunction</title>

<description>Function scaffolding</description>

<author>Art Deco</author>

<tags></tags>

</metadata>

<parameters>

<parameter name='Name' type='text' prompt='Enter the name of your function.'\

/>

<parameter name='Version' type='text' prompt='What is the function version?'\

default='0.1.0'/>

<parameter name='OutputType' type='text' prompt='What type of output is expe\

cted' default="[PSCustomObject]"/>

<parameter name="ShouldProcess" type="choice" prompt="Do you need to support\

-WhatIf ?" default='1'>

<choice label="&Yes" help="Adds SupportsShouldProcess" value="Yes" />

<choice label="&No" help="Does not add SupportsShouldProcess" value="No"\

/>

</parameter>

<parameter name="Help" type="choice" prompt="Do you need comment based help?" \

default='1'>

<choice label="&Yes" help="Add comment based help outline" value="Yes" />

<choice label="&No" help="Does not add comment based help" value="No" />

</parameter>

<parameter name="ComputerName" type="choice" prompt="Add a parameter for Compu\

tername?" default='0'>

<choice label="&Yes" help="Adds a default parameter for computername" va\

lue="Yes" />

<choice label="&No" help="Does not include computername parameter" value\

="No" />

</parameter>

</parameters>

<content>

<message>'/|= Scaffolding your PowerShell function $PLASTER_PARAM_Name =|\'</messa\

ge>

<templateFile source='function-template.ps1' destination='${PLASTER_PARAM_Name\

Scaffolding a Project with Plaster 404

}.ps1'/>

<message>Your function, '$PLASTER_PARAM_Name', has been saved to '$PLASTER_Des\

tinationPath\$PLASTER_PARAM_Name.ps1'</message>

</content>

</plasterManifest>

Before we can run this, we need to create the function template. We’ll use the same concept that we
used with files in the module manifest where Plaster will replace <% plaster-variables %> with
text. For example, we might want to include a comment header in the function with the version
information and creation date. Our function template file would include code like this:

<%

@"

version: $PLASTER_PARAM_version

created: $PLASTER_Date

"@

%>

You need to explicitly tell Plaster you are replacing everything inside the <% %> with text. In this
case, a here string. Of course, we can do the same thing with the name of the new function.

<%

"Function $PLASTER_PARAM_Name {"

%>

But now it gets interesting.We can use some simple logic to dynamically add content. In ourmanifest
we’re prompting if the user wants to include comment based help. Their response is saved to a Plaster
parameter value. We can test that parameter in the function template file and insert a string of text
if the answer is Yes.

<%

If ($PLASTER_PARAM_Help -eq 'Yes')

{

@"

<#

.SYNOPSIS

Short description

.DESCRIPTION

Long description

.PARAMETER XXX

Describe the parameter

.EXAMPLE

Scaffolding a Project with Plaster 405

Example of how to use this cmdlet

.NOTES

insert any notes

.LINK

insert links

#>

"@

}

%>

You have to be careful. The curly braces are part of the If statement and not part of the text you
are inserting into the file. The inserted text is the here string with the comment-based help. We
can repeat this process for other parts of the function, based on the user’s answers to the parameter
prompts.

<%

if ($PLASTER_PARAM_ShouldProcess -eq 'Yes') {

"[cmdletbinding(SupportsShouldProcess)]"

}

else {

"[cmdletbinding()]"

}

%>

<%

"[OutputType($PLASTER_PARAM_OutputType)]"

%>

<%

if ($PLASTER_PARAM_computername -eq 'Yes') {

@'

Param(

[Parameter(Position=0,ValueFromPipeline,ValueFromPipelineByPropertyName)]

[ValidateNotNullorEmpty()]

[string[]]$ComputerName = $env:COMPUTERNAME

)

'@

}

else {

@'

Param()

'@

}

%>

Scaffolding a Project with Plaster 406

You can find the completed template in the code downloads. Let’s invoke the template.

Plaster Function Template

Within seconds we have the beginnings of an advanced PowerShell function.

#requires -version 5.0

version: 1.0.0

created: 2/19/2020

Function Get-SecretOfLife {

<#

.SYNOPSIS

Short description

.DESCRIPTION

Long description

.PARAMETER XXX

Describe the parameter

.EXAMPLE

Example of how to use this cmdlet

.NOTES

insert any notes

.LINK

insert links

#>

Scaffolding a Project with Plaster 407

[cmdletbinding()]

[OutputType([PSCustomObject])]

Param(

[Parameter(Position=0,ValueFromPipeline,ValueFromPipelineByPropertyName)]

[ValidateNotNullorEmpty()]

[string[]]$ComputerName = $env:COMPUTERNAME

)

Begin {

Write-Verbose "[$((Get-Date).TimeofDay) BEGIN] Starting $($myinvocation.my\

command)"

} #begin

Process {

Foreach ($computer in $Computername) {

Write-Verbose "[$((Get-Date).TimeofDay) PROCESS] Processing $($computer.\

toUpper())"

#<insert code here>

}

} #process

End {

Write-Verbose "[$((Get-Date).TimeofDay) END] Ending $($myinvocation.myco\

mmand)"

} #end

} #close Get-SecretOfLife

Integrating Plaster into your PowerShell Experience

We’ve spent a great deal of time in this chapter on Plaster mechanics. Before we go though,
we want to show you why this is worth the effort, especially if you are locked into VS Code
as your primary editor. If you recall at the beginning of the chapter we showed how to use
Get-PlasterTemplate to identify available templates. But this command has an additional param-
eter, -IncludeInstalledModules. When you include this parameter, Plaster will check installed
module manifests for particular bit of code to indicate that the module contains templates.

Under the PSData section of the module manifest, we’re going to add a setting for Extensions and
specify an array of Plaster template names.

Scaffolding a Project with Plaster 408

Extensions = @(

@{

Module = "Plaster"

Details = @{

TemplatePaths = @("myProject","myFunction")

}

}

)

The paths are relative to the module manifest. We took our function and project template folders
and copied them to a new module called MyTemplates.

PS C:\> dir 'C:\Program Files\WindowsPowerShell\Modules\myTemplates\'

Directory: C:\Program Files\WindowsPowerShell\Modules\myTemplates

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 2/19/2018 11:03 AM myFunction

d----- 2/19/2018 11:06 AM myProject

-a---- 2/19/2018 11:25 AM 8186 myTemplates.psd1

-a---- 2/19/2018 11:23 AM 95 myTemplates.psm1

The psm1 file is empty except for a comment indicating why it is empty. The manifest file includes
the Extensions setting and also specifies Plaster as a required module. Now we get these templates.

Scaffolding a Project with Plaster 409

Get custom templates

We could use these templates like we did at the beginning of this chapter. But because we’re using
VSCode we can also invoke them via the command palette.

In VSCode press Ctrl+Shift+P to bring up the command palette. Then start typing ‘PowerShell:
Create New Project from Plaster Template’. After a moment or two, click on the option to load
additional templates.

Load additional Plaster templates

Within seconds you should get the list of your custom templates.

Scaffolding a Project with Plaster 410

Available custom templates

When you select one, VSCode will prompt you for parameter values.

Scaffolding a Project with Plaster 411

Invoking a Plaster template in VSCode

We created a new module project which is then immediately opened up in VSCode. We can now
invoke the MyFunction manifest and begin adding code to the module. Within minutes we can
create the outlines of a complete PowerShell module.

Tip

To skip the extra step of forcing VS Code to always search installed modules for Plaster templates,
you can take advantage of $PSDefaultParameterValues. In either the PowerShell profile script for all
hosts, or the VS Code specific profile profile add this command:

Scaffolding a Project with Plaster 412

$PSDefaultParameterValues."Get-PlasterTemplate:IncludeInstalledModules"=$True

Now when you invoke the VS Code command to create a new project from Plaster it will
automatically display all templates from modules.

Creating Plaster Tooling

Finally, we take advantage of one other Plaster feature and create everything from a PowerShell
prompt. Even though our Plaster manifests prompt for values, Plaster will dynamically generate
parameters for Invoke-Plaster. This means we can use something like this to rapidly generate
outlines for numerous files.

"Get-MyThing","Set-MyThing","Remove-MyThing","Invoke-Something" |

foreach-object -begin {

$splat = @{

TemplatePath = 'C:\Program Files\WindowsPowerShell\Modules\myTemplates\myFunction\'

DestinationPath = "c:\MyNewTool"

version = "0.1.0"

Outputtype = "[PSCustomObject]"

shouldprocess = "Yes"

help = "No"

computername = "yes"

NoLogo = $True

}

} -process {

#add the name

$splat.name = $_

if ($_ -match 'Get') {

$splat.ShouldProcess = "No"

}

Invoke-Plaster @splat

}

This means that you can create your own tooling around your Plaster templates that don’t rely on
VS Code.

Scaffolding a Project with Plaster 413

New-Scaffold.ps1
#requires -version 5.0

#requires -module Plaster

#this function assumes you have git installed and configured

Function New-Scaffold {

[cmdletbinding(SupportsShouldProcess)]

Param(

[Parameter(

Mandatory,

HelpMessage = "Enter the name of your new module."

)]

[ValidateNotNullorEmpty()]

[string]$ModuleName,

[Parameter(

Mandatory,

HelpMessage = "The folder name for your new module. The top level name s\

hould match the module name"

)]

[ValidateNotNullorEmpty()]

[string]$DestinationPath,

[Parameter(

Mandatory,

HelpMessage = "Enter a brief description about your project"

)]

[ValidateNotNullorEmpty()]

[string]$Description,

[Parameter(HelpMessage ="The module version")]

[string]$Version = "0.1.0",

[Parameter(HelpMessage ="The module author which should be your git user nam\

e")]

[string]$ModuleAuthor = $(git config --get user.name),

[ValidateSet("none", "VSCode")]

[Parameter(HelpMessage = "Do you want to include VSCode settings?")]

[string]$Editor = "VSCode",

[Parameter(HelpMessage = "The minimum required version of PowerShell for you\

r module")]

[string]$PSVersion = "5.0",

[Parameter(HelpMessage = "The path to the Plaster template")]

[ValidateNotNullorEmpty()]

[ValidateScript({ Test-Path $_ })]

[string]$TemplatePath = "C:\Program Files\WindowsPowerShell\Modules\myTempla\

Scaffolding a Project with Plaster 414

tes\myProject\"

)

if (-Not (Test-PlasterManifest -Path $TemplatePath\plastermanifest.xml)) {

write-Warning "Failed to find a valid plastermanifest.xml file in $TemplateP\

ath"

#bail out

return

}

if (-Not $PSBoundParameters.ContainsKey("templatePath")) {

$PSBoundParameters["TemplatePath"] = $TemplatePath

}

if (-not $PSBoundParameters.ContainsKey("version")) {

$PSBoundParameters["version"] = $version

}

if (-not $PSBoundParameters.ContainsKey("ModuleAuthor")) {

$PSBoundParameters["ModuleAuthor"] = $ModuleAuthor

}

if (-not $PSBoundParameters.ContainsKey("Editor")) {

$PSBoundParameters["editor"] = $editor

}

if (-not $PSBoundParameters.ContainsKey("PSVersion")) {

$PSBoundParameters["PSVersion"] = $PSVersion

}

$PSBoundParameters | Out-String | Write-Verbose

Invoke-Plaster @PSBoundParameters

if ($PSCmdlet.ShouldProcess($DestinationPath)) {

Write-Host "Initializing $DestinationPath for git" -ForegroundColor cyan

Set-Location $DestinationPath

git init

Write-Host "Adding initial files to first commit" -ForegroundColor cyan

git add .

git commit -m "initial files"

Write-Host "Switching to Dev branch" -ForegroundColor cyan

git branch dev

git checkout dev

}

Write-Host "Scaffolding complete" -ForegroundColor green

}

Scaffolding a Project with Plaster 415

This script assumes you have git installed. After the Plaster creates the module scaffolding, the
function then uses git to initialize the folder as a git repository, make an initial commit of files and
then checkout a dev branch. Now, one command sets up everything! The file in the code download
won’t have the wonky line wrapping you might see here.

Scaffolding with a Plaster-based function

There’s no doubt that there is a learning curve for Plaster. But once you take the time to put together

Scaffolding a Project with Plaster 416

a template, you’ll find yourself using it all the time.

Adding Auto Completion
PowerShell has always been designed and intended to be easy to use. Nobody wants to spend any
more typing than they actually have to. The PowerShell team thought about this and you probably
don’t even think about it. You can type a command like Get-Service, press the space bar and
then start pressing <kbd>Tab</kbd>. PowerShell will cycle through all the possible values for the
positional Name parameter. Once you get used to that kind of auto completion, you start looking for
it everywhere. And for a professional toolmaker, this might be something you want to add to your
own work.

ValidateSet

Technically, this is a little bit different than what we have in mind for this chapter, but it can have
the same net result. Look at this simple demo function.

Get-Foo

Function Get-Foo {

[cmdletbinding()]

Param(

[Parameter(Position = 0)]

[ValidateSet("This","That","Other","Squirrel")]

[string]$Item = "This"

)

Write-Host "Working with $item" -ForegroundColor green

}

We’ve added parameter validation specifying that the value for the -Item parameter must be one
of the values. When someone runs the function they press <kbd>Tab</kbd> to cycle through the
options. But don’t forget that the user can’t specify any other value.

Argument Completer Attribute

The other option you have is to add an [ArgumentCompleter()] attribute to a parameter in your
function. Here’s an example.

Adding Auto Completion 418

Get-ProcessDetail

Function Get-ProcessDetail {

[cmdletbinding()]

Param(

[Parameter(Position = 0, Mandatory)]

[ArgumentCompleter({(Get-Process).name})]

[string]$Name

)

Get-Process -Name $Name |

Select-Object -property ID, Name, StartTime, WorkingSet,

@{Name = "Path" ; Expression = {$_.MainModule.FileName}},

@{Name = "RunTime"; Expression = {(Get-Date) - $_.starttime}}

}

The attribute needs a scriptblock that will generate the argument completer results. In our sample it
is running Get-Process and returning the name property. You can have as much code as you need
in the script block but we suggest it be something that can execute quickly. You don’t want to be
waiting around the argument completion to finish.

The user isn’t forced to use the completer or its results. They can type whatever value they want.

Advanced Argument Completers

For all your other auto completion needs, you can create a separate argument completer. This thing
exists outside of your command. You’ll want to spend a fewminutes looking at the help and examples
for Register-ArgumentCompleter. In fact, pay close attention to the examples because you’re going
to use them as boilerplate templates.

The ultimate goal is to come up with a scriptblock that will generate the values you need. Again,
this shouldn’t take very long to run. What’s nice with this approach is that you can add wildcard
support so that the user can start typing part of the value and your argument completer can fill in
the rest. Let’s build one for an existing cmdlet that doesn’t have auto complete but we wish it did.

When you use Get-Eventlog, PowerShell will cycle through and auto complete all of the possible
log names. However, Get-WinEvent does not. You can list them, but the -LogName parameter doesn’t
auto complete. We can fix that.

First, we need the scriptblock.

Adding Auto Completion 419

Get-WinEvent LogName Scriptblock

$sb = {

param(

$commandName,

$parameterName,

$wordToComplete,

$commandAst,

$fakeBoundParameter

)

(Get-WinEvent -listlog "$wordtoComplete*").logname |

ForEach-Object {

[System.Management.Automation.CompletionResult]::new($_,$_,'ParameterValue',$_)

}

}

We’re using the same parameter names from the help example. What you need to come up
with is the code that will generate the list of values. In our example that’s what (Get-Winevent
-listlog "$wordtoComplete*").logname is doing. But here’s the fun part. You can include the
$wordtoComplete variable as placeholder for what the user is typing. You can include wildcards.
We’re adding one at the end. If the user starts typing “Micro” and presses <kbd>Tab</kbd the auto
completer will fill in the return the rest. You can decide how much wildcard support you need.

The values from the Get-WinEvent expression are used to create a CompletionResult object. The
new() method takes needs 4 parameters.

new(completion text,listitem text,result type,Tooltip)

• Completion Text This is the value that will be used for the parameter.
• ListItem Text This will be used in lists that you can see when using the PowerShell ISE or the
PSReadline module.

• Result Type Will be ParameterValue.
• ToolTip Gives you an opportunity to display additional information about the value. You’ll
need something like the PowerShell ISE to really see this.

In our example, we are using log name for all values.

The last step is to register the completer.

Adding Auto Completion 420

$params = @{

CommandName = "Get-WinEvent"

ParameterName = "Logname"

ScriptBlock = $sb

}

Register-ArgumentCompleter @params

With this in place, we now get tab completion for the LogName parameter. It may take a moment
to populate the results. This change only lasts for as long as your PowerShell session is running. If
this is something you want all the time, you would add this code to your PowerShell profile.

Sadly, there isn’t a Get-ArgumentCompleter command. But you can see it with a bit of .NET code.

PS C:\> [System.Management.Automation.CompletionCompleters]::CompleteCommand("Get-Wi\

nEvent")

CompletionText ListItemText ResultType ToolTip

-------------- ------------ ---------- -------

Get-WinEvent Get-WinEvent Command â€¦

If you need to make a change, simply re-register a new completer.

And you don’t have to use the $WordtoComplete variable. Here’s a variation on our function to get
a folder size.

Measure Folder

Function Measure-Folder {

[cmdletbinding()]

Param(

[Parameter(Position = 0,HelpMessage = "Specify the folder path to measure")]

[string]$Name = "."

)

Get-ChildItem -path $Name -Recurse -File |

Measure-Object -Property length -sum -Average |

Select-Object @{Name="Path";Expression={Convert-Path $Name}},

Count,Sum,Average

}

And an argument completer for the -Name parameter.

Adding Auto Completion 421

Measure Folder Auto Completer

$sb = {

param(

$commandName,

$parameterName,

$wordToComplete,

$commandAst,

$fakeBoundParameter

)

Get-Childitem -path . -Directory |

ForEach-Object {

[System.Management.Automation.CompletionResult]::new($_.fullname,$_.name,

'ParameterValue',$_.fullname)

}

}

$params = @{

CommandName = "Measure-Folder"

ParameterName = "Nanme"

ScriptBlock = $sb

}

Register-ArgumentCompleter @params

The scriptblock is defaulting to getting the directories in the current location. Here’s how it all looks
in the PowerShell ISE.

Adding Auto Completion 422

AutoCompleter

This makes it clear that the Name property is the list item and the full name is the tool tip.

If you want to include argument completers, the easiest thing is to put the code in the
module’s .psm1 file. The completers will be registered automatically when the module is
imported.

Your Turn

Let’s see what you can do with what we’ve shown you in this chapter. If you have a function of
your own that you think could use auto completion, go ahead and add it. Otherwise, we’ll provide
an exercise.

Start Here

The Get-Command command has a -Verb parameter. But you have to type the name of a standard verb.
Create an auto completion code snippet so that this parameter can auto-complete with a standard
verb.

Our Take

Here’s what we came up with.

Adding Auto Completion 423

Verb Auto Completer

$sb = {

param (

$commandName,

$parameterName,

$wordToComplete,

$commandAst,

$fakeBoundParameter

)

Get-Verb -Verb "$wordToComplete*" |

ForEach-Object {

[System.Management.Automation.CompletionResult]::new($_.Verb,$_.Verb,

'ParameterValue',("Group: $($_.Group)"))

}

}

$params = @{

CommandName = "Get-Command"

ParameterName = "Verb"

ScriptBlock = $sb

}

Register-ArgumentCompleter @params

We’re populating the auto completion list with results from Get-Verb. We even added a tool tip that
you can see when using the PSReadline module.

Verb Auto completion

Adding Auto Completion 424

Let’s Review

1. What parameter attribute would you add to your function to get auto complete functionality?
2. What command would you use to add auto complete functionality to any command?
3. What is the benefit of using an argument completion attribute in your function instead of

[ValidateSet()]?
4. If adding auto complete functionality to commands in your module, where is the best place for

the code?

Review Answers

1. [ArgumentCompleter()]
2. Register-ArgumentCompleter
3. When using [ValidateSet()] the user can only use a value in the defined set. With an

argument completer they can still enter whatever value they want. Although you may still
want to validate the value.

4. In the module’s .psm1 file.

Adding Custom Formatting
At this point in the book you should recognize the value of “objects in the pipeline”. For the most part,
we’re kinda letting PowerShell do its own thing. We give it a bunch of objects and it decides how to
display them. But maybe you want a little more control or want to have a nicer user experience for
your tool. You might need to tell PowerShell how to format your objects.

Here’s an example function.

New-SysInfo

Function New-SysInfo {

[cmdletbinding()]

Param([string[]]$Computername = $env:Computername)

$cim = @{

Classname = ""

Computername = ""

ErrorAction = "Stop"

}

foreach ($computer in $computername) {

$cim.Computername = $Computer

Try {

$cim.classname = "Win32_OperatingSystem"

$os = Get-CimInstance @Cim

$cim.classname = "Win32_Process"

$ps = Get-CimInstance @cim

[PSCustomobject]@{

Computername = $os.CSName

Processes = $PS.Count

OS = $os.Caption

Build = $os.BuildNumber

BootTime = $os.LastBootUpTime

}

}

Catch {

Write-Warning "Failed to get information from $($Computer.ToUpper())"

Write-Warning $($_.exception.message)

}

Adding Custom Formatting 426

} #foreach

} #New-SysInfo

When you run the command, you’ll most likely get output as a list.

PS C:\> new-sysinfo

Computername : BOVINE320

Processes : 316

OS : Microsoft Windows 10 Pro

Build : 19041

BootTime : 6/11/2020 10:11:20 PM

But really, this would look fine as a table.

PS C:\> new-sysinfo | format-table

Computername Processes OS Build BootTime

------------ --------- -- ----- --------

BOVINE320 316 Microsoft Windows 10 Pro 19041 6/11/2020 10:11:20 PM

But you don’t want to force the user to remember to do this. You want the default display to always
be a table.

Or perhaps your command is writing a very rich object to the pipeline and by default youwant to see
a specific set of properties displayed in a certain way. This too will require some custom formatting.

Format.ps1xml

PowerShell maintains its formatting rules in a set of XML files. These files will often follow a naming
convention of <typename>.format.ps1xml. In Windows PowerShell you can find these files in the
$PSHome folder. Here’s a snippet that shows the formatting for service objects.

Adding Custom Formatting 427

<?xml version="1.0" encoding="utf-8" ?>

<Configuration>

<ViewDefinitions>

<View>

<Name>service</Name>

<ViewSelectedBy>

<TypeName>System.ServiceProcess.ServiceController</TypeName>

</ViewSelectedBy>

<TableControl>

<TableHeaders>

<TableColumnHeader>

<Width>8</Width>

</TableColumnHeader>

<TableColumnHeader>

<Width>18</Width>

</TableColumnHeader>

<TableColumnHeader>

<Width>38</Width>

</TableColumnHeader>

</TableHeaders>

<TableRowEntries>

<TableRowEntry>

<TableColumnItems>

<TableColumnItem>

<PropertyName>Status</PropertyName>

</TableColumnItem>

<TableColumnItem>

<PropertyName>Name</PropertyName>

</TableColumnItem>

<TableColumnItem>

<PropertyName>DisplayName</PropertyName>

</TableColumnItem>

</TableColumnItems>

</TableRowEntry>

</TableRowEntries>

</TableControl>

</View>

</ViewDefinitions>

</Configuration>

This is why when you run Get-Service you see what you see. To create a custom format for your
object, you need to create your own format xml file.

Adding Custom Formatting 428

In PowerShell 7, these format xml files have been moved to inside the code for performance
reasons. You can still create and use custom xml files but you’ll need to use the ones in
Windows PowerShell as examples.

The file contains a collection of View definitions. Each view has a name and is associated with a
given typename.

<View>

<Name>service</Name>

<ViewSelectedBy>

<TypeName>System.ServiceProcess.ServiceController</TypeName>

</ViewSelectedBy>

Each view can then dictates what type of display to use such as table, list or wide. Table and List are
most widely used.

Define a TypeName

Before you can use a format ps1xml file, you need to make sure your object has a unique typename.
We’ve shown you a few ways in the book. If we want to add a default table view, we need to modify
our function to include a custom typename. You can’t define custom settings for a generic PSObject.

[PSCustomobject]@{

PSTypename = 'SysInfo'

Computername = $os.CSName

Processes = $PS.Count

OS = $os.Caption

Build = $os.BuildNumber

BootTime = $os.LastBootUpTime

}

We can verify this with Get-Member.

Adding Custom Formatting 429

PS C:\> new-sysinfo thinkp1 | get-member

TypeName: SysInfo

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string ToString()

BootTime NoteProperty datetime BootTime=6/23/2020 8:46:39 AM

Build NoteProperty string Build=19041

Computername NoteProperty string Computername=THINKP1

OS NoteProperty string OS=Microsoft Windows 10 Pro

Processes NoteProperty int Processes=240

Defining a View Definition

The table format for services is pretty close to what we want. We can copy and paste it into our
editor, along with the opening and closing tags. We can then add column headers and items to the
view, adjusting the column width as necessary. We also need to change the typename.

<?xml version="1.0" encoding="utf-8" ?>

<Configuration>

<ViewDefinitions>

<View>

<Name>default</Name>

<ViewSelectedBy>

<TypeName>SysInfo</TypeName>

</ViewSelectedBy>

<TableControl>

<TableHeaders>

<TableColumnHeader>

<Width>15</Width>

</TableColumnHeader>

<TableColumnHeader>

<Width>10</Width>

<Alignment>Right</Alignment>

</TableColumnHeader>

<TableColumnHeader>

Adding Custom Formatting 430

<Width>25</Width>

</TableColumnHeader>

<TableColumnHeader>

<Width>6</Width>

</TableColumnHeader>

<TableColumnHeader>

<Label>LastBoot</Label>

<Width>22</Width>

</TableColumnHeader>

</TableHeaders>

<TableRowEntries>

<TableRowEntry>

<TableColumnItems>

<TableColumnItem>

<PropertyName>Computername</PropertyName>

</TableColumnItem>

<TableColumnItem>

<PropertyName>Processes</PropertyName>

</TableColumnItem>

<TableColumnItem>

<PropertyName>OS</PropertyName>

</TableColumnItem>

<TableColumnItem>

<PropertyName>Build</PropertyName>

</TableColumnItem>

<TableColumnItem>

<PropertyName>BootTime</PropertyName>

</TableColumnItem>

</TableColumnItems>

</TableRowEntry>

</TableRowEntries>

</TableControl>

</View>

</ViewDefinitions>

</Configuration>

One change we made was to add an <Alignment/> tag to the seconds column which is the number
of processes. We want it the values to be right-justified. We also added a <Label/> for the last entry.
Instead of using the property name, we want to use a custom entry. This looks more complicated
than it really is and in a little bit we’ll show you and even easier way to create this XML.

Adding Custom Formatting 431

Update-FormatData

Once the file is created, we need to load it into PowerShell. This is done with Update-FormatData

and the path to your xml file.

Update-FormatData .\sysinfo.format.ps1xml

When you read the cmdlet help you’ll see there are options for prepending or appending. This means
do you want your definition to take precedence over anythingMicrosoft might have defined or come
after. In this case it doesn’t matter since we’re using a unique and custom typename.

You only have to run this command once to load the format definition into your session. Typically,
for a standalone function you can add the Update-FormatData command at the end of your script
file. But now when we run the command we get a formatted table by default.

PS C:\> new-sysinfo thinkp1,bovine320,srv1

Computername Processes OS Build LastBoot

------------ --------- -- ----- --------

THINKP1 240 Microsoft Windows 10 Pro 19041 6/23/2020 8:46:39 AM

BOVINE320 306 Microsoft Windows 10 Pro 19041 6/11/2020 10:11:20 PM

SRV1 32 Microsoft Windows Serv... 14393 6/22/2020 2:54:08 PM

New-PSFormatXML

It can be tedious copying and pasting XML so Jeff wrote a function called New-PSFormatXML which
is part of the PSScriptTools module. The process is to pipe a single instance of the object to the
command, specify what type of view you want and the properties. The command creates the XML
which you can fine tune if you want.

Since we already have a file, we’re going to add a new view called computer that will be a custom
table.

Adding Custom Formatting 432

$new = @{

Path = '.\sysinfo.format.ps1xml'

Properties = 'Processes', 'OS', 'BootTime'

GroupBy = 'Computername'

ViewName = 'computer'

FormatType = 'table'

Append = $True

}

New-SysInfo | New-PSFormatXML @new

The command makes a best guess as to column widths if you want to use them but defaults to an
AutoSize setting.

A nice feature of formatting files is that you can customize the heck out them. In our file, we added
a new column called Uptime that gets its value from a <ScriptBlock/> entry. We also changed a few
other property names to display differently than the property. The underlying object doesn’t change.
Only the way it is displayed.

Computer View

<View>

<!--Created 06/23/2020 09:16:53 by BOVINE320\Jeff-->

<Name>computer</Name>

<ViewSelectedBy>

<TypeName>SysInfo</TypeName>

</ViewSelectedBy>

<GroupBy>

<!--

You can also use a scriptblock to define a custom property name.

You must have a Label tag.

<ScriptBlock>$_.machinename.toUpper()</ScriptBlock>

<Label>Computername</Label>

Use <Label> to set the displayed value.

-->

<PropertyName>Computername</PropertyName>

<Label>Computername</Label>

</GroupBy>

<TableControl>

<!--Delete the AutoSize node if you want to use the defined widths.-->

<AutoSize />

<TableHeaders>

<TableColumnHeader>

<Label>Processes</Label>

Adding Custom Formatting 433

<Width>12</Width>

<Alignment>left</Alignment>

</TableColumnHeader>

<TableColumnHeader>

<Label>OperatingSystem</Label>

<Width>27</Width>

<Alignment>left</Alignment>

</TableColumnHeader>

<TableColumnHeader>

<Label>LastBootUpTime</Label>

<Width>24</Width>

<Alignment>right</Alignment>

</TableColumnHeader>

<TableColumnHeader>

<Label>Uptime</Label>

<Width>24</Width>

<Alignment>right</Alignment>

</TableColumnHeader>

</TableHeaders>

<TableRowEntries>

<TableRowEntry>

<TableColumnItems>

<!--

By default the entries use property names, but you can replace them with\

scriptblocks.

<ScriptBlock>$_.foo /1mb -as [int]</ScriptBlock>

-->

<TableColumnItem>

<PropertyName>Processes</PropertyName>

</TableColumnItem>

<TableColumnItem>

<PropertyName>OS</PropertyName>

</TableColumnItem>

<TableColumnItem>

<PropertyName>BootTime</PropertyName>

</TableColumnItem>

<TableColumnItem>

<ScriptBlock>

$ts = (Get-Date) - $_.BootTime

$ts.ToString("dd\.hh\:mm\:ss")

</ScriptBlock>

</TableColumnItem>

</TableColumnItems>

Adding Custom Formatting 434

</TableRowEntry>

</TableRowEntries>

</TableControl>

</View>

As you are developing and testing your format file, don’t forget to re-run Update-FormatData.

With the updated view loaded, we can now get formatted results that are more useful to us.

New-SysInfo

This view is using autosizing which we could go in and remove. Then the viewwould use the defined
column widths.

Adding to a Module

You can add as many format .psxml files to your module as you’d like. Instead of invoking
Update-FormatData you can add the files to the module manifest. Normally this section is com-
mented out.

FormatsToProcess = @('mything.format.ps1xml')

You can put the format file in the module root. Or some people like to keep them organized.

Adding Custom Formatting 435

FormatsToProcess = @('formats\this.format.ps1xml','formats\that.format.ps1xml')

When the module is imported, the formatting files are automatically.

Your Turn

This is such a useful scripting tool that we want to make sure you try it out. It may feel awkward at
first but after you do it a few times, and especially if you use New-PSFormatXML, you’ll find yourself
using it all the time.

Start Here

In the first part of this book you worked on a module to get machine information. The default output
contained a lot of information.

PS C:\> get-machineinfo

ComputerName : BOVINE320

OSVersion : 10.0.19041

OSBuild : 19041

Manufacturer : LENOVO

Model : 30C2CTO1WW

Processors : 1

Cores : 8

RAM : 31.8933715820313

SystemFreeSpace : 92282933248

Architecture : 64

Your boss doesn’t want to see all of this by default. In the downloads for this chapter you’ll find
the TMMachineInfo module. Use that as your starting point. The module we’re using has a class-
definition for the custom object so the class name is the type name.

Your Task

At a minimum, create a formatting file that has a default table view that displays these properties:

• The computername
• The OS version
• The manufacturer
• The RAM formatted as an integer and displayed as MemGB

Adding Custom Formatting 436

If want an extra challenge create a second table view called hardware that meets these specifications:

• The computername
• The manufacturer
• The model
• The number of processors labeled as CPUs and right justified
• The number of cores right justified
• The RAM formatted as an integer and displayed as MemGBand right justified
• The SystemFreeSpace formatted as an integer with a lable of SysFreeGB and right justified

Our Take

Using Jeff’s function we can create a format file and add it to the module for the default.

$new = @{

Path = 'TMMachineInfo\tmmachineinfo.format.ps1xml'

Properties = 'Computername', 'OSVersion', 'Manufacturer','RAM'

ViewName = 'default'

FormatType = 'table'

}

Get-Machineinfo | New-PSFormatXML @new

We edited the xml file to make some minor adjustments such as this snippet:

<TableColumnHeader>

<Label>MemGB</Label>

<Width>5</Width>

<Alignment>right</Alignment>

</TableColumnHeader>

...

<TableColumnItem>

<ScriptBlock>$_.RAM -as [int]</ScriptBlock>

</TableColumnItem>

We tested by manually running Update-FormatData.

Adding Custom Formatting 437

PS C:\> get-machineinfo -Computername thinkp1

ComputerName OSVersion Manufacturer MemGB

------------ --------- ------------ -----

THINKP1 10.0.19041 LENOVO 32

The default output is now our custom table. The object is still there.

PS C:\> get-machineinfo -Computername thinkp1 | Select-object *

ComputerName : THINKP1

OSVersion : 10.0.19041

OSBuild : 19041

Manufacturer : LENOVO

Model : 20MD0029US

Processors : 1

Cores : 12

RAM : 31.5475845336914

SystemFreeSpace : 128774402048

Architecture : 64

We also created a second table view called ‘hardware’.

$new = @{

Path = 'TMMachineInfo\tmmachineinfo.format.ps1xml'

Properties = 'Computername','Manufacturer','Model','Processors','Cores',

'RAM','SystemFreeSpace'

ViewName = 'hardware'

FormatType = 'table'

Append = $True

}

Get-Machineinfo | New-PSFormatXML @new

Here’s a peek at some of the file.

Adding Custom Formatting 438

...

<Label>MemGB</Label>

<Width>5</Width>

<Alignment>right</Alignment>

</TableColumnHeader>

<TableColumnHeader>

<Label>SysFreeGB</Label>

<Width>10</Width>

<Alignment>right</Alignment>

</TableColumnHeader>

</TableHeaders>

<TableRowEntries>

<TableRowEntry>

<TableColumnItems>

<TableColumnItem>

<PropertyName>ComputerName</PropertyName>

</TableColumnItem>

<TableColumnItem>

<PropertyName>Manufacturer</PropertyName>

</TableColumnItem>

<TableColumnItem>

<PropertyName>Model</PropertyName>

</TableColumnItem>

<TableColumnItem>

<PropertyName>Processors</PropertyName>

</TableColumnItem>

<TableColumnItem>

<PropertyName>Cores</PropertyName>

</TableColumnItem>

<TableColumnItem>

<ScriptBlock>$_.RAM -as [int]</ScriptBlock>

</TableColumnItem>

<TableColumnItem>

<ScriptBlock>[math]::Round($_.SystemFreeSpace/1GB,4)</ScriptBlock>

</TableColumnItem>

...

We modified the manifest:

FormatsToProcess = @('tmmachineinfo.format.ps1xml')

With the custom views we have a more flexible and easy to use tool.

Adding Custom Formatting 439

Hardware View

The solution version of the module is in the download material for this chapter if you want to see
all the changes we made.

Let’s Review

1. Why would you want to create a custom formatting file?
2. What file extension do you use with a custom formatting file?
3. What command can you manually run to load your custom formatting?
4. What module manifest setting do you need to modify to load your custom formatting?

Review Answers

1. You have a rich object but only really need to see a subset of properties by default.
2. The extensions is .ps1xml although the naming convention is <typename>.format.ps1xml to

make it super clear.
3. Update-FormatData
4. FormatsToProcess

Adding Logging
Even though we’ve touched on this topic elsewhere in the book, it comes up so frequently that we
felt we had to devote a chapter. We can’t tell you the number of times people ask about how to
add logging to their function or they want to have a paper trail or their boss is being unreasonable.
Whatever the case, hopefully we can shed some light on this subject and at least get you headed in
the right direction.

We’ll tell you right now that there is no magic or hidden log command. You’ll have to build it. Which
shouldn’t be that difficult once you finish this book. But we need to start with a question many IT
Pros seem to over look.

Why Are You Logging

Let’s say you have written a killer function that has gotten you rave reviews from your boss and a
big fat raise. But now the boss says, “We need to add logging to the command.” Without sounding
flippant, your response should be “Why?”. The process for adding “logging” to your command is no
different than the command itself. You need to gather some business requirements.

• Who is going to look at the logging results?
• Where will logging results be stored?
• How will the logging results be accessed or utilized?
• How long will logging results need to be maintained or kept?
• Will logging be optional or automatic?
• What mechanism or process will be put in place to manage the logging results?
• How sensitive are the logging results?
• What data needs to be logged?
• What are the implications if logging fails?

Your choice of scripting technique and commands will vary depending on these answers. Building
a long term logging result for independent auditor will likely entail something different than a need
to log offline or unreachable computers.

Logging or Transcript

During the course of requirements gathering you should at some point need to determine if you need
a log or transcript. People will say they need logging when what they really want is a transcript of

Adding Logging 441

who ran the command andwhat happened. To our way of thinking, a log is some artifact that records
specific pieces of information. A transcript is a written log of an interactive session or command.

PowerShell already has a built-in transcript feature and it supports nested transcripts. Here’s a taste
of how you might take advantage of this feature.

Get-Bits

Function Get-Bits {

[cmdletbinding()]

Param([string[]]$Computername = $env:computername)

Begin {

$file = "{0}_{1}.txt" -f (Get-Date -f "yyyy_MMddhhmm"),

$($myinvocation.MyCommand)

$tfile = Join-Path -Path $env:temp -ChildPath $file

[void](Start-Transcript -Path $tfile)

Write-Verbose "Starting $($myinvocation.MyCommand)"

$PSBoundParameters | Out-String | Write-Verbose

}

Process {

foreach ($computer in $Computername) {

Write-Host "Getting BITS from $computer" -ForegroundColor green

Get-Service -Name Bits -ComputerName $computer

}

}

End {

Write-Verbose "Ending $($myinvocation.MyCommand)"

[void](Stop-Transcript)

}

} #end function

When someone runs the command, it will create a transcript file in the %TEMP% folder using a
naming convention of a time stamp and the command name. All output from the command will be
captured in the transcript file. It is up to you to figure out how to manage or use the transcript. One
bonus about using a transcript is that it will include metadata about the user and their PowerShell
session. You don’t have to code anything extra.

PowerShell also has other native logging features that may be what you really need. In PowerShell 7
you can read the help topic about_logging_windows⁸⁴ or follow the online link. As with transcripts,
you’ll have to figure out how to manage the logged results.

⁸⁴https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_windows?view=powershell-7

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_windows?view=powershell-7
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_windows?view=powershell-7

Adding Logging 442

Structured vs Unstructured

So let’s say you’ve decided you need some type of logging, which doesn’t mean you can’t also add
a transcript feature. And you’ve thought about what pieces of information you need to record and
in what situations. Next you should decide what format to use. Do you need plain, unstructured
results like a text file of events? Or do you need some sort of structured data like an XML or JSON
object? Structured data tends to be something you can search or more easily manipulate than plain
text. Or maybe you need to write log stuff to a SQL database.

This is where the answers to the questions we posed earlier come into play. If you need secure,
long-term storage with reporting capabilities, writing to a SQL database may be the smart move. Or
maybe you have your command emit a CSV file and with a separate process, you suck up all the
CSV logs into a central database. Bigger companies can probably afford bigger tools so you’ll have
to figure out what works for you.

Write-Information

We thought it might help to revisit the Write-Information command. This is a command that
probably doesn’t get the love it deserves because most people don’t know about it or how to use
it. Here’s a revision to the sample Get-Bits function that uses Write-Information.

Get-Bits with Write-Information

Function Get-Bits {

[cmdletbinding()]

Param(

[Parameter(Position = 0, ValueFromPipeline)]

[string[]]$Computername = $env:computername

)

Begin {

$start = Get-Date

$msg = "[$start] Starting $($myinvocation.MyCommand)"

Write-Verbose $msg

Write-Information $msg -Tags meta,begin

$count = 0

$errorcount = 0

$PSBoundParameters | Out-String | Write-Verbose

$cim = @{

ClassName = 'Win32_Service'

Filter = "name='bits'"

Adding Logging 443

ErrorAction = "Stop"

Computername = ""

}

}

Process {

foreach ($computer in $Computername) {

$count++

$cim.Computername = $Computer

Write-Information "Query $computer" -Tags process

Try {

Write-Host "Getting BITS from $computer" -ForegroundColor green

Get-CimInstance @cim |

Select-Object @{Name = "Computername";Expression = {$_.SystemName}},

Name, State, StartMode

}

Catch {

$errorcount++

$msg = "Failed to query $computer. $($_.exception.message)"

Write-Warning $msg

Write-Information $msg -Tags process, error

}

}

}

End {

$end = Get-Date

$timespan = New-Timespan -start $start -end $end

$sum = "Processed $count computer(s) with $errorcount error(s) in $timespan"

Write-Information $sum -Tags meta,end

$msg = "[$end] Ending $($myinvocation.MyCommand)"

Write-Information $msg -Tags meta,end

Write-Verbose $msg

}

} #end function

The tags parameter lets you add whatever tagging taxonomy you’d like. If you are writing
PowerShell in a team environment, we encourage you to define a standard set and usage guidelines.
The information commands are ignored unless the user running your command knows enough to
use the common information parameters.

Adding Logging 444

$r = "thinkp1","srv1","srv3","bovine320" |

Get-Bits -InformationVariable iv -Verbose

All of the information records generated by Write-Information are stored in $iv. These are objects
with their own set of properties.

PS C\> $iv | Select-Object -property TimeGenerated,MessageData,tags

TimeGenerated MessageData

------------- -----------

6/23/2020 1:15:49 PM [06/23/2020 13:15:49] Starting Get-Bits

6/23/2020 1:15:50 PM Query thinkp1

6/23/2020 1:15:50 PM Getting BITS from thinkp1

6/23/2020 1:15:50 PM Query srv1

6/23/2020 1:15:50 PM Getting BITS from srv1

6/23/2020 1:15:52 PM Query srv3

6/23/2020 1:15:52 PM Getting BITS from srv3

6/23/2020 1:15:54 PM Failed to query srv3. The WinRM client cannot process ...

6/23/2020 1:15:54 PM Query bovine320

6/23/2020 1:15:54 PM Getting BITS from bovine320

6/23/2020 1:15:55 PM Processed 4 computer(s) with 1 error(s) in 00:00:05.1028159

6/23/2020 1:15:55 PM [06/23/2020 13:15:55] Ending Get-Bits

Or you can filter on tags.

PS C:\> $iv | Where-Object tags -contains meta |

Select-Object -property TimeGenerated,User,MessageData |

Format-Table -GroupBy User -Property TimeGenerated,MessageData

User: BOVINE320\Jeff

TimeGenerated MessageData

------------- -----------

6/23/2020 1:15:49 PM [06/23/2020 13:15:49] Starting Get-Bits

6/23/2020 1:15:55 PM Processed 4 computer(s) with 1 error(s) in 00:00:05.1028159

6/23/2020 1:15:55 PM [06/23/2020 13:15:55] Ending Get-Bits

Due to some quirk with this object type, we had to pipe to Select-Object before we could
use Format-Table.

The downside is that you are relying on the user. But here’s a trick youmight try to take advantage of
Write-Information, which is structured data if you haven’t figured that out, and persistent storage.
In the End block of your function, insert code like this:

Adding Logging 445

$xml = "$($env:computername)-{0}_{1}.xml" -f (Get-Date -f "yyyy_MMddhhmm"),

$($myinvocation.MyCommand)

$export = Join-Path -path C:\work -ChildPath $xml

$PSCmdlet.GetVariableValue($PSBoundParameters["InformationVariable"]) |

Export-Clixml $export

We’re defining a location for a file that we’re going to create by sending the information variable to
Export-CliXml. Naturally, you need to ensure the location exists.

The second step is to provide a default value for the InformationVariable. In the module file or the
.ps1 file that will be dot sourced, add an entry to PSDefaultParameterValues.

$PSDefaultParameterValues["Get-Bits:InformationVariable"]="myIV"

If the user runs Get-Bits without specifying the parameter, the default will be used, information
records will be generated and exported at the end. If they specify the parameter, nothing changes.
You still get your export, which the user won’t know about, and they get their variable to work with.

As we’ve hopefully made clear, “adding logging” is more than adding a few lines of Out-File. Or at
least it should be. We’re giving you a lot of techniques and concepts in this book that you can use
to build your own logging mechanism that meets your business requirements.

Toolmaking Tips and Tricks
We’ve been scripting and toolmaking since the earliest days of PowerShell. Throw in our experiences
with VBScript and batch files and we’ve been automating since the days of dirt. We’ve shared as
much of our experiences throughout the book, but there’s always something else – some little tidbit
that might make your work easier or enjoyable.

So without further fuss, and in no particular order of importance, here are some things to keep in
mind during your PowerShell toolmaking adventures.

• We can’t stress enough the importance of white space and formatting your code. Nobodywants
to troubleshoot a 1000 lines of left-justified single-space code. It doesn’t matter to PowerShell
but it will matter to the next person who has to read or maintain your command. If you are
using VS Code, take advantage of it’s automatic formatting feature. Right-click on the open file
and select “Format Document” from the context menu. Or use the Alt+Shift+F shortcut.

• Whenwriting an expressionwith operators include spacing around the operator. This $d=Get-Date
will work but $d = Get-Date is easier to read and is more likely to be parsed better, especially
in the PowerShell ISE. In earlier versions of PowerShell the parser worked better with spaces
but regardless, you should always keep readability in mind and a little extra white space never
hurts.

• Do NOT use archaic prefixes for variable names like $strComputername. That is so 20th
century and VBScript-ish. For that matter, we can’t see any reason to use anything but
alphanumeric characters in variable names. $Computername is definitely better than $_Computer

or $Computer-Name.
• If you are using VS Code, you can open an entire directory right from your PowerShell session.

code c:\scripts\mycooltool

This will launch VS Code and load the specified folder. You can then select files to edit from the file
tree.

• Another VS Code related tip is to configure the editor to treat any new file as a PowerShell file.
If you create a new file (Ctrl+N), look in the lower right corner of the status bar to see what
language VS Code is using. If it does not say PowerShell, open up your preferences (Ctrl+,).
In the search box look for files: default language. It might be hard to detect depending on
your theme, but just under The default language mode that is assigned to new files

there is a text box. Type in powershell.

Toolmaking Tips and Tricks 447

The change is immediate. Now, every time you create a new file VS Code will treat it as a PowerShell
file which means you’ll get all the PowerShell-related functionality like snippets and command
completion.

• You might develop your commands in the PowerShell ISE or Visual Studio Code, perhaps even
running them in those tools. But you should test your commands from the PowerShell console,
especially if that is where you expect them to be run.

• If you will be developing PowerShell tools in a team environment, agree on scripting
conventions such as whether braces { }, go on the same line

Function Get-Awesomeness {

<code> }

or after:

Function Get-Awesomeness

{

<code>

}

PowerShell doesn’t care where your braces are, but some people do.

• When writing a construct that uses () or {}, especially when you expect multiple lines of
code to be between them, type the opening and closing piece then go back and fill in the
code between. VS Code will do this for you automatically which is another reason you might
consider adopting it. Too often beginners will forget to put in the closing parentheses or brace
and then get errors when running the command.

• Use Write-Verbose not only as a way to provide detailed feedback but also as internal
documentation. We covered this in the chapter on adding verbose output.

• Build up the muscle memory to use tab-completion. Any PowerShell editor worth your time
will offer some sort of command-completion feature. Use it.

• Do we really have to remind you to use full cmdlet and parameter names? You only have to
write your command once and if you take advantage of tab completion it isn’t even that much
of a burden. Sure, some PowerShell cmdlets have unwieldy names, but that doesn’t mean you
have to manually type every character in the name. This is super-critical if you are developing,
or plan to develop, tools that will work cross platform in PowerShell Core on non-Windows
systems.

• Get in the habit of reading full help and examples (don’t forget the About topics), even for
things you think you know. Content changes, bugs are fixed and sometimes you may gloss
over something only later to go back and discover it when you really need it.

Toolmaking Tips and Tricks 448

• Leverage snippets. Learn how to take advantage of the snippet or clip feature of your preferred
scripting editor. The PowerShell ISE ships with a number of snippets which you can insert
with Ctrl+J and you can add your own. Snippets keep your code consistent and make you
more efficient.

• We prefer reading scripts vertically. By that we mean, try to avoid writing long expressions
that force you to scroll horizontally. Splatting is a big help.

• Don’t feel compelled to write long, complex pipelined expressions. Yes, we stress the impor-
tance of using the pipeline but sometimes your code will be easier to read (or debug) if you
break a long command expression into several steps. Depending on what you are doing, it
might even perform better. You might have a long pipelined command in your script like this:

Get-ChildItem ~\Documents -Directory | foreach-object {

$stats = Get-ChildItem $_.fullname -Recurse -File |

Measure-Object length -sum

$_ | Select-Object Fullname,@{Name="Size";Expression={$stats.sum}},

@{Name="Files";Expression={$stats.count}}

} | Sort Size

That’s a pretty unwieldy chunk of code. Something like this might make more sense in a script:

$folders = Get-ChildItem -path ~\Documents -Directory

Write-Verbose "Found $($folders.count) top level folders"

#process each folder and save all results to a variable

$data = $folders | foreach-object {

Write-Verbose "Processing $($_.fullname)"

#measure the total size of all files

$stats = Get-ChildItem -Path $_.fullname -Recurse -File |

Measure-Object length -sum

#write the custom object to the pipeline

$_ | Select-Object Fullname,

@{Name = "Size"; Expression = {$stats.sum}},

@{Name = "Files"; Expression = {$stats.count}}

} #end foreach folder

#write sorted results to the pipeline

$data | Sort-Object -property Size

You can also see how much easier it is to insert comments and Write-Verbose commands.

Toolmaking Tips and Tricks 449

• Be open to thinking outside the box or exploring alternative approaches. Use Measure-Command
to test and compare code. Although don’t assume faster code is always better code in your
script, unless we’re talking orders of magnitude. For example, if we measure how long it takes
to run the code from the previous tip on Jeff’s desktop it took 3.9 seconds. Then we tried code
like this:

$folders = Get-ChildItem -path ~\Documents -Directory

Write-Verbose "Found $($folders.count) top level folders"

#process each folder and save all results to a variable

$data = foreach ($folder in $folders) {

$stats = (Get-ChildItem -path $folder.fullname -file -Recurse |

Measure-Object -Property length -sum)

#create a custom object for each top-level folder

[pscustomobject]@{

Path = $folder.FullName

Files = $stats.count

Size = $stats.sum

}

} #foreach folder

$data | Sort-Object -property Size

This code uses the ForEach enumerator in place of ForEach-Object and creates a custom object
instead of relying on Select-Object. The end result is the same but this code took 3.6 seconds to
complete. Is this approach better for saving 300 milliseconds? Is it better for you? That’s for you to
figure out. You might test with different folders sizes. You might decide based on how easy it is to
read the code. You might decide based on what else you are considering adding to the code. The
point is, be open to testing alternative solutions.

Format Code

One of the best reasons for using VS code as your editor of choice is for its formatting features.
We constantly talk about the importance of writing code that is easy to read. Using indentation and
whitespace is a part of this. But we’re all a little lazy. Fortunately, VS Code can save us from ourselves.
Suppose you have a chunk of code that is all left justified and otherwise not as well-formatted as
you would like. Open the file in VS Code, right click anywhere in the document and select Format
Document from the context menu. Or you can use the keyboard shortcut ‘Shift+Alt+F‘. VS Code
should then make your code “prettier” and more professional.

Note that VS Code needs to be able to identify your file as a PowerShell file. It also needs to be able
to parse it without errors. If you have syntax errors or other problems that would prevent your code
from running, formatting probably won’t work until you fix the errors.

Toolmaking Tips and Tricks 450

_PowerShell scripting and toolmaking is a much an art as anything.We can’t teach you to be “artistic”
in your PowerShell scripting, but good mechanics and discipline will go a long way in making it an
enjoyable and productive experience._

Part 6: Pester
We provided an introduction to Pester earlier in this book, but now we’d like to really dig deep.
Pester is a pretty important part of the PowerShell universe these days, and if you’re going to be a
professional-grade PowerShell toolmaker, you should make Pester a big part of your world.

Why Pester Matters
In the world of DevOps and automation, it’s crucial that your code - you know, the thing that enables
your automation - be reliable. In the past, you’d accomplish reliability, or attempt to, by manually
testing your code. The problems with manual testing are legion:

• You’re likely to be inconsistent. That is, you might forget to test some things some times, which
opens the door to devastating bugs.

• You’re going to spend a lot of time, if you’re doing it right (and the time commitment is what
makes most people not “do it right” in the first place).

• You end up wasting time setting up “test harnesses” to safely test your code, amongst other
“supporting” tasks.

This is where Pester comes in. Simply put, it’s a testing automation tool for PowerShell code, as we
explained earlier in this book.

• Pester is consistent. It tests the same things, every time, so you never “miss” anything. And, if
you discover a new bug that you weren’t testing for, you can add to your automated tests to
make sure that bug never “sneaks by” again.

• Pester can be automated, so it takes none of your time to perform tests.
• Pester integrates well with continual integration tools, like Visual Studio Team Services (VSTS),
Jenkins, Team City, and so on, so that spinning up test environments and running tests can also
be completely automated.

The vision goes something like this:

1. You check in your latest PowerShell code to a code repository, like Git or VSTS. That code
includes Pester tests.

2. A miracle occurs.
3. Your tested code is either rejected due to failed tests (and you’re notified), or your code

appears in a production repository, such as a NuGet repository where it can be deployed via
PowerShellGet.

The “miracle” here is some kind of automated workflow. VSTS, for example, might spin up a test
environment, load your code into it, and run your Pester tests against your code. We’re not going to
cover how to make the miracle work, as it’s not really a PowerShell thing per se, and because there
are so many combinations of options you could choose. We are going to focus on how to write those
Pester tests, though.

Why Pester Matters 453

The big thing here is that you need to be writing testable code, a concept we’ll devote a specific chapter
to. But if you’re looking for the short answer on, “what is testable code?” It’s basically “follow the
advice we’ve been giving you in this book.” Write concise, self-contained, single-task functions to
do everything.

The other thing you’ll want to quickly embrace is to write your Pester tests immediately, if not
actually in advance of your code (something we’ll discuss more in the chapter on test-driven
development). This is going to require an act of will for most PowerShell folks, because we tend
to want to just dive in and start experimenting, rather than worrying about writing tests. But the
difference between the adults and the babies, here, is that the adults do the right thing because they
know it’s the right thing to do. Having tests available from the outset of your project is how you
reap the advantages of Pester, and indeed of PowerShell more generally.

So that’s why Pester is important. We don’t think anyone should really write any code unless they’re
also going to write automated tests for it.

It’s also important to understand what Pester really does, and this gets a bit squishy. First, it’s worth
considering the different kinds of testing you might want to perform in your life. Here are few, but
by no means all:

• Unit testing is really just making sure your code runs. You want to make sure it behaves
properly when passed various combinations of parameters, for example, and that its internal
logic behaves as expected. You usually try to test the code in isolation, meaning you prevent it
from making any permanent changes to systems, databases, and so on. You’re also just testing
your code, not anybody else’s. If you code internally runs Get-CimInstance, then you actually
prevent it from doing so, since Get-CimInstance isn’t your code. Unit testing is what Pester
is all about, and it contains functionality to help you achieve all of the above. The idea is to
isolate your code as much as possible to make testing more practical, and to make debugging
easier.

• Integration testing is a bit more far-reaching. It’s designed to test your code running in
conjunctionwith whatever other code is involved. This is where you’d go ahead and let internal
Get-CimInstance calls run correctly, so make sure your code operates will when integrated
with other code. Integration testing is more “for real” than unit testing, and typically runs in
something close to a production environment, rather than in isolation.

• Infrastructure validation can be thought of as an extension to integration testing. Because so
much of our PowerShell code is about modifying computer systems, such as building VMs or
deploying software, infrastructure validation runs our code, and then reaches out to check the
results. Pester can also be used for this kind of testing, and we’ll get into it more later in this
book.

All of this is important to understand, because it helps you better understand what a Pester test
looks like. If you’ve written a function that’s little more than a wrapper around ConvertTo-HTML,
for example, then your Pester tests aren’t going to be very complex, because you probably didn’t
write much code. You’re not trying to make sure ConvertTo-HTML itself works, because that’s not

Why Pester Matters 454

your code, so it’s not your problem in a unit test. Because so much of our PowerShell code is really
leveraging other people’s code, our own Pester tests are often simpler and easier to grasp.

Core Pester Concepts
Although we touched on Pester briefly earlier in the book, we want to take a step back and really
dig into some of its core concepts. A lot of people, we find, get a bit intimidated by Pester, and it’s
mainly because they’re overthinking what it does. We don’t want that to happen to you, so please
â€” start here.

Installing Pester

Pester actually shipped with Microsoft Windows for the first time in Windows 10 and Windows
Server 2016. The problem is that the version shipping with the OS (3.4.0) is grossly outdated, and
you can’t update it. Instead, you have to install a new version. This chapter is based on Pester 4.2.0,
which was released right about the time we wrote this section of the book.

Most of our content should still be relevant and even correct. You’ll probably even find lots
of Pester test examples in the wild. But be careful. In June 2020, Pester v5 was released
with some major changes. The concepts which we’ll cover haven’t changed but some of
the implementation details might. If you upgrade to v5 be sure to look at the release
documentation⁸⁵

Installing a new version isn’t hard, as Pester is available in PowerShell Gallery, but because you’re
installing a new version of a module that’s already installed in Windows, you have to take a couple
of extra precautions. First, you must be running PowerShell as Administrator for this to work,
meaning your console window must have “as Administrator” in the window title bar. Then, run
this:

Install-Module -Name Pester -Force -SkipPublisherCheck

This will pull the latest Pester down from PowerShell Gallery and install it. From now on, you can
update this newly installed version from the Gallery as new versions become available:

Update-Module -Name Pester

This will update the Gallery-installed version, not the “came with Windows” version. There’s no
need to delete the “came with Windows” version, and indeed the OS will usually try and put it back
if you do delete it.

⁸⁵https://github.com/pester/Pester

https://github.com/pester/Pester
https://github.com/pester/Pester
https://github.com/pester/Pester

Core Pester Concepts 456

For versions ofWindows that don’t comewith Pester, you can just run the Install-Module command
above. For PowerShell versions earlier than 5, you may need to first install PowerShellGet from
PowerShellGallery.com; PowerShellGet is where Install-Module comes from.

If you need it, https://pester.dev/docs/introduction/installation⁸⁶] contains more information about
installing Pester in other situations.

What is Pester

The previous chapter dug into what Pester is at a high level, but let’s carefully present a technical
definition:

Pester is a Behavior-Driven Development (BDD) Unit Test execution framework. Pester exposes a
Domain Specific Language (DSL) for defining Unit tests, and a file naming convention that makes it
easier to run tests in an automated fashion. Pester contains a set of Mocking functions, allowing it
to mimic the functionality of any PowerShell command inside a test, thereby “faking” a command
for the purposes of a test.

In short, Pester is a special set of PowerShell commands, written in PowerShell itself, which are used
to define and run unit tests against your PowerShell code.

Pester’s Weak Point

Pester’s main weak point is that it’s designed to run and mock PowerShell commands. We get a lot
of people who incorrectly conflate “doing stuff in PowerShell” with “PowerShell commands.” For
example, the following is without a doubt a PowerShell script:

$Computer = 'COMPUTER1'

Try

{

$filter = "(&(objectCategory=computer)(objectClass=computer)(cn=$Computer))"

$ComputerObject = ([adsisearcher]$filter).FindOne()

$CertStore = New-Object System.Security.Cryptography.X509Certificates.X509Store "\\

\$Computer\My", "LocalMachine" -ErrorAction Stop

$CertStore.Open([System.Security.Cryptography.X509Certificates.OpenFlags]::ReadOnl\

y)

If ($CertStore.Certificates) {

Foreach ($Cert in $CertStore.Certificates) {

PERFORM ACTION WITH EACH CERT...

}

}

⁸⁶https://pester.dev/docs/introduction/installation

https://pester.dev/docs/introduction/installation
https://pester.dev/docs/introduction/installation

Core Pester Concepts 457

}

Catch{

CATCH ERRORS

}

But you’ll notice that there are basically no actual PowerShell commands being run, there. It’s all
.NET Framework classes. Yes, this is in PowerShell, but if we may be deeply philosophical for a
moment, this is not of PowerShell. It’s more like a C# program translated into PowerShell script.
Pester will not be great at unit-testing this.

Instead, we’d suggestwrapping all of the above into PowerShell functions. That’s essentially been the
theme for this entire book, right? Write PowerShell functions. Anything not already a PowerShell
command (that is, a cmdlet or a function, for our purposes) should be made into a PowerShell
command. No “raw” .NET Framework unless it’s wrapped in a PowerShell command. PowerShell
commands maintain the consistency of PowerShell’s naming conventions and behaviors, and as a
bonus are exactly what Pester can help you unit test.

So calling this “Pester’s weak point” is actually unfair of us. If you’re doing the right thing in
PowerShell, then this isn’t a “weak point” in Pester; if you’re not doing the right thing in PowerShell,
then this is your “weak point,” not Pester’s.

Understand Unit Testing

Unit testing, which is Pester’s first and main use case, is designed to do specific things. While
we’re also going to show you (a bit later) some other kinds of tests Pester can do, it’s important
to understand what unit testing is, what it is meant to do, and what it isn’t meant to do. Without
really buying into the scope of what unit testing is for, it’s easy to go down a rabbit hole with Pester
and spend all your time trying to do stuff that you’re really not meant to.

A unit test is very explicitly not meant to modify anything in the environment. It’s not supposed to
talk to the network, make changes to a database, or anything else. Yes, those activities may introduce
different kinds of errors, and you do need to test for those, but that’s an integration test, not a unit
test. Unit tests are meant to be as self-contained as possible, and that’s actually where mocks come
into play. If you’re writing a command which uses Get-DataFromDatabase (a second command you
or someone else wrote), then you would mock Get-DataFromDatabase in your unit test. The mock
would return some static “dummy” data, making it seem as if Get-DataFromDatabase was running,
but in fact not actually running it. This way, your unit test is only testing your code, not the code
from Get-DataFromDatabase as well. Get-DataFromDatabase would, presumably, have its own units
tests to test its code.

There’s a great comparison chart between unit testing and integration testing at https://www.guru99.com/unit-
test-vs-integration-test.html⁸⁷, and it’s worth a few minutes to read it. Unit testing isn’t meant
to ensure the Total Correct Functionality of code you write; it’s meant to catch specific kinds of

⁸⁷https://www.guru99.com/unit-test-vs-integration-test.html

https://www.guru99.com/unit-test-vs-integration-test.html
https://www.guru99.com/unit-test-vs-integration-test.html
https://www.guru99.com/unit-test-vs-integration-test.html

Core Pester Concepts 458

problems. Integration tests may be necessary, but they’re a distinct thing, harder to write, and harder
to execute, and harder to maintain. So we start with unit tests.

Scope

Compared to stricter, more full-fledged programming languages, PowerShell is pretty lightweight
when it comes to scope. Basically, the shell itself is a global scope, any scripts you run get their own
script scope, and the inside of any functions is an independent scope. But that’s it: inside a ForEach
loop, for example, isn’t a distinct scope. So PowerShell coders aren’t usually accustomed to thinking
a whole lot about scope.

Pester provides a rich scoping mechanism. It includes three basic structures, which we’ll discuss in
the coming chapters: Describe, Context, and It. Each of these represents their own scope, meaning
certain things done within those structures “vanish” when the structure is finished executing. It’s
important to pay attention to that scoping as you go, because you can create some pretty unexpected
results if you don’t. We’ll dig into the specifics as we hit each structure, but we wanted to call out
the importance of paying attention to scope right up front.

Here’s a simple way to think about scope: how would you manually test a function that you’ve
written? You might start by running it with a particular set of parameters, providing sample input
to each of them, and then examining several pieces of output to make sure they were as you expected.
You might then run it a second time with similar parameters but slightly different input, and
again check the output. Then you might run it in a completely different way, with totally different
parameters and input, and check the output again. Pester actually provides structures where you’d
define those three tests, and they might very well end up being different scopes, depending on how
you needed to manage the input data between those three test runs.

Sample Code

For the remainder of our Pester chapters, we’re going to use the following as the function we’re
writing unit tests for. You’ll find this in the downloadable sample code, if you want to pop it open
in VS Code and follow along with us.

Core Pester Concepts 459

Get-ServiceRemote

function Get-ServiceRemote {

[CmdletBinding()]

Param(

[Parameter(Mandatory,

ValueFromPipeline,

ValueFromPipelineByPropertyName

)]

[string[]]$ComputerName,

[Parameter(ValueFromPipelineByPropertyName)]

[Alias('Name')]

[string[]]$ServiceName

)

if ($PSBoundParameters.ContainsKey('ServiceName')) {

Invoke-Command -ComputerName $ComputerName -ScriptBlock {

Get-Service -Name $using:ServiceName

}

} else {

Invoke-Command -ComputerName $ComputerName -ScriptBlock {

Get-Service

}

}

}

This isn’t meant to be a fancy script. It’s just designed for a PowerShell 7 world, where Get-Service
no longer has a -ComputerName parameter. Instead, it’s making a convenient replacement for
Get-Service that uses PowerShell Remoting under the hood. It will default to retrieving all running
services from each specified computer, and it can optionally retrieve only a specified list of services.

Let’s go ahead and get a basic Pester test file set up for this script, and add this script to a file.

New-Fixture

The Pester module includes a command that makes it brain-dead easy to scaffold up TDD
environment. The Pester paradigm is that your tests are written before your code so the New-Fixture
command will create the outline of a Pester test and a file for your command. Because these files
are considered a discrete unit, they will be created in a separate directory. You need to provide the
path to that directory and the name of the command you are creating. Pester will create the folder
if it doesn’t exist.

Core Pester Concepts 460

If you end up using the Plaster module template we provide this will add the testing
framework for you.

New-Fixture -path c:\tools -name Get-ServiceRemote

This will create two files in C:\tools: Get-ServiceRemote.ps1 which will be the script file and Get-
ServiceRemote.Tests.ps1 which in the unit test file. The script file is nothing more than an empty
Function declaration:

Function Get-ServiceRemote {

}

You can copy the sample code from the downloads into this file. The Tests file handles loading the
command (which you supposedly haven’t written yet) and defines a simple Describe block with a
sample test.

$here = Split-Path -Parent $MyInvocation.MyCommand.Path

$sut = (Split-Path -Leaf $MyInvocation.MyCommand.Path) -replace '\.Tests\.', '.'

. "$here\$sut"

Describe "Get-ServiceRemote" {

It "does something useful" {

$true | Should -Be $false

}

}

Pester assumes that the name of your test file begins with the name of the command you intend to
test. The code before the Describe block is kinda optional and can be modified as needed. In our
case since we are testing a standalone function it needs to be dot sourced. Later, when we get to
testing a module, we might modify this to import the module being tested. Or add whatever other
code you might need to setup your unit tests. But for now this should suffice.

Writing Testable Code
Before we go any further, we need to stress that Pester isn’t designed to work with just any old script
you might bang out. Like, you could probably get it to effectively test pretty much anything, but
you’d have to put a lot of unnecessary effort into it.

Pester is designed to test tools. Modularized, self-contained functions that receive their inputs via
parameters, and produce output to the PowerShell pipeline. That’s Pester’s bread and butter, and not
incidentally it’s the pattern this entire book has been pushing you to use (as does “Learn PowerShell
Scripting in a Month of Lunches,” this book’s “prequel”). Pester will work great if you’re following
PowerShell’s native patterns and practices which, again, is what this book has focused on. If you’re
just cranking out ad-hoc scripts with no structure, no parameters, and not really using the pipeline,
then Pester isn’t your guy. You’re not toolmaking.

So before you even dip your toe into Pester-infested waters, stop and look at your code. Here are
some warning signs that you’ve done things wrong:

Your code isn’t a function. Pester is designed to test tools, which in PowerShell’s world are
commands, which in our specific case means advanced functions.

Your input doesn’t come from parameters. 100% of a function’s input should come from
parameters. Not out-of-scope variables (although a module-level variable could, for example, be
used as the default value of a parameter). Not from files (although part of your code’s purpose
might be to read files). Only parameters. Of course, some of those parameters might accept pipeline
input, which is fantastic. But the point is that parameters represent the only way for data to enter
your function and control its behavior.

Your output doesn’t go wholly to the pipeline. This doesn’t mean you can’t produce other kinds of
messages, by using commands like Write-Verbose or Write-Error; those aren’t “output,” though. You
shouldn’t be using Write-Host, unless the only purpose of your command is to display information
on-screen. Now, sometimes, your functions might not produce any output. That’s fine. Maybe your
function accepts input and formats it into a file on disk (which, for our definition, is a work product
and not output per se), or puts something into a database, but doesn’t write anything to the pipeline.
Fine. More than likely you have internal code that is using PowerShell commands to achieve those
ends. That is something you can test with Pester.

Your function does more than one thing. The classic example of this is a function with a
-ComputerName parameter to accept computer names, but also a -FilePath parameter, giving it the
path of a text file which it will open and read computer names from. This is two different things,
and the -FilePath thing should go away. You don’t want the same kind of potential input (computer
names, in this case) coming from multiple possible sources within the function itself. This isn’t so
much a “will break Pester” thing as it is a bad design pattern that will make testing (and debugging,
and maintenance, and usage) harder than it should be.

Writing Testable Code 462

If you can safely say that your code doesn’t violate any of these patterns, then you’re good to keep
reading.

What to Test
We’ve touched on this a bit, but we wanted to pull out some more specific discussions are the idea of
“what exactly do I test?” since it’s an area that often gets Pester newcomers pretty wound up. We’ve
some core guidelines that’ll get you started.

Don’t test other people’s commands. Look, if Get-ADUser isn’t functioning, there’s not much you
can do about it. You don’t necessarily need to write a test to confirm that someone else’s commands
are working; they should have done that. So you’ll usually mock other people’s commands, so that
they don’t represent a “moving part” in your code that you have to worry about. In some cases, you
may find that once you mock everyone else’s commands, there’s not much left to your command
except parameter definitions. That’s fine!

Don’t just test the positive. You don’t want to only write tests that makes sure things run the way
you expect. You also need to write tests to verify “negative” conditions. That means feeding bad
parameters to your commands, to make sure everything behaves as it should. It means feeding
incorrect data or object types to your parameters. It means forcing your command to run in a
situation that’ll generate an error. You want to test all the “use cases.”

Test parameter conditions.A big part of Pester testing is making sure your own parameters behave
the way you want. Make sure they’re accepting the right object types, make sure parameter sets
behave the way you want, etc. If you’ve declared a parameter as mandatory, test to make sure that
PowerShell is treating it that way.We don’t do this because wemistrust PowerShell, we do it because
if someone else gets into our code and removes the Mandatory attribute on a parameter, our test
will catch that as a fail condition.

Describe Blocks
When you had Pester set up its basic template for tests, it created a single Describe block for you.
This is where you’ll start writing your tests.

We’ve discussed the importance of scope in Pester, and Describe is the “outermost” scope Pester
offers. When you define mocks, or use Pester’s TESTDRIVE: testing drive location, those things
persist throughout the Describe block and then cease to exist after the Describe block finishes. In
many cases, you can probably get away with a single Describe block for all of your tests. However,
in many other cases you’ll end up breaking your tests into different Describe blocks, within the
same script file, so that you can separate the mocks and TESTDRIVE: uses of different test scenarios.
Other times, with especially large test sets, you may use multiple Describe blocks simply to help
keep your various test scenarios organized.

A simple Describe block comes with just a name, that… well, describes the scenario you’re testing.

Describe "Get-ServiceRemote" {

}

Describe "Do-Something with database input" {

}

Describe "Do-Something with file input" {

}

You can also tag these blocks. Doing so allows you to run only those block having a certain tag. This
is really useful when, for example, you’re developing a whole bunch of tests and you only need to
be able to run certain sets of them at a time. Group those sets into Describe blocks that have tags:

Describe -Tag "FileTests" "Get-ServiceRemote" {

}

Describe -Tag "FileTests","Remoting" -Name "Get-ServiceRemote2" {

}

Pester doesn’t care if you define tags before or after the description. But you should try to
be consistent.

In the second example, there, we explicitly used the -Name parameter, which we didn’t do previously.

Describe Blocks 465

And that’s kind of all there is to Describe. It’s not meant to be complex or complicated; it’s just the
outermost holder that Pester works with. A Describe is the smallest unit of work Pester can execute;
when you run tests, you’ll run at least one Describe, and everything it will execute.

In Pester terms, a Describe block can contain Context blocks and It blocks, both of which we’ll
discuss in the upcoming chapters. But more broadly, a Describe block can contain pretty much
any other PowerShell code you might want, and it will execute those top-to-bottom, just like any
PowerShell script. For example, prior to executing any tests, you might create a sample CSV file in
the Pester TESTDRIVE:, and then use that CSV file in the tests that follow.

Context Blocks
The Context block is one of two Pester structures, in addition to It, that can live in a Describe block.

You can kind of think of Context as a mini-Describe that lives inside a Describe. That is, like a
Describe block, a Context block acts as a scope for your tests. Mocks and the contents of TESTDRIVE:
which are created within the Context block will be cleared after the Context block reaches its end.
It’s worth noting that the TESTDRIVE: business is a little tricky. Files added to TESTDRIVE: inside
a Context will be removed; files removed inside a Context will not miraculously come back to life,
and changes to files already in TESTDRIVE: will persist.

A Context block, in Pester terms, can contain It blocks, and the purpose of Context is to logically
group some number of It blocks that require a shared scope. A Context block, like a Describe block,
can also contain other PowerShell commands if needed.

It’s entirely possible to not use Context at all. If your tests are small and only require a single
scope, then you might not find any reason to sub-group them in Context blocks. If you only have
one Context block, then you didn’t really need it; the containing Describe block would have been
sufficient.

BeforeEach and AfterEach

This is a good time to discuss the BeforeEach and AfterEach structures, although they’re valid in a
Describe block as well as within a Context block. These structures are scoped; if you define them
in a Context, then they apply only to that Context, which is why we usually see them in a Context
and not in a Describe.

These are designed to let you define set-up and tear-down code, which will run before each It

block and after each It block. Say, for example, that each little test you run requires a database
connection. You want to make a fresh connection for each test, for some reason - perhaps to ensure
each one is completely isolated from the others. So in a BeforeEach, you’d set up the connection,
in the AfterEach, you’d close the connection, and use the connection in each It block. That’d help
modularize the connect/disconnect code into a central place. Any variables defined in a BeforeEach
or AfterEach are valid within your It blocks.

BeforeEach and AfterEach can be defined in both Describe and Context, as we’ve already
mentioned. We traditionally put them at the top of whatever block they’re within, because that
keeps them visible - otherwise, we worry about forgetting they exist and screwing something up.
That’s important to remember: even if an If block precedes your AfterEach and BeforeEach, they
will still apply to that It block. No matter where BeforeEach and AfterEach are defined, they apply

Context Blocks 467

to the entire Describe or Context they live in. That’s why we like to keep them at the top, as a
reminder that they’re there.

In the event that you define these in both a Context and its containing Describe, the order of
execution goes like this:

1. The Describe-level BeforeEach
2. The Context-level BeforeEach
3. The Context-level AfterEach
4. The Describe-level AfterEach

These are simple to define:

Describe "Get-ServiceRemote" {

BeforeEach {

}

AfterEach {

}

Context {

BeforeEach {

}

AfterEach {

}

}

}

It Blocks
The It block is the heart of Pester. This is an actual test. The Describe and Context blocks we’ve
discussed up to this point are all about containing, organizing, and scoping tests; the It block is the
test itself (and must live inside either a Describe or a Context block).

In testing lingo, the It block is where you define assertions, and each It block should normally
contain one assertion. Think of an assertion as an English statement, such as, “this command will
return two objects if I run it and provide two computer names.” It is your expectation. The It block
is where you actually run it with those two computer names, and then see if it indeed behaves as
you have asserted. It blocks get a name, which should pretty clearly describe what’s been asserted:

It "returns two objects when run with two computer names" {

}

The It block is not the assertion itself; it’s stating what the assertion will be, and providing a small
container for the test code to live in. It blocks have to end in one of 5 states:

• Passed. The code executed, and whatever was asserted was indeed true.
• Failed. The code executed, but its behavior was other than what was asserted.
• Skipped. The test was skipped because you told it to. More on that in a bit.
• Pending. The test was empty, or you explicitly marked it as -Pending. This is a neat trick when
you’re developing a bunch of tests - you can kind of sketch them all out as It blocks, mark them
as -Pending, and then fill them in as you go.

• Inconclusive. The test was set to this status by using the Set-TestInconclusive command
within the It block itself.

All It blocks have a name, and you can explicitly use the -Name parameter if you like:

It -Name "returns two objects when run with two computer names" {

}

But a lot of people don’t use the parameter name, simply because not doing so lets the whole thing
read as an English sentence:

It "rubs lotion on itself or it gets the hose" {

}

There are some other parameters you can play with:

The -Test parameter is what holds the actual code. As with the -Name parameter, it’s rare to see this
explicitly used, but it would look like this:

It Blocks 469

It -Name "returns two objects when run with two computer names" -Test {

}

Omitting both the -Name and -Test parameter names makes the It block read more like a PowerShell
construct, like an If construct, which is what It is pretending to be.

The -Skip parameter is just a switch, and it tells Pester to skip the It block. You’d normally do
this instead of just “commenting out” an unused test, because it keeps the test explicitly listed, as
“Skipped,” in the test output. Similarly, -Pending will also skip the test and output it as “Pending.”

The -TestCases parameter is the most complex, and requires that you be familiar with the
PowerShell concept of splatting. As a reminder, splatting is a way of bundling up a command’s
parameters into a dictionary or hash table. So, instead of running this:

Get-CimInstance -Class Win32_Service `

-ComputerName SERVER1 `

-Filter "Name LIKE '%svchost%'"

You could instead do this:

$params = @{

Class = "Win32_Service"

ComputerName = "SERVER1"

Filter = "Name LIKE '%svchost%'"

}

Get-CimInstance @params

The -TestCases parameter takes an array of those dictionary objects. So, you’d define several
variations of our $params variable, feed them to -TestCases, and the It block would automatically
repeat one time for each dictionary object you fed in. You include placeholders in the It block’s
name to “pull in” those values, so that your test output will clearly show what’s happening. Each
time the It block runs, a new dictionary will be splatted to the test block, allowing you to use those
values. You’ll need to construct a Param() block, inside the test code and with matching parameter
names, for this all to work. Here’s an example (pretend that this is inside a Describe block):

$params[0] = @{CN='SERVER1';Class='Win32_Service'}

$params[1] = @{CN='SERVER2';Class='Win32_Service'}

$params[2] = @{CN='SERVER2';Class='Win32_Process'}

It "Gets <Class> for <CN>" -TestCases $params {

Param($CN,$Class)

Get-CimInstance -Computer $CN -Class $Class

}

This example would run three times. The hashtable values will be splatted as parameters to the test
code. As an added bonus Pester will also pass the values to the It statement.

It Blocks 470

Describing Foo

[+] Gets Win32_Service for SERVER1 66ms

[+] Gets Win32_Service for SERVER2 14ms

[+] Gets Win32_Process for SERVER2 20ms

Now, it’s super important to realize that this is a partial example. We’ve not actually made any
assertions; we’ve just set up the structure in which we could do so. We’ll play with this a bit more
in the next chapter, though, which is where those assertions actually get made.

Should and Assertions
When you run code inside an It block, you normally examine the output of your code to see if
it’s what you expected. This examination is called the assertion of the test. It’s where you lay out
what you think should have happened. Pester’s convention is to throw a terminating error, using
the PowerShell throw command, if the assertion was not met. It’s kind of a, “no news is good news”
attitude; if the assertion failed, you throw an error. If the assertion succeeded, you don’t do anything.

It is hugely important to realize that you can run any code youwant in the It block to examine the
output of whatever it is you’re testing. All you need to do is throw an exception if things aren’t up to
snuff. However, for convenience and better readability, Pester provides the Should command, along
with a variety of comparison operators. The Should command accepts your assertion, and you’re
meant to pipe output to it. If that output and the assertion match, Should doesn’t do anything. If
they don’t match, Should throws a terminating exception. Let’s take this really simple example:

It "returns 4" {

$var = 2 + 2

If ($var -ne 4) {

Throw "was not 4"

}

}

This is completely legal, but it’s a little harder to read than this:

It "returns 4" {

$var = 2 + 2

$var | Should -Be 4

}

Internally, Should is basically doing the same If logic with a Throw, but it reads more easily, making
the test itself easier to understand, follow, and maintain. Should supports a universal -Not switch,
which looks like this:

It "doesn't return 4" {

$var = 2 + 3

$var | Should -Not -Be 4

}

Let’s return to the example from last chapter, and add some assertions:

Should and Assertions 472

$params[0] = @{CN='SERVER1';Class='Win32_Service';Count=100}

$params[1] = @{CN='SERVER2';Class='Win32_Service';Count=100}

$params[2] = @{CN='SERVER2';Class='Win32_Process';Count=100}

It "Gets <Class> for <CN>" -TestCases $params {

Param($CN,$Class,$Count)

(Get-CimInstance -Computer $CN -Class $Class).Count |

Should -Be $Count

}

Here, we’ve added an addition parameter to each hash table, indicating howmany objects we expect
each command to return. We’ve used that in our Should assertion. So this will run three tests. Note
how we contained our main command in parentheses, so that we could access the Count property
of the array that the command should return.

Should Operators

The power of Should comes in its various operators. This is not an exhaustive list.

• -Be. Tests for equality - not case-sensitive for strings.
• -BeExactly. Same as -Be, but case-sensitive for strings.
• -BeGreaterThan. Greater than.
• -BeLessThan. Less than.
• -BeIn. Tests to see that the piped-in value is contained in an array you pass, such as 'Don' |

Should -BeIn @('Jeff','Don').
• -BeLike. Supports wildcard matches, just like PowerShell’s -like operator. Not case-sensitive.
• -BeExactlyLike. Same as -BeLike, but case-sensitive.
• -Exist. Expects you to pipe in a path. This needn’t be a file path, but can instead be any path
available in any PSDrive, such as a registry key. Checks to see if the path exists.

• -FileContentMatch checks the filename that you pipe in, to see if it contains the content you
specify. 'c:\test.txt' | Should -FileContentMatch "this text". This comparison is not
case-sensitive, and it uses standard .NET regular expression syntax. If you’re piping in a string,
as we did here, it must be quoted or you’ll get an error.

• -FileContentMatchExactly. Same as the above, but case-sensitive.
• -Match. A regular expression match. Not case-sensitive.
• -MatchExactly. Same as the above, but case-sensitive.
• -Throw. This is a fun one! You pipe a script block to it. It will run the block, and if the block
throws an exception, then the assertion is passed. This is great for those, “I need to make sure
this situation causes an error” scenarios. For example, {NotA-Command} | Should -Throw will
pass, because NotA-Command isn’t a command, and PowerShell will throw an exception when
it tries to run it and can’t.

• -BeNullOrEmpty. Checks that whatever you piped in is $null, or an empty array. Good for
those situations where, “I need to make sure this command doesn’t return anything.”

Should and Assertions 473

Just bear in mind that you don’t have to use Should; if you have some situation that one of these
operators doesn’t cover, you can code up whatever logic you need, and just Throw an exception to
indicate a failed assertion.

See https://pester.dev/docs/usage/assertions⁸⁸ for more details.

⁸⁸https://pester.dev/docs/usage/assertions

https://pester.dev/docs/usage/assertions
https://pester.dev/docs/usage/assertions

Mocks
Mocks are, for us, the heart and soul of what makes any testing framework so useful. To understand
the purpose of mocks, you first have to embrace something that a lot of people don’t always take to
easily:

The purpose of unit testing is to test your code, not someone else’s.

Consider our sample function:

Get-ServiceRemote

function Get-ServiceRemote {

[CmdletBinding()]

Param(

[Parameter(Mandatory,

ValueFromPipeline,

ValueFromPipelineByPropertyName

)]

[string[]]$ComputerName,

[Parameter(ValueFromPipelineByPropertyName)]

[Alias('Name')]

[string[]]$ServiceName

)

if ($PSBoundParameters.ContainsKey('ServiceName')) {

Invoke-Command -ComputerName $ComputerName -ScriptBlock {

Get-Service -Name $using:ServiceName

}

} else {

Invoke-Command -ComputerName $ComputerName -ScriptBlock {

Get-Service

}

}

}

Get-Service isn’t our code. We didn’t write that, Microsoft did. So we’re not going to try and test it.
If it’s broken, we can’t fix it. Because it’s not ours, we need to somehow “remove it” from our test â€”
and that’s what a mock lets us do. We canmock, or fake out, that command for our testing purposes.

Mocks 475

Rather than running the real Get-Service, we’ll run a fake version that returns a predetermined
output.

You’re going to want to create a mock for any commands in your script that aren’t yours, and that
aren’t the specific subject of a test.

Where to Mock

The next question is, “where do I put mocks?” You’ve got three basic choices:

• In a Describe (high level)
• In a Context (mid level)
• In an It (low level)

Generally speaking, you want to put your mocks in the smallest scope that the mock will apply to.
Keep in mind that you’ll often code a mock to produce some predetermined output that the rest of
your code will work with; that output might need to be different for different tests. So you might
end up mocking a given command multiple times, with slightly different fake output each time.

A mock that will apply globally to all of your tests might best live in the top-level Describe block. If
you’ve got a couple of Context blocks, and each one might need a different mock, then the Context
would be the place for those mocks. If you’ve got a mock that will apply only to a specific test, then
it might live inside the It for that test.

Defining a mock at a low level will override any mocks for the same command defined at a higher
level. So, an It block mocking Get-Service would override any mocks for Get-Service appearing
in the containing Context or Describe blocks.

If you are using Pester v5.x there might be some slight variations from what we are going
to show you. You’ll need to check the latest documentation for proper implementation.

How to Mock

The most basic mock requires the name of the command you are mocking and a scriptblock of code.
The code in the scriptblock returns a hashtable with only the keys (fake properties) that you need.
Here’s how you do it:

Mocks 476

Mock Get-Service {

return @{'Name'='Svchost'}

}

Pretty easy! This will return a single object having a Name property, which will contain “Svchost.”

Verifiable Mocks

You can also mark a mock as verifiable. It looks like this:

Mock Get-Service {

return @{'Name'='Svchost'}

} -Verifiable

By itself, this does nothing. However, somewhere in one of your It blocks you can run Assert-VerifiableMocks.
This command will then scan for any mocks that you’ve defined as -Verifiable, and make sure that
each of those mocks has been run at least once. If it finds one that hasn’t been run, it throws an
exception. Inside of an It block, that exception causes the test to fail. This is kind of an easy way of
making sure that the code you’re testing ran through all of the code paths you wanted it to. It’s a
way of saying, “I want to check and make sure my code actually tried to run Get-Service, and if it
didn’t, I want to fail that test.”

There’s a similar command called Assert-MockCalled that’s more granular and specific. It doesn’t
care about -Verifiable at all. Instead, you give it the name of the specific mock you’re interested
in, and the minimum number of times you wanted that mock to be called:

Assert-MockCalled Get-Service -Times 3

If the Get-Service mock was called fewer than three times, an exception is thrown. You can also
make it check for an exact number of calls, meaning it can’t be less or more than the times you
specify:

Assert-MockCalled Get-Service -Times 3 -Exactly

Parameter Filters

This is a super-fancy addition to a mock. It’s a bit like parameter sets in PowerShell, enabling you to
define a different mock for the same command, based on the inputs passed to the command using
the -ParameterFilter scriptblock. In the scriptblock you define a comparison using the mocked
parameter name as a variable.

Here’s a quick example:

Mocks 477

Mock Get-Process { Return @{'Id'=1234;'Name'='svchost'}) `

-ParameterFilter { $Name -eq 'svchost' }

This mock will only run if Get-Process -Name svchost is run. If your code tries to just run
Get-Process by itself, with no -Name svchost, then the mock wouldn’t run in response to that.
If you needed a mock that would apply to command without any parameters, you could define
another mock:

Mock Get-Process { Return @{'Id'=789;'Name'='notepad'})

With this mock, any Get-Process command in your code will get an object with a predefined ID
and Name.

Mocking the Unmockable

A trick with mocks is that they can only “fake out” PowerShell commands. So if you’ve got code that
runs this:

[System.Math]::Abs($x)

You can’t mock that, because it’s a .NET Framework static method, not a PowerShell cmdlet or
function. That’s whywe hold firm to our opinion that all .NET Framework calls should be “wrapped”
in a function:

Function Get-AbsoluteValue {

Param(

[float]$inputObject

)

[System.Math]::Abs($inputObject)

}

Now, we can mock the Get-AbsoluteValue command if we need to. By the way, this also applies
to any command line utilities you might need to run. You cannot mock an expression like whomai

/user /fo csv but you can if you wrap it in a PowerShell function.

Read the help topic about_mocking for more examples.

Pester’s TESTDRIVE
So many operations require some sort of disk access that Pester provides a specific disk drive, the
TESTDRIVE:, for that purpose. There are two main advantages to using TESTDRIVE: and, as we’ll
discuss, only use TESTDRIVE:, for file access during your tests.

1. Pester cleans up TESTDRIVE: automatically, so you’re not leaving artifacts behind after your
test, and each test starts with a “clean slate.”

2. TESTDRIVE: exists wherever Pester runs, so even if you write tests on one machine and run
them elsewhere (like in a continuous integration pipeline), you knowTESTDRIVE: will be there
for you.

If you’re curious, Pester dynamically creates the TESTDRIVE: under your %TEMP% folder. In most
situations this won’t matter to you. But depending on your test, you may need to use a cmdlet like
Convert-Path to resolve TESTDRIVE: to a “real” file path.

Clean Slate and Auto-Cleanup

TESTDRIVE: is well-scoped.What that means is, it “starts” existing when a Describe block runs, and
it ceases to exist after that Describe block finishes. Further, once you enter a Context block, if you
use those, Pester “tracks” what’s done inside that block. Once the Context block ends, TESTDRIVE:
reverts back to whatever it looked like when the same Context block started.

That reversion is a little less magical than you might think, though. It only applies to file creation.
So, any file created inside a Context block will be deleted once that block finishes. Any files that
exist prior to the Context block that get changed inside the Context block will remain changed after
the block completes. Similarly, if you delete a file within a Context block, it stays deleted.

Working with Sample Data

One thing we deal with a lot when writing unit tests is the creation of test data. For example, suppose
you have a command that’s intended to take pipeline input from a CSV file. How should you do that?
After all, the test data won’t exist on TESTDRIVE:, and ideally, you shouldn’t read test data from
any other location because that would involve creating permanent artifacts on the testing system.
So what do you do?

One option is to simply mock a command like Import-Csv so that, instead of reading an actual file,
it just spews out test data that you hard-code into the mock itself.

Pester’s TESTDRIVE 479

Another option is to, at the start of a Describe or Context block, write out hard-coded test data
to a file on TESTDRIVE:. You can then read or modify that data throughout your test as needed,
knowing that it’ll vanish once the block exits or the test is complete.

It may seem like “cheating” to hard-code test data into your tests, but we don’t see it that way. We
see it as making the tests more self-contained. It also helps the test preserve knowledge of past bugs.
For example, one famous kind of bug involves people’s last names being inserted into databases,
using less-than-ideally-designed queries. A name like “O’Shea,” with that single quote in the middle,
can break those queries. Once you realize that, you can make sure that kind of name is included in
your test data, preventing that kind of bug from ever happening again. That’s really the ultimate
goal of a unit test: to make sure bugs you’ve solved in the past never crop up unnoticed again.

Using TESTDRIVE

Use TESTDRIVE: just as you would any other drive. Instead of starting paths with C:, just start them
with TESTDRIVE:. Here’s a sample function that creates an HTML report.

New-DiskReport

Function New-DiskReport {

[cmdletbinding()]

Param(

[Parameter(Mandatory)]

[string]$Computername,

[Parameter(Mandatory)]

[ValidatePattern("\.htm(l)?$")]

[string]$Path

)

$cimparams = @{

ClassName = 'Win32_logicaldisk'

filter = "drivetype=3"

ComputerName = $Computername

}

$data = Get-CimInstance @cimparams | Select-Object -property DeviceID,

VolumeName,

@{Name="SizeGB";Expression={$_.size / 1gb -as [int32]}},

@{Name="FreeGB";Expression={[math]::Round($_.freespace/1gb,4)}},

@{Name="PctFree";Expression={[math]::Round(($_.freespace /$_.size) * 100,2)}}

$htmlParams = @{

Pester’s TESTDRIVE 480

Title = "$($Computername.toUpper()) Disk Report"

PreContent = "<H1>$($Computername.toUpper())</H1>"

}

$html = $data | ConvertTo-Html @htmlParams

Set-Content -Value $html -Path $Path

} #end function

We might build a Pester test to verify a file gets created.

Describe New-DiskReport

Describe New-DiskReport {

Mock Get-CimInstance {

return @{

DeviceID = "C:"

Size = 200GB

Free = 100GB

VolumeName = "System"

}

} -ParameterFilter {$classname -eq 'win32_logicaldisk' -AND `

$filter -eq "drivetype=3" -AND $computername -eq 'FOO'} -Verifiable

New-DiskReport -Computername FOO -Path TESTDRIVE:\foo.html

It "Should call Get-CimInstance" {

Assert-VerifiableMock

}

It "Should create a file" {

Test-Path -Path TESTDRIVE:\foo.html | Should be $True

}

It "Should throw an error with an invalid file extension" {

{New-Diskreport -computername FOO -Path TESTDRIVE:\foo.ht} | Should Throw

}

}

The html file is actually created in TESTDRIVE:. We aren’t mocking the Set-Content cmdlet. As
long as the test is running we could do whatever we wanted with the file such as testing to ensure

Pester’s TESTDRIVE 481

it is greater than 0 bytes or looking at the content. When the test finishes the drive is removed
including our test file.

Pester for Infrastructure Validation
So far, we’ve discussed Pester’s use as a unit testing framework. As we outlined in the beginning of
this Part, unit testing tries really hard to never make actual changes to the system. That is, you try
to exercise your code up to the point where something actually happens, and at that point, you try
to use mocks so that you’re not actually changing anything. The idea here is to isolate your code as
much as possible from the external world, so that you’re testing just your code.

But plenty of administrators need to go a bit further. In addition to their unit tests, they want to step
up to letting their code actually make changes, and then testing to see if those changes were made as
desired. That’s what the community often refers to as validation testing, or specifically in the case
of server and network infrastructure, infrastructure validation.

This might be creating a bunch of Active Directory users, and then verifying that they were in fact
created correctly. Or it might involve configuring a remote server in a certain way, and then testing
to see that the configuration “took” as expected. But you need to be a bit careful in how you scope
these validation tests.

For one, think about how you’re going to validate. For example, if you’re writing code that uses
New-ADUser to create a new user account, and then plan to use Get-ADUser to see if the accounts
were really created… well what, exactly, are you testing? “I just want to make sure New-ADUser

worked” is a poor answer, because that’s not your code. If it’s “I want to make sure that I fed the
right data to the New-ADUser parameters,” then that’s a better answer, although you could potentially
verify that by cleverly mocking New-ADUser. Anyway, what you don’t want to do is put yourself in
a position where you distrust All The Code Ever Written By Anyone, because your test workload
will quickly balloon out of control. Think about why you’re testing, and if the answer is, “I don’t
trust someone else’s code,” make sure you’ve a reason for that lack of trust beyond mere paranoia.

Spinning Up the Validation Environment

Of course, since you’re going to be making changes to an actual environment, you’ll need a test
environment. This is part of what continuous integration frameworks like Team City and its ilk are
for: they can help coordinate the spin-up and provisioning of virtual machines, which you can run
your tests against and then de-provision. In no circumstances should you run validation tests
against your production infrastructure. If spinning up a validation environment is going to be a
bunch of manual tasks for you, then you’re not ready for validation testing; this is only a good idea
if you can automate the entire process from start to finish, and if you have tools that will let you do
so.

Pester for Infrastructure Validation 483

Taking Actual Action

It’s likely that you’ll be mocking fewer commands in a validation test, since much the point of it is
to let stuff actually happen. But that doesn’t mean you won’t need to set up certain pre-conditions.
That might include test data files, or specify certain environmental configurations. Youmight “inject”
those into the environment at the start of your Describe block, or you might have them “baked into”
the environment in the form of virtual machine images or something similar. Whatever the case, the
key thing here is to understand that there’s a bit more “setup” involved, because you’re no longer
simply focused on your code and only your code.

Timing your tests can be tricky, too, which again is where orchestration tools can come into play.
For example, if you’re authoring Desired State Configuration (DSC) resources, you may need to spin
up a test virtual machine, inject a DSC configuration that uses your resource, let DSC stew on all
that for half an hour or whatever, and then run your Pester tests. Those are all tasks you’ll have to
plan out, and the highlight how much more complex validation testing can be.

Testing the Outcomes of Your Actions

Your It blocks and Should commands remain the foundation of your tests. For example, suppose
you need to ensure that a given test virtual machine has build 2004. You might:

It "Has Windows build 2004" {

$p = @{

ComputerName='TESTMACHINE'

Class='Win32_OperatingSystem'

}

Get-CimInstance @p |

Select-Object -Expandproperty BuildNumber |

Should Be 2004

}

This would throw an exception, failing the test, if the correct result didn’t come back. And as always,
you don’t need to use Should; you can use any kind of code you want, and simply throw an exception
if your criteria aren’t met.

This is a very different approach to testing, but it’s one Pester is well-suited for. Obviously, there’s a
lot more “lifting” on you, in terms of setting up test environments, deciding what to test, and coding
up the tests themselves, but if this is what you need to do, then you now have an idea on how to go
about it.

Measuring Code Coverage
Code coverage is the idea of making sure that your unit tests are “exercising” all of your code. For
example, consider this snippet:

If ($condition) {

Get-CimInstance -Class Win32_Service

} else {

Get-WmiObject -Class Win32_Service

}

You’d want to make sure that a unit test of this code ran both possible conditions. You’d likely mock
both Get-CimInstance and Get-WmiObject, since they’re not your code, but you’d want to ensure
that both “code paths” executed under the correct conditions.

Pester can help you measure your tests’ code coverage, so that you can better estimate if every “code
path” has run. However, Pester’s code coverage tools, like similar tools in any unit testing framework,
can only do so much. Specifically, they can simply look at the number of lines of code you’ve written,
and tell you howmany of those lines have actually executed. What they can’t do is make sure you’re
testing all the different conditions you should be. In the above snippet, for example, you might think
to write one test where $condition is $True, and another where it’s $False. If you ran both of those
tests, Pester would indicate that you’d hit 100% code coverage for that snippet. But Pester couldn’t
remind you to test your code where $condition was equal to "Purple" or some other unexpected
value. In other words, Pester can’t tell you if you’ve run a complete test of all logical possibilities;
merely if every line of code has executed. So code coverage is a tool, but it’s not the only tool you
should use. The best tool is your own brain, and your understanding of your code.

Displaying Code Coverage Metrics

Unlike Pester itself, which will run on PowerShell v2 and later, code coverage metrics require
PowerShell v3 or later. We’re trusting this is no longer an issue for you bue we don’t want to make
any assumptions.

To generate code coverage statistics, simply add the -CodeCoverage parameter when you run
Invoke-Pester to execute your tests. The parameter accepts strings, which should be the file paths
(and can include wildcards) of the scripts you want to generate coverage for. You can also get more
granular by passing a hash table to the parameter, like this:

Measuring Code Coverage 485

@{ Path = 'c:\path\to\script*'

Function = 'Get-*'

StartLine = 120

EndLine = 150 }

Only Path is required (and you can use p instead). If you specify Function (or f), you can provide
the name of a function (or wildcards) that you want to generate coverage metrics for. Alternately,
you can provide StartLine and EndLine (or s and e); these will be ignored if you used Function or
f, but otherwise indicate the lines of code you want coverage metrics for. If you include StartLine
and omit EndLine, it’ll just run through the end of the specified file(s).

Even though we’re trying to provide an introduction to code coverage, this is far from exhaustive
coverage. Be sure to read full help for Invoke-Pester looking at the code coverage related
parameters.

An Example

Let’s look at a relatively simple example. The script file and Pester test are included in the chapter
downloads. Say you have a function like this that resides in the file FunctionToTest.ps1

Get-MyServer

function Get-MyServer {

[cmdletbinding()]

Param(

[Parameter(Mandatory, ValueFromPipeline)]

[string]$Computername,

[switch]$ResolveIP,

[switch]$UseDcom,

[pscredential]$Credential

)

Begin {

Write-Verbose "Starting $($myinvocation.MyCommand)"

$params = @{

SkipTestConnection = $True

}

}

Process {

if ($UseDcom) {

Write-Verbose "Connecting with DCOM"

$opt = New-CimSessionOption -Protocol Dcom

$params.Add("SessionOption", $opt)

Measuring Code Coverage 486

}

if ($Credential) {

Write-Verbose "Using alternate credential"

$params.Credential = $Credential

}

if ($ResolveIP) {

Write-Verbose "Resolving IP4 address"

$resolve = @{

Name = $Computername

Type = "A"

TcpOnly = $True

ErrorAction = "SilentlyContinue"

}

$IP = (Resolve-DnsName @resolve).ip4Address

}

else {

$IP = "0.0.0.0"

}

$cs = New-Cimsession @params

$compsys = $cs | Get-CimInstance -classname win32_computersystem

$os = $cs | Get-CimInstance -ClassName win32_operatingsystem

$proc = $cs |

Get-CimInstance -ClassName win32_processor |

Select-Object -Property Name -first 1

[pscustomobject]@{

Computername = $compsys.Name

IP = $IP

TotalMemGB = $compsys.TotalPhysicalMemory / 1GB -as [int]

Model = $compsys.model

OS = $os.Caption

Build = $os.BuildNumber

Processor = $proc.Name

}

Remove-CimSession $cs

}

End {

Write-Verbose "Ending $($myinvocation.MyCommand)"

}

}

Measuring Code Coverage 487

In the same directory we started writing a Pester test for the function.

Get-MyServer Pester Test

$here = Split-Path -Parent $MyInvocation.MyCommand.Path

$sut = (Split-Path -Leaf $MyInvocation.MyCommand.Path) -replace '\.Tests\.', '.'

. "$here\$sut"

Describe "Get-MyServer" {

Mock Get-CimInstance {

New-CimInstance -ClientOnly -ClassName Win32_ComputerSystem -Property @{

Name = "SERVER1"

TotalPhysicalMemory = 32GB

Model = "BestServerEver"

}

} -ParameterFilter {$classname -eq "win32_computersystem"} -Verifiable

Mock Get-CimInstance {

New-CimInstance -ClientOnly -ClassName Win32_OperatingSystem -Property @{

Caption = "Windows Server"

BuildNumber = "1234"

}

} -ParameterFilter {$classname -eq "win32_operatingsystem"} -Verifiable

Mock Get-CimInstance {

New-CimInstance -ClientOnly -ClassName Win32_Processor -Property @{

Name = "Flux Capacitor 2K"

}

} -ParameterFilter {$classname -eq "win32_processor"} -Verifiable

Mock Resolve-DNSName {

@{

Name = "SERVER1"

IP4Address = "10.10.10.10"

Type = "A"

}

}

$r = Get-MyServer -Computername SERVER1

It "should run Get-CimInstance" {

Assert-VerifiableMock

Measuring Code Coverage 488

}

It "should run Get-CimInstance 3 times" {

Assert-MockCalled Get-Ciminstance -Times 3

}

It "The result should have a Computername property of SERVER1" {

$r.Computername | Should be "SERVER1"

}

It "The result should have a Build property of 1234" {

$r.build | Should be "1234"

}

}

As written, the function passes all the tests. But is it complete? That’s why we check for code
coverage.

invoke-pester -CodeCoverage @{Path=".\FunctionToTest.ps1";

Function="Get-MyServer"}

The tests run but we also get a listing at the end.

Pester code coverage

It is difficult to read some of the output, but the code coverage report says that our tests “Covered
77.14% of 35 analyzed Commands in 1 File”. And then you can see the commands that were not tested.
Some of the commands, like Write-Verbose we probably don’t need to test. But some of the others
we might. We also want to re-iterate that this is showing up what command execution paths we
didn’t test for. Code coverage doesn’t mean, “What commands am I not testing.” Our function uses
commands like Remove-CimSessionwhich isn’t included anywhere in our Pester test. Code coverage
didn’t detect it because we are testing the path where that command gets called.

The idea of Pester code coverage is to just get one indicator of whether or not all of your code ran;
Pester isn’t making any commentary on whether all of your code received all of the relevant input
variation that might be appropriate.

Test-Driven Development
Test-Driven Development, or TDD, is a big philosophy. Test Driven Development by Example, by
Ken Beck, is one of our favorite texts on the subject, should you want to dive deeper… because this
chapter ain’t going to dive too deep.

TDD, stripped away of every possible meaningful detail, is simply the practice of writing your unit
tests before writing your code. Your unit tests serve, in a way, as a kind of unit-level functional
specification for your code. If someone else wrote your code, they’d simply have to make sure all
the tests passed, and you’d all agree that the code was good.

This doesn’t mean sitting down and writing every possible test that you’ll ever need to write. The
practical reality is that, except for the smallest imaginable chunks of code, TDD is part of an iterative
process.

Imagine, for example, that you usually start writing functions by defining your parameters. That’s
a pretty common approach. In TDD, you’d start by writing tests that verify and validate those
parameters, before you write a lick of actual PowerShell code. You’d write tests that ensure pipeline
input worked when it was supposed to, parameters accepted the data types they were supposed to,
and so on. Once the tests were ready, you’d start writing your code, even though so far as you’re
“coding” is the Param block. You’d keep messing with the Param block until you could run the tests
and pass every single one.

Then you’d move on to the next bit of your script. Perhaps, for example, you have a switch parameter
that tells your function to behave in one way or another. You’d write tests that tested the different
behaviors, and then write the logic itself, and then run the tests. You’d keep revising the code until
the tests passed.

The idea with TDD is to force you to think about what your code should conform to first, rather
than just diving in and coding by the seat of your pants. Writing tests first implies a certain design
stage, where you think about things before you start typing. TDD also kind of forces you to get tests
in place, which even though you know you should do, you won’t always want to do.

Let’s say you finish your function (and its tests!). Later, you discover a bug. Before you fix the bug,
you’d write the test(s) necessary to see if the bug exists or not. Initially, that test will fail. But then
you go and fix your code so that the test passes. With TDD, it’s always write the test first, and then
get the code to comply with the test.

It’s a big commitment. And trust us, not every professional software development team even does
this. But, those that do have had quite a bit of success with it, and end up writing a fuller and more
reliable test suite, as well as having a better shared goal about what the eventual code will need to
do.

We’re not saying you have to use TDD, but we’d recommend considering it on your next project.

Part 7: PowerShell 7 Scripting
PowerShell 7, which is essentially today’s PowerShell and runs cross platform, offers a few new
features that you can use in your scripting projects. Of course, these will only work when the code
is run on a PowerShell 7 platform. The chapters in this section will introduce you to some new
operators, variables, and parameters.

PowerShell 7 Scripting Features
The world of PowerShell is slowly shifting. It began a number of years ago when Microsoft make
PowerShell an open source project. At the time, this new version of PowerShell would run on
Windows, Linux and Mac. These were the days of PowerShell Core or 6.x. Over time, Microsoft
slowly started adding back features that people really wanted out of PowerShell. Eventually, we
ended up with PowerShell 7.

Microsoft made a major version increment primarily as a way to make a statement. Going forward,
PowerShell 7.x is PowerShell. Windows PowerShell 5.1 which ships with Windows 10 isn’t going
anywhere. But it is also finished. Barring critical security bugs, Microsoft is investing in developing
PowerShell 7. Notice they even dropped “Windows” from the name. Eventually, you should be able
to manage anything from anywhere using whatever client you want. Even today, you can manage
Windows servers runningWindows PowerShell 5.1 from aWindows 10 desktop running PowerShell
7. However from a scripting perspective PowerShell 7 offers up new features you’ll find useful but
new challenges as well. For now, let’s explore some of the scripting goodies PowerShell 7 brings to
the party. Don’t forget that if you use any of these features to add #requires -version 7 at the top
of your script file.

If you are interested in what’s new in PowerShell 7 and why you might want to make the
jump, grab a free (there is an option to make a charitable donation) copy of the #PS7Now⁸⁹.

Updating Your Editor

If you are running VS Code and have the PowerShell extension installed, you should be set. It will
detect and use PowerShell 7 as part of its integrated terminal. If you need to switch to Windows
PowerShell, you can do that as well. In the terminal dropdown, click Select Default Shell and
pick one.

Even though the recommendation is to use VS Code, there are plenty of legitimate reasons you may
have to stick with the PowerShell ISE. This app will never be updated to use PowerShell 7. But there
is an easy hack you can implement. Assuming you installed PowerShell 7 and enabled PowerShell
remoting, launch the PowerShell ISE with elevated credentials. In the console panel, run this code:

Enter-PSSession -computername $env:COMPUTERNAME -Configuration PowerShell.7

This hack will open a remoting session to yourself using the PowerShell 7 endpoint. Now, the
scripting panel will be PowerShell 7 “aware”.

⁸⁹https://leanpub.com/ps7now

https://leanpub.com/ps7now
https://leanpub.com/ps7now

PowerShell 7 Scripting Features 492

Ternary Operators

One of the most anticipated PowerShell 7 features is the addition of Ternary Operators. The structure
is something like this:

<if some condition is true> ? <do this> : <else do this>

In Windows PowerShell, you would have written code like this:

if ($IsWindows) {

"ok"

}

else {

"not ok"

}

Sure. You could squeeze it down into a single line.

if ($IsWindows) {"ok"} else {"not ok"}

But with the ternary operator you can write it like this:

$IsWindows ? "ok":"not ok"

The first part of the expression is some bit of code that evaluates as True or False. Whatever comes
after the ? runs when true and code after the : runs when false. There’s no performance benefit as
far as we can tell. And frankly, it is a bit cryptic at first glance. Especially when compared to an
If/Else construct.

As an example, here’s a traditional structure.

if ($IsWindows) {

Get-CimInstance -ClassName win32_service -filter "name='bits'"

Get-CimInstance -ClassName win32_service -filter "name='wsearch'"

}

else {

Clear-Host

Get-Date

Write-Warning "This command requires Windows"

}

And here’s the ternary equivalent:

PowerShell 7 Scripting Features 493

$IsWindows ? (Get-CimInstance -ClassName win32_service -filter "name='bits'"),

(Get-CimInstance -ClassName win32_service -filter "name='wsearch'") :

(Clear-Host),(Get-Date),(Write-Warning "This command requires Windows")

This could be written as a one-line expression. We’re accommodating page width restrictions.

As an alternative, in some situations, code like this might make sense:

$win = {

Get-CimInstance -ClassName win32_service -filter "name='bits'"

Get-CimInstance -ClassName win32_service -filter "name='wsearch'"

}

$nowin = {

Clear-Host

Get-Date

Write-Warning "This command requires Windows"

}

$IsWindows ? (&$win) : (&$nowin)

For simple expressions, using the ternary operator might save some typing and create a succinct
expression.

$var = (get-date).DayOfWeek -eq "Friday" ? "tgif": "blah"

Chain operators

Many shells have conditional operators that allow you to string commands to together. The logic
typically goes “run this command and if it is successful then run this next command”. In PowerShell,
you can now use the && operator.

1 && 2

If the command on the left side of && is successful, then run the command on the right side. The
operator decides based the of the value of the built-in variable $?. Here’s a more practical example.

PowerShell 7 Scripting Features 494

PS C:\> test-wsman thinkp1 && Get-CimInstance win32_bios -ComputerName Thinkp1

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd

ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd

ProductVendor : Microsoft Corporation

ProductVersion : OS: 0.0.0 SP: 0.0 Stack: 3.0

SMBIOSBIOSVersion : N2EET46W (1.28)

Manufacturer : LENOVO

Name : N2EET46W (1.28)

SerialNumber : R90SH9GR

Version : LENOVO - 1280

PSComputerName : Thinkp1

Because the Test-WSMan command succeeded, the Get-CimInstance command is run. You could have
written this with an If construct, and perhaps in a script that would make more sense.

But be careful. Even if the first expression fails, that doesn’t mean the second expression won’t run.

[void](test-wsman foo) && Get-CimInstance win32_bios -ComputerName foo

The Test-WSMan command will fail, but that doesn’t mean it didn’t run. The $? variable will be True
so the second command is run. You may need to force a terminating exception.

[void](test-wsman foo -erroraction stop) && Get-CimInstance win32_bios -ComputerName\

foo

You may also want to execute a statement if the first command does not complete. That’s where ||
comes into play.

1/0 || Write-Warning "What are you trying to do?"

Try this. Then try a variation that doesn’t fail.

1/1 || Write-Warning "What are you trying to do?"

That’s the easiest way to see this in action.

You can also combine operators into a kind of If/Then/Else equivalent.

PowerShell 7 Scripting Features 495

Get-Service foo && Write-Host "service found" || Write-Host "service failed" -Foregr\

oundColor red

But be careful. You might think this would work.

$svc = Get-Service bits && Write-Host "service $($svc.name) found" || Write-Host "se\

rvice failed" -ForegroundColor red

But you’ll get nothing for the service name. The solution is to use the common OutVariable

parameter.

$svc = Get-Service bits -ov s && Write-Host "service $($s.name) found" || Write-Host\

"service failed" -ForegroundColor red

These operators will be cryptic to people just getting started with PowerShell so if you use them in
your code, it wouldn’t hurt to throw in a comment or two.

Take a few minutes to review the help topic about_Pipeline_Chain_Operators.

Null-Coalescing Assignment

Is your head screwed on tight? This next one will have your head spinning, at least at first.
PowerShell 7 has a new operator, ?? which is referred to a a null-coalescing operator. Huh? This
operator goes between 2 statements.

<left-side> ?? <right-side>

If the left side is null, then PowerShell will give you the right-side value. If the left-side is not null,
you get the left side.

$foo = $null

$foo ?? "bar"

If you try this in PowerShell 7, you’ll get “bar” because $foo is Null. But be careful. If define $foo=""
that is NOT null and you’ll get an empty line.

PowerShell 7 Scripting Features 496

$foo = $PSVersionTable.PSVersion.ToString()

$foo ?? "bar"

Running this will display your PowerShell version because $foo isn’t Null.

Howmight you use this in a script? Let’s say a variable called SomeVariable is getting processed. If it
has a value, it will be for a computer name. But if it is Null, you want to use the local computername.
In PowerShell 7 you would write it like this:

$c = $SomeVariable

$computername = $c ?? ([system.environment]::MachineName)

Yes, you could also simply write an If statement but some people like this succinct approach.

Related to this is the Null-Coalescing assignment operator, ??=.

<left-side> ??= <right-side>

In this situation, the value from the right side is applied to left side, if the left side is null. If the left
side is not Null the right side is ignored. Using the previous scenario, we could assign a value to
$Computername if it is Null, using the local computername.

$computername ??= ([system.environment]::MachineName)

Null Conditional Operators

If your head wasn’t spinning before, this’ll do it. The Null Conditional operators ? and ?[] are used
to allow conditional access to an object’s member such as a method or property as long as it isn’t
null. Let’s look at what happens with a non-null value.

$p = Get-Process -id $pid

${p}?.startTime

The result should be the start time of the current PowerShell process. Note that because PowerShell
allows the use of ? in variable names, (don’t ask us why you would ever want to do that), you need
to reference the variable using that funky ${} syntax. If $p was Null, then PowerShell wouldn’t give
you anything. In fact, it won’t even try to resolve the member so you won’t get any errors.

You can do something similar with array elements.

PowerShell 7 Scripting Features 497

$n = 2,4,6,8,10

${n}?[2]

Because $n is not null, You’ll get the array element at index 2 or 6. If $n was Null, PowerShell doesn’t
even try to get the array element. Again, there’s no error message.

The new Null-related operators are documented in about_Operators.

The Null Conditional Operators are a PowerShell 7 experimental feature. If
you encounter problems trying to use them, run Get-ExperimentalFeature and
see if the PSNullConditionalOperators feature is enabled. If not, you can run
Enable-ExperimentalFeature PSNullConditionalOperators and restart your PowerShell
7 session.

ForEach-Object Parallel

One feature that got a lot of people excited for PowerShell 7 was the -Parallel parameter in
ForEach-Object. The basic premise is that PowerShell will run your scriptblock in parallel runspaces.
The number of parallel operations is controlled by the ThrottleLimit parameter which has a default
of 5. The concept looks like this:

<input objects> | ForEach-Object -parallel {<do something with $_>}

Looks simple enough. But just because you can do this doesn’t mean you should. Here’s a simple
demonstration.

Measure-Command {1..1000 | ForEach-Object {$_*10}}

This takes about 102 milliseconds.

Measure-Command {1..1000 | ForEach-Object -parallel {$_*10}}

This took 35 seconds! There is overhead in setting up and tearing down the parallel runspaces so
you need to be smart about how you use it. And sometimes you simply have to test.

Here’s an example where using -Parallel can help. In Windows PowerShell, you would use code like
this to process a list of locations.

PowerShell 7 Scripting Features 498

$locations| ForEach-Object {

$p = $_

Write-Host "[$(Get-Date -f 'hh:mm:ss.ffff')] Measuring $p" -Fore green

Get-ChildItem -Path $p -file -Recurse |

Measure-Object -Property length -sum -Average |

Select-Object @{Name="Path";Expression = {$p}},Count,

@{Name="SumKB";Expression={$_.sum/1KB -as [int]}},

@{Name="AvgKB";Expression={$_.average/1KB -as [int]}}

}

}

In our test with 6 locations, including one on a NAS device this took about 2 minutes to complete.
Here’s the parallel equivalent:

$locations | ForEach-Object -parallel {

$p = $_

Write-Host "[$(Get-Date -f 'hh:mm:ss.ffff')] Measuring $p" -ForegroundColor green

Get-ChildItem -Path $p -file -Recurse |

Measure-Object -Property length -sum -Average |

Select-Object @{Name="Path";Expression = {$p}},Count,

@{Name="SumKB";Expression={$_.sum/1KB -as [int]}},

@{Name="AvgKB";Expression={$_.average/1KB -as [int]}}

}

Which took almost 3 minutes. Which obviously isn’t much of an improvement. However, there are
external factors that can come into play with this particular example such as disk contention and
network latency, since we’re querying a NAS device. The key takeawaywith this feature is this it just
depends. You have to take more than your code into consideration to determine if using -Parallel

is appropriate.

Using ANSI

Even though we probably had support in previous editions, one cool feature in PowerShell 7 is more
widespread use of ANSI escape sequences. These are kind of an old-school approach to working
with text in a console or terminal. With PowerShell 7, you can do things like color a piece of text
without resorting to Write-Host.

In short, you wrap your text in an ANSI sequence.

"`e[36mHello World`e[0m"

PowerShell 7 Scripting Features 499

This will write “Hello World” to the PowerShell pipeline, but it will be in color!

In PowerShell 7 use `e for the escape sequence. In Windows PowerShell, you can use
$([char]0x1b). You could write the Hello World example as "$([char]0x1b)[36mHello

World$([char]0x1b)[0m" and it would work in both Windows PowerShell and PowerShell
7. But not in the PowerShell ISE which doesn’t know what to do with ANSI characters.

Here’s a snippet of a function that takes advantage of this feature. The full function is is in the code
downloads.

Get-Status

foreach ($item in $free) {

$sName = $item.name -replace "Pct", "%"

if ($IsWindows -AND $IsCoreCLR) {

#Colorize values

if ([double]$item.value -le 20) {

#red

$value = "`e[91m$($item.value)`e[0m"

}

elseif ([double]$item.value -le 50) {

#yellow

$value = "`e[93m$($item.value)`e[0m"

}

else {

#green

$value = "`e[92m$($item.value)`e[0m"

}

}

else {

$value = $item.Value

}

$string += " {0}:{1}" -f $sname, $value

} #foreach item in free

$string

If the user is running PowerShell 7 and uses the functions -AsString parameter, they’ll get color-
coded output.

PowerShell 7 Scripting Features 500

Get-Status -AsString

And yes, the function could be revised to use the $([char]0x1b) to work in Windows PowerShell
and PowerShell 7.

There is a terrific write-up on this feature in the free ebook #PS7Now⁹⁰. You might also
checkout a script⁹¹ Jeff wrote to show ANSI samples in your console. And he has a number
of ANSI related features in the PSScriptTools⁹² module.

⁹⁰https://leanpub.com/ps7now
⁹¹https://jdhitsolutions.com/blog/powershell/7502/show-ansi-samples/
⁹²https://github.com/jdhitsolutions/PSScriptTools

https://leanpub.com/ps7now
https://jdhitsolutions.com/blog/powershell/7502/show-ansi-samples/
https://github.com/jdhitsolutions/PSScriptTools
https://leanpub.com/ps7now
https://jdhitsolutions.com/blog/powershell/7502/show-ansi-samples/
https://github.com/jdhitsolutions/PSScriptTools

Cross Platform Scripting
When Microsoft moved PowerShell to the open source world a few years ago, they opened up an
entire new world of scripting possibilities. Microsoft wants you to be able to manage anything from
anywhere on whatever platform you need. Of course, you’ll want to build scripts and tools to use in
this newworld. And even if you aren’t in a situation now thats requires cross-platformmanagement,
you never know what’s gonna happen tomorrow. And frankly, some of the things you need to keep
in mind when it comes to cross-platform scripting can make you a better scripter for Windows
PowerShell.

What do we mean when we say “cross-platform”? We mean that you can develop a tool that can
be used on any PowerShell-supported platform and ideally, can manage or work with any platform.
Instead of writing one tool to run on Linux and another to run on Windows, you write one tool
that can run on both. Don’t build multiple tools to manage remote servers depending on the target
operating system. Write one command that you can use regardless of the OS.

In order to meet these requirements, there are a few things we want you to keep in mind. We are
under no illusion that everything you want to do cross-platform will work. It won’t. There will be
situations where a true cross-platform solution simply doesn’t work.

Many of the things we’re covering in this chapter, technically also apply to PowerShell Core
which was the PowerShell 6.x branch.

Know Your OS

When you are building something that can potentially be used cross-platform you need to think
about the operating system where your code will be running. As cool as PowerShell 7 is, not every
feature or command is supported on every operating system. You don’t need to be an expert level
Linux engineer, but you do need to understand some basics. For example, Linux doesn’t have the
same concept of services as we understand them in the Windows world, so there is no Get-Service

command in PowerShell 7 on non-Windows systems. Likewise, Linux doesn’t have WMI or CIM
so you won’t find Get-CimInstance. Nor could you use Get-CimInstance to target a remote Linux
machine. The OS doesn’t support these features so they aren’t available.

What this means is that you need to know what OS your code is running on and there are some
things you can do to make your life easier.

Cross Platform Scripting 502

State Your Requirements

First off, if you are writing a PowerShell function that uses PowerShell 7 features, such as the new
ternary operator, you need to make sure the person running your script is using PowerShell 7. This
means adding a #requires statement at the top of your file

#requires -version 7.0

Honestly, this is something you should have been doing all along but you absolutely need it now. If
you need specific modules that might be Windows specific, state that requirement as well.

#requires -modules CIMCmdlets

If someone runs this on a Linux box they’ll get an error like:

The script 'Get-Miracle.ps1' cannot be run because the following modules that are sp\

ecified by the "#requires" statements of the script are missing: CimCmdlets.

If you are building a module, in the manifest you can use this setting to set requirements.

Supported PSEditions

CompatiblePSEditions = @('Desktop','Core')

Desktop means Windows PowerShell. Core means the open-source and cross-platform version
of PowerShell, regardless of operating system. This can be a little tricky. Because even though
Get-CimInstance doesn’t work on aMac in PowerShell 7, it will work just fine on aWindows desktop
running PowerShell 7. Still, this high level compatibility setting should be set. Delete whatever isn’t
supported.

Testing Variables

Even though the Core setting is potentially problematic, there are a number of new automatic
variables you can use in your code, to validate and test.

• PSEdition - On PowerShell 7, this will have a value of Core. On Windows PowerShell it will
return Desktop. Look familiar?

• IsWindows - A boolean value indicating if you are running Windows. Requires PowerShell 7.
• IsLinux - A boolean value indicating if you are running Linux. Requires PowerShell 7.
• IsMac - A boolean value indicating if you are running MacOS. Requires PowerShell 7.
• IsCoreCLR - A boolean value indicating if you are running .NET Core which most likely means
you are running PowerShell 7. This variable isn’t defined in Windows PowerShell.

And of course, don’t forget $PSVersionTable.

Cross Platform Scripting 503

PS C:\> $PSVersionTable

Name Value

---- -----

PSVersion 7.0.2

PSEdition Core

GitCommitId 7.0.2

OS Microsoft Windows 10.0.19041

Platform Win32NT

PSCompatibleVersions {1.0, 2.0, 3.0, 4.0â€¦}

PSRemotingProtocolVersion 2.3

SerializationVersion 1.1.0.1

WSManStackVersion 3.0

Which can vary by platform.

PS /home/jeff> $PSVersionTable

Name Value

---- -----

PSVersion 7.0.2

PSEdition Core

GitCommitId 7.0.2

OS Linux 4.19.104-microsoft-standard #1 SMP Wed Feb 19 0\

6:37:35 UTC 2020

Platform Unix

PSCompatibleVersions {1.0, 2.0, 3.0, 4.0â€¦}

PSRemotingProtocolVersion 2.3

SerializationVersion 1.1.0.1

WSManStackVersion 3.0

It is also different on Windows PowerShell.

PS C:\> $PSVersionTable

Name Value

---- -----

PSVersion 5.1.19041.1

PSEdition Desktop

PSCompatibleVersions {1.0, 2.0, 3.0, 4.0...}

BuildVersion 10.0.19041.1

CLRVersion 4.0.30319.42000

Cross Platform Scripting 504

WSManStackVersion 3.0

PSRemotingProtocolVersion 2.3

SerializationVersion 1.1.0.1

These are all potentially useful items you can use to build If constructs or even dynamic parameters.

Environment Variables

One of the major challenges in cross-platform scripting is breaking out of the old way of doing
things. Here’s a great example using a common parameter definition you might see in Windows
PowerShell.

[string[]]$Computername = $env:ComputerName

This sets the %COMPUTERNAME% environment variable as the default value for $Computername.
This will work just fine on Windows PowerShell and even PowerShell 7 running on Windows. But
non-Windows platforms have different environment variables and this will fail. Instead, you can
use a .NET code snippet to get the same result.

[environment]::MachineName

This also true with $env:username which can be replaced with [environment]::UserName. If you
are used to referencing environment variables, you’ll need to add a step to verify they are defined
or begin using .NET alternatives.

Paths

PowerShell has always never cared about the direction of slashes in paths. You can run Test-Path

c:\windows or Test-Path c:/windows. This is even true on non-Windows systems. You can use
test-path /etc/ssh or test-path \etc\ssh. But you really should be careful. Many of you probably
have used or seen code like this:

$file = "$foo\child\file.dat"

There’s a good chance it will work cross-platform. But the better approach, which you should be
using anyway, is to use the path cmdlets like Join-Path. Here’s a sample.

Cross Platform Scripting 505

Export-Data

Function Export-Data {

[cmdletbinding()]

Param(

[ValidateScript({Test-Path $_})]

[string]$Path = "."

)

$time = Get-Date -format FileDate

$file = "$($time)_export.json"

$ExportPath = Join-Path -Path (Convert-Path $Path) -ChildPath $file

Write-Verbose "Exporting data to $exportPath"

code ...

}

Instead of worrying about which direction to put the slashes, let PowerShell do it for you.

If you need it, you can use [System.IO.Path]::DirectorySeparatorChar to get the directory
separator character. For the %PATH% variable you can use [System.IO.Path]::PathSeparator. Let’s
say you want to split the %PATH% environment variable into an array of locations. A simple cross-
platform approach would be $env:PATH -split [System.IO.Path]::PathSeparator. Don’t forget
that Linux is case-sensitive.

Watch Your Aliases

You’ve most likely heard us go on and on about the downside of using aliases in your PowerShell
scripts. Use them all you want interactively at a prompt but in written code, use full cmdlet names.
Now you really need to.

In the old days, we’d happily write a command like this:

get-process | sort handles -descending

And it would work just fine on Windows, even under PowerShell 7. But not Linux.

PS /home/jeff> get-process | sort handles -descending

/usr/bin/sort: invalid option -- 'e'

Try '/usr/bin/sort --help' for more information.

What happened? In PowerShell 7 on Linux, any alias that could resolve to a native command has
been removed. So there is no sort alias for Sort-Object. PowerShell thinks you want to run the
native sort command. If you’ve been in the habit of using Linux aliases like ps or ls, you’ll need to
get over it. You need to start writing expressions like:

Cross Platform Scripting 506

get-process | sort-object handles -descending

Now there’s no mistaking what you want to do and it will run everywhere.

If you are using VSCode, andwe don’t knowwhy you’re not, it is very easy to convert aliases.
We get it. You have muscle memory and you find it easier to write code using aliases. Fine.
When you are finished and before you release you code into the world, open the command
palette (<kbd>Ctrl</kbd>+<kbd>Shift</kbd>+<kbd>P</kbd>) and run ‘Powershell: Expand
alias”. Done.

Leverage Remoting

One of the most anticipated features of PowerShell 7 is the use of ssh for remoting. Non-Windows
systems won’t support the WSMan protocol which means no remoting the way you used to do it.
But you may still want to use remoting in your toolmaking. In fact, leveraging remoting is a smart
idea. Going to PowerShell 7 just means a little more work on your part.

We’re not going to dive into the mechanics of getting SSH remoting to work in PowerShell 7.
That’s all up to you and your organization. We’re simply going to assume it already works.

One relatively easy approach you can use is parameter sets. Define one parameter set for a computer
name and another for PSSession objects. PowerShell already follows this model. You can too. Here’s
a proof of concept function.

Get-RemoteData

Function Get-RemoteData {

[cmdletbinding(DefaultParameterSetName = "computer")]

Param(

[Parameter(

Position = 0,

Mandatory,

ValueFromPipeline,

ParameterSetName = "computer"

)]

[Alias("cn")]

[string[]]$Computername,

[Parameter(ParameterSetName = "computer")]

[alias("runas")]

[pscredential]$Credential,

[Parameter(ValueFromPipeline,ParameterSetName = "session")]

Cross Platform Scripting 507

[System.Management.Automation.Runspaces.PSSession]$Session

)

Begin {

$sb = {"Getting remote data from $([environment]::MachineName) [$PSEdition]"}

$PSBoundParameters.Add("Scriptblock",$sb)

}

Process {

Invoke-Command @PSBoundParameters

}

End {}

}

The person running the function can either pass a computername with an optional credential, or
a previously created PSSession object. They may have existing connections to a mix of platforms,
some using SSH connections. Now they can run one command that works for all.

PS C:\> get-pssession | get-remotedata

Getting remote data from SRV2 [Desktop]

Getting remote data from FRED [Core]

Getting remote data from SRV1 [Desktop]

In this example, FRED is a Linux server running Fedora. Start simple like this.

But when you are ready, you can get very creative. Here’s a function that defines dynamic
parameters if the user is running PowerShell 7.

Stop-RemoteProcess

#requires -version 5.1

Function Stop-RemoteProcess {

[cmdletbinding(DefaultParameterSetName = "computer")]

Param(

[Parameter(

ParameterSetName = "computer",

Mandatory,

Position = 0,

ValueFromPipeline,

ValueFromPipelineByPropertyName,

HelpMessage = "Enter the name of a computer to query."

)]

[ValidateNotNullOrEmpty()]

[Alias("cn")]

[string[]]$ComputerName,

Cross Platform Scripting 508

[Parameter(

ParameterSetName = "computer",

HelpMessage = "Enter a credential object or username."

)]

[Alias("RunAs")]

[PSCredential]$Credential,

[Parameter(ParameterSetName = "computer")]

[switch]$UseSSL,

[Parameter(

ParameterSetName = "session",

ValueFromPipeline

)]

[ValidateNotNullOrEmpty()]

[System.Management.Automation.Runspaces.PSSession[]]$Session,

[ValidateScript({$_ -ge 0})]

[int32]$ThrottleLimit = 32,

[Parameter(Mandatory,HelpMessage = "Specify the process to stop.")]

[ValidateNotNullOrEmpty()]

[string]$ProcessName,

[Parameter(HelpMessage = "Write the stopped process to the pipeline")]

[switch]$Passthru,

[Parameter(HelpMessage = "Run the remote command with -WhatIf")]

[switch]$WhatIfRemote

)

DynamicParam {

#Add an SSH dynamic parameter if in PowerShell 7

if ($isCoreCLR) {

$paramDictionary = New-Object -Type System.Management.Automation.RuntimeDefi\

nedParameterDictionary

#a CSV file with dynamic parameters to create

#this approach doesn't take any type of parameter validation into account

$data = @"

Name,Type,Mandatory,Default,Help

HostName,string[],1,,"Enter the remote host name."

UserName,string,0,,"Enter the remote user name."

Subsystem,string,0,"powershell","The name of the ssh subsystem. The default is power\

Cross Platform Scripting 509

shell."

Port,int32,0,,"Enter an alternate SSH port"

KeyFilePath,string,0,,"Specify a key file path used by SSH to authenticate the user"

SSHTransport,switch,0,,"Use SSH to connect."

"@

$data | ConvertFrom-Csv | ForEach-Object -begin { } -process {

$attributes = New-Object System.Management.Automation.ParameterAttribute

$attributes.Mandatory = ([int]$_.mandatory) -as [bool]

$attributes.HelpMessage = $_.Help

$attributes.ParameterSetName = "SSH"

$attributeCollection = New-Object -Type System.Collections.ObjectModel.C\

ollection[System.Attribute]

$attributeCollection.Add($attributes)

$dynParam = New-Object -Type System.Management.Automation.RuntimeDefined\

Parameter($_.name, $($_.type -as [type]), $attributeCollection)

$dynParam.Value = $_.Default

$paramDictionary.Add($_.name, $dynParam)

} -end {

return $paramDictionary

}

}

} #dynamic param

Begin {

$start = Get-Date

#the first verbose message uses a pseudo timespan to reflect the idea we're just\

starting

Write-Verbose "[00:00:00.0000000 BEGIN] Starting $($myinvocation.mycommand)"

#a script block to be run remotely

Write-Verbose "[$(New-TimeSpan -start $start) BEGIN] Defining the scriptblock \

to be run remotely"

$sb = {

param([string]$ProcessName,[bool]$Passthru,[string]$VerbPref = "SilentlyContinue\

", [bool]$WhatPref)

$VerbosePreference = $VerbPref

$WhatIfPreference = $WhatPref

Try {

Write-Verbose "[$(New-TimeSpan -start $using:start) REMOTE] Getting Process\

Cross Platform Scripting 510

$ProcessName on $([System.Environment]::MachineName)"

$procs = Get-Process -Name $ProcessName -ErrorAction stop

Try {

Write-Verbose "[$(New-TimeSpan -start $using:start) REMOTE] Stopping $($p\

rocs.count) Processes on $([System.Environment]::MachineName)"

$procs | Stop-Process -ErrorAction Stop -PassThru:$Passthru

}

Catch {

Write-Warning "[$(New-TimeSpan -start $using:start) REMOTE] Failed to sto\

p Process $ProcessName on $([System.Environment]::MachineName). $($_.Exception.messa\

ge)."

}

}

Catch {

Write-Verbose "[$(New-TimeSpan -start $using:start) REMOTE] Process $Proces\

sName not found on $([System.Environment]::MachineName)"

}

} #scriptblock

#parameters to splat to Invoke-Command

Write-Verbose "[$(New-TimeSpan -start $start) BEGIN] Defining parameters for I\

nvoke-Command"

#remove my parameters from PSBoundparameters because they can't be used with New\

-PSSession

$myparams = "ProcessName","WhatIfRemote","passthru"

foreach ($my in $myparams) {

if ($PSBoundParameters.ContainsKey($my)) {

[void]($PSBoundParameters.remove($my))

}

}

$icmParams = @{

Scriptblock = $sb

Argumentlist = @($ProcessName,$Passthru,$VerbosePreference,$WhatIfRemote)

HideComputerName = $False

ThrottleLimit = $ThrottleLimit

ErrorAction = "Stop"

Session = $null

}

#initialize an array to hold session objects

Cross Platform Scripting 511

[System.Management.Automation.Runspaces.PSSession[]]$All = @()

If ($Credential.username) {

Write-Verbose "[$(New-TimeSpan -start $start) BEGIN] Using alternate crede\

ntial for $($credential.username)"

}

} #begin

Process {

Write-Verbose "[$(New-TimeSpan -start $start) PROCESS] Detected parameter set $(\

$pscmdlet.ParameterSetName)."

$remotes = @()

if ($PSCmdlet.ParameterSetName -match "computer|ssh") {

if ($pscmdlet.ParameterSetName -eq 'ssh') {

$remotes += $PSBoundParameters.HostName

$param = "HostName"

}

else {

$remotes += $PSBoundParameters.ComputerName

$param = "ComputerName"

}

foreach ($remote in $remotes) {

$PSBoundParameters[$param] = $remote

$PSBoundParameters["ErrorAction"] = "Stop"

Try {

#create a session one at a time to better handle errors

Write-Verbose "[$(New-TimeSpan -start $start) PROCESS] Creating a te\

mporary PSSession to $remote"

#save each created session to $tmp so it can be removed at the end

$all += New-PSSession @PSBoundParameters -OutVariable +tmp

} #Try

Catch {

#TODO: Decide what you want to do when the new session fails

Write-Warning "Failed to create session to $remote. $($_.Exception.M\

essage)."

#Write-Error $_

} #catch

} #foreach remote

}

Else {

Cross Platform Scripting 512

#only add open sessions

foreach ($sess in $session) {

if ($sess.state -eq 'opened') {

Write-Verbose "[$(New-TimeSpan -start $start) PROCESS] Using session\

for $($sess.ComputerName.toUpper())"

$all += $sess

} #if open

} #foreach session

} #else sessions

} #process

End {

$icmParams["session"] = $all

Try {

Write-Verbose "[$(New-TimeSpan -start $start) END] Querying $($all.count\

) computers"

Invoke-Command @icmParams | ForEach-Object {

#TODO: PROCESS RESULTS FROM EACH REMOTE CONNECTION IF NECESSARY

$_

} #foreach result

} #try

Catch {

Write-Error $_

} #catch

if ($tmp) {

Write-Verbose "[$(New-TimeSpan -start $start) END] Removing $($tmp.count\

) temporary PSSessions"

$tmp | Remove-PSSession

}

Write-Verbose "[$(New-TimeSpan -start $start) END] Ending $($myinvocation.my\

command)"

} #end

} #close function

We know the code will wrap here. The script file won’t have that problem.

This function essentially follows the same model as a previous example. But this one creates several
dynamic parameters if PowerShell 7 is detected. Notice we’re using one of the new variables. When
the user runs help in PowerShell 7, they’ll get the new parameters.

Cross Platform Scripting 513

Stop-RemoteProcess Help

The last parameter set is the dynamic one. Instead of having to write several versions of the com-
mand, you can write a single function. Check out https://jdhitsolutions.com/blog/powershell/7458/a-
powershell-remote-function-framework/⁹³ for a bit more detail on this function.

Custom Module Manifests

The last cross-platform scripting feature to consider is a custom module manifest. In the code
downloads for this chapter you’ll find a demo module called CrossDemo. The module has several
commands, some of which will only work in PowerShell 7. The goal is to only export the commands
(and aliases) that are supported. Here’s how.

Normally, a psd1 is static and can’t contain code. But there is an exception for a module manifest.
You can use a simple If statement to tell PowerShell what functions to export.

FunctionsToExport = if ($PSEdition -eq 'desktop') {

'Export-Data','Get-DiskFree'

}

else {

'Export-Data','Get-DiskFree','Get-Status','Get-RemoteData'

}

...

AliasesToExport = if ($PSEdition -eq 'desktop') {

'df'

}

else {

'df','gst'

}

When the module is imported on Windows PowerShell, only 2 functions and 1 alias are exported.
PowerShell 7 systems get everything.

Even so, you still may need to fine-tune platform requirements. For example, if you look at our
sample code for the Get-DiskFree function, you’ll see code like this:

⁹³https://jdhitsolutions.com/blog/powershell/7458/a-powershell-remote-function-framework/

https://jdhitsolutions.com/blog/powershell/7458/a-powershell-remote-function-framework/
https://jdhitsolutions.com/blog/powershell/7458/a-powershell-remote-function-framework/
https://jdhitsolutions.com/blog/powershell/7458/a-powershell-remote-function-framework/

Cross Platform Scripting 514

if ($IsWindows -OR $PSEdition -eq 'desktop') {

$Drive = (Get-Item $Path).Root -replace "\\"

Write-Verbose "Getting disk information for $drive in $As"

...

} #if Windows

else {

Write-Warning 'This command requires a Windows platform.'

}

Because the function uses Get-CimInstance it requires a Windows platform. It will work in
PowerShell 7 on Windows but not Linux. So even though we’re exporting the function for
PowerShell 7, it will only run on Windows. You’ll need to keep things like this in mind. Will it
work in PowerShell 7 and what are the platform dependencies?

Not every sample function in our demo module is using this logic. Feel free to update the
code as an exercise.

We’ll be honest with you and say that a lot of community accepted best practices for cross-platform
scripting are still being developed. But if you use a little common-sense and follow the best practices
that are accepted, you shouldn’t have too much trouble.

Wish List
Some items we’re considering:

• A chapter on basic GitHub usage, with a focus on forking existing projects and submitting PRs.
• Something on how to use generic lists and why you would want to.
• Scripting with regular expressions
• If there’s a topic you think we’re missing - send a message to @JeffHicks

Release Notes
2020-June-30

• Update Lab setup
• Updated Introduction
• Updated A Note on Code Listings
• New teaching examples and code in Part 1
• Added a chapter on working with CSV files in Part 4
• Added a chapter on Auto Completers to Part 5
• Added a chapter on custom formatting to Part 5
• Added a chapter on logging to Part 5
• Added Part 7 to cover PowerShell 7 scripting concepts and techniques
• Links updated and revised throughout the entire book
• Spelling, grammar and code clean up throughout the entire book
• Sample code files encoding set to UTF8

2019-Jul-12

• Markdown cleanup on all chapters
• Updated Author page
• Updates to Tips and Tricks
• Updates to Advanced Function Tricks
• Updated Lab Setup
• Updated many references and examples to reflect newer builds of PowerShell and VS Code
• code cleanup and reformatting for clarity

2018-Jul-15

• Refactoring Part 1

2018-Apr-5

• Finishing Pester content
• Added Command Tracing
• Cleaned up some erroneous backreferences

2018-Mar-30

Release Notes 517

• Continuing Pester content

2018-Mar-12

• Added Tips & Tricks chapter
• Continuing to build Pester content

2018-Mar-08

• Filling a bunch of the new Part on Pester; publishing Plaster chapter.

2018-Jan-21

• We’re adding a whole new Part on unit testing to the book, and this release provides our
scaffolding for it. We’re also adding a new chapter on Plaster.

2017-May-17

• Major changes. You’ll notice that all of Part 1 is entirely different. Due to some contractual
disagreements over Learn PowerShell Toolmaking in aMonth of Lunches, we’ve agreed to revise
that book into PowerShell Scripting in a Month of Lunches, and to base its core narrative on
the same topics that formerly comprised Part 1 of this book. If you have a previous edition of
this book with the original Part 1, you’re welcome to hang on to it. That positions the new
Month of Lunches book as a “prerequisite” to this one. Part 1 of this book is now a lightning
review of that content’s core narrative, along with two opportunities for you to self-assess your
comprehension of that content. If you do well in those assessments, then you’re good to go on
this book (and those assessments appear in this book’s free sample, too). This actually works out
okay for everyone, we hope - the stuff in Part 1 is really evergreen and fundamental, whereas
the rest of this book is going to need updates for PowerShell v6 and later. So we’ll continue
to make those updates and additions, and leave the “entry level” content in the traditionally-
published book. This book will continue to focus on professional scripting and toolmaking,
with constant updates to accommodate new versions.

• This comprises the “Second Edition” of the book as sold on Amazon.

2017-Feb-24

• “First Edition” final

2017-Feb-23

• All chapters in draft

Release Notes 518

2017-Feb-18

• Finalizing several chapters
• Part 4 is nearly complete!
• Part 3 is nearly complete!
• Started “Using .NET Framework “Raw””
• Don’t forget to run Update-Module against PowerShell-Toolmaking, so that you have the latest
sample code

2017-Feb-15

• Part 2 is now complete!
• Started “Working with SQL Server”
• Started “Graphical Controllers”
• Started “Tools for Toolmaking”
• https://gitpitch.com/concentrateddon/ToolmakingSlides/master?grs=github&t=black⁹⁴ offers a
slide deck and recommended delivery sequence, enabling the book to be used as a classroom
text more easily. This release begins the presentation; it’ll be finished in a future release.

2017-Feb-10

• “Controlling Your Source”
• Many of the previous chapters are now finalized

2017-Feb-6

• “Publishing Your Tools”
• “Dynamic Parameters”
• “Working with XML Data”
• Starting “Proxy Functions”
• Starting “Unit Testing Your Code”
• Updates to JSON chapter
• Started “Analyzing Your Code”
• Starting “Extending Output Types”
• Starting “Advanced Debugging”
• Starting “Converting a Function to a Class”
• Note that the online version may not provide access to front matter; we urge readers to rely
primarily on one of the downloadable formats

2017-Jan-30

⁹⁴https://gitpitch.com/concentrateddon/ToolmakingSlides/master?grs=github&t=black

https://gitpitch.com/concentrateddon/ToolmakingSlides/master?grs=github&t=black
https://gitpitch.com/concentrateddon/ToolmakingSlides/master?grs=github&t=black

Release Notes 519

• “Writing Full Help”
• “Working with JSON”
• Minor fixes throughout
• If you see paths (in non-code font especially) missing backslashes, please let us know. We need
to use forward slashes since the backslash is a Markdown escape character.

2017-Jan-16

• Release notes moving to reverse chronology
• You’ll find some partially complete chapters here - they’re noted as such

2017-Jan-13

• Writing Full Help
• Tech review of all but “Error Handling” in Part 1
• We will now indicate draft (pre-tech-reviewed) chapters at the top of the chapter.

2017-Jan-31

• Initial release of Part 1.

	Table of Contents
	About This Book
	Dedication
	Acknowledgements
	About the Authors
	Additional Credits

	Foreword
	Feedback
	Introduction
	Pre-Requisites
	Versioning
	The Journey
	Following Along
	Providing Feedback

	A Note on Code Listings
	Lab Setup
	Create a Virtualized Environment
	Use the Windows 10 Sandbox
	Adding Lab Files and Configuring PowerShell
	Assumptions Going Forward

	Part 1: Review PowerShell Toolmaking
	Functions, the Right Way
	Tool Design
	Start with a Command
	Build a Basic Function and Module
	Adding CmdletBinding and Parameterizing
	Emitting Objects as Output
	Using Verbose, Warning, and Informational Output
	Comment-Based Help
	Handling Errors
	Are You Ready

	PowerShell Tool Design
	PowerShell Tools Do One Thing
	PowerShell Tools are Testable
	PowerShell Tools are Flexible
	PowerShell Tools Look Native
	An Example
	Your Turn
	Let's Review

	Start with a Command
	Your Turn
	Let's Review

	Build a Basic Function and Module
	Start with a Basic Function
	Create a Script Module
	Pre-Req Check
	Running the Command
	Your Turn
	Let's Review

	Adding CmdletBinding and Parameterizing
	About CmdletBinding and Common Parameters
	Accepting Pipeline Input
	Mandatory-ness
	Parameter Validation
	Parameter Aliases
	Your Turn
	Let's Review

	Emitting Objects as Output
	Assembling the Information
	Constructing and Emitting Output
	A Quick Test
	Your Turn
	Let's Review

	An Interlude: Changing Your Approach
	The Critique
	Our Take
	Summary

	Using Verbose, Warning, and Informational Output
	Knowing the Six Channels
	Adding Verbose and Warning Output
	Doing More With Verbose
	Informational Output
	Your Turn
	Let's Review

	Comment-Based Help
	Where to Put Your Help
	Getting Started
	Going Further with Comment-Based Help
	Broken Help
	Your Turn
	Let's Review

	Handling Errors
	Understanding Errors and Exceptions
	Bad Handling
	Two Reasons for Exception Handling
	Handling Exceptions in Our Tool
	Handling Exceptions for Non-Commands
	Going Further with Exception Handling
	Deprecated Exception Handling
	Your Turn
	Let's Review

	Basic Debugging
	Two Kinds of Bugs
	The Ultimate Goal of Debugging
	Developing Assumptions
	Debugging Tool 1: Write-Debug
	Debugging Tool 2: Set-PSBreakpoint
	Debugging Tool 3: The PowerShell ISE
	Debugging Tool 4: VS Code
	Your Turn
	Let's Review

	Verify Yourself
	The Transcript
	Our Read-Through
	Our Answer
	How'd You Do

	Part 2: Professional-Grade Toolmaking
	Going Deeper with Parameters
	Parameter Position
	Validation
	Multiple Parameter Sets
	Value From Remaining Arguments
	Help Message
	Alias
	More CmdletBinding
	A Demonstration
	Your Turn
	Let's Review

	Advanced Function Tips and Tricks
	Defining an Alias
	Specify Output Type
	Adding Labels
	Use Your Command Name Programmatically
	ArgumentCompleter

	Dynamic Parameters
	Declaring Dynamic Parameters
	Using Dynamic Parameters
	Let's Review

	Writing Full Help
	External Help
	Using Platyps
	Supporting Online Help
	``About'' Topics
	Making Your Help Updatable
	Your Turn
	Let's Review

	Unit Testing Your Code
	Starting Point
	Sketching Out the Test
	Making Something to Test
	Expanding the Test
	But Wait, There's More
	Your Turn
	Let's Review

	Extending Output Types
	Understanding Types
	The Extensible Type System
	Extending an Object
	Using Update-TypeData
	Next Steps

	Advanced Debugging
	Getting Fancy with Breakpoints
	Getting Strict
	Getting Remote
	Let's Review

	Command Tracing
	Getting in PowerShell's Brain

	Analyzing Your Script
	Performing a Basic Analysis
	Analyzing the Analysis
	Your Turn

	Controlling Your Source
	The Process
	Tools and Technologies
	Let's Review

	Converting a Function to a Class
	Class Background
	Starting Point
	Doing the Design
	Making the Class Framework
	Coding the Class
	Adding a Method
	Making Classes Easy To Use
	Wrapping Up

	Publishing Your Tools
	Begin with a Manifest
	Publishing to PowerShell Gallery
	Publishing to Private Repositories or Galleries
	Your Turn
	Let's Review

	Part 3: Controller Scripts and Delegated Administration
	Basic Controllers: Automation Scripts and Menus
	Building a Menu
	Using UIChoice
	Writing a Process Controller
	Your Turn
	Let's Review

	Graphical Controllers in WPF
	Design First
	WinForms or WPF
	WPF Architecture
	Using .NET
	Using XAML
	A Complete Example
	Just the Beginning
	Recommendations
	Your Turn
	Let's Review

	Proxy Functions
	For Example
	Creating the Proxy Base
	Modifying the Proxy
	Adding or Removing Parameters
	Your Turn
	Let's Review

	Just Enough Administration: A Primer
	Requirements
	Theory of Operation
	Roles
	Endpoints
	Let's Review

	PowerShell in ASP.NET: A Primer
	Caveats
	The Basics
	Beyond ASP.NET

	Part 4: The Data Connection
	Working with SQL Server Data
	SQL Server Terminology and Facts
	Connecting to the Server and Database
	Writing a Query
	Running a Query
	Invoke-Sqlcmd
	Thinking About Tool Design Patterns
	Let's Review
	Review Answers

	Working with XML Data
	Simple: CliXML
	Importing Native XML
	ConvertTo-Xml
	Creating native XML from scratch
	Your Turn
	Let's Review

	Working with JSON Data
	Converting to JSON
	Converting from JSON
	Your Turn
	Let's Review

	Working With CSV Data
	I Want to Script Microsoft Excel
	Know Your Data
	Custom Headers
	Importing Gotchas
	Your Turn
	Let's Review

	Part 5: Seriously Advanced Toolmaking
	Tools for Toolmaking
	Editors
	3rd Party
	PowerShell Community Modules
	Books, Blogs and Buzz
	Recommendations

	Measuring Tool Performance
	Is Performance Important
	Measure What's Important
	Factors Affecting Performance
	Key Take-Away

	PowerShell Workflows: A Primer
	Terminology
	Theory of Execution
	A Quick Illustration
	When to Workflow
	Sequences and Parallels are Standalone Scopes
	Workflow Example
	Workflow Common Parameters
	Checkpointing Workflows
	Workflows and Output
	Your Turn
	Let's Review

	Globalizing Your Tools
	Starting Point
	Make a Data File
	Use the Data File
	Adding Languages
	Defaults
	Let's Review

	Using ``Raw'' .NET Framework
	Understanding .NET Framework
	Interpreting .NET Framework Docs
	Coding .NET Framework in PowerShell
	Loading Assemblies
	Wrap It
	Your Turn
	Let's Review

	Scripting at Scale
	To Pipeline or not
	Foreach vs ForEach-Object
	Write-Progress
	Leverage Remoting
	Leverage Jobs
	Leverage Runspaces
	Design Considerations
	Your Turn
	Let's Review

	Scaffolding a Project with Plaster
	Getting Started
	Plaster Fundamentals
	Invoking a Plaster Template
	Creating a Plaster Module Template
	Creating a Plaster Function Template
	Integrating Plaster into your PowerShell Experience
	Creating Plaster Tooling

	Adding Auto Completion
	ValidateSet
	Argument Completer Attribute
	Advanced Argument Completers
	Your Turn
	Let's Review

	Adding Custom Formatting
	Format.ps1xml
	Define a TypeName
	Defining a View Definition
	Update-FormatData
	New-PSFormatXML
	Adding to a Module
	Your Turn
	Let's Review

	Adding Logging
	Why Are You Logging
	Logging or Transcript
	Structured vs Unstructured
	Write-Information

	Toolmaking Tips and Tricks
	Format Code

	Part 6: Pester
	Why Pester Matters
	Core Pester Concepts
	Installing Pester
	What is Pester
	Pester's Weak Point
	Understand Unit Testing
	Scope
	Sample Code
	New-Fixture

	Writing Testable Code
	What to Test
	Describe Blocks
	Context Blocks
	BeforeEach and AfterEach

	It Blocks
	Should and Assertions
	Should Operators

	Mocks
	Where to Mock
	How to Mock
	Verifiable Mocks
	Parameter Filters
	Mocking the Unmockable

	Pester's TESTDRIVE
	Clean Slate and Auto-Cleanup
	Working with Sample Data
	Using TESTDRIVE

	Pester for Infrastructure Validation
	Spinning Up the Validation Environment
	Taking Actual Action
	Testing the Outcomes of Your Actions

	Measuring Code Coverage
	Displaying Code Coverage Metrics
	An Example

	Test-Driven Development
	Part 7: PowerShell 7 Scripting
	PowerShell 7 Scripting Features
	Updating Your Editor
	Ternary Operators
	Chain operators
	Null-Coalescing Assignment
	Null Conditional Operators
	ForEach-Object Parallel
	Using ANSI

	Cross Platform Scripting
	Know Your OS
	State Your Requirements
	Testing Variables
	Environment Variables
	Paths
	Watch Your Aliases
	Leverage Remoting
	Custom Module Manifests

	Wish List
	Release Notes

