


Praise for Prompt Engineering for
Generative AI

The absolute best book-length resource I’ve read on prompt
engineering. Mike and James are masters of their craft.

—Dan Shipper, cofounder and CEO, Every

This book is a solid introduction to the fundamentals of
prompt engineering and generative AI. The authors cover a
wide range of useful techniques for all skill levels from
beginner to advanced in a simple, practical, and easy-to-
understand way. If you’re looking to improve the accuracy
and reliability of your AI systems, this book should be on
your shelf.

—Mayo Oshin, founder and CEO, Siennai
Analytics, early LangChain contributor



Phoenix and Taylor’s guide is a lighthouse amidst the vast
ocean of generative AI. Their book became a cornerstone for
my team at Phiture AI Labs, as we learned to harness LLMs
and diffusion models for creating marketing assets that
resonate with the essence of our clients’ apps and games.
Through prompt engineering, we’ve been able to generate
bespoke, on-brand content at scale. This isn’t just theory; it’s
a practical masterclass in transforming AI’s raw potential
into tailored solutions, making it an essential read for
developers looking to elevate their AI integration to new
heights of creativity and efficiency.

—Moritz Daan, Founder/Partner, Phiture
Mobile Growth Consultancy

Prompt Engineering for Generative AI is probably the most
future-proof way of future-proofing your tech career. This is
without a doubt the best resource for anyone working in
practical applications of AI. The rich, refined principles in
here will help both new and seasoned AI engineers stay on
top of this very competitive game for the foreseeable future.

—Ellis Crosby, CTO and cofounder, Incremento



This is an essential guide for agency and service
professionals. Integrating AI with service and client delivery,
using automation management, and speeding up solutions
will set new industry standards. You’ll find useful, practical
information and tactics in the book, allowing you to
understand and utilize AI to its full potential.

—Byron Tassoni-Resch, CEO and cofounder,
WeDiscover

A really interesting and informative read, mixing practical
tips and tricks with some solid foundational information.
The world of GenAI is developing at breakneck speed, and
having a toolset that can deliver results, regardless of the
foundational model being used, is worth its weight in gold!

—Riaan Dreyer, chief digital and data officer,
Bank of Iceland

The authors expertly translate prompt engineering
intricacies into a practical toolkit for text and image
generation. This guide, spanning standard practices to
cutting-edge techniques, empowers readers with practical
tips to maximize generative AI model capabilities.

—Aditya Goel, generative AI consultant
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Preface

The rapid pace of innovation in generative AI promises to
change how we live and work, but it’s getting increasingly
difficult to keep up. The number of AI papers published on
arXiv is growing exponentially, Stable Diffusion has been
among the fastest growing open source projects in history, and
AI art tool Midjourney’s Discord server has tens of millions of
members, surpassing even the largest gaming communities.
What most captured the public’s imagination was OpenAI’s
release of ChatGPT, which reached 100 million users in two
months, making it the fastest-growing consumer app in history.
Learning to work with AI has quickly become one of the most
in-demand skills.

Everyone using AI professionally quickly learns that the quality
of the output depends heavily on what you provide as input.
The discipline of prompt engineering has arisen as a set of best
practices for improving the reliability, efficiency, and accuracy
of AI models. “In ten years, half of the world’s jobs will be in
prompt engineering,” claims Robin Li, the cofounder and CEO
of Chinese tech giant Baidu. However, we expect prompting to
be a skill required of many jobs, akin to proficiency in Microsoft
Excel, rather than a popular job title in itself. This new wave of

https://oreil.ly/EN5ay
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disruption is changing everything we thought we knew about
computers. We’re used to writing algorithms that return the
same result every time—not so for AI, where the responses are
non-deterministic. Cost and latency are real factors again, after
decades of Moore’s law making us complacent in expecting
real-time computation at negligible cost. The biggest hurdle is
the tendency of these models to confidently make things up,
dubbed hallucination, causing us to rethink the way we
evaluate the accuracy of our work.

We’ve been working with generative AI since the GPT-3 beta in
2020, and as we saw the models progress, many early
prompting tricks and hacks became no longer necessary. Over
time a consistent set of principles emerged that were still useful
with the newer models, and worked across both text and image
generation. We have written this book based on these timeless
principles, helping you learn transferable skills that will
continue to be useful no matter what happens with AI over the
next five years. The key to working with AI isn’t “figuring out
how to hack the prompt by adding one magic word to the end
that changes everything else,” as OpenAI cofounder Sam
Altman asserts, but what will always matter is the “quality of
ideas and the understanding of what you want.” While we don’t
know if we’ll call it “prompt engineering” in five years, working
effectively with generative AI will only become more important.

https://oreil.ly/oo262


Software Requirements for This Book

All of the code in this book is in Python and was designed to be
run in a Jupyter Notebook or Google Colab notebook. The
concepts taught in the book are transferable to JavaScript or
any other coding language if preferred, though the primary
focus of this book is on prompting techniques rather than
traditional coding skills. The code can all be found on GitHub,
and we will link to the relevant notebooks throughout. It’s
highly recommended that you utilize the GitHub repository and
run the provided examples while reading the book.

For non-notebook examples, you can run the script with the
format python content/chapter_x/script.py  in your
terminal, where x  is the chapter number and script.py  is
the name of the script. In some instances, API keys need to be
set as environment variables, and we will make that clear. The
packages used update frequently, so install our requirements.txt
in a virtual environment before running code examples.

The requirements.txt file is generated for Python 3.9. If you want
to use a different version of Python, you can generate a new
requirements.txt from this requirements.in file found within the
GitHub repository, by running these commands:

https://jupyter.org/
https://colab.research.google.com/
https://oreil.ly/BrightPool
https://oreil.ly/BrightPool
https://oreil.ly/BPreq
https://oreil.ly/YRwP7


`pip install pip-tools` 

`pip-compile requirements.in`

For Mac users:

1. Open Terminal: You can find the Terminal application in
your Applications folder, under Utilities, or use Spotlight to
search for it.

2. Navigate to your project folder: Use the cd  command to
change the directory to your project folder. For example:
cd path/to/your/project .

3. Create the virtual environment: Use the following
command to create a virtual environment named venv
(you can name it anything): python3 -m venv venv .

4. Activate the virtual environment: Before you install
packages, you need to activate the virtual environment. Do
this with the command source venv/bin/activate .

5. Install packages: Now that your virtual environment is
active, you can install packages using pip . To install
packages from the requirements.txt file, use pip install
-r requirements.txt .

6. Deactivate virtual environment: When you’re done, you
can deactivate the virtual environment by typing
deactivate .



For Windows users:

1. Open Command Prompt: You can search for cmd  in the
Start menu.

2. Navigate to your project folder: Use the cd  command to
change the directory to your project folder. For example:
cd path\to\your\project .

3. Create the virtual environment: Use the following
command to create a virtual environment named venv :
python -m venv venv .

4. Activate the virtual environment: To activate the virtual
environment on Windows, use
.\venv\Scripts\activate .

5. Install packages: With the virtual environment active,
install the required packages: pip install -r
requirements.txt .

6. Deactivate the virtual environment: To exit the virtual
environment, simply type: deactivate .

Here are some additional tips on setup:

Always ensure your Python is up-to-date to avoid
compatibility issues.
Remember to activate your virtual environment whenever
you work on the project.



The requirements.txt file should be in the same directory
where you create your virtual environment, or you should
specify the path to it when using pip install -r .

Access to an OpenAI developer account is assumed, as your
OPENAI_API_KEY  must be set as an environment variable in
any examples importing the OpenAI library, for which we use
version 1.0. Quick-start instructions for setting up your
development environment can be found in OpenAI’s
documentation on their website.

You must also ensure that billing is enabled on your OpenAI
account and that a valid payment method is attached to run
some of the code within the book. The examples in the book use
GPT-4 where not stated, though we do briefly cover Anthropic’s
competing Claude 3 model, as well as Meta’s open source Llama
3 and Google Gemini.

For image generation we use Midjourney, for which you need a
Discord account to sign up, though these principles apply
equally to DALL-E 3 (available with a ChatGPT Plus subscription
or via the API) or Stable Diffusion (available as an API or it can
run locally on your computer if it has a GPU). The image
generation examples in this book use Midjourney v6, Stable
Diffusion v1.5 (as many extensions are still only compatible

https://oreil.ly/YqbrY
https://oreil.ly/jY8Ai
https://oreil.ly/BbXZ3
https://oreil.ly/KYgij
https://www.midjourney.com/
https://oreil.ly/cmTtW
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with this version), or Stable Diffusion XL, and we specify the
differences when this is important.

We provide examples using open source libraries wherever
possible, though we do include commercial vendors where
appropriate—for example, Chapter 5 on vector databases
demonstrates both FAISS (an open source library) and Pinecone
(a paid vendor). The examples demonstrated in the book should
be easily modifiable for alternative models and vendors, and
the skills taught are transferable. Chapter 4 on advanced text
generation is focused on the LLM framework LangChain, and
Chapter 9 on advanced image generation is built on
AUTOMATIC1111’s open source Stable Diffusion Web UI.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Constant width

https://oreil.ly/S0P4s


Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed
literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied
values or by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.



Throughout the book we reinforce what we call the Five
Principles of Prompting, identifying which principle is most
applicable to the example at hand. You may want to refer to
Chapter 1, which describes the principles in detail.

PRINCIPLE NAME

This will explain how the principle is applied to the current example or section of
text.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is
available for download at https://oreil.ly/prompt-engineering-for-
generative-ai.

If you have a technical question or a problem using the code
examples, please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several
chunks of code from this book does not require permission.

https://oreil.ly/prompt-engineering-for-generative-ai
mailto:bookquestions@oreilly.com


Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book
and quoting example code does not require permission.
Incorporating a significant amount of example code from this
book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and
ISBN. For example: “Prompt Engineering for Generative AI by
James Phoenix and Mike Taylor (O’Reilly). Copyright 2024
Saxifrage, LLC and Just Understanding Data LTD, 978-1-098-
15343-4.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and business
training, knowledge, and insight to help companies succeed.

mailto:permissions@oreilly.com
https://oreilly.com/


Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our
online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-depth
learning paths, interactive coding environments, and a vast
collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to
the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-827-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://www.oreilly.com/about/contact.html

https://oreilly.com/
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We have a web page for this book, where we list errata,
examples, and any additional information. You can access this
page at https://oreil.ly/prompt-engineering-generativeAI.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Watch us on YouTube: https://youtube.com/oreillymedia.
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Chapter 1. The Five Principles of
Prompting

Prompt engineering is the process of discovering prompts that
reliably yield useful or desired results.

A prompt is the input you provide, typically text, when
interfacing with an AI model like ChatGPT or Midjourney. The
prompt serves as a set of instructions the model uses to predict
the desired response: text from large language models (LLMs)
like ChatGPT, or images from diffusion models like Midjourney.

Here is a simple example of a prompt input for a product name
generator (inspired by one of OpenAI’s examples), and the
resulting output from ChatGPT.

Input:

Can I have a list of product names for a pair of 

can fit any foot size?

Output:

Certainly! Here's a list of product names for a p

th t fit f t i

https://chat.openai.com/
https://www.midjourney.com/
https://oreil.ly/Fc8cq


that can fit any foot size: 

 

UniFit SoleStrides 

FlexiSize All-Fit Shoes 

OmniFit FootFlex 

... 

AnyStep AdaptiWalkers 

FlexiRange UniversalSteps 

PerfectGlide MultiFit Shoes

This is already a remarkable response for a naive prompt,
which feels like magic because we got here with very little
effort. As the state-of-the-art models improve, the likelihood you
will get good enough results on your first try goes up. For any
throwaway interactions with an AI, where you don’t plan to do
the same task again, the naive approach is all you need.

However, if you planned to put this prompt into production,
you’d benefit from investing more work into getting it right.
Mistakes cost you money in terms of the fees OpenAI charges
based on the length of the prompt and response, as well as the
time spent fixing mistakes. If you were building a product name
generator with thousands of users, there are some obvious
issues you’d want attempt to fix:

Vague direction



You’re not briefing the AI on what style of name you want,
or what attributes it should have. Do you want a single
word or a concatenation? Can the words be made up, or is
it important that they’re in real English? Do you want the
AI to emulate somebody you admire who is famous for
great product names?

Unformatted output

You’re getting back a list of separated names line by line,
of unspecified length. When you run this prompt multiple
times, you’ll see sometimes it comes back with a
numbered list, and often it has text at the beginning,
which makes it hard to parse programmatically.

Missing examples

You haven’t given the AI any examples of what good
names look like. It’s autocompleting using an average of
its training data, i.e., the entire internet (with all its
inherent bias), but is that what you want? Ideally you’d
feed it examples of successful names, common names in
an industry, or even just other names you like.

Limited evaluation



You have no consistent or scalable way to define which
names are good or bad, so you have to manually review
each response. If you can institute a rating system or
other form of measurement, you can optimize the prompt
to get better results and identify how many times it fails.

No task division

You’re asking a lot of a single prompt here: there are lots
of factors that go into product naming, and this important
task is being naively outsourced to the AI all in one go,
with no task specialization or visibility into how it’s
handling this task for you.

Addressing these problems is the basis for the core principles
we use throughout this book. There are many different ways to
ask an AI model to do the same task, and even slight changes
can make a big difference. LLMs work by continuously
predicting the next token (approximately three-fourths of a
word), starting from what was in your prompt. Each new token
is selected based on its probability of appearing next, with an
element of randomness (controlled by the temperature
parameter). As demonstrated in Figure 1-1, the word shoes had
a lower probability of coming after the start of the name AnyFit
(0.88%), where a more predictable response would be Athletic
(72.35%).



Figure 1-1. How the response breaks down into tokens

LLMs are trained on essentially the entire text of the internet,
and are then further fine-tuned to give helpful responses.
Average prompts will return average responses, leading some
to be underwhelmed when their results don’t live up to the
hype. What you put in your prompt changes the probability of
every word generated, so it matters a great deal to the results
you’ll get. These models have seen the best and worst of what
humans have produced and are capable of emulating almost



anything if you know the right way to ask. OpenAI charges
based on the number of tokens used in the prompt and the
response, so prompt engineers need to make these tokens count
by optimizing prompts for cost, quality, and reliability.

Here’s the same example with the application of several prompt
engineering techniques. We ask for names in the style of Steve
Jobs, state that we want a comma-separated list, and supply
examples of the task done well.

Input:

Brainstorm a list of product names for a shoe tha

foot size, in the style of Steve Jobs. 

 

Return the results as a comma-separated list, in 

Product description: A shoe that fits any foot si

Product names: [list of 3 product names] 

 

## Examples 

Product description: A refrigerator that dispense

Product names: iBarFridge, iFridgeBeer, iDrinkBee

 

Product description: A watch that can tell accura

space 

Product names: iNaut, iSpace, iTime 

 

https://openai.com/pricing


Product description: A home milkshake maker 

Product names: iShake, iSmoothie, iShake Mini

Output:

Product description: A shoe that fits any foot si

Product names: iFitFoot, iPerfectFit, iShoeSize

While no prompt is ever perfect, this prompt is optimized to
reliably deliver solid product names in the right format. The
user of your product name generator can choose somebody
other than Steve Jobs to get the types of names they like, they
can change the response format if needed, and the output of
this prompt can become the input of another. Finally, you could
periodically update the examples you use in the prompt based
on user feedback, making your system smarter over time.

Overview of the Five Principles of
Prompting

The process for optimizing this prompt follows the Five
Principles of Prompting, which we will dissect using this
example in the remainder of this chapter, and recall throughout



the book. They map exactly to the five issues we raised when
discussing the naive text prompt. You’ll find references back to
these principles throughout the rest of the book to help you
connect the dots to how they’re used in practice. The Five
Principles of Prompting are as follows:

Give Direction

Describe the desired style in detail, or reference a
relevant persona

Specify Format

Define what rules to follow, and the required structure of
the response

Provide Examples

Insert a diverse set of test cases where the task was done
correctly

Evaluate Quality

Identify errors and rate responses, testing what drives
performance.

Divide Labor



Split tasks into multiple steps, chained together for
complex goals

These principles are not short-lived tips or hacks but are
generally accepted conventions that are useful for working
with any level of intelligence, biological or artificial. These
principles are model-agnostic and should work to improve your
prompt no matter which generative text or image model you’re
using. We first published these principles in July 2022 in the
blog post “Prompt Engineering: From Words to Art and Copy”,
and they have stood the test of time, including mapping quite
closely to OpenAI’s own Prompt Engineering Guide, which came
a year later. Anyone who works closely with generative AI
models is likely to converge on a similar set of strategies for
solving common issues, and throughout this book you’ll see
hundreds of demonstrative examples of how they can be useful
for improving your prompts.

We have provided downloadable one-pagers for text and image
generation you can use as a checklist when applying these
principles. These were created for our popular Udemy course
The Complete Prompt Engineering for AI Bootcamp (70,000+
students), which was based on the same principles but with
different material to this book.

https://oreil.ly/RYYiV
https://oreil.ly/dF8q-
https://oreil.ly/V40zg


Text Generation One-Pager
Image Generation One-Pager

To show these principles apply equally well to prompting image
models, let’s use the following example, and explain how to
apply each of the Five Principles of Prompting to this specific
scenario. Copy and paste the entire input prompt into the
Midjourney Bot in Discord, including the link to the image at
the beginning, after typing /imagine  to trigger the prompt
box to appear (requires a free Discord account, and a paid
Midjourney account).

Input:

https://s.mj.run/TKAsyhNiKmc stock photo of busin

of 4 people watching on white MacBook on top of g

table, Panasonic, DC-GH5

Figure 1-2 shows the output.

https://oreil.ly/VCcgy
https://oreil.ly/q7wQF
https://discord.com/
https://www.midjourney.com/


Figure 1-2. Stock photo of business meeting

This prompt takes advantage of Midjourney’s ability to take a
base image as an example by uploading the image to Discord
and then copy and pasting the URL into the prompt
(https://s.mj.run/TKAsyhNiKmc), for which the royalty-free
image from Unsplash is used (Figure 1-3). If you run into an

https://s.mj.run/TKAsyhNiKmc


error with the prompt, try uploading the image yourself and
reviewing Midjourney’s documentation for any formatting
changes.

Figure 1-3. Photo by Mimi Thian on Unsplash

Let’s compare this well-engineered prompt to what you get back
from Midjourney if you naively ask for a stock photo in the
simplest way possible. Figure 1-4 shows an example of what
you get without prompt engineering, an image with a darker,
more stylistic take on a stock photo than you’d typically expect.

https://oreil.ly/UTxpX
https://oreil.ly/J4Hkr


Input:

people in a business meeting

Figure 1-4 shows the output.

Although less prominent an issue in v5 of Midjourney onwards,
community feedback mechanisms (when users select an image
to resize to a higher resolution, that choice may be used to train
the model) have reportedly biased the model toward a fantasy
aesthetic, which is less suitable for the stock photo use case. The
early adopters of Midjourney came from the digital art world
and naturally gravitated toward fantasy and sci-fi styles, which
can be reflected in the results from the model even when this
aesthetic is not suitable.



Figure 1-4. People in a business meeting

Throughout this book the examples used will be compatiable
with ChatGPT Plus (GPT-4) as the text model and Midjourney v6
or Stable Diffusion XL as the image model, though we will
specify if it’s important. These foundational models are the
current state of the art and are good at a diverse range of tasks.



The principles are intended to be future-proof as much as is
possible, so if you’re reading this book when GPT-5, Midjourney
v7, or Stable Diffusion XXL is out, or if you’re using another
vendor like Google, everything you learn here should still prove
useful.

1. Give Direction

One of the issues with the naive text prompt discussed earlier
was that it wasn’t briefing the AI on what types of product
names you wanted. To some extent, naming a product is a
subjective endeavor, and without giving the AI an idea of what
names you like, it has a low probability of guessing right.

By the way, a human would also struggle to complete this task
without a good brief, which is why creative and branding
agencies require a detailed briefing on any task from their
clients.

TIP

Although it’s not a perfect mapping, it can be helpful to imagine what context a
human might need for this task and try including it in the prompt.



In the example prompt we gave direction through the use of
role-playing, in that case emulating the style of Steve Jobs, who
was famous for iconically naming products. If you change this
aspect of the prompt to someone else who is famous in the
training data (as well as matching the examples to the right
style), you’ll get dramatically different results.

Input:

Brainstorm a list of product names for a shoe tha

foot size, in the style of Elon Musk. 

 

Return the results as a comma-separated list, in 

Product description: A shoe that fits any foot si

Product names: [list of 3 product names] 

 

## Examples 

Product description: A refrigerator that dispense

Product names: Teslacool, FridgeX, Neuradrink 

 

Product description: A watch that can tell accura

space 

Product names: WatchX, iSpace, The Watch Company 

 

Product description: A home milkshake maker 

Product names: ShakeX, The Milkshake Company, Hyp



Output:

ShoeX, MarsFit, The Shoe Company

There are also some rules or best practices you would do well to
follow, which could be included in the prompt as context to
guide the AI toward a name that works. This technique is
sometimes referred to as prewarming or internal retrieval, and
it is simple but effective (Liu et al., 2021). Starting the
conversation asking for best practice advice, then asking it to
follow its own advice, can help a lot. In effect, you are using it to
generate its own direction.

Input:

Please give me 5 tips for naming products based o

industry advice.

Output:

Certainly! Naming a product is crucial as it ofte

first impression to potential customers. Here are

tips to guide you in naming products: 

 

https://oreil.ly/1lqzK


1. **Simplicity & Memorability**: Opt for names t

short, easy to spell, and memorable. Long, compli

can be difficult for customers to recall. Remembe

easier the name is to remember, the more likely i

consumers will think of your product when making 

decision. 

 

... 

 

5. **Positive Connotations**: Names that evoke po

emotions or imagery can create a favorable percep

your product. Avoid names that have negative or 

controversial associations in any of the primary 

or cultures where you intend to do business. It's

worthwhile to conduct linguistic checks and marke

to ensure there aren't unintended meanings. 

 

Lastly, once you've shortlisted a few names, it's

idea to run them by diverse focus groups or condu

to gauge reactions. Also, ensure that the name yo

available for trademarking and doesn't infringe o

trademarks.

Then within the same chat window, where the model has the
context of the past advice it gave, you ask your initial prompt
for the task you wanted to complete.



Input:

Using this advice, can I have a list of product n

pair of shoes that can fit any foot size?

Output:

Certainly! Based on the criteria given: 

 

1. **Simplicity & Memorability** 

2. **Relevance & Descriptiveness** 

3. **Differentiation & Uniqueness** 

4. **Adaptable & Scalable** 

5. **Positive Connotations** 

 

Here's a list of potential product names for shoe

fit any foot size: 

 

1. **FitAll Walkers**: A simple and memorable nam

instantly suggests a universal fit. 

 

... 

 

10. **TrueFit Universals**: Emphasizing genuine c

fit for all. 

 

B f fi li i b t h k f



Before finalizing any name, remember to check fo

to ensure there's no conflict with existing produ

brands.

Another fruitful strategy in our experience is to take the best
advice out there for the task you want to accomplish and insert
that context into the prompt. For example, you could take
Brandwatch’s 5 Golden Rules for naming a product or another
trusted external resource you find, and insert that as context
into the prompt. This will increase the length of the prompt
significantly, which costs more money (when using the API as a
developer), but may be worth the trade-off if the quality of the
response improves.

Input:

Can I have a list of product names for a pair of 

can fit any foot size? Please follow the five rul

 

1. It should be readable and writable. 

If your product name is hard to pronounce, people

and if they can’t write it down (and spell it co

when they hear it, how do you expect them to Goog

 

Keep it simple and don’t go with any wacky spelli

 

https://oreil.ly/3bWjz


... 

 

5. It should evoke an emotion, feeling, or idea. 

Your product name should tie back into what your 

feeling you want people to have when experiencing

what idea are you trying to get across. 

 

It should be emotive and inspiring.

Output:

1. FlexFit Footwear 

2. OmniSize Sneakers 

3. AdaptStride Shoes 

... 

18. OmniComfort Kicks 

19. FlexSize Footwear 

20. Boundless Soles

There are other myriad ways of providing direction. In the
image generation example, direction was given by specifying
that the business meeting is taking place around a glass-top
table. If you change only that detail, you can get a completely
different image, as detailed in Figure 1-5.

Input:



https://s.mj.run/TKAsyhNiKmc stock photo of busin

of four people gathered around a campfire outdoo

woods, Panasonic, DC-GH5

Figure 1-5 shows the output.

Figure 1-5. Stock photo of business meeting in the woods



Role-playing is also important for image generation, and one of
the quite powerful ways you can give Midjourney direction is to
supply the name of an artist or art style to emulate. One artist
that features heavily in the AI art world is Van Gogh, known for
his bold, dramatic brush strokes and vivid use of colors. Watch
what happens when you include his name in the prompt, as
shown in Figure 1-6.

Input:

people in a business meeting, by Van Gogh

Figure 1-6 shows the output.



Figure 1-6. People in a business meeting, by Van Gogh

To get that last prompt to work, you need to strip back a lot of
the other direction. For example, losing the base image and the
words stock photo as well as the camera Panasonic, DC-GH5
helps bring in Van Gogh’s style. The problem you may run into
is that often with too much direction, the model can quickly get



to a conflicting combination that it can’t resolve. If your prompt
is overly specific, there might not be enough samples in the
training data to generate an image that’s consistent with all of
your criteria. In cases like these, you should choose which
element is more important (in this case, Van Gogh) and defer to
that.

Direction is one of the most commonly used and broadest
principles. It can take the form of simply using the right
descriptive words to clarify your intent, or channeling the
personas of relevant business celebrities. While too much
direction can narrow the creativity of the model, too little
direction is the more common problem.

2. Specify Format

AI models are universal translators. Not only does that mean
translating from French to English, or Urdu to Klingon, but also
between data structures like JSON to YAML, or natural language
to Python code. These models are capable of returning a
response in almost any format, so an important part of prompt
engineering is finding ways to specify what format you want
the response to be in.



Every now and again you’ll find that the same prompt will
return a different format, for example, a numbered list instead
of comma separated. This isn’t a big deal most of the time,
because most prompts are one-offs and typed into ChatGPT or
Midjourney. However, when you’re incorporating AI tools into
production software, occasional flips in format can cause all
kinds of errors.

Just like when working with a human, you can avoid wasted
effort by specifying up front the format you expect the response
to be in. For text generation models, it can often be helpful to
output JSON instead of a simple ordered list because that’s the
universal format for API responses, which can make it simpler
to parse and spot errors, as well as to use to render the front-
end HTML of an application. YAML is also another popular
choice because it enforces a parseable structure while still
being simple and human-readable.

In the original prompt you gave direction through both the
examples provided, and the colon at the end of the prompt
indicated it should complete the list inline. To swap the format
to JSON, you need to update both and leave the JSON
uncompleted, so GPT-4 knows to complete it.

Input:



Return a comma-separated list of product names in

"A pair of shoes that can fit any foot size.". 

Return only JSON. 

 

Examples: 

[{ 

  "Product description": "A home mi

  "Product names": ["HomeShaker", 

  "QuickShake", "Shake Maker"] 

 }, 

 { 

  "Product description": "A watch t

  accurate time in space.", 

  "Product names": ["AstroTime", "S

  "Orbit-Accurate", "EliptoTime"]} 

]

Output:

[ 

 { 

  "Product description": "A pair of

  fit any foot size.", 

  "Product names": ["FlexFit Footwe



  "Adapt-a-Shoe", "Universal Walke

 } 

]

The output we get back is the completed JSON containing the
product names. This can then be parsed and used
programmatically, in an application or local script. It’s also easy
from this point to check if there’s an error in the formatting
using a JSON parser like Python’s standard json library, because
broken JSON will result in a parsing error, which can act as a
trigger to retry the prompt or investigate before continuing. If
you’re still not getting the right format back, it can help to
specify at the beginning or end of the prompt, or in the system
message if using a chat model: You are a helpful
assistant that only responds in JSON , or specify JSON
output in the model parameters where available (this is called
grammars with Llama models.

TIP

To get up to speed on JSON if you’re unfamiliar, W3Schools has a good introduction.

For image generation models, format is very important, because
the opportunities for modifying an image are near endless.

https://oreil.ly/E7wua
https://oreil.ly/yU27T
https://oreil.ly/Xakgc


They range from obvious formats like stock photo ,
illustration , and oil painting , to more unusual formats
like dashcam footage , ice sculpture , or in Minecraft
(see Figure 1-7).

Input:

business meeting of four people watching on MacBo

table, in Minecraft

Figure 1-7 shows the output.



Figure 1-7. Business meeting in Minecraft

When setting a format, it is often necessary to remove other
aspects of the prompt that might clash with the specified
format. For example, if you supply a base image of a stock
photo, the result is some combination of stock photo and the
format you wanted. To some degree, image generation models



can generalize to new scenarios and combinations they haven’t
seen before in their training set, but in our experience, the
more layers of unrelated elements, the more likely you are to
get an unsuitable image.

There is often some overlap between the first and second
principles, Give Direction and Specify Format. The latter is
about defining what type of output you want, for example JSON
format, or the format of a stock photo. The former is about the
style of response you want, independent from the format, for
example product names in the style of Steve Jobs, or an image
of a business meeting in the style of Van Gogh. When there are
clashes between style and format, it’s often best to resolve them
by dropping whichever element is less important to your final
result.

3. Provide Examples

The original prompt didn’t give the AI any examples of what
you think good names look like. Therefore, the response is
approximate to an average of the internet, and you can do
better than that. Researchers would call a prompt with no
examples zero-shot, and it’s always a pleasant surprise when AI
can even do a task zero shot: it’s a sign of a powerful model. If



you’re providing zero examples, you’re asking for a lot without
giving much in return. Even providing one example (one-shot)
helps considerably, and it’s the norm among researchers to test
how models perform with multiple examples (few-shot). One
such piece of research is the famous GPT-3 paper “Language
Models are Few-Shot Learners”, the results of which are
illustrated in Figure 1-8, showing adding one example along
with a prompt can improve accuracy in some tasks from 10% to
near 50%!

Figure 1-8. Number of examples in context

When briefing a colleague or training a junior employee on a
new task, it’s only natural that you’d include examples of times

https://oreil.ly/KW5PS


that task had previously been done well. Working with AI is the
same, and the strength of a prompt often comes down to the
examples used. Providing examples can sometimes be easier
than trying to explain exactly what it is about those examples
you like, so this technique is most effective when you are not a
domain expert in the subject area of the task you are
attempting to complete. The amount of text you can fit in a
prompt is limited (at the time of writing around 6,000
characters on Midjourney and approximately 32,000 characters
for the free version of ChatGPT), so a lot of the work of prompt
engineering involves selecting and inserting diverse and
instructive examples.

There’s a trade-off between reliability and creativity: go past
three to five examples and your results will become more
reliable, while sacrificing creativity. The more examples you
provide, and the lesser the diversity between them, the more
constrained the response will be to match your examples. If you
change all of the examples to animal names in the previous
prompt, you’ll have a strong effect on the response, which will
reliably return only names including animals.

Input:

Brainstorm a list of product names for a shoe tha

foot size



foot size. 

 

Return the results as a comma-separated list, in 

Product description: A shoe that fits any foot si

Product names: [list of 3 product names] 

 

## Examples: 

Product description: A home milkshake maker. 

Product names: Fast Panda, Healthy Bear, Compact 

 

Product description: A watch that can tell accura

space. 

Product names: AstroLamb, Space Bear, Eagle Orbit

 

Product description: A refrigerator that dispense

Product names: BearFridge, Cool Cat, PenguinBox

Output:

Product description: A shoe that fits any foot si

Product names: FlexiFox, ChameleonStep, PandaPaws

Of course this runs the risk of missing out on returning a much
better name that doesn’t fit the limited space left for the AI to
play in. Lack of diversity and variation in examples is also a
problem in handling edge cases, or uncommon scenarios.



Including one to three examples is easy and almost always has
a positive effect, but above that number it becomes essential to
experiment with the number of examples you include, as well
as the similarity between them. There is some evidence (Hsieh
et al., 2023) that direction works better than providing
examples, and it typically isn’t straightforward to collect good
examples, so it’s usually prudent to attempt the principle of
Give Direction first.

In the image generation space, providing examples usually
comes in the form of providing a base image in the prompt,
called img2img in the open source Stable Diffusion community.
Depending on the image generation model being used, these
images can be used as a starting point for the model to generate
from, which greatly affects the results. You can keep everything
about the prompt the same but swap out the provided base
image for a radically different effect, as in Figure 1-9.

Input:

stock photo of business meeting of 4 people watch

white MacBook on top of glass-top table, Panasoni

Figure 1-9 shows the output.

https://oreil.ly/6Ixcw
https://oreil.ly/huVRu


Figure 1-9. Stock photo of business meeting of four people

In this case, by substituting for the image shown in Figure 1-10,
also from Unsplash, you can see how the model was pulled in a
different direction and incorporates whiteboards and sticky
notes now.



CAUTION

These examples demonstrate the capabilities of image generation models, but we
would exercise caution when uploading base images for use in prompts. Check the
licensing of the image you plan to upload and use in your prompt as the base image,

and avoid using clearly copyrighted images. Doing so can land you in legal trouble
and is against the terms of service for all the major image generation model
providers.

Figure 1-10. Photo by Jason Goodman on Unsplash

4. Evaluate Quality

https://oreil.ly/ZbzZy


As of yet, there has been no feedback loop to judge the quality
of your responses, other than the basic trial and error of
running the prompt and seeing the results, referred to as blind
prompting. This is fine when your prompts are used
temporarily for a single task and rarely revisited. However,
when you’re reusing the same prompt multiple times or
building a production application that relies on a prompt, you
need to be more rigorous with measuring results.

There are a number of ways performance can be evaluated,
and it depends largely on what tasks you’re hoping to
accomplish. When a new AI model is released, the focus tends
to be on how well the model did on evals (evaluations), a
standardized set of questions with predefined answers or
grading criteria that are used to test performance across
models. Different models perform differently across different
types of tasks, and there is no guarantee a prompt that worked
previously will translate well to a new model. OpenAI has made
its evals framework for benchmarking performance of LLMs
open source and encourages others to contribute additional
eval templates.

In addition to the standard academic evals, there are also more
headline-worthy tests like GPT-4 passing the bar exam.
Evaluation is difficult for more subjective tasks, and can be

https://oreil.ly/42rSz
https://oreil.ly/wolEL
https://oreil.ly/txhSZ


time-consuming or prohibitively costly for smaller teams. In
some instances researchers have turned to using more
advanced models like GPT-4 to evaluate responses from less
sophisticated models, as was done with the release of Vicuna-
13B, a fine-tuned model based on Meta’s Llama open source
model (see Figure 1-11).

Figure 1-11. Vicuna GPT-4 Evals

More rigorous evaluation techniques are necessary when
writing scientific papers or grading a new foundation model
release, but often you will only need to go just one step above
basic trial and error. You may find that a simple thumbs-
up/thumbs-down rating system implemented in a Jupyter
Notebook can be enough to add some rigor to prompt
optimization, without adding too much overhead. One common
test is to see whether providing examples is worth the
additional cost in terms of prompt length, or whether you can

https://oreil.ly/NW3WX


get away with providing no examples in the prompt. The first
step is getting responses for multiple runs of each prompt and
storing them in a spreadsheet, which we will do after setting up
our environment.

You can install the OpenAI Python package with pip install
openai . If you’re running into compatability issues with this
package, create a virtual environment and install our
requirements.txt (instructions in the preface).

To utilize the API, you’ll need to create an OpenAI account and
then navigate here for your API key.

WARNING

Hardcoding API keys in scripts is not recommended due to security reasons. Instead,
utilize environment variables or configuration files to manage your keys.

Once you have an API key, it’s crucial to assign it as an
environment variable by executing the following command,
replacing api_key  with your actual API key value:

export OPENAI_API_KEY="api_key"

Or on Windows:

https://oreil.ly/2KDV6
https://oreil.ly/oGv4j
https://oreil.ly/oHID1


set OPENAI_API_KEY=api_key

Alternatively, if you’d prefer not to preset an API key, then you
can manually set the key while initializing the model, or load it
from an .env file using python-dotenv. First, install the library
with pip install python-dotenv , and then load the
environment variables with the following code at the top of
your script or notebook:

from dotenv import load_dotenv 

 

load_dotenv()  # take environment variables from 

The first step is getting responses for multiple runs of each
prompt and storing them in a spreadsheet.

Input:

# Define two variants of the prompt to test zero

# vs few-shot 

prompt_A = """Product description: A pair of shoe

fit any foot size. 

Seed words: adaptable, fit, omni-fit. 

Product names:""" 

 

https://oreil.ly/IaQjS


prompt_B = """Product description: A home milksha

Seed words: fast, healthy, compact. 

Product names: HomeShaker, Fit Shaker, QuickShake

Maker 

 

Product description: A watch that can tell accura

space. 

Seed words: astronaut, space-hardened, eliptical 

Product names: AstroTime, SpaceGuard, Orbit-Accu

EliptoTime. 

 

Product description: A pair of shoes that can fit

size. 

Seed words: adaptable, fit, omni-fit. 

Product names:""" 

 

test_prompts = [prompt_A, prompt_B] 

 

import pandas as pd 

from openai import OpenAI 

import os

 

# Set your OpenAI key as an environment variable 

# https://platform.openai.com/api-keys 

client = OpenAI( 

  api_key=os.environ['OPENAI_API_KEY'],  # Defaul

) 

 



def get_response(prompt): 

    response = client.chat.completions.create( 

        model="gpt-3.5-turbo", 

        messages=[ 

            { 

                "role": "system", 

                "content": "You are a helpful ass

            }, 

            { 

                "role": "user", 

                "content": prompt 

            } 

        ] 

    ) 

    return response.choices[0].message.content 

 

# Iterate through the prompts and get responses 

responses = [] 

num_tests = 5 

 

for idx, prompt in enumerate(test_prompts): 

    # prompt number as a letter 

    var_name = chr(ord('A') + idx) 

 

    for i in range(num_tests): 

        # Get a response from the model 

        response = get_response(prompt) 

 



        data = { 

            "variant": var_name, 

            "prompt": prompt, 

            "response": response 

            } 

        responses.append(data) 

 

# Convert responses into a dataframe 

df = pd.DataFrame(responses) 

 

# Save the dataframe as a CSV file 

df.to_csv("responses.csv", index=False) 

 

print(df)

Output:

  variant                                        

  \ 

0       A  Product description: A pair of shoes t

1       A  Product description: A pair of shoes t

2       A  Product description: A pair of shoes t

3       A  Product description: A pair of shoes t

4       A  Product description: A pair of shoes t

5       B  Product description: A home milkshake 

6       B  Product description: A home milkshake 

7       B  Product description: A home milkshake 



p

8       B  Product description: A home milkshake 

9       B  Product description: A home milkshake 

 

                                            respo

0  1. Adapt-a-Fit Shoes \n2. Omni-Fit Footwear \n

1  1. OmniFit Shoes\n2. Adapt-a-Sneaks \n3. OneFi

2  1. Adapt-a-fit\n2. Flexi-fit shoes\n3. Omni-fe

3  1. Adapt-A-Sole\n2. FitFlex\n3. Omni-FitX\n4. 

4  1. Omni-Fit Shoes\n2. Adapt-a-Fit Shoes\n3. An

5  Adapt-a-Fit, Perfect Fit Shoes, OmniShoe, OneS

6       FitAll, OmniFit Shoes, SizeLess, AdaptaSh

7       AdaptaFit, OmniShoe, PerfectFit, AllSizeF

8  FitMaster, AdaptoShoe, OmniFit, AnySize Footwe

9        Adapt-a-Shoe, PerfectFit, OmniSize, FitF

Here we’re using the OpenAI API to generate model responses
to a set of prompts and storing the results in a dataframe, which
is saved to a CSV file. Here’s how it works:

1. Two prompt variants are defined, and each variant consists
of a product description, seed words, and potential product
names, but prompt_B  provides two examples.

2. Import statements are called for the Pandas library, OpenAI
library, and os library.



3. The get_response  function takes a prompt as input and
returns a response from the gpt-3.5-turbo  model. The
prompt is passed as a user message to the model, along
with a system message to set the model’s behavior.

4. Two prompt variants are stored in the test_prompts  list.
5. An empty list responses  is created to store the generated

responses, and the variable num_tests  is set to 5.
6. A nested loop is used to generate responses. The outer loop

iterates over each prompt, and the inner loop generates
num_tests  (five in this case) number of responses per
prompt.

a. The enumerate  function is used to get the index and
value of each prompt in test_prompts . This index is
then converted to a corresponding uppercase letter
(e.g., 0 becomes A, 1 becomes B) to be used as a variant
name.

b. For each iteration, the get_response  function is
called with the current prompt to generate a response
from the model.

c. A dictionary is created with the variant name, the
prompt, and the model’s response, and this dictionary
is appended to the responses  list.

7. Once all responses have been generated, the responses
list (which is now a list of dictionaries) is converted into a



Pandas DataFrame.
8. This dataframe is then saved to a CSV file with the Pandas

built-in to_csv  function, making the file responses.csv
with index=False  so as to not write row indices.

9. Finally, the dataframe is printed to the console.

Having these responses in a spreadsheet is already useful,
because you can see right away even in the printed response
that prompt_A  (zero-shot) in the first five rows is giving us a
numbered list, whereas prompt_B  (few-shot) in the last five
rows tends to output the desired format of a comma-separated
inline list. The next step is to give a rating on each of the
responses, which is best done blind and randomized to avoid
favoring one prompt over another.

Input:

import ipywidgets as widgets 

from IPython.display import display 

import pandas as pd 

 

# load the responses.csv file 

df = pd.read_csv("responses.csv") 

 

# Shuffle the dataframe 

df = df.sample(frac=1).reset_index(drop=True) 



 

# df is your dataframe and 'response' is the colu

# text you want to test 

response_index = 0 

# add a new column to store feedback 

df['feedback'] = pd.Series(dtype='str') 

 

def on_button_clicked(b): 

    global response_index 

    #  convert thumbs up / down to 1 / 0 

    user_feedback = 1 if b.description == "\U0001

 

    # update the feedback column 

    df.at[response_index, 'feedback'] = user_feed

 

    response_index += 1 

    if response_index < len(df): 

        update_response() 

    else:

        # save the feedback to a CSV file 

        df.to_csv("results.csv", index=False) 

 

        print("A/B testing completed. Here's the 

        # Calculate score and num rows for each v

        summary_df = df.groupby('variant').agg( 

            count=('feedback', 'count'), 

            score=('feedback', 'mean')).reset_ind

        print(summary_df) 

 

def pdate response()



def update_response(): 

    new_response = df.iloc[response_index]['respo

    if pd.notna(new_response): 

        new_response = "<p>" + new_response + "</

    else:

        new_response = "<p>No response</p>" 

    response.value = new_response 

    count_label.value = f"Response: {response_ind

    count_label.value += f"/{len(df)}" 

 

response = widgets.HTML() 

count_label = widgets.Label() 

 

update_response() 

 

thumbs_up_button = widgets.Button(description='\U

thumbs_up_button.on_click(on_button_clicked) 

 

thumbs_down_button = widgets.Button( 

    description='\U0001F44E') 

thumbs_down_button.on_click(on_button_clicked) 

 

button_box = widgets.HBox([thumbs_down_button, 

thumbs_up_button]) 

 

display(response, button_box, count_label)



The output is shown in Figure 1-12:

Figure 1-12. Thumbs-up/thumbs-down rating system

If you run this in a Jupyter Notebook, a widget displays each AI
response, with a thumbs-up or thumbs-down button (see
Figure 1-12) This provides a simple interface for quickly
labeling responses, with minimal overhead. If you wish to do
this outside of a Jupyter Notebook, you could change the
thumbs-up and thumbs-down emojis for Y and N, and
implement a loop using the built-in input()  function, as a
text-only replacement for iPyWidgets.

Once you’ve finished labeling the responses, you get the output,
which shows you how each prompt performs.

Output:

A/B testing completed. Here's the results: 

  variant  count  score 



0       A      5    0.2 

1       B      5    0.6

The dataframe was shuffled at random, and each response was
labeled blind (without seeing the prompt), so you get an
accurate picture of how often each prompt performed. Here is
the step-by-step explanation:

1. Three modules are imported: ipywidgets ,
IPython.display , and pandas . ipywidgets  contains
interactive HTML widgets for Jupyter Notebooks and the
IPython kernel. IPython.display  provides classes for
displaying various types of output like images, sound,
displaying HTML, etc. Pandas is a powerful data
manipulation library.

2. The pandas library is used to read in the CSV file
responses.csv, which contains the responses you want to
test. This creates a Pandas DataFrame called df .

3. df  is shuffled using the sample()  function with frac=1 ,
which means it uses all the rows. The
reset_index(drop=True)  is used to reset the indices to
the standard 0, 1, 2, … , n index.

4. The script defines response_index  as 0. This is used to
track which response from the dataframe the user is
currently viewing.



5. A new column feedback  is added to the dataframe df
with the data type as str  or string.

6. Next, the script defines a function
on_button_clicked(b) , which will execute whenever
one of the two buttons in the interface is clicked.

a. The function first checks the description  of the
button clicked was the thumbs-up button
( \U0001F44D ; ), and sets user_feedback  as 1, or if
it was the thumbs-down button ( \U0001F44E  ), it
sets user_feedback  as 0.

b. Then it updates the feedback  column of the
dataframe at the current response_index  with
user_feedback .

c. After that, it increments response_index  to move to
the next response.

d. If response_index  is still less than the total number
of responses (i.e., the length of the dataframe), it calls
the function update_response() .

e. If there are no more responses, it saves the dataframe
to a new CSV file results.csv, then prints a message, and
also prints a summary of the results by variant,
showing the count of feedback received and the
average score (mean) for each variant.



7. The function update_response()  fetches the next
response from the dataframe, wraps it in paragraph HTML
tags (if it’s not null), updates the response  widget to
display the new response, and updates the count_label
widget to reflect the current response number and total
number of responses.

8. Two widgets, response  (an HTML widget) and
count_label  (a Label widget), are instantiated. The
update_response()  function is then called to initialize
these widgets with the first response and the appropriate
label.

9. Two more widgets, thumbs_up_button  and
thumbs_down_button  (both Button widgets), are created
with thumbs-up and thumbs-down emoji as their
descriptions, respectively. Both buttons are configured to
call the on_button_clicked()  function when clicked.

10. The two buttons are grouped into a horizontal box
( button_box ) using the HBox  function.

11. Finally, the response , button_box , and count_label
widgets are displayed to the user using the display()
function from the IPython.display  module.

A simple rating system such as this one can be useful in judging
prompt quality and encountering edge cases. Usually in less
than 10 test runs of a prompt you uncover a deviation, which



you otherwise wouldn’t have caught until you started using it in
production. The downside is that it can get tedious rating lots of
responses manually, and your ratings might not represent the
preferences of your intended audience. However, even small
numbers of tests can reveal large differences between two
prompting strategies and reveal nonobvious issues before
reaching production.

Iterating on and testing prompts can lead to radical decreases
in the length of the prompt and therefore the cost and latency
of your system. If you can find another prompt that performs
equally as well (or better) but uses a shorter prompt, you can
afford to scale up your operation considerably. Often you’ll find
in this process that many elements of a complex prompt are
completely superfluous, or even counterproductive.

The thumbs-up or other manually labeled indicators of quality
don’t have to be the only judging criteria. Human evaluation is
generally considered to be the most accurate form of feedback.
However, it can be tedious and costly to rate many samples
manually. In many cases, as in math or classification use cases,
it may be possible to establish ground truth (reference answers
to test cases) to programmatically rate the results, allowing you
to scale up considerably your testing and monitoring efforts.



The following is not an exhaustive list because there are many
motivations for evaluating your prompt programmatically:

Cost

Prompts that use a lot of tokens, or work only with more
expensive models, might be impractical for production
use.

Latency

Equally the more tokens there are, or the larger the model
required, the longer it takes to complete a task, which can
harm user experience.

Calls

Many AI systems require multiple calls in a loop to
complete a task, which can seriously slow down the
process.

Performance

Implement some form of external feedback system, for
example a physics engine or other model for predicting
real-world results.

Classification



Determine how often a prompt correctly labels given text,
using another AI model or rules-based labeling.

Reasoning

Work out which instances the AI fails to apply logical
reasoning or gets the math wrong versus reference cases.

Hallucinations

See how frequently you encouner hallucinations, as
measured by invention of new terms not included in the
prompt’s context.

Safety

Flag any scenarios where the system might return unsafe
or undesirable results using a safety filter or detection
system.

Refusals

Find out how often the system incorrectly refuses to fulfill
a reasonable user request by flagging known refusal
language.

Adversarial



Make the prompt robust against known prompt injection
attacks that can get the model to run undesirable prompts
instead of what you programmed.

Similarity

Use shared words and phrases (BLEU or ROGUE) or vector
distance (explained in Chapter 5) to measure similarity
between generated and reference text.

Once you start rating which examples were good, you can more
easily update the examples used in your prompt as a way to
continuously make your system smarter over time. The data
from this feedback can also feed into examples for fine-tuning,
which starts to beat prompt engineering once you can supply a
few thousand examples, as shown in Figure 1-13.

https://oreil.ly/KGAqe
https://oreil.ly/iEGZ9
https://oreil.ly/DZ-br


Figure 1-13. How many data points is a prompt worth?



Graduating from thumbs-up or thumbs-down, you can
implement a 3-, 5-, or 10-point rating system to get more fine-
grained feedback on the quality of your prompts. It’s also
possible to determine aggregate relative performance through
comparing responses side by side, rather than looking at
responses one at a time. From this you can construct a fair
across-model comparison using an Elo rating, as is popular in
chess and used in the Chatbot Arena by lmsys.org.

For image generation, evaluation usually takes the form of
permutation prompting, where you input multiple directions or
formats and generate an image for each combination. Images
can than be scanned or later arranged in a grid to show the
effect that different elements of the prompt can have on the
final image.

Input:

{stock photo, oil painting, illustration} of busi

meeting of {four, eight} people watching on white

top of glass-top table

In Midjourney this would be compiled into six different
prompts, one for every combination of the three formats (stock

https://oreil.ly/TlldE
https://oreil.ly/P2IcU


photo, oil painting, illustration) and two numbers of people
(four, eight).

Input:

1. stock photo of business meeting of four people

on white MacBook on top of glass-top table 

 

2. stock photo of business meeting of eight peopl

on white MacBook on top of glass-top table 

 

3. oil painting of business meeting of four peopl

on white MacBook on top of glass-top table 

 

4. oil painting of business meeting of eight peop

on white MacBook on top of glass-top table 

 

5. illustration of business meeting of four peopl

on white MacBook on top of glass-top table 

 

6. illustration of business meeting of eight peop

on white MacBook on top of glass-top table

Each prompt generates its own four images as usual, which
makes the output a little harder to see. We have selected one
from each prompt to upscale and then put them together in a



grid, shown as Figure 1-14. You’ll notice that the model doesn’t
always get the correct number of people (generative AI models
are surprisingly bad at math), but it has correctly inferred the
general intention by adding more people to the photos on the
right than the left.

Figure 1-14 shows the output.



Figure 1-14. Prompt permutations grid



With models that have APIs like Stable Diffusion, you can more
easily manipulate the photos and display them in a grid format
for easy scanning. You can also manipulate the random seed of
the image to fix a style in place for maximum reproducibility.
With image classifiers it may also be possible to
programmatically rate images based on their safe content, or if
they contain certain elements associated with success or
failure.

5. Divide Labor

As you build out your prompt, you start to get to the point
where you’re asking a lot in a single call to the AI. When
prompts get longer and more convoluted, you may find the
responses get less deterministic, and hallucinations or
anomalies increase. Even if you manage to arrive at a reliable
prompt for your task, that task is likely just one of a number of
interrelated tasks you need to do your job. It’s natural to start
exploring how many other of these tasks could be done by AI
and how you might string them together.

One of the core principles of engineering is to use task
decomposition to break problems down into their component
parts, so you can more easily solve each individual problem



and then reaggregate the results. Breaking your AI work into
multiple calls that are chained together can help you
accomplish more complex tasks, as well as provide more
visibility into what part of the chain is failing.

There are lots of factors that go into product naming, and an
important task is naively outsourced to the AI with no visibility
into how it’s weighing the importance of these factors (if at all).
The way our current system works, we’re getting a list of
names, but all names are displayed with equal importance with
no further context for helping us decide. Fortunately AI tools
are capable of self-evaluation; if we add a second step to our
task, we can automatically check for nondesirable outputs.

Input:

Rate this list of product names for a pair of sho

fit any foot size. The rating should be out of 10

next to the product name: 

 

UniFit SoleStrides 

FlexiSize All-Fit Shoes 

OmniFit FootFlex 

... 

AnyStep AdaptiWalkers 

FlexiRange UniversalSteps 



PerfectGlide MultiFit Shoes

Output:

UniFit SoleStrides: 7/10 

FlexiSize All-Fit Shoes: 8/10 

OmniFit FootFlex: 7/10 

... 

AnyStep AdaptiWalkers: 7/10 

FlexiRange UniversalSteps: 7.5/10

PerfectGlide MultiFit Shoes: 9/10

 

This ranking is based on clarity, memorability, a

the name communicates the unique selling point of

product (that they can fit any foot size). Rememb

ratings are subjective and the ultimate success o

name also depends on the target market, branding

marketing efforts.

In running this multiple times, it consistently rates the name
“OneSize Glovewalkers” as the worst, providing context (if you
ask) that the concept might be confusing in a shoe context. You
may be wondering why, if the model knows this is a bad name,
does it suggest it in the first place? LLMs work by predicting the



next token in a sequence and therefore struggle to know what
the overall response will be when finished. However, when it
has all the tokens from a previous response to review, it can
more easily predict whether this would be labeled as a good or
bad response.

We can continue to chain multiple calls together to improve the
results of our task. For example, we could split this into three
separate ratings: clarity, memorability, and how well the name
communicates the unique selling point of the product. These
ratings could then be given to a human as additional context on
the final decision, or even calculated together to select the final
name programmatically.

The real unlock in learning to work professionally with AI
versus just playing around with prompting is realizing that
every part of the system can be broken down into a series of
iterative steps. Even with a single prompt this principles
applies, as simply appending Let's think step by step  to
the prompt can lead to demonstrable gains in reasoning and
proficiency, as well as provide an audit trail for quality
assurance and debugging. When taking the time and tokens to
reason, the ratings change and are more consistent with the
scoring criteria.



Input:

Let's think step by step. Rate this list of produ

for a pair of shoes that can fit any foot size. T

should be out of 10, inline next to the product n

 

UniFit SoleStrides 

FlexiSize All-Fit Shoes 

OmniFit FootFlex 

... 

AnyStep AdaptiWalkers 

FlexiRange UniversalSteps 

PerfectGlide MultiFit Shoes

Output:

Here's a rating out of 10 for each product name, 

factors like descriptiveness, catchiness, and ove

appeal: 

 

1. **UniFit SoleStrides**: 7/10 - Sounds unifying

not immediately convey the "fit any size" idea. 

2. **FlexiSize All-Fit Shoes**: 8.5/10 - Combines

flexibility and the notion that it fits all sizes

3. **OmniFit FootFlex**: 8/10 - Omnipresence (fit

and flexibility nicely conveyed. 



y y y

... 

18. **AnyStep AdaptiWalkers**: 7.5/10 - "AnyStep

versatility, but the overall name might be less d

19. **FlexiRange UniversalSteps**: 8/10 - Combine

flexibility and universal fit. 

20. **PerfectGlide MultiFit Shoes**: 8.5/10 - "Mu

clear, and "PerfectGlide" suggests a comfortable 

 

Remember, the best name can also be influenced by

target audience, branding strategy, and the overa

you want to convey.

OpenAI calls this “giving the model time to think,” and it is a
key tenet of prompt engineering. In effect, chain of thought
techniques like this, where the model is encouraged to list out
its steps, are like dividing a task within the same prompt. Once
we’ve automated product naming given a product idea, we can
call ChatGPT again to describe each product, which in turn can
be fed into Midjourney to generate an image of each product.
Using an AI model to generate a prompt for an AI model is meta
prompting, and it works because LLMs are human-level prompt
engineers (Zhou, 2022).

Input:

Describe the new product "OneFit UltraStride Shoe

https://oreil.ly/0MZ3-
https://oreil.ly/Dwszu


p

that can fit any foot size, in great detail:

Output:

Introducing the revolutionary "OneFit UltraStride

the footwear innovation designed to fit any foot 

unparalleled comfort and style. These shoes are a

cutting-edge technology and meticulous craftsmans

ensuring a truly personalized and enjoyable walki

running experience for everyone. 

 

Design and Materials: 

The OneFit UltraStride Shoes boast an elegant and

design that appeals to both fashion-forward indiv

sports enthusiasts. They feature a sleek and stre

silhouette, crafted using premium materials for d

and aesthetic appeal. The shoe's upper is constru

combination of breathable mesh and flexible synth

materials, allowing for excellent airflow and a l

feel. 

 

... 

 

Color and Customization: 

OneFit UltraStride Shoes are available in a varie

vibrant colors and stylish patterns, catering to 



personal preferences. You can choose from classic

monochromatic options for a timeless look or opt 

and vibrant hues to make a fashion statement. The

customize the shoe's appearance allows individual

express their unique style while enjoying the ben

the OneFit technology. 

 

Conclusion: 

The OneFit UltraStride Shoes represent a breakth

footwear technology, eliminating the hassle of fi

perfect fit for your feet. With their adaptive de

superior comfort, and stylish aesthetics, these s

a truly personalized experience for individuals o

sizes. Stay comfortable, confident, and on-trend 

OneFit UltraStride Shoes, the ultimate choice fo

seeking unmatched versatility and a perfect fit.

DALL-E is well-known by GPT-4, and therefore you can invoke
its name within ChatGPT and it does a reasonable job at crafting
a prompt for an image generation tool. If you were planning on
using this prompt in production, you may consider applying the
prompting principle of providing examples, but it does a good
enough job for our purposes without examples.

Input:

Convert this description into a short prompt for 



Co e  s desc p o  o a s o  p o p  o  

generation model such as DALL-E:

Output:

Create an eye-catching image that visually repres

"OneFit UltraStride Shoes," a revolutionary footw

that adapts to any foot size. Showcase a sleek an

shoe design incorporating a stretchable upper, an

lacing system, and a cushioned insole for optimal

Emphasize the shoe's versatility by displaying it

on various surfaces, highlighting its excellent t

Incorporate vibrant colors and patterns to convey

customizable nature of the product. The image sho

the essence of innovation, style, and personalize

the OneFit UltraStride Shoes offer.

The output of this prompt can now be plugged into image
generation tools like DALL-E or Midjourney as a prompt, which
can give you a good starting point for visualizing what the
product might look like. Although this might not be the final
design you go with, seeing an image is more evocative and
helps people form an opinion faster. It’s easier cognitively to
criticize or compliment an existing image than it is to imagine a
new image from a blank page or section of text.



Figure 1-15 shows the output.

Figure 1-15. OneFit UltraStride shoes

It’s common practice when working with AI professionally to
chain multiple calls to AI together, and even multiple models, to
accomplish more complex goals. Even single-prompt



applications are often built dynamically, based on outside
context queried from various databases or other calls to an AI
model. The library LangChain has developed tooling for
chaining multiple prompt templates and queries together,
making this process more observable and well structured. A
foundational example is progressive summarization, where text
that is too large to fit into a context window can be split into
multiple chunks of text, with each being summarized, before
finally summarizing the summaries. If you talk to builders of
early AI products, you’ll find they’re all under the hood
chaining multiple prompts together, called AI chaining, to
accomplish better results in the final output.

The Reason and Act (ReAct) framework was one of the first
popular attempts at AI agents, including the open source
projects BabyAGI, AgentGPT and Microsoft AutoGen. In effect,
these agents are the result of chaining multiple AI calls together
in order to plan, observe, act, and then evaluate the results of
the action. Autonomous agents will be covered in Chapter 6 but
are still not widely used in production at the time of writing.
This practice of self-reasoning agents is still early and prone to
errors, but there are promising signs this approach can be
useful in achieving complex tasks, and is likely to be part of the
next stage in evolution for AI systems.

https://www.langchain.com/
https://oreil.ly/tPPW9
https://oreil.ly/TEiQx
https://oreil.ly/48lq6
https://oreil.ly/KG5Xl


There is an AI battle occurring between large tech firms like
Microsoft and Google, as well as a wide array of open source
projects on Hugging Face, and venture-funded start-ups like
OpenAI and Anthropic. As new models continue to proliferate,
they’re diversifying in order to compete for different segments
of the growing market. For example, Anthropic’s Claude 2 had
an 100,000-token context window, compared to GPT-4’s
standard 8,192 tokens. OpenAI soon responded with a 128,000-
token window version of GPT-4, and Google touts a 1 million
token context length with Gemini 1.5. For comparison, one of
the Harry Potter books would be around 185,000 tokens, so it
may become common for an entire book to fit inside a single
prompt, though processing millions of tokens with each API call
may be cost prohibitive for most use cases.

This book focuses on GPT-4 for text generation techniques, as
well as Midjourney v6 and Stable Diffusion XL for image
generation techniques, but within months these models may no
longer be state of the art. This means it will become
increasingly important to be able to select the right model for
the job and chain multiple AI systems together. Prompt
templates are rarely comparable when transferring to a new
model, but the effect of the Five Prompting Principles will
consistently improve any prompt you use, for any model,
getting you more reliable results.

https://oreil.ly/NQcFW
https://oreil.ly/iZhMl
https://oreil.ly/3TTZ9
https://oreil.ly/cyhR4


Summary

In this chapter, you learned about the importance of prompt
engineering in the context of generative AI. We defined prompt
engineering as the process of developing effective prompts that
yield desired results when interacting with AI models. You
discovered that providing clear direction, formatting the
output, incorporating examples, establishing an evaluation
system, and dividing complex tasks into smaller prompts are
key principles of prompt engineering. By applying these
principles and using common prompting techniques, you can
improve the quality and reliability of AI-generated outputs.

You also explored the role of prompt engineering in generating
product names and images. You saw how specifying the desired
format and providing instructive examples can greatly
influence the AI’s output. Additionally, you learned about the
concept of role-playing, where you can ask the AI to generate
outputs as if it were a famous person like Steve Jobs. The
chapter emphasized the need for clear direction and context to
achieve desired outcomes when using generative AI models.
Furthermore, you discovered the importance of evaluating the
performance of AI models and the various methods used for



measuring results, as well as the trade-offs between quality and
token usage, cost, and latency.

In the next chapter, you will be introduced to text generation
models. You will learn about the different types of foundation
models and their capabilities, as well as their limitations. The
chapter will also review the standard OpenAI offerings, as well
as competitors and open source alternatives. By the end of the
chapter, you will have a solid understanding of the history of
text generation models and their relative strengths and
weaknesses. This book will return to image generation
prompting in Chapters 7, 8, and 9, so you should feel free to skip
ahead if that is your immediate need. Get ready to dive deeper
into the discipline of prompt engineering and expand your
comfort working with AI.



Chapter 2. Introduction to Large
Language Models for Text Generation

In artificial intelligence, a recent focus has been the evolution
of large language models. Unlike their less-flexible
predecessors, LLMs are capable of handling and learning from
a much larger volume of data, resulting in the emergent
capability of producing text that closely resembles human
language output. These models have generalized across diverse
applications, from writing content to automating software
development and enabling real-time interactive chatbot
experiences.

What Are Text Generation Models?

Text generation models utilize advanced algorithms to
understand the meaning in text and produce outputs that are
often indistinguishable from human work. If you’ve ever
interacted with ChatGPT or marveled at its ability to craft
coherent and contextually relevant sentences, you’ve witnessed
the power of an LLM in action.

https://chat.openai.com/


In natural language processing (NLP) and LLMs, the
fundamental linguistic unit is a token. Tokens can represent
sentences, words, or even subwords such as a set of characters.
A useful way to understand the size of text data is by looking at
the number of tokens it comprises; for instance, a text of 100
tokens roughly equates to about 75 words. This comparison can
be essential for managing the processing limits of LLMs as
different models may have varying token capacities.

Tokenization, the process of breaking down text into tokens, is a
crucial step in preparing data for NLP tasks. Several methods
can be used for tokenization, including Byte-Pair Encoding
(BPE), WordPiece, and SentencePiece. Each of these methods
has its unique advantages and is suited to particular use cases.
BPE is commonly used due to its efficiency in handling a wide
range of vocabulary while keeping the number of tokens
manageable.

BPE begins by viewing a text as a series of individual
characters. Over time, it combines characters that frequently
appear together into single units, or tokens. To understand this
better, consider the word apple. Initially, BPE might see it as a, p,
p, l, and e. But after noticing that p often comes after a and
before l in the dataset, it might combine them and treat appl as
a single token in future instances.

https://oreil.ly/3fOsM
https://oreil.ly/iSOp7


This approach helps LLMs recognize and generate words or
phrases, even if they weren’t common in the training data,
making the models more adaptable and versatile.

Understanding the workings of LLMs requires a grasp of the
underlying mathematical principles that power these systems.
Although the computations can be complex, we can simplify the
core elements to provide an intuitive understanding of how
these models operate. Particularly within a business context,
the accuracy and reliability of LLMs are paramount.

A significant part of achieving this reliability lies in the
pretraining and fine-tuning phases of LLM development.
Initially, models are trained on vast datasets during the
pretraining phase, acquiring a broad understanding of
language. Subsequently, in the fine-tuning phase, models are
adapted for specific tasks, honing their capabilities to provide
accurate and reliable outputs for specialized applications.

Vector Representations: The Numerical
Essence of Language

In the realm of NLP, words aren’t just alphabetic symbols. They
can be tokenized and then represented in a numerical form,



known as vectors. These vectors are multi-dimensional arrays
of numbers that capture the semantic and syntactic relations:

w → v = [v1, v2, ..., vn]

Creating word vectors, also known as word embeddings, relies
on intricate patterns within language. During an intensive
training phase, models are designed to identify and learn these
patterns, ensuring that words with similar meanings are
mapped close to one another in a high-dimensional space
(Figure 2-1).

Figure 2-1. Semantic proximity of word vectors within a word embedding space

The beauty of this approach is its ability to capture nuanced
relationships between words and calculate their distance.
When we examine word embeddings, it becomes evident that



words with similar or related meanings like virtue and moral or
walked and walking are situated near each other. This spatial
closeness in the embedding space becomes a powerful tool in
various NLP tasks, enabling models to understand context,
semantics, and the intricate web of relationships that form
language.

Transformer Architecture: Orchestrating
Contextual Relationships

Before we go deep into the mechanics of transformer
architectures, let’s build a foundational understanding. In
simple terms, when we have a sentence, say, The cat sat on the
mat, each word in this sentence gets converted into its
numerical vector representation. So, cat might become a series
of numbers, as does sat, on, and mat.

As you’ll explore in detail later in this chapter, the transformer
architecture takes these word vectors and understands their
relationships—both in structure (syntax) and meaning
(semantics). There are many types of transformers; Figure 2-2
showcases both BERT and GPT’s architecture. Additionally, a
transformer doesn’t just see words in isolation; it looks at cat



and knows it’s related to sat and mat in a specific way in this
sentence.



Figure 2-2. BERT uses an encoder for input data, while GPT has a decoder for output



When the transformer processes these vectors, it uses
mathematical operations to understand the relationships
between the words, thereby producing new vectors with rich,
contextual information:

v
′
i

= Transformer (v1, v2, ..., vm)

One of the remarkable features of transformers is their ability
to comprehend the nuanced contextual meanings of words. The
self-attention mechanism in transformers lets each word in a
sentence look at all other words to understand its context
better. Think of it like each word casting votes on the
importance of other words for its meaning. By considering the
entire sentence, transformers can more accurately determine
the role and meaning of each word, making their
interpretations more contextually rich.

Probabilistic Text Generation: The
Decision Mechanism

After the transformer understands the context of the given text,
it moves on to generating new text, guided by the concept of
likelihood or probability. In mathematical terms, the model
calculates how likely each possible next word is to follow the
current sequence of words and picks the one that is most likely:

https://oreil.ly/xuovP


wnext = argmax P (w|w1, w2, ..., wm)

By repeating this process, as shown in Figure 2-3, the model
generates a coherent and contextually relevant string of text as
its output.

Figure 2-3. How text is generated using transformer models such as GPT-4

The mechanisms driving LLMs are rooted in vector
mathematics, linear transformations, and probabilistic models.
While the under-the-hood operations are computationally
intensive, the core concepts are built on these mathematical



principles, offering a foundational understanding that bridges
the gap between technical complexity and business
applicability.

Historical Underpinnings: The Rise of
Transformer Architectures

Language models like ChatGPT (the GPT stands for generative
pretrained transformer) didn’t magically emerge. They’re the
culmination of years of progress in the field of NLP, with
particular acceleration since the late 2010s. At the heart of this
advancement is the introduction of transformer architectures,
which were detailed in the groundbreaking paper “Attention Is
All You Need” by the Google Brain team.

The real breakthrough of transformer architectures was the
concept of attention. Traditional models processed text
sequentially, which limited their understanding of language
structure especially over long distances of text. Attention
transformed this by allowing models to directly relate distant
words to one another irrespective of their positions in the text.
This was a groundbreaking proposition. It meant that words
and their context didn’t have to move through the entire model
to affect each other. This not only significantly improved the

https://oreil.ly/6NNbg


models’ text comprehension but also made them much more
efficient.

This attention mechanism played a vital role in expanding the
models’ capacity to detect long-range dependencies in text. This
was crucial for generating outputs that were not just
contextually accurate and fluent, but also coherent over longer
stretches.

According to AI pioneer and educator Andrew Ng, much of the
early NLP research, including the fundamental work on
transformers, received significant funding from United States
military intelligence agencies. Their keen interest in tools like
machine translation and speech recognition, primarily for
intelligence purposes, inadvertently paved the way for
developments that transcended just translation.

Training LLMs requires extensive computational resources.
These models are fed with vast amounts of data, ranging from
terabytes to petabytes, including internet content, academic
papers, books, and more niche datasets tailored for specific
purposes. It’s important to note, however, that the data used to
train LLMs can carry inherent biases from their sources. Thus,
users should exercise caution and ideally employ human

https://oreil.ly/JQd53


oversight when leveraging these models, ensuring responsible
and ethical AI applications.

OpenAI’s GPT-4, for example, boasts an estimated 1.7 trillion
parameters, which is equivalent to an Excel spreadsheet that
stretches across thirty thousand soccer fields. Parameters in the
context of neural networks are the weights and biases adjusted
throughout the training process, allowing the model to
represent and generate complex patterns based on the data it’s
trained on. The training cost for GPT-4 was estimated to be in
the order of $63 million, and the training data would fill about
650 kilometers of bookshelves full of books.

To meet these requirements, major technological companies
such as Microsoft, Meta, and Google have invested heavily,
making LLM development a high-stakes endeavor.

The rise of LLMs has provided an increased demand for the
hardware industry, particularly companies specializing in
graphics processing units (GPUs). NVIDIA, for instance, has
become almost synonymous with high-performance GPUs that
are essential for training LLMs.

The demand for powerful, efficient GPUs has skyrocketed as
companies strive to build ever-larger and more complex

https://oreil.ly/pZvMo
https://oreil.ly/_NAq5
https://oreil.ly/D7jL5


models. It’s not just the raw computational power that’s sought
after. GPUs also need to be fine-tuned for tasks endemic to
machine learning, like tensor operations. Tensors, in a machine
learning context, are multidimensional arrays of data, and
operations on them are foundational to neural network
computations. This emphasis on specialized capabilities has
given rise to tailored hardware such as NVIDIA’s H100 Tensor
Core GPUs, explicitly crafted to expedite machine learning
workloads.

Furthermore, the overwhelming demand often outstrips the
supply of these top-tier GPUs, sending prices on an upward
trajectory. This supply-demand interplay has transformed the
GPU market into a fiercely competitive and profitable arena.
Here, an eclectic clientele, ranging from tech behemoths to
academic researchers, scramble to procure the most advanced
hardware.

This surge in demand has sparked a wave of innovation beyond
just GPUs. Companies are now focusing on creating dedicated
AI hardware, such as Google’s Tensor Processing Units (TPUs),
to cater to the growing computational needs of AI models.

This evolving landscape underscores not just the symbiotic ties
between software and hardware in the AI sphere but also



spotlights the ripple effect of the LLM gold rush. It’s steering
innovations and funneling investments into various sectors,
especially those offering the fundamental components for
crafting these models.

OpenAI’s Generative Pretrained
Transformers

Founded with a mission to ensure that artificial general
intelligence benefits all of humanity, OpenAI has recently been
at the forefront of the AI revolution. One of their most
groundbreaking contributions has been the GPT series of
models, which have substantially redefined the boundaries of
what LLMs can achieve.

The original GPT model by OpenAI was more than a mere
research output; it was a compelling demonstration of the
potential of transformer-based architectures. This model
showcased the initial steps toward making machines
understand and generate human-like language, laying the
foundation for future advancements.

The unveiling of GPT-2 was met with both anticipation and
caution. Recognizing the model’s powerful capabilities, OpenAI

https://openai.com/


initially hesitated in releasing it due to concerns about its
potential misuse. Such was the might of GPT-2 that ethical
concerns took center stage, which might look quaint compared
to the power of today’s models. However, when OpenAI decided
to release the project as open-source, it didn’t just mean making
the code public. It allowed businesses and researchers to use
these pretrained models as building blocks, incorporating AI
into their applications without starting from scratch. This move
democratized access to high-level natural language processing
capabilities, spurring innovation across various domains.

After GPT-2, OpenAI decided to focus on releasing paid, closed-
source models. GPT-3’s arrival marked a monumental stride in
the progression of LLMs. It garnered significant media
attention, not just for its technical prowess but also for the
societal implications of its capabilities. This model could
produce text so convincing that it often became
indistinguishable from human-written content. From crafting
intricate pieces of literature to churning out operational code
snippets, GPT-3 exemplified the seemingly boundless potential
of AI.

GPT-3.5-turbo and ChatGPT

https://oreil.ly/evOQE


Bolstered by Microsoft’s significant investment in their
company, OpenAI introduced GPT-3.5-turbo, an optimized
version of its already exceptional predecessor. Following a $1
billion injection from Microsoft in 2019, which later increased
to a hefty $13 billion for a 49% stake in OpenAI’s for-profit arm,
OpenAI used these resources to develop GPT-3.5-turbo, which
offered improved efficiency and affordability, effectively
making LLMs more accessible for a broader range of use cases.

OpenAI wanted to gather more world feedback for fine-tuning,
and so ChatGPT was born. Unlike its general-purpose siblings,
ChatGPT was fine-tuned to excel in conversational contexts,
enabling a dialogue between humans and machines that felt
natural and meaningful.

Figure 2-4 shows the training process for ChatGPT, which
involves three main steps:

Collection of demonstration data

In this step, human labelers provide examples of the
desired model behavior on a distribution of prompts. The
labelers are trained on the project and follow specific
instructions to annotate the prompts accurately.

Training a supervised policy

https://oreil.ly/1C8qm
https://chat.openai.com/
https://oreil.ly/6ib-Q


The demonstration data collected in the previous step is
used to fine-tune a pretrained GPT-3 model using
supervised learning. In supervised learning, models are
trained on a labeled dataset where the correct answers
are provided. This step helps the model to learn to follow
the given instructions and produce outputs that align with
the desired behavior.

Collection of comparison data and reinforcement learning

In this step, a dataset of model outputs is collected, and
human labelers rank the outputs based on their
preference. A reward model is then trained to predict
which outputs the labelers would prefer. Finally,
reinforcement learning techniques, specifically the
Proximal Policy Optimization (PPO) algorithm, are used to
optimize the supervised policy to maximize the reward
from the reward model.

This training process allows the ChatGPT model to align its
behavior with human intent. The use of reinforcement learning
with human feedback helped create a model that is more
helpful, honest, and safe compared to the pretrained GPT-3
model.



Figure 2-4. The fine-tuning process for ChatGPT



According to a UBS study, by January 2023 ChatGPT set a new
benchmark, amassing 100 million active users and becoming
the fastest-growing consumer application in internet history.
ChatGPT is now a go-to for customer service, virtual assistance,
and numerous other applications that require the finesse of
human-like conversation.

GPT-4

In 2024, OpenAI released GPT-4, which excels in understanding
complex queries and generating contextually relevant and
coherent text. For example, GPT-4 scored in the 90th percentile
of the bar exam with a score of 298 out of 400. Currently, GPT-
3.5-turbo is free to use in ChatGPT, but GPT-4 requires a
monthly payment.

GPT-4 uses a mixture-of-experts approach; it goes beyond
relying on a single model’s inference to produce even more
accurate and insightful results.

On May 13, 2024, OpenAI introduced GPT-4o, an advanced
model capable of processing and reasoning across text, audio,
and vision inputs in real time. This model offers enhanced
performance, particularly in vision and audio understanding; it

https://oreil.ly/2Ivq2
https://oreil.ly/UOEBM
https://oreil.ly/v45LZ
https://oreil.ly/4ttmq


is also faster and more cost-effective than its predecessors due
to its ability to process all three modalities in one neural
network.

Google’s Gemini

After Google lost search market share due to ChatGPT usage, it
initially released Bard on March 21, 2023. Bard was a bit rough
around the edges and definitely didn’t initially have the same
high-quality LLM responses that ChatGPT offered (Figure 2-5).

Google has kept adding extra features over time including code
generation, visual AI, real-time search, and voice into Bard,
bringing it closer to ChatGPT in terms of quality.

On March 14, 2023, Google released PaLM API, allowing
developers to access it on Google Cloud Platform. In April 2023,
Amazon Web Services (AWS) released similar services such as
Amazon Bedrock and Amazon’s Titan FMs. Google rebranded
Bard to Gemini for their v1.5 release in February 2024 and
started to get results similar to GPT-4.

https://oreil.ly/Sj24h
https://oreil.ly/EbI8-
https://oreil.ly/4fNQX
https://oreil.ly/FJ-7D
https://oreil.ly/EO42O


Figure 2-5. Bard hallucinating results about the James Webb Space Telescope

Also, Google released two smaller open source models based on
the same architecture as Gemini. OpenAI is finally no longer the
only obvious option for software engineers to integrate state-of-
the-art LLMs into their applications.

Meta’s Llama and Open Source

Meta’s approach to language models differs significantly from
other competitors in the industry. By sequentially releasing
open source models Llama, Llama 2 and Llama 3, Meta aims to
foster a more inclusive and collaborative AI development
ecosystem.

https://oreil.ly/LWIwv
https://oreil.ly/LroPn
https://oreil.ly/NeZLw
https://oreil.ly/Vwlo-


The open source nature of Llama 2 and Llama 3 has significant
implications for the broader tech industry, especially for large
enterprises. The transparency and collaborative ethos
encourage rapid innovation, as problems and vulnerabilities
can be quickly identified and addressed by the global developer
community. As these models become more robust and secure,
large corporations can adopt them with increased confidence.

Meta’s open source strategy not only democratizes access to
state-of-the-art AI technologies but also has the potential to
make a meaningful impact across the industry. By setting the
stage for a collaborative, transparent, and decentralized
development process, Llama 2 and Llama 3 are pioneering
models that could very well define the future of generative AI.
The models are available in 7, 8 and 70 billion parameter
versions on AWS, Google Cloud, Hugging Face, and other
platforms.

The open source nature of these models presents a double-
edged sword. On one hand, it levels the playing field. This
means that even smaller developers have the opportunity to
contribute to innovation, improving and applying open source
models to practical business applications. This kind of
decentralized innovation could lead to breakthroughs that
might not occur within the walled gardens of a single



organization, enhancing the models’ capabilities and
applications.

However, the same openness that makes this possible also poses
potential risks, as it could allow malicious actors to exploit this
technology for detrimental ends. This indeed is a concern that
organizations like OpenAI share, suggesting that some degree of
control and restriction can actually serve to mitigate the
dangerous applications of these powerful tools.

Leveraging Quantization and LoRA

One of the game-changing aspects of these open source models
is the potential for quantization and the use of LoRA (low-rank
approximations). These techniques allow developers to fit the
models into smaller hardware footprints. Quantization helps to
reduce the numerical precision of the model’s parameters,
thereby shrinking the overall size of the model without a
significant loss in performance. Meanwhile, LoRA assists in
optimizing the network’s architecture, making it more efficient
to run on consumer-grade hardware.

Such optimizations make fine-tuning these LLMs increasingly
feasible on consumer hardware. This is a critical development

https://oreil.ly/bkWXk
https://oreil.ly/zORsB


because it allows for greater experimentation and adaptability.
No longer confined to high-powered data centers, individual
developers, small businesses, and start-ups can now work on
these models in more resource-constrained environments.

Mistral

Mistral 7B, a brainchild of French start-up Mistral AI, emerges
as a powerhouse in the generative AI domain, with its 7.3
billion parameters making a significant impact. This model is
not just about size; it’s about efficiency and capability,
promising a bright future for open source large language
models and their applicability across a myriad of use cases. The
key to its efficiency is the implementation of sliding window
attention, a technique released under a permissive Apache
open source license. Many AI engineers have fine-tuned on top
of this model as a base, including the impressive Zephr 7b beta
model. There is also Mixtral 8x7b, a mixture of experts model
(similar to the architecture of GPT-4), which achieves results
similar to GPT-3.5-turbo.

For a more detailed and up-to-date comparison of open source
models and their performance metrics, visit the Chatbot Arena
Leaderboard hosted by Hugging Face.

https://mistral.ai/
https://oreil.ly/Lg6_r
https://oreil.ly/itsJG
https://oreil.ly/ttiji


Anthropic: Claude

Released on July 11, 2023, Claude 2 is setting itself apart from
other prominent LLMs such as ChatGPT and LLaMA, with its
pioneering Constitutional AI approach to AI safety and
alignment—training the model using a list of rules or values. A
notable enhancement in Claude 2 was its expanded context
window of 100,000 tokens, as well as the ability to upload files.
In the realm of generative AI, a context window refers to the
amount of text or data the model can actively consider or keep
in mind when generating a response. With a larger context
window, the model can understand and generate based on a
broader context.

This advancement garnered significant enthusiasm from AI
engineers, as it opened up avenues for new and more intricate
use cases. For instance, Claude 2’s augmented ability to process
more information at once makes it adept at summarizing
extensive documents or sustaining in-depth conversations. The
advantage was short-lived, as OpenAI released their 128K
version of GPT-4 only six months later. However, the fierce
competition between rivals is pushing the field forward.

https://claude.ai/login
https://oreil.ly/Tim9W
https://oreil.ly/BWxrn


The next generation of Claude included Opus, the first model to
rival GPT-4 in terms of intelligence, as well as Haiku, a smaller
model that is lightning-fast with the competitive price of $0.25
per million tokens (half the cost of GPT-3.5-turbo at the time).

GPT-4V(ision)

In a significant leap forward, on September 23, 2023, OpenAI
expanded the capabilities of GPT-4 with the introduction of
Vision, enabling users to instruct GPT-4 to analyze images
alongside text. This innovation was also reflected in the update
to ChatGPT’s interface, which now supports the inclusion of
both images and text as user inputs. This development signifies
a major trend toward multimodal models, which can seamlessly
process and understand multiple types of data, such as images
and text, within a single context.

Model Comparison

The market for LLMs is dominated by OpenAI at the time of
writing, with its state-of-the-art GPT-4 model widely considered
to have a significant lead. The closest competitor is Anthropic,
and there is widespread excitement at the potential of smaller

https://oreil.ly/NH0jh


open source models such as Llama and Mistral, particularly
with respects to fine-tuning. Although commentators expect
OpenAI to continue to deliver world-beating models in the
future, as open source models get good enough at more tasks, AI
workloads may shift toward local fine-tuned models. With
advances in model performance and quantization (methods for
trading off accuracy versus size and compute cost), it may be
possible to one day run LLMs on your mobile phone or other
devices.

For now, the best way to get a sense for what the models are
good at is to run the same prompt across multiple models and
compare the responses. One thing that regularly stands out in
our work is that GPT-4 is much better at following instructions,
as is demonstrated in the following example where it was the
only model to respond in the right format, with names that
matched the examples (starting with the letter i), as desired.

Input:

Brainstorm a list of product names for a shoe tha

in the style of Steve Jobs. 

 

Return the results as a comma-separated list, in 

Product description: A shoe that fits any foot si

Product names: [list of three product names] 



 

## Examples 

Product description: A refrigerator that dispense

Product names: iBarFridge, iFridgeBeer, iDrinkBee

 

Product description: A watch that can tell accura

Product names: iNaut, iSpace, iTime 

 

Product description: A home milkshake maker 

Product names: iShake, iSmoothie, iShake Mini

Output (GPT-4):

Product description: A shoe that fits any foot si

Product names: iFit, iShoe, iFlexible

Output (Claude 3):

Product description: A shoe that fits any foot si

Product names: iFit, iComfort, iSole

Output (Llama 3 70b):

Here is the list of product names for a shoe that

in the style of Steve Jobs: 



 

Product description: A shoe that fits any foot si

iFit, OneSize, iWalkFree

Summary

The journey of LLMs from their inception to their current
advanced states is a tale of relentless innovation, collaboration,
and intense competition. As these models continue to evolve,
they are likely to become even more integral parts of our daily
lives, changing the way we interact with technology and even
with each other.

By understanding the historical context and capabilities of
these models, you can better appreciate the tools at our disposal
for various applications, from prompt engineering to the
development of intelligent virtual agents. It’s important to note,
however, that while these models offer expansive possibilities,
data privacy remains a crucial concern. If these models use
your data for retraining or fine-tuning, exercise caution and
refrain from inputting sensitive information.

In the next chapter, you will learn all the basic prompt
engineering techniques for working with text LLMs. You’ll learn



the essential skills needed to get the most out of powerful
language models like GPT-4. Exciting insights and practical
methods await you as you unlock the true potential of
generative AI.



Chapter 3. Standard Practices for Text
Generation with ChatGPT

Simple prompting techniques will help you to maximize the
output and formats from LLMs. You’ll start by tailoring the
prompts to explore all of the common practices used for text
generation.

Generating Lists

Automatically generating lists is incredibly powerful and
enables you to focus on higher-level tasks while GPT can
automatically generate, refine, rerank, and de-duplicate lists on
your behalf.

Input:

Generate a list of Disney characters.

Output:

Sure, here is a list of some popular Disney chara

 

1. Mickey Mouse 



2. Minnie Mouse 

... 

30. Bagheera (The Jungle Book)

GPT-4 is perfectly capable of providing a list of characters.
However, there are some pitfalls with this approach:

GPT has decided to provide 30 examples as a numbered list,
separated by \n  characters. However, if your downstream
Python code was expecting to split on bullet points, then
you’ll likely end up with undesirable results or a runtime
error.
GPT has provided preceding commentary; removing any
preceding/succeeding commentary would make parsing the
output easier.
The list size wasn’t controlled and was left to the language
model.
Some of the characters have the name of their
corresponding film within brackets—for example, Bagheera
(The Jungle Book)—and others don’t. This makes names
harder to extract because you would need to remove the
movie titles.
No filtering or selection has been applied to the LLM
generation based on our desired result.



Following you’ll find an optimized prompt.

Input:

Generate a bullet-point list of 5 male Disney cha

Only include the name of the character for each l

Never include the film for each Disney character

Only return the Disney characters, never include 

 

Below is an example list: 

 

* Aladdin 

* Simba 

* Beast 

* Hercules 

* Tarzan

Output:

* Woody 

* Buzz Lightyear 

* Stitch 

* Jack Sparrow 

* Prince Charming



PROVIDE EXAMPLES

Simply rephrasing your prompt to include examples (few-shot prompting) can greatly
impact the desired output.

By optimizing the prompt, you’ve achieved the following:

Restricted the list to a fixed size of five
Generated only male characters
Correctly formatted the list with bullet points
Removed any preceding commentary

Simple lists are fine for most tasks; however, they are less
structured, and for some tasks it’s beneficial to obtain nested
data structures from a GPT-4 output.

Three typical data structures include:

Nested text data (hierarchical lists)
JSON
YAML

Hierarchical List Generation

Hierarchical lists are useful for when your desired output is
nested. A good example of this would be a detailed article



structure.

Input:

Generate a hierarchical and incredibly detailed a

 

What are the benefits of data engineering. 

 

See an example of the hierarchical structure belo

 

Article Title: What are the benefits of digital m

 

* Introduction 

    a. Explanation of digital marketing 

    b. Importance of digital marketing in today's

* Increased Brand Awareness 

    a. Definition of brand awareness 

    b. How digital marketing helps in increasing 

Output:

Article Title: What are the benefits of data engi

 

* Introduction 

    a. Explanation of data engineering 

    b. Importance of data engineering in today’s 

 



...(10 sections later)... 

 

 

* Conclusion 

    a. Importance of data engineering in the mode

    b. Future of data engineering and its impact 

To generate an effective article outline in the preceding output,
you’ve included two key phrases:

Hierarchical

To suggest that the article outline needs to produce a
nested structure.

Incredibly detailed

To guide the language model towards producing a larger
output. Other words that you could include that have the
same effect would be very long or by specifying a large
number of subheadings, include at least 10 top-level
headings.



NOTE

Asking a language model for a fixed number of items doesn’t guarantee the language
model will produce the same length. For example, if you ask for 10 headings, you
might receive only 8. Therefore, your code should either validate that 10 headings

exist or be flexible to handle varying lengths from the LLM.

So you’ve successfully produced a hierarchical article outline,
but how could you parse the string into structured data?

Let’s explore Example 3-1 using Python, where you’ve
previously made a successful API call against OpenAI’s GPT-4.
Two regular expressions are used to extract the headings and
subheadings from openai_result . The re  module in Python
is used for working with regular expressions.

Example 3-1. Parsing a hierarchical list

import re

 

# openai_result = generate_article_outline(prompt

# Commented out to focus on a fake LLM response, 

 

openai_result = ''' 

* Introduction 

    a. Explanation of data engineering 

    b. Importance of data engineering in today’s 

* Efficient Data Management 

https://oreil.ly/A0otS


g

    a. Definition of data management 

    b. How data engineering helps in efficient da

* Conclusion 

    a. Importance of data engineering in the mode

    b. Future of data engineering and its impact 

''' 

 

# Regular expression patterns 

heading_pattern = r'\* (.+)' 

subheading_pattern = r'\s+[a-z]\. (.+)' 

 

# Extract headings and subheadings 

headings = re.findall(heading_pattern, openai_res

subheadings = re.findall(subheading_pattern, open

 

# Print results 

print("Headings:\n") 

for heading in headings: 

    print(f"* {heading}") 

 

print("\nSubheadings:\n") 

for subheading in subheadings: 

    print(f"* {subheading}")

This code will output:

Headings: 

I t d ti



- Introduction 

- Efficient Data Management 

- Conclusion 

 

Subheadings: 

- Explanation of data engineering 

- Importance of data engineering in today’s data

- Definition of data management 

- How data engineering helps in efficient data ma

- Importance of data engineering in the modern bu

- Future of data engineering and its impact on th

The use of regular expressions allows for efficient pattern
matching, making it possible to handle variations in the input
text, such as the presence or absence of leading spaces or tabs.
Let’s explore how these patterns work:

heading_pattern = r'\* (.+)'

This pattern is designed to extract the main headings and
consists of:

\*  matches the asterisk (*)  symbol at the beginning of a
heading. The backslash is used to escape the asterisk, as the
asterisk has a special meaning in regular expressions (zero
or more occurrences of the preceding character).



A space character will match after the asterisk.
(.+) : matches one or more characters, and the
parentheses create a capturing group. The .  is a wildcard
that matches any character except a newline, and the +  is
a quantifier that means one or more occurrences of the
preceding element (the dot, in this case).

By applying this pattern you can easily extract all of the main
headings into a list without the asterisk.

subheading_pattern = r'\s+[a-z]\. (.+)

The subheading pattern  will match all of the subheadings
within the openai_result  string:

\s+  matches one or more whitespace characters (spaces,
tabs, and so on). The +  means one or more occurrences of
the preceding element (the \s , in this case).
[a-z]  matches a single lowercase letter from a to z.
\.  matches a period character. The backslash is used to
escape the period, as it has a special meaning in regular
expressions (matches any character except a newline).
A space character will match after the period.
(.+)  matches one or more characters, and the
parentheses create a capturing group. The .  is a wildcard



that matches any character except a newline, and the +  is
a quantifier that means one or more occurrences of the
preceding element (the dot, in this case).

Additionally the re.findall()  function is used to find all
non-overlapping matches of the patterns in the input string and
return them as a list. The extracted headings and subheadings
are then printed.

So now you’re able to extract headings and subheadings from
hierarchical article outlines; however, you can further refine
the regular expressions so that each heading is associated with
corresponding subheadings .

In Example 3-2, the regex has been slightly modified so that
each subheading is attached directly with its appropriate
subheading.

Example 3-2. Parsing a hierarchical list into a Python
dictionary

import re

 

openai_result = """ 

* Introduction 

  a. Explanation of data engineering 

  b. Importance of data engineering in today’s da

https://oreil.ly/LcMtv


p g g y

* Efficient Data Management 

    a. Definition of data management 

    b. How data engineering helps in efficient da

    c. Why data engineering is important for data

* Conclusion 

    a. Importance of data engineering in the mode

    b. Future of data engineering and its impact 

""" 

 

section_regex = re.compile(r"\* (.+)") 

subsection_regex = re.compile(r"\s*([a-z]\..+)") 

 

result_dict = {} 

current_section = None 

 

for line in openai_result.split("\n"): 

    section_match = section_regex.match(line) 

    subsection_match = subsection_regex.match(lin

 

    if section_match: 

        current_section = section_match.group(1) 

        result_dict[current_section] = [] 

    elif subsection_match and current_section is 

        result_dict[current_section].append(subse

 

print(result_dict)



This will output:

{ 

    "Introduction": [ 

        "a. Explanation of data engineering", 

        "b. Importance of data engineering in tod

    ], 

    "Efficient Data Management": [

        "a. Definition of data management", 

        "b. How data engineering helps in efficie

    ], 

    "Conclusion": [ 

        "a. Importance of data engineering in the

        "b. Future of data engineering and its im

    ] 

}

The section title regex, r'\* (.+)' , matches an asterisk
followed by a space and then one or more characters. The
parentheses capture the text following the asterisk and space to
be used later in the code.

The subsection regex, r'\s*([a-z]\..+)' , starts with \s* ,
which matches zero or more whitespace characters (spaces or



tabs). This allows the regex to match subsections with or
without leading spaces or tabs. The following part, ([a-
z]\..+) , matches a lowercase letter followed by a period and
then one or more characters. The parentheses capture the
entire matched subsection text for later use in the code.

The for  loop iterates over each line in the input string,
openai_result . Upon encountering a line that matches the
section title regex, the loop sets the matched title as the current
section and assigns an empty list as its value in the
result_dict  dictionary. When a line matches the subsection
regex, the matched subsection text is appended to the list
corresponding to the current section.

Consequently, the loop processes the input string line by line,
categorizes lines as section titles or subsections, and constructs
the intended dictionary structure.

When to Avoid Using Regular
Expressions

As you work to extract more structured data from LLM
responses, relying solely on regular expressions can make the
control flow become increasingly complicated. However, there



are other formats that can facilitate the parsing of structured
data from LLM responses with ease. Two common formats are
.json and .yml files.

Generating JSON

Let’s start by experimenting with some prompt design that will
direct an LLM to return a JSON response.

Input:

Compose a very detailed article outline on "The b

JSON payload structure that highlights key points

 

Only return valid JSON. 

 

Here is an example of the JSON structure: 

{ 

    "Introduction": [ 

        "a. Explanation of data engineering", 

        "b. Importance of data engineering in tod

    ... 

    "Conclusion": [ 

        "a. Importance of data engineering in the

        "b. Future of data engineering and its im

}



Output:

{ 

    "Introduction": [ 

        "a. Overview of coding and programming la

        "b. Importance of coding in today's techn

    ... 

    "Conclusion": [ 

        "a. Recap of the benefits of learning cod

        "b. The ongoing importance of coding skil

}

GIVE DIRECTION AND PROVIDE EXAMPLES

Notice that in the preceding prompt, you’ve provided direction on the type of task,
the format, and an example JSON output.

Common errors that you’ll encounter when working with JSON
involve invalid payloads, or the JSON being wrapped within
triple backticks (```) , such as:

Output:

Sure here's the JSON: 

```j



```json 

{"Name": "John Smith"} # valid payload 

{"Name": "John Smith", "some_key":} # invalid pay

```

Ideally you would like the model to respond like so:

Output:

{"Name": "John Smith"}

This is important because with the first output, you’d have to
split after json  and then parse the exact part of the string that
contained valid JSON. There are several points that are worth
adding to your prompts to improve JSON parsing:

You must follow the following principles: 

* Only return valid JSON 

* Never include backtick symbols such as: ` 

* The response will be parsed with json.loads(), 

Now let’s examine how you can parse a JSON output with
Python:

import json 

https://oreil.ly/MoJHn


 

# openai_json_result = generate_article_outline(p

 

openai_json_result = """ 

{ 

    "Introduction": [ 

        "a. Overview of coding and programming la

        "b. Importance of coding in today's techn

    "Conclusion": [ 

        "a. Recap of the benefits of learning cod

        "b. The ongoing importance of coding skil

} 

""" 

parsed_json_payload = json.loads(openai_json_resu

print(parsed_json_payload) 

 

'''{'Introduction': ['a. Overview of coding and p

"b. Importance of coding in today's technology-d

'Conclusion': ['a. Recap of the benefits of learn

'b. The ongoing importance of coding skills in th

Well done, you’ve successfully parsed some JSON.

As showcased, structuring data from an LLM response is
streamlined when requesting the response in valid JSON
format. Compared to the previously demonstrated regular



expression parsing, this method is less cumbersome and more
straightforward.

So what could go wrong?

The language model accidentally adds extra text to the
response such as json output:  and your application
logic only handles for valid JSON.
The JSON produced isn’t valid and fails upon parsing
(either due to the size or simply for not escaping certain
characters).

Later on you will examine strategies to gracefully handle for
such edge cases.

YAML

.yml files are a structured data format that offer different
benefits over .json:

No need to escape characters

YAML’s indentation pattern eliminates the need for
braces, brackets, and commas to denote structure. This
can lead to cleaner and less error-prone files, as there’s
less risk of mismatched or misplaced punctuation.



Readability

YAML is designed to be human-readable, with a simpler
syntax and structure compared to JSON. This makes it
easier for you to create, read, and edit prompts, especially
when dealing with complex or nested structures.

Comments

Unlike JSON, YAML supports comments, allowing you to
add annotations or explanations to the prompts directly
in the file. This can be extremely helpful when working in
a team or when revisiting the prompts after some time, as
it allows for better understanding and collaboration.

Input:

- Below you'll find the current yaml schema. 

- You can update the quantities based on a User Q

- Filter the User Query based on the schema below

there are no items left then return `"No Items"`

- If there is a partial match, then return only t

within the schema below: 

 

# schema: 

- item: Apple Slices 

  quantity: 5 

  unit: pieces 



- item: Milk 

  quantity: 1 

  unit: gallon 

- item: Bread 

  quantity: 2 

  unit: loaves 

- item: Eggs 

  quantity: 1 

  unit: dozen 

 

User Query: "5 apple slices, and 2 dozen eggs." 

 

Given the schema below, please return only a vali

Query.If there's no match, return `"No Items"`. D

commentary or explanations.

Output:

- item: Apple Slices 

  quantity: 5 

  unit: pieces 

- item: Eggs 

  quantity: 2 

  unit: dozen



Notice with the preceding example how an LLM is able to infer
the correct .yml format from the User Query  string.

Additionally, you’ve given the LLM an opportunity to either:

Return a valid .yml response
Return a filtered .yml response

If after filtering, there are no .yml items left, then return No
Items.

Filtering YAML Payloads

You might decide to use this same prompt for cleaning/filtering
a .yml payload.

First, let’s focus on a payload that contains both valid and
invalid schema  in reference to our desired schema . Apple
slices  fit the criteria; however, Bananas  doesn’t exist, and
you should expect for the User Query  to be appropriately
filtered.

Input:

# User Query: 

- item: Apple Slices 



  quantity: 5 

  unit: pieces 

- item: Bananas 

  quantity: 3 

  unit: pieces

Output:

# Updated yaml list 

- item: Apple Slices 

  quantity: 5 

  unit: pieces

In the preceding example, you’ve successfully filtered the user’s
payload against a set criteria and have used the language model
as a reasoning engine.

By providing the LLM with a set of instructions within the
prompt, the response is closely related to what a human might
do if they were manually cleaning the data.

The input prompt facilitates the delegation of more control flow
tasks to a language learning model (LLM), tasks that would
typically require coding in a programming language like Python
or JavaScript.



Figure 3-1 provides a detailed overview of the logic applied
when processing user queries by an LLM.

Figure 3-1. Using an LLM to determine the control flow of an application instead of
code

Handling Invalid Payloads in YAML

A completely invalid payload might look like this:

Input:

# User Query: 

- item: Bananas 

  quantity: 3 

  unit: pieces



Output:

No Items

As expected, the LLM returned No Items  as none of the User
Query  items matched against the previously defined schema .

Let’s create a Python script that gracefully accommodates for
the various types of LLM results returned. The core parts of the
script will focus on:

Creating custom exceptions for each type of error that
might occur due to the three LLM response scenarios
Parsing the proposed schema
Running a serious of custom checks against the response so
you can be sure that the YML response can be safely passed
to downstream software applications/microservices

You could define six specific errors that would handle for all of
the edge cases:

class InvalidResponse(Exception): 

    pass 

 

class InvalidItemType(Exception): 



    pass 

 

class InvalidItemKeys(Exception): 

    pass 

 

class InvalidItemName(Exception): 

    pass 

 

class InvalidItemQuantity(Exception): 

    pass 

 

class InvalidItemUnit(Exception): 

    pass

Then provide the previously proposed YML schema  as a string:

# Provided schema 

schema = """ 

- item: Apple Slices 

  quantity: 5 

  unit: pieces 

- item: Milk 

  quantity: 1 

  unit: gallon 

- item: Bread 

  quantity: 2 

  unit: loaves 

- item: Eggs 



  quantity: 1 

  unit: dozen 

"""

Import the yaml  module and create a custom parser function
called validate_ response  that allows you to easily
determine whether an LLM output is valid:

import yaml 

 

def validate_response(response, schema): 

    # Parse the schema 

    schema_parsed = yaml.safe_load(schema) 

    maximum_quantity = 10 

 

    # Check if the response is a list 

    if not isinstance(response, list): 

        raise InvalidResponse("Response is not a 

 

    # Check if each item in the list is a diction

    for item in response: 

        if not isinstance(item, dict): 

            raise InvalidItemType('''Item is not 

 

        # Check if each dictionary has the keys 

        if not all(key in item for key in ("item

            raise InvalidItemKeys("Item does not 



 

        # Check if the values associated with eac

        if not isinstance(item["item"], str): 

            raise InvalidItemName("Item name is n

        if not isinstance(item["quantity"], int)

            raise InvalidItemQuantity("Item quant

        if not isinstance(item["unit"], str): 

            raise InvalidItemUnit("Item unit is n

 

        # Check if the values associated with eac

        if item["item"] not in [x["item"] for x i

            raise InvalidItemName("Item name is n

        if item["quantity"] >  maximum_quantity: 

            raise InvalidItemQuantity(f'''Item qu

            {maximum_quantity}''')

        if item["unit"] not in ["pieces", "dozen

            raise InvalidItemUnit("Item unit is n

To test these edge cases, following you’ll find several mocked
LLM responses:

# Fake responses 

fake_response_1 = """ 

- item: Apple Slices 

  quantity: 5 

  unit: pieces 

- item: Eggs 



  quantity: 2 

  unit: dozen 

""" 

 

fake_response_2 = """ 

# Updated yaml list 

- item: Apple Slices 

  quantity: 5 

  unit: pieces 

""" 

 

fake_response_3 = """Unmatched"""

Finally, now you can:

Use yaml.safe_load(response)  to safely parse the .yml
schema
Call the validate_response  function for each LLM
response to test it against custom .yml validation logic

# Parse the fake responses 

response_1_parsed = yaml.safe_load(fake_response_

response_2_parsed = yaml.safe_load(fake_response_

response_3_parsed = yaml.safe_load(fake_response_

 

 

# Validate the responses against the schema



# Validate the responses against the schema 

try: 

    validate_response(response_1_parsed, schema) 

    print("Response 1 is valid") 

except Exception as e: 

    print("Response 1 is invalid:", str(e)) 

 

try: 

    validate_response(response_2_parsed, schema) 

    print("Response 2 is valid") 

except Exception as e: 

    print("Response 2 is invalid:", str(e)) 

 

try: 

    validate_response(response_3_parsed, schema) 

    print("Response 3 is valid") 

except Exception as e: 

    print("Response 3 is invalid:", str(e)) 

 

Response 1 is valid 

Response 2 is valid 

Response 3 is invalid: Response is not a list

Diverse Format Generation with
ChatGPT



ChatGPT is not only capable of generating .json or .yml files but
can also support many other data formats. For example, it can
aid you in creating a mermaid diagram or generating a mock
.csv document. Its versatility stretches to even generating code,
conversations, and scripts.

Let’s explore in detail how ChatGPT can produce diverse
formatted content. Mermaid is a markdown-like scripting
language for generating charts, diagrams, and other
visualizations.

Input:

Create a flowchart diagram in mermaid syntax show

process that starts with "Choose food" and ends w

Include steps for "Add food to cart" and "Confirm

Output:

graph TD 

    ChooseFood[Choose Food] --> AddToCart[Add to 

    AddToCart --> ConfirmCart[Confirm Cart] 

    ConfirmCart --> PayForMeal[Pay for Meal]



This output, when input to a mermaid diagram renderer, will
create a precise flowchart reflecting the food ordering process
(Figure 3-2).

Figure 3-2. A streamlined flow diagram created using mermaid syntax via an LLM



Mock CSV Data

ChatGPT can also generate mock CSV data that can be utilized
for testing purposes or other uses.

Input:

Generate a sample CSV data for five students with

name, age, grade.

Output:

name,age,grade 

John,16,A 

Alex,17,B 

Emma,16,A 

Sophia,16,B 

Liam,17,A

The example generated is a well-formatted CSV file, which can
be loaded directly into many tools that read CSV data.

Remember, GPT models rely heavily on the format you specify.
For instance, specifying CSV implies the AI should use commas



as separators. Be clear about the desired format for optimal
results.

You’ve explored different ways of extracting structured data
from language models including regular expressions, JSON,
YML, and other formats. You can also now use LLMs to direct
parts of your application’s control flow.

Explain It like I’m Five

The Explain It like I’m Five prompt focuses on explaining a
given section of text as if you were talking to a five-year-old
child.

This style of prompting is very effective and is a great way to
convert technical documents into simple summaries that
anyone can understand.

Let’s apply this prompt to an abstract of “Tumor
Microenvironment: Recent Advances in Various Cancer
Treatments”.

Input:

Explain the following text as if I was 5 years ol

https://oreil.ly/MDOsz


 

Text: This is a review regarding different types 

We aimed at analyzing the tumor microenvironment 

for the therapeutic applications and effectivenes

of cancers. Traditionally the cancer treatment wa

neoplastic cells. 

 

...(shortened for brevity)...

Output:

Cancer is a sickness that makes your body's cells

that is not normal. Doctors have different ways t

cutting it out, giving you medicine, or using spe

cancer cells...

The ChatGPT output from the preceding example is much more
digestible than the abstract.

Universal Translation Through LLMs

Additionally, language models can potentially act as universal
translators due to their proficiency in understanding and
generating human-like text across multiple languages.



Let’s investigate this with a simple example:

1. Generate some simple text.
2. Change the simple text and make it difficult to read.
3. Then transform the same text back into an easy to read

format in Spanish (instead of English).
4. Revert the simplistic text back into English.

Input:

Create some simple text.

Output:

The sun gently rises, painting the sky with hues 

chirp merrily as they welcome the new day. The co

the trees, carrying the scent of fresh grass and 

awakens with a sense of tranquility and promise. 

 

...(shortened for brevity)...

Input:

Now make the text incredibly complex and hard to 



Output:

In the ethereal realm of celestial ascendancy, wh

orb of the sun commences its gradual ascent, an e

unfolds,engendering a symphony of chromatic brill

expansive canopy of the firmament. Avian denizens

mellifluous voices, bespeak their jubilant saluta

the aural tapestry with notes of felicity. The ze

wafting amidst arboreal sentinels, carries upon i

the redolence of verdant blades and blossoming fl

...(shortened for brevity)...

Input:

Now transform the text into a simple, easy to rea

, make sure that it is very easy to understand an

that it is as simple to comprehend as possible. 

 

- Use simple language. 

- Make it concise.

Output:

En un lugar mágico y celestial, cuando el sol emp

hermoso en el cielo. Los pájaros cantan alegremen

sus dulces melodías. Una brisa suave sopla entre 



p

consigo el olor fresco de la naturaleza. Todo cob

felices. Nos invita a disfrutar de las cosas simp

felicidad en los pequeños detalles. En este escen

encontramos paz y aprendemos que hasta los moment

ser mágicos.

Input:

Finally translate it back into English.

Output:

In a magical and celestial place, when the sun be

beautiful happens in the sky. The birds sing chee

with their sweet melodies. A gentle breeze blows 

the fresh scent of nature. Everything comes alive

moments. It invites us to enjoy the simple things

little details. In this enchanting setting, we fi

even the simplest moments can be magical.

As you can see, part of the meaning is lost while doing the
translation, and this is to be expected. However, large parts of
the original text’s intent remains, demonstrating that LLMs can
act as highly effective translators for languages that have



adequate resources on the internet. For languages that do not
have a good amount of resources, it will yield bad results.

The same logic applies to coding languages. LLMs are very good
at generating code for established programming languages such
as Python and JavaScript but perform worse for newer coding
languages and packages.

The boundaries between different forms of information are
becoming increasingly fluid. The essence of information itself is
evolving, allowing for effortless transformations of summaries
into stories, poems, or other creative expressions, ultimately
enriching our understanding and engagement with the content.

Diffusion models are a unique class of generative models
utilized in machine learning, specifically designed to produce
new images that mimic those found in the training set.

Moreover, when you combine language models with diffusion
models, it enables seamless transitions between text, video, and
other modalities. This makes it even simpler for you to convey
complex ideas across various formats, facilitating a more
accessible and comprehensive experience.

Ask for Context



LLMs are not only capable of generating text but can also act as
simple agents with a limited amount of reasoning capability.
This allows you to write a prompt asking the language model to
either:

Return a valid result to a question or statement
Ask for more context to appropriately answer the question

In this section, you’ll learn about the importance of asking for
context when working with LLMs such as GPT-4. We will start
with an example of a prompt that doesn’t provide enough
context, resulting in a less useful response.

Then, we will provide a better prompt that encourages the
model to ask for additional context if needed. Finally, we will
use the additional context provided to generate a more
informed response.

Input:

Should I use MongoDB or PostgreSQL for my project

Output:



It's difficult to make a recommendation without k

specific software requirements. Both MongoDB and 

advantages, but the best choice depends on the sp

project.

In the preceding prompt, the model does not have enough
context to make a meaningful recommendation. Instead, you
can ask ChatGPT for a list of recommended points that would
help it to make an effective decision.

Input:

Should I use MongoDB or PostgreSQL for my project

 

Provide a list of requirements that would help yo

and high-quality decision about which database so

Output:

To make an informed decision between MongoDB and 

project, consider the following requirements: 

 

1. Data Structure: Evaluate the structure of you

is highly unstructured or schema-less, MongoDB's 

may be more suitable. On the other hand, if your 

or requires complex relationships PostgreSQL's



or requires complex relationships, PostgreSQL s 

be a better fit. 

 

... 

 

10. Cost: Assess the cost implications of each da

offers both a community edition (free) and a comm

additional features and support.PostgreSQL is ope

with optional commercial support available from v

After prompting ChatGPT about how to make an informed
decision, now you’re aware of what to include within your
prompt to help the language model with deciding.

Input:

Should I use MongoDB or PostgreSQL for my project

 

Context: 

- Data Structure: Highly unstructured data with v

and no fixed schema. Scalability: Project require

massive amounts of data and distribute it across 

- ACID Compliance: Strong data consistency and in

the project's financial transactions. 

- Querying Capabilities: Complex geospatial queri

location-based data. 

Community and Ecosystem: Active community with nu

libraries and tools specifically tailored for the



libraries and tools specifically tailored for the

- Data Integrity and Constraints: Enforcing stric

relationships and complex data validation rules. 

- Transactions and Concurrency: Requires handling

concurrent read and write operations while mainta

- Maturity and Stability: Prioritizing a well-est

tested database for long-term stability. 

- Development and Operational Ease: Agile develop

for rapid prototyping and iterative schema design

- Cost: Budget constraints necessitate using an o

no additional licensing or support costs. 

 

If you need more context, please specify what wou

a better decision.

Output:

Based on these considerations, both MongoDB and P

strengths, but given the emphasis on strong data 

querying, and data integrity constraints, Postgre

suitable choice for your project.

In this final example, the model uses the additional context
provided to give a well-informed recommendation for using
PostgreSQL. By asking for context when necessary, LLMs like



ChatGPT and GPT-4 can deliver more valuable and accurate
responses.

Figure 3-3 demonstrates how asking for context changes the
decision-making process of LLMs. Upon receiving user input,
the model first assesses whether the context given is sufficient.
If not, it prompts the user to provide more detailed information,
emphasizing the model’s reliance on context-rich inputs. Once
adequate context is acquired, the LLM then generates an
informed and relevant response.

Figure 3-3. The decision process of an LLM while asking for context



ALLOW THE LLM TO ASK FOR MORE CONTEXT BY DEFAULT

You can allow the LLM to ask for more context as a default by including this key
phrase: If you need more context, please specify what would help you to make a better
decision.

In this section, you’ve seen how LLMs can act as agents that use
environmental context to make decisions. By iteratively
refining the prompt based on the model’s recommendations, we
eventually reach a point where the model has enough context to
make a well-informed decision.

This process highlights the importance of providing sufficient
context in your prompts and being prepared to ask for more
information when necessary. By doing so, you can leverage the
power of LLMs like GPT-4 to make more accurate and valuable
recommendations.

In agent-based systems like GPT-4, the ability to ask for more
context and provide a finalized answer is crucial for making
well-informed decisions. AutoGPT, a multiagent system, has a
self-evaluation step that automatically checks whether the task
can be completed given the current context within the prompt.
This technique uses an actor–critic relationship, where the
existing prompt context is being analyzed to see whether it
could be further refined before being executed.

https://oreil.ly/l3Ihy


Text Style Unbundling

Text style unbundling is a powerful technique in prompt
engineering that allows you to extract and isolate specific
textual features from a given document, such as tone, length,
vocabulary, and structure.

This allows you to create new content that shares similar
characteristics with the original document, ensuring
consistency in style and tone across various forms of
communication.

This consistency can be crucial for businesses and
organizations that need to communicate with a unified voice
across different channels and platforms. The benefits of this
technique include:

Improved brand consistency

By ensuring that all content follows a similar style,
organizations can strengthen their brand identity and
maintain a cohesive image.

Streamlined content creation



By providing a clear set of guidelines, writers and content
creators can more easily produce materials that align
with a desired style.

Adaptability

Text style unbundling allows for the easy adaptation of
existing content to new formats or styles while preserving
the core message and tone.

The process of text style unbundling involves identifying the
desired textual features or creating a meta prompt (a prompt to
create prompts) to extract these features and then using the
extracted features to guide the generation of new content.

Identifying the Desired Textual
Features

To successfully unbundle a text style, you must first identify the
specific features you want to extract from the input document.
Common textual features to consider include:

Tone of voice

The overall mood or attitude conveyed by the text, such as
formal, casual, humorous, or authoritative



Length

The desired word count or general length of the content

Vocabulary and phrasing

The choice of words and expressions, including industry-
specific jargon, colloquialisms, and complexity

Additionally, you can even create a meta prompt that will
dynamically show you these.

Input:

Analyze the following text and identify core feat

further documents to imitate the same style, cons

as the document below. 

 

Provide all of the features as a style writing gu

for future documents. 

 

Analyze the following text: 

 

Artificial intelligence is rapidly transforming t

opening up new possibilities and revolutionizing 

health care to entertainment, AI is making our li

convenient in countless ways. However, with great

responsibility. We must ensure that AI technologi

deployed ethically and responsibly to protect ou



values.

Output:

Style Writing Guide: 

 

Tone of Voice 

- Maintain an informative and optimistic tone th

- Emphasize the positive impact of the subject ma

any potential concerns or responsibilities. 

 

Length: 

... 

 

Vocabulary: 

... 

 

Structure: 

... 

 

Content: 

- Focus on the transformative nature and positive

matter. 

- Highlight specific industries or areas where th

made a difference. 

- Acknowledge any associated responsibilities or 

emphasizing the need for ethical and responsible 

Stress the importance of privacy protection and u



Stress the importance of privacy protection and u

relation to the subject matter.

Generating New Content with the
Extracted Features

After you’ve extracted the desired features from the input
document, you can use this information to guide future content
generation. Remember to ensure that the AI model incorporates
the extracted features into its output by specifying the desired
style in your prompt. For example:

Write a new blog post on [topic] using the same

tone of voice, length, vocabulary, and

structure as the previously analyzed text.

By combining this technique with reference text (documents
that act as grounding truth), you can produce credible, branded
content that requires minimal revisions.

Extracting Specific Textual Features
with LLMs



You can easily tailor a prompt to guide an LLM in extracting
particular textual features from a document. This can be
applied beyond just analyzing text for copywriting purposes.
For instance, recognizing entities or discerning sentiment from
the text can be achieved by crafting a precise instruction for the
LLM.

Input:

Analyze the following text to identify and list t

 

Artificial intelligence is rapidly transforming t

opening up new possibilities and revolutionizing 

health care to entertainment, AI is making our li

convenient in countless ways. However, with great

responsibility. We must ensure that AI technologi

and deployed ethically and responsibly to protect

uphold our values.

Output:

Entities: 

- Artificial Intelligence (AI) 

- Health care 

- Entertainment 



- Privacy 

- Values

Summarization

In the era of information overload, the ability to condense large
amounts of text into concise, digestible summaries has become
an essential skill. As the volume of data we produce and
consume continues to grow, the demand for effective
summarization techniques has increased significantly.

AI has made significant advancements in this domain,
providing powerful tools for generating summaries that retain
the most critical information while discarding less relevant
details.

Let’s explore how to summarize using a language model.

Input:

Summarize the following text: 

 

Whereas the party of the first part, hereinafter 

"Purchaser," and the party of the second part, he

as the "Vendor," being fully cognizant of their 

obligations and responsibilities pursuant to the 



g p p

provisions and common law doctrines, have duly en

binding agreement, hereinafter referred to as the

purpose of effectuating a transaction involving t

hereinafter referred to as the "Goods," between t

Vendor, subject to the terms and conditions set f

do hereby solemnly acknowledge and affirm the fol

...

Output:

This is a legally binding agreement between the P

for the transfer of goods. The agreement incorpo

integral part, but in case of any conflict, the o

agreement prevail. The interpretation clause stat

include the plural and vice versa, and words refe

all genders. References to statutory provisions i

replacements.

Summarization is an invaluable application of AI, enabling
users to quickly extract key insights from lengthy articles,
reports, or research papers. This process can help individuals
make informed decisions, save time, and prioritize their
reading. AI-generated summaries can also facilitate information
sharing among teams, allowing for more efficient collaboration
and communication.



Summarizing Given Context Window
Limitations

For documents larger than an LLM can handle in a single API
request, a common approach is to chunk the document,
summarize each chunk, and then combine these summaries
into a final summary, as shown in Figure 3-4.



Figure 3-4. A summarization pipeline that uses text splitting and multiple
summarization steps



Additionally, people may require different types of summaries
for various reasons, and this is where AI summarization comes
in handy. As illustrated in the preceding diagram, a large PDF
document could easily be processed using AI summarization to
generate distinct summaries tailored to individual needs:

Summary A

Provides key insights, which is perfect for users seeking a
quick understanding of the document’s content, enabling
them to focus on the most crucial points

Summary B

On the other hand, offers decision-making information,
allowing users to make informed decisions based on the
content’s implications and recommendations

Summary C

Caters to collaboration and communication, ensuring that
users can efficiently share the document’s information
and work together seamlessly

By customizing the summaries for different users, AI
summarization contributes to increased information retrieval
for all users, making the entire process more efficient and
targeted.



Let’s assume you’re only interested in finding and summarizing
information about the advantages of digital marketing. Simply
change your summarization prompt to Provide a concise,
abstractive summary of the above text. Only

summarize the advantages: ...

AI-powered summarization has emerged as an essential tool for
quickly distilling vast amounts of information into concise,
digestible summaries that cater to various user needs. By
leveraging advanced language models like GPT-4, AI
summarization techniques can efficiently extract key insights
and decision-making information, and also facilitate
collaboration and communication.

As the volume of data continues to grow, the demand for
effective and targeted summarization will only increase,
making AI a crucial asset for individuals and organizations
alike in navigating the Information Age.

Chunking Text

LLMs continue to develop and play an increasingly crucial role
in various applications, as the ability to process and manage
large volumes of text becomes ever more important. An



essential technique for handling large-scale text is known as
chunking.

Chunking refers to the process of breaking down large pieces of
text into smaller, more manageable units or chunks. These
chunks can be based on various criteria, such as sentence,
paragraph, topic, complexity, or length. By dividing text into
smaller segments, AI models can more efficiently process,
analyze, and generate responses.

Figure 3-5 illustrates the process of chunking a large piece of
text and subsequently extracting topics from the individual
chunks.



Figure 3-5. Topic extraction with an LLM after chunking text

Benefits of Chunking Text

There are several advantages to chunking text, which include:

Fitting within a given context length

LLMs only have a certain amount of input and output
tokens, which is called a context length. By reducing the
input tokens you can make sure the output won’t be cut
off and the initial request won’t be rejected.



Reducing cost

Chunking helps you to only retrieve the most important
points from documents, which reduces your token usage
and API costs.

Improved performance

Chunking reduces the processing load on LLMs, allowing
for faster response times and more efficient resource
utilization.

Increased flexibility

Chunking allows developers to tailor AI responses based
on the specific needs of a given task or application.

Scenarios for Chunking Text

Chunking text can be particularly beneficial in certain
scenarios, while in others it may not be required.
Understanding when to apply this technique can help in
optimizing the performance and cost efficiency of LLMs.

When to chunk

Large documents



When dealing with extensive documents that exceed the
maximum token limit of the LLM

Complex analysis

In scenarios where a detailed analysis is required and the
document needs to be broken down for better
comprehension and processing

Multitopic documents

When a document covers multiple topics and it’s
beneficial to handle them individually

When not to chunk

Short documents

When the document is short and well within the token
limits of the LLM

Simple analysis

In cases where the analysis or processing required is
straightforward and doesn’t benefit from chunking

Single-topic documents



When a document is focused on a single topic and
chunking doesn’t add value to the processing

Poor Chunking Example

When text is not chunked correctly, it can lead to reduced LLM
performance. Consider the following paragraph from a news
article:

The local council has decided to increase the bud

this year, a move that has been welcomed by paren

additional funds will be used to improve school i

teachers, and provide better resources for studen

argue that the increase is not enough to address 

education system.

When the text is fragmented into isolated words, the resulting
list lacks the original context:

["The", "local", "council", "has", "decided", "to

"budget", ...]

The main issues with this poor chunking example include:

Loss of context



By splitting the text into individual words, the original
meaning and relationships between the words are lost.
This makes it difficult for AI models to understand and
respond effectively.

Increased processing load

Processing individual words requires more computational
resources, making it less efficient than processing larger
chunks of text.

As a result of the poor chunking in this example, an LLM may
face several challenges:

Difficulty understanding the main ideas or themes of the
text
Struggling to generate accurate summaries or translations
Inability to effectively perform tasks such as sentiment
analysis or text classification

By understanding the pitfalls of poor chunking, you can apply
prompt engineering principles to improve the process and
achieve better results with AI language models.

Let’s explore an improved chunking example using the same
news article paragraph from the previous section; you’ll now



chunk the text by sentence:

["""The local council has decided to increase the

by 10% this year, a move that has been welcomed b

""", 

 

"""The additional funds will be used to improve s

hire more teachers, and provide better resources 

 

""""However, some critics argue that the increase

address the growing demands of the education syst

DIVIDE LABOR AND EVALUATE QUALITY

Define the granularity at which the text should be chunked, such as by sentence,
paragraph, or topic. Adjust parameters like the number of tokens or model
temperature to optimize the chunking process.

By chunking the text in this manner, you could insert whole
sentences into an LLM prompt with the most relevant
sentences.

Chunking Strategies

There are many different chunking strategies, including:



Splitting by sentence

Preserves the context and structure of the original
content, making it easier for LLMs to understand and
process the information. Sentence-based chunking is
particularly useful for tasks like summarization,
translation, and sentiment analysis.

Splitting by paragraph

This approach is especially effective when dealing with
longer content, as it allows the LLM to focus on one
cohesive unit at a time. Paragraph-based chunking is ideal
for applications like document analysis, topic modeling,
and information extraction.

Splitting by topic or section

This method can help AI models better identify and
understand the main themes and ideas within the
content. Topic-based chunking is well suited for tasks like
text classification, content recommendations, and
clustering.

Splitting by complexity

For certain applications, it might be helpful to split text
based on its complexity, such as the reading level or



technicality of the content. By grouping similar
complexity levels together, LLMs can more effectively
process and analyze the text. This approach is useful for
tasks like readability analysis, content adaptation, and
personalized learning.

Splitting by length

This technique is particularly helpful when working with
very long or complex documents, as it allows LLMs to
process the content more efficiently. Length-based
chunking is suitable for applications like large-scale text
analysis, search engine indexing, and text preprocessing.

Splitting by tokens using a tokenizer

Utilizing a tokenizer is a crucial step in many natural
language processing tasks, as it enables the process of
splitting text into individual tokens. Tokenizers divide text
into smaller units, such as words, phrases, or symbols,
which can then be analyzed and processed by AI models
more effectively. You’ll shortly be using a package called
tiktoken , which is a bytes-pair encoding tokenizer
(BPE) for chunking.

Table 3-1 provides a high-level overview of the different
chunking strategies; it’s worth considering what matters to you



most when performing chunking.

Are you more interested in preserving semantic context, or
would naively splitting by length suffice?



Table 3-1. Six chunking strategies highlighting their advantages and disadvantages

Splitting
strategy

Advantages Disadvantages

Splitting by
sentence

Preserves context,
suitable for various
tasks

May not be efficient
for very long
content

Splitting by
paragraph

Handles longer content,
focuses on cohesive
units

Less granularity,
may miss subtle
connections

Splitting by
topic

Identifies main themes,
better for classification

Requires topic
identification, may
miss fine details

Splitting by
complexity

Groups similar
complexity levels,
adaptive

Requires complexity
measurement, not
suitable for all tasks

Splitting by
length

Manages very long
content, efficient
processing

Loss of context, may
require more
preprocessing steps



Splitting
strategy

Advantages Disadvantages

Using a
tokenizer:
Splitting by
tokens

Accurate token counts,
which helps in avoiding
LLM prompt token
limits

Requires
tokenization, may
increase
computational
complexity

By choosing the appropriate chunking strategy for your specific
use case, you can optimize the performance and accuracy of AI
language models.

Sentence Detection Using SpaCy

Sentence detection, also known as sentence boundary
disambiguation, is the process used in NLP that involves
identifying the start and end of sentences within a given text. It
can be particularly useful for tasks that require preserving the
context and structure of the original content. By splitting the
text into sentences, LLMs can better understand and process
the information for tasks such as summarization, translation,
and sentiment analysis.



Splitting by sentence is possible using NLP libraries such as
spaCy. Ensure that you have spaCy installed in your Python
environment. You can install it with pip install spacy .
Download the en_core_web_sm  model using the command
python -m spacy download en_core_web_sm .

In Example 3-3, the code demonstrates sentence detection using
the spaCy library in Python.

Example 3-3. Sentence detection with spaCy

import spacy 

 

nlp = spacy.load("en_core_web_sm") 

 

text = "This is a sentence. This is another sente

 

doc = nlp(text) 

 

for sent in doc.sents: 

    print(sent.text)

Output:

This is a sentence. 

This is another sentence.

https://spacy.io/
https://oreil.ly/GKDnc


First, you’ll import the spaCy library and load the English model
(en_core_web_sm)  to initialize an nlp  object. Define an
input text with two sentences; the text is then processed with
doc = nlp(text) , creating a doc  object as a result. Finally,
the code iterates through the detected sentences using the
doc.sents  attribute and prints each sentence.

Building a Simple Chunking
Algorithm in Python

After exploring many chunking strategies, it’s important to
build your intuition by writing a simple chunking algorithm
from scatch.

Example 3-4 shows how to chunk text based on the length of
characters from the blog post “Hubspot - What Is Digital
Marketing?” This file can be found in the Github repository at
content/chapter_3/hubspot_blog_post.txt.

To correctly read the hubspot_blog_post.txt file, make sure your
current working directory is set to the content/chapter_3 GitHub
directory. This applies for both running the Python code or
launching the Jupyter Notebook server.

https://oreil.ly/30rlQ
https://oreil.ly/OHurh


Example 3-4. Character chunking

with open("hubspot_blog_post.txt", "r") as f: 

    text = f.read() 

 

chunks = [text[i : i + 200] for i in range(0, len

 

for chunk in chunks: 

    print("-" * 20) 

    print(chunk)

Output:

search engine optimization strategy for many loca

Google My Business profile to appear in local sea

products or services related to what yo 

-------------------- 

u offer. 

 

For Keeps Bookstore, a local bookstore in Atlanta

Google My Business profile for local SEO so it ap

“atlanta bookstore.” 

-------------------- 

...(shortened for brevity)...

https://oreil.ly/n3sNy


First, you open the text file hubspot_blog_post.txt with the
open  function and read its contents into the variable text.
Then using a list comprehension you create a list of chunks,
where each chunk  is a 200 character substring of text.

Then you use the range  function to generate indices for each
200 character substring, and the i:i+200  slice notation to
extract the substring from text.

Finally, you loop through each chunk in the chunks  list and
print  it to the console.

As you can see, because the chunking implementation is
relatively simple and only based on length, there are gaps
within the sentences and even words.

For these reasons we believe that good NLP chunking has the
following properties:

Preserves entire words, ideally sentences and contextual
points made by speakers
Handles for when sentences span across several pages, for
example, page 1 into page 2
Provides an adequate token count for each chunk  so that
the total number of input tokens will appropriately fit into
a given token context window for any LLM



Sliding Window Chunking

Sliding window chunking is a technique used for dividing text
data into overlapping chunks, or windows, based on a specified
number of characters.

But what exactly is a sliding window?

Imagine viewing a long piece of text through a small window.
This window is only capable of displaying a fixed number of
characters at a time. As you slide this window from the
beginning to the end of the text, you see overlapping chunks of
text. This mechanism forms the essence of the sliding window
approach.

Each window size is defined by a fixed number of characters,
and the step size determines how far the window moves with
each slide.

In Figure 3-6, with a window size of 5 characters and a step size
of 1, the first chunk would contain the first 5 characters of the
text. The window then slides 1 character to the right to create
the second chunk, which contains characters 2 through 6.



This process repeats until the end of the text is reached,
ensuring each chunk overlaps with the previous and next ones
to retain some shared context.

Figure 3-6. A sliding window, with a window size of 5 and a step size of 1

Due to the step size being 1, there is a lot of duplicate
information between chunks, and at the same time the risk of
losing information between chunks is dramatically reduced.

This is in stark contrast to Figure 3-7, which has a window size
of 4 and a step size of 2. You’ll notice that because of the 100%



increase in step size, the amount of information shared
between the chunks is greatly reduced.

Figure 3-7. A sliding window, with a window size of 4 and a step size of 2

You will likely need a larger overlap if accuracy and preserving
semanatic context are more important than minimizing token
inputs or the number of requests made to an LLM.

Example 3-5 shows how you can implement a sliding window
using Python’s len()  function. The len()  function provides
us with the total number of characters in a given text string,
which subsequently aids in defining the parameters of our
sliding windows.

Example 3-5. Sliding window

def sliding_window(text, window_size, step_size)

if i d i l (t t) t i 1

https://oreil.ly/aCkDo


    if window_size > len(text) or step_size < 1: 

        return [] 

    return [text[i:i+window_size] for i 

    in range(0, len(text) - window_size + 1, step

 

text = "This is an example of sliding window text

window_size = 20 

step_size = 5 

 

chunks = sliding_window(text, window_size, step_s

 

for idx, chunk in enumerate(chunks): 

    print(f"Chunk {idx + 1}: {chunk}")

This code outputs:

Chunk 1: This is an example o 

Chunk 2: is an example of sli 

Chunk 3:  example of sliding 

Chunk 4: ple of sliding windo 

Chunk 5: f sliding window tex 

Chunk 6: ding window text chu 

Chunk 7: window text chunking

In the context of prompt engineering, the sliding window
approach offers several benefits over fixed chunking methods.
It allows LLMs to retain a higher degree of context, as there is



an overlap between the chunks and offers an alternative
approach to preserving context compared to sentence
detection.

Text Chunking Packages

When working with LLMs such as GPT-4, always remain wary
of the maximum context length:

maximum_context_length = input_tokens +

output_tokens

There are various tokenizers available to break your text down
into manageable units, the most popular ones being NLTK,
spaCy, and tiktoken.

Both NLTK and spaCy provide comprehensive support for text
processing, but you’ll be focusing on tiktoken.

Text Chunking with Tiktoken

Tiktoken is a fast byte pair encoding (BPE) tokenizer that breaks
down text into subword units and is designed for use with

https://oreil.ly/wTmI7
https://oreil.ly/c4MvQ
https://oreil.ly/oSpVe


OpenAI’s models. Tiktoken offers faster performance than
comparable open source tokenizers.

As a developer working with GPT-4 applications, using tiktoken
offers you several key advantages:

Accurate token breakdown

It’s crucial to divide text into tokens because GPT models
interpret text as individual tokens. Identifying the
number of tokens in your text helps you figure out
whether the text is too lengthy for a model to process.

Effective resource utilization

Having the correct token count enables you to manage
resources efficiently, particularly when using the OpenAI
API. Being aware of the exact number of tokens helps you
regulate and optimize API usage, maintaining a balance
between costs and resource usage.

Encodings

Encodings define the method of converting text into tokens,
with different models utilizing different encodings. Tiktoken
supports three encodings commonly used by OpenAI models:



Encoding name OpenAI models

cl100k_base GPT-4, GPT-3.5-turbo, text-embedding-ada-
002

p50k_base Codex models, text-davinci-002, text-
davinci-003

r50k_base (or
gpt2)

GPT-3 models like davinci

Understanding the Tokenization of Strings

In English, tokens can vary in length, ranging from a single
character like t, to an entire word such as great. This is due to
the adaptable nature of tokenization, which can accommodate
even tokens shorter than a character in complex script
languages or tokens longer than a word in languages without
spaces or where phrases function as single units.

It is not uncommon for spaces to be included within tokens,
such as "is"  rather than "is "  or " "+"is" . This practice
helps maintain the original text formatting and can capture
specific linguistic characteristics.



NOTE

To easily examine the tokenization of a string, you can use OpenAI Tokenizer.

You can install tiktoken from PyPI with pip install
tiktoken . In the following example, you’ll see how to easily
encode text into tokens and decode tokens into text:

# 1. Import the package: 

import tiktoken 

 

# 2. Load an encoding with tiktoken.get_encoding

encoding = tiktoken.get_encoding("cl100k_base") 

 

# 3. Turn some text into tokens with encoding.enc

# while turning tokens into text with encoding.de

print(encoding.encode("Learning how to use Tiktok

print(encoding.decode([1061, 15009, 374, 264, 229

311, 4048, 922, 15592, 0])) 

 

# [48567, 1268, 311, 1005, 73842, 5963, 374, 2523

# "Data engineering is a great way to learn about

Additionally let’s write a function that will tokenize the text and
then count the number of tokens given a text_string  and
encoding_name .

https://oreil.ly/K6ZQK
https://oreil.ly/HA2QD


def count_tokens(text_string: str, encoding_name

    """ 

    Returns the number of tokens in a text string

 

    Args: 

        text: The text string to be tokenized. 

        encoding_name: The name of the encoding t

 

    Returns: 

        The number of tokens in the text string. 

 

    Raises: 

        ValueError: If the encoding name is not 

    """ 

    encoding = tiktoken.get_encoding(encoding_nam

    num_tokens = len(encoding.encode(text_string

    return num_tokens 

 

# 4. Use the function to count the number of toke

text_string = "Hello world! This is a test." 

print(count_tokens(text_string, "cl100k_base"))

This code outputs 8 .



Estimating Token Usage for Chat API
Calls

ChatGPT models, such as GPT-3.5-turbo and GPT-4, utilize
tokens similarly to previous completion models. However, the
message-based structure makes token counting for
conversations more challenging:

def num_tokens_from_messages(messages, model="gpt

    """Return the number of tokens used by a list

    try: 

        encoding = tiktoken.encoding_for_model(mo

    except KeyError: 

        print("Warning: model not found. Using cl

        encoding = tiktoken.get_encoding("cl100k_

    if model in { 

        "gpt-3.5-turbo-0613", 

        "gpt-3.5-turbo-16k-0613",

        "gpt-4-0314", 

        "gpt-4-32k-0314", 

        "gpt-4-0613", 

        "gpt-4-32k-0613", 

        }: 

        tokens_per_message = 3 

        tokens_per_name = 1 

    elif model == "gpt-3.5-turbo-0301": 



        tokens_per_message = 4  # every message f

        # <|start|>{role/name}\n{content}<|end|>\

        tokens_per_name = -1  # if there's a name

    elif "gpt-3.5-turbo" in model: 

        print('''Warning: gpt-3.5-turbo may updat

        num tokens assuming gpt-3.5-turbo-0613.'

        return num_tokens_from_messages(messages

    elif "gpt-4" in model: 

        print('''Warning: gpt-4 may update over t

        Returning num tokens assuming gpt-4-0613

        return num_tokens_from_messages(messages

    else:

        raise NotImplementedError( 

            f"""num_tokens_from_messages() is not

            {model}.""" 

        ) 

    num_tokens = 0 

    for message in messages: 

        num_tokens += tokens_per_message 

        for key, value in message.items(): 

            num_tokens += len(encoding.encode(val

            if key == "name": 

                num_tokens += tokens_per_name 

    num_tokens += 3  # every reply is primed with

    # <|start|>assistant<|message|> 

    return num_tokens



Example 3-6 highlights the specific structure required to make a
request against any of the chat models, which are currently
GPT-3x and GPT-4.

Normally, chat history is structured with a system  message
first, and then succeeded by alternating exchanges between the
user  and the assistant .

Example 3-6. A payload for the Chat Completions API on
OpenAI

example_messages = [ 

    { 

        "role": "system", 

        "content": '''You are a helpful, pattern

        translates corporate jargon into plain En

    }, 

    { 

        "role": "system", 

        "name": "example_user", 

        "content": "New synergies will help drive

    }, 

    { 

        "role": "system", 

        "name": "example_assistant", 

        "content": "Things working well together 

    }, 



    { 

        "role": "system", 

        "name": "example_user", 

        "content": '''Let's circle back when we h

        base on opportunities for increased leve

    }, 

    { 

        "role": "system", 

        "name": "example_assistant", 

        "content": '''Let's talk later when we're

        do better.''', 

    }, 

    { 

        "role": "user", 

        "content": '''This late pivot means we do

        time to boil the ocean for the client del

    }, 

] 

 

for model in ["gpt-3.5-turbo-0301", "gpt-4-0314"

    print(model) 

    # example token count from the function defin

    print(f'''{num_tokens_from_messages(example_m

    prompt tokens counted by num_tokens_from_mess

"role": "system"  describes a system message that’s useful
for providing prompt instructions. It offers a means to tweak the



assistant’s character or provide explicit directives regarding its
interactive approach. It’s crucial to understand, though, that the
system command isn’t a prerequisite, and the model’s default
demeanor without a system command could closely resemble
the behavior of “You are a helpful assistant.”

The roles that you can have are ["system", "user",
"assistant"] .

"content": "Some content"  is where you place the prompt
or responses from a language model, depending upon the
message’s role. It can be either "assistant" , "system" , or
"user" .

Sentiment Analysis

Sentiment analysis is a widely used NLP technique that helps in
identifying, extracting, and understanding the emotions,
opinions, or sentiments expressed in a piece of text. By
leveraging the power of LLMs like GPT-4, sentiment analysis
has become an essential tool for businesses, researchers, and
developers across various industries.

The primary goal of sentiment analysis is to determine the
attitude or emotional tone conveyed in a text, whether it’s



positive, negative, or neutral. This information can provide
valuable insights into consumer opinions about products or
services, help monitor brand reputation, and even assist in
predicting market trends.

The following are several prompt engineering techniques for
creating effective sentiment analysis prompts:

Input:

Is this text positive or negative? 

 

I absolutely love the design of this phone, but t

disappointing.

Output:

The text has a mixed tone, as it contains both po

aspects. The positive part is "I absolutely love 

while the negative part is "the battery life is q

Although GPT-4 identifies a “mixed tone,” the outcome is a
result of several shortcomings in the prompt:

Lack of clarity



The prompt does not clearly define the desired output
format.

Insufficient examples

The prompt does not include any examples of positive,
negative, or neutral sentiments, which could help guide
the LLM in understanding the distinctions between them.

No guidance on handling mixed sentiments

The prompt does not specify how to handle cases where
the text contains a mix of positive and negative
sentiments.

Input:

Using the following examples as a guide: 

positive: 'I absolutely love the design of this p

negative: 'The battery life is quite disappointin

neutral: 'I liked the product, but it has short b

 

Only return either a single word of: 

- positive 

- negative 

- neutral 

 

Please classify the sentiment of the following te



or neutral: I absolutely love the design of this 

life is quite disappointing.

Output:

neutral

This prompt is much better because it:

Provides clear instructions

The prompt clearly states the task, which is to classify the
sentiment of the given text into one of three categories:
positive, negative, or neutral.

Offers examples

The prompt provides examples for each of the sentiment
categories, which helps in understanding the context and
desired output.

Defines the output format

The prompt specifies that the output should be a single
word, ensuring that the response is concise and easy to
understand.



Techniques for Improving Sentiment
Analysis

To enhance sentiment analysis accuracy, preprocessing the
input text is a vital step. This involves the following:

Special characters removal

Exceptional characters such as emojis, hashtags, and
punctuation may skew the rule-based sentiment
algorithm’s judgment. Besides, these characters might not
be recognized by machine learning and deep learning
models, resulting in misclassification.

Lowercase conversion

Converting all the characters to lowercase aids in creating
uniformity. For instance, words like Happy and happy are
treated as different words by models, which can cause
duplication and inaccuracies.

Spelling correction

Spelling errors can cause misinterpretation and
misclassification. Creating a spell-check pipeline can
significantly reduce such errors and improve results.



For industry- or domain-specific text, embedding domain-
specific content in the prompt helps in navigating the LLM’s
sense of the text’s framework and sentiment. It enhances
accuracy in the classification and provides a heightened
understanding of particular jargon and expressions.

Limitations and Challenges in Sentiment
Analysis

Despite the advancements in LLMs and the application of
prompt engineering techniques, sentiment analysis still faces
some limitations and challenges:

Handling sarcasm and irony

Detecting sarcasm and irony in text can be difficult for
LLMs, as it often requires understanding the context and
subtle cues that humans can easily recognize.
Misinterpreting sarcastic or ironic statements may lead to
inaccurate sentiment classification.

Identifying context-specific sentiment

Sentiment analysis can be challenging when dealing with
context-specific sentiments, such as those related to
domain-specific jargon or cultural expressions. LLMs may



struggle to accurately classify sentiments in these cases
without proper guidance or domain-specific examples.

Least to Most

The least to most technique in prompt engineering is a
powerful method for sequentially generating or extracting
increasingly detailed knowledge on a given topic. This method
is particularly effective when dealing with complex subjects or
when a high level of detail is necessary.

Least to most uses a chain of prompts where each new prompt
is based on the last answer. This step-by-step approach helps
gather more detailed information each time, making it easier to
dive deeper into any topic.

This technique can also be applied to code generation, as
demonstrated in a Flask Hello World  app example.

Planning the Architecture

Before diving into the architecture, let’s briefly understand
what Flask is. Flask is a lightweight web application framework
in Python, widely used for creating web applications quickly
and with minimal code. (Flask is only used for demonstration

https://oreil.ly/7N-bs


purposes here and isn’t included within the requirements.txt file
for the book.

Now, let’s ask an LLM to outline the basic architecture for a
simple Flask “Hello World” application.

Input:

Outline the basic architecture for a simple Flask

Output:

Sure! Here's an outline for a basic Flask "Hello 

 

Import Flask module: Import the Flask module 

to use its ((("Flask module code generation")))fu

 

Create an instance of the Flask application: Crea

Flask class to represent your web application. 

Define a route and view function: ... 

Implement the view function: ... 

Run the application: Start the Flask development 

Coding Individual Functions

https://oreil.ly/TRK0i


Before coding, let’s clarify what a Flask route is: it’s a function
linked to a URL pattern that determines what users see on a
specific web page. Next, we’ll provide the code snippet for a
simple “Hello World” route in Flask.

Input:

Provide a code snippet for a simple "Hello World

Output:

Certainly! Here's a simple code snippet for a "He

 

from flask import Flask 

 

app = Flask(__name__) 

 

@app.route('/') 

def hello_world(): 

    return 'Hello, World!' 

 

if __name__ == '__main__': 

    app.run()



In this code, we import the Flask module and create a Flask
application instance named app . We then define a route using
the @app.route  decorator, specifying the root URL path '/' .
The hello_world  function is associated with this route, and it
returns the string 'Hello, World!'  as the response.

The Flask application will start by calling app.run()  when
your Python script is executed directly.

Adding Tests

Finally, let’s ask it to generate a test case for the “Hello World”
route in the Flask application.

Input:

Provide an example of a test case for the "Hello 

application.

Output:

Sure! Here's an example of a test case for the "H

Flask application: 

 

import unittest 

from flask import Flask



from flask import Flask 

from flask.testing import FlaskClient 

 

# Create the Flask application 

app = Flask(__name__) 

 

# Create the route 

@app.route('/') 

def hello_world(): 

    return 'Hello, World!' 

 

class FlaskAppTestCase(unittest.TestCase): 

    def setUp(self): 

        # Create a test client 

        self.app = app.test_client() 

 

    def test_hello_world_route(self): 

        # Send a GET request to the route 

        response = self.app.get('/') 

 

        # Check the response status code 

        self.assertEqual(response.status_code, 20

 

        # Check the response data

        self.assertEqual(response.data, b'Hello, 

 

if __name__ == '__main__': 

    unittest.main()



By using the least to most prompt technique, you can gradually
build up the knowledge and understanding required for the
task at hand.

Benefits of the Least to Most Technique

This method is particularly useful for complex tasks, as it allows
an LLM to generate relevant knowledge that will subsequently
be used as context for future tasks.

Let’s dive deeper into the benefits of using this approach in
various other scenarios:

Progressive exploration

Breaking a complex problem into smaller tasks allows an
LLM to provide more detailed and accurate information
at each step. This approach is especially helpful when
working with a new subject matter or a multifaceted
problem.

Flexibility

The least to most technique offers flexibility in addressing
different aspects of a problem. It enables you to pivot,



explore alternative solutions, or dive deeper into specific
areas as needed.

Improved comprehension

By breaking down a task into smaller steps, an LLM can
deliver information in a more digestible format, making it
easier for you to understand and follow.

Collaborative learning

This technique promotes collaboration between you and
an LLM, as it encourages an iterative process of refining
the output and adjusting your responses to achieve the
desired outcome.

Challenges with the Least to Most
Technique

Overreliance on previously generated knowledge

Using previous chat history to store the state may lead to
larger tasks forgetting their initial tasks/outputs due to
limitations in context length.

Dependence on prior prompts



Since each prompt is built upon preceding outputs, it is
imperative to ensure that the quality and responses of
previous prompts provide ample information for the next
step.

EVALUATE QUALITY

In the process of designing prompts, make sure to evaluate the quality of each prior
LLM response. The performance of the next task depends upon the quality of
information provided by the preceding one.

Role Prompting

Role prompting is a technique in which the AI is given a specific
role or character to assume while generating a response. This
helps guide the AI’s response style and content to better align
with the user’s needs or desired outcome.

NOTE

Awesome ChatGPT prompts provides an extensive list of role prompts that you can
use.

Let’s ask ChatGPT to take on the role of a tech reviewer for
MongoDB.

https://oreil.ly/8pf40


Input:

I want you to act as a tech reviewer. I will give

of technology and you will provide me with an in

pros, cons, features, and comparisons to other te

My first suggestion request is: MongoDB.

Output:

MongoDB is a popular NoSQL, document-oriented dat

designed to handle high-volume data storage and 

 

Features: 

 

1. Document-Oriented Storage: MongoDB stores data

format called BSON, making it easy to store compl

arrays and nested objects. 

... 

 

Pros: 

1. High Performance: MongoDB's indexing and cachi

fast read and write operations. 

... 

 

Cons: 

1. Limited Support for Transactions: While MongoD

ACID transactions, it may not be the best choice 



require complex transactional operations. 

... 

 

 

Comparisons to other technologies: 

1. Couchbase, another popular NoSQL database, off

MongoDB, including flexible schema and JSON-based

Couchbase is more focused on distributed caching 

suitable for applications requiring low-latency d

 

Conclusion: 

 

MongoDB is a powerful and versatile NoSQL databas

various applications, particularly those requirin

scalability. Its flexible data model, rich query 

consistency make it a popular choice among develo

The prompt is an excellent example of role prompting, as it
clearly defines the role the AI should assume (a tech reviewer)
and sets expectations for the type of response desired (an in-
depth review of MongoDB).

GIVE DIRECTION

When crafting prompts, consider assigning a specific role to the AI. This sets the
proper context for the response, creating a more focused and relevant output.



Benefits of Role Prompting

Role prompting helps narrow down the AI’s responses, ensuring
more focused, contextually appropriate, and tailored results. It
can also enhance creativity by pushing the AI to think and
respond from unique perspectives.

Challenges of Role Prompting

Role prompting can pose certain challenges. There might be
potential risks for bias or stereotyping based on the role
assigned. Assigning stereotyped roles can lead to generating
biased responses, which could harm usability or offend
individuals. Additionally, maintaining consistency in the role
throughout an extended interaction can be difficult. The model
might drift off-topic or respond with information irrelevant to
the assigned role.

EVALUATE QUALITY

Consistently check the quality of the LLM’s responses, especially when role
prompting is in play. Monitor if the AI is sticking to the role assigned or if it is veering
off-topic.



When to Use Role Prompting

Role prompting is particularly useful when you want to:

Elicit specific expertise

If you need a response that requires domain knowledge
or specialized expertise, role prompting can help guide
the LLM to generate more informed and accurate
responses.

Tailor response style

Assigning a role can help an LLM generate responses that
match a specific tone, style, or perspective, such as a
formal, casual, or humorous response.

Encourage creative responses

Role prompting can be used to create fictional scenarios
or generate imaginative answers by assigning roles like a
storyteller, a character from a novel, or a historical figure.

Explore diverse perspectives: If you want to explore
different viewpoints on a topic, role prompting can
help by asking the AI to assume various roles or



personas, allowing for a more comprehensive
understanding of the subject.
Enhance user engagement: Role prompting can make
interactions more engaging and entertaining by
enabling an LLM to take on characters or personas that
resonate with the user.

If you’re using OpenAI, then the best place to add a role is
within the System Message  for chat models.

GPT Prompting Tactics

So far you’ve already covered several prompting tactics,
including asking for context, text style bundling, least to most,
and role prompting.

Let’s cover several more tactics, from managing potential
hallucinations with appropriate reference text, to providing an
LLM with critical thinking time, to understanding the concept of
task decomposition—we have plenty for you to explore.

These methodologies have been designed to significantly boost
the precision of your AI’s output and are recommended by
OpenAI. Also, each tactic utilizes one or more of the prompt
engineering principles discussed in Chapter 1.

https://oreil.ly/QZE8n


Avoiding Hallucinations with Reference

The first method for avoiding text-based hallucinations is to
instruct the model to only answer using reference text.

By supplying an AI model with accurate and relevant
information about a given query, the model can be directed to
use this information to generate its response.

Input:

Refer to the articles enclosed within triple quot

 

You must follow the following principles: 

- In cases where the answer isn't found within th

return "I could not find an answer". 

 

""" 

B2B clients tend to have longer decision-making p

sales funnels. Relationship-building strategies w

clients, whereas B2C customers tend to respond be

and messages. 

""" 

 

Example responses: 

- I could not find an answer. 

- Yes, B2B clients tend to have longer decision-m

longer sales funnels



longer sales funnels.

Output:

Yes, B2B clients tend to have longer decision-mak

to longer sales cycles.

If you were to ask the same reference text this question:

Input:

...The rest of the prompt... 

 

Question: Are B2C sales more cost-effective?

Output:

I could not find an answer.

GIVE DIRECTION AND SPECIFY FORMAT

The preceding prompt is excellent as it both instructs the model on how to find
answers and also sets a specific response format for any unanswerable questions.



Considering the constrained context windows of GPTs, a
method for dynamically retrieving information relevant to the
asked query might be necessary to utilize this strategy.

Another approach is to direct the model to incorporate
references from a given text in its response. When the input is
enhanced with relevant information, the model can be guided
to include citations in its responses by referring to sections of
the supplied documents. This approach has the added benefit
that citations in the output can be authenticated automatically
by matching strings within the given documents.

Input:

You will be provided with a document delimited by

question. Your task is to answer the question usi

document and to cite the passage(s) of the docume

question. If the document does not contain the in

this question then simply write: "Insufficient in

to the question is provided, it must be annotated

following format to cite relevant passages ({"cit

 

""" 

A nuclear reactor is a device that initiates, con

nuclear chain reaction. The nuclear reactor uses 

nuclear fission to generate heat, which is then o

to drive a turbine and produce electricity. 



 

-Excerpted from https://en.wikipedia.org/wiki/Nuc

""" 

 

Question: What is a nuclear reactor?

Output:

A nuclear reactor is a device that initiates, con

nuclear chain reaction.It uses the energy release

generate heat, which is then often used to produc

and produce electricity. {"citation": "A nuclear 

initiates, controls, and maintains a nuclear chai

reactor uses the energy released by nuclear fissi

is then often used to produce steam to drive a tu

electricity."}

Give GPTs “Thinking Time”

Often, by explicitly guiding an LLM to derive solutions from first
principles before reaching a verdict, you can garner more
accurate responses. Providing an LLM with thinking time can
often lead to better results.

Input:



First, try to solve the problem on your own. Then

matches the proposed solution. Don't judge the gi

tried solving it yourself. 

 

Problem: 

Jane has 5 apples, then John takes 2 from Mary. M

apples. John then gives his apples to Jane. 

 

How many apples does Jane have? 

 

Proposed solution: 

1. Janes originally had 5 apples.

2. John takes 2 apples from Mary, but this doesn

3. John then gives his apples to Jane. 

 

So, Jane's final count of apples is her original 

that John gave her, for a total of 7 apples.

Output:

Let's break down the problem: 

 

1. Jane originally has 5 apples. 

2. John takes 2 apples from Mary. However, this a

impact the number of apples Jane has at this poin

3. John gives his apples to Jane.

 



Following these steps, we need to add the 2 apple

Jane's original number of apples. Therefore: 

 

5 apples (Jane's original number) + 2 apples (giv

 

So, Jane now has 7 apples. My solution matches th

In some cases, when using GPT-4 or other generative AI models,
you may not want the model’s reasoning process to be visible to
the user.

You can achieve this by asking an LLM to generate an inner
monologue. This is particularly useful in tutoring applications,
where revealing the model’s reasoning might give away the
solution prematurely.

The Inner Monologue Tactic

The inner monologue tactic instructs the model to structure
parts of the output that should be hidden from the user in a
specific format. This makes it easy to remove these parts before
presenting the final output to the user.

Here’s how you can utilize this tactic to answer user queries
effectively.



Input:

Step 1: Solve the Problem 

 

First, you need to work out your solution to the 

rely on the user's solution, as it might be inco

your workings within triple quotes (`"""`) to ind

should be hidden. 

 

Step 2: Compare Solutions 

 

Next, compare your solution with the user's solut

user's solution is correct or not. Again, encapsu

triple quotes (`"""`). 

 

Step 3: Prepare a Hint 

 

If the user made a mistake, determine an appropri

guide them toward the correct answer, without giv

This section should also be within triple quotes 

 

Step 4: Deliver the Hint 

 

If a mistake was made, present the hint from the 

Remember not to use triple quotes for this step. 

like "Step 4", use a heading such as `Hint:` 

 

 



 

Problem Statement: A deck of cards has 52 cards: 

clubs, and 13 spades. If two cards are drawn from

replacement, what is the probability that one of 

and the other one is a club? 

 

User's Solution: (13/52)*(13/51) = 169/2652 = 13/

Output:

""" 

Step 1 - My Solution: 

 

First, calculate the probability of drawing 1 hea

deck of 52 cards without replacement. 

 

In the first draw, the probability of drawing a h

 

For the second draw, after removing 1 card (assum

total number of cards becomes 51. So, the probabi

is 13/51. 

 

Multiplying these two probabilities gives the pro

happening in sequence,which is P(Heart then Club

 

Repeat the calculation assuming the first drawn c

second drawn card is a heart. Remember, order mat

we're dealing with separate events



we re dealing with separate events. 

""" 

""" 

Step 2 - Comparison with the User's Solution: 

 

Compare your solution with the user's solution. T

considers the sequence of drawing a heart first a

have not accounted for the alternate sequence  (C

thus, the solution is incomplete.

""" 

""" 

Step 3 - Preparation of Hint: 

 

Given that the user hasn't considered both sequen

and Club then Heart), a hint at the consideration

sequences will be helpful. This could nudge the u

direction without revealing the solution outright

""" 

# Step 4 - Delivery of Hint: 

# Hint: Remember that the two cards could be draw

both possible sequences: Heart then Club and Club

Self-Eval LLM Responses

Another tactic you can use is to critque a generated LLM output
and ask whether the LLM missed any information or important



facts. You’re essentially asking an LLM to evaluate itself based
on its previous output.

First, create a prompt to generate a "Hello World"  function.

Input:

Generate a "Hello World" Python function.

Output:

Sure, here's a very simple Python function that p

the console: 

 

def print_hello_world(): 

    print("Hello, World!") 

 

print_hello_world() 

 

When you run this function, it will print the st

console.

The LLM returns a simple Python function called
print_hello_world()  that prints the traditional “Hello,
World!” greeting.



Then make a second LLM request with the previous chat
history, asking for the initial output to be improved.

Input:

...Previous Chat History... 

 

Given the previous function, can you improve it a

Perhaps defaults or type hints?

Output:

We can add type hints to make it clear that the f

arguments and doesn't return anything. We can als

describe what the function does. 

 

Here's the improved code: 

 

def print_hello_world() -> None: 

    """ 

    Prints "Hello, World!" to the standard output

    """ 

    print("Hello, World!") 

 

If you wanted to make the function more flexible

argument that allows you to print a different mes

 



def print_message(message: str = "Hello, World!"

    """ 

    Prints the given message to the standard outp

    , it defaults to "Hello, World!". 

 

    Args: 

        message (str, optional): The message to b

        Defaults to "Hello, World!". 

    """ 

    print(message)

Consequently GPT-4 returns an upgraded version of the
function, now furnished with Python type hints and a default
argument. This enriches the function with greater flexibility,
allowing it to print not just "Hello, World!"  but any user-
specified message.

These prompt-response exchanges illustrate how you can easily
refine generated LLM outputs until you’re satisfied with the
final output.

NOTE

It’s possible to critique an LLM’s response multiple times, until no further refinement
is provided by the LLM.



Classification with LLMs

Classifying, in the context of AI, refers to the process of
predicting the class or category of a given data point or sample.
It’s a common task in machine learning where models are
trained to assign predefined labels to unlabeled data based on
learned patterns.

LLMs are powerful assets when it comes to classification, even
with zero or only a small number of examples provided within
a prompt. Why? That’s because LLMs, like GPT-4, have been
previously trained on an extensive dataset and now possess a
degree of reasoning.

There are two overarching strategies in solving classification
problems with LLMs: zero-shot learning and few-shot learning.

Zero-shot learning

In this process, the LLM classifies data with exceptional
accuracy, without the aid of any prior specific examples.
It’s akin to acing a project without any preparation—
impressive, right?

Few-shot learning



Here, you provide your LLM with a small number of
examples. This strategy can significantly influence the
structure of your output format and enhance the overall
classification accuracy.

Why is this groundbreaking for you?

Leveraging LLMs lets you sidestep lengthy processes that
traditional machine learning processes demand. Therefore, you
can quickly prototype a classification model, determine a base
level accuracy, and create immediate business value.

WARNING

Although an LLM can perform classification, depending upon your problem and
training data you might find that using a traditional machine learning process could
yield better results.

Building a Classification Model

Let’s explore a few-shot learning example to determine the
sentiment of text into either 'Compliment' , 'Complaint' , or
'Neutral' .

Given the statement, classify it as either "Compl

"Neutral":



Neutral : 

1. "The sun is shining." - Neutral 

2. "Your support team is fantastic!" - Compliment

3. "I had a terrible experience with your softwa

 

You must follow the following principles: 

- Only return the single classification word. The

"Compliment", "Complaint", or "Neutral". 

- Perform the classification on the text enclosed

 

"""The user interface is intuitive.""" 

 

Classification:

Compliment

Several good use cases for LLM classification include:

Customer reviews

Classify user reviews into categories like “Positive,”
“Negative,” or “Neutral.” Dive deeper by further
identifying subthemes such as “Usability,” “Customer
Support,” or “Price.”

Email filtering



Detect the intent or purpose of emails and classify them as
“Inquiry,” “Complaint,” “Feedback,” or “Spam.” This can
help businesses prioritize responses and manage
communications efficiently.

Social media sentiment analysis

Monitor brand mentions and sentiment across social
media platforms. Classify posts or comments as “Praise,”
“Critic,” “Query,” or “Neutral.” Gain insights into public
perception and adapt marketing or PR strategies
accordingly.

News article categorization

Given the vast amount of news generated daily, LLMs can
classify articles by themes or topics such as “Politics,”
“Technology,” “Environment,” or “Entertainment.”

Résumé screening

For HR departments inundated with résumés, classify
them based on predefined criteria like “Qualified,”
“Overqualified,” “Underqualified,” or categorize by
expertise areas such as “Software Development,”
“Marketing,” or “Sales.”



WARNING

Be aware that exposing emails, résumés, or sensitive data does run the risk of data
being leaked into OpenAI’s future models as training data.

Majority Vote for Classification

Utilizing multiple LLM requests can help in reducing the
variance of your classification labels. This process, known as
majority vote, is somewhat like choosing the most common fruit
out of a bunch. For instance, if you have 10 pieces of fruit and 6
out of them are apples, then apples are the majority. The same
principle goes for choosing the majority vote in classification
labels.

By soliciting several classifications and taking the most frequent
classification, you’re able to reduce the impact of potential
outliers or unusual interpretations from a single model
inference. However, do bear in mind that there can be
significant downsides to this approach, including the increased
time required and cost for multiple API calls.

Let’s classify the same piece of text three times, and then take
the majority vote:

from openai import OpenAI



from openai import OpenAI 

import os

 

client = OpenAI(api_key=os.environ.get("OPENAI_AP

 

base_template = """ 

Given the statement, classify it as either "Compl

"Neutral": 

1. "The sun is shining." - Neutral 

2. "Your support team is fantastic!" - Compliment

3. "I had a terrible experience with your softwa

 

You must follow the following principles: 

- Only return the single classification word. The

"Compliment", "Complaint", or "Neutral". 

- Perform the classification on the text enclosed

 

'''{content}''' 

 

Classification: 

""" 

 

responses = [] 

 

for i in range(0, 3): 

    response = client.chat.completions.create( 

        model="gpt-4", 

        messages=[{"role": "system", 

            "content": base template.format(conte



_ p (

            but I am having a great day, I just d

            live, I'm so sad!'''),}],) 

    responses.append(response.choices[0].message

 

def most_frequent_classification(responses): 

    # Use a dictionary to count occurrences of ea

    count_dict = {} 

    for classification in responses: 

        count_dict[classification] = count_dict.g

 

    # Return the classification with the maximum 

    return max(count_dict, key=count_dict.get) 

 

print(most_frequent_classification(responses))  #

Calling the most_frequent_classification(responses)
function should pinpoint 'Neutral'  as the dominant
sentiment. You’ve now learned how to use the OpenAI package
for majority vote classification.

Criteria Evaluation

In Chapter 1, a human-based evaluation system was used with a
simple thumbs-up/thumbs-down rating system to identify how



often a response met our expectations. Rating manually can be
expensive and tedious, requiring a qualified human to judge
quality or identify errors. While this work can be outsourced to
low-cost raters on services such as Mechanical Turk, designing
such a task in a way that gets valid results can itself be time-
consuming and error prone. One increasingly common
approach is to use a more sophisticated LLM to evaluate the
responses of a smaller model.

The evidence is mixed on whether LLMs can act as effective
evaluators, with some studies claiming LLMs are human-level
evaluators and others identifying inconsistencies in how LLMs
evaluate. In our experience, GPT-4 is a useful evaluator with
consistent results across a diverse set of tasks. In particular,
GPT-4 is effective and reliable in evaluating the responses from
smaller, less sophisticated models like GPT-3.5-turbo. In the
example that follows, we generate concise and verbose
examples of answers to a question using GPT-3.5-turbo, ready
for rating with GPT-4.

Input:

from openai import OpenAI 

import os

https://www.mturk.com/
https://oreil.ly/nfc3f
https://oreil.ly/ykkzY


import os

 

client = OpenAI(api_key=os.environ.get("OPENAI_AP

 

responses = [] 

 

for i in range(10): 

    # concise if even, verbose if odd 

    style = "concise" if i % 2 == 0 else "verbose

 

    if style == "concise": 

        prompt = f"""Return a {style} answer to t

        following question: What is the meaning o

    else:

        prompt = f"""Return an answer to the foll

        question: What is the meaning of life?""

 

    response = client.chat.completions.create( 

        # using GPT-3.5 Turbo for this example 

        model="gpt-3.5-turbo", 

        messages=[{"role": "user", 

            "content": prompt}]) 

    responses.append( 

        response.choices[0].message.content.strip

 

system_prompt = """You are assessing the concisen

response from a chatbot. 

You only respond with a 1 if the response is conc

and a 0 if it is not. 



""" 

 

ratings = [] 

 

for idx, response in enumerate(responses): 

    rating = client.chat.completions.create( 

        model="gpt-4", 

        messages=[{"role": "system", 

            "content": system_prompt}, 

            {"role": "system", 

            "content": response}])

    ratings.append( 

        rating.choices[0].message.content.strip(

 

for idx, rating in enumerate(ratings): 

    style = "concise" if idx % 2 == 0 else "verbo

    print(f"Style: {style}, ", f"Rating: {rating}

Output:

Style: concise,  Rating: 1 

Style: verbose,  Rating: 0 

Style: concise,  Rating: 1 

Style: verbose,  Rating: 0 

Style: concise,  Rating: 1 

Style: verbose,  Rating: 0 

Style: concise,  Rating: 1 



Style: verbose,  Rating: 0 

Style: concise,  Rating: 1 

Style: verbose,  Rating: 0

This script is a Python program that interacts with the OpenAI
API to generate and evaluate responses based on their
conciseness. Here’s a step-by-step explanation:

1. responses = []  creates an empty list named
responses  to store the responses generated by the
OpenAI API.

2. The for  loop runs 10 times, generating a response for each
iteration.

3. Inside the loop, style  is determined based on the current
iteration number ( i ). It alternates between “concise” and
“verbose” for even and odd iterations, respectively.

4. Depending on the style , a prompt  string is formatted to
ask, “What is the meaning of life?” in either a concise or
verbose manner.

5. response = client.chat.completions.create(...)
makes a request to the OpenAI API to generate a response
based on the prompt . The model used here is specified as
“gpt-3.5-turbo.”

6. The generated response is then stripped of any leading or
trailing whitespace and added to the responses  list.



7. system_prompt = """You are assessing..."""  sets
up a prompt used for evaluating the conciseness of the
generated responses.

8. ratings = []  initializes an empty list to store the
conciseness ratings.

9. Another for  loop iterates over each response in
responses .

10. For each response, the script sends it along with the
system_prompt  to the OpenAI API, requesting a
conciseness evaluation. This time, the model used is “gpt-4.”

11. The evaluation rating (either 1 for concise or 0 for not
concise) is then stripped of whitespace and added to the
ratings  list.

12. The final for  loop iterates over the ratings  list. For each
rating, it prints the style  of the response (either “concise”
or “verbose”) and its corresponding conciseness rating .

For simple ratings like conciseness, GPT-4 performs with near
100% accuracy; however, for more complex ratings, it’s
important to spend some time evaluating the evaluator. For
example, by setting test cases that contain an issue, as well as
test cases that do not contain an issue, you can identify the
accuracy of your evaluation metric. An evaluator can itself be
evaluated by counting the number of false positives (when the
LLM hallucinates an issue in a test case that is known not to



contain an issue), as well as the number of false negatives
(when the LLM misses an issue in a test case that is known to
contain an issue). In our example we generated the concise and
verbose examples, so we can easily check the rating accuracy,
but in more complex examples you may need human
evaluators to validate the ratings.

EVALUATE QUALITY

Using GPT-4 to evaluate the responses of less sophisticated models is an emerging
standard practice, but care must be taken that the results are reliable and consistent.

Compared to human-based evaluation, LLM-based or synthetic
evaluation typically costs an order of magnitude less and
completes in a few minutes rather than taking days or weeks.
Even in important or sensitive cases where a final manual
review by a human is necessary, rapid iteration and A/B testing
of the prompt through synthetic reviews can save significant
time and improve results considerably. However, the cost of
running many tests at scale can add up, and the latency or rate
limits of GPT-4 can be a blocker. If at all possible, a prompt
engineer should first test using programmatic techniques that
don’t require a call to an LLM, such as simply measuring the
length of the response, which runs near instantly for close to
zero cost.



Meta Prompting

Meta prompting is a technique that involves the creation of text
prompts that, in turn, generate other text prompts. These text
prompts are then used to generate new assets in many
mediums such as images, videos, and more text.

To better understand meta prompting, let’s take the example of
authoring a children’s book with the assistance of GPT-4. First,
you direct the LLM to generate the text for your children’s book.
Afterward, you invoke meta prompting by instructing GPT-4 to
produce prompts that are suitable for image-generation models.
This could mean creating situational descriptions or specific
scenes based on the storyline of your book, which then can be
given to AI models like Midjourney or Stable Diffusion. These
image-generation models can, therefore, deliver images in
harmony with your AI-crafted children’s story.

Figure 3-8 visually describes the process of meta prompting in
the context of crafting a children’s book.



Figure 3-8. Utilizing an LLM to generate image prompts for MidJourney’s image
creation in the process of crafting a children’s book

Meta prompts offer a multitude of benefits for a variety of
applications:

Image generation from product descriptions

Meta prompts can be employed to derive an image
generation prompt for image models like Midjourney,
effectively creating a visual representation of product
descriptions.

Generating style/feature prompts

https://www.midjourney.com/


Let’s consider you are a copywriter needing to develop a
unique style guide prompt from a couple of blog posts.
Given each client has a distinctive tone and style, it’s
beneficial to utilize a meta prompt that encapsulates all
the varied features, rather than producing a single
prompt output.

Optimizing prompts to achieve specific goals

A common approach is to ask ChatGPT or another
language model to refine or improve Prompt A  in order
to attain Goal 1 , given Prompt A  and Goal 1 . This
method aids in identifying any missed input features, that
by adding could assist the language model in generating a
more detailed and desirable response.

Let’s experiment with creating a meta prompt for the
copywriting example.

Input:

Act as a GPT Prompt Engineer, you are solely resp

highly effective large language model text prompt

 

You must follow the following principles: 

- Return only a single prompt, never return the o

- You must follow the task properly. 



- You must either refine the prompt or create a n

the Task. 

- Bullet point out any important features so that

can easily copy inputs into the prompt. 

 

Task: You must create a copywriting guide ChatGPT

Include relevant features within the ChatGPT prom

to imitate the writer. You must decide what the m

to mimic the writer's style etc. You will only be

new blog posts. 

 

Blog post text: You need a variety of soft skills

skills to succeed in the technology sector. Soft 

software professionals to collaborate with their 

Output:

Prompt: 

 

Based on the extensive text provided, your task i

blog posts following the same style and structure

you should follow these features:

 

1. Clear, direct language: Your writing should be

language, breaking down complex subjects into eas

concepts. 

2. Use of subheadings: To provide structure to yo



up with relevant subheadings. This helps to guide

text more readable. 

... 

9. Inclusion of technical terminology: When discu

use appropriate technical language to ensure accu

However, be sure to provide explanations or defin

terms.

As previously mentioned, it can be beneficial to critique the
model’s output and to ask for a refined prompt either via the
interface or API.

ChatGPT can perform web searches and can make use of the
content of web pages, along with the previously generated
copywriting style guide. Let’s provide two URLs that ChatGPT
will read to enhance the output.

Input:

Given the following style guide and these two blo

improve the copywriting style prompt so an LLM o

effectively for my client. 

 

...Previously Generated Copywriting guide... 

 

URL 1: https://understandingdata.com/posts/how-to

URL 2: https://understandingdata.com/posts/how-to



URL 2: https://understandingdata.com/posts/how to

Figure 3-9 shows the output.

Figure 3-9. ChatGPT refining a meta prompt by two URL web pages



Based on the style guide and the two blog posts, 

copywriting style prompt: 

 

To create a blog post for the client, adhere to t

 

1. Clarity and Directness: Use clear, direct lang

topics. Present information in an easy-to-underst

audience to grasp concepts without needing prior 

... 

8. Use of Technical Terminology: Use the appropri

when discussing complex topics. However, make su

or explanations for these terms to keep the text 

 

Model your writing after these blog post examples

 

"What is an API? And How Do They Relate to Data E

post uses clear and direct language to explain th

provides detailed explanations and uses practical

APIs. It links the technical concept of APIs to b

productivity. The information is well-categorized

'Types of API’s.' 

 

"How To Easily Setup A Google Cloud Project With 

practical guide on setting up a Google Cloud Proj

numbered steps, each with a clear subheading. The

explanations and includes practical examples such

uses clear, direct language to guide the reader t



Meta prompting offers a dynamic and innovative way to
harness the power of generative AI models, fostering the
creation of complex, multifaceted prompts and even prompts
that generate other prompts. It broadens the application scope,
from text and image generation to style and feature prompts,
and optimization toward specific goals. As you continue to
refine and explore the potential of meta prompting, it promises
to be a game changer in how you utilize, interact with, and
benefit from using LLMs.

Summary

After reading this chapter, you are now aware of how crucial it
is to give clear directions and examples to generate desired
outputs. Also, you have hands-on experience extracting
structured data from a hierarchical list using regular
expressions in Python, and you’ve learned to utilize nested data
structures like JSON and YAML to produce robust, parsable
outputs.

You’ve learned several best practices and effective prompt
engineering techniques, including the famous “Explain it like
I’m five”, role prompting, and meta prompting techniques. In



the next chapter, you will learn how to use a popular LLM
package called LangChain that’ll help you to create more
advanced prompt engineering workflows.



Chapter 4. Advanced Techniques for
Text Generation with LangChain

Using simple prompt engineering techniques will often work
for most tasks, but occasionally you’ll need to use a more
powerful toolkit to solve complex generative AI problems. Such
problems and tasks include:

Context length

Summarizing an entire book into a digestible synopsis.

Combining sequential LLM inputs/outputs

Creating a story for a book including the characters, plot,
and world building.

Performing complex reasoning tasks

LLMs acting as an agent. For example, you could create an
LLM agent to help you achieve your personal fitness goals.

To skillfully tackle such complex generative AI challenges,
becoming acquainted with LangChain, an open source
framework, is highly beneficial. This tool simplifies and
enhances your LLM’s workflows substantially.



Introduction to LangChain

LangChain is a versatile framework that enables the creation of
applications utilizing LLMs and is available as both a Python
and a TypeScript package. Its central tenet is that the most
impactful and distinct applications won’t merely interface with
a language model via an API, but will also:

Enhance data awareness

The framework aims to establish a seamless connection
between a language model and external data sources.

Enhance agency

It strives to equip language models with the ability to
engage with and influence their environment.

The LangChain framework illustrated in Figure 4-1 provides a
range of modular abstractions that are essential for working
with LLMs, along with a broad selection of implementations for
these abstractions.

https://oreil.ly/YPid-
https://oreil.ly/5Vl0W


Figure 4-1. The major modules of the LangChain LLM framework

Each module is designed to be user-friendly and can be
efficiently utilized independently or together. There are
currently six common modules within LangChain:

Model I/O



Handles input/output operations related to the model

Retrieval

Focuses on retrieving relevant text for the LLM

Chains

Also known as LangChain runnables, chains enable the
construction of sequences of LLM operations or function
calls

Agents

Allows chains to make decisions on which tools to use
based on high-level directives or instructions

Memory

Persists the state of an application between different runs
of a chain

Callbacks

For running additional code on specific events, such as
when every new token is generated

Environment Setup



You can install LangChain on your terminal with either of these
commands:

pip install langchain langchain-openai

conda install -c conda-forge langchain

langchain-openai

If you would prefer to install the package requirements for the
entire book, you can use the requirements.txt file from the
GitHub repository.

It’s recommended to install the packages within a virtual
environment:

Create a virtual environment

python -m venv venv

Activate the virtual environment

source venv/bin/activate

Install the dependencies

pip install -r requirements.txt

LangChain requires integrations with one or more model
providers. For example, to use OpenAI’s model APIs, you’ll need
to install their Python package with pip install openai .

https://oreil.ly/WKOma


As discussed in Chapter 1, it’s best practice to set an
environment variable called OPENAI_API_KEY  in your
terminal or load it from an .env file using python-dotenv .
However, for prototyping you can choose to skip this step by
passing in your API key directly when loading a chat model in
LangChain:

from langchain_openai.chat_models import ChatOpen

chat = ChatOpenAI(api_key="api_key")

WARNING

Hardcoding API keys in scripts is not recommended due to security reasons. Instead,
utilize environment variables or configuration files to manage your keys.

In the constantly evolving landscape of LLMs, you can
encounter the challenge of disparities across different model
APIs. The lack of standardization in interfaces can induce extra
layers of complexity in prompt engineering and obstruct the
seamless integration of diverse models into your projects.

This is where LangChain comes into play. As a comprehensive
framework, LangChain allows you to easily consume the
varying interfaces of different models.

https://oreil.ly/wvuO7


LangChain’s functionality ensures that you aren’t required to
reinvent your prompts or code every time you switch between
models. Its platform-agnostic approach promotes rapid
experimentation with a broad range of models, such as
Anthropic, Vertex AI, OpenAI, and BedrockChat. This not only
expedites the model evaluation process but also saves critical
time and resources by simplifying complex model integrations.

In the sections that follow, you’ll be using the OpenAI package
and their API in LangChain.

Chat Models

Chat models such as GPT-4 have become the primary way to
interface with OpenAI’s API. Instead of offering a
straightforward “input text, output text” response, they propose
an interaction method where chat messages are the input and
output elements.

Generating LLM responses using chat models involves inputting
one or more messages into the chat model. In the context of
LangChain, the currently accepted message types are
AIMessage , HumanMessage , and SystemMessage . The
output from a chat model will always be an AIMessage .

https://www.anthropic.com/
https://cloud.google.com/vertex-ai
https://openai.com/
https://oreil.ly/bedrock


SystemMessage

Represents information that should be instructions to the
AI system. These are used to guide the AI’s behavior or
actions in some way.

HumanMessage

Represents information coming from a human interacting
with the AI system. This could be a question, a command,
or any other input from a human user that the AI needs to
process and respond to.

AIMessage

Represents information coming from the AI system itself.
This is typically the AI’s response to a HumanMessage  or
the result of a SystemMessage  instruction.

NOTE

Make sure to leverage the SystemMessage  for delivering explicit directions. OpenAI
has refined GPT-4 and upcoming LLM models to pay particular attention to the
guidelines given within this type of message.

Let’s create a joke generator in LangChain.

Input:



from langchain_openai.chat_models import ChatOpen

from langchain.schema import AIMessage, HumanMess

 

chat = ChatOpenAI(temperature=0.5) 

messages = [SystemMessage(content='''Act as a sen

at a startup company.'''), 

HumanMessage(content='''Please can you provide a 

about software engineers?''')] 

response = chat.invoke(input=messages) 

print(response.content)

Output:

Sure, here's a lighthearted joke for you: 

Why did the software engineer go broke? 

Because he lost his domain in a bet and couldn't 

First, you’ll import ChatOpenAI , AIMessage ,
HumanMessage , and SystemMessage . Then create an instance
of the ChatOpenAI  class with a temperature parameter of 0.5
(randomness).

After creating a model, a list named messages  is populated
with a SystemMessage  object, defining the role for the LLM,



and a HumanMessage  object, which asks for a software
engineer—related joke.

Calling the chat model with .invoke(input=messages)  feeds
the LLM with a list of messages, and then you retrieve the
LLM’s response with response.content .

There is a legacy method that allows you to directly call the
chat  object with chat(messages=messages) :

response = chat(messages=messages)

Streaming Chat Models

You might have observed while using ChatGPT how words are
sequentially returned to you, one character at a time. This
distinct pattern of response generation is referred to as
streaming, and it plays a crucial role in enhancing the
performance of chat-based applications:

for chunk in chat.stream(messages):

    print(chunk.content, end="", flush=True)



When you call chat.stream(messages) , it yields chunks of
the message one at a time. This means each segment of the chat
message is individually returned. As each chunk arrives, it is
then instantaneously printed to the terminal and flushed. This
way, streaming allows for minimal latency from your LLM
responses.

Streaming holds several benefits from an end-user perspective.
First, it dramatically reduces the waiting time for users. As soon
as the text starts generating character by character, users can
start interpreting the message. There’s no need for a full
message to be constructed before it is seen. This, in turn,
significantly enhances user interactivity and minimizes latency.

Nevertheless, this technique comes with its own set of
challenges. One significant challenge is parsing the outputs
while they are being streamed. Understanding and
appropriately responding to the message as it is being formed
can prove to be intricate, especially when the content is
complex and detailed.

Creating Multiple LLM Generations



There may be scenarios where you find it useful to generate
multiple responses from LLMs. This is particularly true while
creating dynamic content like social media posts. Rather than
providing a list of messages, you provide a list of message lists.

Input:

# 2x lists of messages, which is the same as [mes

synchronous_llm_result = chat.batch([messages]*2

print(synchronous_llm_result)

Output:

[AIMessage(content='''Sure, here's a lighthearted

the software engineer go broke?\n\nBecause he kep

his expenses!'''), 

AIMessage(content='''Sure, here\'s a lighthearted

software engineers prefer dark mode?\n\nBecause i

"byte" vision!''')]

The benefit of using .batch()  over .invoke()  is that you
can parallelize the number of API requests made to OpenAI.

For any runnable in LangChain, you can add a
RunnableConfig  argument to the batch  function that



contains many configurable parameters, including
max_ concurrency :

from langchain_core.runnables.config import Runna

 

# Create a RunnableConfig with the desired concu

config = RunnableConfig(max_concurrency=5) 

 

# Call the .batch() method with the inputs and co

results = chat.batch([messages, messages], config

NOTE

In computer science, asynchronous (async) functions are those that operate
independently of other processes, thereby enabling several API requests to be run
concurrently without waiting for each other. In LangChain, these async functions let

you make many API requests all at once, not one after the other. This is especially
helpful in more complex workflows and decreases the overall latency to your users.

Most of the asynchronous functions within LangChain are simply prefixed with the
letter a , such as .ainvoke()  and .abatch() . If you would like to use the async

API for more efficient task performance, then utilize these functions.

LangChain Prompt Templates



Up until this point, you’ve been hardcoding the strings in the
ChatOpenAI  objects. As your LLM applications grow in size, it
becomes increasingly important to utilize prompt templates.

Prompt templates are good for generating reproducible prompts
for AI language models. They consist of a template, a text string
that can take in parameters, and construct a text prompt for a
language model.

Without prompt templates, you would likely use Python f-
string  formatting:

language = "Python" 

prompt = f"What is the best way to learn coding i

print(prompt) # What is the best way to learn cod

But why not simply use an f-string  for prompt templating?
Using LangChain’s prompt templates instead allows you to
easily:

Validate your prompt inputs
Combine multiple prompts together with composition
Define custom selectors that will inject k-shot examples into
your prompt
Save and load prompts from .yml and .json files



Create custom prompt templates that execute additional
code or instructions when created

LangChain Expression Language
(LCEL)

The |  pipe operator is a key component of LangChain
Expression Language (LCEL) that allows you to chain together
different components or runnables in a data processing
pipeline.

In LCEL, the |  operator is similar to the Unix pipe operator. It
takes the output of one component and feeds it as input to the
next component in the chain. This allows you to easily connect
and combine different components to create a complex chain of
operations:

chain = prompt | model

The |  operator is used to chain together the prompt and model
components. The output of the prompt component is passed as
input to the model component. This chaining mechanism allows
you to build complex chains from basic components and



enables the seamless flow of data between different stages of
the processing pipeline.

Additionally, the order matters, so you could technically create
this chain:

bad_order_chain = model | prompt

But it would produce an error after using the invoke  function,
because the values returned from model  are not compatible
with the expected inputs for the prompt.

Let’s create a business name generator using prompt templates
that will return five to seven relevant business names:

from langchain_openai.chat_models import ChatOpen

from langchain_core.prompts import (SystemMessage

ChatPromptTemplate) 

 

template = """ 

You are a creative consultant brainstorming names

 

You must follow the following principles: 

{principles} 

 

Please generate a numerical list of five catchy n

{industry} industry that deals with {context}? 



{ y} y { }

 

Here is an example of the format:

1. Name1 

2. Name2 

3. Name3 

4. Name4 

5. Name5 

""" 

 

model = ChatOpenAI() 

system_prompt = SystemMessagePromptTemplate.from_

chat_prompt = ChatPromptTemplate.from_messages([s

 

chain = chat_prompt | model 

 

result = chain.invoke({ 

    "industry": "medical", 

    "context":'''creating AI solutions by automat

    records''', 

    "principles":'''1. Each name should be short 

    remember. 2. Each name should be easy to pron

    3. Each name should be unique and not already

}) 

 

print(result.content)

Output:



1. SummarAI 

2. MediSummar 

3. AutoDocs 

4. RecordAI 

5. SmartSummarize

First, you’ll import ChatOpenAI ,
SystemMessagePromptTemplate , and
ChatPromptTemplate . Then, you’ll define a prompt template
with specific guidelines under template , instructing the LLM
to generate business names. ChatOpenAI()  initializes the
chat, while
SystemMessagePromptTemplate.from_template(templat

e)  and
ChatPromptTemplate.from_messages([system_prompt])

create your prompt template.

You create an LCEL chain  by piping together chat_prompt
and the model , which is then invoked. This replaces the
{industries} , {context} , and {principles}
placeholders in the prompt with the dictionary values within
the invoke  function.

Finally, you extract the LLM’s response as a string accessing the
.content  property on the result  variable.



GIVE DIRECTION AND SPECIFY FORMAT

Carefully crafted instructions might include things like “You are a creative consultant
brainstorming names for businesses” and “Please generate a numerical list of five to
seven catchy names for a start-up.” Cues like these guide your LLM to perform the

exact task you require from it.

Using PromptTemplate with Chat
Models

LangChain provides a more traditional template called
PromptTemplate , which requires input_variables  and
template  arguments.

Input:

from langchain_core.prompts import PromptTemplate

from langchain.prompts.chat import SystemMessageP

from langchain_openai.chat_models import ChatOpen

prompt=PromptTemplate( 

 template='''You are a helpful assistant that tra

 {output_language}.''', 

 input_variables=["input_language", "output_langu

) 

system_message_prompt = SystemMessagePromptTempla

chat = ChatOpenAI() 

chat invoke(system message prompt format messages



chat.invoke(system_message_prompt.format_messages

input_language="English",output_language="French

Output:

AIMessage(content="Vous êtes un assistant utile q

français.", additional_kwargs={}, example=False)

Output Parsers

In Chapter 3, you used regular expressions (regex) to extract
structured data from text that contained numerical lists, but it’s
possible to do this automatically in LangChain with output
parsers.

Output parsers are a higher-level abstraction provided by
LangChain for parsing structured data from LLM string
responses. Currently the available output parsers are:

List parser

Returns a list of comma-separated items.

Datetime parser

Parses an LLM output into datetime format.



Enum parser

Parses strings into enum values.

Auto-fixing parser

Wraps another output parser, and if that output parser
fails, it will call another LLM to fix any errors.

Pydantic (JSON) parser

Parses LLM responses into JSON output that conforms to a
Pydantic schema.

Retry parser

Provides retrying a failed parse from a previous output
parser.

Structured output parser

Can be used when you want to return multiple fields.

XML parser

Parses LLM responses into an XML-based format.

As you’ll discover, there are two important functions for
LangChain output parsers:

.get_format_instructions()



This function provides the necessary instructions into
your prompt to output a structured format that can be
parsed.

.parse(llm_output: str)

This function is responsible for parsing your LLM
responses into a predefined format.

Generally, you’ll find that the Pydantic (JSON) parser with
ChatOpenAI()  provides the most flexibility.

The Pydantic (JSON) parser takes advantage of the Pydantic
library in Python. Pydantic is a data validation library that
provides a way to validate incoming data using Python type
annotations. This means that Pydantic allows you to create
schemas for your data and automatically validates and parses
input data according to those schemas.

Input:

from langchain_core.prompts.chat import ( 

    ChatPromptTemplate, 

    SystemMessagePromptTemplate, 

) 

from langchain_openai.chat_models import ChatOpen

from langchain.output_parsers import PydanticOutp

from pydantic v1 import BaseModel Field

https://oreil.ly/QIMih


from pydantic.v1 import BaseModel, Field 

from typing import List 

 

temperature = 0.0 

 

class BusinessName(BaseModel): 

    name: str = Field(description="The name of th

    rating_score: float = Field(description='''Th

    business. 0 is the worst, 10 is the best.'''

 

class BusinessNames(BaseModel): 

    names: List[BusinessName] = Field(description

    of busines names''') 

 

# Set up a parser + inject instructions into the 

parser = PydanticOutputParser(pydantic_object=Bus

 

principles = """ 

- The name must be easy to remember. 

- Use the {industry} industry and Company context

- The name must be easy to pronounce. 

- You must only return the name without any othe

- Avoid returning full stops, \n, or any other ch

- The maximum length of the name must be 10 chara

""" 

 

# Chat Model Output Parser: 

model = ChatOpenAI() 

template = """Generate five business names for a 



{industry} industry. 

You must follow the following principles: {princi

{format_instructions} 

""" 

system_message_prompt = SystemMessagePromptTempla

chat_prompt = ChatPromptTemplate.from_messages([s

 

# Creating the LCEL chain: 

prompt_and_model = chat_prompt | model 

 

result = prompt_and_model.invoke( 

    { 

        "principles": principles, 

        "industry": "Data Science", 

        "format_instructions": parser.get_format_

    } 

) 

# The output parser, parses the LLM response into

print(parser.parse(result.content))

Output:

names=[BusinessName(name='DataWiz', rating_score=

BusinessName(name='InsightIQ', 

rating_score=9.2), BusinessName(name='AnalytiQ', 

BusinessName(name='SciData', rating_score=8.1), 

BusinessName(name='InfoMax', rating score=9.5)]



BusinessName(name InfoMax , rating_score 9.5)]

After you’ve loaded the necessary libraries, you’ll set up a
ChatOpenAI model. Then create
SystemMessagePromptTemplate  from your template and
form a ChatPromptTemplate  with it. You’ll use the Pydantic
models BusinessName  and BusinessNames  to structure your
desired output, a list of unique business names. You’ll create a
Pydantic  parser for parsing these models and format the
prompt using user-inputted variables by calling the invoke
function. Feeding this customized prompt to your model, you’re
enabling it to produce creative, unique business names by using
the parser .

It’s possible to use output parsers inside of LCEL by using this
syntax:

chain = prompt | model | output_parser

Let’s add the output parser directly to the chain.

Input:

parser = PydanticOutputParser(pydantic_object=Bus

chain = chat_prompt | model | parser 



 

result = chain.invoke( 

    { 

        "principles": principles, 

        "industry": "Data Science", 

        "format_instructions": parser.get_format_

    } 

) 

print(result)

Output:

names=[BusinessName(name='DataTech', rating_score

The chain is now responsible for prompt formatting, LLM
calling, and parsing the LLM’s response into a Pydantic
object.

SPECIFY FORMAT

The preceding prompts use Pydantic models and output parsers, allowing you
explicitly tell an LLM your desired response format.

It’s worth knowing that by asking an LLM to provide structured
JSON output, you can create a flexible and generalizable API



from the LLM’s response. There are limitations to this, such as
the size of the JSON created and the reliability of your prompts,
but it still is a promising area for LLM applications.

WARNING

You should take care of edge cases as well as adding error handling statements, since
LLM outputs might not always be in your desired format.

Output parsers save you from the complexity and intricacy of
regular expressions, providing easy-to-use functionalities for a
variety of use cases. Now that you’ve seen them in action, you
can utilize output parsers to effortlessly structure and retrieve
the data you need from an LLM’s output, harnessing the full
potential of AI for your tasks.

Furthermore, using parsers to structure the data extracted from
LLMs allows you to easily choose how to organize outputs for
more efficient use. This can be useful if you’re dealing with
extensive lists and need to sort them by certain criteria, like
business names.

LangChain Evals



As well as output parsers to check for formatting errors, most
AI systems also make use of evals, or evaluation metrics, to
measure the performance of each prompt response. LangChain
has a number of off-the-shelf evaluators, which can be directly
be logged in their LangSmith platform for further debugging,
monitoring, and testing. Weights and Biases is alternative
machine learning platform that offers similar functionality and
tracing capabilities for LLMs.

Evaluation metrics are useful for more than just prompt testing,
as they can be used to identify positive and negative examples
for retrieval as well as to build datasets for fine-tuning custom
models.

Most eval metrics rely on a set of test cases, which are input and
output pairings where you know the correct answer. Often
these reference answers are created or curated manually by a
human, but it’s also common practice to use a smarter model
like GPT-4 to generate the ground truth answers, which has
been done for the following example. Given a list of
descriptions of financial transactions, we used GPT-4 to classify
each transaction with a transaction_category  and
transaction_type . The process can be found in the
langchain-evals.ipynb  Jupyter Notebook in the GitHub
repository for the book.

https://oreil.ly/0Fn94
https://wandb.ai/site
https://oreil.ly/a4Hut


With the GPT-4 answer being taken as the correct answer, it’s
now possible to rate the accuracy of smaller models like GPT-
3.5-turbo and Mixtral 8x7b (called mistral-small  in the API).
If you can achieve good enough accuracy with a smaller model,
you can save money or decrease latency. In addition, if that
model is available open source like Mistral’s model, you can
migrate that task to run on your own servers, avoiding sending
potentially sensitive data outside of your organization. We
recommend testing with an external API first, before going to
the trouble of self-hosting an OS model.

Remember to sign up and subscribe to obtain an API key; then
expose that as an environment variable by typing in your
terminal:

export MISTRAL_API_KEY=api-key

The following script is part of a notebook that has previously
defined a dataframe df . For brevity let’s investigate only the
evaluation section of the script, assuming a dataframe is
already defined.

Input:

import os

from langchain mistralai chat models import ChatM

https://oreil.ly/Ec578
https://mistral.ai/
https://oreil.ly/DqDOf


from langchain_mistralai.chat_models import ChatM

from langchain.output_parsers import PydanticOutp

from langchain_core.prompts import ChatPromptTemp

from pydantic.v1 import BaseModel 

from typing import Literal, Union 

from langchain_core.output_parsers import StrOutp

 

# 1. Define the model: 

mistral_api_key = os.environ["MISTRAL_API_KEY"] 

 

model = ChatMistralAI(model="mistral-small", mist

 

# 2. Define the prompt: 

system_prompt = """You are are an expert at analy

bank transactions, you will be categorizing a sin

transaction. 

Always return a transaction type and category: 

do not return None. 

Format Instructions: 

{format_instructions}""" 

 

user_prompt = """Transaction Text:

{transaction}""" 

 

prompt = ChatPromptTemplate.from_messages( 

    [ 

        ( 

            "system", 

            system_prompt, 



        ), 

        ( 

            "user", 

            user_prompt, 

        ), 

    ] 

) 

 

# 3. Define the pydantic model: 

class EnrichedTransactionInformation(BaseModel): 

    transaction_type: Union[ 

        Literal["Purchase", "Withdrawal", "Deposi

        "Bill Payment", "Refund"], None 

    ] 

    transaction_category: Union[ 

        Literal["Food", "Entertainment", "Transpo

        "Utilities", "Rent", "Other"], 

        None, 

    ] 

 

 

# 4. Define the output parser: 

output_parser = PydanticOutputParser( 

    pydantic_object=EnrichedTransactionInformatio

 

# 5. Define a function to try to fix and remove t

def remove_back_slashes(string): 

    # double slash to escape the slash 



    cleaned_string = string.replace("\\", "") 

    return cleaned_string 

 

# 6. Create an LCEL chain that fixes the formatti

chain = prompt | model | StrOutputParser() \ 

| remove_back_slashes | output_parser 

 

transaction = df.iloc[0]["Transaction Description

result = chain.invoke( 

        { 

            "transaction": transaction, 

            "format_instructions": \ 

            output_parser.get_format_instructions

        } 

    ) 

 

# 7. Invoke the chain for the whole dataset: 

results = [] 

 

for i, row in tqdm(df.iterrows(), total=len(df))

    transaction = row["Transaction Description"] 

    try: 

        result = chain.invoke( 

            { 

                "transaction": transaction, 

                "format_instructions": \ 

                output_parser.get_format_instruct

            } 



        ) 

    except: 

        result = EnrichedTransactionInformation( 

            transaction_type=None, 

            transaction_category=None 

        ) 

 

    results.append(result) 

 

# 8. Add the results to the dataframe, as columns

# transaction category: 

transaction_types = [] 

transaction_categories = [] 

 

for result in results: 

    transaction_types.append(result.transaction_t

    transaction_categories.append(

        result.transaction_category) 

 

df["mistral_transaction_type"] = transaction_type

df["mistral_transaction_category"] = transaction_

df.head()

Output:

Transaction Description transaction type



Transaction Description transaction_type 

transaction_category mistral_transaction_type 

mistral_transaction_category 

0 cash deposit at local branch Deposit O

Other 

1 cash deposit at local branch Deposit O

Other 

2 withdrew money for rent payment Withdrawa

Withdrawal Rent 

3 withdrew cash for weekend expenses W

Withdrawal Other 

4 purchased books from the bookstore P

Purchase Entertainment

The code does the following:

1. from langchain_mistralai.chat_models import
ChatMistralAI : We import LangChain’s Mistral
implementation.

2. from langchain.output_parsers import
PydanticOutputParser : Imports the
PydanticOutputParser  class, which is used for parsing
output using Pydantic models. We also import a string
output parser to handle an interim step where we remove
backslashes from the JSON key (a common problem with
responses from Mistral).



3. mistral_api_key =
os.environ["MISTRAL_API_KEY"] : Retrieves the Mistral
API key from the environment variables. This needs to be
set prior to running the notebook.

4. model = ChatMistralAI(model="mistral-small",
mistral_api_key=mistral_api_key) : Initializes an
instance of ChatMistralAI  with the specified model and
API key. Mistral Small is what they call the Mixtral 8x7b
model (also available open source) in their API.

5. system_prompt  and user_prompt : These lines define
templates for the system and user prompts used in the chat
to classify the transactions.

6. class
EnrichedTransactionInformation(BaseModel) :
Defines a Pydantic model
EnrichedTransactionInformation  with two fields:
transaction_type  and transaction_category , each
with specific allowed values and the possibility of being
None . This is what tells us if the output is in the correct
format.

7. def remove_back_slashes(string) : Defines a function
to remove backslashes from a string.

8. chain = prompt | model | StrOutputParser() |
remove_back_slashes | output_parser : Updates the



chain to include a string output parser and the
remove_back_slashes  function before the original
output parser.

9. transaction = df.iloc[0]["Transaction
Description"] : Extracts the first transaction description
from a dataframe df . This dataframe is loaded earlier in
the Jupyter Notebook (omitted for brevity).

10. for i, row in tqdm(df.iterrows(),
total=len(df)) : Iterates over each row in the dataframe
df , with a progress bar.

11. result = chain.invoke(...) : Inside the loop, the
chain is invoked for each transaction.

12. except : In case of an exception, a default
EnrichedTransactionInformation  object with None
values is created. These will be treated as errors in
evaluation but will not break the processing loop.

13. df["mistral_transaction_type"] =
transaction_types ,
df["mistral_transaction_category"] =

transaction_categories : Adds the transaction types
and categories as new columns in the dataframe, which we
then display with df.head() .

With the responses from Mistral saved in the dataframe, it’s
possible to compare them to the transaction categories and

https://oreil.ly/-koAO


types defined earlier to check the accuracy of Mistral. The most
basic LangChain eval metric is to do an exact string match of a
prediction against a reference answer, which returns a score of
1 if correct, and a 0 if incorrect. The notebook gives an example
of how to implement this, which shows that Mistral’s accuracy
is 77.5%. However, if all you are doing is comparing strings, you
probably don’t need to implement it in LangChain.

Where LangChain is valuable is in its standardized and tested
approaches to implementing more advanced evaluators using
LLMs. The evaluator labeled_pairwise_string  compares
two outputs and gives a reason for choosing between them,
using GPT-4. One common use case for this type of evaluator is
to compare the outputs from two different prompts or models,
particularly if the models being tested are less sophisticated
than GPT-4. This evaluator using GPT-4 does still work for
evaluating GPT-4 responses, but you should manually review
the reasoning and scores to ensure it is doing a good job: if GPT-
4 is bad at a task, it may also be bad at evaluating that task. In
the notebook, the same transaction classification was run again
with the model changed to model =
ChatOpenAI(model="gpt-3.5-turbo-1106",

model_kwargs={"response_format": {"type":

"json_object"}},) . Now it’s possible to do pairwise
comparison between the Mistral and GPT-3.5 responses, as

https://oreil.ly/vPUfI
https://oreil.ly/9O7Mb


shown in the following example. You can see in the output the
reasoning that is given to justify the score.

Input:

# Evaluate answers using LangChain evaluators: 

from langchain.evaluation import load_evaluator 

evaluator = load_evaluator("labeled_pairwise_stri

 

row = df.iloc[0] 

transaction = row["Transaction Description"] 

gpt3pt5_category = row["gpt3.5_transaction_catego

gpt3pt5_type = row["gpt3.5_transaction_type"] 

mistral_category = row["mistral_transaction_categ

mistral_type = row["mistral_transaction_type"] 

reference_category = row["transaction_category"] 

reference_type = row["transaction_type"] 

 

# Put the data into JSON format for the evaluato

gpt3pt5_data = f"""{{ 

    "transaction_category": "{gpt3pt5_category}"

    "transaction_type": "{gpt3pt5_type}" 

}}""" 

 

mistral_data = f"""{{ 

    "transaction_category": "{mistral_category}"

    "transaction_type": "{mistral_type}" 

}}"""



}}""" 

 

reference_data = f"""{{ 

    "transaction_category": "{reference_category}

    "transaction_type": "{reference_type}" 

}}""" 

 

# Set up the prompt input for context for the eva

input_prompt = """You are an expert at analyzing 

transactions, 

you will be categorizing a single transaction. 

Always return a transaction type and category: do

return None. 

Format Instructions: 

{format_instructions} 

Transaction Text: 

{transaction} 

""" 

 

transaction_types.append(transaction_type_score) 

transaction_categories.append( 

    transaction_category_score) 

 

accuracy_score = 0 

 

for transaction_type_score, transaction_category_

    in zip( 

        transaction_types, transaction_categories

)



    ): 

    accuracy_score += transaction_type_score['sco

    transaction_category_score['score'] 

 

accuracy_score = accuracy_score / (len(transactio

    * 2) 

print(f"Accuracy score: {accuracy_score}") 

 

evaluator.evaluate_string_pairs( 

    prediction=gpt3pt5_data, 

    prediction_b=mistral_data, 

    input=input_prompt.format( 

        format_instructions=output_parser.get_fo

        transaction=transaction), 

    reference=reference_data, 

)

Output:

{'reasoning': '''Both Assistant A and Assistant B

response to the user\'s question. Their responses

correct, and demonstrate depth of thought. They b

transaction type as "Deposit" and the transaction

the transaction text provided by the user. Both 

well-formatted according to the JSON schema provi

it\'s a tie between the two assistants. \n\nFinal

 'value': None, 

 'score': 0.5}



}

This code demonstrates the simple exact string matching
evaluator from LangChain:

1. evaluator =
load_evaluator("labeled_pairwise_string") : This is
a helper function that can be used to load any LangChain
evaluator by name. In this case, it is the
labeled_pairwise_string  evaluator being used.

2. row = df.iloc[0] : This line and the seven lines that
follow get the first row and extract the values for the
different columns needed. It includes the transaction
description, as well as the Mistral and GPT-3.5 transaction
category and types. This is showcasing a single transaction,
but this code can easily run in a loop through each
transaction, replacing this line with an iterrows  function
for i, row in tqdm(df.iterrows(),

total=len(df)): , as is done later in the notebook.
3. gpt3pt5_data = f"""{{ : To use the pairwise

comparison evaluator, we need to pass the results in a way
that is formatted correctly for the prompt. This is done for
Mistral and GPT-3.5, as well as the reference data.

4. input_prompt = """You are an expert... : The other
formatting we have to get right is in the prompt. To get

https://oreil.ly/dcCOO


accurate evaluation scores, the evaluator needs to see the
instructions that were given for the task.

5. evaluator.evaluate_string_pairs(... : All that
remains is to run the evaluator by passing in the
prediction  and prediction_b  (GPT-3.5 and Mistral,
respectively), as well as the input  prompt, and
reference  data, which serves as the ground truth.

6. Following this code in the notebook, there is an example of
looping through and running the evaluator on every row in
the dataframe and then saving the results and reasoning
back to the dataframe.

This example demonstrates how to use a LangChain evaluator,
but there are many different kinds of evaluator available.
String distance (Levenshtein) or embedding distance evaluators
are often used in scenarios where answers are not an exact
match for the reference answer, but only need to be close
enough semantically. Levenshtein distance allows for fuzzy
matches based on how many single-character edits would be
needed to transform the predicted text into the reference text,
and embedding distance makes use of vectors (covered in
Chapter 5) to calculate similarity between the answer and
reference.

https://oreil.ly/hW8Wr
https://oreil.ly/Al5G3
https://oreil.ly/0p_nE


The other kind of evaluator we often use in our work is
pairwise comparisons, which are useful for comparing two
different prompts or models, using a smarter model like GPT-4.
This type of comparison is helpful because reasoning is
provided for each comparison, which can be useful in
debugging why one approach was favored over another. The
notebook for this section shows an example of using a pairwise
comparison evaluator to check GPT-3.5-turbo’s accuracy versus
Mixtral 8x7b.

EVALUATE QUALITY

Without defining an appropriate set of eval metrics to define success, it can be
difficult to tell if changes to the prompt or wider system are improving or harming
the quality of responses. If you can automate eval metrics using smart models like

GPT-4, you can iterate faster to improve results without costly or time-consuming
manual human review.

OpenAI Function Calling

Function calling provides an alternative method to output
parsers, leveraging fine-tuned OpenAI models. These models
identify when a function should be executed and generate a
JSON response with the name and arguments for a predefined
function. Several use cases include:

https://oreil.ly/iahTJ


Designing sophisticated chat bots

Capable of organizing and managing schedules. For
example, you can define a function to schedule a meeting:
schedule_meeting(date: str, time: str,

attendees: List[str]) .

Convert natural language into actionable API calls

A command like “Turn on the hallway lights” can be
converted to control_device(device: str, action:
'on' | 'off')  for interacting with your home
automation API.

Extracting structured data

This could be done by defining a function such as
extract_contextual_data(context: str,

data_points: List[str])  or
search_database(query: str) .

Each function that you use within function calling will require
an appropriate JSON schema. Let’s explore an example with the
OpenAI  package:

from openai import OpenAI 

import json 

from os import getenv 



 

def schedule_meeting(date, time, attendees): 

    # Connect to calendar service: 

    return { "event_id": "1234", "status": "Meeti

            "date": date, "time": time, "attendee

 

OPENAI_FUNCTIONS = { 

    "schedule_meeting": schedule_meeting 

}

After importing OpenAI  and json , you’ll create a function
named schedule_meeting . This function is a mock-up,
simulating the process of scheduling a meeting, and returns
details such as event_id , date , time , and attendees .
Following that, make an OPENAI_FUNCTIONS  dictionary to
map the function name to the actual function for ease of
reference.

Next, define a functions  list that provides the function’s JSON
schema. This schema includes its name, a brief description, and
the parameters it requires, guiding the LLM on how to interact
with it:

# Our predefined function JSON schema: 

functions = [ 

    { 



        "type": "function", 

        "function": { 

            "type": "object", 

            "name": "schedule_meeting", 

            "description": '''Set a meeting at a 

            designated attendees''', 

            "parameters": { 

                "type": "object", 

                "properties": { 

                    "date": {"type": "string", "f

                    "time": {"type": "string", "f

                    "attendees": {"type": "array

                }, 

                "required": ["date", "time", "att

            }, 

        }, 

    } 

]

SPECIFY FORMAT

When using function calling with your OpenAI models, always ensure to define a
detailed JSON schema (including the name and description). This acts as a blueprint
for the function, guiding the model to understand when and how to properly invoke

it.



After defining the functions, let’s make an OpenAI API request.
Set up a messages  list with the user query. Then, using an
OpenAI client  object, you’ll send this message and the
function schema to the model. The LLM analyzes the
conversation, discerns a need to trigger a function, and
provides the function name and arguments. The function
and function_args  are parsed from the LLM response. Then
the function is executed, and its results are added back into the
conversation. Then you call the model again for a user-friendly
summary of the entire process.

Input:

client = OpenAI(api_key=getenv("OPENAI_API_KEY")

 

# Start the conversation: 

messages = [ 

    { 

        "role": "user", 

        "content": '''Schedule a meeting on 2023

        with Alice and Bob.''', 

    } 

] 

 

# Send the conversation and function schema to th

response = client.chat.completions.create( 

    model="gpt-3.5-turbo-1106", 



gp

    messages=messages, 

    tools=functions, 

) 

 

response = response.choices[0].message 

 

# Check if the model wants to call our function: 

if response.tool_calls: 

    # Get the first function call: 

    first_tool_call = response.tool_calls[0] 

 

    # Find the function name and function args to

    function_name = first_tool_call.function.name

    function_args = json.loads(first_tool_call.fu

    print("This is the function name: ", function

    print("These are the function arguments: ", f

 

    function = OPENAI_FUNCTIONS.get(function_name

 

    if not function: 

        raise Exception(f"Function {function_name

 

    # Call the function: 

    function_response = function(**function_args

 

    # Share the function's response with the mode

    messages.append( 

        { 

"role": "function",



            role : function , 

            "name": "schedule_meeting", 

            "content": json.dumps(function_respon

        } 

    ) 

 

    # Let the model generate a user-friendly resp

    second_response = client.chat.completions.cre

        model="gpt-3.5-turbo-0613", messages=mess

    ) 

 

    print(second_response.choices[0].message.cont

Output:

These are the function arguments:  {'date': '2023

'attendees': ['Alice', 'Bob']} 

This is the function name:  schedule_meeting 

I have scheduled a meeting on 2023-11-01 at 14:00

The event ID is 1234.

Several important points to note while function calling:

It’s possible to have many functions that the LLM can call.
OpenAI can hallucinate function parameters, so be more
explicit within the system  message to overcome this.



The function_call  parameter can be set in various
ways:

To mandate a specific function call: tool_choice:
{"type: "function", "function": {"name":

"my_function"}}} .
For a user message without function invocation:
tool_choice: "none" .
By default ( tool_choice: "auto" ), the model
autonomously decides if and which function to call.

Parallel Function Calling

You can set your chat messages to include intents that request
simultaneous calls to multiple tools. This strategy is known as
parallel function calling.

Modifying the previously used code, the messages  list is
updated to mandate the scheduling of two meetings:

# Start the conversation: 

messages = [ 

    { 

        "role": "user", 

        "content": '''Schedule a meeting on 2023

        and Bob. Then I want to schedule another 

15:00 with Charlie and Dave '''



        15:00 with Charlie and Dave.''' 

    } 

]

Then, adjust the previous code section by incorporating a for
loop.

Input:

# Send the conversation and function schema to th

response = client.chat.completions.create( 

    model="gpt-3.5-turbo-1106", 

    messages=messages, 

    tools=functions, 

) 

 

response = response.choices[0].message 

 

# Check if the model wants to call our function: 

if response.tool_calls: 

    for tool_call in response.tool_calls: 

        # Get the function name and arguments to 

        function_name = tool_call.function.name 

        function_args = json.loads(tool_call.func

        print("This is the function name: ", func

        print("These are the function arguments: 

 

        function = OPENAI FUNCTIONS.get(function



_ g ( _

 

        if not function: 

            raise Exception(f"Function {function_

 

        # Call the function: 

        function_response = function(**function_a

 

        # Share the function's response with the 

        messages.append( 

            { 

                "role": "function", 

                "name": function_name, 

                "content": json.dumps(function_re

            } 

        ) 

 

    # Let the model generate a user-friendly resp

    second_response = client.chat.completions.cre

        model="gpt-3.5-turbo-0613", messages=mess

    ) 

 

    print(second_response.choices[0].message.cont

Output:

This is the function name:  schedule_meeting 

These are the function arguments: {'date': '2023



These are the function arguments:  { date : 2023

'attendees': ['Alice', 'Bob']} 

This is the function name:  schedule_meeting 

These are the function arguments:  {'date': '2023

'attendees': ['Charlie', 'Dave']} 

Two meetings have been scheduled: 

1. Meeting with Alice and Bob on 2023-11-01 at 14

2. Meeting with Charlie and Dave on 2023-11-02 at

From this example, it’s clear how you can effectively manage
multiple function calls. You’ve seen how the
schedule_meeting  function was called twice in a row to
arrange different meetings. This demonstrates how flexibly and
effortlessly you can handle varied and complex requests using
AI-powered tools.

Function Calling in LangChain

If you’d prefer to avoid writing JSON schema and simply want
to extract structured data from an LLM response, then
LangChain allows you to use function calling with Pydantic.

Input:

from langchain.output_parsers.openai_tools import

from langchain core.utils.function calling import



o  a gc a _co e u s u c o _ca g po

from langchain_core.prompts import ChatPromptTemp

from langchain_openai.chat_models import ChatOpen

from langchain_core.pydantic_v1 import BaseModel

from typing import Optional 

 

class Article(BaseModel): 

    """Identifying key points and contrarian view

 

    points: str = Field(..., description="Key poi

    contrarian_points: Optional[str] = Field( 

        None, description="Any contrarian points 

    ) 

    author: Optional[str] = Field(None, descripti

 

_EXTRACTION_TEMPLATE = """Extract and save the re

in the following passage together with their prop

 

If a property is not present and is not required 

do not include it in the output.""" 

 

# Create a prompt telling the LLM to extract info

prompt = ChatPromptTemplate.from_messages( 

    {("system", _EXTRACTION_TEMPLATE), ("user", 

) 

 

model = ChatOpenAI() 

 

pydantic_schemas = [Article] 



 

# Convert Pydantic objects to the appropriate sch

tools = [convert_to_openai_tool(p) for p in pydan

 

# Give the model access to these tools: 

model = model.bind_tools(tools=tools) 

 

# Create an end to end chain: 

chain = prompt | model | PydanticToolsParser(tool

 

result = chain.invoke( 

    { 

        "input": """In the recent article titled 

        key points addressed include the growing 

        author, Dr. Jane Smith, ...""" 

    } 

) 

print(result)

Output:

[Article(points='The growing interest in AI in va

contrarian_points='Without stringent regulations

author='Dr. Jane Smith')]



You’ll start by importing various modules, including
PydanticToolsParser  and ChatPromptTemplate , essential
for parsing and templating your prompts. Then, you’ll define a
Pydantic model, Article , to specify the structure of the
information you want to extract from a given text. With the use
of a custom prompt template and the ChatOpenAI model, you’ll
instruct the AI to extract key points and contrarian views from
an article. Finally, the extracted data is neatly converted into
your predefined Pydantic model and printed out, allowing you
to see the structured information pulled from the text.

There are several key points, including:

Converting Pydantic schema to OpenAI tools

tools = [convert_to_openai_tool(p) for p in

pydantic_schemas]

Binding the tools directly to the LLM

model = model.bind_tools(tools=tools)

Creating an LCEL chain that contains a tools parser

chain = prompt | model |

PydanticToolsParser(tools=pydantic_schemas)



Extracting Data with LangChain

The create_extraction_chain_pydantic  function provides
a more concise version of the previous implementation. By
simply inserting a Pydantic model and an LLM that supports
function calling, you can easily achieve parallel function
calling.

Input:

from langchain.chains.openai_tools import create_

from langchain_openai.chat_models import ChatOpen

from langchain_core.pydantic_v1 import BaseModel

 

# Make sure to use a recent model that supports t

model = ChatOpenAI(model="gpt-3.5-turbo-1106") 

 

class Person(BaseModel): 

    """A person's name and age.""" 

 

    name: str = Field(..., description="The perso

    age: int = Field(..., description="The person

 

chain = create_extraction_chain_pydantic(Person, 

chain.invoke({'input':'''Bob is 25 years old. He 



He likes to play basketball. Sarah is 30 years ol

Francisco. She likes to play tennis.'''})

Output:

[Person(name='Bob', age=25), Person(name='Sarah'

The Person  Pydantic model has two properties, name  and
age ; by calling the create_extraction_chain_pydantic
function with the input text, the LLM invokes the same function
twice and creates two People  objects.

Query Planning

You may experience problems when user queries have multiple
intents with intricate dependencies. Query planning is an
effective way to parse a user’s query into a series of steps that
can be executed as a query graph with relevant dependencies:

from langchain_openai.chat_models import ChatOpen

from langchain.output_parsers.pydantic import Pyd

from langchain_core.prompts.chat import ( 

    ChatPromptTemplate, 

    SystemMessagePromptTemplate, 



) 

from pydantic.v1 import BaseModel, Field 

from typing import List 

 

class Query(BaseModel): 

    id: int 

    question: str 

    dependencies: List[int] = Field( 

        default_factory=list, 

        description="""A list of sub-queries that

        this task can be completed. 

        Use a sub query when anything is unknown 

        many queries to get an answer. 

        Dependencies must only be other queries.

    ) 

 

class QueryPlan(BaseModel): 

    query_graph: List[Query]

Defining QueryPlan  and Query  allows you to first ask an
LLM to parse a user’s query into multiple steps. Let’s investigate
how to create the query plan.

Input:

# Set up a chat model: 

model = ChatOpenAI() 



 

# Set up a parser: 

parser = PydanticOutputParser(pydantic_object=Que

 

template = """Generate a query plan. This will be

 

Answer the following query: {query} 

 

Return the following query graph format: 

{format_instructions} 

""" 

system_message_prompt = SystemMessagePromptTempla

chat_prompt = ChatPromptTemplate.from_messages([s

 

# Create the LCEL chain with the prompt, model, a

chain = chat_prompt | model | parser 

 

result = chain.invoke({ 

"query":'''I want to get the results from my data

out what the average age of my top 10 customers i

age, I want to send an email to John. Also I just

welcome introduction email to Sarah, regardless o

"format_instructions":parser.get_format_instructi

 

print(result.query_graph)

Output:



[Query(id=1, question='Get top 10 customers', dep

Query(id=2, question='Calculate average age of cu

Query(id=3, question='Send email to John', depend

Query(id=4, question='Send welcome email to Sarah

Initiate a ChatOpenAI  instance and create a
PydanticOutputParser  for the QueryPlan  structure. Then
the LLM response is called and parsed, producing a structured
query_graph  for your tasks with their unique dependencies.

Creating Few-Shot Prompt Templates

Working with the generative capabilities of LLMs often involves
making a choice between zero-shot and few-shot learning (k-
shot). While zero-shot learning requires no explicit examples
and adapts to tasks based solely on the prompt, its dependence
on the pretraining phase means it may not always yield precise
results.

On the other hand, with few-shot learning, which involves
providing a few examples of the desired task performance in
the prompt, you have the opportunity to optimize the model’s
behavior, leading to more desirable outputs.



Due to the token LLM context length, you will often finding
yourself competing between adding lots of high-quality k-shot
examples into your prompts while still aiming to generate an
effective and deterministic LLM output.

NOTE

Even as the token context window limit within LLMs continues to increase, providing
a specific number of k-shot examples helps you minimize API costs.

Let’s explore two methods for adding k-shot examples into your
prompts with few-shot prompt templates: using fixed examples
and using an example selector.

Fixed-Length Few-Shot Examples

First, let’s look at how to create a few-shot prompt template
using a fixed number of examples. The foundation of this
method lies in creating a robust set of few-shot examples:

from langchain_openai.chat_models import ChatOpen

from langchain_core.prompts import ( 

    FewShotChatMessagePromptTemplate, 

    ChatPromptTemplate, 

) 

 



examples = [ 

    { 

        "question": "What is the capital of Franc

        "answer": "Paris", 

    }, 

    { 

        "question": "What is the capital of Spain

        "answer": "Madrid", 

    } # ...more examples... 

]

Each example is a dictionary containing a question  and
answer  key that will be used to create pairs of HumanMessage
and AIMessage  messages.

Formatting the Examples

Next, you’ll configure a ChatPromptTemplate  for formatting
the individual examples, which will then be inserted into a
FewShotChatMessagePromptTemplate .

Input:

example_prompt = ChatPromptTemplate.from_messages

    [ 

        ("human", "{question}"), 

("ai" "{answer}")



        ( ai , {answer} ), 

    ] 

) 

 

few_shot_prompt = FewShotChatMessagePromptTemplat

    example_prompt=example_prompt,

    examples=examples, 

) 

 

print(few_shot_prompt.format())

Output:

Human: What is the capital of France? 

AI: Paris

Human: What is the capital of Spain? 

AI: Madrid 

...more examples...

Notice how example_prompt  will create HumanMessage  and
AIMessage  pairs with the prompt inputs of {question}  and
{answer} .

After running few_shot_prompt.format() , the few-shot
examples are printed as a string. As you’d like to use these



within a ChatOpenAI()  LLM request, let’s create a new
ChatPromptTemplate .

Input:

from langchain_core.output_parsers import StrOutp

 

final_prompt = ChatPromptTemplate.from_messages( 

    [("system",'''You are responsible for answeri

    questions about countries. Only return the co

    name.'''), 

    few_shot_prompt,("human", "{question}"),] 

) 

 

model = ChatOpenAI() 

 

# Creating the LCEL chain with the prompt, model

chain = final_prompt | model | StrOutputParser() 

 

result = chain.invoke({"question": "What is the c

 

print(result)

Output:

Washington, D.C.



After invoking the LCEL chain on final_prompt , your few-
shot examples are added after the SystemMessage .

Notice that the LLM only returns 'Washington, D.C.'  This is
because after the LLMs response is returned, it is parsed by
StrOutputParser() , an output parser. Adding
StrOutputParser()  is a common way to ensure that LLM
responses in chains return string values. You’ll explore this
more in depth while learning sequential chains in LCEL.

Selecting Few-Shot Examples by Length

Before diving into the code, let’s outline your task. Imagine
you’re building a storytelling application powered by GPT-4. A
user enters a list of character names with previously generated
stories. However, each user’s list of characters might have a
different length. Including too many characters might generate
a story that surpasses the LLM’s context window limit. That’s
where you can use LengthBasedExampleSelector  to adapt
the prompt according to the length of user input:

from langchain_core.prompts import FewShotPromptT

from langchain.prompts.example_selector import Le

from langchain_openai.chat_models import ChatOpen

from langchain core.messages import SystemMessage



o  a gc a _co e essages po  Sys e essage

import tiktoken 

 

examples = [ 

    {"input": "Gollum", "output": "<Story involvi

    {"input": "Gandalf", "output": "<Story involv

    {"input": "Bilbo", "output": "<Story involvin

] 

 

story_prompt = PromptTemplate( 

    input_variables=["input", "output"], 

    template="Character: {input}\nStory: {output}

) 

 

def num_tokens_from_string(string: str) -> int: 

    """Returns the number of tokens in a text st

    encoding = tiktoken.get_encoding("cl100k_base

    num_tokens = len(encoding.encode(string)) 

    return num_tokens 

 

example_selector = LengthBasedExampleSelector( 

    examples=examples, 

    example_prompt=story_prompt, 

    max_length=1000, # 1000 tokens are to be incl

    # get_text_length: Callable[[str], int] = lam

    # You have modified the get_text_length funct

    # TikToken library based on token usage: 

    get_text_length=num_tokens_from_string, 

)



First, you set up a PromptTemplate  that takes two input
variables for each example. Then
LengthBasedExampleSelector  adjusts the number of
examples according to the length of the examples input,
ensuring your LLM doesn’t generate a story beyond its context
window.

Also, you’ve customized the get_text_length  function to use
the num_tokens_from_string  function that counts the total
number of tokens using tiktoken . This means that
max_length=1000  represents the number of tokens rather
than using the following default function:

get_text_length: Callable[[str], int] = lambda x:

len(re.split("\n| ", x))

Now, to tie all these elements together:

dynamic_prompt = FewShotPromptTemplate( 

    example_selector=example_selector, 

    example_prompt=story_prompt, 

    prefix='''Generate a story for {character} us

    current Character/Story pairs from all of the

    as context.''', 

    suffix="Character: {character}\nStory:", 

i t i bl [" h t "]



    input_variables=["character"],

) 

 

# Provide a new character from Lord of the Rings

formatted_prompt = dynamic_prompt.format(characte

 

# Creating the chat model: 

chat = ChatOpenAI() 

 

response = chat.invoke([SystemMessage(content=fo

print(response.content)

Output:

Frodo was a young hobbit living a peaceful life i

his life...

PROVIDE EXAMPLES AND SPECIFY FORMAT

When working with few-shot examples, the length of the content matters in
determining how many examples the AI model can take into account. Tune the
length of your input content and provide apt examples for efficient results to prevent
the LLM from generating content that might surpass its context window limit.

After formatting the prompt, you create a chat model with
ChatOpenAI()  and load the formatted prompt into a



SystemMessage  that creates a small story about Frodo from
Lord of the Rings.

Rather than creating and formatting a ChatPromptTemplate ,
it’s often much easier to simply invoke a SystemMesage  with a
formatted prompt:

result = model.invoke([SystemMessage(content=form

Limitations with Few-Shot Examples

Few-shot learning has limitations. Although it can prove
beneficial in certain scenarios, it might not always yield the
expected high-quality results. This is primarily due to two
reasons:

Pretrained models like GPT-4 can sometimes overfit to the
few-shot examples, making them prioritize the examples
over the actual prompt.
LLMs have a token limit. As a result, there will always be a
trade-off between the number of examples and the length
of the response. Providing more examples might limit the
response length and vice versa.



These limitations can be addressed in several ways. First, if few-
shot prompting is not yielding the desired results, consider
using differently framed phrases or experimenting with the
language of the prompts themselves. Variations in how the
prompt is phrased can result in different responses,
highlighting the trial-and-error nature of prompt engineering.

Second, think about including explicit instructions to the model
to ignore the examples after it understands the task or to use
the examples just for formatting guidance. This might influence
the model to not overfit to the examples.

If the tasks are complex and the performance of the model with
few-shot learning is not satisfactory, you might need to consider
fine-tuning your model. Fine-tuning provides a more nuanced
understanding of a specific task to the model, thus improving
the performance significantly.

Saving and Loading LLM Prompts

To effectively leverage generative AI models such as GPT-4, it is
beneficial to store prompts as files instead of Python code. This
approach enhances the shareability, storage, and versioning of
your prompts.

https://oreil.ly/S40bZ


LangChain supports both saving and loading prompts from
JSON and YAML. Another key feature of LangChain is its
support for detailed specification in one file or distributed
across multiple files. This means you have the flexibility to store
different components such as templates, examples, and others
in distinct files and reference them as required.

Let’s learn how to save and load prompts:

from langchain_core.prompts import PromptTemplate

 

prompt = PromptTemplate( 

    template='''Translate this sentence from Engl

    \nSentence: {sentence}\nTranslation:''', 

    input_variables=["sentence"], 

) 

 

prompt.save("translation_prompt.json") 

 

# Loading the prompt template: 

load_prompt("translation_prompt.json") 

# Returns PromptTemplate()

After importing PromptTemplate  and load_prompt  from the
langchain.prompts  module, you define a PromptTemplate



for English-to-Spanish translation tasks and save it as
translation_prompt.json. Finally, you load the saved prompt
template using the load_prompt  function, which returns an
instance of PromptTemplate .

WARNING

Please be aware that LangChain’s prompt saving may not work with all types of
prompt templates. To mitigate this, you can utilize the pickle library or .txt files to
read and write any prompts that LangChain does not support.

You’ve learned how to create few-shot prompt templates using
LangChain with two techniques: a fixed number of examples
and using an example selector.

The former creates a set of few-shot examples and uses a
ChatPromptTemplate  object to format these into chat
messages. This forms the basis for creating a
FewShotChatMessagePromptTemplate  object.

The latter approach, using an example selector, is handy when
user input varies significantly in length. In such scenarios, a
LengthBasedExampleSelector  can be utilized to adjust the
number of examples based on user input length. This ensures
your LLM does not exceed its context window limit.



Moreover, you’ve seen how easy it is to store/load prompts as
files, enabling enhanced shareability, storage, and versioning.

Data Connection

Harnessing an LLM application, coupled with your data,
uncovers a plethora of opportunities to boost efficiency while
refining your decision-making processes.

Your organization’s data may manifest in various forms:

Unstructured data

This could include Google Docs, threads from
communication platforms such as Slack or Microsoft
Teams, web pages, internal documentation, or code
repositories on GitHub.

Structured data

Data neatly housed within SQL, NoSQL, or Graph
databases.

To query your unstructured data, a process of loading,
transforming, embedding, and subsequently storing it within a
vector database is necessary. A vector database is a specialized



type of database designed to efficiently store and query data in
the form of vectors, which represent complex data like text or
images in a format suitable for machine learning and similarity
search.

As for structured data, given its already indexed and stored
state, you can utilize a LangChain agent to conduct an
intermediate query on your database. This allows for the
extraction of specific features, which can then be used within
your LLM prompts.

There are multiple Python packages that can help with your
data ingestion, including Unstructured, LlamaIndex, and
LangChain.

Figure 4-2 illustrates a standardized approach to data ingestion.
It begins with the data sources, which are then loaded into
documents. These documents are then chunked and stored
within a vector database for later retrieval.

https://oreil.ly/n0hDD
https://www.llamaindex.ai/
https://oreil.ly/PjV9o


Figure 4-2. A data connection to retrieval pipeline

In particular LangChain equips you with essential components
to load, modify, store, and retrieve your data:

Document loaders

These facilitate uploading informational resources, or
documents, from a diverse range of sources such as Word
documents, PDF files, text files, or even web pages.

Document transformers

These tools allow the segmentation of documents,
conversion into a Q&A layout, elimination of superfluous
documents, and much more.

Text embedding models

These can transform unstructured text into a sequence of
floating-point numbers used for similarity search by
vector stores.



Vector databases (vector stores)

These databases can save and execute searches over
embedded data.

Retrievers

These tools offer the capability to query and retrieve data.

Also, it’s worth mentioning that other LLM frameworks such as
LlamaIndex work seamlessly with LangChain. LlamaHub is
another open source library dedicated to document loaders and
can create LangChain-specific Document  objects.

Document Loaders

Let’s imagine you’ve been tasked with building an LLM data
collection pipeline for NutriFusion Foods. The information that
you need to gather for the LLM is contained within:

A PDF of a book called Principles of Marketing
Two .docx marketing reports in a public Google Cloud
Storage bucket
Three .csv files showcasing the marketing performance
data for 2021, 2022, and 2023

https://oreil.ly/9NcTB
https://llamahub.ai/


Create a new Jupyter Notebook or Python file in
content/chapter_4 of the shared repository, and then run pip
install pdf2image docx2txt pypdf , which will install
three packages.

All of the data apart from .docx files can be found in
content/chapter_4/data. You can start by importing all of your
various data loaders and creating an empty all_documents
list to store all of the Document  objects across your data
sources.

Input:

from langchain_community.document_loaders import 

from langchain_community.document_loaders import 

from langchain_community.document_loaders.csv_loa

import glob 

from langchain.text_splitter import CharacterText

 

# To store the documents across all data sources

all_documents = [] 

 

# Load the PDF: 

loader = PyPDFLoader("data/principles_of_marketin

pages = loader.load_and_split() 

print(pages[0]) 

 

dd d h

https://oreil.ly/cVTyI
https://oreil.ly/u9gMx


# Add extra metadata to each page: 

for page in pages: 

    page.metadata["description"] = "Principles of

 

# Checking that the metadata has been added: 

for page in pages[0:2]: 

    print(page.metadata) 

 

# Saving the marketing book pages: 

all_documents.extend(pages) 

 

csv_files = glob.glob("data/*.csv")

 

# Filter to only include the word Marketing in th

csv_files = [f for f in csv_files if "Marketing" 

 

# For each .csv file: 

for csv_file in csv_files: 

    loader = CSVLoader(file_path=csv_file) 

    data = loader.load() 

    # Saving the data to the all_documents list: 

    all_documents.extend(data) 

 

text_splitter = CharacterTextSplitter.from_tiktok

    chunk_size=200, chunk_overlap=0 

) 

 

urls = [ 



 

    '''https://storage.googleapis.com/oreilly-con

    0Marketing%20Plan%202022.docx''', 

    '''https://storage.googleapis.com/oreilly-con

    0Marketing%20Plan%202023.docx''', 

] 

 

docs = [] 

for url in urls: 

    loader = Docx2txtLoader(url.replace('\n', ''

    pages = loader.load() 

    chunks = text_splitter.split_documents(pages

 

    # Adding the metadata to each chunk: 

    for chunk in chunks: 

        chunk.metadata["source"] = "NutriFusion F

    docs.extend(chunks) 

 

# Saving the marketing book pages: 

all_documents.extend(docs)

Output:

page_content='Principles of Mark eting' 

metadata={'source': 'data/principles_of_marketing

{'source': 'data/principles_of_marketing_book.pdf

'description': 'Principles of Marketing Book'} 

{'source': 'data/principles of marketing book.pdf



{ /p p _ _ g_ p

'description': 'Principles of Marketing Book'}

Then using PyPDFLoader , you can import a .pdf file and split it
into multiple pages using the .load_and_split()  function.

Additionally, it’s possible to add extra metadata to each page
because the metadata is a Python dictionary on each
Document  object. Also, notice in the preceding output for
Document  objects the metadata source  is attached to.

Using the package glob , you can easily find all of the .csv files
and individually load these into LangChain Document  objects
with a CSVLoader .

Finally, the two marketing reports are loaded from a public
Google Cloud Storage bucket and are then split into 200 token-
chunk sizes using a text_splitter .

This section equipped you with the necessary knowledge to
create a comprehensive document-loading pipeline for
NutriFusion Foods’ LLM. Starting with data extraction from a
PDF, several CSV files and two .docx files, each document was
enriched with relevant metadata for better context.



You now have the ability to seamlessly integrate data from a
variety of document sources into a cohesive data pipeline.

Text Splitters

Balancing the length of each document is also a crucial factor. If
a document is too lengthy, it may surpass the context length of
the LLM (the maximum number of tokens that an LLM can
process within a single request). But if the documents are
excessively fragmented into smaller chunks, there’s a risk of
losing significant contextual information, which is equally
undesirable.

You might encounter specific challenges while text splitting,
such as:

Special characters such as hashtags, @ symbols, or links
might not split as anticipated, affecting the overall structure
of the split documents.
If your document contains intricate formatting like tables,
lists, or multilevel headings, the text splitter might find it
difficult to retain the original formatting.

There are ways to overcome these challenges that we’ll explore
later.



This section introduces you to text splitters in LangChain, tools
utilized to break down large chunks of text to better adapt to
your model’s context window.

NOTE

There isn’t a perfect document size. Start by using good heuristics and then build a
training/test set that you can use for LLM evaluation.

LangChain provides a range of text splitters so that you can
easily split by any of the following:

Token count
Recursively by multiple characters
Character count
Code
Markdown headers

Let’s explore three popular splitters:
CharacterTextSplitter , TokenTextSplitter , and
RecursiveCharacterTextSplitter .

Text Splitting by Length and Token
Size



In Chapter 3, you learned how to count the number of tokens
within a GPT-4 call with tiktoken. You can also use tiktoken to
split strings into appropriately sized chunks and documents.

Remember to install tiktoken and langchain-text-splitters with
pip install tiktoken langchain-text-splitters .

To split by token count in LangChain, you can use a
CharacterTextSplitter  with a
.from_tiktoken_encoder()  function.

You’ll initially create a CharacterTextSplitter  with a
chunk size of 50 characters and no overlap. Using the
split_text  method, you’re chopping the text into pieces and
then printing out the total number of chunks created.

Then you’ll do the same thing, but this time with a chunk
overlap of 48 characters. This shows how the number of chunks
changes based on whether you allow overlap, illustrating the
impact of these settings on how your text gets divided:

from langchain_text_splitters import CharacterTex

 

text = """ 

Biology is a fascinating and diverse field of sci

living world and its intricacies \n\n. It encompa

origins diversity structure function and inte

https://oreil.ly/uz05O


origins, diversity, structure, function, and inte

from molecules and cells to organisms and ecosyst

essay, we will delve into the core concepts of bi

areas of study, and its significance in shaping o

natural world. \n\n ...(truncated to save space)

""" 

# No chunk overlap: 

text_splitter = CharacterTextSplitter.from_tiktok

chunk_size=50, chunk_overlap=0, separator="\n", 

) 

texts = text_splitter.split_text(text) 

print(f"Number of texts with no chunk overlap: {l

 

# Including a chunk overlap: 

text_splitter = CharacterTextSplitter.from_tiktok

chunk_size=50, chunk_overlap=48, separator="\n", 

) 

texts = text_splitter.split_text(text) 

print(f"Number of texts with chunk overlap: {len

Output:

Number of texts with no chunk overlap: 3 

Number of texts with chunk overlap: 6

In the previous section, you used the following to load and split
the .pdf into LangChain documents:



pages = loader.load_and_split()

It’s possible for you to have more granular control on the size of
each document by creating a TextSplitter  and attaching it
to your Document  loading pipelines:

def load_and_split(text_splitter: TextSplitter

| None = None) -> List[Document]

Simply create a TokenTextSplitter  with a
chunk_size=500  and a chunk_overlap  of 50:

from langchain.text_splitter import TokenTextSpli

from langchain_community.document_loaders import 

 

text_splitter = TokenTextSplitter(chunk_size=500

loader = PyPDFLoader("data/principles_of_marketin

pages = loader.load_and_split(text_splitter=text_

 

print(len(pages)) #737

The Principles of Marketing book contains 497 pages, but after
using a TokenTextSplitter  with a chunk_size  of 500
tokens, you’ve created 776 smaller LangChain Document
objects.



Text Splitting with Recursive
Character Splitting

Dealing with sizable blocks of text can present unique
challenges in text analysis. A helpful strategy for such situations
involves the use of recursive character splitting. This method
facilitates the division of a large body of text into manageable
segments, making further analysis more accessible.

This approach becomes incredibly effective when handling
generic text. It leverages a list of characters as parameters and
sequentially splits the text based on these characters. The
resulting sections continue to be divided until they reach an
acceptable size. By default, the character list comprises
"\n\n" , "\n" , " " , and "" . This arrangement aims to
retain the integrity of paragraphs, sentences, and words,
preserving the semantic context.

The process hinges on the character list provided and sizes the
resulting sections based on the character count.

Before diving into the code, it’s essential to understand what the
RecursiveCharacterTextSplitter  does. It takes a text and
a list of delimiters (characters that define the boundaries for



splitting the text). Starting from the first delimiter in the list, the
splitter attempts to divide the text. If the resulting chunks are
still too large, it proceeds to the next delimiter, and so on. This
process continues recursively until the chunks are small enough
or all delimiters are exhausted.

Using the preceding text  variable, start by importing
RecursiveCharacterText Splitter . This instance will be
responsible for splitting the text. When initializing the splitter,
parameters chunk_size , chunk_overlap , and
length_function  are set. Here, chunk_size  is set to 100,
and chunk_overlap  to 20.

The length_function  is defined as len  to determine the
size of the chunks. It’s also possible to modify the
length_function  argument to use a tokenizer count instead
of using the default len  function, which will count characters:

from langchain_text_splitters import RecursiveCha

 

text_splitter = RecursiveCharacterTextSplitter( 

    chunk_size=100, 

    chunk_overlap=20, 

    length_function=len, 

)



Once the text_splitter  instance is ready, you can use
.split_text  to split the text  variable into smaller chunks.
These chunks are stored in the texts  Python list:

# Split the text into chunks: 

texts = text_splitter.split_text(text)

As well as simply splitting the text with overlap into a list of
strings, you can easily create LangChain Document  objects
with the .create_documents  function. Creating Document
objects is useful because it allows you to:

Store documents within a vector database for semantic
search
Add metadata to specific pieces of text
Iterate over multiple documents to create a higher-level
summary

To add metadata, provide a list of dictionaries to the
metadatas  argument:

# Create documents from the chunks: 

metadatas = {"title": "Biology", "author": "John 

docs = text_splitter.create_documents(texts, meta



But what if your existing Document  objects are too long?

You can easily handle that by using the .split_documents
function with a TextSplitter . This will take in a list of
Document  objects and will return a new list of Document
objects based on your TextSplitter  class argument settings:

text_splitter = RecursiveCharacterTextSplitter(ch

splitted_docs = text_splitter.split_documents(doc

You’ve now gained the ability to craft an efficient data loading
pipeline, leveraging sources such as PDFs, CSVs, and Google
Cloud Storage links. Furthermore, you’ve learned how to enrich
the collected documents with relevant metadata, providing
meaningful context for analysis and prompt engineering.

With the introduction of text splitters, you can now strategically
manage document sizes, optimizing for both the LLM’s context
window and the preservation of context-rich information.
You’ve navigated handling larger texts by employing recursion
and character splitting. This newfound knowledge empowers
you to work seamlessly with various document sources and
integrate them into a robust data pipeline.



Task Decomposition

Task decomposition is the strategic process of dissecting
complex problems into a suite of manageable subproblems.
This approach aligns seamlessly with the natural tendencies of
software engineers, who often conceptualize tasks as
interrelated subcomponents.

In software engineering, by utilizing task decomposition you
can reduce cognitive burden and harness the advantages of
problem isolation and adherence to the single responsibility
principle.

Interestingly, LLMs stand to gain considerably from the
application of task decomposition across a range of use cases.
This approach aids in maximizing the utility and effectiveness
of LLMs in problem-solving scenarios by enabling them to
handle intricate tasks that would be challenging to resolve as a
single entity, as illustrated in Figure 4-3.

Here are several examples of LLMs using decomposition:

Complex problem solving

In instances where a problem is multifaceted and cannot
be solved through a single prompt, task decomposition is



extremely useful. For example, solving a complex legal
case could be broken down into understanding the case’s
context, identifying relevant laws, determining legal
precedents, and crafting arguments. Each subtask can be
solved independently by an LLM, providing a
comprehensive solution when combined.

Content generation

For generating long-form content such as articles or blogs,
the task can be decomposed into generating an outline,
writing individual sections, and then compiling and
refining the final draft. Each step can be individually
managed by GPT-4 for better results.

Large document summary

Summarizing lengthy documents such as research papers
or reports can be done more effectively by decomposing
the task into several smaller tasks, like understanding
individual sections, summarizing them independently,
and then compiling a final summary.

Interactive conversational agents

For creating advanced chatbots, task decomposition can
help manage different aspects of conversation such as



understanding user input, maintaining context,
generating relevant responses, and managing dialogue
flow.

Learning and tutoring systems

In digital tutoring systems, decomposing the task of
teaching a concept into understanding the learner’s
current knowledge, identifying gaps, suggesting learning
materials, and evaluating progress can make the system
more effective. Each subtask can leverage GPT-4’s
generative abilities.



Figure 4-3. Task decomposition with LLMs



DIVIDE LABOR

Task decomposition is a crucial strategy for you to tap into the full potential of LLMs.
By dissecting complex problems into simpler, manageable tasks, you can leverage the
problem-solving abilities of these models more effectively and efficiently.

In the sections ahead, you’ll learn how to create and integrate
multiple LLM chains to orchestrate more complicated
workflows.

Prompt Chaining

Often you’ll find that attempting to do a single task within one
prompt is impossible. You can utilize a mixture of prompt
chaining, which involves combining multiple prompt
inputs/outputs with specifically tailored LLM prompts to build
up an idea.

Let’s imagine an example with a film company that would like
to partially automate their film creation. This could be broken
down into several key components, such as:

Character creation
Plot generation
Scenes/world building



Figure 4-4 shows what the prompt workflow might look like.



Figure 4-4. A sequential story creation process



Sequential Chain

Let’s decompose the task into multiple chains and recompose
them into a single chain:

character_generation_chain

A chain responsible for creating multiple characters given
a 'genre' .

plot_generation_chain

A chain that will create the plot given the 'characters'
and 'genre'  keys.

scene_generation_chain

This chain will generate any missing scenes that were not
initially generated from the plot_generation_chain .

Let’s start by creating three separate ChatPromptTemplate
variables, one for each chain:

from langchain_core.prompts.chat import ChatPromp

 

character_generation_prompt = ChatPromptTemplate

    """I want you to brainstorm three to five cha

    genre is {genre}. Each character must have a 

    You must provide a name and biography for eac



    important! 

    --- 

    Example response: 

    Name: CharWiz, Biography: A wizard who is a m

    Name: CharWar, Biography: A warrior who is a 

    --- 

    Characters: """ 

) 

 

plot_generation_prompt = ChatPromptTemplate.from_

    """Given the following characters and the gen

    plot for a short story: 

    Characters: 

    {characters} 

    --- 

    Genre: {genre} 

    --- 

    Plot: """ 

    ) 

 

scene_generation_plot_prompt = ChatPromptTemplate

    """Act as an effective content creator. 

    Given multiple characters and a plot, you are

    generating the various scenes for each act. 

 

    You must decompose the plot into multiple eff

    --- 

    Characters: 

{characters}



    {characters} 

    --- 

    Genre: {genre} 

    --- 

    Plot: {plot} 

    --- 

    Example response: 

    Scenes: 

    Scene 1: Some text here. 

    Scene 2: Some text here. 

    Scene 3: Some text here. 

    ---- 

    Scenes: 

    """ 

)

Notice that as the prompt templates flow from character to plot
and scene generation, you add more placeholder variables from
the previous steps.

The question remains, how can you guarantee that these extra
strings are available for your downstream
ChatPromptTemplate  variables?

itemgetter and Dictionary Key Extraction



Within LCEL you can use the itemgetter  function from the
operator  package to extract keys from the previous step, as
long as a dictionary was present within the previous step:

from operator import itemgetter 

from langchain_core.runnables import RunnablePass

 

chain = RunnablePassthrough() | { 

    "genre": itemgetter("genre"), 

  } 

chain.invoke({"genre": "fantasy"}) 

# {'genre': 'fantasy'}

The RunnablePassThrough  function simply passes any inputs
directly to the next step. Then a new dictionary is created by
using the same key within the invoke  function; this key is
extracted by using itemgetter("genre") .

It’s essential to use the itemgetter  function throughout parts
of your LCEL chains so that any subsequent
ChatPromptTemplate  placeholder variables will always have
valid values.

Additionally, you can use lambda  or RunnableLambda
functions within an LCEL chain to manipulate previous



dictionary values. A lambda is an anonynous function within
Python:

from langchain_core.runnables import RunnableLamb

 

chain = RunnablePassthrough() | { 

    "genre": itemgetter("genre"), 

    "upper_case_genre": lambda x: x["genre"].uppe

    "lower_case_genre": RunnableLambda(lambda x: 

} 

chain.invoke({"genre": "fantasy"}) 

# {'genre': 'fantasy', 'upper_case_genre': 'FANTA

# 'lower_case_genre': 'fantasy'}

Now that you’re aware of how to use RunnablePassThrough ,
itemgetter , and lambda  functions, let’s introduce one final
piece of syntax: RunnableParallel :

from langchain_core.runnables import RunnablePara

 

master_chain = RunnablePassthrough() | { 

    "genre": itemgetter("genre"), 

    "upper_case_genre": lambda x: x["genre"].uppe

    "lower_case_genre": RunnableLambda(lambda x: 

} 

 

master chain two = RunnablePassthrough() | Runnab



master_chain_two = RunnablePassthrough() | Runnab

        genre=itemgetter("genre"), 

        upper_case_genre=lambda x: x["genre"].upp

        lower_case_genre=RunnableLambda(lambda x

) 

 

story_result = master_chain.invoke({"genre": "Fan

print(story_result) 

 

story_result = master_chain_two.invoke({"genre": 

print(story_result) 

 

# master chain: {'genre': 'Fantasy', 'upper_case_

# 'lower_case_genre': 'fantasy'} 

# master chain two: {'genre': 'Fantasy', 'upper_c

# 'lower_case_genre': 'fantasy'}

First, you import RunnableParallel  and create two LCEL
chains called master_chain  and master_chain_two . These
are then invoked with exactly the same arguments; the
RunnablePassthrough  then passes the dictionary into the
second part of the chain.

The second part of master_chain  and master_chain_two
will return exactly the same result.



So rather than directly using a dictionary, you can choose to use
a RunnableParallel  function instead. These two chain
outputs are interchangeable, so choose whichever syntax you
find more comfortable.

Let’s create three LCEL chains using the prompt templates:

from langchain_openai.chat_models import ChatOpen

from langchain_core.output_parsers import StrOutp

 

# Create the chat model: 

model = ChatOpenAI() 

 

# Create the subchains: 

character_generation_chain = ( character_generati

| model 

| StrOutputParser() ) 

 

plot_generation_chain = ( plot_generation_prompt 

| model 

| StrOutputParser() ) 

 

scene_generation_plot_chain = ( scene_generation_

| model 

| StrOutputParser()  )



After creating all the chains, you can then attach them to a
master LCEL chain.

Input:

from langchain_core.runnables import RunnablePara

from operator import itemgetter 

from langchain_core.runnables import RunnablePass

 

master_chain = ( 

    {"characters": character_generation_chain, "g

    RunnablePassthrough()} 

    | RunnableParallel( 

        characters=itemgetter("characters"), 

        genre=itemgetter("genre"), 

        plot=plot_generation_chain, 

    ) 

    | RunnableParallel( 

        characters=itemgetter("characters"), 

        genre=itemgetter("genre"), 

        plot=itemgetter("plot"), 

        scenes=scene_generation_plot_chain, 

    ) 

) 

 

story_result = master_chain.invoke({"genre": "Fan



The output is truncated when you see ...  to save space.
However, in total there were five characters and nine scenes
generated.

Output:

{'characters': '''Name: Lyra, Biography: Lyra is 

..\n\nName: Orion, Biography: Orion is a ..''', 

'Fantasy'} 'plot': '''In the enchanted forests of

darkness looms, threatening to engulf the land an

the young elf with a deep connection to nature, 

1: Lyra senses the impending danger in the forest

his mission to investigate the disturbances in th

After the battle, Lyra, Orion, Seraphina, Finnega

The scenes are split into separate items within a Python list.
Then two new prompts are created to generate both a character
script and a summarization prompt:

# Extracting the scenes using .split('\n') and re

scenes = [scene for scene in story_result["scenes

generated_scenes = [] 

previous_scene_summary = "" 

 

character_script_prompt = ChatPromptTemplate.from

    template="""Given the following characters: {

{genre} create an effective character script



    {genre}, create an effective character script

 

    You must follow the following principles: 

    - Use the Previous Scene Summary: {previous_s

    repeating yourself. 

    - Use the Plot: {plot} to create an effective

    - Currently you are generating the character 

    following scene: {scene} 

 

    --- 

    Here is an example response: 

    SCENE 1: ANNA'S APARTMENT 

 

    (ANNA is sorting through old books when there

    She opens it to reveal JOHN.)

    ANNA: Can I help you, sir? 

    JOHN: Perhaps, I think it's me who can help y

    researching time travel. 

    (Anna looks intrigued but also cautious.) 

    ANNA: That's right, but how do you know? 

    JOHN: You could say... I'm a primary source. 

 

    --- 

    SCENE NUMBER: {index} 

 

    """, 

) 

 

summarize prompt = ChatPromptTemplate from templa



summarize_prompt = ChatPromptTemplate.from_templa

    template="""Given a character script, create 

    Character script: {character_script}""", 

)

Technically, you could generate all of the scenes
asynchronously. However, it’s beneficial to know what each
character has done in the previous scene to avoid repeating
points.

Therefore, you can create two LCEL chains, one for generating
the character scripts per scene and the other for
summarizations of previous scenes:

# Loading a chat model: 

model = ChatOpenAI(model='gpt-3.5-turbo-16k') 

 

# Create the LCEL chains: 

character_script_generation_chain = ( 

    { 

        "characters": RunnablePassthrough(), 

        "genre": RunnablePassthrough(), 

        "previous_scene_summary": RunnablePassth

        "plot": RunnablePassthrough(), 

        "scene": RunnablePassthrough(), 

        "index": RunnablePassthrough(), 

    } 

| h t i t t



    | character_script_prompt 

    | model 

    | StrOutputParser() 

) 

 

summarize_chain = summarize_prompt | model | StrO

 

# You might want to use tqdm here to track the p

# or use all of the scenes: 

for index, scene in enumerate(scenes[0:3]): 

 

    # # Create a scene generation: 

    scene_result = character_script_generation_ch

        { 

            "characters": story_result["characte

            "genre": "fantasy", 

            "previous_scene_summary": previous_sc

            "index": index, 

        } 

    ) 

 

    # Store the generated scenes:

    generated_scenes.append( 

        {"character_script": scene_result, "scene

    ) 

 

    # If this is the first scene then we don't ha

    # previous scene summary: 

if index == 0:



    if index  0: 

        previous_scene_summary = scene_result 

    else:

        # If this is the second scene or greater 

        # we can use and generate a summary: 

        summary_result = summarize_chain.invoke( 

            {"character_script": scene_result} 

        ) 

        previous_scene_summary = summary_result

First, you’ll establish a
character_script_generation_chain  in your script,
utilizing various runnables like RunnablePassthrough  for
smooth data flow. Crucially, this chain integrates model =
ChatOpenAI(model='gpt-3.5-turbo-16k') , a powerful
model with a generous 16k context window, ideal for extensive
content generation tasks. When invoked, this chain adeptly
generates character scripts, drawing on inputs such as
character profiles, genre, and scene specifics.

You dynamically enrich each scene by adding the summary of
the previous scene, creating a simple yet effective buffer
memory. This technique ensures continuity and context in the
narrative, enhancing the LLM’s ability to generate coherent
character scripts.



Additionally, you’ll see how the StrOutputParser  elegantly
converts model outputs into structured strings, making the
generated content easily usable.

DIVIDE LABOR

Remember, designing your tasks in a sequential chain greatly benefits from the
Divide Labor principle. Breaking tasks down into smaller, manageable chains can
increase the overall quality of your output. Each chain in the sequential chain

contributes its individual effort toward achieving the overarching task goal.

Using chains gives you the ability to use different models. For example, using a smart
model for the ideation and a cheap model for the generation usually gives optimal
results. This also means you can have fine-tuned models on each step.

Structuring LCEL Chains

In LCEL you must ensure that the first part of your LCEL chain
is a runnable type. The following code will throw an error:

from langchain_core.prompts.chat import ChatPromp

from operator import itemgetter 

from langchain_core.runnables import RunnablePass

 

bad_first_input = { 

    "film_required_age": 18, 

} 



 

prompt = ChatPromptTemplate.from_template( 

    "Generate a film title, the age is {film_requ

) 

 

# This will error: 

bad_chain = bad_first_input | prompt

A Python dictionary with a value of 18 will not create a
runnable LCEL chain. However, all of the following
implementations will work:

# All of these chains enforce the runnable interf

first_good_input = {"film_required_age": itemgett

 

# Creating a dictionary within a RunnableLambda: 

second_good_input = RunnableLambda(lambda x: { "f

x["film_required_age"] } ) 

 

third_good_input = RunnablePassthrough() 

fourth_good_input = {"film_required_age": Runnabl

# You can also create a chain starting with Runna

 

first_good_chain = first_good_input | prompt 

second_good_chain = second_good_input | prompt 

third_good_chain = third_good_input | prompt 

fourth_good_chain = fourth_good_input | prompt 



 

first_good_chain.invoke({ 

    "film_required_age": 18 

}) # ...

Sequential chains are great at incrementally building generated
knowledge that is used by future chains, but they often yield
slower response times due to their sequential nature. As such,
SequentialChain  data pipelines are best suited for server-
side tasks, where immediate responses are not a priority and
users aren’t awaiting real-time feedback.

Document Chains

Let’s imagine that before accepting your generated story, the
local publisher has requested that you provide a summary
based on all of the character scripts. This is a good use case for
document chains because you need to provide an LLM with a
large amount of text that wouldn’t fit within a single LLM
request due to the context length restrictions.

Before delving into the code, let’s first get a sense of the broader
picture. The script you are going to see performs a text
summarization task on a collection of scenes.



Remember to install Pandas with pip install pandas .

Now, let’s start with the first set of code:

from langchain_text_splitters import CharacterTex

from langchain.chains.summarize import load_summa

import pandas as pd

These lines are importing all the necessary tools you need.
CharacterTextSplitter  and load_summarize_chain  are
from the LangChain package and will help with text processing,
while Pandas (imported as pd ) will help manipulate your data.

Next, you’ll be dealing with your data:

df = pd.DataFrame(generated_scenes)

Here, you create a Pandas DataFrame from the
generated_scenes  variable, effectively converting your raw
scenes into a tabular data format that Pandas can easily
manipulate.

Then you need to consolidate your text:

all_character_script_text = "\n".join(df.characte



In this line, you’re transforming the character_script
column from your DataFrame into a single text string. Each
entry in the column is converted into a list item, and all items
are joined together with new lines in between, resulting in a
single string that contains all character scripts.

Once you have your text ready, you prepare it for the
summarization process:

text_splitter = CharacterTextSplitter.from_tiktok

    chunk_size=1500, chunk_overlap=200 

) 

docs = text_splitter.create_documents([all_charac

Here, you create a CharacterTextSplitter  instance using
its class method from_tiktoken_encoder , with specific
parameters for chunk size and overlap. You then use this text
splitter to split your consolidated script text into chunks
suitable for processing by your summarization tool.

Next, you set up your summarization tool:

chain = load_summarize_chain(llm=model, chain_typ



This line is about setting up your summarization process. You’re
calling a function that loads a summarization chain with a chat
model in a map-reduce  style approach.

Then you run the summarization:

summary = chain.invoke(docs)

This is where you actually perform the text summarization. The
invoke  method executes the summarization on the chunks of
text you prepared earlier and stores the summary into a
variable.

Finally, you print the result:

print(summary['output_text'])

This is the culmination of all your hard work. The resulting
summary text is printed to the console for you to see.

This script takes a collection of scenes, consolidates the text,
chunks it up, summarizes it, and then prints the summary:

from langchain.text_splitter import CharacterText

from langchain.chains.summarize import load_summa

import pandas as pd 



po  pa das as pd 

 

df = pd.DataFrame(generated_scenes) 

 

all_character_script_text = "\n".join(df.characte

 

text_splitter = CharacterTextSplitter.from_tiktok

    chunk_size=1500, chunk_overlap=200 

) 

 

docs = text_splitter.create_documents([all_charac

 

chain = load_summarize_chain(llm=model, chain_typ

summary = chain.invoke(docs) 

print(summary['output_text'])

Output:

Aurora and Magnus agree to retrieve a hidden arti

ancient library to find a book that will guide th

It’s worth noting that even though you’ve used a map_reduce
chain, there are four core chains for working with Document
objects within LangChain.

Stuff



The document insertion chain, also referred to as the stuff chain
(drawing from the concept of stuffing or filling), is the simplest
approach among various document chaining strategies.
Figure 4-5 illustrates the process of integrating multiple
documents into a single LLM request.

Figure 4-5. Stuff documents chain

Refine

The refine documents chain (Figure 4-6) creates an LLM
response through a cyclical process that iteratively updates its
output. During each loop, it combines the current output
(derived from the LLM) with the current document. Another
LLM request is made to update the current output. This process
continues until all documents have been processed.



Figure 4-6. Refine documents chain

Map Reduce

The map reduce documents chain in Figure 4-7 starts with an
LLM chain to each separate document (a process known as the
Map step), interpreting the resulting output as a newly
generated document.

Subsequently, all these newly created documents are
introduced to a distinct combine documents chain to formulate
a singular output (a process referred to as the Reduce step). If
necessary, to ensure the new documents seamlessly fit into the
context length, an optional compression process is used on the
mapped documents. If required, this compression happens
recursively.



Figure 4-7. Map reduce documents chain

Map Re-rank

There is also map re-rank, which operates by executing an
initial prompt on each document. This not only strives to fulfill
a given task but also assigns a confidence score reflecting the
certainty of its answer. The response with the highest
confidence score is then selected and returned.

Table 4-1 demonstrates the advantages and disadvantages for
choosing a specific document chain strategy.



Table 4-1. Overview of document chain strategies

Approach Advantages Disadvantages

Stuff
Documents
Chain

Simple to
implement. Ideal for
scenarios with small
documents and few
inputs.

May not be suitable for
handling large
documents or multiple
inputs due to prompt
size limitation.

Refine
Documents
Chain

Allows iterative
refining of the
response. More
control over each
step of response
generation. Good
for progressive
extraction tasks.

Might not be optimal for
real-time applications
due to the loop process.



Approach Advantages Disadvantages

Map Reduce
Documents
Chain

Enables
independent
processing of each
document. Can
handle large
datasets by
reducing them into
manageable chunks.

Requires careful
management of the
process. Optional
compression step can
add complexity and
loses document order.

Map Re-
rank
Documents
Chain

Provides a
confidence score for
each answer,
allowing for better
selection of
responses.

The ranking algorithm
can be complex to
implement and manage.
May not provide the
best answer if the
scoring mechanism is
not reliable or well-
tuned.

You can read more about how to implement different document
chains in LangChain’s comprehensive API and here.

Also, it’s possible to simply change the chain type within the
load_summarize_chain  function:

https://oreil.ly/FQUK_
https://oreil.ly/9xr_6


chain = load_summarize_chain(llm=model, chain_typ

There are newer, more customizable approaches to creating
summarization chains using LCEL, but for most of your needs
load_summarize_chain  provides sufficient results.

Summary

In this chapter, you comprehensively reviewed the LangChain
framework and its essential components. You learned about the
importance of document loaders for gathering data and the role
of text splitters in handling large text blocks.

Moreover, you were introduced to the concepts of task
decomposition and prompt chaining. By breaking down
complex problems into smaller tasks, you saw the power of
problem isolation. Furthermore, you now grasp how prompt
chaining can combine multiple inputs/outputs for richer idea
generation.

In the next chapter, you’ll learn about vector databases,
including how to integrate these with documents from
LangChain, and this ability will serve a pivotal role in



enhancing the accuracy of knowledge extraction from your
data.



Chapter 5. Vector Databases with
FAISS and Pinecone

This chapter introduces the concept of embeddings and vector
databases, discussing how they can be used to provide relevant
context in prompts.

A vector database is a tool most commonly used for storing text
data in a way that enables querying based on similarity or
semantic meaning. This technology is used to decrease
hallucinations (where the AI model makes something up) by
referencing data the model isn’t trained on, significantly
improving the accuracy and quality of the LLM’s response. Use
cases for vector databases also include reading documents,
recommending similar products, or remembering past
conversations.

Vectors are lists of numbers representing text (or images),
which you might think of as coordinates for a location. The
vector for the word mouse using OpenAI’s text-embedding-ada-
002 model is a list of 1,536 numbers, each representing the
value for a feature the embedding model learned in training:



[-0.011904156766831875, 

 -0.0323905423283577, 

 0.001950666424818337, 

...]

When these models are trained, texts that appear together in
the training data will be pushed closer together in values, and
texts that are unrelated will be pushed further away. Imagine
we trained a simple model with only two parameters, Cartoon
and Hygiene , that must describe the entire world, but only in
terms of these two variables. Starting from the word mouse,
increasing the value for the parameter Cartoon  we would
travel toward the most famous cartoon mouse, mickey mouse ,
as shown in Figure 5-1. Decreasing the value for the Hygiene
parameter would take us toward rat , because rats are rodents
similar to mice, but are associated with plague and disease (i.e.,
being unhygenic).



Figure 5-1. 2-D vector distances

Each location on the graph can be found by two numbers on the
x- and y-axes, which represent the features of the model
Cartoon  and Hygiene . In reality, vectors can have thousands
of parameters, because having more parameters allows the
model to capture a wider range of similarities and differences.
Hygiene is not the only difference between mice and rats, and
Mickey Mouse isn’t just a cartoon mouse. These features are
learned from the data in a way that makes them hard for
humans to interpret, and we would need a graph with
thousands of axes to display a location in latent space (the



abstract multidimensional space formed by the model’s
parameters). Often there is no human-understandable
explanation of what a feature means. However, we can create a
simplified two-dimensional projection of the distances between
vectors, as has been done in Figure 5-2.

To conduct a vector search, you first get the vector (or location)
of what you want to look up and find the k  closest records in
the database. In this case the word mouse is closest to mickey
mouse , cheese , and trap  where k=3  (return the three
nearest records). The word rat is excluded if k=3 , but would be
included if k=4  as it is the next closest vector. The word
airplane in this example is far away because it is rarely
associated with the word mouse in the training data. The word
ship is still colocated near the other forms of transport but is
closer to mouse  and rat  because they are often found on
ships, as per the training data.



Figure 5-2. Multidimensional vector distances

A vector database stores the text records with their vector
representation as the key. This is unlike other types of
databases, where you might find records based on an ID,
relation, or where the text contains a string. For example, if you
queried a relational database based on the text in Figure 5-2 to
find records where text contains mouse , you’d return the
record mickey mouse  but nothing else, as no other record
contains that exact phrase. With vectors search you could also



return the records cheese  and trap , because they are closely
associated, even though they aren’t an exact match for your
query.

The ability to query based on similarity is extremely useful, and
vector search powers a lot of AI functionality. For example:

Document reading

Find related sections of text to read in order to provide a
more accurate answer.

Recommendation systems

Discover similar products or items in order to suggest
them to a user.

Long-term memory

Look up relevant snippets of conversation history so a
chatbot remembers past interactions.

AI models are able to handle these tasks at small scale, as long
as your documents, product list, or conversation memory fits
within the token limits of the model you’re using. However, at
scale you quite quickly run into token limits and excess cost
from passing too many tokens in each prompt. OpenAI’s gpt-
4-1106-preview  was released in November 2023 with an

https://oreil.ly/KMNU8


enormous 128,000 token context window, but it costs 10 times
more per token than gpt-3.5-turbo , which has 88% fewer
tokens and was released a year earlier. The more efficient
approach is to look up only the most relevant records to pass
into the prompt at runtime in order to provide the most
relevant context to form a response. This practice is typically
referred to as RAG.

Retrieval Augmented Generation
(RAG)

Vector databases are a key component of RAG, which typically
involves searching by similarity to the query, retrieving the
most relevant documents, and inserting them into the prompt
as context. This lets you stay within what fits in the current
context window, while avoiding spending money on wasted
tokens by inserting irrelevant text documents in the context.

Retrieval can also be done using traditional database searches
or web browsing, and in many cases a vector search by
semantic similarity is not necessary. RAG is typically used to
solve hallucinations in open-ended scenarios, like a user talking
to a chatbot that is prone to making things up when asked
about something not in its training data. Vector search can



insert documents that are semantically similar to the user
query into the prompt, greatly decreasing the chances the
chatbot will hallucinate.

For example, if your author Mike told a chatbot “My name is
Mike,” then three messages later asked, “What is my name?” it
can easily recall the right answer. The message containing
Mike’s name is still within the context window of the chat.
However, if it was 3,000 messages ago, the text of those
messages may be too large to fit inside the context window.
Without this important context, it might hallucinate a name or
refuse to answer for lack of information. A keyword search
might help but could return too many irrelevant documents or
fail to recall the right context in which the information was
captured in the past. There may be many times Mike mentioned
the word name in different formats, and for different reasons.
By passing the question to the vector database, it can return the
top three similar messages from the chat that match what the
user asked:

## Context 

Most relevant previous user messages: 

1. "My name is Mike". 

2. "My dog's name is Hercules". 

3. "My coworker's name is James".



 

## Instructions 

Please answer the user message using the context 

User message: What is my name? 

AI message:

It’s impossible to pass all 3,000 past messages into the prompt
for most models, and for a traditional search the AI model
would have to formulate the right search query, which can be
unreliable. Using the RAG pattern, you would pass the current
user message to a vector search function, and return the most
relevant three records as context, which the chatbot can then
use to respond correctly.

GIVE DIRECTION

Rather than inserting static knowledge into the prompt, vector search allows you to
dynamically insert the most relevant knowledge into the prompt.

Here’s how the process works for production applications using
RAG:

1. Break documents into chunks of text.
2. Index chunks in a vector database.
3. Search by vector for similar records.
4. Insert records into the prompt as context.



In this instance, the documents would be all the 3,000 past user
messages to serve as the chatbot’s memory, but it could also be
sections of a PDF document we uploaded to give the chatbot the
ability to read, or a list of all the relevant products you sell to
enable the chatbot to make a recommendation. The ability of
our vector search to find the most similar texts is wholly
dependent on the AI model used to generate the vectors,
referred to as embeddings when you’re dealing with semantic
or contextual information.

Introducing Embeddings

The word embeddings typically refers to the vector
representation of the text returned from a pretrained AI model.
At the time of writing, the standard model for generating
embeddings is OpenAI’s text-embedding-ada-002, although
embedding models have been available long before the advent
of generative AI.

Although it is helpful to visualize vector spaces as a two-
dimensional chart, as in Figure 5-2, in reality the embeddings
returned from text-embedding-ada-002 are in 1,536 dimensions,
which is difficult to depict graphically. Having more dimensions
allows the model to capture deeper semantic meaning and



relationships. For example, while a 2-D space might be able to
separate cats from dogs, a 300-D space could capture
information about the differences between breeds, sizes, colors,
and other intricate details. The following code shows how to
retrieve embeddings from the OpenAI API. The code for the
following examples is included in the GitHub repository for this
book.

Input:

from openai import OpenAI 

client = OpenAI() 

 

# Function to get the vector embedding for a give

def get_vector_embeddings(text): 

    response = client.embeddings.create( 

        input=text, 

        model="text-embedding-ada-002" 

    ) 

    embeddings = [r.embedding for r in response.d

    return embeddings[0] 

 

get_vector_embeddings("Your text string goes here

Output:

https://oreil.ly/6RzTy


[ 

-0.006929283495992422, 

-0.005336422007530928, 

... 

-4.547132266452536e-05, 

-0.024047505110502243 

]

This code uses the OpenAI API to create an embedding for a
given input text using a specific embedding model:

1. from openai import OpenAI  imports the OpenAI
library, and client = OpenAI()  sets up the client. It
retrieves your OpenAI API key from an environment
variable OPENAI_API_KEY  in order to charge the cost of
the embeddings to your account. You need to set this in
your environment (usually in an .env file), which can be
obtained by creating an account and visiting
https://oreil.ly/apikeys.

2. response = client.embeddings.create(...) : This
line calls the create  method of the Embedding  class from
the client  from the OpenAI library. The method takes
two arguments:

input : This is where you provide the text string for
which you want to generate an embedding.

https://oreil.ly/apikeys


model : This specifies the embedding model you want
to use. In this case, it is text-embedding-ada-002 ,
which is a model within the OpenAI API.

3. embeddings = [r.embedding for r in
response.data] : After the API call, the response  object
contains the generated embeddings in JSON format. This
line extracts the actual numerical embedding from the
response, by iterating through a list of embeddings in
response.data .

After executing this code, the embeddings  variable will hold
the numerical representation (embedding) of the input text,
which can then be used in various NLP tasks or machine
learning models. This process of retrieving or generating
embeddings is sometimes referred to as document loading.

The term loading in this context refers to the act of computing
or retrieving the numerical (vector) representations of text
from a model and storing them in a variable for later use. This
is distinct from the concept of chunking, which typically refers
to breaking down a text into smaller, manageable pieces or
chunks to facilitate processing. These two techniques are
regularly used in conjunction with each other, as it’s often
useful to break large documents up into pages or paragraphs to



facilitate more accurate matching and to only pass the most
relevant tokens into the prompt.

There is a cost associated with retrieving embeddings from
OpenAI, but it is relatively inexpensive at $0.0004 per 1,000
tokens at the time of writing. For instance, the King James
version of the Bible, which comprises around 800,000 words or
approximately 4,000,000 tokens, would cost about $1.60 to
retrieve all the embeddings for the entire document.

Paying for embeddings from OpenAI is not your only option.
There are also open-source models you can use, for example,
the Sentence Transformers library provided by Hugging Face,
which has 384 dimensions.

Input:

import requests 

import os

 

model_id = "sentence-transformers/all-MiniLM-L6-v

hf_token = os.getenv("HF_TOKEN") 

 

api_url = "https://api-inference.huggingface.co/

api_url += f"pipeline/feature-extraction/{model_i

headers = {"Authorization": f"Bearer {hf_token}"}

 

https://oreil.ly/8OV3c


def query(texts): 

    response = requests.post(api_url, headers=hea

    json={"inputs": texts, 

    "options":{"wait_for_model":True}}) 

    return response.json() 

 

texts = ["mickey mouse", 

        "cheese", 

        "trap", 

        "rat", 

        "ratatouille" 

        "bus", 

        "airplane", 

        "ship"] 

 

output = query(texts) 

output

Output:

[[-0.03875632584095001, 0.04480459913611412, 

0.016051070764660835, -0.01789097487926483, 

-0.03518553078174591, -0.013002964667975903, 

0.14877274632453918, 0.048807501792907715, 

0.011848390102386475, -0.044042471796274185, 

... 

-0.026688814163208008, -0.0359361357986927, 



-0.03237859532237053, 0.008156519383192062, 

-0.10299170762300491, 0.0790356695652008, 

-0.008071334101259708, 0.11919838190078735, 

0.0005506130401045084, -0.03497892618179321]]

This code uses the Hugging Face API to obtain embeddings for a
list of text inputs using a pre-trained model. The model used
here is the sentence-transformers/all-MiniLM-L6-v2 ,
which is a smaller version of BERT, an open source NLP model
introduced by Google in 2017 (based on the transformer model),
which is optimized for sentence-level tasks. Here’s how it works
step-by-step:

1. model_id  is assigned the identifier of the pre-trained
model, sentence-transformers/all-MiniLM-L6-v2 .

2. hf_token = os.getenv("HF_TOKEN")  retrieves the API
key for the Hugging Face API token from your environment.
You need to set this in your environment with your own
token, which can be obtained by creating an account and
visiting https://hf.co/settings/tokens.

3. The requests  library is imported to make HTTP requests
to the API.

4. api_url  is assigned the URL for the Hugging Face API,
with the model ID included in the URL.

https://hf.co/settings/tokens


5. headers  is a dictionary containing the authorization
header with your Hugging Face API token.

6. The query()  function is defined, which takes a list of text
inputs and sends a POST  request to the Hugging Face API
with the appropriate headers and JSON payload containing
the inputs and an option to wait for the model to become
available. The function then returns the JSON response
from the API.

7. texts  is a list of strings from your database.
8. output  is assigned the result of calling the query()

function with the texts  list.
9. The output  variable is printed, which will display the

feature embeddings for the input texts.

When you run this code, the script will send text to the Hugging
Face API, and the API will return embeddings for each string of
text sent.

If you pass the same text into an embedding model, you’ll get
the same vector back every time. However, vectors are not
usually comparable across models (or versions of models) due
to differences in training. The embeddings you get from OpenAI
are different from those you get from BERT or spaCy (a natural
language processing library).



The main difference with embeddings generated by modern
transformer models is that the vectors are contextual rather
than static, meaning the word bank would have different
embeddings in the context of a riverbank versus financial bank.
The embeddings you get from OpenAI Ada 002 and
HuggingFace Sentence Transformers are examples of dense
vectors, where each number in the array is almost always
nonzero (i.e., they contain semantic information). There are
also sparse vectors, which normally have a large number of
dimensions (e.g., 100,000+) with many of the dimensions having
a value of zero. This allows capturing specific important
features (each feature can have its own dimension), which
tends to be important for performance in keyword-based
search applications. Most AI applications use dense vectors for
retrieval, although hybrid search (both dense and sparse
vectors) is rising in popularity, as both similarity and keyword
search can be useful in combination.

The accuracy of the vectors is wholly reliant on the accuracy of
the model you use to generate the embeddings. Whatever
biases or knowledge gaps the underlying models have will also
be an issue for vector search. For example, the text-
embedding-ada-002  model is currently only trained up to
August 2020 and therefore is unaware of any new words or
new cultural associations that formed after that cutoff date.

https://oreil.ly/d1cmb


This can cause a problem for use cases that need more recent
context or niche domain knowledge not available in the
training data, which may necessitate training a custom model.

In some instances it might make sense to train your own
embedding model. For instance, you might do this if the text
used has a domain-specific vocabulary where specific words
have a meaning separate from the generally accepted meaning
of the word. One example might be tracing the language used
by toxic groups on social media like Q-Anon, who evolve the
language they use in posts to bypass moderation actions.

Training your own embeddings can be done with tools like
word2vec, a method to represent words in a vector space,
enabling you to capture the semantic meanings of words. More
advanced models may be used, like GloVe (Global Vectors for
Word Representation), which is used by spaCy for its
embeddings, which are trained on the Common Crawl dataset,
an open source snapshot of the web. The library Gensim offers
a simple process for training your own custom embeddings
using the open source algorithm word2vec.

Input:

from gensim.models import Word2Vec

 

https://oreil.ly/RmXVR


# Sample data: list of sentences, where each sent

# a list of words. 

# In a real-world scenario, you'd load and prepro

# own corpus. 

sentences = [ 

    ["the", "cake", "is", "a", "lie"], 

    ["if", "you", "hear", "a", "turret", "sing", 

    "probably", "too", "close"], 

    ["why", "search", "for", "the", "end", "of", 

    "rainbow", "when", "the", "cake", "is", "a", 

    # ... 

    ["there's", "no", "cake", "in", "space,", "ju

    "wheatley"], 

    ["completing", "tests", "for", "cake", "is", 

    "sweetest", "lie"], 

    ["I", "swapped", "the", "cake", "recipe", "wi

    "neurotoxin", "formula,", "hope", "that's", 

] + [ 

    ["the", "cake", "is", "a", "lie"], 

    ["the", "cake", "is", "definitely", "a", "lie

    ["everyone", "knows", "that", "cake", "equals

    # ... 

] * 10  # repeat several times to emphasize 

 

 

# Train the word2vec model 

model =  Word2Vec(sentences, vector_size=100, win

min_count=1, workers=4, seed=36) 



 

# Save the model 

model.save("custom_word2vec_model.model") 

 

# To load the model later 

# loaded_model = word2vec.load( 

# "custom_word2vec_model.model") 

 

# Get vector for a word 

vector = model.wv['cake'] 

 

# Find most similar words 

similar_words = model.wv.most_similar("cake", top

print("Top five most similar words to 'cake': ", 

 

# Directly query the similarity between "cake" an

cake_lie_similarity = model.wv.similarity("cake"

print("Similarity between 'cake' and 'lie': ", 

cake_lie_similarity)

Output:

Top 5 most similar words to 'cake':  [('lie', 

0.23420444130897522), ('test', 0.2320512235164642

('tests', 0.17178669571876526), ('GLaDOS', 

0.1536172330379486), ('got', 0.14605288207530975

Similarity between 'cake' and 'lie': 0.23420444



Similarity between cake  and lie :  0.23420444

This code creates a word2vec model using the Gensim library
and then uses the model to determine words that are similar to
a given word. Let’s break it down:

1. The variable sentences  contains a list of sentences,
where each sentence is a list of words. This is the data on
which the Word2Vec model will be trained. In a real
application, instead of such hardcoded sentences, you’d
often load a large corpus of text and preprocess it to obtain
such a list of tokenized sentences.

2. An instance of the word2vec  class is created to represent
the model. While initializing this instance, several
parameters are provided:

sentences : This is the training data.
vector_size=100 : This defines the size of the word
vectors. So each word will be represented as a 100-
dimensional vector.
window=5 : This represents the maximum distance
between the current and predicted word within a
sentence.
min_count=1 : This ensures that even words that
appear only once in the dataset will have vectors
created for them.



workers=4 : Number of CPU cores to use during
training. It speeds up training on multicore machines.
seed=36 : This is set for reproducibility so that the
random processes in training deliver the same result
each time (not guaranteed with multiple workers).

3. After training, the model is saved to a file named
custom_word2vec_model.model  using the save
method. This allows you to reuse the trained model later
without needing to train it again.

4. There is a commented-out line that shows how to load the
model back from the saved file. This is useful when you
want to load a pre-trained model in a different script or
session.

5. The variable vector  is assigned the vector representation
of the word cake. This vector can be used for various
purposes, like similarity calculations, arithmetic operations,
etc.

6. The most_similar  method is used to find words that are
most similar to the provided vector (in this case, the vector
for cake). The method returns the top five ( topn=5 ) most
similar words.

7. The similarity  method queries the similarity between
cake and lie direction, showing a small positive value.



The dataset is small and heavily repetitive, which might not
provide a diverse context to properly learn the relationship
between the words. Normally, word2vec benefits from larger
and more diverse corpora and typically won’t get good results
until you’re into the tens of millions of words. In the example
we set a seed value to cherrypick one instance where lie came
back in the top five results, but if you remove that seed, you’ll
find it rarely discovers the association successfully.

For smaller document sizes a simpler technique TF-IDF (Term
Frequency-Inverse Document Frequency) is recommended, a
statistical measure used to evaluate the importance of a word in
a document relative to a collection of documents. The TF-IDF
value increases proportionally to the number of times a word
appears in the document but is offset by the frequency of the
word in the wider corpus, which helps to adjust for the fact that
some words are generally more common than others.

To compute the similarity between cake and lie using TF-IDF,
you can use the open source scientific library scikit-learn and
compute the cosine similarity (a measure of distance between
two vectors). Words that are frequently colocated in sentences
will have high cosine similarity (approaching 1), whereas words
that appear infrequently will show a low value (or 0, if not co-

https://oreil.ly/gHb3F


located at all). This method is robust to even small documents
like our toy example.

Input:

import numpy as np 

from sklearn.feature_extraction.text import Tfidf

from sklearn.metrics.pairwise import cosine_simil

 

# Convert sentences to a list of strings for Tfid

document_list = [' '.join(s) for s in sentences] 

 

# Compute TF-IDF representation 

vectorizer = TfidfVectorizer() 

tfidf_matrix = vectorizer.fit_transform(document_

 

# Extract the position of the words "cake" and "l

# the feature matrix 

cake_idx = vectorizer.vocabulary_['cake'] 

lie_idx = vectorizer.vocabulary_['lie'] 

 

# Extract and reshape the vector for 'cake' 

cakevec = tfidf_matrix[:, cake_idx].toarray().res

 

# Compute the cosine similarities

similar_words = cosine_similarity(cakevec, tfidf_



 

# Get the indices of the top 6 most similar words

# (including 'cake') 

top_indices = np.argsort(similar_words)[-6:-1][:

 

# Retrieve and print the top 5 most similar words

# 'cake' (excluding 'cake' itself) 

names = [] 

for idx in top_indices: 

    names.append(vectorizer.get_feature_names_out

print("Top five most similar words to 'cake': ", 

 

# Compute cosine similarity between "cake" and "l

similarity = cosine_similarity(np.asarray(tfidf_m

    cake_idx].todense()), np.asarray(tfidf_matrix

# The result will be a matrix; we can take the av

# max similarity value 

avg_similarity = similarity.mean() 

print("Similarity between 'cake' and 'lie'", avg_

 

# Show the similarity between "cake" and "elephan

elephant_idx = vectorizer.vocabulary_['sing'] 

similarity = cosine_similarity(np.asarray(tfidf_m

    cake_idx].todense()), np.asarray(tfidf_matrix

    elephant_idx].todense())) 

avg_similarity = similarity.mean() 

print("Similarity between 'cake' and 'sing'", 

    avg_similarity)



Output:

Top 5 most similar words to 'cake':  ['lie', 'the

'you', 'definitely'] 

Similarity between 'cake' and 'lie' 0.89264581572

Similarity between 'cake' and 'sing' 0.0106267359

Let’s break down this code step-by-step:

1. The sentences  variable is reused from the previous
example. The code converts these lists of words into full
sentences (strings) using a list comprehension, resulting in
document_list .

2. An instance of TfidfVectorizer  is created. The
fit_transform  method of the vectorizer is then used to
convert the document_list  into a matrix of TF-IDF
features, which is stored in tfidf_matrix .

3. The code extracts the position (or index) of the words cake
and lie in the feature matrix using the vocabulary_
attribute of the vectorizer.

4. The TF-IDF vector corresponding to the word cake is
extracted from the matrix and reshaped.

5. The cosine similarity between the vector for cake and all
other vectors in the TF-IDF matrix is computed. This results



in a list of similarity scores.
The indices of the top six most similar words (including
cake) are identified.
Using these indices, the top five words (excluding cake)
with the highest similarity to cake are retrieved and
printed.

6. The cosine similarity between the TF-IDF vectors of the
words cake and lie is computed. Since the result is a matrix,
the code computes the mean similarity value across all
values in this matrix and then prints the average similarity.

7. Now we compute the similarity between cake and sing. The
average similarity value is calculated and printed to show
that the two words are not commonly colocated (close to
zero).

As well as the embedding model used, the strategy for what you
embed is also important, because there is a trade-off between
context and similarity. If you embed a large block of text, say an
entire book, the vector you get back will be the average of the
locations of the tokens that make up the full text. As you
increase the size of the chunk, there is a regression to the mean
where it approaches the average of all the vectors and no
longer contains much semantic information.



Smaller chunks of text will be more specific in terms of location
in vector space and as such might be more useful when you
need close similarity. For example, isolating smaller sections of
text from a novel may better separate comedic from tragic
moments in the story, whereas embedding a whole page or
chapter may mix both together. However, making the chunks of
text too small might also cause them to lose meaning if the text
is cut off in the middle of a sentence or paragraph. Much of the
art of working with vector databases is in the way you load the
document and break it into chunks.

Document Loading

One common use case of AI is to be able to search across
documents based on similarity to the text of the user query. For
example, you may have a series of PDFs representing your
employee handbook, and you want to return the correct snippet
of text from those PDFs that relates to an employee question.
The way you load documents into your vector database will be
dictated by the structure of your documents, how many
examples you want to return from each query, and the number
of tokens you can afford in each prompt.



For example, gpt-4-0613  has an 8,192 token limit, which
needs to be shared between the prompt template, the examples
inserted into the prompt, and the completion the model
provides in response. Setting aside around 2,000 words or
approximately 3,000 tokens for the prompt and response, you
could pull the five most similar chunks of 1,000 tokens of text
each into the prompt as context. However, if you naively split
the document into 1,000-token chunks, you will run into a
problem. The arbitrary place where each split takes place might
be in the middle of a paragraph or sentence, so you risk losing
the meaning of what’s being conveyed. LangChain has a series
of text splitters, including the commonly used recursive
character text splitter. It tries to split on line breaks and then
spaces until the chunks are small enough. This keeps all
paragraphs (and then sentences, and then words) together as
much as possible to retain semantic groupings inherent in the
structure of the text.

Input:

from langchain.text_splitter import RecursiveCha

 

text_splitter = RecursiveCharacterTextSplitter.f

    chunk_size=100, # 100 tokens 

    chunk_overlap=20, # 20 tokens of overlap 

)

https://oreil.ly/wbx1f
https://oreil.ly/qsG7J


    ) 

 

text = """ 

Welcome to the "Unicorn Enterprises: Where Magic 

Employee Handbook! We're thrilled to have you joi

of dreamers, doers, and unicorn enthusiasts. At U

Enterprises, we believe that work should be as en

it is productive. This handbook is your ticket to

magical world of our company, where we'll outline

principles, policies, and practices that guide us

extraordinary journey. So, fasten your seatbelts 

ready to embark on an adventure like no other! 

 

... 

 

As we conclude this handbook, remember that at Un

Enterprises, the pursuit of excellence is a neve

quest. Our company's success depends on your pass

creativity, and commitment to making the impossib

possible. We encourage you to always embrace the 

within and outside of work, and to share your ide

innovations to keep our enchanted journey going. 

for being a part of our mystical family, and toge

continue to create a world where magic and busine

hand in hand! 

""" 

 

chunks = text_splitter.split_text(text=text) 

print(chunks[0:3])



p

Output:

['Welcome to the "Unicorn Enterprises: Where Magi

Employee Handbook! We\'re thrilled to have you jo

of dreamers, doers, and unicorn enthusiasts.', 

"We're thrilled to have you join our team of drea

doers, and unicorn enthusiasts. At Unicorn Enterp

believe that work should be as enchanting as it i

productive.", 

 ... 

"Our company's success depends on your passion, c

and commitment to making the impossible possible

encourage you to always embrace the magic within 

of work, and to share your ideas and innovations 

enchanted journey going.", 

"We encourage you to always embrace the magic wit

outside of work, and to share your ideas and inno

keep our enchanted journey going. Thank you for b

of our mystical family, and together, we'll conti

create a world where magic and business thrive ha

hand!"]

Here’s how this code works step-by-step:



1. Create text splitter instance: An instance of
RecursiveCharacterTextSplitter  is created using the
from_tiktoken_encoder  method. This method is
specifically designed to handle the splitting of text based on
token counts.
The chunk_size  parameter, set to 100, ensures that each
chunk of text will contain approximately 100 tokens. This is
a way of controlling the size of each text segment.
The chunk_overlap  parameter, set to 20, specifies that
there will be an overlap of 20 tokens between consecutive
chunks. This overlap ensures that the context is not lost
between chunks, which is crucial for understanding and
processing the text accurately.

2. Prepare the text: The variable text  contains a
multiparagraph string, representing the content to be split
into chunks.

3. Split the text: The split_text  method of the
text_splitter  instance is used to split the text into
chunks based on the previously defined chunk_size  and
chunk_overlap . This method processes the text and
returns a list of text chunks.

4. Output the chunks: The code prints the first three chunks of
the split text to demonstrate how the text has been divided.
This output is helpful for verifying that the text has been



split as expected, adhering to the specified chunk size and
overlap.

SPECIFY FORMAT

The relevance of the chunk of text provided to the prompt will depend heavily on
your chunking strategy. Shorter chunks of text without overlap may not contain the
right answer, whereas longer chunks of text with too much overlap may return too

many irrelevant results and confuse the LLM or cost you too many tokens.

Memory Retrieval with FAISS

Now that you have your documents processed into chunks, you
need to store them in a vector database. It is common practice
to store vectors in a database so that you do not need to
recompute them, as there is typically some cost and latency
associated with doing so. If you don’t change your embedding
model, the vectors won’t change, so you do not typically need to
update them once stored. You can use an open source library to
store and query your vectors called FAISS, a library developed
by Facebook AI that provides efficient similarity search and
clustering of dense vectors. First install FAISS in the terminal
with pip install faiss-cpu . The code for this example is
included in the GitHub repository for this book.

https://oreil.ly/gIcTI
https://oreil.ly/4wR7o


Input:

import numpy as np 

import faiss 

 

#  The get_vector_embeddings function is defined 

emb = [get_vector_embeddings(chunk) for chunk in 

vectors = np.array(emb) 

 

# Create a FAISS index 

index = faiss.IndexFlatL2(vectors.shape[1]) 

index.add(vectors) 

 

# Function to perform a vector search 

def vector_search(query_text, k=1):

    query_vector = get_vector_embeddings(query_te

    distances, indices = index.search( 

        np.array([query_vector]), k) 

    return [(chunks[i], float(dist)) for dist, 

        i in zip(distances[0], indices[0])] 

 

# Example search 

user_query = "do we get free unicorn rides?" 

search_results = vector_search(user_query) 

print(f"Search results for {user_query}:", search

Output:



Search results for do we get free unicorn rides?

enjoy a treasure chest of perks, including unlimi

rides, a bottomless cauldron of coffee and potion

access to our company library filled with spellbi

books. We also offer competitive health and denta

ensuring your physical well-being is as robust as

magical spirit.\n\n**5: Continuous Learning and 

Growth**\n\nAt Unicorn Enterprises, we believe in

learning and growth.", 0.3289167582988739)]

Here is an explanation of the preceding code:

1. Import the Facebook AI Similarity Search (FAISS) library
with import faiss .

2. vectors =
np.array([get_vector_embeddings(chunk) for

chunk in chunks])  applies get_vector_embeddings
to each element in chunks , which returns a vector
representation (embedding) of each element. These vectors
are then used to create a numpy array, which is stored in
the variable vectors .

3. The line index =
faiss.IndexFlatL2(vectors.shape[1])  creates a
FAISS index for efficient similarity search. The argument
vectors.shape[1]  is the dimension of the vectors that



will be added to the index. This kind of index
( IndexFlatL2 ) performs brute-force L2 distance search,
which looks for the closest items to a particular item in a
collection by measuring the straight-line distance between
them, checking each item in the collection one by one.

4. Then you add the array of vectors to the created FAISS
index with index.add(vectors) .

5. def vector_search(query_text, k=1)  defines a new
function named vector_search  that accepts two
parameters: query_text  and k  (with a default value of
1). The function will retrieve the embeddings for the
query_text , and then use that to search the index for the
k  closest vectors.

6. Inside the vector_search  function, query_vector =
get_vector_embeddings(query_text)  generates a
vector embedding for the query text using the
get_vector_embeddings  function.

7. The distances, indices =
index.search(np.array([query_vector]), k)  line
performs a search in the FAISS index. It looks for the k
closest vectors to query_vector . The method returns two
arrays: distances  (the squared L2 distances to the query
vector) and indices  (the indices



8. return [(chunks[i], float(dist)) for dist, i in
zip(distances[0], indices[0])]  returns a list of
tuples. Each tuple contains a chunk (retrieved using the
indices found in the search) and the corresponding distance
from the query vector. Note that the distance is converted to
a float before returning.

9. Finally, you perform a vector search for the string
containing the user query: search_results =
vector_search(user_query) . The result (the closest
chunk and its distance) is stored in the variable
search_results .

Once the vector search is complete, the results can be injected
into the prompt to provide useful context. It’s also important to
set the system message so that the model is focused on
answering based on the context provided rather than making
an answer up. The RAG technique as demonstrated here is
widely used in AI to help protect against hallucination.

Input:

# Function to perform a vector search and then as

def search_and_chat(user_query, k=1): 

  # Perform the vector search 

  search_results = vector_search(user_query, k) 

  print(f"Search results: {search_results}\n\n") 



 

  prompt_with_context = f"""Context:{search_resul

  Answer the question: {user_query}""" 

 

  # Create a list of messages for the chat 

  messages = [ 

      {"role": "system", "content": """Please ans

      questions provided by the user. Use only th

      provided to you to respond to the user, if 

      know the answer say \"I don't know\"."""}, 

      {"role": "user", "content": prompt_with_con

  ] 

 

  # Get the model's response 

  response = client.chat.completions.create( 

    model="gpt-3.5-turbo", messages=messages) 

 

  # Print the assistant's reply 

  print(f"""Response: 

  {response.choices[0].message.content}""") 

 

# Example search and chat 

search_and_chat("What is Unicorn Enterprises' mis

Output:

Search results: [("""As we conclude this handbook



Search results: [( As we conclude this handbook

Unicorn Enterprises, the pursuit of excellence is

quest. Our company's success depends on your pass

creativity, and commitment to making the impossib

possible. We encourage you to always embrace the 

within and outside of work, and to share your ide

innovations to keep our enchanted journey going. 

0.26446571946144104)] 

 

 

Response: 

Unicorn Enterprises' mission is to pursue excelle

work by encouraging their employees to embrace th

and outside of work, share their ideas and innova

the impossible possible.

Here is a step-by-step explanation of what the function does:

1. Using a function named vector_search , the program
performs a vector search with user_query  as the search
string and k  as the number of search results to return. The
results are stored in search_results .

2. The search results are then printed to the console.
3. A prompt_with_context  is created by concatenating the

search_results  and user_query . The goal is to provide



the model with context from the search results and a
question to answer.

4. A list of messages is created. The first message is a system
message that instructs the model to answer questions
provided by the user using only the given context. If the
model doesn’t know the answer, it’s advised to respond
with I don’t know. The second message is a user message
containing the prompt_with_context .

5. The openai.ChatCompletion.create()  function is used
to get the model’s response. It’s provided with the model
name ( gpt-3.5-turbo ) and the list of messages.

6. At the end of the code, the search_and_chat()  function
is called with the question as the user_query .

PROVIDE EXAMPLES

Without testing the writing style, it would be hard to guess which prompting strategy
would win. Now you can be confident this is the correct approach.

Although our code is working end to end now, it doesn’t make
sense to be collecting embeddings and creating a vector
database with every query. Even if you’re using an open source
model for embeddings, there will be a cost in terms of compute
and latency. You can save the FAISS index to a file using the
faiss.write_index  function:



# Save the index to a file 

faiss.write_index(index, "data/my_index_file.inde

This will create a file called my_index_file.index in your current
directory, which contains the serialized index. You can load this
index back into memory later with faiss.read_index :

# Load the index from a file 

index = faiss.read_index("data/my_index_file.inde

This way, you can persist your index across different sessions,
or even share it between different machines or environments.
Just make sure to handle these files carefully, as they can be
quite large for big indexes.

If you have more than one saved vector database, it’s also
possible to merge them. This can be useful when serializing the
loading of documents or making batch updates to your records.

You can merge two FAISS indices using the
faiss.IndexFlatL2  index’s add  method:

# Assuming index1 and index2 are two IndexFlatL2 

index1.add(index2.reconstruct_n(0, index2.ntotal



In this code, reconstruct_n(0, index2.ntotal)  is used to
fetch all vectors from index2 , and then index1.add()  is
used to add those vectors to index1 , effectively merging the
two indices.

This should work because faiss.IndexFlatL2  supports the
reconstruct  method to retrieve vectors. However, please
note that this process will not move any IDs associated with the
vectors from index2  to index1 . After merging, the vectors
from index2  will have new IDs in index1 .

If you need to preserve vector IDs, you’ll need to manage this
externally by keeping a separate mapping from vector IDs to
your data items. Then, when you merge the indices, you also
merge these mappings.

TIP

Be aware that this method may not work for all types of indices, especially for those
that do not support the reconstruct  method like IndexIVFFlat  or if the two
indices have different configurations. In those cases, it may be better to keep the

original vectors used to build each index and then merge and rebuild the index.

RAG with LangChain



As one of the most popular frameworks for AI engineering,
LangChain has a wide coverage of RAG techniques. Other
frameworks like LlamaIndex focus specifically on RAG and are
worth exploring for sophisticated use cases. As you are familiar
with LangChain from Chapter 4, we’ll continue in this
framework for the examples in this chapter. After manually
performing RAG based on a desired context, let’s create a
similar example using LCEL on four small text documents with
FAISS:

from langchain_community.vectorstores.faiss impo

from langchain_core.output_parsers import StrOutp

from langchain_core.prompts import ChatPromptTemp

from langchain_core.runnables import RunnablePass

from langchain_openai import ChatOpenAI, OpenAIEm

 

# 1. Create the documents: 

documents = [ 

    "James Phoenix worked at JustUnderstandingDat

    "James Phoenix currently is 31 years old.", 

    """Data engineering is the designing and buil

    storing, and analyzing data at scale.""", 

] 

 

# 2. Create a vectorstore: 

vectorstore = FAISS.from_texts(texts=documents, e

retriever = vectorstore.as retriever() 

https://www.llamaindex.ai/


_

 

# 3. Create a prompt: 

template = """Answer the question based only on t

--- 

Context: {context} 

--- 

Question: {question} 

""" 

prompt = ChatPromptTemplate.from_template(templat

 

# 4. Create a chat model: 

model = ChatOpenAI()

The code begins by importing necessary modules from the
LangChain library and defines a list of text documents to be
processed.

It utilizes FAISS , a library for efficient similarity search, to
create a vector store from the text documents. This involves
converting the texts into vector embeddings using OpenAI’s
embedding model.

A prompt template for handling questions and a ChatOpenAI
model are initialized for generating responses. Additionally, the
prompt template enforces that the LLM only replies using the
context provided from the retriever.



You’ll need to create an LCEL chain that will contain the
"context"  and "question"  keys:

chain = ( 

    {"context": retriever, "question": RunnablePa

    | prompt 

    | model 

    | StrOutputParser() 

)

By adding a retriever to "context" , it will automatically fetch
four documents that are converted into a string value.
Combined with the "question"  key, these are then used to
format the prompt. The LLM generates a response that is then
parsed into a string value by StrOutputParser() .

You’ll invoke the chain and pass in your question that gets
assigned to "question"  and manually test three different
queries:

chain.invoke("What is data engineering?") 

# 'Data engineering is the process of designing a

# collecting, storing, and analyzing data at scal

 

chain.invoke("Who is James Phoenix?") 

# 'Based on the given context, James Phoenix is a



# worked at JustUnderstandingData.' 

 

chain.invoke("What is the president of the US?") 

# I don't know

Notice how the LLM only appropriately answered the first two
queries because it didn’t have any relevant context contained
within the vector database to answer the third query!

The LangChain implementation uses significantly less code, is
easy to read, and allows you to rapidly implement retrieval
augmented generation.

Hosted Vector Databases with
Pinecone

There are a number of hosted vector database providers
emerging to support AI use cases, including Chroma, Weaviate,
and Pinecone. Hosts of other types of databases are also
offering vector search functionality, such as Supabase with the
pgvector add-on. Examples in this book use Pinecone, as it is the
current leader at the time of writing, but usage patterns are

https://www.trychroma.com/
https://weaviate.io/
https://www.pinecone.io/
https://supabase.com/
https://oreil.ly/pgvector


relatively consistent across providers and concepts should be
transferrable.

Hosted vector databases offer several advantages over open
source local vector stores:

Maintainance

With a hosted vector database, you don’t need to worry
about setting up, managing, and maintaining the database
yourself. This can save significant time and resources,
especially for businesses that may not have dedicated
DevOps or database management teams.

Scalability

Hosted vector databases are designed to scale with your
needs. As your data grows, the database can automatically
scale to handle the increased load, ensuring that your
applications continue to perform efficiently.

Reliability

Managed services typically offer high availability with
service-level agreements, as well as automatic backups
and disaster recovery features. This can provide peace of
mind and save you from potential data loss.



Performance

Hosted vector databases often have optimized
infrastructure and algorithms that can provide better
performance than self-managed, open source solutions.
This can be particularly important for applications that
rely on real-time or near-real-time vector search
capabilities.

Support

With a hosted service, you typically get access to support
from the company providing the service. This can be very
helpful if you experience issues or need help optimizing
your use of the database.

Security

Managed services often have robust security measures in
place to protect your data, including things like
encryption, access control, and monitoring. Major hosted
providers are more likely to have the necessary
compliance certificates and be in compliance with privacy
legislation in regions like the EU.

Of course, this extra functionality comes at a cost, as well as a
risk of overspending. As is the case with using Amazon Web



Services, Microsoft Azure, or Google Cloud, stories of developers
accidentally spending thousands of dollars through incorrect
configuration or mistakes in code abound. There is also some
risk of vendor lock-in, because although each vendor has
similar functionality, they differ in certain areas, and as such
it’s not quite straightforward to migrate between them. The
other major consideration is privacy, because sharing data with
a third party comes with security risks and potential legal
implications.

The steps for working with a hosted vector database remain the
same as when you set up your open source FAISS vector store.
First, you chunk your documents and retrieve vectors; you then
index your document chunks in the vector database, allowing
you to retrieve similar records to your query, in order to insert
into the prompt as context. First, let’s create an index in
Pinecone, a popular commercial vector database vendor. Then
log into Pinecone and retrieve your API key (visit API Keys in
the side menu and click “create API Key”). The code for this
example is provided in the GitHub repository for this book.

Input:

from pinecone import Pinecone, ServerlessSpec 

import os

https://www.pinecone.io/
https://oreil.ly/Q0rIw


 

# Initialize connection (get API key at app.pinec

os.environ["PINECONE_API_KEY"] = "insert-your-api

 

index_name = "employee-handbook" 

environment = "us-east-1" 

pc = Pinecone()  # This reads the PINECONE_API_KE

 

# Check if index already exists: 

# (it shouldn't if this is first time) 

if index_name not in pc.list_indexes().names(): 

    # if does not exist, create index 

    pc.create_index( 

        index_name, 

        # Using the same vector dimensions as tex

        dimension=1536, 

        metric="cosine", 

        spec=ServerlessSpec(cloud="aws", region=e

    ) 

 

# Connect to index: 

index = pc.Index(index_name) 

 

# View index stats: 

index.describe_index_stats()

Output:



{'dimension': 1536, 

 'index_fullness': 0.0, 

 'namespaces': {}, 

 'total_vector_count': 0}

Let’s go through this code step-by-step:

1. Importing libraries

The script begins with importing the necessary modules.
from pinecone import Pinecone,

ServerlessSpec,  import os  is used for accessing and
setting environment variables.

2. Setting up the Pinecone API key

The Pinecone API key, which is crucial for authentication,
is set as an environment variable using
os.environ["PINECONE_API_KEY"] = "insert-

your-api-key-here" . It’s important to replace
"insert-your-api-key-here"  with your actual
Pinecone API key.

3. Defining index name and environment

The variables index_name  and environment  are set
up. index_name  is given the value "employee-



handbook" , which is the name of the index to be created
or accessed in the Pinecone database. The environment
variable is assigned "us-west-2" , indicating the server’s
location.

4. Initializing Pinecone connection

The connection to Pinecone is initialized with the
Pinecone()  constructor. This constructor automatically
reads the PINECONE_API_KEY  from the environment
variable.

5. Checking for existing index

The script checks whether an index with the name
index_name  already exists in the Pinecone database.
This is done through pc.list_indexes().names()
functions, which returns a list of all existing index names.

6. Creating the index

If the index doesn’t exist, it is created using the pc. 
cre ate_index()  function. This function is invoked with
several parameters that configure the new index:

index_name : Specifies the name of the index
dimension=1536 : Sets the dimensionality of the
vectors to be stored in the index



metric='cosine' : Determines that the cosine
similarity metric will be used for vector comparisons

7. Connecting to the index

After verifying or creating the index, the script connects
to it using pc.Index(index_name) . This connection is
necessary for subsequent operations like inserting or
querying data.

8. Index statistics

The script concludes with calling index.describe_ 
index_stats() , which retrieves and displays various
statistics about the index, such as its dimensionality and
the total count of vectors stored.

Next, you need to store your vectors in the newly created index,
by looping through all the text chunks and vectors and
upserting them as records in Pinecone. The database operation
upsert  is a combination of update and insert, and it either
updates an existing record or inserts a new record if the record
does not already exist (refer to this Jupyter Notebook for the
chunks variable).

Input:

f t d i t t d # F i ti b

https://oreil.ly/YC-nV


from tqdm import tqdm # For printing a progress b

from time import sleep 

 

# How many embeddings you create and insert at on

batch_size = 10 

retry_limit = 5  # maximum number of retries 

 

for i in tqdm(range(0, len(chunks), batch_size))

    # Find end of batch 

    i_end = min(len(chunks), i+batch_size) 

    meta_batch = chunks[i:i_end] 

    # Get ids 

    ids_batch = [str(j) for j in range(i, i_end)

    # Get texts to encode 

    texts = [x for x in meta_batch] 

    # Create embeddings 

    # (try-except added to avoid RateLimitError) 

    done = False 

    try: 

        # Retrieve embeddings for the whole batch

        embeds = [] 

        for text in texts: 

            embedding = get_vector_embeddings(tex

            embeds.append(embedding) 

        done = True 

    except: 

        retry_count = 0 

        while not done and retry_count < retry_li

try:



            try: 

                for text in texts: 

                    embedding = get_vector_embedd

                    embeds.append(embedding) 

                done = True 

            except: 

                sleep(5) 

                retry_count += 1 

 

    if not done: 

        print(f"""Failed to get embeddings after 

        {retry_limit} retries.""")

        continue 

 

    # Cleanup metadata 

    meta_batch = [{ 

        'batch': i, 

        'text': x 

    } for x in meta_batch] 

    to_upsert = list(zip(ids_batch, embeds, meta_

 

    # Upsert to Pinecone 

    index.upsert(vectors=to_upsert)

Output:

100% 13/13 [00:53<00:00, 3.34s/it]



Let’s break this code down:

1. Import the necessary libraries tqdm  and time . The
library tqdm  displays progress bars, and time  provides
the sleep()  function, which is used in this script for retry
logic.

2. Set the variable batch_size  to 10 (normally set to 100 for
real workloads), representing how many items will be
processed at once in the upcoming loop. Also set the
retry_limit  to make sure we stop after five tries.

3. The tqdm(range(0, len(chunks), batch_size))  part
is a loop that will run from 0 to the length of chunks
(defined previously), with a step of batch_size . chunks
is a list of text to be processed. tqdm  is used here to display
a progress bar for this loop.

4. The i_end  variable is calculated to be the smaller of the
length of chunks  or i + batch_size . This is used to
prevent an Index Error if i + batch_size  exceeds the
length of chunks .

5. meta_batch  is a subset of chunks  for the current batch.
This is created by slicing the chunks  list from index i  to
i_end .

6. ids_batch  is a list of string representations of the range
i  to i_end . These are IDs that are used to identify each



item in meta_batch .
7. texts  list is just the text from meta_batch , ready for

processing for embeddings.
8. Try to get the embeddings by calling

get_vector_embeddings()  with the texts  as the
argument. The result is stored in the variable embeds . This
is done inside a try-except  block to handle any
exceptions that might be raised by this function, such as a
rate limit error.

9. If an exception is raised, the script enters a while  loop
where it will sleep for five seconds and then tries again to
retrieve the embeddings. It will continue this until
successful or the number of retries is reached, at which
point it sets done = True  to exit the while  loop.

10. Modify the meta_batch  to be a list of dictionaries. Each
dictionary has two keys: batch , which is set to the current
batch number i , and text , which is set to the
corresponding item in meta_batch . This is where you
could add additional metadata for filtering queries later,
such as the page, title, or chapter.

11. Create the to_upsert  list by using the zip  function to
combine ids_batch , embeds , and meta_batch  into
tuples, and then turning that into a list. Each tuple contains



the ID, the corresponding embedding, and the
corresponding metadata for each item in the batch.

12. The last line of the loop calls a method upsert  on index ,
a Pinecone (a vector database service) index. The
vectors=to_upsert  argument passes the to_upsert
list as the data to be inserted or updated in the index. If a
vector with a given ID already exists in the index, it will be
updated; if it doesn’t exist, it will be inserted.

Once the records are stored in Pinecone, you can query them as
you need, just like when you saved your vectors locally with
FAISS. Embeddings remain the same so long as you’re using the
same embedding model to retrieve vectors for your query, so
you do not need to update your database unless you have
additional records or metadata to add.

Input:

# Retrieve from Pinecone 

user_query = "do we get free unicorn rides?" 

 

def pinecone_vector_search(user_query, k): 

    xq = get_vector_embeddings(user_query) 

    res = index.query(vector=xq, top_k=k, include

    return res 

 

i t h( k 1)



pinecone_vector_search(user_query, k=1)

Output:

{'matches': 

    [{'id': '15', 

    'metadata': {'batch': 10.0, 

    'text': "You'll enjoy a treasure chest of pe

            'including unlimited unicorn rides, a

            'bottomless cauldron of coffee and po

            'and access to our company library fi

            'with spellbinding books. We also off

            'competitive health and dental plans

            'ensuring your physical well-being is

            'robust as your magical spirit.\n' 

            '\n' 

            '**5: Continuous Learning and Growth*

            '\n' 

            'At Unicorn Enterprises, we believe i

            'continuous learning and growth.'}, 

    'score': 0.835591, 

    'values': []},], 

 'namespace': ''}

This script performs a nearest neighbors search using
Pinecone’s API to identify the most similar vectors to a given



input vector in a high-dimensional space. Here’s a step-by-step
breakdown:

1. The function pinecone_vector_search  is defined with
two parameters: user_query  and k . user_query  is the
input text from the user, ready to be converted into a vector,
and k  indicates the number of closest vectors you want to
retrieve.

2. Within the function, xq  is defined by calling another
function, get_ vec tor_embeddings(user_query) . This
function (defined previously) is responsible for
transforming the user_query  into a vector
representation.

3. The next line performs a query on an object named index ,
a Pinecone index object, using the query  method. The
query  method takes three parameters:
The first parameter is vector=xq , the vector
representation of our user_query .
The second parameter, top_k=k , specifies that you want to
return only the k  closest vectors in the Pinecone index.
The third parameter, include_metadata=True , specifies
that you want to include metadata (such as IDs or other
associated data) with the returned results. If you wanted to
filter the results by metadata, for example specifying the
batch (or any other metadata you upserted), you could do

https://oreil.ly/BBYD4


this here by adding a fourth parameter: filter=
{"batch": 1} .

4. The results of the query  method are assigned to res  and
then returned by the function.

5. Finally, the function pinecone_vector_search  is called
with arguments user_query  and k , returning the
response from Pinecone.

You have now effectively emulated the job FAISS was doing,
returning the relevant record from the handbook with a
similarity search by vector. If you replace
vector_search(user_query, k)  with
pinecone_vector_search(user_query, k)  in the
search_and_chat  function (from the previous example), the
chatbot will run the same, except that the vectors will be stored
in a hosted Pinecone database instead of locally using FAISS.

When you upserted the records into Pinecone, you passed the
batch number as metadata. Pinecone supports the following
formats of metadata:

String
Number (integer or floating-point, gets converted to a 64-bit
floating point)
Booleans (true, false)



List of strings

The metadata strategy for storing records can be just as
important as the chunking strategy, as you can use metadata to
filter queries. For example, if you wanted to only search for
similarity limited to a specific batch number, you could add a
filter to the index.query :

res = index.query(xq, filter={ 

        "batch": {"$eq": 1} 

    }, top_k=1, include_metadata=True)

This can be useful for limiting the scope of where you are
searching for similarity. For example, it would allow you to
store past conversations for all chatbots in the same vector
database and then query only for past conversations related to
a specific chatbot ID when querying to add context to that
chatbot’s prompt. Other common uses of metadata filters
include searching for more recent timestamps, for specific page
numbers of documents, or for products over a certain price.



NOTE

Note that more metadata storage is likely to increase storage costs, as is storing large
chunks that are infrequently referenced. Understanding how vector databases work
should give you license to experiment with different chunking and metadata

strategies and see what works for your use cases.

Self-Querying

Retrieval can get quite sophisticated, and you’re not limited to a
basic retriever that fetches documents from a vector database
based purely on semantic relevance. For example, consider
using metadata from within a user’s query. By recognizing and
extracting such filters, your retriever can autonomously
generate a new query to execute against the vector database, as
in the structure depicted in Figure 5-3.

NOTE

This approach also generalizes to NoSQL, SQL, or any common database, and it is not
solely limited to vector databases.



Figure 5-3. A self-querying retriever architecture

Self-querying yields several significant benefits:

Schema definition

You can establish a schema reflecting anticipated user
descriptions, enabling a structured understanding of the
information sought by users.

Dual-layer retrieval

The retriever performs a two-tier operation. First, it
gauges the semantic similarity between the user’s input
and the database’s contents. Simultaneously, it discerns
and applies filters based on the metadata of the stored
documents or rows, ensuring an even more precise and
relevant retrieval.

This method maximizes the retriever’s potential in serving
user-specific requests.

Install lark  on the terminal with pip install lark .

https://oreil.ly/39rgU


In the subsequent code, essential modules such as langchain ,
lark , getpass , and chroma  are imported. For a streamlined
experience, potential warnings are suppressed:

from langchain_core.documents import Document 

from langchain_community.vectorstores.chroma impo

from langchain_openai import OpenAIEmbeddings 

import lark 

import getpass 

import os

import warnings 

 

# Disabling warnings: 

warnings.filterwarnings("ignore")

In the upcoming section, you’ll craft a list named docs , filling
it with detailed instances of the Document  class. Each
Document  lets you capture rich details of a book. Within the
metadata dictionary, you’ll store valuable information such as
the title, author, and genre. You’ll also include data like the
ISBN, the publisher, and a concise summary to give you a
snapshot of each story. The "rating"  offers a hint of its
popularity. By setting up your data this way, you’re laying the
groundwork for a systematic and insightful exploration of a
diverse library:



docs = [ 

    Document( 

        page_content="A tale about a young wizard

            journey in a magical school.", 

        metadata={ 

            "title": "Harry Potter and the Philos

            "author": "J.K. Rowling", 

            "year_published": 1997, 

            "genre": "Fiction", 

            "isbn": "978-0747532699", 

            "publisher": "Bloomsbury", 

            "language": "English",

            "page_count": 223, 

            "summary": "The first book in the Ha

            series where Harry discovers his magi

            heritage.", 

            "rating": 4.8, 

        }, 

    ), 

    # ... More documents ... 

]

You’ll import ChatOpenAI , SelfQueryRetriever , and
OpenAIEmbeddings . Following this, you’ll create a new vector
database using the Chroma.from_documents(..)  method.



Next, the AttributeInfo  class is used to structure metadata
for each book. Through this class, you’ll systematically specify
the attribute’s name, description, and type. By curating a list of
AttributeInfo  entries, the self-query retriever can perform
metadata filtering:

from langchain_openai.chat_models import ChatOpen

from langchain.retrievers.self_query.base \ 

    import SelfQueryRetriever 

from langchain.chains.query_constructor.base \ 

    import AttributeInfo 

 

# Create the embeddings and vectorstore: 

embeddings = OpenAIEmbeddings() 

vectorstore = Chroma.from_documents(docs, OpenAIE

 

# Basic Info 

basic_info = [ 

    AttributeInfo(name="title", description="The 

    type="string"), 

    AttributeInfo(name="author", description="The

    type="string"), 

    AttributeInfo( 

        name="year_published", 

        description="The year the book was publis

        type="integer", 

    ), 



] 

 

# Detailed Info 

detailed_info = [ 

    AttributeInfo( 

        name="genre", description="The genre of t

        type="string or list[string]" 

    ), 

    AttributeInfo( 

        name="isbn", 

        description="The International Standard B

        type="string", 

    ), 

    AttributeInfo( 

        name="publisher", 

        description="The publishing house that pu

        type="string", 

    ), 

    AttributeInfo( 

        name="language", 

        description="The primary language the boo

        type="string", 

    ), 

    AttributeInfo( 

        name="page_count", description="Number of

        type="integer" 

    ), 

] 



 

# Analysis 

analysis = [ 

    AttributeInfo( 

        name="summary", 

        description="A brief summary or descripti

        type="string", 

    ), 

    AttributeInfo( 

        name="rating", 

        description="""An average rating for the 

        from 1-5""", 

        type="float", 

    ), 

] 

 

# Combining all lists into metadata_field_info 

metadata_field_info = basic_info + detailed_info 

Let’s run this through step-by-step:

1. Import ChatOpenAI , SelfQueryRetriever , and
AttributeInfo  from the LangChain modules for chat
model integration, self-querying, and defining metadata
attributes.



2. Create an OpenAIEmbeddings  instance for handling
OpenAI model embeddings.

3. A Chroma  vector database is created from the documents.
4. Define three lists ( basic_info , detailed_info ,

analysis ), each containing AttributeInfo  objects for
different types of book metadata.

5. Combine these lists into a single list,
metadata_field_info , for comprehensive book
metadata management.

Now, set up a ChatOpenAI  model and assign a
document_content_description  to specify what content
type you’re working with. The SelfQueryRetriever  then
uses this along with your LLM to fetch relevant documents
from your vectorstore . With a simple query, such as asking
for sci-fi books, the invoke  method scans through the dataset
and returns a list of Document  objects.

Each Document  encapsulates valuable metadata about the
book, like the genre, author, and a brief summary, transforming
the results into organized, rich data for your application:

document_content_description = "Brief summary of 

llm = ChatOpenAI(temperature=0) 

retriever = SelfQueryRetriever.from_llm( 

    llm, vectorstore, document content descriptio



    , ec o s o e, docu e _co e _desc p o

) 

 

# Looking for sci-fi books 

retriever.invoke("What are some sci-fi books?") 

# [Document(page_content='''A futuristic society 

# maintain order.''', metadata={'author': 'Ray B

# More documents..., truncated for brevity

EVALUATE QUALITY

By setting the temperature to zero, you instruct the model to prioritize generating
consistent metadata filtering outputs, rather than being more creative and therefore
inconsistent. These metadata filters are then leveraged against the vector database to

retrieve relevant documents.

When you want to fetch books from a specific author, you’re
directing the retriever  to pinpoint books authored by J.K.
Rowling . The Comparison  function with the EQ  (equals)
comparator ensures the retrieved documents have their
'author'  attribute precisely matching 'J.K. Rowling' :

# Querying for a book by J.K. Rowling: 

retriever.invoke( 

    '''I want some books that are published by th

    author J.K.Rowling''' 

) 



# query=' ' filter=Comparison(comparator=<Compara

# 'eq'>, attribute='author', value='J.K. Rowling

# limit=None 

# Documents [] omitted to save space

Initializing the SelfQueryRetriever  with an added
enable_limit  flag set to True  allows you to dictate the
number of results returned. Then, you craft a query to obtain
precisely 2 Fantasy  books. By using the Comparison
function with the EQ  (equals) comparator on the 'genre'
attribute, the retriever zeros in on 'Fantasy'  titles. The
limit  parameter ensures you get only two results, optimizing
your output for precision and brevity:

retriever = SelfQueryRetriever.from_llm( 

    llm, 

    vectorstore, 

    document_content_description, 

    metadata_field_info, 

    enable_limit=True, 

) 

 

retriever.get_relevant_documents( 

    query="Return 2 Fantasy books", 

) 

# query=' ' filter=Comparison( 



q y p

#    comparator=<Comparator.EQ: 'eq'>, attribute=

#   value='Fantasy') limit=2 

# Documents [] omitted to save space

Alternative Retrieval Mechanisms

When it comes to retrieval implementations, various intriguing
methods each demonstrate their distinct approaches,
advantages, and limitations:

MultiQueryRetriever

The MultiQueryRetriever aims to overcome the
limitations of distance-based retrieval by generating
multiple queries from different perspectives for a given
user input query. This leads to the generation of a larger
set of potentially relevant documents, offering broader
insights. However, challenges may arise if the different
queries produce contradicting results or overlap.

Contextual Compression

The Contextual Compression Retriever handles long
documents by compressing irrelevant parts, ensuring
relevance to context. The challenge with this method is

https://oreil.ly/uuzpG
https://oreil.ly/wzqVg


the expertise needed to determine the relevance and
importance of information.

Ensemble Retriever

The Ensemble Retriever uses a list of retrievers and
combines their results. It’s essentially a “hybrid” search
methodology that leverages the strengths of various
algorithms. However, the Ensemble Retriever implies
more computational workload due to the use of multiple
retrieval algorithms, potentially affecting retrieval speed.

Parent Document Retriever

The Parent Document Retriever ensures the maintenance
of rich document backgrounds by retrieving original
source documents from which smaller chunks are
derived. But it might increase computational
requirements due to the retrieval of larger parent
documents.

Time-Weighted Vector Store Retriever

The Time-Weighted Vector Store Retriever incorporates
time decay into document retrieval. Despite its
advantages, the time decay factor might cause

https://oreil.ly/jIuJh
https://oreil.ly/jXSXQ
https://oreil.ly/9JbTt


overlooking of relevant older documents, risking the loss
of historical context.

The key to effective retrieval is understanding the trade-offs
and selecting the method, or combination of methods, that best
address your specific use case. Vector search adds additional
cost and latency to your application, so ensure in testing you
find that the additional context is worth it. For heavy
workloads, paying the up-front cost of fine-tuning a custom
model may be beneficial compared to the ongoing additional
cost of prompts plus embeddings plus vector storage. In other
scenarios, providing static examples of correct work in the
prompt may work fine. However, when you need to pull in
context to a prompt dynamically, based on similarity rather
than a direct keyword search, there’s no real substitute for RAG
using a vector database.

Summary

In this chapter, you learned about the power of vector
databases for storing and querying text based on similarity. By
searching for the most similar records, vector databases can
retrieve relevant information to provide context in your
prompts, helping AI models stay within token limits and avoid



unnecessary costs or irrelevant data. You also discovered that
the accuracy of vectors depends on the underlying model and
saw examples where they may fail.

Furthermore, you explored the process of indexing documents
in a vector database, searching for similar records using
vectors, and inserting records into prompts as context, called
RAG. In this chapter, you went through code examples for
retrieving embeddings from both the OpenAI API and open
source models like the Sentence Transformers library. You also
learned the cost and benefits associated with retrieving
embeddings from OpenAI relative to alternative options.

In the next chapter on autonomous agents, you will enter the
futuristic world of AI agents that can make decisions and take
actions on their own. You will learn about the different types of
autonomous agents, their capabilities, and how they can be
trained to perform specific tasks. Additionally, you will explore
the challenges and unreliability issues associated with agents.



Chapter 6. Autonomous Agents with
Memory and Tools

This chapter dives deeper into the importance of chain-of-
thought reasoning and the ability of large language models
(LLMs) to reason through complex problems as agents. By
breaking down complex problems into smaller, more
manageable components, LLMs can provide more thorough and
effective solutions. You will also learn about the components
that make up autonomous agents, such as inputs, goal or
reward functions, and available actions.

Chain-of-Thought

The ability of AI to reason through complex problems is
essential for creating effective, reliable, and user-friendly
applications.

Chain-of-thought reasoning (CoT) is a method of guiding LLMs
through a series of steps or logical connections to reach a
conclusion or solve a problem. This approach is particularly
useful for tasks that require a deeper understanding of context
or multiple factors to consider.



CoT is asking an LLM to think through complex problems,
breaking them down into smaller, more manageable
components. This allows the LLM to focus on each part
individually, ensuring a more thorough understanding of the
issue at hand.

In practice, chain-of-thought reasoning might involve:

Asking an LLM to provide explanations for its decisions
Planning multiple steps before deciding on a final answer

In the following sections, you’ll explore examples of both
ineffective and effective chain-of-thought reasoning. We will
also discuss various techniques for building effective chain-of-
thought reasoning and how they can be integrated into AI
applications.

Let’s imagine that a user wants the AI to generate a
comprehensive marketing plan for promoting a new software
product.

Input:

Create a marketing plan for a new software produc

https://oreil.ly/fAeLo


Output:

1. Launch social media campaign 

2. Send out email newsletters 

3. Offer limited-time discounts 

4. Collaborate with influencers 

5. Organize webinars

In this example, GPT-4 doesn’t use chain-of-thought reasoning,
and it does not address the specific aspects of the marketing
plan. The LLM generates a generic list of marketing strategies
that could apply to any product, rather than focusing on the
unique characteristics of the new software product.

Input:

Create a detailed marketing plan for a new projec

product targeting small and medium-sized business

 

The budget is $20,000, and we want to focus on di

 

Consider the success of similar products in the m

step-by-step plan that includes the most effectiv

Output:



Market Research 

a. Analyze competitors and their marketing strate

b. Identify the unique selling points of the new 

c. Define the target audience and their pain poin

 

Branding and Messaging 

a. Develop a consistent brand identity 

b. Craft compelling messaging that addresses the 

points 

c. Create marketing assets such as website, blog

 

... 

 

Email Marketing 

a. Develop an email marketing strategy to nurture

into customers 

b. Send personalized onboarding emails to new use

resources

Now GPT-4 specifically addresses the unique characteristics of
the new software product, demonstrating effective chain-of-
thought reasoning.



GIVE DIRECTION

Take note of the phrase step-by-step, a critical element in CoT. By incorporating this
phrase into your prompt, you’re asking the LLM to reason through the steps that are
required to generate a highly effective software product.

Also, by providing a $20,000 budget and the type of software, GPT-4 is able to provide
a much more relevant and contextualized response.

Agents

Generative AI models have given rise to an agent-based
architecture. Conceptually, an agent acts, perceives, and makes
decisions within a specified environment to achieve predefined
objectives.

Agents can take various actions such as executing a Python
function; afterward, the agent will observe what happens and
will decide on whether it is finished or what action to take next.

The agent will continously loop through a series of actions and
observations until there are no further actions, as you can see
in the following pseudocode:

next_action = agent.get_action(...)

while next_action != AgentFinish: 

    observation = run(next action) 



( _ )

    next_action = agent.get_action(..., next_acti

return next_action

The behavior of the agent is governed by three principal
components:

Inputs

These are the sensory stimuli or data points the agent
receives from its environment. Inputs can be diverse,
ranging from visual (like images) and auditory (like audio
files) to thermal signals and beyond.

Goal or reward function

This represents the guiding principle for an agent’s
actions. In goal-based frameworks, the agent is tasked
with reaching a specific end state. In a reward-based
setting, the agent is driven to maximize cumulative
rewards over time, often in dynamic environments.

Available actions

The action space is the range of permissible actions an
agent can undertake at any given moment. The breadth
and nature of this space are contingent upon the task at
hand.

https://oreil.ly/5AVfM


To explain these concepts further, consider a self-driving car:

Inputs

The car’s sensors, such as cameras, LIDAR, and ultrasonic
sensors, provide a continuous stream of data about the
environment. This can include information about nearby
vehicles, pedestrians, road conditions, and traffic signals.

Goal or reward function

The primary goal for a self-driving car is safe and efficient
navigation from point A to point B. If we were to use a
reward-based system, the car might receive positive
rewards for maintaining a safe distance from other
objects, adhering to speed limits, and following traffic
rules. Conversely, it could receive negative rewards for
risky behaviors, like hard braking or veering off the lane.
Tesla specifically uses miles driven without an
intervention as their reward function.

Available actions

The car’s action space includes accelerating, decelerating,
turning, changing lanes, and more. Each action is chosen
based on the current input data and the objective defined
by the goal or reward function.



You’ll find that agents in systems like self-driving cars rely on
foundational principles like inputs, goal/reward functions, and
available actions. However, when delving into the realm of
LLMs like GPT, there’s a bespoke set of dynamics that cater
specifically to their unique nature.

Here’s how they align with your needs:

Inputs

For LLMs, the gateway is primarily through text. But that
doesn’t restrain the wealth of information you can use.
Whether you’re dealing with thermal readings, musical
notations, or intricate data structures, your challenge lies
in molding these into textual representations suitable for
an LLM. Think about videos: while raw footage might
seem incompatible, video text transcriptions allow an
LLM to extract insights for you.

Harnessing goal-driven directives

LLMs primarily use goals defined within your text
prompts. By creating effective prompts with objectives,
you’re not just accessing the LLM’s vast knowledge; you’re
effectively charting its reasoning path. Think of it as
laying down a blueprint: your specific prompt instructs



the model, guiding it to dissect your overarching objective
into a systematic sequence of steps.

Crafting action through functional tools

LLMs are not limited to mere text generation; there’s so
much more you can achieve. By integrating ready-made
tools or custom-developed tools, you can equip LLMs to
undertake diverse tasks, from API calls to database
engagements or even orchestrating external systems.
Tools can be written in any programming language, and
by adding more tools you are effectively expanding the
action space of what an LLM can achieve.

There are also different components that are directly applicable
to LLMs:

Memory

It’s ideal to store state between agent steps; this is
particularly useful for chatbots, where remembering the
previous chat history provides a better user experience.

Agent planning/execution strategies

There are multiple ways to achieve a high-level goal, of
which a mixture of planning and executing is essential.



Retrieval

LLMs can use different types of retrieval methods.
Semantic similarity within vector databases is the most
common, but there are others such as including custom
information from a SQL database into prompts.

Let’s dive deeper into the shared and different components and
explore the implementation details.

Reason and Act (ReAct)

There are many agent frameworks that ultimately aim to
improve LLM responses toward a goal. The original framework
was ReAct, which is an improved version of CoT, allowing an
LLM to create observations after taking actions via tools. These
observations are then turned into thoughts about what would
be the right tool to use within the next step (Figure 6-1). The
LLM continues to reason until either a 'Final Answer'  string
value is present or a maximum number of iterations has taken
place.



Figure 6-1. The ReAct framework

The ReAct framework uses a mixture of task decomposition, a
thought loop, and multiple tools to solve questions. Let’s explore
the thought loop within ReAct:

1. Observe the environment.
2. Interpret the environment with a thought.
3. Decide on an action.
4. Act on the environment.
5. Repeat steps 1–4 until you find a solution or you’ve done

too many iterations (the solution is “I’ve found the
answer”).

You can easily create a ReAct-style prompt by using the
preceding thought loop while also providing the LLM with
several inputs such as:

{question} : The query that you want answered.

https://oreil.ly/ssdnL


{tools} : These refer to functions that can be used to
accomplish a step within the overall task. It is common
practice to include a list of tools where each tool is a Python
function, a name, and a description of the function and its
purpose.

The following is a prompt that implements the ReAct pattern
with prompt variables wrapped in {}  characters such as
{question} :

You will attempt to solve the problem of finding 

Use chain-of-thought reasoning to solve through t

following pattern: 

 

1. Observe the original question:

original_question: original_problem_text 

2. Create an observation with the following patte

observation: observation_text 

3. Create a thought based on the observation with

thought: thought_text 

4. Use tools to act on the thought with the follo

action: tool_name 

action_input: tool_input 

 

Do not guess or assume the tool results. Instead

output that includes the action and action_input

 



You have access to the following tools: {tools}. 

 

original_problem: {question} 

 

Based on the provided tool result: 

 

Either provide the next observation, action, acti

answer if available. 

 

If you are providing the final answer, you must 

"I've found the answer: final_answer"

Here is a breakdown of the prompt:

1. The introduction of the prompt clearly establishes the
LLM’s purpose: You will attempt to solve the
problem of finding the answer to a question.

2. The problem-solving approach is then outlined: Use
chain-of-thought reasoning to solve through the

problem, using the following pattern:

3. The steps in the chain-of-thought reasoning are then laid
out:

The LLM starts by observing the original question and
subsequently formulates an observation about it:



original_question: original_problem_text ,
observation: observation_text .
Based on this observation, the AI should formulate a
thought that signifies a step in the reasoning process:
thought: thought_text .
Having established a thought, it then decides on an
action using one of the available tools: action:
tool_name , action_input: tool_input .

4. The LLM is then reminded not to make assumptions about
what a tool might return, and it should explicitly outline its
intended action and the corresponding input.

5. You have access to the following tools:
{tools}  communicates to the LLM what tools it has
available for solving the problem.

6. The actual problem that the LLM must solve is then
introduced: original_ problem: {question} .

7. Finally, instructions are provided on how the LLM should
respond based on the results of its actions. It can either
continue with new observations, actions, and inputs or, if a
solution is found, provide the final answer.

The prompt outlines a systematic problem-solving process in
which the LLM observes a problem, thinks about it, decides on
an action, and repeats this process until a solution is
discovered.



Reason and Act Implementation

Now that you’re aware of ReAct, it’s important to create a
simple Python implementation that replicates what LangChain
does automatically, allowing you to build the intuition about
what’s truly happening between the LLM responses.

To keep it simple, this example will not implement looping and
will assume that the output can be obtained from a single tool
call.

To create a basic ReAct implementation, you’ll implement the
following:

1. At every thought, you need to extract the tool that the LLM
wants to use. Therefore, you’ll extract the last action  and
action_input . The action  represents the tool name,
while the action_input  consists of the values of the
function arguments.

2. Check whether the LLM thinks that it has found the final
answer, in which case the thought loop has ended.

You can use regular expressions to extract the action  and
action_input  values from the LLM response:

import re



 

# Sample text: 

text = """ 

Action: search_on_google 

Action_Input: Tom Hanks's current wife 

 

action: search_on_wikipedia 

action_input: How old is Rita Wilson in 2023 

 

action : search_on_google 

action input: some other query 

""" 

 

# Compile regex patterns: 

action_pattern = re.compile(r"(?i)action\s*:\s*(

action_input_pattern = re.compile(r"(?i)action\s*

re.MULTILINE) 

 

# Find all occurrences of action and action_input

actions = action_pattern.findall(text) 

action_inputs = action_input_pattern.findall(text

 

# Extract the last occurrence of action and actio

last_action = actions[-1] if actions else None 

last_action_input = action_inputs[-1] if action_i

 

print("Last Action:", last_action) 

print("Last Action Input:", last_action_input) 



# Last Action: search_on_google 

# Last Action Input: some other query

Let’s break down the regular expression to extract the action :

action_pattern = re.compile(r"(?i)action\s*:\s*

([^\n]+)", re.MULTILINE)

(?i) : This is called an inline flag and makes the regex
pattern case-insensitive. It means that the pattern will
match “action,” “Action,” “ACTION,” or any other
combination of uppercase and lowercase letters.
action : This part of the pattern matches the word action
literally. Due to the case-insensitive flag, it will match any
capitalization of the word.
\s* : This part of the pattern matches zero or more
whitespace characters (spaces, tabs, etc.). The \*  means
zero or more, and \s  is the regex shorthand for a
whitespace character.
:  This part of the pattern matches the colon character
literally.
\s* : This is the same as the previous \s\*  part, matching
zero or more whitespace characters after the colon.



+([^\n]++) : This pattern is a capturing group, denoted by
the parentheses. It matches one or more characters that are
not a newline character. The ^  inside the square brackets
[]  negates the character class, and \n  represents the
newline character. The +  means one or more. The text
matched by this group will be extracted when using the
findall()  function.
re.MULTILINE : This is a flag passed to re.compile()
function. It tells the regex engine that the input text may
have multiple lines, so the pattern should be applied line by
line.
In regular expressions, square brackets []  are used to
define a character class, which is a set of characters that
you want to match. For example, [abc]  would match any
single character that is either 'a' , 'b' , or 'c' .
When you add a caret ^  at the beginning of the character
class, it negates the character class, meaning it will match
any character that is not in the character class. In other
words, it inverts the set of characters you want to match.
So, when we use [^abc] , it will match any single
character that is not 'a' , 'b' , or 'c' . In the regex
pattern +([^\n]++) , the character class is [^n] , which
means it will match any character that is not a newline
character ( \n ). The +  after the negated character class



means that the pattern should match one or more
characters that are not newlines.
By using the negated character class [^n]  in the capturing
group, we ensure that the regex engine captures text up to
the end of the line without including the newline character
itself. This is useful when we want to extract the text after
the word action or action input up to the end of the line.

Overall, this regular expression pattern matches the word
action (case-insensitive) followed by optional whitespace, a
colon, and optional whitespace again, and then captures any
text up to the end of the line.

The only difference between these two regex patterns is the
literal text they are looking for at the beginning:

1. action_pattern  looks for the word "action".
2. action_input_pattern  looks for the word

"action_input".

You can now abstract the regex into a Python function that will
always find the last action  and action_input :

def extract_last_action_and_input(text): 

    # Compile regex patterns 

    action_pattern = re.compile(r"(?i)action\s*:\

ti i t tt il (



    action_input_pattern = re.compile( 

        r"(?i)action\s*_*input\s*:\s*([^\n]+)", 

    ) 

 

    # Find all occurrences of action and action_i

    actions = action_pattern.findall(text) 

    action_inputs = action_input_pattern.findall

 

    # Extract the last occurrence of action and a

    last_action = actions[-1] if actions else Non

    last_action_input = action_inputs[-1] if acti

 

    return {"action": last_action, "action_input

 

extract_last_action_and_input(text) 

# {'action': 'search_on_google', 'action_input': 

To determine and extract whether the LLM has discovered the
final answer, you can also use regular expressions:

def extract_final_answer(text): 

    final_answer_pattern = re.compile( 

        r"(?i)I've found the answer:\s*([^\n]+)"

    ) 

    final_answers = final_answer_pattern.findall

    if final_answers: 

        return final_answers[0] 

else:



    else:

        return None 

 

final_answer_text = "I've found the answer: final

print(extract_final_answer(final_answer_text)) 

# final_answer

WARNING

LLMs do not always respond in the intended way, so your application needs to be
able to handle regex parsing errors. Several approaches include using an LLM to fix
the previous LLM response or making another new LLM request with the previous

state.

You can now combine all of the components; here is a step-by-
step explanation:

from langchain_openai.chat_models import ChatOpen

from langchain.prompts.chat import SystemMessageP

Initialize the ChatOpenAI  instance:

chat = ChatOpenAI(model_kwargs={"stop": ["tool_re



Adding a stop  sequence forces an LLM to stop generating new
tokens after encounting the phrase "tool_result:" . This
helps by stopping hallucinations for tool usage.

Define the available tools:

tools = {} 

 

def search_on_google(query: str): 

    return f"Jason Derulo doesn't have a wife or 

 

tools["search_on_google"] = { 

    "function": search_on_google, 

    "description": "Searches on google for a que

}

Set the base prompt template:

base_prompt = """ 

You will attempt to solve the problem of finding 

Use chain-of-thought reasoning to solve through t

following pattern: 

 

1. Observe the original question:

original_question: original_problem_text 

2. Create an observation with the following patte

observation: observation text 



_

3. Create a thought based on the observation with

thought: thought_text 

4. Use tools to act on the thought with the follo

action: tool_name 

action_input: tool_input 

 

Do not guess or assume the tool results. Instead

output that includes the action and action_input

 

You have access to the following tools: {tools}. 

 

original_problem: {question} 

"""

Generate the model output:

output = chat.invoke(SystemMessagePromptTemplate 

.from_template(template=base_prompt) \ 

.format_messages(tools=tools, question="Is Jason 

print(output)

Extract the last action , action_input , and call the relevant
function:

tool_name = extract_last_action_and_input(output

tool input = extract last action and input(output



_ p _ _ _ _ p p

tool_result = tools[tool_name]["function"](tool_i

Print the tool details:

print(f"""The agent has opted to use the followin

tool_name: {tool_name} 

tool_input: {tool_input} 

tool_result: {tool_result}""" 

)

Set the current prompt with the tool result:

current_prompt = """ 

You are answering this query: Is Jason Derulo wit

 

Based on the provided tool result: 

tool_result: {tool_result} 

 

Either provide the next observation, action, acti

answer if available. If you are providing the fin

the following pattern: "I've found the answer: fi

"""

Generate the model output for the current prompt:



output = chat.invoke(SystemMessagePromptTemplate

from_template(template=current_prompt) \ 

.format_messages(tool_result=tool_result))

Print the model output for the current prompt:

print("----------\n\nThe model output is:", outpu

final_answer = extract_final_answer(output.conten

if final_answer: 

    print(f"answer: {final_answer}") 

else: 

    print("No final answer found.")

Output:

'''content='1. Observe the original question:\nIs

partner?\n\n2. Create an observation:\nWe don\'t 

about Jason Derulo\'s relationship status.\n\n3. 

on the observation:\nWe can search for recent new

out if Jason Derulo is currently with a partner.\

on the thought:\naction: search_on_google\naction

current relationship status"' additional_kwargs={

 

---------- 

The agent has opted to use the following tool: 

tool name: search on google 



_ _ _g g

tool_input: "Jason Derulo current relationship st

tool_result: Jason Derulo doesn't have a wife or 

---------- 

 

The second prompt shows 

Based on the provided tool result: 

tool_result: {tool_result} 

 

Either provide the next observation, action, acti

answer if available. If you are providing the fin

return the following pattern: "I've found the ans

---------- 

 

The model output is: I've found the answer: Jason

wife or partner. answer: Jason Derulo doesn't hav

The preceding steps provide a very simple ReAct
implementation. In this case, the LLM decided to use the
search_on_google  tool with "Jason Derulo current
relationship status"  as the action_input .

NOTE

LangChain agents will automatically do all of the preceding steps in a concise
manner, as well as provide multiple tool usage (through looping) and handling for
tool failures when an agent can’t parse the action  or action_input .



Before exploring LangChain agents and what they have to offer,
it’s vital that you learn tools and how to create and use them.

Using Tools

As large language models such as GPT-4 can only generate text,
providing tools that can perform other actions such as
interacting with a database or reading/writing files provides an
effective method to increase an LLM’s capabilities. A tool is
simply a predefined function that permits the agent to take a
specific action.

A common part of an agent’s prompt will likely include the
following:

You are looking to accomplish: {goal} 

You have access to the following {tools}

Most tools are written as functions within a programming
language. As you explore LangChain, you’ll find that it offers
three different approaches to tool creation/usage:

Create your own custom tools.
Use preexisting tools.



Leverage AgentToolkits , which are multiple tools
bundled together to accomplish a specific task.

Let’s start by creating a custom tool that checks the length of a
given string using LangChain:

# Import necessary classes and functions: 

from langchain.agents import AgentExecutor, creat

from langchain import hub 

from langchain_openai import ChatOpenAI 

from langchain.tools import Tool 

 

# Defining the LLM to use: 

model = ChatOpenAI() 

 

# Function to count the number of characters in a

def count_characters_in_string(string): 

    return len(string) 

 

# Create a list of tools: 

# Currently, only one tool is defined that counts

tools = [ 

    Tool.from_function( 

        func=count_characters_in_string, 

        name="Count Characters in a text string"

        description="Count the number of characte

    ) 

] 



 

# Download a react prompt! 

prompt = hub.pull("hwchase17/react") 

 

# Construct the ReAct agent: 

agent = create_react_agent(model, tools, prompt) 

 

# Initialize an agent with the defined tools and 

# Create an agent executor by passing in the agen

agent_executor = AgentExecutor(agent=agent, tools

 

# Invoke the agent with a query to count the cha

agent_executor.invoke({"input": '''How many chara

"supercalifragilisticexpialidocious"?'''}) 

 

# 'There are 34 characters in the word "supercali

Following the import of necessary modules, you initialize a
ChatOpenAI  chat model. Then create a function called
count_characters_in_string  that computes the length of
any given string. This function is encapsulated within a Tool
object, providing a descriptive name and explanation for its
role.

Subsequently, you utilize create_react_agent  to initialize
your agent, combining the defined Tool , the ChatOpenAI



model, and a react prompt pulled from the LangChain hub. This
sets up a comprehensive interactive agent.

With AgentExecutor , the agent is equipped with the tools and
verbose output is enabled, allowing for detailed logging.

Finally, agent_executor.invoke(...)  is executed with a
query about the character count in
“supercalifragilisticexpialidocious.” The agent utilizes the
defined tool to calculate and return the precise character count
in the word.

In Example 6-1, you can see that the agent decided to use the
Action  called Characters  in a text string  with an
Action Input :
'supercalifragilisticexpialidocious' . This pattern is
extremely familiar to the simplistic ReAct implementation that
you previously made.

Example 6-1. A single tool, agent output

Entering new AgentExecutor change... 

I should count the number of characters in the wo

"supercalifragilisticexpiladocious". 

Action: Count Characters in a text string 

Action Input: "supercalifragilisticexpiladocious

Observation: 34 



Thought: I now know the final answer 

Final Answer: There are 34 characters in the word

"supercalifragilisticexpiladocious".

GIVE DIRECTION

Writing expressive names for your Python functions and tool descriptions will
increase an LLM’s ability to effectively choose the right tools.

Using LLMs as an API (OpenAI
Functions)

As mentioned in Chapter 4, OpenAI released more fine-tuned
LLMs tailored toward function calling. This is important
because it offers an alternative against the standard ReAct
pattern for tool use. It’s similar to ReAct in that you’re still
utilizing an LLM as a reasoning engine.

As shown in Figure 6-2, function calling allows an LLM to easily
transform a user’s input into a weather API call.

https://oreil.ly/hYTus


Figure 6-2. Function calling flow using OpenAI functions

LangChain allows users to effortlessly switch between different
agent types including ReAct, OpenAI functions, and many more.

Refer to Table 6-1 for a comprehensive comparison of the
different agent types.



Table 6-1. Comparison of agent types

Agent type Description

OpenAI
Functions

Works with fine-tuned models like gpt-3.5-
turbo-0613 and gpt-4-0613 for function calling.
It intelligently outputs JSON objects for the
function calls. Best for open source models and
providers adopting this format. Note:
deprecated in favor of OpenAI Tools.

OpenAI
Tools

Enhanced version for newer models, capable
of invoking one or more functions. It
intelligently outputs JSON objects for these
function calls, optimizing the response
efficiency and reducing response times in
some architectures.

XML Agent Ideal for language models like Anthropic’s
Claude, which excel in XML reasoning/writing.
Best used with regular LLMs (not chat models)
and unstructured tools accepting single string
inputs.



Agent type Description

JSON Chat
Agent

Tailored for language models skilled in JSON
formatting. This agent uses JSON to format its
outputs, supporting chat models for scenarios
requiring JSON outputs.

Structured
Chat

Capable of using multi-input tools, this agent is
designed for complex tasks requiring
structured inputs and responses.

ReAct Implements ReAct logic, using tools like
Tavily’s Search for interactions with a
document store or search tools.

Self-Ask
with Search

Utilizes the Intermediate Answer tool for
factual question resolution, following the self-
ask with search methodology. Best for
scenarios requiring quick and accurate factual
answers.

Let’s use prepackaged tools such as a Calculator  to answer
math questions using OpenAI function calling from the
LangChain documentation:

# Import necessary modules and functions from the



from langchain.chains import ( 

    LLMMathChain, 

) 

from langchain import hub 

from langchain.agents import create_openai_functi

from langchain_openai.chat_models import ChatOpen

 

# Initialize the ChatOpenAI with temperature set 

model = ChatOpenAI(temperature=0) 

 

# Create a LLMMathChain instance using the ChatOp

llm_math_chain = LLMMathChain.from_llm(llm=model

 

# Download the prompt from the hub: 

prompt = hub.pull("hwchase17/openai-functions-age

 

tools = [ 

    Tool(

        name="Calculator", 

        func=llm_math_chain.run, # run the LLMMat

        description="useful for when you need to 

        return_direct=True, 

    ), 

] 

 

# Create an agent using the ChatOpenAI model and 

agent = create_openai_functions_agent(llm=model, 

agent_executor = AgentExecutor(agent=agent, tools



 

result = agent_executor.invoke({"input": "What is

print(result) 

# {'input': 'What is 5 + 5?', 'output': 'Answer: 

After initiating the necessary libraries, you’ll use ChatOpenAI ,
setting the temperature  parameter to 0 for deterministic
outputs. By using hub.pull("...") , you can easily download
prompts that have been saved on LangChainHub.

This model is then coupled with a tool named Calculator
that leverages the capabilities of LLMMathChain  to compute
math queries. The OpenAI functions agent then decides to use
the Calculator  tool to compute 5 + 5  and returns Answer:
10 .

Following on, you can equip an agent with multiple tools,
enhancing its versatility. To test this, let’s add an extra Tool
object to our agent that allows it to perform a fake Google
search:

def google_search(query: str) -> str: 

    return "James Phoenix is 31 years old." 

 

# List of tools that the agent can use: 

tools = [ 

Tool(



    Tool(

        # The LLMMathChain tool for math calculat

        func=llm_math_chain.run, 

        name="Calculator", 

        description="useful for when you need to 

    ), 

    Tool(

        # Tool for counting characters in a strin

        func=google_search, 

        name="google_search", 

        description="useful for when you need to 

    ), 

] 

 

 

# Create an agent using the ChatOpenAI model and 

agent = create_openai_functions_agent(llm=model, 

agent_executor = AgentExecutor(agent=agent, tools

 

# Asking the agent to run a task and store its re

result = agent_executor.invoke( 

    { 

        "input": """Task: Google search for James

        Then square it."""} 

) 

print(result) 

# {'input': "...", 'output': 'James Phoenix is 3

# Squaring his age, we get 961.'}



When executed, the agent will first invoke the google_search
function and then proceed to the llm_math_chain.run
function. By mixing both custom and prepackaged tools, you
significantly increase the flexibility of your agents.

NOTE

Depending upon how many tools you provide, an LLM will either restrict or increase
its ability to solve different user queries. Also, if you add too many tools, the LLM
may become confused about what tools to use at every step while solving the

problem.

Here are several recommended tools that you might want to
explore:

Google search

Enables an LLM to perform web searches, which provides
timely and relevant context.

File system tools

Essential for managing files, whether it involves reading,
writing, or reorganizing them. Your LLM can interact with
the file system more efficiently with them.

https://oreil.ly/TjrnF
https://oreil.ly/5tAB0


Requests

A pragmatic tool that makes an LLM capable of executing
HTTP requests for create, read, update, and delete (CRUD)
functionality.

Twilio

Enhance the functionality of your LLM by allowing it to
send SMS messages or WhatsApp messages through
Twilio.

DIVIDE LABOR AND EVALUATE QUALITY

When using tools, make sure you divide the tasks appropriately. For example, entrust
Twilio with communication services, while assigning requests for HTTP-related tasks.
Additionally, it is crucial to consistently evaluate the performance and quality of the

tasks performed by each tool.

Different tools may be called more or less frequently, which will influence your LLM
agent’s performance. Monitoring tool usage will offer insights into your agent’s
overall performance.

Comparing OpenAI Functions and
ReAct

https://oreil.ly/vZjm1
https://oreil.ly/ECS4r


Both OpenAI functions and the ReAct framework bring unique
capabilities to the table for executing tasks with generative AI
models. Understanding the differences between them can help
you determine which is better suited for your specific use case.

OpenAI functions operate in a straightforward manner. In this
setup, the LLM decides at runtime whether to execute a
function. This is beneficial when integrated into a
conversational agent, as it provides several features including:

Runtime decision making

The LLM autonomously makes the decision on whether a
function(s) should be executed or not in real time.

Single tool execution

OpenAI functions are ideal for tasks requiring a single
tool execution.

Ease of implementation

OpenAI functions can be easily merged with
conversational agents.

Parallel function calling

For single task executions requiring multiple parses,
OpenAI functions offer parallel function calling to invoke



several functions within the same API request.

Use Cases for OpenAI Functions

If your task entails a definitive action such as a simple search or
data extraction, OpenAI functions are an ideal choice.

ReAct

If you require executions involving multiple sequential tool
usage and deeper introspection of previous actions, ReAct
comes into play. Compared to function calling, ReAct is designed
to go through many thought loops to accomplish a higher-level
goal, making it suitable for queries with multiple intents.

Despite ReAct’s compatibility with conversational-react  as
an agent, it doesn’t yet offer the same level of stability as
function calling and often favors toward using tools over simply
responding with text. Nevertheless, if your task requires
successive executions, ReAct’s ability to generate many thought
loops and decide on a single tool at a time demonstrates several
distinct features including:

Iterative thought process



ReAct allows agents to generate numerous thought loops
for complex tasks.

Multi-intent handling

ReAct handles queries with multiple intents effectively,
thus making it suitable for complex tasks.

Multiple tool execution

Ideal for tasks requiring multiple tool executions
sequentially.

Use Cases for ReAct

If you’re working on a project that requires introspection of
previous actions or uses multiple functions in succession such
as saving an interview and then sending it in an email, ReAct is
the best choice.

To aid decision making, see a comprehensive comparison in
Table 6-2.



Table 6-2. A feature comparison between OpenAI functions and ReAct

Feature OpenAI functions ReAct

Runtime decision making ✓ ✓

Single tool execution ✓ ✓

Ease of implementation ✓ x

Parallel function calling ✓ x

Iterative thought process x ✓

Multi-intent handling ✓ ✓

Sequential tool execution x ✓

Customizable prompt ✓ ✓

GIVE DIRECTION

When interacting with different AI frameworks, it’s crucial to understand that each
framework has its strengths and trade-offs. Each framework will provide a unique
form of direction to your LLM.

Agent Toolkits



Agent toolkits are a LangChain integration that provides
multiple tools and chains together, allowing you to quickly
automate tasks.

First, install some more packages by typing pip install
langchain_experimental pandas tabulate langchain-

community pymongo --upgrade  on your terminal. Popular
agent toolkits include:

CSV Agent
Gmail Toolkit
OpenAI Agent
Python Agent
JSON Agent
Pandas DataFrame Agent

The CSV Agent uses a Pandas DataFrame Agent and
python_repl_ast  tool to investigate a .csv file. You can ask it
to quantify the data, identify column names, or create a
correlation matrix.

Create a new Jupyter Notebook or Python file in
content/chapter_6 of the shared repository, then you will need
to import create_csv_agent , ChatOpenAI , and

https://oreil.ly/_v6dm
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AgentType . The create_csv_agent  function requires an
LLM, dataset file path , and agent_type :

# Importing the relevant packages: 

from langchain.agents.agent_types import AgentTyp

from langchain_experimental.agents.agent_toolkits

from langchain_openai.chat_models import ChatOpen

 

# Creating a CSV Agent: 

agent = create_csv_agent( 

    ChatOpenAI(temperature=0), 

    "data/heart_disease_uci.csv", 

    verbose=True, 

    agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPT

) 

 

agent.invoke("How many rows of data are in the fi

# '920' 

 

agent.invoke("What are the columns within the dat

# "'id', 'age', 'sex', 'dataset', 'cp', 'trestbps

# 'restecg', 'thalch', 'exang', 'oldpeak', 'slope

 

agent.invoke("Create a correlation matrix for the

# "The correlation matrix has been saved to a fil

# 'correlation_matrix.csv'."



It’s even possible for you to interact with a SQL database via a
SQLDatabase agent:

from langchain.agents import create_sql_agent 

from langchain_community.agent_toolkits import SQ

from langchain.sql_database import SQLDatabase 

from langchain.agents.agent_types import AgentTyp

from langchain_openai.chat_models import ChatOpen

 

db = SQLDatabase.from_uri("sqlite:///./data/demo

toolkit = SQLDatabaseToolkit(db=db, llm=ChatOpenA

 

# Creating an agent executor: 

agent_executor = create_sql_agent(

    llm=ChatOpenAI(temperature=0), 

    toolkit=toolkit, 

    verbose=True, 

    agent_type=AgentType.OPENAI_FUNCTIONS, 

) 

 

# Identifying all of the tables: 

agent_executor.invoke("Identify all of the tables

# 'The database contains the following tables:\n

user_sql = agent_executor.invoke( 

    '''Add 5 new users to the database. Their nam

John, Mary, Peter, Paul, and Jane.'''



    John, Mary, Peter, Paul, and Jane.  

) 

'''Based on the schema of the "Users" table, I ca

columns for adding new users are "FirstName", "La

"DateJoined". I will now run the SQL query to add

users.\n\n```sql\nINSERT INTO Users (FirstName, L

DateJoined)\nVALUES (\'John\', \'Doe\', \'john.do

\'2023-05-01\'), \n(\'Mary\', \'Johnson\', \'mary

\'2023-05-02\'),\n (\'Peter\', \'Smith\', \'pete

\'2023-05-03\'),\n (\'Paul\', \'Brown\', \'paul.b

\'2023-05-04\'),\n (\'Jane\', \'Davis\', \'jane.d

\'2023-05-05\');\n```\n\nPlease note that I have 

the specified names and email addresses. The "Dat

respective dates mentioned.'''

First, the agent_executor  inspects the SQL database to
understand the database schema, and then the agent writes and
executes a SQL statement that successfully adds five users into
the SQL table.

Customizing Standard Agents

It’s worth considering how to customize LangChain agents. Key
function arguments can include the following:



prefix  and suffix  are the prompt templates that are
inserted directly into the agent.
max_iterations  and max_execution_time  provide
you with a way to limit API and compute costs in case an
agent becomes stuck in an endless loop:

# This the function signature for demonstration p

def create_sql_agent( 

    llm: BaseLanguageModel, 

    toolkit: SQLDatabaseToolkit, 

    agent_type: Any | None = None, 

    callback_manager: BaseCallbackManager | None 

    prefix: str = SQL_PREFIX, 

    suffix: str | None = None, 

    format_instructions: str | None = None, 

    input_variables: List[str] | None = None, 

    top_k: int = 10, 

    max_iterations: int | None = 15,

    max_execution_time: float | None = None, 

    early_stopping_method: str = "force", 

    verbose: bool = False, 

    agent_executor_kwargs: Dict[str, Any] | None 

    extra_tools: Sequence[BaseTool] = (), 

    **kwargs: Any 

) -> AgentExecutor



Let’s update the previously created agent_executor  so that
the agent can perform more SQL statements. The SQL_PREFIX
is directly inserted into the create_sql_agent  function as
the prefix . Additionally, you’ll insert the recommended
user_sql  from the previous agent that wouldn’t directly run
INSERT , UPDATE , or EDIT  commands; however, the new
agent will happily execute CRUD (create, read, update, delete)
operations against the SQLite database:

SQL_PREFIX = """You are an agent designed to inte

Given an input question, create a syntactically c

run, then look at the results of the query and re

Unless the user specifies a specific number of ex

always limit your query to at most {top_k} result

results by a relevant column to return the most i

the database. Never query for all the columns fro

ask for the relevant columns given the question. 

for interacting with the database. Only use the b

information returned by the below tools to const

MUST double-check your query before executing it

executing a query, rewrite the query and try agai

not seem related to the database, just return "I 

""" 

 

agent_executor = create_sql_agent(

    llm=ChatOpenAI(temperature=0), 



    toolkit=toolkit, 

    verbose=True, 

    agent_type=AgentType.OPENAI_FUNCTIONS, 

    prefix=SQL_PREFIX, 

) 

 

agent_executor.invoke(user_sql) 

# '...sql\nINSERT INTO Users (FirstName, LastName

# DateJoined)\nVALUES (...)...' 

 

# Testing that Peter was inserted into the databa

agent_executor.invoke("Do we have a Peter in the 

'''Yes, we have a Peter in the database. Their de

First Name: Peter...'''

Custom Agents in LCEL

It’s very easy to create a custom agent using LCEL; let’s create a
chat model with one tool:

from langchain_openai import ChatOpenAI 

from langchain_core.tools import tool 

 

# 1. Create the model: 

llm = ChatOpenAI(temperature=0) 

 



@tool 

def get_word_length(word: str) -> int: 

    """Returns the length of a word.""" 

    return len(word) 

 

# 2. Create the tools: 

tools = [get_word_length]

Next, you’ll set up the prompt with a system message, user
message, and a MessagesPlaceholder , which allows the
agent to store its intermediate steps:

from langchain_core.prompts import ChatPromptTemp

 

# 3. Create the Prompt: 

prompt = ChatPromptTemplate.from_messages( 

    [ 

        ( 

            "system", 

            """You are very powerful assistant, b

            and aren't good at calculating word l

        ), 

        ("user", "{input}"), 

        # This is where the agent will write/read

        MessagesPlaceholder(variable_name="agent_

    ] 

)



Before creating an agent, you’ll need to bind the tools directly to
the LLM for function calling:

from langchain_core.utils.function_calling import

from langchain.agents.format_scratchpad.openai_to

    format_to_openai_tool_messages, 

) 

 

# 4. Formats the python function tools into JSON 

# them to the model: 

llm_with_tools = llm.bind_tools(tools=[convert_to

for t in tools]) 

 

from langchain.agents.output_parsers.openai_tools

import OpenAIToolsAgentOutputParser 

 

 

# 5. Setting up the agent chain: 

agent = ( 

    { 

        "input": lambda x: x["input"], 

        "agent_scratchpad": lambda x: format_to_o

            x["intermediate_steps"] 

        ), 

    } 

    | prompt 

    | llm_with_tools 



    | OpenAIToolsAgentOutputParser() 

)

Here’s a step-by-step walk-through of the code:

1. Importing tool conversion function

You begin by importing convert_to_openai_tool . This
allows you to convert Python function tools into a JSON
schema, making them compatible with OpenAI’s LLMs.

2. Binding tools to your language model (LLM)

Next, you bind the tools to your LLM. By iterating over
each tool in your tools  list and converting them with
convert_to_openai_tool , you effectively create
llm_with_tools . This equips your LLM with the
functionalities of the defined tools.

3. Importing agent formatting and parsing functions

Here, you import format_to_openai_tool_messages
and OpenAIToolsAgentOutputParser . These format
the agent’s scratchpad and parse the output from your
LLM bound with tools.

4. Setting up your agent chain



In this final and crucial step, you set up the agent chain.

You take the lead by processing the user’s input
directly.
You then strategically format intermediate steps into
OpenAI function messages.
The llm_with_tools  will then be called.
OpenAIToolsAgentOutputParser  is used to parse
the output.

Finally, let’s create and use the AgentExecutor :

from langchain.agents import AgentExecutor 

 

agent_executor = AgentExecutor(agent=agent, tools

agent_executor.invoke({"input": "How many letters

#{'input': 'How many letters in the word Software

# 'output': 'There are 8 letters in the word "Sof

The LCEL agent uses the .invoke(...)  function and correctly
identifies that there are eight letters within the word software.

Understanding and Using Memory



When interacting with LLMs, understanding the role and
importance of memory is paramount. It’s not just about how
these models recall information but also about the strategic
interplay between long-term (LTM) and short-term memory
(STM).

Long-Term Memory

Think of long-term memory as the library of an LLM. It’s the
vast, curated collection of data, storing everything from text to
conceptual frameworks. This knowledge pool aids the model in
comprehending and generating responses.

Applications include:

Vector databases

These databases can store unstructured text data,
providing the model with a reference point when
generating content. By indexing and categorizing this
data, LLMs can swiftly retrieve relevant information via
similarity distance metrics.

Self-reflection

Advanced applications include an LLM that introspects,
records, and stores thoughts. Imagine an LLM that



meticulously observes user patterns on a book review
platform and catalogs these as deep insights. Over time, it
pinpoints preferences, such as favored genres and writing
styles. These insights are stored and accessed using
retrieval. When users seek book recommendations, the
LLM, powered by the retrieved context, provides bespoke
suggestions aligned with their tastes.

Custom retrievers

Creating specific retrieval functions can significantly
boost an LLM’s efficiency. Drawing parallels with human
memory systems, these functions can prioritize data
based on its relevance, the elapsed time since the last
memory, and its utility in achieving a particular objective.

Short-Term Memory

Short-term memory in LLMs is akin to a temporary workspace.
Here, recent interactions, active tasks, or ongoing conversations
are kept at the forefront to ensure continuity and context.

Applications include:

Conversational histories



For chatbots, tracking conversational history is essential.
It allows the bot to maintain context over multiple
exchanges, preventing redundant queries and ensuring
the conversation flows naturally.

Repetition avoidance

STM proves invaluable when similar or identical queries
are posed by users. By referencing its short-term recall,
the model can provide consistent answers or diversify its
responses, based on the application’s requirement.

Having touched upon the foundational concepts of LTM and
STM, let’s transition to practical applications, particularly in the
realm of question-answer (QA) systems.

Short-Term Memory in QA Conversation
Agents

Imagine Eva, a virtual customer support agent for an e-
commerce platform. A user might have several interlinked
queries:

User: “How long is the return policy for electronics?”

Eva: “The return policy for electronics is 30 days.”



User: “What about for clothing items?”

Eva, leveraging STM: “For clothing items, it’s 45 days. Would
you like to know about any other categories?”

Notice that by utilizing short term memory (STM), Eva
seamlessly continues the conversation, anticipating potential
follow-up questions. This fluidity is only possible due to the
effective deployment of short-term memory, allowing the agent
to perceive conversations not as isolated QAs but as a cohesive
interaction.

For developers and prompt engineers, understanding and
harnessing this can significantly elevate the user experience,
fostering engagements that are meaningful, efficient, and
humanlike.

Memory in LangChain

LangChain provides easy techniques for adding memory to
LLMs. As shown in Figure 6-3, every memory system in a chain
is tasked with two fundamental operations: reading and
storing.



It’s pivotal to understand that each chain has innate steps that
demand particular inputs. While a user provides some of this
data, the chain can also source other pieces of information from
its memory.

Figure 6-3. Memory within LangChain

In every operation of the chain, there are two crucial
interactions with its memory:

After collecting the initial user data but before executing, the
chain retrieves information from its memory, adding to the
user’s input.
After the chain has completed but before returning the
answer, a chain will write the inputs and outputs of the
current run to memory so that they can be referred to in
future runs.



There are two pivotal choices you’ll need to make when
creating a memory system:

The method of storing state
The approach to querying the memory state

Preserving the State

Beneath the surface, the foundational memory of generative AI
models is structured as a sequence of chat messages. These
messages can be stored in temporary in-memory lists or
anchored in a more durable database. For those leaning toward
long-term storage, there’s a wide range of database integrations
available, streamlining the process and saving you from the
hassle of manual integration.

With five to six lines of code, you can easily integrate a
MongoDBChatMessageHistory  that’s unique based on a
session_id  parameter:

# Provide the connection string to connect to the

connection_string = "mongodb://mongo_user:passwo

 

chat_message_history = MongoDBChatMessageHistory

    session_id="test_session", 

    connection_string=connection_string, 

database name="my db"

https://oreil.ly/ECD_n


    database_name= my_db , 

    collection_name="chat_histories", 

) 

 

chat_message_history.add_user_message("I love pro

chat_message_history.add_ai_message("What do you 

 

chat_message_history.messages 

# [HumanMessage(content='I love programming!!', 

# AIMessage(content='What do you like about it?'

Querying the State

A basic memory framework might merely relay the latest
messages with every interaction. A slightly more nuanced setup
might distill a crisp synopsis of the last set of messages. An even
more advanced setup would discern specific entities from
dialogue and relay only data about those entities highlighted in
the ongoing session.

Different applications require varying demands on memory
querying. LangChain’s memory toolkit will help you to create
simplistic memory infrastructures while empowering you to
architect bespoke systems when necessary.

ConversationBufferMemory



There are various types of memory within LangChain, and one
of the most popular is ConversationBufferMemory. This allows
you to store multiple chat messages with no restriction on chat
history size.

Start by importing ConversationBufferMemory , and you can
then add context with the save_context  function. The
load_memory_variables  function returns a Python
dictionary containing the Human  and AI  messages:

from langchain.memory import ConversationBufferMe

memory = ConversationBufferMemory() 

memory.save_context({"input": "hi"}, {"output": 

memory.load_memory_variables({}) 

# {'history': 'Human: hi\nAI: whats up'}

You can also return the LangChain schema messages, i.e.,
SystemMessage , AIMessage  or HumanMessage , by adding
return_messages=True  to ConversationBufferMemory :

memory = ConversationBufferMemory(return_messages

memory.save_context({"input": "hi"}, {"output": 

memory.load_memory_variables({}) 

# {'history': [HumanMessage(content='hi'), 



y g

# AIMessage(content='whats up')]}

Let’s add memory directly to a chain in LCEL:

# Using within a chain: 

from langchain.memory import ConversationBufferMe

from langchain_openai.chat_models import ChatOpen

from langchain_core.prompts import ChatPromptTemp

from langchain_core.output_parsers import StrOutp

from langchain_core.runnables import RunnableLamb

from operator import itemgetter 

 

memory = ConversationBufferMemory(return_messages

 

model = ChatOpenAI(temperature=0) 

prompt = ChatPromptTemplate.from_messages( 

    [ 

        ("system", "Act as a chatbot that helps u

        # The history of the conversation 

        MessagesPlaceholder(variable_name="histo

        ("human", "{input}"), 

    ] 

) 

chain = ( 

    { 

        "input": lambda x: x["input"], 

"history": RunnableLambda(memory load mem



        history : RunnableLambda(memory.load_mem

        itemgetter("history"), 

    } 

    | prompt 

    | model 

    | StrOutputParser() 

)

Notice the MessagesPlaceholder  has a variable_name  of
"history" . This is aligned with the memory  key within
ConversationBufferMemory , allowing the previous chat
history to be directly formatted into the
ChatPromptTemplate .

After setting up the LCEL chain, let’s invoke it and save the
messages to the memory  variable:

inputs = {"input": "Hi my name is James!"} 

result = chain.invoke(inputs) 

memory.save_context(inputs, {"outputs": result}) 

print(memory.load_memory_variables({})) 

 

# {'history': [HumanMessage(content='Hi my name i

# AIMessage(content='Hello James! How can I assis



The memory has two messages, a HumanMessage  and an
AIMessage ; both are saved to memory by using the
save_context  function. Let’s test whether the LCEL chain is
able to use previous context to answer new questions:

inputs = {"input": "What is my name?"} 

second_result = chain.invoke(inputs) 

print(second_result) 

# Your name is James.

The LCEL chain is now able to use previous messages to answer
new queries!

Furthermore, you can easily add memory to an agent by adding
a MessagesPlaceHolder  to the ChatPromptTemplate  and
adding memory to the AgentExecutor :

prompt = ChatPromptTemplate.from_messages( 

    [ 

        ( 

            "system", 

            """You are a very powerful assistant

and aren't good at calculating word length.""", 

        ), 

        # This is where the agent will write/read

        MessagesPlaceholder(variable_name="agent_

MessagesPlaceholder(variable name="histo



        MessagesPlaceholder(variable_name= histo

        ("user", "{input}"), 

    ] 

) 

 

# ... The rest of the code remains the same as be

 

# Create an agent executor by passing in the agen

memory = ConversationBufferMemory(return_messages

agent_executor = AgentExecutor(agent=agent, tools

memory=memory)

You can view the full implementation within this Jupyter
Notebook.

By leveraging this memory, your agent delivers a more context-
aware and fluid conversational experience, negating the need
for additional tools to recall past interactions.

ConversationBufferMemory doesn’t have a buffer limit, but
different memory types such as
ConversationSummaryBufferMemory allow you specify a
maximum token limit, after which the conversation is
summarized:

from langchain.memory import ConversationBufferMe
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memory = ConversationBufferMemory() 

memory.save_context({"input": "hi"}, {"output": 

memory.load_memory_variables({}) 

# {'history': 'Human: hi\nAI: whats up'}

NOTE

By default, memory is stored locally within the Python process. This approach is
inherently transient and limited by the session or process lifespan. For applications
requiring continuity over time and the ability to learn from historical data, a shift to

database-backed memory becomes essential.

There are several integrations available for database-backed memory, which
transition the memory usage from a short-term, session-specific context to a more
robust, long-term storage solution.

Other Popular Memory Types in
LangChain

While ConversationBufferMemory is a well-known memory
type, it has limitations such as context length limits, potential
lack of relevance, and lack of summarization. To address these
issues, LangChain offers several other memory types.

https://oreil.ly/nTBox


ConversationBufferWindowMemory

This type maintains a sliding window of the most recent
interactions, ensuring the buffer doesn’t grow excessively large.
Features include the following:

Keeps only the last K  interactions
Can return history as either a string or a list of messages

from langchain.memory import ConversationBufferWi

 

memory = ConversationBufferWindowMemory(k=1) 

memory.save_context({"input": "hi"}, {"output": 

memory.save_context({"input": "not much you"}, {

# Returns: {'history': 'Human: not much you\nAI: 

memory.load_memory_variables({})

ConversationSummaryMemory

This one condenses and summarizes the conversation over time
and is ideal for longer conversations where verbatim message
history would be token-expensive. Features include the
following:

Summarizes conversation on the fly



Can return history as a summary string or a list of system
messages
Allows direct prediction of new summaries
Can be initialized with existing messages or summaries

from langchain.memory import ConversationSummaryM

from langchain_openai import OpenAI 

 

memory = ConversationSummaryMemory(llm=OpenAI(tem

memory.save_context({"input": "hi"}, {"output": 

memory.load_memory_variables({}) 

# Returns: {'history': '\nThe human greets the AI

ConversationSummaryBufferMemory

This is a hybrid memory that maintains a buffer of recent
interactions but also compiles older interactions into a
summary.

Features include the following:

Uses token length to determine when to flush interactions
Can return history as a summary with recent interactions
or a list of messages
Allows direct prediction of new summaries



from langchain.memory import ConversationSummaryB

from langchain_openai.chat_models import ChatOpen

 

memory = ConversationSummaryBufferMemory(llm=Chat

memory.save_context({"input": "hi"}, {"output": 

memory.load_memory_variables({}) 

# Returns: {'history': 'System: \nThe human says 

# "whats up".\nHuman: not much you\nAI: not much

ConversationTokenBufferMemory

This one keeps a buffer of recent interactions using token
length to determine when to flush interactions.

Features include the following:

Uses token length for flushing
Can return history as a string or a list of messages

from langchain.memory import ConversationTokenBuf

from langchain_openai.chat_models import ChatOpen

 

memory = ConversationTokenBufferMemory(llm=ChatOp

max_token_limit=50) 

memory.save_context({"input": "hi"}, {"output": 

memory.load_memory_variables({}) 

# R t {'hi t ' 'H t h \ AI



# Returns: {'history': 'Human: not much you\nAI: 

You’ve learned about the importance of memory in LangChain.
Also, you now understand how to build and customize a
memory system using LangChain’s memory toolkit, including
methods of storing state and querying memory; you’ve seen
examples on integrating MongoDBChatMessageHistory and
utilizing the versatile ConversationBufferMemory.

Let’s summarize the different memory types available in
LangChain and when they might be particularly useful:

ConversationBufferWindowMemory

This memory type maintains the most recent interactions,
thus proving useful in cases where the context of the
conversation is essential without letting the buffer grow
extensively large.

ConversationSummaryMemory

Ideal for extended conversations, this memory type
provides summarized versions of the conversation, saving
valuable token space.

ConversationSummaryBufferMemory



Convenient for situations where you not only want to
maintain a record of recent interactions but also want to
compile older interactions into a summary, thereby
offering a hybrid approach.

ConversationTokenBufferMemory

This memory type is useful when defining a specific token
length is vital and a buffer of recent interactions needs to
be maintained. It determines when to flush interactions
based on token length.

Understanding the different memory options available can help
you choose the most suitable one for your exact needs,
depending on the situation.

GIVE DIRECTION

Even as you’re determining which memory type to use, remember to direct the AI
model appropriately. For instance, with ConversationBufferWindowMemory, you
would need to specify the number of recent interactions ( K ) you want to keep. Be

clear about your requirements for optimal results.

OpenAI Functions Agent with
Memory



Dive deeper into agents with a comprehensive example
available on GitHub. In this example, you’ll uncover how
OpenAI integrates several essential components:

Memory management using chat messages
Use tools such as API requests and file saving that can
handle multiple function parameters
Integrate a custom SystemMessage  to guide and define
the agent’s behavior

To illustrate, consider how a Python function’s docstring is
utilized to provide a tool’s description:

from langchain.tools import StructuredTool 

 

def save_interview(raw_interview_text: str): 

    """Tool to save the interview. You must pass 

    conversation in here. The interview will then

    Remember to include all of the previous chat 

    the messages with the user and the AI, here i

    AI: some text 

    Human: some text 

    ... 

    --- 

    """ 

    # Save to local file: 

    with open("interview.txt", "w") as f: 

f i ( i i )
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        f.write(raw_interview_text) 

    return f'''Interview saved! Content: {raw_int

    interview.txt. You must tell the user that th

 

save_interview = StructuredTool.from_function(sav

StructuredTool.from_function()  will create a LangChain
tool that’s capable of accepting multiple function arguments.

GIVE DIRECTION AND SPECIFY FORMAT

The docstring within the Python function showcases a designated format guiding the
LLM on the content to use for the raw_interview_text  parameter.

Additionally, the return  statement emphasizes instructing the LLM to inform the

user that the interview has been stored. This ensures the agent returns a more
conversational response post-tool execution.

To further demonstrate prompt engineering techniques, let’s
examine another Python code snippet from the notebook:

from pydantic.v1 import BaseModel 

from typing import Union, Literal, Type 

from langchain_core.tools import BaseTool 

 

class ArgumentType(BaseModel): 

    url: str 

file type: Union[Literal["pdf"] Literal["txt



    file_type: Union[Literal["pdf"], Literal["txt

 

class SummarizeFileFromURL(BaseTool): 

    name = "SummarizeFileFromURL" 

    description = "Summarize a file from a URL." 

    args_schema: Type[ArgumentType] = ArgumentTyp

In this example, args_schema  is used within the
SummarizeFileFromURL  class. This attribute leverages the
ArgumentType  class, ensuring that the tool’s arguments are
validated before execution. Specifically, it enforces that a valid
URL string be provided and that the file_type  argument
should be either "pdf"  or "txt" .

By adding validation checks, you can guarantee that the agent
processes functional arguments correctly, which, in turn,
enhances the overall reliability and efficiency of tool execution.

Advanced Agent Frameworks

You now know about ReAct and OpenAI functions, but there are
several other agent frameworks. Two other popular
frameworks include plan and execute agents and tree of
thoughts.



Plan-and-Execute Agents

Rather than have the LLM do the task planning and tool
execution, you can separate this into two separate modules.
Each module can be handled separately by an individual LLM
that has access to the objective, current tasks, and completed
tasks.

Two popular versions of the plan-and-execute framework
include BabyAGI and AutoGPT.

Figure 6-4 showcases BabyAGI’s agent setup, which is designed
to merge OpenAI LLMs with vector databases such as
Chroma/Weaviate to create a robust, adaptive task management
system.

In a continuous loop, the agent starts by fetching a task and
passes it to the execution_agent , which taps into OpenAI to
perform the task based on contextual data. After this, the
outcomes are enriched and archived in Chroma/Weaviate.

The task_creation_agent  then steps in, utilizing OpenAI to
discern new tasks from the objective and results of the prior
task. These tasks are presented as a list of dictionaries, giving
structure to the resultant tasks.

https://oreil.ly/xeijG
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The prioritization_agent  then interacts with OpenAI to
rearrange the task list, ensuring alignment with the main
objective. The synergy of these agents ensures that the system is
always evolving, continuously generating and prioritizing tasks
in an informed manner. Integrating Chroma or Weaviate plays
a crucial role by offering a reservoir of contextual data,
ensuring that tasks are always aligned with their predefined
goals.

https://oreil.ly/9R3pU
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Figure 6-4. BabyAGI’s agent architecture

The plan-and-execute agent type does exist within LangChain,
though it’s still experimental.

Tree of Thoughts

As the application of language models in problem-solving
expands across diverse tasks, their inference method remains

https://oreil.ly/8vYF5


bound to token-level, linear processing. This approach, while
effective in many contexts, is limited when faced with tasks that
need advanced strategic foresight or where the initial decisions
are crucial. The Tree of Thoughts (ToT) framework is a novel
way to harness language models that goes beyond the
conventional chain-of-thought prompting technique (Figure 6-
5).

The central premise of ToT is to enable exploration across
coherent text chunks, termed thoughts. These thoughts
represent stages in problem-solving, facilitating the language
model to undertake a more deliberate decision-making process.
Instead of sticking to one reasoning path, the model can explore
various reasoning trajectories, self-assessing its decisions at
each step. The framework is designed to allow for forward
planning, revisiting past decisions, and making overarching
choices.

https://oreil.ly/1rYDI


Figure 6-5. Tree of Thoughts (ToT)

Evidence of its success comes from experimental results on
tasks requiring intricate planning or searching capabilities. In a
game like game of 24, the traditional GPT-4, when prompted
using chain-of-thought, managed a 4% success rate. In contrast,
the ToT approach skyrocketed this figure to an impressive 74%.
This paradigm shift isn’t limited to games. The ToT method also
showed promise in areas like creative writing and mini
crosswords, underscoring its versatility.

Complementing the theory is a LangChain implementation,
which gives a glimpse into how ToT can be actualized. A sudoku
puzzle serves as the illustrative example, with the main aim to

https://oreil.ly/fub1z


replace wildcard characters (*) with numbers, while adhering
to sudoku rules.

ToT is not just a new method; it’s a paradigm shift in how we
envision language model inference. By providing models the
capacity to think, backtrack, and strategize, ToT is redefining
the boundaries of AI problem-solving.

If you consider ToT as a strategy for commanding LLMs,
LangChain callbacks can be viewed as tools to diagnose and
ensure the smooth operation of these strategies. Let’s dive into
how you can harness this feature effectively.

Callbacks

LangChain’s callbacks empower you to seamlessly monitor and
pinpoint issues within your application. Until now, you’ve
encountered the parameter verbose=True  in
AgentExecutor  chains:

AgentExecutor(.., verbose=True)

This parameter logs useful outputs for debugging purposes, but
what if you’re keen on tracking specific events? Enter callbacks,

https://oreil.ly/8EhXl


your go-to solution.

The BaseCallbackHandler  class acts as a foundation for
monitoring and responding to various events during the
execution of your generative AI models. Each method in this
class corresponds to specific stages like the start, end, or even
errors during the model’s runtime. For instance, the
on_llm_start  gets triggered when an LLM begins its
operation. Similarly, methods like on_chain_error  and
on_tool_end  react to errors in chains or after using a tool:

class BaseCallbackHandler: 

    """Base callback handler that can be used to 

    langchain.""" 

 

    def on_llm_start( 

        self, serialized: Dict[str, Any], prompts

        **kwargs: Any 

    ) -> Any: 

        """Run when LLM starts running.""" 

 

    def on_chat_model_start( 

        self, serialized: Dict[str, Any], 

        messages: List[List[BaseMessage]], **kwa

    ) -> Any: 

        """Run when Chat Model starts running.""

 



    def on_llm_new_token(self, token: str, **kwa

        """Run on new LLM token. Only available w

 

    def on_llm_end(self, response: LLMResult, **k

        """Run when LLM ends running.""" 

 

    def on_llm_error( 

        self, error: Union[Exception, KeyboardInt

    ) -> Any: 

        """Run when LLM errors.""" 

 

    def on_chain_start( 

        self, serialized: Dict[str, Any], inputs

        **kwargs: Any 

    ) -> Any: 

        """Run when chain starts running.""" 

 

    def on_chain_end(self, outputs: Dict[str, Any

        """Run when chain ends running.""" 

 

    def on_chain_error( 

        self, error: Union[Exception, KeyboardInt

    ) -> Any: 

        """Run when chain errors.""" 

 

    def on_tool_start( 

        self, serialized: Dict[str, Any], input_s

    ) -> Any: 

"""Run when tool starts running """



        Run when tool starts running.  

 

    def on_tool_end(self, output: str, **kwargs: 

        """Run when tool ends running.""" 

 

    def on_tool_error( 

        self, error: Union[Exception, KeyboardInt

    ) -> Any: 

        """Run when tool errors.""" 

 

    def on_text(self, text: str, **kwargs: Any) 

        """Run on arbitrary text.""" 

 

    def on_agent_action(self, action: AgentAction

        """Run on agent action.""" 

 

    def on_agent_finish(self, finish: AgentFinish

        """Run on agent end."""

Each callback can be scoped to either the class or individual
requests.

Global (Constructor) Callbacks

When defining callbacks within a constructor, like
AgentExecutor(callbacks=[handler], tags=['a-



tag']) , they are activated for every call made on that
instance. These callbacks are limited to that specific instance. To
illustrate, when a handler is passed to an LLMChain  during its
creation, it won’t interact with any children chains:

from langchain.agents import AgentExecutor 

from langchain.callbacks import StdOutCallbackHan

 

agent_executor = AgentExecutor( 

    agent=agent, 

    tools=tools, 

    verbose=True, 

    callbacks=[StdOutCallbackHandler()], 

    tags=['a-tag']) 

 

agent_executor.invoke({"input": "How many letters

The tags you include, such as 'a-tag' , can be tremendously
useful in tracing and sorting the outputs of your generative AI
setup. Especially in large projects with numerous chains,
utilizing tags can significantly streamline your workflow.

Request-Specific Callbacks



On the other hand, callbacks can be defined within the
invoke()  method. For instance, a request to an LLMChain
might subsequently trigger another LLMChain  request, and the
same handler would be applied:

from langchain.callbacks import StdOutCallbackHan

from langchain.chains import LLMChain 

from langchain_openai import OpenAI 

from langchain_core.prompts import PromptTemplate

 

handler = StdOutCallbackHandler() 

llm = OpenAI() 

prompt = PromptTemplate.from_template("What is 1 

chain = LLMChain(llm=llm, prompt=prompt) 

chain.invoke({"number": 2}, {"callbacks": [handle

The Verbose Argument

A common utility, the verbose  argument, is accessible for
most API objects. When you use
AgentExecutor(verbose=True) , it’s the same as integrating
a ConsoleCallbackHandler  into the callbacks argument of
the object and its descendants. It acts as a useful debugging tool
by logging every event directly to your console.



When to Use Which?

Constructor callbacks

Ideal for overarching tasks like logging or monitoring
across an entire chain. If tracking all interactions within
agents is your goal, attach the handler during its
initiation.

Request callbacks

Tailored for specific use cases like streaming, where
outputs from a single request are relayed to dedicated
endpoints, say a websocket. So, for a scenario where the
output from a singular request needs to be streamed to a
websocket, the handler should be linked to the invoke()
method.

Verbose arguments

Useful for debugging and local LLM development, but it
can generate a large number of logs.

Token Counting with LangChain

LangChain provides an effective method for token counting
during your interactions with generative AI models.



You need to set up the necessary modules; import the asyncio
module and the relevant functions from the LangChain
package:

import asyncio 

from langchain.callbacks import get_openai_callba

from langchain_core.messages import SystemMessage

from langchain_openai.chat_models import ChatOpen

model = ChatOpenAI()

Now, employ the get_openai_callback  context manager to
make a request and count the tokens used:

with get_openai_callback() as cb: 

    model.invoke([SystemMessage(content="My name 

total_tokens = cb.total_tokens 

print(total_tokens) 

# 25 

assert total_tokens > 0

After executing this code, total_tokens  will store the
number of tokens used for your request.

When making multiple requests within the context manager,
you can verify that the total tokens counted are accurate:



with get_openai_callback() as cb: 

    model.invoke([SystemMessage(content="My name 

    model.invoke([SystemMessage(content="My name 

assert cb.total_tokens > 0 

print(cb.total_tokens) 

# 50

As you can observe, making the same request twice often
results in cb.total_tokens  being twice the value of
total_tokens .

LangChain supports concurrent runs, letting you execute
multiple requests at the same time:

# Async callbacks: 

with get_openai_callback() as cb: 

    await asyncio.gather( 

        model.agenerate( 

            [ 

                [SystemMessage(content="Is the me

                [SystemMessage(content="Is the me

            ], 

        ) 

    ) 

print(cb.__dict__) 

# {'successful_requests': 2, 'total_cost': 0.0004

# 'total tokens': 235 'prompt tokens': 30



# total_tokens : 235, prompt_tokens : 30, 

# 'completion_tokens': 205}

cb  provides a detailed breakdown of your interaction with the
AI model, offering key metrics that are pivotal for prompt
engineering:

cb.successful_requests  tracks the number of requests
that have been executed successfully. It’s a direct indicator
of how many API requests were effectively processed
without encountering errors.
With cb.total_cost , you get a transparent view of the
cost associated with your requests. This can be a crucial
metric for budgeting and managing expenses when
working extensively with the AI.
cb.total_tokens  denotes the cumulative number of
tokens used in both the prompt and the completion. This
provides a holistic view of token consumption.
cb.prompt_tokens  gives insight into how many tokens
were used in the prompts you provided. This can guide you
in optimizing your prompts to be concise yet effective.
cb.completion_tokens  highlights the number of tokens
taken up by the AI’s response. This can be beneficial when
analyzing the verbosity or depth of the AI’s answers.



Summary

In this chapter, you learned about the concept of chain-of-
thought reasoning and its importance in autonomous agents.
You discovered how LLMs can break down complex problems
into smaller components to provide effective solutions.

Additionally, you explored the agent-based architecture in
generative AI models and gained valuable insights into memory
integration and advanced agent frameworks. You investigated
several agent frameworks such as ReAct and OpenAI function
calling and learned that these frameworks enhance LLM model
responses by utilizing external tools.

In Chapter 7, you’ll be introduced to image generation using
generative AI. You will learn the history of generative AI image
models, including the strengths and weaknesses of each vendor.



Chapter 7. Introduction to Diffusion
Models for Image Generation

This chapter introduces the most popular diffusion models for
AI image generation. You’ll learn the benefits and limitations of
each of the top models, so that you can be confident in choosing
between them based on the task at hand.

Introduced in 2015, diffusion models are a class of generative
models that have shown spectacular results for generating
images from text. The release of DALL-E 2 in 2022 marked a
great leap forward in the quality of generated images from
diffusion models, with open source Stable Diffusion, and
community favorite Midjourney quickly following to forge a
competitive category. With the integration of DALL-E 3 into
ChatGPT, the lines will continue to blur between text and image
generation. However, advanced users will likely continue to
require direct access to the underlying image generation model,
to get the best results.

Diffusion models are trained by many steps of adding random
noise to an image and then predicting how to reverse the
diffusion process by denoising (removing noise). The approach
comes from physics, where it has been used for simulating how
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particles diffuse (spread out) through a medium. The
predictions are conditioned on the description of the image, so
if the resulting image doesn’t match, the neural network
weights of the model are adjusted to make it better at predicting
the image from the description. When trained, the model is able
to take random noise and turn it into an image that matches the
description provided in the prompt.

Figure 7-1 illustrates the denoising process, as demonstrated by
Binxu Wang in “Mathematical Foundation of Diffusion
Generative Models”.

Figure 7-1. Diffusion schematics

These models were trained on large datasets of billions of
images scraped from the internet (and accompanying captions)
and can therefore replicate most popular art styles or artists.
This has been the source of much controversy, as copyright

https://oreil.ly/57szp


holders seek to enforce their legal claims, while model creators
argue in favor of fair use.

A diffusion model is not simply a “complex collage tool” that
regurgitates replicas of copyrighted images: it’s only a few
gigabytes in size and therefore can’t possibly contain copies of
all its training data. When researchers attempted to reproduce
350,000 images from Stable Diffusion’s training data, they only
succeeded with 109 of them (Carlini et al., 2023).

What the model is doing is more analogous to a human artist
looking at every image on the internet and learning the
patterns that define every subject and style. These patterns are
encoded as a vector representation (a list of numbers) referring
to a location in latent space: a map of all possible combinations
of images that could be generated by the model. The prompt
input by the user is first encoded into vectors; the diffusion
model then generates an image matching these vectors, before
the resulting image is decoded back into pixels for the user.

Figure 7-2 illustrates the encoding and decoding process, from
Ian Stenbit’s “A Walk Through Latent Space with Stable
Diffusion”.

https://oreil.ly/a4Fyp
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Figure 7-2. Encoding and decoding process

These vectors, also referred to as embeddings, act as a location
or address for a point in the model’s map of every image, and as
such images that are similar will be closer together in latent
space. The latent space is continuous, and you can travel
between two points (interpolate) and still get valid images along
the way. For example, if you interpolate from a picture of a dog
to a bowl of fruit, the intermediate images will be coherent-
looking images, demonstrating a progressive shift between the
two concepts.

Figure 7-3 contains a grid, also from Ian Stenbit, showing the
intermediate steps between four images: a dog (top left), a bowl
of fruit (top right), the Eiffel Tower (bottom left), and a
skyscraper (bottom right).

https://oreil.ly/cjm8A


Figure 7-3. A random walk through latent space

Within the domain of diffusion models, prompt engineering can
be seen as navigating the latent space, searching for an image
that matches your vision, out of all of the possible images
available. There are many techniques and best practices for
locating the right combination of words to conjure up your



desired image, and an active community of AI artists and
researchers have worked to build a set of tools to help. Each
model and method has its own quirks and behaviors depending
on its architecture, training method, and the data on which it
was trained. The three main organizations responsible for
building the most popular text-to-image diffusion models have
all taken radically different approaches in terms of business
models and functionality, and as such there is a greater
diversity of choice in diffusion models than there is in the
OpenAI-dominated LLM space.

OpenAI DALL-E

In January 2021, OpenAI released the text-to-image model
DALL-E, its name being a play on surrealist artist Salvador Dali
and the Pixar animated robot WALL-E. The model was based on
a modified version of OpenAI’s remarkable GPT-3 text model,
which had been released seven months before. DALL-E was a
breakthrough in generative AI, demonstrating artistic abilities
most people thought were impossible for a computer to possess.
Figure 7-4 shows an example of the first version of DALL-E’s
capabilities.

https://oreil.ly/dalle1


Figure 7-4. DALL-E capabilities

The DALL-E model was not open sourced nor released to the
public, but it inspired multiple researchers and hobbyists to
attempt to replicate the research. The most popular of these
models was DALL-E Mini, released in July 2021 (renamed
Craiyon a year later at the request of OpenAI), and although it
gained a cult following on social media, the quality was
considerably poorer than the official DALL-E model. OpenAI
published a paper announcing DALL-E 2 in April 2022, and the
quality was significantly higher, attracting a waitlist of one
million people. Figure 7-5 shows an example of the now iconic
astronaut riding a horse image from the paper that captured
the public’s imagination.

https://oreil.ly/EqdtP


Figure 7-5. DALL-E 2 image quality

Access was limited to waitlist users until September 2022, due
to concerns about AI ethics and safety. Generation of images
containing people was initially banned, as were a long list of
sensitive words. Researchers identified DALL-E 2 adding the
words black or female to some image prompts like a photo of a

https://oreil.ly/ot4vw


doctor in a hamfisted attempt to address bias inherited from
the dataset (images of doctors on the internet are
disproportionally of white males).

The team added inpainting and outpainting to the user
interface in August 2022, which was a further leap forward,
garnering attention in the press and on social media. These
features allowed users to generate only selected parts of an
image or to zoom out by generating around the border of an
existing image. However, users have little control over the
parameters of the model and could not fine-tune it on their own
data. The model would generate garbled text on some images
and struggled with realistic depictions of people, generating
disfigured or deformed hands, feet, and eyes, as demonstrated
in Figure 7-6.

Figure 7-6. Deformed hands and eyes



Google’s Imagen demonstrated impressive results and was
introduced in a paper in May 2022 (Ho et al., 2022), but the
model was not made available to the general public, citing AI
ethics and safety concerns. Competitors like Midjourney (July
2022) moved quickly and capitalized on huge demand from
people who had seen impressive demos of DALL-E on social
media but were stuck on the waitlist. The open source release
of Stable Diffusion (August 2022) broke what had seemed to be
an unassailable lead for OpenAI just a few months before.
Although the rollout of the more advanced DALL-E 3 model as a
feature of ChatGPT has helped OpenAI regain lost ground, and
Google has gotten into the game with Gemini 1.5, there remains
everything to play for.

Midjourney

In July 2022, just three months after the release of DALL-E 2,
Midjourney put its v3 model in open beta. This was a uniquely
good time to launch an image generation model, because the
demonstrations of what DALL-E 2 could do from early users
looked like magic, and yet access was initially limited. Eager
early-adopters flocked to Midjourney, and its notable fantasy
aesthetic gained a cult following among the gaming and digital
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art crowds, showcased in the now famous image, which won
first prize in a digital art competition, in Figure 7-7.

Figure 7-7. Théâtre d’Opéra Spatial

Midjourney was one of the first viable image models that had a
business model and commercial license, making it suitable for
more than just experimentation. The subscription model was
favored by many artists accustomed to paying monthly for
other software like Adobe Photoshop. It also helped the creative
process to not be charged per image generated, particularly in
the early days when you’d have to try multiple images before
you found one that was high-enough quality. If you were a
paying customer of Midjourney, you owned the rights to any

https://oreil.ly/dqshh


image generated, unlike DALL-E, where OpenAI was retaining
the copyright.

Unique to Midjourney is its heavy community focus. To use the
tool, you must sign into a Discord server (Figure 7-8) and
submit your prompt in an open channel or direct message.
Given that all image generations are shared in open channels
by default, and private mode is available only on the most
expensive plan, the vast majority of images created through
Midjourney are available for others to learn from. This led to
rapid copying and iteration between users, making it easy for
novices to quickly learn from others. As early as July 2022, the
Discord community was nearing 1 million people (shown in
Figure 7-8), and a year later, there were more than 13 million
members.

https://oreil.ly/JKZzD
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Figure 7-8. Midjourney’s Discord server, July 2022

When you find an image you like, you can click a button to
upscale the image (make it higher resolution) for use. Many
have speculated that this procedure acts as training data for
reinforcement learning, similar to reinforcement learning from
human feedback (RLHF), the method touted as the key to
success of ChatGPT. In addition, the team regularly asks for
ratings of images generated by newer models in order to
improve the performance. Midjourney released v4 of its model
in November 2022, followed by v5 in March 2023 and v6 in
December 2023. The quality is significantly improved: hands
and eyes issues identified in Figure 7-6 have largely gone away,
and the model has a larger stylistic range, demonstrated in
Figure 7-9.

https://oreil.ly/3ISZk


Input:

a group of best friends women eating salads and l

while high fiving in a coffee shop, cinematic lig

Figure 7-9 shows the output.



Figure 7-9. Women eating salads and laughing

Remarkably, the Midjourney team has remained small, with
just 11 employees as of March 2023. The founder of Midjourney,
David Holz, formerly of hardware startup Leap Motion,
confirmed in an interview that the company was already
profitable as of August 2022. What is even more remarkable is

https://oreil.ly/YrmA_
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that without the billions of dollars of funding that OpenAI
enjoys, the team has built significant functionality over what’s
available in DALL-E, including negative prompting (removing
concepts from an image), weighted terms (increasing the
prevalance of other concepts), and their describe feature
(reverse engineering the prompt from an uploaded image).
However, there is no API available; the only way to access the
model is through Discord, which has likely acted as a drag on
mainstream adoption.

Stable Diffusion

While DALL-E 2’s waitlist continued to build, researchers from
the CompVis Group at LMU Munich and applied research
company Runway ML received a donation of computing power
from Stability AI to train Stable Diffusion. The model shocked
the generative AI world when it was released open source in
August 2022, because the results were comparable to DALL-E 2
and Midjourney, but it could be run for free on your own
computer (assuming you had a modest GPU with 8GB VRAM).
Stable Diffusion had one of the fastest climbs in GitHub stars of
any software, rising to 33,600 stars in its first 90 days (Figure 7-
10).

https://oreil.ly/pwPGX


Figure 7-10. GitHub developer adoption of Stable Diffusion

The move to open source the model was controversial, and
raised concerns about AI ethics and safety. Indeed, many of the
initial use cases were to generate AI porn, as evidenced by the
not safe for work (NSFW) models shared on platforms like
Civitai. However, the ability for hobbyists and tinkerers to
modify and extend the model, as well as fine-tune it on their
own data, led to rapid evolution and improvement of the
model’s functionality. The decision to surface all of the model’s
parameters to users, such as Classifier Free Guidance (how
closely to follow a prompt), Denoising (how much noise to add

https://civitai.com/


to the base image for the model to remove during inference),
and Seed (the random noise to start denoising from), has led to
more creativity and innovative artwork. The accessibility and
reliability of open source have also enticed several small
businesses to build on top of Stable Diffusion, such as Pieter
Level’s PhotoAI and InteriorAI (together raking in more than
$100,000 in monthly revenue), and Danny Postma’s Headshot
Pro. As well as matching DALL-E’s inpainting and outpainting
functionality, open source contributions have also kept pace
with Midjourney’s features, such as negative prompts, weighted
terms, and the ability to reverse engineer prompts from images.
In addition, advanced functionality like ControlNet (matching
the posture or composition of an image) and Segment Anything
(clicking on an element to generate a mask for inpainting), have
been quickly added as extensions for use with Stable Diffusion
(both released in April 2023), most commonly accessed via
AUTOMATIC1111’s web UI (Figure 7-11).

https://photoai.com/
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Figure 7-11. AUTOMATIC1111’s web UI for Stable Diffusion

Version 1.5 of Stable Diffusion was released in October 2022 and
is still in use today. Therefore, it will form the basis for the
ControlNet examples in Chapter 10, the advanced section for
image generation in this book. The weights for Stable Diffusion
were released on Hugging Face, introducing a generation of AI
engineers to the open source AI model hub. Version 2.0 of
Stable Diffusion came out a month later in November 2022,
trained on a more aesthetic subset of the original LAION-5B
dataset (a large-scale dataset of image and text pairs for

https://oreil.ly/K5vX2


research purposes), with NSFW (not safe for work) images
filtered out. Power users of Stable Diffusion complained of
censorship as well as a degradation in model performance,
speculating that NSFW images in the training set were
necessary to generate realistic human anatomy.

Stability AI raised over $100 million and has continued to
develop newer models, including DeepFloyd, a model better
able to generate real text on images (an issue that plagues other
models) and the current favorite Stable Diffusion XL 1.0
(abbreviated to SDXL). This model has overcome the misgivings
of the community over censorship in version 2.0, not least due
to the impressive results of this more powerful model, which
has 6.6 billion parameters, compared with 0.98 billion for the
v1.5 model.

Google Gemini

Google long threatened to be a competitor in the space with
their Imagen model (not released publicly), and indeed ex-
Googlers have since founded a promising new image model
Ideogram, released in August 2023. They finally entered the
image generation game with Gemini in December 2023, though
quickly faced criticism over a clumsy attempt to promote
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diversity. It remains to be seen whether Google’s internal
politics will prevent them from capitalizing on their significant
resources.

Text to Video

Much of the attention in the image space is also likely to shift
toward text-to-video, image-to-video, and even video-to-video, as
the Stable Diffusion community extends the capabilities of the
model to generate consistent images frame by frame, including
promising open source projects such as AnimateDiff. In
addition, one of the cocreators of Stable Diffusion, RunwayML,
has become the leading pioneer in text-to-video, and is starting
to get usable results with their Gen-2 model. Stable Video
Diffusion was released in November 2023, capable of turning
text into short video clips or animating existing images, and
Stable Diffusion Turbo can generate images in near real time.
The release of Sora in February 2024 shows that OpenAI isn’t
sleeping on this space either. Although we don’t cover text-to-
video prompting techniques explicitly, everything you learn
about prompting for image generation also applies directly to
video.
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Model Comparison

As demand for AI image generation increases and competition
heats up, new entrants will emerge, and the major players will
diversify. In our own workflows we already find ourselves
using different models for different reasons. DALL-E 3 is great
at composition, and the integration with ChatGPT is convenient.
Midjourney still has the best aesthetics, both for fantasy and
photorealism. Stable Diffusion being open source makes it the
most flexible and extendable model, and is what most AI
businesses build their products on top of. Each model has
evolved toward a distinct style and set of capabilities, as can be
discerned when comparing the same prompt across multiple
models, as in Figure 7-12.

Input:

a corgi on top of the Brandenburg Gate

Figure 7-12 shows the output.



Figure 7-12. A corgi on top of the Brandenburg Gate

Summary

In this chapter, you were introduced to diffusion models for AI
image generation. These models, such as DALL-E, Stable
Diffusion, and Midjourney, use random noise and denoising
techniques to generate images based on text descriptions. They
have been trained on large datasets and can replicate various
art styles. However, there is controversy surrounding copyright
issues. You learned how prompt engineering principles apply to
image generation when navigating the latent space to find the
desired image.

In this chapter, you explored the different approaches taken by
organizations like OpenAI, Stability AI, and Midjourney in
developing text-to-image models. OpenAI’s DALL-E gained
popularity for its artistic abilities, but access was limited, and



the quality of replicated models was poorer. Midjourney, on the
other hand, capitalized on the demand for DALL-E alternatives
and gained a cult following with its v3 and v4 models. It had a
subscription-based pricing model and a strong community
focus. Stable Diffusion, on the other hand, gained attention for
its comparable results to DALL-E and Midjourney, but with the
advantage of being open source and free to run on personal
computers. By reading this chapter, you also gained insights
into the history of AI image generation and the advancements
made by organizations like OpenAI, Midjourney, and Stable
Diffusion.

In the next chapter, you will learn practical tips for handling
image generation with AI. The chapter will equip you with the
necessary knowledge and techniques to create visually
stunning and unique images. From format modifiers to art-style
replication, you will discover the power of prompt engineering
in creating captivating and original visual content. Get ready to
unleash your creativity and take your image generation skills to
the next level.



Chapter 8. Standard Practices for
Image Generation with Midjourney

In this chapter, you’ll use standardized techniques to maximize
the output and formats from diffusion models. You’ll start by
tailoring the prompts to explore all of the common practices
used for image generation. All images are generated by
Midjourney v5, unless otherwise noted. The techniques
discussed were devised to be transferrable to any future or
alternative model.

Format Modifiers

The most basic practice in image generation is to specify the
format of the image. AI image models are capable of deploying
a wide variety of formats, from stock photo, to oil paintings to
ancient Egpytian hieroglyphics. The image often looks
completely different depending on the format, including the
style of the objects or people generated in the image. Many of
the images in the training data are stock photos, and this is also
one of the most commercially important image categories for
image generation.



Input:

a stock photo of a business meeting

Figure 8-1 shows the output.

Figure 8-1. Stock photo of a business meeting



The ability to generate infinite royalty-free stock photos for free
with open source models like Stable Diffusion, or for a very low
cost with DALL-E or Midjourney, is itself a game changer. Each
of these images is unique (though may contain similarities to
existing images), and therefore they look more premium than
reusing the same free stock photos available to everyone else.
However, you no longer need to be limited to the stock
photography format. If your blog post or website imagery
would look better with something more artistic, you can do that
with essentially no limits.

Input:

an oil painting of a business meeting

Figure 8-2 shows the output.



Figure 8-2. Oil painting of a business meeting

SPECIFY FORMAT

The format we specify significantly modifies the results we get from our AI model.
Specifying format also improves the reliability of our prompts in terms of giving us
the type of visual we require.



There’s no real limit to how far you can take this technique, and
this is one of those domains where it would have helped to go to
art school. If you know the name of a specific technique or
detail you want to see in your image—for example, impasto, a
technique used in oil painting, where paint is laid on an area of
the surface thickly, leaving visible brush strokes—you can
reference it in the prompt to get closer to your desired result.
Google maintains a comprehensive list of popular artists and
art movements that many find useful.

Input:

an oil painting of a business meeting, textured o

using thick impasto and swirling dynamic brushst

Figure 8-3 shows the output.

https://oreil.ly/OmZbl


Figure 8-3. Oil painting of a business meeting with impasto

The oil painting of a business meeting is now far more visually
interesting and potentially more appealing, depending on your
audience. Traditionally, one of the reasons businesses migrated
to using stock photography is that it was cheaper than
commissioning a painting, but that limitation no longer applies



with AI. We can generate essentially any format we like, for
example an ancient Egyptian hieroglyph of a business meeting.

Input:

an ancient Egyptian hieroglyph of a business meet

Figure 8-4 shows the output.



Figure 8-4. Ancient Egyptian hieroglyph of a business meeting

The thing to watch out for with modifying the format is that the
style of the image, and even the contents, tend to match what
was associated with that format in the training data. For
example, in our oil painting there aren’t any computers,
because they don’t often appear in oil paintings. Similarly in



our hieroglyph the participants in the meeting are wearing
ancient Egyptian headdresses. Often you’ll need to combine
format modifiers with the other proceeding techniques in order
to arrive at what you want.

Art Style Modifiers

One of the great powers of AI image models is their ability to
replicate any popular art style or artist. The most common
examples shared on social media and AI demos are images in
the style of Van Gogh, Dali, or Picasso, as well as the art
movements they were part of, respectively Post-impressionism,
Surrealism, and Cubism. AI art communities have also become
influential in determining what contemporary art styles
become popular, as is the case with Polish digital artist Greg
Rutkowski, known for his fantasy style. However, many artists
have taken a stand against AI art, and there is a legal gray area
around whether imitating a living artist’s style is considered
fair use under copyright law. We recommend AI artists exercise
caution when generating AI art in the distinctive style of any
living artist and instead stick to artists who died one year ago as
a rule of thumb (seek legal counsel for any planned commercial
use).

https://oreil.ly/nnam3


Input:

illustration of a dragon, in the style of Alice's

by Lewis Carroll

Figure 8-5 shows the output.



Figure 8-5. Illustration of a dragon, in the style of Lewis Carroll

GIVE DIRECTION

Evoking an artist’s name or the name of an art movement is a shortcut toward
delivering a specific visual style. So long as the artist or art movement has enough
examples in the training data, their nature can be emulated.



In evoking an artist’s style you’re effectively shortcutting to a
part of the latent space, the multidimensional universe of
potential model outputs, filtering down to your desired style.
Traversing to nearby locations from there can help you arrive
at a more pleasing destination than you could get to with
random trial and error.

Reverse Engineering Prompts

If you didn’t go to art school or don’t know much about film or
photography, it can be daunting to try to figure out the art
styles, formats, and artists you want to take advantage of. Often
you see a picture you like and have no way of describing it in
enough detail to re-create it with a prompt. Thankfully,
Midjourney’s Describe  functionality allows you to reverse
engineer a prompt from an image by typing /describe  and
then uploading the image. It works for both AI-generated
images and also normal images from other sources, too, as
shown in Figure 8-6, using one of the stock photos from
Chapter 1.

Midjourney gives you four options with various artists, art
styles, modifiers, and other words, including an estimation of
what is happening in the image and what subjects or elements



are contained. For example, Midjourney correctly identifies a
group of people looking at a laptop in an office, in Figure 8-6.
You can select the option you want by number, and Midjourney
will generate an image with that prompt, in the same style as
the original. There is similar open source technology available
named CLIP Interrogator, though the richness of the prompt
and ability to replicate the style of the uploaded image is
lacking compared to Midjourney.

https://oreil.ly/fzgno


Figure 8-6. Midjourney Describe, Mimi Thian on Unsplash

https://oreil.ly/GdNrt
https://oreil.ly/bEEnJ


Quality Boosters

One trick that works for image models is to add words that are
associated with quality into the prompt. Some art styles are
more aesthetic than others, but there is a set of words, known
as quality boosters, that seem to improve the image quality
without greatly affecting the style, like 4k, very beautiful, and
trending on artstation. Generative models aren’t trying to make
high-quality images; they’re trying to imitate training sets with
a wide variety of styles and qualities. If you want high-quality
images, you must explicitly ask for them. Start with the subject
of your prompt, for example a space whale, and add a modifier
to the end, separated by a comma (as in Figure 8-7).

Input:

a space whale, trending on artstation

Output:



Figure 8-7. Space whale, trending on artstation

GIVE DIRECTION

Using quality boosters can help improve the aesthetics of an image through the
addition of one or two words to the prompt, without changing the overall style of the
image by much.

The reason these labels work is that they were associated with
quality in the training data. When AI image models were
trained, they reportedly ingested images from popular design
portfolio websites, such as ArtStation, Behance, and DeviantArt.
Therefore, the model can approximate that an image that was
“trending on artstation” was of higher aesthetic value than
normal. Note that sometimes style seeps through that may not



be aligned with your creative vision. For example, ArtStation
contains a lot of digital art of spaceships, and that perhaps
explains why the space whale in Figure 8-7 somewhat
resembles a space ship. For a list of quality boosters, art styles,
and artists, visit this template created by one of the authors:
Prompt Engineering Template. Google also compiles a
comprehensive list of art movements, which can be useful for
educating yourself on the names of styles you find appealing.

Negative Prompts

Often two concepts are so intertwined in the training data that
they appear together frequently when generating images of one
of the concepts, even if that’s not what you specified or
intended. For example when you ask for oil paintings, you often
get the accompanying frame and surrounding wall, because
that’s what’s in the images for a large number of museum
collections of these paintings.

In Midjourney and Stable Diffusion there is the ablity to add
negative prompts, which allow you to specify what you don’t
want in the image. Negative prompts can be used to effectively
separate two intertwined concepts and ensure your image
doesn’t contain anything you were hoping to avoid. Taking the

https://oreil.ly/afGCQ
https://oreil.ly/mhujK


example of oil paintings and frames, you can add --no  to the
end of the prompt, and anything in a comma-separated list after
that flag will be negated from the prompt. To fix your frames
problem, add “frame” and “wall” as a negative prompt, as
shown in Figure 8-8.

Input:

oil painting in the style of Rembrandt --no frame

Figure 8-8 shows the output.

Figure 8-8. Oil painting in the style of Rembrandt without frame or wall



GIVE DIRECTION

Negative prompts can negate unwanted concepts in images, directing the model
away from areas you are trying to avoid. This doesn’t always work as intended, as
often the concepts are too well correlated, but when it does, it can lead to interesting

places.

Negative prompting isn’t fully reliable but can be useful in a
wide variety of scenarios. One creative use of this technique is
to add the name of a celebrity as a negative prompt to decrease
the factors most associated with them. The famous actress
Karen Gillan has red hair and has a conventionally feminine
look and therefore can be used to make a subject less likely to
have red hair or look conventionally feminine.

Input:

a Scottish female astronaut --no Karen Gillan

Figure 8-9 shows the output.



Figure 8-9. A less conventionally feminine, less red-haired Scottish female astronaut

You can also get very creative and unpredictable outcomes with
this technique by taking two inseparable concepts and seeing
what happens when you separate them. For example, try taking
your favorite cartoon and removing the cartoon style, as
depicted in Figure 8-10 with Homer Simpson.



Input:

Homer Simpson --no cartoon

Figure 8-10 shows the (horrifying) output.

Figure 8-10. Homer Simpson without his trademark cartoon style



One of the more common historical use cases for negative
prompts traditionally is to correct some of the issues with
disfigured hands, explicit body parts, or odd-looking eyes, all
problems early AI models suffered from. Prompt engineers
would add words like nsfw, elongated body, too many digits, not
enough fingers, and teeth to the negative prompt in an attempt
(often in vain) to guide the model away from these spaces.

While still necessary for older or lesser models like Stable
Diffusion v1.5, from Midjourney v5 and Stable Diffusion XL
onward this is mostly a solved problem. State-of-the-art models
are now more than capable of developing normal-looking
images of hands, eyes, and bodies without relying on negative
prompts.

Weighted Terms

Negative prompts are useful if you want to completely negate
something, but often you just want to dial it down. To mix and
match different concepts, it can be helpful to have control over
how much of each you want.

By default all words in a prompt have an equal weighting of 1,
although words at the beginning of the prompt have a greater



effect, which is why we typically put the subject of our image
there by convention, i.e., painting of the Golden Gate
Bridge . You can change the weights of sections of the prompt
in Midjourney by adding a hard break with two colon
characters, :: , and a number denoting the new weight. With
this method you can make an image that is primarily Van Gogh
but with a dash of Dali.

Input:

painting of the Golden Gate Bridge::1 in the styl

Gogh::0.8, in the style of Dali::0.2

Figure 8-11 shows the output.



Figure 8-11. Painting of the Golden Gate Bridge in the style of Van Gogh and Dali

To see how weights affect the resulting image, you can conduct
a grid search by systematically testing each combination of
weights at a specific granularity. In this example, the weights
changed in 0.2 increments between the two artists from 0 to 1.



Figure 8-12 shows the output.

Figure 8-12. Permutations grid of weights

EVALUATE QUALITY

Weights introduce many possible combinations in a prompt, which can be time-
consuming to iterate through one at a time. A grid search approach of systematically
generating many possible combinations is recommended to identify where the ideal

mix of weightings aligns with your preferences.



Weights can go higher than 1 as needed for emphasis, or lower
if you want to de-emphasize something. You can also add
negative weights to the prompt to remove that aspect to varying
degress. The --no  parameter used for negative prompts is
actually just a shortcut for adding ::-0.5  to that section of the
prompt. If you are struggling with something appearing in the
image that you don’t want, try stronger negative weights
instead of negative prompts. Using the prior example, you could
strip any Van Gogh influence out of Dali’s work by adding a -1
weight to Van Gogh and dialing up the Dali weight to 5.

Input:

painting of the Golden Gate Bridge::1 in the styl

Gogh::-1, in the style of Dali::5

Figure 8-13 shows the output.



Figure 8-13. Painting of the Golden Gate Bridge

Weights can be a powerful tool in remixing different styles or
emphasizing specific elements. There are many permutations of
weights, and therefore a more systematic approach must be
taken to find an aesthetically interesting space to play in.



Prompting with an Image

Many AI image generation tools let you prompt the model not
just with text but with an image. Supplying an example image
of what you’re going for can give you a great baseline for
building something more unique and original, while still
matching the style you need. In the Stable Diffusion community
this is called Img2Img, whereas in Midjourney you simply link
to an image in the prompt. The best way to do this is to upload
the image into Discord first (for example, this photo by Jessica
Hearn on Unsplash), and then right-click and select Copy Link,
as depicted in Figure 8-14. You can later paste that link into the
prompt to use as the base image.

https://oreil.ly/B6E0Y
https://oreil.ly/0oO4w


Figure 8-14. Copying the link from an image uploaded to Discord

The copied link then should be pasted at the beginning of the
Midjourney prompt and accompanied by your text prompt. You
don’t need to be as descriptive now that you have given a base
image (a picture is worth a thousand words). The image won’t
match exactly, but it will be similar to the point of being



recognizeable if you know what image was supplied and how it
was modified by the prompt.

Input:

https://s.mj.run/XkIHsYIdUxc in the style of The 

Figure 8-15 shows the output.



Figure 8-15. Stock photo in the style of The Great Gatsby

WARNING

The rules and regulations around copyright and fair use with AI are still being
developed, so be careful uploading any image you don’t have the rights to.



This technique works wherever you want a similar vibe, scene,
or composition to an image you know of. You can also blend
multiple images together with /blend  to get something quite
unique, and even use the resulting image as input for another
prompt. For convenience, there is the --iw  parameter, which
acts the same as separating the image from the rest of the
prompt with ::  and setting the weight. Prompting with an
image is also a common technique for AI video generation with
tools such as RunwayML and Pika Labs, given the general
unreliability of text to video generation, and because it gives
you an opportunity to iterate on the style of the scene without
waiting for a whole video to generate and render.

PROVIDE EXAMPLES

The quickest and easiest way to get the image you desire is to upload an image that
you want to emulate. This is similar in concept to a one-shot prompt in the text
generation space and is similarly useful in guiding the model toward the right

output.

Inpainting

Working with AI image generation tools is always an iterative
process. Rarely do you get the complete final image on the first
try. There are usually artifacts that you want to address, or

https://runwayml.com/
https://pika.art/


styles that you want to change. For example, say you had
generated an image with Midjourney of a woman in a 1920s-
style flapper dress but wanted to change what she was wearing
without regenerating the entire image.

The solution is inpainting, which is available in most
implementations of Stable Diffusion, in Midjourney via a
feature called Vary Region, and with Adobe Photoshop’s
Generative Fill. However, DALL-E pioneered this functionality,
and it is still our personal preference in terms of the quality of
the results. To demonstrate this functionality, first you generate
an image with DALL-E in in ChatGPT (Plus), and then you erase
the part of the image you want to regenerate.

Figure 8-16 shows an image generated by DALL-E with the
accompanying prompt below. It is in the process of being edited
in DALL-E’s inpainting canvas (currently using ChatGPT) and
has had the dress part of the image erased using the inpainting
brush, ready for inpainting.

Input:

photograph of glamorous woman in a 1920s flapper 

wearing a sequin dress, wide angle, in color, 3 5

https://oreil.ly/YgL8g
https://oreil.ly/7DhZE
https://oreil.ly/FvGAi


Figure 8-16 shows the uploaded image with parts erased.

Figure 8-16. Inpainting in DALL-E

Then you add a prompt for what you want to generate within
that space. The common advice is to prompt for what you want
the whole image to be, but in our experience narrowing down
the prompt to just what you want in the erased part of the
image gets better results, as in Figure 8-17, which focuses on the
dress itself.

Input:

Van Gogh style dress, inspired by Starry Night, b

yellow swirls, extremely detailed, very well lit

light, 3.5 mm, dslr



light, 3.5 mm, dslr

Figure 8-17 shows the output.

Figure 8-17. Van Gogh-style dress

DIVIDE LABOR

It’s important to choose the right model for the job. Some image models like
Midjourney are good at generating images in a specific style or with a certain
aesthetic, while others compete on advanced features like DALL-E’s inpainting. Using

multiple models together can expand the scope of what you can accomplish.

DALL-E has fewer features than most image models but is great
at this specific technique. It automatically blends the edges in so
that the image fits well with the surroundings. As such you



don’t need to be particulary precise with the erase brush, and
you’ll still get good results. What’s remarkable is how much
these models have progressed in the space of just over a year.
Figure 8-18 shows what you would get if you prompted DALL-E
with the same prompt used earlier for DALL-E 3 via ChatGPT.

Figure 8-18. Photograph of woman in a 1920s flapper party



DALL-E 3 provides superior quality, but at present, it is
available only via API and in ChatGPT; it is not available in the
OpenAI Labs interface, which was historically used for
inpainting. As image models proliferate, they are diverging in
functionality and use cases, and it may take more than one
model used in combination to accomplish the task you have at
hand. Inpainting is a powerful technique for editing images,
whether those images come from other AI models or a real-life
photographer.

Outpainting

Related to inpainting in DALL-E is outpainting, where you
generate outside of the frame of the existing image. This
technique can in effect zoom out from the existing image to add
context around it. This can be used to fill in more detail in an
image you have generated or uploaded. Outpainting is no
longer available in OpenAI’s labs interface and is not yet
available in ChatGPT, but it is called Zoom Out in Midjourney
and presents itself as an option for images that have been
upscaled, as you can see in Figure 8-19, where the surroundings
of a woman in the flapper dress have been revealed.



Figure 8-19. Midjourney Zoom Out options

Input:

photograph of glamorous woman in a 1920s flapper 

wearing a sequin dress, wide angle, in color, 3 5

Figure 8-20 shows the output.



PROVIDE EXAMPLES

Often it can be difficult to achieve the right style purely with text prompts,
particularly if the style is nuanced or you don’t know all the words to describe it.
Providing an example of an image to use for inpainting or outpainting is a shortcut to

better results.

Figure 8-20. Midjourney image before and after zoom

As well as creatively expanding on an existing image,
outpainting is also helpful if you’re trying to get an image in an
aspect ratio other than square, by filling in the gaps. You can
run a Custom Zoom and set an aspect ratio as well as prompting
what you want in each new section of the image through trial
and error until you find something consistent with the rest of
the image, or until the full image is in the aspect ratio required



(for example, going from portrait to landscape). This technique
is also available as an extension in Stable Diffusion, but in our
experience it’s less reliable than Midjourney.

Consistent Characters

An underrated use of inpainting and outpainting is using an
existing image to maintain consistency across generations. One
such example is a common method for creating consistent
characters by generating two images side by side and
inpainting one side at a time. First, generate an image while
explicitly dictating that there are two images side by side, in a
2:1 aspect ratio.

Input:

two images side by side, rockstar American rough 

middle-age jawline actor man, photo booth portrai

Figure 8-21 shows the output.

https://oreil.ly/0c_en
https://oreil.ly/BaITC


Figure 8-21. Midjourney consistent character

The next step is to upscale one of the images, and then mask
one-half of the upscaled image in an inpainting canvas, shown
in Figure 8-22 using the Midjourney Vary Region feature.



Figure 8-22. Midjourney Vary Region

Finally, reprompt the masked part of the image using inpainting
or Vary Region (as it’s known in Midjourney) to dictate a
different angle from the original portrait mode.

Input:

side profile image, rockstar American rough and 

middle-age jawline actor man, photo booth portrai

Figure 8-23 shows the output.



Figure 8-23. Consistent characters in side profile

This inpainting and generation process can be repeated for
multiple angles, with the express purpose of finding new
images of a character that looks identical to the original one
you generated. Because one-half of the image is always present,
the model maintains consistency of the character’s features
across generations, allowing you to build a more
comprehensive perspective of a single character in different
poses and positions. All you need to do to create an image of the
character in a new situation is inpaint half of the 2:1 image with
the new prompt and crop it in Photoshop (or some equivalent).



PROVIDE EXAMPLES

Many people think of using a real image as a baseline when prompting for
inpainting, but many of the more advanced AI artists use generated images
themselves as inputs to maintain control over the consistency of the characters or

objects in their story.

Prompt Rewriting

One of the issues you may run into when putting an AI system
into production is that you can’t expect the users of your system
to be expert prompt engineers. It’s a case of garbage in, garbage
out: if they write a substandard prompt, they’ll get poor results
and complain about the quality of your product. One common
trick in the industry is to rewrite the prompt to make it better
and more likely to get impressive results. This is a form of meta
prompting where the prompt for one AI model is written by
another.

Imagine a simple application where a user inputs a subject and
an artist, and then an image is generated of the subject in the
style of the artist. The prompt template is a {subject} in
the style of {artist} .

Input:

https://oreil.ly/OirCS


a dachshund dog in the style of Banksy

Figure 8-24 shows the output.

Figure 8-24. A dachshund dog in the style of Banksy



The issue with this prompt is that the expectation would be that
the dog would be part of the street painting (in Banksy style),
whereas instead it is standing next to it in the image that was
generated. To fix this, you can take the user prompt and inject
that into a prompt to ChatGPT to find the artist’s medium.

Input:

What's the medium that the artist Banksy mostly u

in 1-3 words only.

Output:

Street art

Finally, you can use this output to rewrite the original user
prompt, in the format {medium} of a {subject} in the
style of {artist} .

Input:

street art of a dachshund dog in the style of Ban

Figure 8-25 shows the output.



Figure 8-25. Street art of a dachshund dog in the style of Banksy

This system can be built out further to include other prompt
engineering techniques, such as quality boosters or negative
prompts, to make the results more reliable. It’s possible to get
good results just asking ChatGPT to rewrite the prompt for
DALL-E (which ChatGPT Plus has available as a tool) and then



use what it gives you for other models. Some attempts have
been made to train AI models that specialize in generating high-
quality prompts, though in our experience this method only
brings quality up to average and doesn’t beat expert prompt
engineering.

DIVIDE LABOR

Instead of expecting a nontechnical person to submit a good-quality prompt, simply
pass their input to another AI model that can help improve the original prompt.

Meme Unbundling

The main issue with replicating an artist’s style, or emulating an
art movement, is that it’s relatively unoriginal. Nobody knows
what the legal implications of AI art will be, but certainly artists
like Greg Rutkowski and others have already spoken out about
the immorality of copying their style.

One way to still get the benefit of the shortcut of referring to a
successful artist or art movement, while being more original in
your style, is to unbundle the memes of an artist. The word
meme doesn’t just mean a funny viral image: it refers to any
piece of cultural information that gets copied from person to

https://oreil.ly/9A1NL
https://oreil.ly/BQYFP


person. If you can decompose an art style into its component
parts and characteristics, then you can use these
subcomponents to remix your own style. Say, for example, you
were trying to make a painting of Times Square in the style of
Salvador Dali.

Input:

a painting of Times Square in the style of "The P

of Memory" by Salvador Dali

Figure 8-26 shows the output.



Figure 8-26. Painting of Times Square in the style of “The Persistence of Memory” by
Salvador Dali

You are already getting good results by evoking Dali’s name, but
it’s not quite right. You want a surrealist style, but not an exact
copy of Dali’s work. The term unbundling was coined in this
context by Bakz T. Future, meaning to extract the characteristics
of an artist’s style in order to get something familiar but unique.

https://oreil.ly/2qy4E


It works by asking a text generation model (in this case
ChatGPT-4) to describe the style of the artist you’re emulating,
which you can then use as a prompt.

Input:

Briefly describe the characteristics and artistic

"The Persistence of Memory" by Salvador Dali, wit

mentioning the artwork or the artist:

Output:

This is a notable example of Surrealist art, stee

dream-like, fantastical imagery that pushes the b

traditional understanding and interpretation. The

composed with a distinctly precise and detailed t

reflecting a deceptive realism. 

 

... 

 

Contrasting with the melting objects, there are o

in the scene that exhibit solidity and permanence

an uncanny juxtaposition. The painting's composit

imagery invite deep exploration and various inte

concerning themes of reality, dreams, time, and t

subconscious. Overall, it is a visually striking 

b di th th f it t h ll i t



embodies the ethos of its movement: challenging t

perceptions and exploring the unconventional and 

irrational.

You must make sure the prompt insists on not mentioning the
artist or the artwork; otherwise, it won’t work as well as a
prompt. You want to describe the style to someone who has
never seen it so that the description is clean. For reference,
Figure 8-27 shows the famous painting ChatGPT is describing.

Figure 8-27. “The Persistence of Memory” by Salvador Dali



Now that you have a description of one of Dali’s most iconic
paintings, you can understand what makes it so visually
appealing. In particular, this sort of explanation can be useful if
you never went to art school and otherwise wouldn’t know how
to describe these elements. From here you need to abbreviate
the description to fit into an image model prompt.

Input:

Convert this description into a shortened prompt 

image generation model such as DALL-E:

Output:

Surrealist landscape with subdued colors of brown

yellow. Depict a barren, craggy shoreline and cal

meeting a clear sky. Include amorphous, melting o

resembling common items, indicating fluidity and 

of time. Contrast these with other solid, permane

Evoke a sense of stillness, dreamlike atmosphere

quietude.

Take this output and add the subject of your painting, Times
Square. It can also help to modify the prompt to make it flow



better, as the prompts ChatGPT writes can be too instructive:

Input:

Painting of Times Square, surrealist landscape wi

of brown, blue, and yellow, a barren, craggy sho

sea meeting a clear sky. Include amorphous, melti

resembling common items, indicating fluidity and 

of time. Contrast these with other solid, permane

Evoke a sense of stillness, dreamlike atmosphere

Figure 8-28 shows the output.



Figure 8-28. Unbundled Dali memes applied to a painting of Times Square

GIVE DIRECTION

Rather than guiding the AI image model toward a specific artist’s work, you can
emulate a close approximation by using a description of the artist’s work. This is
more transformative and creative approach than simply evoking an artist’s name,

and perhaps more ethical.



This image is still similar to Dali’s work, but it has been
transformed through the filter of ChatGPT’s description.
Therefore, it’s already more original than what you got when
you simply evoked his name: an advantage over the average
prompter. But you’re in an even better position now, because
you have unbundled Dali’s style into individual memes like
“surrealist landscape,” “melting objects,” and “dreamlike
atmosphere,” and can more easily remix its component parts to
make the image more unique:

Input:

Painting of Times Square, surrealist landscape wi

colors of orange, red, and green, imposing buildi

river meeting a stormy sky. The amorphous melting

clock in the center of the square indicates the f

impermanence of time in contrast with other solid

elements. Evoke a sense of stillness, dreamlike a

and quietude.

Figure 8-29 shows the output.

https://oreil.ly/BQYFP
https://oreil.ly/wPuMo


Figure 8-29. Dali Times Square remixed

You have only made small modifications to the color and
elements in the painting, but you could go further. It’s also
possible to take elements from other popular artists and
combine the aspects you like to arrive at something new. This
technique only works right now with artists and artworks that



are famous enough to be readily described from the training
data; however, as AI models become multi-modal (i.e., able to
generate both images and text), expect to be able to feed in an
image and get a description to use for unbundling.

Meme Mapping

One of the most common forms of prompt inspiration is looking
at what prompts other prompt engineers are getting results
with. The Midjourney Discord community has millions of active
members, with thousands of new images being generated and
automatically shared every day, as do other AI communities
including on Reddit and across various other websites, email
newsletters, and social media accounts. One commonly used
website is Lexica.art, which has a searchable database (by
keyword and similarity) of many Stable Diffusion images and
their prompts for inspiration.

While searching and browsing through these sources of
inspiration, you’re likely to notice recurring patterns, or
memes, in the words that are used for a particular type of
image. We call this process of intentionally and systematically
finding these patterns meme mapping, and it can be an
invaluable tool for identifying useful prompts. For example, you

https://oreil.ly/upQIh
https://oreil.ly/EwLNh
https://lexica.art/
https://oreil.ly/DLqAV


may search Super Mario on Lexica and see lots of examples
where people have tried to create a realistic Mario, like the one
in Figure 8-30, which might inspire you to do the same, starting
with a prompt that’s already proven to work, saving you
considerable time.

Figure 8-30. Realistic Mario

Alternatively you might apply this meme to a character from a
different franchise, and try repurposing some of the prompts
used by others to get a realistic effect. Without doing this
research, you might not have been aware image models could
generate real-world versions of cartoon or game characters, or
perhaps never would have thought to try it. You may have
never stumbled upon the insight that including “as a Soviet

https://oreil.ly/WNsRn


factory worker” in your prompt helps evoke a sense of gritty
realism, and may never have encountered the work of the two
artists referenced. There is a healthy culture of remixing
content in the AI art community, with people learning from
other’s prompts, and then paying it forward by sharing their
own expertise.

Input:

portrait of Homer Simpson as a Soviet factory wo

dirty, beautiful, very detailed, hyperrealistic, 

very detailed painting by Glenn Fabry, by Joao Ru

cartoon

Figure 8-31 shows the output.



Figure 8-31. Realistic Homer Simpson

This meme mapping process can be done manually, with the
examples copied and pasted into a spreadsheet or productivity
tool Notion, although that can be time-consuming. So long as
you are respecting a website’s terms and conditions and any
legal obligations in your country, it would also be possible to
write custom code to programmatically scrape the contents of
that website. Once you have all the data in one place, you could
programmatically label the images with an entity recognition

https://oreil.ly/VqyG-


model like Google Vision, a multimodal model like GPT-4 Vision,
or use NLP such as NGrams analysis on the prompts in order to
identify patterns at a larger scale than is possible manually.

Prompt Analysis

One common mistake is to continue to build out longer and
longer prompts, without thinking about what parts of the
prompt are really necessary. Every word added perturbs the
model in some way, adding noise to the resulting output. Often,
removing unnecessary words can be as effective as adding new
words. To conduct this analysis without lots of trial and error,
Midjourney offers a /shorten  command that attempts to
remove these unnecessary words, leaving only the core tokens
that the model pays the most attention to. Click “show details”
at the bottom of the response to get token-level weightings and
a visual chart.

Input:

portrait of Homer Simpson as a Soviet factory wo

dirty, beautiful, very detailed, hyperrealistic, 

very detailed painting by Glenn Fabry, by Joao Ru

--no cartoon

https://oreil.ly/EZmRs
https://oreil.ly/cOcPR
https://oreil.ly/GXfDl


Output:

**portrait** (0.08) of **homer simpson** (1.00) a

**soviet** (0.19) **factory** (0.21) **worker** 

gritty (0.02), dirty (0.02), beautiful (0.00), ve

detailed (0.01), hyperrealistic (0.01), medium (0

(0.00), very (0.00) detailed (0.01) painting (0.0

Fabry (0.08), by **Joao Ruas** (0.09) 

 

██████████ homer simpson 

██░░░░░░░░ factory 

██░░░░░░░░ soviet 

█░░░░░░░░░ portrait 

█░░░░░░░░░ worker 

█░░░░░░░░░ Joao Ruas 

█░░░░░░░░░ Glenn Fabry 

█░░░░░░░░░ painting

Once you have this analysis, you can use it to cut any noise
from the prompt and zero in on what words, or memes, are
actually important to the final result.



EVALUATE QUALITY

Seeing the weights the model assigns to each token gives you unparalleled insight
into how the model works. Often we make assumptions about what’s important in a
prompt, and those assumptions can be quite far from reality.

Summary

In this chapter, you learned about standard practices for image
generation using diffusion models. You explored format
modifiers such as stock photos, oil paintings, and Egyptian
hieroglyphs, and how they can be used to create unique and
visually appealing images. Additionally, you discovered art style
modifiers that allow for the replication of popular art styles or
artists, such as Lewis Carroll’s Alice in Wonderland style.

You went deeper into the application of prompt engineering
principles, including how to use art-style modifiers to replicate
popular art styles and artists, and how mentioning specific
artists’ names can help achieve the desired visual style. The
concept of negative prompts and weighted terms was
introduced, allowing you to specify what you don’t want in an
image and control the mixture of different concepts. You also
explored the concepts of inpainting and outpainting, where
specific parts of an image can be generated separately by



erasing and adding prompts. You discovered how these
techniques can be further expanded and combined to enhance
the reliability and quality of generative AI results.

In the next chapter, you will dive deeper into the world of
image generation and explore more advanced use cases. You
will learn how to harness the power of Stable Diffusion and
AUTOMATIC1111 to improve your image generation skills.
Including advanced Stable Diffusion techniques like utilizing
ControlNet models for more control over the style and
composition of your images, you will discover a wide range of
exciting possibilities.



Chapter 9. Advanced Techniques for
Image Generation with Stable
Diffusion

Most work with AI images only requires simple prompt
engineering techniques, but there are more powerful tools
available when you need more creative control over your
output, or want to train custom models for specific tasks. These
more complex abilities often requires more technical ability
and structured thinking as part of the workflow of creating the
final image.

All images in this chapter are generated by Stable Diffusion XL
unless otherwise noted, as in the sections relying on extensions
such as ControlNet, where more methods are supported with
the older v1.5 model. The techniques discussed were devised to
be transferrable to any future or alternative model. We make
extensive use of AUTOMATIC1111’s Stable Diffusion WebUI and
have provided detailed setup instructions that were current as
of the time of writing, but please consult the official repository
for up-to-date instructions, and to diagnose any issues you
encounter.

https://oreil.ly/hs_fS


Running Stable Diffusion

Stable Diffusion is an open source image generation model, so
you can run it locally on your computer for free, if you have an
NVIDIA or AMD GPU, or Apple Silicon, as powers the M1, M2, or
M3 Macs. It was common to run the first popular version (1.4)
of Stable Diffusion in a Google Colab notebook, which provides
access to a free GPU in the cloud (though you may need to
upgrade to a paid account if Google limits the free tier).

Visit the Google Colab website if you haven’t used it before or to
find the latest information on limits. A copy of this Python
notebook is saved in the GitHub repository for this book, but
you should upload it to Google Drive and run it in Google Colab
to avoid setup issues.

Installing Stable Diffusion can be done via the Hugging Face
diffusers libary, alongside a handful of dependencies. In the
Google Colab the following code installs the necessary
dependencies (you would drop the exclamation marks (!) if
installing locally rather than in a Jupyter Notebook or Google
Colab):

!pip install diffusers==0.11.1 

!pip install transformers scipy ftfy accelerate

https://oreil.ly/OmBuR
https://oreil.ly/2WGxQ
https://oreil.ly/uauNn


To download and use the model, you first build an inference
pipeline (what runs when we use the model):

# create an inference pipeline 

import torch 

from diffusers import StableDiffusionPipeline 

 

pipe = StableDiffusionPipeline.from_pretrained( 

    "CompVis/stable-diffusion-v1-4", 

    torch_dtype=torch.float16) 

 

pipe = pipe.to("cuda")

Let’s break down the script line by line:

import torch

This line is importing the torch library, also known as
PyTorch. PyTorch is an open source machine learning
library, used for applications such as computer vision and
natural language processing.

from diffusers import StableDiffusionPipeline

https://pytorch.org/


Here the script is importing the
StableDiffusionPipeline  class from the diffusers
library. This specific class is probably a pipeline for using
diffusion models, of which Stable Diffusion is the most
popular example.

pipe =

StableDiffusionPipeline.from_pretrained("CompVis

/stable-diffusion-v1-4",

torch_dtype=torch.float16)

This is creating an instance of the
StableDiffusionPipeline  class with pretrained
weights. The method from_pretrained  loads the
weights of a pretrained model—in this case, the model is
CompVis/stable-diffusion-v1-4 .

The torch_dtype=torch.float16  argument specifies
that the data type used in the model should be float16,
which is a half-precision floating-point format. Using
float16 can speed up model computation and reduce
memory usage (necessary to stay within the Google Colab
free tier limits).

pipe = pipe.to("cuda")



This line moves the pipe model to the GPU. The string
"cuda"  refers to CUDA, a parallel computing platform
and application programming interface (API) model
created by Nvidia. By doing this, all computations
performed by the pipe model will be executed on the GPU,
which can be significantly faster than running them on a
CPU for large-scale models and data.

Now that we have our pipe, we can pass in a prompt and other
parameters for the model, like a random seed (change this to
get a different image each time), the number of inference steps
(more steps takes time but results in a higher-quality image),
and the guidance scale (how closely the image matches the
prompt):

# run inference on a prompt 

prompt = "a photograph of an astronaut riding a h

 

generator = torch.Generator("cuda").manual_seed(1

 

image = pipe(prompt, num_inference_steps=50, 

    guidance_scale=7, generator=generator 

    ).images[0] # image here is in PIL format 

 

# Now to display an image you can either save it 

image.save(f"astronaut_rides_horse.png") 



 

# If you're in a google colab you can directly di

image

Figure 9-1 shows the output.

Let’s walk through this script to explain what it does:

prompt = "a photograph of an astronaut riding a

horse"

This is the prompt that will be passed into the model to
guide the generation of an image.

generator =

torch.Generator("cuda").manual_seed(1024)

In this line, a PyTorch generator is created and assigned to
the generator variable. The generator is initialized with
"cuda" , which means that it will be using a GPU for
computations. The manual_seed(1024)  function is used
to set the random seed for generating random numbers,
ensuring that the results are reproducible. If you run this
code with the same model, you should get the exact same
image.



image = pipe(prompt, num_inference_steps=50,

guidance_scale=7, generator=generator).images[0]

This line runs the pipe model on the prompt to generate
an image. The num_inference_steps  argument is set to
50, meaning that the model will perform 50 steps of
inference. The guidance_scale  argument is set to 7,
which adjusts how strongly the prompt guides the
generated image (higher values tend to get grainy and less
diverse). The generator argument passes in the random
number generator created earlier. The result is an array of
generated images, and images[0]  selects the first image
from this array.

image.save(f"astronaut_rides_horse.png")

This line saves the generated image to a file.

image

This line of code will display the image if the code is
running in an environment like a Jupyter Notebook or
Google Colab. This happens because these environments
automatically display the result of the last line of code in a
code cell if it is not assigned to a variable.



Figure 9-1. Photograph of an astronaut riding a horse

It’s powerful to be able to run an open source model locally or
in the cloud and customize it to meet your needs. However,
custom coding your own inference pipelines and building a
user interface on top is likely overkill unless you are an
extremely advanced user with deep machine learning
knowledge or your intention is to build your own AI image
generation product. Stablity AI, the company funding
development of Stable Diffusion, has a hosted web interface



called Dream Studio (Figure 9-2), which is similar to the DALL-E
playground, also operating on a credit system and offering
advanced functionality such as inpainting.

Figure 9-2. Stability AI Dream-Studio

Like DALL-E, Dream-Studio offers access via API, which can be
convenient for building AI image applications or running
programmatic scripts for generating lots of images, without the
encumberance of hosting and running your own Stable
Diffusion model. Visit https://oreil.ly/X3Ilb once you have
created an account to get your API key, and top up with credits
(at time of writing, 1,000 credits cost $10 and can generate
approximately 5,000 images). The following code is included in
the GitHub repository for this book:

https://oreil.ly/X3Ilb
https://oreil.ly/aGLeX


import os 

import base64 

import requests 

from IPython.display import Image

 

engine_id = "stable-diffusion-xl-1024-v1-0" 

api_host = os.getenv('API_HOST', 'https://api.sta

api_key = os.getenv("STABILITY_API_KEY") 

 

image_description = "computers being tied togethe

prompt = f"""an illustration of {image_descriptio

style of corporate memphis, white background, pro

clean lines, warm pastel colors""" 

 

response = requests.post( 

    f"{api_host}/v1/generation/{engine_id}/text-t

    headers={ 

        "Content-Type": "application/json", 

        "Accept": "application/json", 

        "Authorization": f"Bearer {api_key}" 

    }, 

    json={ 

        "text_prompts": [ 

            { 

                "text": prompt, 

            } 

        ], 

        "cfg_scale": 7, 



        "height": 1024, 

        "width": 1024, 

        "samples": 1, 

        "steps": 30, 

    }, 

) 

 

if response.status_code != 200: 

    raise Exception( 

        "Non-200 response: " + str(response.text

 

data = response.json() 

 

image_paths = [] 

 

# if there's no /out folder, create it 

if not os.path.exists("./out"): 

    os.makedirs("./out") 

 

for i, image in enumerate(data["artifacts"]): 

    filename = f"./out/image-{i}.png" 

    with open(filename, "wb") as f: 

        f.write(base64.b64decode(image["base64"]

 

    image_paths.append(filename) 

 

# display the first image 

Image(filename=image_paths[0])



Figure 9-3 shows the output.

Figure 9-3. Corporate Memphis illustration from the Dream-Studio API

Let’s break down this code step-by-step:

1. First, set up the required environment variables:



engine_id : This refers to a specific model version at
stability.ai .
api_host : This retrieves the API host URL from
environment variables. If not set, it defaults to
'https://api.stability.ai' .
api_key : This retrieves the API key from environment
variables.

2. The prompt : This defines how the image should look,
including the style and colors.

3. A POST  request is made to the URL derived from
api_host  and engine_id .

The headers for the request are set to accept and send
JSON data and include an authorization header with
the api_key .
The JSON body of the request specifies the prompt
(description of the image), the desired scale of the
image, its dimensions, the number of samples, and the
number of steps.

4. If the status code of the response is not 200 (indicating a
successful request), an exception is raised with the
response text to indicate something went wrong. Otherwise,
the response is parsed into JSON format.

5. If there isn’t a directory named out, one is created. For each
artifact (image) in the response, the code does the



following:
Sets a filename path.
Decodes the base64-encoded image data from the
response.
Writes the decoded image data to a file.
Appends the file’s path to the image_paths  list.
This is typically where you would save the image to
Google Cloud Storage or Amazon Simple Storage
Service (S3) to display later in your application.

6. The first image from the image_paths  list (the only one,
in this case) is displayed (only in Jupyter Notebooks or
Google Colab) using the Image  class from
IPython.display .

The downside of using Stability AI’s service is a lack of control
over customization. One of the great benefits of Stable Diffusion
being open source is the ability to modify almost any aspect of
the model and make use of community-built advanced
functionality. In addition, there is no guarantee that functions
or features you rely on for your scripts today will still be there
in the future, as Stability AI strives to live up to the expectations
of their investors, legal team, and corporate customers. For
example, the popular (and more permissive) version 1.5 model
has been deprecated in favor of the new Stable Diffusion 2.0
and XL models, causing problems for those who had finely

https://oreil.ly/YsuBw


tuned their workflows, parameters, and prompts to work with
v1.5.

AUTOMATIC1111 Web User Interface

Heavy users of Stable Diffusion typically recommend the
AUTOMATIC1111 (pronounced “automatic eleven eleven”) web
user interface, because it is feature-rich and comes with
multiple extensions built by Stable Diffusion power users. This
project is the gateway to taking advantage of the best aspect of
Stable Diffusion: the vibrant open source community that has
dedicated countless hours to integrating advanced functionality
to the tool. Advanced users may also want to explore ComfyUI,
as it supports more advanced workflows and increased
flexibility (including image-to-video), but we deemed this too
complex for the majority of use cases, which can easily be
handled by AUTOMATIC1111.

You can use the normal text-to-image Stable Diffusion model,
but also run image-to-image (similar to the base image feature
in Midjourney), as well as upscaling finished images for higher
quality, and inpainting (as is offered by DALL-E). It’s even
possible to train and run custom models within this interface,

https://oreil.ly/r-2vm
https://oreil.ly/LWVvC
https://oreil.ly/dh7jR


and there are thousands of models shared publicly in
communities such as Hugging Face and Civitai.

WARNING

Some custom open source models are NSFW (not safe for work), so be careful when
browsing websites like Civitai.

Running Stable Diffusion locally with AUTOMATIC1111 requires
some technical setup, and it’s best to look for an up-to-date
guide in the AUTOMATIC1111 Wiki:

Install and run on NVidia GPUs
Install and run on AMD GPUs
Install and run on Apple Silicon

Installation generally involves ensuring you have Git and
Python installed (as well as any other dependencies), and
downloading Stable Diffusion, as well as the Automatic1111
code to your local computer. The images in this chapter use the
XL 1.0 version of Stable Diffusion, though many still use the
older version 1.5 as it is considered more permissive and has a
wealth of custom community-trained models. The techniques
work the same across models, though the results and quality
will differ: it’s commonly believed that removing NSFW images

https://oreil.ly/t5T7p
https://civitai.com/
https://oreil.ly/DsKyU
https://oreil.ly/Oc7ix
https://oreil.ly/Ob2VK
https://oreil.ly/vBOVI
https://oreil.ly/x0BMn
https://oreil.ly/DIvUz
https://oreil.ly/FNxf9


from the training data for version 2.0 led to worse performance
at generating (even nonexplicit) images of realistic human
figures (though this seems largely corrected in the XL version).

As the model is open source, you can get SDXL v1.0 on your
local computer by visiting the model page on Hugging Face for
the base and refiner models, and downloading the .safetensors
files from the “Files and Versions” tab. This format is safer than
the previous .ckpt file format, as it does not execute code on
your computer when running:

Base model: sd_xl_base_1.0.safetensors
Refiner model: sd_xl_refiner_1.0.safetensors

These models take time to download, so start downloading
them now and later you will place them in your models/Stable-
diffusion folder once you have installed the AUTOMATIC111
interface. If you want to use the older v1.5 Stable Diffusuion
model, download the v1-5-pruned-emaonly.ckpt file from
Hugging Face, and move that into the models folder where you
placed the base and refiner models.

Once you have everything installed, the web interface is
accessed by running a script that launches the application
locally, which will show up as a web address in your browser.

https://oreil.ly/wtHRj
https://oreil.ly/0Dlbv
https://oreil.ly/hwblq


As one example, here are the current instructions (at time of
writing) for Windows, with a computer that has an Nvidia GPU:

1. Install Python 3.10.6 (selecting Add to PATH) and Git.
2. Open the command prompt from search bar, and type git
clone https://github.com/AUTOMATIC1111/stable-

diffusion-webui .
3. Remember to move the sd_xl_base_1.0.safetensors and

sd_xl_refiner_1.0.safetensors models into the stable-
diffusion-webui/models/Stable-diffusion folder.

4. Double-click the webui-user.bat file and visit the address the
interface is running on (usually http://127.0.0.1:7860). For
Mac or Linux, you would run bash webui.sh  in the
terminal.

From this interface, shown in Figure 9-4 (taken from the official
GitHub repository), you can enter your prompt (top left, under
the “txt2img” tab) and click Generate to get your image.

If you run into an error or if you downloaded AUTOMATIC1111
web UI a while ago and need to update it, you can enter the
stable-diffusion-webui folder in your terminal and run git
pull . If you are running into errors, you may reset your
implementation (move any files you want to save first) by

https://oreil.ly/kGiyi
https://oreil.ly/Pdzb0
https://github.com/AUTOMATIC1111/stable-diffusion-webui
http://127.0.0.1:7860/
https://oreil.ly/OOpas


running git checkout -f master  in the stable-diffusion-
webui folder.

WARNING

Resetting AUTOMATIC1111 this way will delete any files in the folder, along with any
customizations. We recommend you make a local copy in a different folder for
recovery.

Figure 9-4. Stable Diffusion web UI



The box immediately below the prompt input is where you can
add negative prompts to remove concepts from an image and
ensure they don’t show up (see Chapter 8 for more on negative
prompts). Underneath, you’ll find a number of settings
including the Seed (set to –1 for a new image each time),
number of Sampling (inference) Steps, Batch Count (Number of
generations to run one after another), and Batch Size (number
of images processed in each batch at the cost of higher VRAM
needed). When images are generated, you can download them
from the interface directly, send them to various tabs with the
buttons below, or visit the stable-diffusion-webui/outputs folder
where they are organized by method ( text2img , img2img )
and date:

stable-diffusion-webui/ 

    outputs/ 

        txt2img-images/ 

            2023-10-05/ 

                your_image.png

When you run the AUTOMATIC1111 web UI, any models you
downloaded will appear in the Stable Diffusion Checkpoint
drop-down menu at the top. Select the base model and enter
your prompt as well as adjusting your settings as normal. Make
sure you set the image size to 1024x1024. For now, set the



“Switch at” parameter under Refiner to 1  to run only the base
model, as in Figure 9-5.

Figure 9-5. Standard settings for SDXL

The sampling methods available are relatively complex and
technical to explain, but the trade-offs are generally between
speed, quality, and randomness. Euler  is the simplest sampler,
and DDIM  was the first designed specifically for Diffusion
models. The sampling methods that have an a in the name, for
example Euler a , are ancestral samplers, which inject noise
into the image as part of the process. This gives less
reproducible results as the image does not converge (there is



some randomness to the image each time you run the model).
The DPM++ 2M Karras  and UniPC  sampler running for 20–30
steps are excellent choices for robust, stable, and reproducible
images. For higher-quality but slower and more random
images, try the DPM++ SDE Karras  or DDIM  samplers with
10–15 steps.

Another important parameter is the CFG Scale (Classifier Free
Guidance—the same as the guidance_scale  introduced in
the Stable Diffusion Inference Google Colab example). As a rule
of thumb, here are common values for CFG Scale and what they
equate to:

1: Mostly ignore the prompt.
3: Feel free to be creative.
7: A good balance between the prompt and creativity.
15: Adhere to the prompt.
30: Strictly follow the prompt.

You can change the size of the image generated with Height and
Width, as well as the number of images using Batch Count. The
checkbox Highres fix uses an upscaler to generate a larger high-
resolution image (more on this later), the Restore faces
checkbox uses a face restoration model (by default
Codeformer ) to fix the defects in human faces that often occur



with Stable Diffusion, and the Tiling checkbox creates an image
that can be tiled in a repeating pattern. There’s also the ability
to save and insert styles that are just prompts you want to reuse
regularly. There are many powerful features in the different
tabs, as well as community-built extensions you can add, with
more added as they become available.

AUTOMATIC1111 supports prompt weights, or weighted terms,
much like Midjourney (covered in Chapter 8). The way you
access them is slightly different, as instead of separating by
double colons like in Midjourney, you use parentheses. For
example, (pirate)  would emphasize pirate features by 10%
or 1.1, and double parentheses ((pirate))  would multiply it
again, so the weight would be 1.1 x 1.1 = 1.21. You can also
control the weights precisely by inputting your own number in
the form of (keyword: factor), for example (pirate: 1.5) ,
for the model to pay 50% more attention to those tokens.

Input:

Marilyn Monroe as a (pirate:1.5) on a desert isla

by Stanley Artgerm Lau and Alphonse Mucha

Negative:

https://oreil.ly/MiSt1


racy, nudity, cleavage

Figure 9-6 shows the output.

Figure 9-6. Marilyn Monroe pirate

Square brackets [pirate]  work the same way but in reverse,
de-emphasising a term in a prompt by 10%. So for example,
[hat]  would be the same as a weight of 0.9, or (hat:0.9) .
Note this is not the same as a negative prompt, because the
term will still be present in the generation of the image, just
dialed down. Prompt weights work in the negative prompt box
as well, acting to more aggressively remove that concept from
the image or reduce their effects. This can be used to ensure



unwanted elements or styles don’t appear when a negative
prompt isn’t enough.

GIVE DIRECTION

Providing more or less emphasis on specific words or sections of a prompt can give
you more fine-grained control over what the model pays attention to.

A more advanced technique used by power users of
AUTOMATIC1111 is prompt editing, also known as prompt
switching. During the diffusion process the early steps move
from random noise to a fuzzy outline of the general shapes
expected to be in the image, before the final details are filled in.
Prompt editing allows you to pass a different prompt to the
early or later steps in the diffusion process, giving you more
creative control. The syntax is [from:to:when] , where from
is your starting prompt, to  is your finishing prompt, and
when  is when to make the switch, denoted in number of steps
or a decimal representing a percentage. The prompt [Emma
Watson: Amber Heard: 0.5]  would start generating an
image of Emma Watson, before switching halfway to generating
an image of Amber Heard on top of the last frame, finishing
with a mixture of the two actresses. This is a useful trick for
creating images of people that look attractive and vaguely
familiar, without being recongizeable as any specific celebrity,



and therefore may be seen as more ethical and legally sound
than simply copying a celebrity’s likeness (seek your own legal
counsel):

Input:

vogue fashion shoot of [Emma Watson: Amber Heard

highly realistic, high resolution, highly detaile

dramatic, 8k

Figure 9-7 shows the output.



Figure 9-7. Emma Watson and Amber Heard mixed

PROVIDING DIRECTION

Prompt editing is an advanced technique that gets deep into the actual workings of
the diffusion model. Interfering with what layers respond to what concepts can lead
to very creative results if you know what you’re doing and are willing to undergo

enough trial and error.

If you want the model to alternate between two concepts, the
syntax is [Emma Watson | Amber Heard] , which will make



the switch at every step, ending with a more blended mixture.
There are many advanced uses of prompt editing, though it is
seen as something of a dark art. In some cases experts report
being able to get around difficult generations, for example
starting by generating something easy for the model to
generate, before switching to what is really needed in the final
details phase. In practice we have found limited use out of this
technique, but you should experiment and see what you can
discover.

Img2Img

The AUTOMATIC1111 web UI supports Img2Img  (Figure 9-8),
which is the functional equivalent to Midjourney’s ability to
submit an image along with the prompt. It grants you more
control over the style and composition of your resulting image,
by uploading an image for the model to use as guidance. To get
good results with Img2Img , try using Euler  sampling, 50
sampling steps, and a higher than usual CFG scale of 20 to 30.



Figure 9-8. Img2Img

The parameters are the same as the normal Text2Image  mode
with the addition of denoising strength, which controls how
much random noise is added to your base image before
running the generation process. A value of 0 will add zero
noise, so your output will look exactly like your input, and a
value of 1 will completely replace your input with noise
(functionally the same as using Text2Image ). Often you need
to experiment with different combinations of values for
Denoising Strength, CFG scale, and Seed alongside the words in
your prompt. The following example in Figure 9-9 creates a
character in Pixar style just for fun: we wouldn’t recommend
using protected IP in your prompt for commercial use.



Input:

headshot of a man in an office,  as a Pixar Disne

from Up ( 2 0 0 9 ), unreal engine, octane rende

render, photorealistic, in the style of Pixar

Figure 9-9 shows the output.



Figure 9-9. The effect of different denoising strength values on an image



If you want to test many different values for a parameter in
AUTOMATIC1111 and generate a grid as is shown in Figure 9-9,
that is supported in the Script drop-down at the bottom, where
you can select X/Y/Z Plot and choose up to three parameters to
generate multiple values for. For example, you may try also
adjusting the CFG scale to see how it interacts with Denoising.
Figure 9-10 shows how to select multiple values for the
Denoising strength parameter. When you click the Generate
button, a grid of images will be made, and you can find each
individual image that populates the grid in your Output folder
under the method (i.e., Text2Image , or Img2Img ) and today’s
date.



Figure 9-10. X/Y/Z plot of denoising parameter

EVALUATE QUALITY

Generating a grid of many different parameter combinations or values is one of the
powerful advantages of running Stable Diffusion locally. Although it may take time to
generate lots of images, there’s no better way to visually identify exactly what a

parameter does and where the sweet spot is in terms of quality.

If you forgot what settings or prompt you used to generate an
image, AUTOMATIC1111 saves this as metadata on every image
generated. You can visit the PNG Info tab (Figure 9-11) to read
that metadata whenever needed. This also works with images
you get from other users of the web interface, but only if they



have posted the image on a website that doesn’t strip out this
metadata.

The Resize Mode options are there to determine what happens
when you upload an image that doesn’t match the dimensions
of your base image, for example going from 1000 × 500 to 512 ×
512, either stretching the aspect ratio to fit with Just Resize,
cropping a part of the image in the right aspect ratio with Crop
and Resize, adding noise to pad out the image with Resize and
Fill, or generating an image in the new dimensions with Just
Resize (latent upscale).

Figure 9-11. PNG Info tab

Upscaling Images



There’s also the ability to upscale images to higher resolution in
AUTOMATIC1111’s Img2Img tab, just like you can in Midjourney
but with more control. Upload your image and add a generic
prompt like highly detailed  in the prompt box. This is
necessary because the upscaler works by breaking the image
into tiles, expanding so there are gaps between the tiles, and
then filling in the gaps using the prompt and context of the
surrounding pixels. Go down to Scripts at the bottom and select
the SD Upscale script, and then choose an upscaler (Figure 9-
12).

Figure 9-12. SD Upscale interface

Typically we have found the R-ESRGAN 4x+ upscaler as a good
default, but this can sometimes give a cartoonish quality, as
shown in Figure 9-12 with the grass. There are more models

https://openmodeldb.info/


available to test if you aren’t getting good results. When you
download a new model (a .pth file), you just need to place it in
the ESRGAN folder and restart the web interface for them to
show up (in your terminal). You can also get good results with
upscaling by modifying the prompt, particularly if you are
losing some detail or the style is changing too much. However, it
is not advised to use your original prompt, as that would have
the strange effect of inpainting the same image in each tile. To
show a wider quality difference, we have used the v1.5 model
to generate the original image (SDXL creates images that are 4x
larger, and at a higher quality, so upscaling is less needed).



Figure 9-13. The impact of upscaling on sections of an image



SPECIFY FORMAT

If you’re going to use the images you generate in the real world, often you can’t just
use a square 512 x 512 image in low resolution. Using upscaling you can generate an
image in any size and whatever the required resolution.

As with all things Stable Diffusion, it helps to experiment, but
for good results we recommend a high number of steps (150–
200+), a CFG scale of 8–15, and a Denoising strength of 0.1–0.2 to
keep the base image intact. You can click Generate to get the
resulting upscaled image (512 x 512 becomes 1024 x 1024), and
then you can either download the higher resolution image or
click Send to Img2Img and click Generate again to double the
size of the image again. The process can take a significant
amount of time due to the multiple tile generations and large
number of sampling steps, approximately 10–30 minutes on a
M2 MacBbook Air.

Interrogate CLIP

In the Img2Img tab the CLIP embeddings model (which is also
used by Stable Diffusion) is implemented in the Interrogate
CLIP button (in some versions shown as a paperclip), which
allows you to reverse engineer the prompt from an image,
similar to Midjourney’s Describe feature, covered in Chapter 8.



Once you click the button and the script has run, the prompt
will appear in your prompt box (Figure 9-14).

Figure 9-14. Interrogate CLIP

Output:

a painting of a woman in a pirate costume on the 

with a pirate hat on her head and a pirate ship i

a fine art painting, Chris Rallis, fantasy art, s

SD Inpainting and Outpainting

Img2Img also supports inpainting and outpainting and provides
a simple canvas tool for creating the mask. To use inpainting or
outpainting, click the Inpaint subtab in the Img2Img tab and
upload your image. It’s optionally recommended to use a
specific inpainting model for better results, which you can
install by downloading the sd-v1-5-inpainting.ckpt file and
moving it into your Models > Stable-Diffusion folder. Restart the

https://oreil.ly/s_trl


interface; the model should appear in the top left drop-down.
The canvas allows you to use a brush to remove parts of the
image just like in DALL-E (see Chapter 8), which is adjustable in
size for fine-grained control. In Figure 9-15, the center of a
stone circle in the middle of a castle courtyard has been
removed.

Figure 9-15. Inpainting canvas in Img2Img



g p g g g

The advice typically given for DALL-E, which also supports
inpainting, is to use your prompt to describe the entire image,
not just the inpainted area. This is a good default and should be
tried first. Make sure Inpaint area is set to Whole picture rather
than Only masked, or it’ll try to fit the whole scene in the
masked area (don’t worry, even if you select Whole picture, it
will only paint in your masked area). It can also help to carry
over your Seed from the original image if it was AI generated.
However, adding to or changing the prompt to include specifics
about the region you want modified or fixed tends to get better
results in our experience. At the very least you should change
the subject of the prompt; for example, in Figure 9-15, the
prompt changed from castle  to statue  because that’s what
we wanted to appear in the courtyard. You can also try only
prompting for the infilled region, though that risks getting an
image that isn’t globally consistent in style.

Input:

statue of a king, texture, intricate, details, hi

detailed, masterpiece, architecture, building, t

artstation, focus, sharp focus, concept art, digi

painting, fantasy, sunny, day, midday, in the sty

high fantasy art



Figure 9-16 shows the output.

Figure 9-16. Inpainting to add a statue to an image

PROVIDING DIRECTION

Inpainting is so powerful because it gives you control. The ability to isolate an
individual part of an image and give detailed directions on how to fix it gives you a
more efficient workflow, without affecting the rest of the image.



If it’s a small adjustment to the inpainted area, use Original as
the masked content option and use a Denoising Strength of 0.2
to 0.4. If you’re totally replacing an element of the image, you
may need the Latent Noise option and as high as 0.8 for
Denoising Strength, though any time you get above 0.4 you start
to see globally inconsistent elements and hallucinations in the
image, so it can take time to iterate toward something that
works. The Fill option is also useful as it matches the colors of
the surrounding area. If you’re getting ugly seams at the edge of
the inpainting area, you can increase the Mask Blur, but
typically the default of 4 works well. Inpainting is an iterative
process. We recommend working on fixing one issue or artifact
at a time, applying it as many times as you want, and
experimenting with different parameters until you’re satisfied
with the final image.

Outpainting doesn’t work the same as in Midjourney (see
Chapter 8), which has the ability to specify 1.5x or 2x zoom, or a
custom aspect ratio. Instead in AUTOMATIC1111, outpainting is
implemented by scrolling down to the Script drop-down and
selecting “Poor man’s outpainting.” You need to set the Resize
mode to Resize and fill in the Img2Img Inpaint tab, and set a
relatively high Denoising Strength to make this work. This
extension allows you to expand the pixels on different sides of



the image, while setting the Masked Content and Mask Blur
parameters as usual for these gaps on the side to be inpainted.

Figure 9-17 shows the output.

Figure 9-17. Outpainting in Img2Img



As you can see in Figure 9-17, with the extra castle being added
to the sky, the potential for hallucination is high and the quality
can be low. It often takes a lot of experimentation and iteration
to get this process right. This is a similar technique to how early
adopters of generative AI would add extra empty space on the
sides of photos in Photoshop, before inpainting them to match
the rest of the image in Stable Diffusion. This technique is
essentially just inpainting with extra steps, so all of the same
advice previously listed applies. This can be quicker than using
the outpainting functionality in AUTOMATIC1111 because of the
poor quality and limitations of not having a proper canvas.

ControlNet

Using prompting and Img2Img or base images, it’s possible to
control the style of an image, but often the pose of people in the
image, composition of the scene, or structure of the objects will
differ greatly in the final image. ControlNet is an advanced way
of conditioning input images for image generation models like
Stable Diffusion.

It allows you to gain more control over the final image
generated through various techniques like edge detection, pose,
depth, and many more. You upload an image you want to



emulate and use one of the pretrained model options for
processing the image to input alongside your prompt, resulting
in a matching image composition with a different style
(Figure 9-18, from the ControlNet paper).

What’s referred to as ControlNet is really a series of open
source models released following the paper “Adding
Conditional Control to Text-to-Image Diffusion Models” (Zhang,
Rao, and Agrawala, 2023). While it is possible to code this in
Python and build your own user interface for it, the quickest
and easiest way to to get up and running is via the ControlNet
extension for AUTOMATIC1111. As of the time of writing, not all
ControlNet methods are available for SDXL, so we are using
Stable Diffusion v1.5 (make sure you use a ControlNet model
that matches the version of Stable Diffusion you’re using).

https://oreil.ly/suOJz
https://oreil.ly/E-bjw
https://oreil.ly/ZH-Ow
https://oreil.ly/Dw2rs


Figure 9-18. ControlNet Stable Diffusion with canny edge map

You can install the extension following these instructions:

1. Navigate to the Extensions tab and click the subtab labeled
Available.

2. Click the Load from button.
3. In the Search box type sd-webui-controlnet  to find the

Extension.



4. Click Install in the Action column to the far right.
5. Web UI will now download the necessary files and install

ControlNet on your local version of Stable Diffusion.

If you have trouble executing the preceding steps, you can try
the following alternate method:

1. Navigate to the Extensions tab and click Install from URL
subtab.

2. In the URL field for the Git repository, paste the link to the
extension: https://github.com/Mikubill/sd-webui-controlnet.

3. Click Install.
4. WebUI will download and install the necessary files for

ControlNet.

Now that you have ControlNet installed, restart
AUTOMATIC1111 from your terminal or command line, or visit
Settings and click “Apply and restart UI.”

The extension will appear below the normal parameter options
you get for Stable Diffusion, in an accordion tab (Figure 9-19).
You first upload an image and then click Enable before selecting
the ControlNet preprocessor and model you want to use. If your
system has less than 6 GB of VRAM (Video Random Access
Memory), you should check the Low VRAM box. Depending on

https://github.com/Mikubill/sd-webui-controlnet


the task at hand, you might want to experiment with a number
of models and make adjustments to the parameters of those
models in order to see which gets results.

Control Weight is analogous to prompt weight or influence,
similar to putting words in brackets with a weighting (prompt
words: 1.2) , but for the ControlNet input. The Starting
Control Steps and Ending Control Steps are when in the
diffusion process the ControlNet applies, by default from start
to finish (0 to 1), akin to prompt editing/shifting such as
[prompt words::0.8]  (apply this part of the prompt from
the beginning until 80% of the total steps are complete).
Because the image diffuses from larger elements down to finer
details, you can achieve different results by controlling where
in that process the ControlNet applies; for example; removing
the last 20% of steps (Ending Control Step = 0.8) may allow the
model more creativity when filling in finer detail. The
Preprocessor Resolution also helps maintain control here,
determining how much fine detail there is in the intermediate
image processing step. Some models have their own unique
parameters, such as the Canny Low and High Thresholds, which
determine what pixels constitute an edge. Finally, the Control
Mode determines how much the model follows the ControlNet
input relative to your prompt.



Figure 9-19. ControlNet extension interface in AUTOMATIC1111

When you first install ControlNet, you won’t have any models
downloaded. For them to populate in the drop-down, you
should install them by downloading them from the models page
and then dropping them in the Models > ControlNet folder. If

https://oreil.ly/csYK_


you’re unsure of which model to try, start with Canny edge
detection as it is the most generally useful. Each model is
relatively large (in the order of a few gigabytes), so only
download the ones you plan to use. Following are examples
from some of the more common models. All images in this
section are generated with the DPM++ SDE Karras  sampler, a
CFG scale of 1.5, Control Mode set to Balanced, Resize Mode set
to Crop and Resize (the uploaded image is cropped to match the
dimensions of the generated image, 512 × 512), and 30 sampling
steps, with the default settings for each ControlNet model.
Version 1.5 of Stable Diffusion was used as not all of these
ControlNet models are available for Stable Diffusion XL at the
time of writing, but the techniques should be transferrable
between models.

Canny edge detection creates simple, sharp pixel outlines
around areas of high contrast. It can be very detailed and give
excellent results but can also pick up unwanted noise and give
too much control of the image to ControlNet. In images where
there is a high degree of detail that needs to be transferred to a
new image with a different style, Canny excels and should be
used as the default option. For example, redrawing a city
skyline in a specific style works very well with the Canny
model, as we did with an image of New York City (by Robert Bye
on Unsplash) in Figure 9-20.

https://oreil.ly/z9XC6
https://oreil.ly/wEPLB
https://oreil.ly/_iyxU


Input:

New York City by Studio Ghibli

Figure 9-20 shows the output.

Figure 9-20. ControlNet Canny

Sometimes in traditional img2img prompting, some elements of
an image get confused or merged, because Stable Diffusion
doesn’t understand the depth of those objects in relation to each
other. The Depth model creates a depth map estimation based
on the image, which provides control over the composition and
spatial position of image elements. If you’re not familiar with
depth maps, whiter areas are closer to the viewer, and blacker
are farther away. This can be seen in Figure 9-21, where an
image of a band (by Hans Vivek on Unsplash) is turned into an
image of soldiers with the same positions and depth of field.

https://oreil.ly/tlCrf
https://oreil.ly/BOKJ7


Input:

US military unit on patrol in Afghanistan

Figure 9-21 shows the output.

Figure 9-21. ControlNet Depth

The Normal model creates a mapping estimation that functions
as a 3-D model of objects in the image. The colors red, green,
and blue are used by 3-D programs to determine how smooth or
bumpy an object is, with each color corresponding to a
direction (left/right, up/down, close/far). This is just an
estimation, however, so it can have unintended consequences in
some cases. This method tends to excel if you need more
textures and lighting to be taken into consideration but can
sometimes offer too much detail in the case of faces,
constraining the creativity of the output. In Figure 9-22, a



woman playing a keyboard (by Soundtrap on Unsplash) is
transported back in time to the Great Gatsby era.

Input:

woman playing piano at a Great Gatsby flapper pa

symmetrical face

Figure 9-22 shows the output.

Figure 9-22. ControlNet Normal

The OpenPose method creates a skeleton for a figure by
determining its posture, hand placement, and facial expression.
For this model to work you typically need to have a human
subject with the full body visible, though there are portrait
options. It is very common practice to use multiple OpenPose
skeletons and compose them together into a single image, if

https://oreil.ly/RP1Ei
https://oreil.ly/I3QGY


multiple people are required in the scene. Figure 9-23
transposes the Mona Lisa’s pose onto an image of Rachel Weisz.

Input:

painting of Rachel Weisz

Figure 9-23 shows the output.

Figure 9-23. ControlNet OpenPose

The M-LSD (Mobile Line Segment Detection) technique is quite
often used in architecture and interior design, as it’s well suited
to tracing straight lines. Straight lines tend only to appear in
man-made objects, so it isn’t well suited to nature scenes
(though it might create an interesting effect). Man-made objects
like houses are well suited to this approach, as shown in the

https://oreil.ly/7n02i


image of a modern apartment (by Collov Home Design on
Unsplash) reimagined for the Mad Men era, in Figure 9-24.

Input:

1960s Mad Men style apartment

Figure 9-24 shows the output.

Figure 9-24. ControlNet M-LSD

The SoftEdge technique, also known as HED (holistically-nested
edge detection), is an alternative to Canny edge detection,
creating smoother outlines around objects. It is very commonly
used and provides good detail like Canny but can be less noisy
and deliver more aesthetically pleasing results. This method is
great for stylizing and recoloring images, and it tends to allow
for better manipulation of faces compared to Canny. Thanks to

https://oreil.ly/OtV_O
https://oreil.ly/z38do


ControlNet, you don’t need to enter too much of a detailed
prompt of the overall image and can just prompt for the change
you want to see. Figure 9-25 shows a reimagining of Vermeer’s
Girl with a Pearl Earring, with Scarlett Johansson:

Input:

Scarlett Johansson, best quality, extremely detai

Negative:

monochrome, lowres, bad anatomy, worst quality, l

Figure 9-25 shows the output.

Figure 9-25. ControlNet SoftEdge

https://oreil.ly/RjUur


Another popular technique for architecture is segmentation,
which divides the image into related areas or segments that are
somewhat related to one another. It is roughly analogous to
using an image mask in Img2Img, except with better results.
Segmentation can be used when you require greater command
over various objects within an image. One powerful use case is
on outdoor scenes, which can vary for the time of day and
surroundings, or even the era. Take a look at Figure 9-26,
showing a modern-day photograph of a castle (by Richard Clark
on Unsplash), turned into a fantasy-style castle illustration.

Input:

A beautiful magical castle viewed from the outsid

intricate, details, highly detailed, masterpiece

architecture, building, trending on artstation, f

focus, concept art, digital painting, fantasy, su

midday, in the style of high fantasy art

Figure 9-26 shows the output.

https://oreil.ly/SG9CT
https://oreil.ly/2FlyI


Figure 9-26. ControlNet segmentation

One powerful feature is the ability to draw on a canvas and use
that in ControlNet. You can also draw offline and take a picture
to upload your image, but it can be quicker for simple images to
click the pencil emoji in the Stable Diffusion web UI, and draw
with the provided brush. Even a simple scribble is often
sufficient, and the edges don’t have to be perfect, as shown in
Figure 9-27.

Input:

The Happy Goldfish, illustrated children's book

Figure 9-27 shows the output.



Figure 9-27. ControlNet scribble

PROVIDE EXAMPLES

ControlNet gives an AI artist the ability to make an image that looks like another
image in terms of composition, simply by providing an example image to emulate.
This allows more control over visual consistency and more flexibility in making

more sophisticated images.

Each of these ControlNet methods has its own preprocessor, and
they must match the model for the image to make sense. For
example, if you’re using a Canny preprocessor, you should use a
Canny model like control_v11p_sd15_canny. It’s also important
to choose a model that gives enough freedom for the task you’re
trying to accomplish; for example, an image of a cat with the
SoftEdge model might perhaps have too much detail to be
turned into a lion, and you might want to try something less
fine-grained. As with all things Stable Diffusion, finding the
exact combination of model and parameters requires



experimentation, with new functionality and options
proliferating all the time.

ControlNet supports being run with a simple prompt or even
without a prompt at all. It will match the existing image you
submit and ensure a high level of consistency. You can run a
generic prompt like a professional, detailed, high-
quality image  and get a good version of the existing image.
Most often, however, you’ll be attempting to change certain
aspects of the image and will want to input a full prompt, as in
the previous examples. The resulting image will match both the
prompt and the ControlNet output, and you can experiment
with adjusting the parameters available to see what gets results.

Segment Anything Model (SAM)

When working on an AI-generated image, it is often beneficial
to be able to separate out a mask representing a specific person,
object, or element. For example, dividing an image of a person
from the background of the image would allow you to inpaint a
new background behind that person. This can take a long time
and lead to mistakes when using a brush tool, so it can be
helpful to be able to automatically segment the image based on
an AI model’s interpretation of where the lines are.



The most popular and powerful model for doing this is SAM,
which stands for Segment Anything Model, released open
source on GitHub by Meta. The model is trained on a dataset of
11 million images and 1.1 billion masks, and is able to infer
where the image mask should be based on user input (clicking
to add one to three dots to the image where masks should be),
or it can automatically mask all the elements individually in an
image. These masks can then be exported for use in
inpainting,in ControlNet, or as base images.

You can use SAM in the AUTOMATIC1111 interface using the sd-
webui-segment-anything extension. Once AUTOMATIC1111 is
installed and running, you can install the SAM extension
following these instructions:

1. Navigate to the Extensions tab and click the subtab labeled
“Available.”

2. Click the “Load from” button.
3. In the Search box type in: sd-webui-segment-anything

to find the extension.
4. Click Install in the Action column to the far right.
5. WebUI will now download the necessary files and install

SAM on your local version of Stable Diffusion.

https://oreil.ly/BuunX
https://oreil.ly/rFMJN


If you have trouble executing the preceding steps, you can try
the following alternate method:

1. Navigate to the “Extensions” tab and click the “Install from
URL” subtab.

2. In the URL field for the Git repository, paste the link to the
extension: https://github.com/continue-revolution/sd-webui-
segment-anything.

3. Click Install.
4. WebUI will download and install the necessary files for

SAM on your local version of Stable Diffusion.

You also need to download the actual SAM model weights,
linked to from the repository. The 1.25 GB sam_vit_l_0b3195.pth
is what’s being used in this chapter. If you encounter issues with
low VRAM (your computer freezes or lags), you should switch to
smaller models. Move the model you downloaded into the
stable-diffusion-webui/sd-webui-segment-anything/models/sam
folder.

Now that you have SAM fully installed, restart AUTOMATIC1111
from your terminal or command line, or visit Settings and click
“Apply and restart UI.”

https://github.com/continue-revolution/sd-webui-segment-anything
https://oreil.ly/IqrbI


You should see the extension in the Img2Img tab, by scrolling
down past the canvas and Seed parameter, in an accordion
component alongside the ControlNet extension. Upload an
image here (we used the photo for Figure 9-28 by Luca Baini on
Unsplash) and click the image to select individual prompt
points. These prompt points go along to SAM as user input to
help the model determine what should be segmented out from
the image. You can click Preview to see what mask will be
created, and iteratively add or remove plot points until the
mask is correct. There is a checkbox labeled “Preview
automatically when add/remove points,” which updates the
mask with each click. Often SAM gets it right with a single plot
point, but if you are struggling, you can also add negative plot
points to parts of the image you don’t want to mask by right-
clicking. Select the mask you want (Figure 9-28) from the three
options provided (counting from 0 to 2).

https://oreil.ly/Lb3xE
https://oreil.ly/jvCjz


Figure 9-28. Adding plot points

When your mask is ready, make sure the box Copy to Inpaint
Upload & img2img ControlNet Inpainting is checked, and click
the Switch to Inpaint Upload button. You won’t see anything



happen visually, but when you switch to the Inpainting tab, you
should be able to generate your prompt with the mask
generated by SAM. There is no need to upload the picture or
mask to the Inpainting tab. You can also download your mask
for later upload in the “Inpaint upload” tab. This method was
unreliable during our testing, and there may be a better
supported method for inpainting with SAM and Stable Diffusion
made available.

DIVIDE LABOR

Generative models like Midjourney and Stable Diffusion are powerful, but they can’t
do everything. In training a separate image segmentation model, Meta has made it
possible to generate more complex images by splitting out the elements of an image

into different masks, which can be worked on separately before being aggregated
together for the final product.

DreamBooth Fine-Tuning

The original Stable Diffusion model cost a reported $600,000 to
train using a total of 150,000 GPU hours, so training your own
foundational model is likely out of the question for most
organizations. However, it is possible to build on top of Stable
Diffusion, using the Dreambooth technique, which was
introduced in the paper “DreamBooth: Fine Tuning Text-to-

https://oreil.ly/s739b


Image Diffusion Models for Subject-Driven Generation” (Ruiz et
al., 2022). DreamBooth allows you to fine-tune or train the
model to understand a new concept it hasn’t encountered yet in
its training data. Not having to start from scratch to build a new
model means significantly less time and resources: about 45
minutes to an hour on 1 GPU. DreamBooth actually updates the
weights of the new model, which gives you a new 2 GB model
file to use in AUTOMATIC1111 instead of the base Stable
Diffusion model.

There are many DreamBooth-based models available on
websites like Hugging Face and Civitai. To use these models in
AUTOMATIC1111, you simply download them and move them
into the stable-diffusion-webui/models/Stable-diffusion/ folder.
Dreambooth models often have a specific word or token needed
for triggering the style or subject, which must be included in
the prompt. For example, the Inkpunk Diffusion model requires
the word nvinkpunk. Note: the underlying base model here is
v1.5 of Stable Diffusion, so reset your image size to 512 × 512.

Input:

skateboarding in Times Square nvinkpunk

Figure 9-29 shows the output.

https://oreil.ly/ZqdjB
https://oreil.ly/2efOO
https://civitai.com/
https://oreil.ly/spsy3


Figure 9-29. InkPunk skateboarder

DIVIDE LABOR

The mistake many people make with AI is assuming there’s one model to rule them
all. In reality there are many creative models out there, and often training on a
specific task yields better results than the general foundational models. While the

foundation models like Stable Diffusion XL are what most practicioners start with,
commonly they begin to experiment with fine-tuning their own models on specific
tasks, often based on smaller, more efficient models like v1.5.



The preferred method for training a DreamBooth model is
Shivam Shrirao’s repository, which uses HuggingFace’s
diffusers  library. What follows is an explanation of the code
in Google Colab. Version 1.5 is used in this notebook, as it is a
smaller model, and is able to be trained in a few hours in the
Google Colab environment for free. A copy of this Python
notebook is saved in the GitHub repository for this book for
posterity, but it should be noted that it will only run on an
Nvidia GPU, not on a MacBook.

First the Colab checks whether there is access to an Nvidia GPU.
This is one good reason to run Dreambooth on Google Colab,
because you are given access to the right resource to run the
code without any configuration needed:

!nvidia-smi --query-gpu=name,memory.total, \ 

    memory.free --format=csv,noheader

Next the necessary libraries are installed, including the
diffusers  library from Hugging Face:

!wget -q https://github.com/ShivamShrirao/diffuse

    main/examples/dreambooth/train_dreambooth.py 

!wget -q https://github.com/ShivamShrirao/diffuse

    main/scripts/convert_diffusers_to_original_st

diffusion py

https://oreil.ly/AJnnL
https://oreil.ly/790FZ
https://oreil.ly/NzzGm


    diffusion.py 

%pip install -qq \ 

git+https://github.com/ShivamShrirao/diffusers 

%pip install -q -U --pre triton 

%pip install -q accelerate transformers ftfy \ 

bitsandbytes==0.35.0 gradio natsort safetensors x

Run the next cell to set the output directory of the model when
it is finished running. It’s recommended to save the model to
Google Drive (even if temporarily) because you can more
reliably download large files (4–5 GB) from there than you can
from the Google Colab filesystem. Ensure that you have selected
the right base model from the Hugging Face hub
runwayml/stable-diffusion-v1-5  and choose a name for
your token for the output directory (usually ukj or zwx; more on
this later):

#@markdown If model weights should be saved direc

#@markdown google drive (takes around 4-5 GB). 

save_to_gdrive = False 

if save_to_gdrive: 

    from google.colab import drive 

    drive.mount('/content/drive') 

 

#@markdown Name/Path of the initial model. 

MODEL_NAME = "runwayml/stable-diffusion-v1-5" \ 



    #@param {type:"string"} 

 

#@markdown Enter the directory name to save model

 

OUTPUT_DIR = "stable_diffusion_weights/ukj" \ 

    #@param {type:"string"} 

if save_to_gdrive: 

    OUTPUT_DIR = "/content/drive/MyDrive/" + OUTP

else: 

    OUTPUT_DIR = "/content/" + OUTPUT_DIR 

 

print(f"[*] Weights will be saved at {OUTPUT_DIR}

 

!mkdir -p $OUTPUT_DIR

Before training, you need to add the concepts you want to train
on. In our experience, training on multiple concepts tends to
harm performance, so typically we would train on only one
subject or style. You can merge models later in the Checkpoint
Merger tab of AUTOMATIC1111, although this gets into more
advanced territory not covered in this book. The instance
prompt includes the token you’ll use in your prompt to trigger
the model, and ideally it’s a word that doesn’t have any other
meaning, like zwx or ukj. The class prompt is a starting point for
the training, so if you’re training a model of a specific person,



you start from photo of a person  to make the training
more effective:

# You can also add multiple concepts here. 

# Try tweaking `--max_train_steps` accordingly. 

 

concepts_list = [ 

     { 

         "instance_prompt":      "photo of ukj pe

         "class_prompt":         "photo of a pers

         "instance_data_dir":    "/content/data/u

         "class_data_dir":       "/content/data/p

     } 

] 

 

# `class_data_dir` contains regularization images

import json 

import os

for c in concepts_list: 

    os.makedirs(c["instance_data_dir"], exist_ok=

 

with open("concepts_list.json", "w") as f: 

    json.dump(concepts_list, f, indent=4)

Next, we upload the images through Google Colab. Dreambooth
can work with as few as 5 images, but typically it’s



recommended you use about 20–30 images, although some
train with hundreds of images. One creative use case is to use
the Consistent Characters method discussed in Chapter 8 to
generate 20 different images of the same AI-generated
character and use them to train a Dreambooth model on.
Alternatively, you could upload 20 pictures of yourself to create
an AI profile photo, or 20 pictures of a product your company
sells to generate AI product photography. You can upload the
files locally to the instance_data_dir in the Google Colab
filesystem (which can be faster) or run the next cell to get an
upload button:

import os

from google.colab import files 

import shutil 

 

for c in concepts_list: 

    print(f"""Uploading instance images for 

`{c['instance_prompt']}`""") 

    uploaded = files.upload() 

    for filename in uploaded.keys(): 

        dst_path = os.path.join(c['instance_data_

            filename) 

        shutil.move(filename, dst_path)



Now the actual training begins! This code runs on the GPU and
outputs the final weights when finished. Make sure to change
save_sample_prompt  before running to use the token you
assigned, in this case photo of ukj person :

!python3 train_dreambooth.py \ 

  --pretrained_model_name_or_path=$MODEL_NAME \ 

  --pretrained_vae_name_or_path="stabilityai/sd-v

  --output_dir=$OUTPUT_DIR \ 

  --revision="fp16" \ 

  --with_prior_preservation --prior_loss_weight=

  --seed=1337 \ 

  --resolution=512 \ 

  --train_batch_size=1 \ 

  --train_text_encoder \ 

  --mixed_precision="fp16" \ 

  --use_8bit_adam \ 

  --gradient_accumulation_steps=1 \ 

  --learning_rate=1e-6 \ 

  --lr_scheduler="constant" \ 

  --lr_warmup_steps=0 \ 

  --num_class_images=50 \ 

  --sample_batch_size=4 \ 

  --max_train_steps=800 \ 

  --save_interval=10000 \ 

  --save_sample_prompt="photo of ukj person" \ 

  --concepts_list="concepts_list.json"



p _ p _ j

Now that the training is complete, the next two cells of code
define the directory and then display a grid of images so you
can see visually whether the model correctly understood your
concept and is now capable of generating useful images of your
style of subject:

WEIGHTS_DIR = "" 

if WEIGHTS_DIR == "": 

    from natsort import natsorted

    from glob import glob 

    import os 

    WEIGHTS_DIR = natsorted(glob(OUTPUT_DIR + os

        "*"))[-1] 

print(f"[*] WEIGHTS_DIR={WEIGHTS_DIR}") 

 

#@markdown Run to generate a grid of preview imag

import os 

import matplotlib.pyplot as plt 

import matplotlib.image as mpimg 

 

weights_folder = OUTPUT_DIR 

folders = sorted([f for f in os.listdir(weights_f

    if f != "0"], key=lambda x: int(x)) 

 



row = len(folders) 

col = len(os.listdir(os.path.join(weights_folder

    folders[0], "samples"))) 

scale = 4 

fig, axes = plt.subplots(row, col, figsize=(col*s

    row*scale), gridspec_kw={'hspace': 0, 'wspace

 

for i, folder in enumerate(folders): 

    folder_path = os.path.join(weights_folder, fo

    image_folder = os.path.join(folder_path, "sam

    images = [f for f in os.listdir(image_folder

    for j, image in enumerate(images): 

        if row == 1: 

            currAxes = axes[j] 

        else: 

            currAxes = axes[i, j]

        if i == 0: 

            currAxes.set_title(f"Image {j}") 

        if j == 0: 

            currAxes.text(-0.1, 0.5, folder, rota

            va='center', ha='center', 

            transform=currAxes.transAxes) 

        image_path = os.path.join(image_folder, i

        img = mpimg.imread(image_path) 

        currAxes.imshow(img, cmap='gray') 

        currAxes.axis('off') 

 



plt.tight_layout() 

plt.savefig('grid.png', dpi=72)

Finally, you want to run the conversion process to get a .ckpt
file, which is what you will use in AUTOMATIC1111:

#@markdown Run conversion. 

ckpt_path = WEIGHTS_DIR + "/model.ckpt" 

 

half_arg = "" 

#@markdown Convert to fp16, takes half the space 

fp16 = True #@param {type: "boolean"} 

if fp16: 

    half_arg = "--half" 

!python convert_diffusers_to_original_stable_diff

    --model_path $WEIGHTS_DIR  --checkpoint_path 

    $ckpt_path $half_arg 

print(f"[*] Converted ckpt saved at {ckpt_path}"

You can then visit the weights directory
stable_diffusion_weights/zwx to find the model and download it.
If you are having issues downloading such a large file from the
Google Colab filesystem, try checking the option to save to
Google Drive before running the model, and download from
there. We recommend renaming the model before dropping it



into your stable-diffusion-webui/models/Stable-diffusion/ folder
so you can tell what model it is when using it later.

Input:

a professional headshot of ukj person, standing w

arms crossed and smiling at the camera with his a

crossed, a character portrait, Adam Bruce Thomson

press, professional photo

Figure 9-30 shows the output.

Figure 9-30. A Dreambooth model image of one of the authors



There is also an extension for training Dreambooth models via
Automatic1111, based on Shivam Shrirao’s method. This
extension can be installed in the same way as you installed
ControlNet and Segment Anything in previous sections of this
chapter. This tool is for advanced users as it exposes a
significant number of features and settings for
experimentation, many of which you need to be a machine
learning expert to understand. To start learning what these
parameters and settings mean so you can experiment with
different options, check out the beginner’s guide to training in
the extension wiki. The benefit of using this method instead of
Google Colab is that it runs locally on your computer, so you can
leave it running without worrying it will time out and lose
progress.

PROVIDE EXAMPLES

Dreambooth helps you personalize your experience with generative AI. You just need
to supply 5–30 images that serve as examples of a concept, and in less than an hour
of training time, you can have a fully personalized custom model.

There are other training and fine-tuning methods available
besides Dreambooth, but this technique is currently the most
commonly used. An older technique is Textual Inversion, which
doesn’t update the model weights but instead approximates the

https://oreil.ly/xbt2d
https://oreil.ly/gfdY3
https://oreil.ly/GgnJV


right location for a token to represent your concept, though this
tends to perform far worse than Dreambooth. One promising
new technique is LoRA, from the paper “LoRA: Low-Rank
Adaptation of Large Language Models” (Hu et al., 2021), also
prevalent in the text-generation space with LLMs. This
technique adds new layers into the model and trains just those
new layers to build a custom model without expending too
many resources. There are also Hypernetworks, which train
parameters that can then generate these new layers, as
introduced by Kurumuz in the Medium article “NovelAI
Improvements on Stable Diffusion.” Both of these methods are
experimental and only make up a small number of the models
on Civitai at the time of writing (less than 10%), as well as
having in general lower user ratings in terms of quality.

Stable Diffusion XL Refiner

The SDXL v1.0 model has 6.6 billion parameters, compared to
0.98 billion for the v1.5 model (Rombach et al., 2023). The
increased firepower yields impressive results, and as such the
model is starting to win over die-hard 1.5 enthusiasts. Part of
the power of SDXL comes from the division of labor between
the base model, which sets the global composition, and a refiner
model (Figure 9-31), which adds finer details (optional).

https://oreil.ly/NtoiB
https://oreil.ly/zFH0-
https://oreil.ly/vc1zS


Figure 9-31. Stable Diffusion XL base and refiner model

The underlying language model that infers meaning from your
prompts is a combination of OpenClip (ViT-G/14) and OpenAI’s
CLIP ViT-L. Stable Diffusion v2 used OpenClip alone and
therefore prompts that worked on v1.5 were not as
transferable: that problem has been largely solved with SDXL.
Additionally, the SDXL model has been trained with a more
diverse set of image sizes, leading to better results when you
need an image that isn’t the standard square aspect ratio.
Stablity AI’s research indicates that users overwhelmingly
prefer the XL model over v1.5 (Figure 9-32).

https://oreil.ly/_b7xX


Figure 9-32. Relative performance preference

To make use of the refiner model, you must utilize the “Switch
at” functionality in the AUTOMATIC1111 interface. This value
controls at which step the pipeline switches to the refiner
model. For example, switching at 0.6 with 30 steps means the
base model will be used for the first 18 steps, and then it will
switch to the refiner model for the final 12 steps (Figure 9-33).



Figure 9-33. Refiner—Switch at parameter

Common advice is to switch between 0.4 and 1.0 (a value of 1.0
will not switch and only uses the base model), with 20–50
sampling steps for the best results. In our experience, switching
at 0.6 with 30 sampling steps produces the highest-quality
image, but like all things Stable Diffusion, you must experiment
to discover what gets the best results for your image. Setting the
refiner to switch at 0.6 gives the output shown in Figure 9-35.

Input:

anime cat girl with pink hair and a cat ears outf

in front of a gaze, photorealistic, 1girl, a cha



Alice Prin, sots art, official art, sunlight, wav

Negative:

disfigured, ugly, bad, immature, photo, amateur, 

Figure 9-34 shows the output.

Figure 9-34. Anime cat girl with SDXL base model versus refiner at 0.6

DIVIDE LABOR

The architecture of SDXL is a perfect example of splitting a task into multiple jobs,
and using the right model for the job. The base model sets the scene and guides the
composition of the image, while the refiner increases fine detail.

One quality-of-life modification you can make is to install the
aspect ratio selector extension, which can be loaded with image



sizes or aspect ratios you use regularly, allowing one-click
setting of the correct size and aspect ratio for either model.

To install the extension, browse to the Extensions tab, go to
Install from URL, paste in https://github.com/alemelis/sd-webui-
ar, and click Install. Go to the extension folder stable-diffusion-
webui/extensions/sd-webui-ar and add the following to the
resolutions.txt file (or replace what’s there for cleanliness):

SD1:1, 512, 512 # 1:1 square 

XL1:1, 1024, 1024 # 1:1 square 

SD3:2, 768, 512 # 3:2 landscape 

XL3:2, 1216, 832 # 3:2 landscape 

SD9:16, 403, 716 # 9:16 portrait 

XL9:16, 768, 1344 # 9:16 portrait

Clicking one of these preset buttons will automatically adjust
the width and height accordingly. You may also replace aspect
ratios.txt with the following, allowing you to automatically
calculate the aspect ratio based on the height value you have set
in the web UI, and they’ll show in the web UI interface
(Figure 9-35):

Square 1:1, 1.0 # 1:1 ratio based on minimum dime

Landscape 3:2, 3/2 # Set width based on 3:2 ratio

Portrait 9:16, 9/16 # Set width based on 9:16 rat

https://github.com/alemelis/sd-webui-ar


Figure 9-35. Aspect ratios

Summary

In this chapter, you learned advanced techniques for image
generation using Stable Diffusion, an open source model. If you
followed along, you successfully installed Stable Diffusion and
built an inference pipeline using the HuggingFace diffusers
library. You hopefully generated images based on prompts
using the Stable Diffusion inference model in Google Colab.
Additionally, this chapter recommended exploring the open
source community and user interfaces like AUTOMATIC1111 for
running Stable Diffusion with advanced features.



The chapter also introduced the concept of ControlNet, which
allows for controlling the style of an image using prompting
and base images, and Segment Anything, a model for masking
specific parts of an image. By applying these techniques, you
are now able to customize generated images to meet your
specific needs. You also learned about techniques for
personalization, specifically DreamBooth fine-tuning, allowing
you to train a model to understand new concepts not
encountered in its training data.

In the next chapter, you’ll get the chance to put everything
you’ve learned throughout this book into action. We’ll be
exploring how to build an AI blog post generator that produces
both the blog text and an accompanying image. That final
exciting chapter will take you through the process of creating
an end-to-end system that generates high-quality blog posts
based on user input, complete with custom illustrations in a
consistent visual style. You’ll learn how to optimize prompts,
generate engaging titles, and create AI-generated images that
match your desired style!



Chapter 10. Building AI-Powered
Applications

In this chapter, you’ll apply the five principles of prompting to
an end-to-end AI workflow for content writing. The service will
write blog posts based on the user’s responses to interview
questions, in the style of the user’s writing. This system was first
documented on the Saxifrage blog.

AI Blog Writing

The naive approach to creating a blog writing service using AI
would be to prompt ChatGPT with Write a blog post on
{blogPostTopic} . The resulting content would be of
reasonable quality but wouldn’t likely contain any valuable
opinions or unique experiences on the topic. The content would
also likely be short and generic and therefore unlikely to rank
on Google.

A more sophisticated approach might be to build up a longer
prompt with further instructions. Detail on the prescribed
writing tone, architecture of the blog post, and keywords to

https://oreil.ly/saxifrage


include could be added. An example of a common blog post
writing prompt can be seen here.

Input:

Create a blog post about “{blogPostTopic}”. Write

Use transition words. 

Use active voice. Write over 1000 words. 

Use very creative titles for the blog post. 

Add a title for each section. Ensure there are a 

section should have a minimum of two paragraphs. 

Include the following keywords: “{keywords}”. 

Create a good slug for this post and a meta desc

words and add it to the end of the blog post.

This longer, more sophisticated prompt is likely to result in
better quality content. However, let’s run through the five
principles of prompting as a checklist:

Direction

There are some instructions provided, such as the tone,
using transition words, and an active voice. However, the
content is still likely to sound like AI, and not like the user.

https://oreil.ly/uMfZa


Format

Although there are some mentions of structure, including
dictating nine sections of two paragraphs, it’s likely these
instructions will be ignored. ChatGPT is bad at math and
is often unable to follow instructions dictating a number
of sections or words.

Examples

There are no samples of how to do the task given, which is
likely to harm the reliability of running this prompt
across multiple topics or even multiple times on the same
topic. Even providing one example (a one-shot prompt)
could radically help improve quality.

Evaluation

This is an example of blind prompting (adding instructions
to a prompt without testing them). It’s likely some of these
instructions make no difference to quality (unnecessarily
costing tokens) or might even degrade quality.

Division

The entire task is attempted with just one prompt, which
is likely to harm performance. Without breaking the task

https://oreil.ly/r7sXi


into subtasks, it’s hard to understand which part of the
process is suceeding or failing.

Through this chapter, you’ll create multiple LLM chain
components. Each chain will be implemented in LangChain to
make it more maintainable and to give easy logging for
monitoring and optimization. The resulting system will help
you generate human-sounding content based on the unique
opinions and experiences of the user.

It’s crucial that you first prepare your workspace with the
necessary tools. Therefore, let’s shift our focus toward topic
research and start setting up your programming environment.

Topic Research

You will need to install several Python packages to effectively
use LangChain’s document loaders, including the following:

google-searchresults

A Python library designed to scrape and process Google
search results.

pandas



This offers data structures and operations for
manipulating numerical tables and time series data.

html2text

This tool converts HTML from files or web pages into
markdown (.md) files or text.

pytest-playwright

This package enables end-to-end testing with Playwright.

chromadb

ChromaDB is an open source vector database.

nest_asyncio

This extends the Python standard asyncio  to patch and
render it compatible with Jupyter Notebooks.

Installation of these packages can be achieved easily with this
command:

pip install google-searchresults pandas html2text

nest_asyncio --quiet



Additionally, you’ll be using LangChain’s document loaders that
require Playwright.

Type this command on your terminal: playwright install.

Additionally, you’ll need to choose a TOPIC  and set
environment variables for both SERPAPI_API_KEY  and
STABILITY_API_KEY . If you’re running the script without
Jupyter Notebook, then you won’t need to use any of the
nest_asyncio  code:

from langchain_openai.chat_models import ChatOpen

from langchain.output_parsers import PydanticOutp

from langchain_text_splitters import RecursiveCha

import os

 

# Custom imports: 

from content_collection import collect_serp_data_

from custom_summarize_chain import create_all_sum

 

import nest_asyncio 

nest_asyncio.apply() 

 

# Constant variables: 

TOPIC = "Neural networks" 

os.environ["SERPAPI_API_KEY"] = "" 

os.environ["STABILITY_API_KEY"] = ""



Next, you’ll focus on summarizing web content efficiently:

# Extract content from webpages into LangChain do

text_documents = await \ 

collect_serp_data_and_extract_text_from_webpages

 

# LLM, text splitter + parser: 

llm = ChatOpenAI(temperature=0) 

text_splitter = RecursiveCharacterTextSplitter.f

    chunk_size=1500, chunk_overlap=400 

) 

parser = PydanticOutputParser(pydantic_object=Doc

 

summaries = await create_all_summaries(text_docum

parser, 

llm, 

text_splitter)

First, import the required tools and then fetch the web page
content related to your TOPIC . After setting up your
ChatOpenAI  model, you’ll utilize a text_splitter  to
manage text chunks. The splitter ensures no snippet is too long,
while maintaining context with overlap. Then create the
PydanticOutputParser  to handle and structure the



summaries. By feeding the extracted documents through a
dedicated summarization function, the LLM produces concise
summaries.

If you would like to dive deeper into the
create_all_summaries  function, check
custom_summarize_chain.py.

Some key points to highlight are that you can subclass most
classes within LangChain. For example, you can overide the
default ChromiumLoader  to be asynchronous:

from langchain_community.document_loaders import 

AsyncChromiumLoader 

 

class ChromiumLoader(AsyncChromiumLoader): 

    async def load(self): 

        raw_text = [await self.ascrape_playwright

        # Return the raw documents: 

        return [Document(page_content=text) for t

 

 

async def get_html_content_from_urls( 

    df: pd.DataFrame, number_of_urls: int = 3, u

) -> List[Document]: 

    # Get the HTML content of the first 3 URLs: 

    urls = df[url_column].values[:number_of_urls

https://oreil.ly/KyKjS


 

    # If there is only one URL, convert it to a l

    if isinstance(urls, str): 

        urls = [urls] 

 

 

    # Check for empty URLs: 

    urls = [url for url in urls if url != ""] 

 

    # Check for duplicate URLs: 

    urls = list(set(urls)) 

 

    # Throw error if no URLs are found: 

    if len(urls) == 0: 

        raise ValueError("No URLs found!") 

    # loader = AsyncHtmlLoader(urls) # Faster but

    loader = ChromiumLoader(urls) 

    docs = await loader.load() 

    return docs 

 

async def create_all_summaries( 

    # ... commented out for brevity 

) -> List[DocumentSummary]: 

    # ... commented out for brevity

By subclassing ChromiumLoader , you can easily create a
custom implementation to asynchronously scrape content from



multiple URLs using the Chrome browser.
get_html_content_from_urls  fetches HTML content from a
list of URLs, ensuring no duplicates and handling potential
errors.

Expert Interview

Now that you’ve successfully extracted the summaries from
Google for the top three results, you’ll conduct an interview
with an LLM, generating relevant questions to make sure that
your article has a unique perspective using an
InterviewChain  class:

from expert_interview_chain import InterviewChain

interview_chain = InterviewChain(topic=TOPIC, doc

interview_questions = interview_chain() 

 

for question in interview_questions.questions: 

    print(f"Answer the following question: {quest

    answer = input(f"Answer the following questio

    print('-------------------------------------

    question.answer = answer

InterviewChain instantiation



With your topic and obtained summaries in hand, create
an instance of InterviewChain , tailoring it to your
data’s unique context.

Generating questions

By simply calling the interview_chain , you kickstart
the process of generating a series of probing questions
derived from your summaries.

Interactive Q&A session

Dive into an engaging loop where each derived question is
printed, prompting you for an answer with input() .
Your response is then saved back to the Pydantic object.

GIVE DIRECTION

Giving an LLM unique answers provides unique context, and this allows an LLM to
generate richer, more nuanced responses, ensuring your article offers a fresh and in-
depth perspective.

All of the code for InterviewChain  is in
expert_interview_chain.py. It has two significant components:

A custom System  message

https://oreil.ly/0d5Hi


This prompt includes role prompting, previously
generated summaries, the topic, and format instructions
(for the output parser):

system_message = """You are a content SEO researc

summarized and extracted key points from SERP res

will be used to do content research and we will c

insights and summaries across multiple articles. 

interview a content expert. You will ask them que

topic: {topic}. 

 

You must follow the following rules: 

    - Return a list of questions that you would a

    the topic. 

    - You must ask at least and at most 5 questio

    - You are looking for information gain and un

    already covered in the {document_summaries} i

    - You must ask questions that are open-ended 

    {format_instructions} 

"""

Output parsers

Diving deeper into the class, you encounter the
PydanticOutputParser . This parser actively structures
the LLMs responses into parsable, Pydantic
InterviewQuestions  objects:



from expert_interview_chain import InterviewQuest

 

# Set up a parser + inject instructions into the 

parser = PydanticOutputParser(pydantic_object=Int

In essence, you’re orchestrating a conversation with the AI and
instructing it to conceive potent questions that amplify content
insights, all the while making customization a breeze.

Generate Outline

Including the previous interview and research, you can
generate an outline for the post with BlogOutlineGenerator .
The TOPIC , question_answers , and Google summaries  are
passed to provide additional context:

from article_outline_generation import BlogOutlin

 

blog_outline_generator = BlogOutlineGenerator(top

questions_and_answers=[item.dict() for item in in

 

questions_and_answers = blog_outline_generator.qu

outline_result = blog_outline_generator.generate_



Let’s explore the BlogOutlineGenerator  class in detail:

from typing import List, Any 

from pydantic.v1 import BaseModel 

 

class SubHeading(BaseModel): 

    title: str # Each subheading should have a ti

 

class BlogOutline(BaseModel): 

    title: str 

    sub_headings: List[SubHeading] # An outline h

 

# Langchain libraries: 

from langchain.prompts.chat import (ChatPromptTem

SystemMessagePromptTemplate) 

from langchain.output_parsers import PydanticOutp

from langchain_openai.chat_models import ChatOpen

 

# Custom types: 

from custom_summarize_chain import DocumentSumma

 

class BlogOutlineGenerator: 

    def __init__(self, topic: str, questions_and_

        self.topic = topic 

        self.questions_and_answers = questions_an

 

        # Create a prompt 



p p

        prompt_content = """ 

        Based on my answers and the summary, gene

        article on {topic}. 

        topic: {topic} 

        document_summaries: {document_summaries} 

        --- 

        Here is the interview which I answered: 

        {interview_questions_and_answers} 

        --- 

        Output format: {format_instructions} 

        """ 

 

        system_message_prompt = 

        SystemMessagePromptTemplate.from_template

 

        self.chat_prompt = ChatPromptTemplate.fro

        [system_message_prompt]) 

 

        # Create an output parser

        self.parser = PydanticOutputParser(pydant

 

        # Set up the chain 

        self.outline_chain = self.chat_prompt | C

 

    def generate_outline(self, summaries: List[Do

        print("Generating the outline...\n---") 

        result = self.outline_chain.invoke( 

            {"topic": self.topic, 



{ p p

            "document_summaries": [s.dict() for s

            "interview_questions_and_answers": se

            "format_instructions": self.parser.ge

            } 

        ) 

        print("Finished generating the outline!\n

        return result

A BlogOutline  Pydantic object is created that contains
title  and sub_headings  keys. Also, the outline chain is set
up using LangChain expression language (LCEL) that passes the
prompt into the chat model and then finally into the output
parser:

# Set up the chain: 

self.outline_chain = self.chat_prompt | ChatOpenA

By using a Pydantic output parser, the chain will return a
BlogOutline  Pydantic object that will be used in future
chains.

Text Generation



After obtaining a summary, interview questions, and a blog post
outline, it’s time to start generating the text. The
ContentGenerator  class integrates SEO expertise with
several LLM techniques, which include the following:

Embeddings and retrieval

This efficiently splits and vectorizes original web pages,
storing them in the Chroma database and retrieving
relevent web page text while writing each section.

Custom memory

While crafting each blog section, it uses memory to avoid
repeating the same information, while also summarizing
the conversation if it becomes too long.

Bespoke context

The LLM has a mixture of information, including your
previous interview insights, what has been said before,
and snippets of relevant web page text from Google:

from article_generation import ContentGenerator 

 

content_gen = ContentGenerator( 

topic=TOPIC, outline=outline_result, 

questions_and_answers=questions_and_answers) 



 

# Vectorize and store the original webpages: 

content_gen.split_and_vectorize_documents(text_do

# Create the blog post: 

blog_post = content_gen.generate_blog_post()

All of the source code is within article_generation.py, but let’s
specifically focus on three components that are key to this
chain.

The OnlyStoreAIMemory  class is a customized subclass of
ConversationSummary BufferMemory :

from typing import List, Dict, Any 

from langchain.memory import ConversationSummaryB

 

from langchain_core.messages import SystemMessage

 

class OnlyStoreAIMemory(ConversationSummaryBuffe

    def save_context(self, inputs: Dict[str, Any

    outputs: Dict[str, str]) -> None: 

        input_str, output_str = self._get_input_o

        self.chat_memory.add_ai_message(output_st

It’s tailored to ensure that the chat messages memory remains
concise and relevant by exclusively storing AI-generated

https://oreil.ly/0IFyI


messages.

This deliberate choice bypasses storing retrieved documents
that are used within the generation step, preventing memory
bloat. Furthermore, the memory mechanism ensures the AI
remains aware of its prior writings, enabling it to offer
condensed summaries if the accumulated context surpasses set
limits.

The generate_blog_post  function loops through all of the
subheadings and tries to retrieve as many relevant documents
as possible while fitting in the current context length:

def generate_blog_post(self) -> List[str]: 

        blog_post = [] 

        print("Generating the blog post...\n---"

        for subheading in self.outline.sub_headin

            k = 5  # Initialize k 

            while k >= 0: 

                try: 

                    relevant_documents = (self.ch

                    .invoke(subheading.title, 

                    k=k)) 

                    section_prompt = f""" 

                    ...prompt_excluded_for_brevit

                    Section text:

                    """ 

l lf bl h i



                    result = self.blog_post_chain

                    blog_post.append(result) 

                    break 

                except Exception as e: 

                    print(f"An error occurred: {e

                    k -= 1 

                if k < 0: 

                    print('''All attempts to fetc

                    failed. Using an empty string

                    ''') 

                    relevant_documents = "" 

        print("Finished generating the blog post

        return blog_post

This function, generate_blog_post , iterates over each
subheading. It attempts to fetch up to five relevant documents.
If there’s an issue fetching the documents, it smartly decreases
the number and tries again. If all attempts fail, it gracefully
defaults to no documents.

Finally, the prompt for generating each section is very context
rich:

section_prompt = f"""You are currently writing th

--- 

Here are the relevant documents for this section



Here are the relevant documents for this section

If the relevant documents are not useful, you can

You must never copy the relevant documents as thi

--- 

Here are the relevant insights that we gathered f

and answers: {self.questions_and_answers}. 

You must include these insights where possible as

help our content rank better. 

--- 

You must follow the following principles: 

- You must write the section: {subheading.title} 

- Render the output in .md format

- Include relevant formats such as bullet points

--- 

Section text: 

"""

The section_prompt  elegantly sets the stage by announcing
the specific section you’re working on, using
{subheading.title} . But it doesn’t stop there. By feeding the
LLM with {relevant_documents} , it offers background and
depth, while explicitly cautioning against plagiarism. Moreover,
by including insights from your interview via
{self.questions_and_answers} , the prompt ensures that
valuable information is front and center. Finally, it sets clear
expectations on the format, the inclusion of certain features,



and the topic at hand. This makes the LLM not just a tool but an
informed coauthor, working diligently alongside you to create
content.

Writing Style

Now that the article is written, we can go a step further in terms
of making it sound uniquely human, by rewriting the content in
a specific writing style. This will go a long way in making the
content less detectable as obviously AI (though ethically you
should still declare any AI assistance) and decreasing the
amount of time you spend editing the final draft before
publishing.

Before rewriting, you need to know what writing style you
want to emulate, be it your own or someone else’s. One
common approach is to ask ChatGPT to summarize the writing
style of someone who is famous, or at least popular enough in
your industry to appear in ChatGPT’s training data. Commonly
the model will want to respond with the name of the author
and examples of writing, so adding instructions not to and
ending the prompt with a bullet point (or an -  character in this
case) will give you the format you need.



Input:

Describe in detail the writing style of Harry Dry

Do not mention the writer or source, and respond 

-

Output:

- Concise and to the point 

- Humorous and knowledgeable tone

- Relatable and accessible language 

- Uses storytelling to convey ideas 

- Relies on examples and case studies 

- Provides actionable advice and tips 

- Uses subheadings and bullet points for easy rea

- Emphasizes key points or takeaways with bold o

- Addresses the reader directly, creating a conve

Often provided only a single sample of text, ChatGPT can
generate a reasonable writing style guide, which can then be
used for rewriting. Once the writing style is defined, elements
can be mixed and matched to arrive at a more ideal style. The
following example takes elements from both Mike Taylor’s
writing style and Harry Dry’s writing style from the previous



example. This is another example of meme unbundling, as
discussed in “Meme Unbundling”:

Rewrite the article in the following style: 

 

- Concise and to the point 

- Professional and knowledgeable tone 

- Relatable and accessible language 

- Uses storytelling to convey ideas 

- Relies on examples and case studies 

- Mixes personal anecdotes with industry insights

- Provides actionable advice and tips 

- Uses subheadings and bullet points for easy rea

In practice this part of the AI writing process is the most
difficult to get right, and it’s the only one that requires the
larger and more expensive GPT-4 model to get passable results.
If this part of the process isn’t right, the user can be left doing a
lot of manual editing to get the writing in the house style. Given
the strategic importance of this prompt, it makes sense to do a
round of prompt optimization, trying multiple approaches.

When optimizing prompts you can run the same prompt
multiple times and check the average performance against an
evaluation metric. As an example, here are the results of testing

https://oreil.ly/H3VtJ


five different prompt approaches against an evaluation metric
of embedding distance. The lower the score, the closer the
embeddings of the response were to a reference answer (the
text as rewritten manually is in the correct style). The prompts
tested were as follows:

A

Control—the standard prompt as detailed in the
preceding example.

B

One-shot writing sample—we provided one sample of
text, and asked GPT-4 to describe the writing style.

C

Three-shot rewriting example—we gave three samples of
the input text to GPT-4 and the rewritten version and
asked it to describe the writing style.

D

Three-shot writing sample—same as previous, except
without the input text, only the final samples of Mike’s
writing.



These prompts were tested in an experiment we ran against
three test cases—memetics, skyscraper technique, and value-
based pricing—which were snippets of text that were first
generated by ChatGPT on a topic, for example: explain value-
based pricing. We then manually rewrote the text in the style
we desired to make reference texts for comparison. The
embedding distance was calculated by getting the embeddings
for the reference text (from OpenAI’s text-embedding-ada-
002 ) and comparing them to the embeddings for the output
from the prompt, using cosine similarity (a method for
calculating the distance between two sets of numbers), as
detailed in LangChain’s embedding evaluator (Figure 10-1).

Figure 10-1. Test results from prompt optimization

As you can see from the results in Figure 10-1, some prompts
work better than others, and some cases are easier for the AI to
deliver on. It’s important to test across multiple cases, with 10
or more runs per case, to get a realistic result for each prompt.
Otherwise, the nondeterministic nature of the responses might
mean you’ll think the performance was better or worse than

https://oreil.ly/vRRYO
https://oreil.ly/400gJ


you can actually expect when scaling up usage of a prompt.
Here was the final resulting prompt that performed best:

You will be provided with the sample text. 

Your task is to rewrite the text into a different

The writing style can be described as follows: 

1. Informative and Analytical: The writer present

about different strategies, especially the main t

down its benefits, challenges, and implementation

information shows that the writer has a solid gra

2. Structured and Organized: The writing follows 

with a brief overview of different approaches, de

the topic, and concluding with potential challeng

might be best applied. 

3. Conversational Tone with Professionalism: Whil

presented in a professional manner, the writer us

("Here’s how to implement..."), which makes it mo

readers to understand. 

4. Practical and Actionable: The writer not only 

also offers actionable advice ("Here’s how to imp

guidance based on real world-experience. 

5. Balanced Perspective: The writer doesn’t just 

topic but also discusses its challenges, which gi

perspective to readers. 

6. Examples and Analogies: To make concepts clea

concrete examples (e.g., how much a company might

analogies (e.g., making comparisons to popular f

helps readers relate to the concepts and understa



7. Direct and Clear: The writer uses straightforw

excessive jargon. Concepts are broken down into d

accessible for a broad audience, even if they're 

strategies. In essence, this writing style is a b

analysis with practical, actionable advice, writt

conversational tone.

EVALUATE QUALITY

Without testing the writing style, it would be hard to guess which prompting strategy
would win. With a small amount of testing, you can be more confident this is the
correct approach. Testing doesn’t have to be highly organized or systematized, and

the builders of many successful AI products like GitHub Copilot admit their eval
process was haphazard and messy (but it got the job done!).

In this project we’ll use this well-tested example, but you may
take this opportunity to try to beat this score. The repository
with the reference texts and code is publicly available on
GitHub, and please feel free to contribute to the repository if
you find a better approach. One potential path to try is fine-
tuning, which may get you better results in matching the
writing style if you have enough samples (OpenAI recommends
at least 50). Even if you don’t perform an A/B test (comparing
two versions of a prompt to see which one performs better) on

https://oreil.ly/vu0IU
https://oreil.ly/O6RdB
https://oreil.ly/OMMKi


this prompt, these results should convince you of the value of
testing your prompts in general.

Title Optimization

You can optimize the content’s title by generating various
options, testing them through A/B prompts, and gauging their
effectiveness with a thumbs-up/thumbs-down rating system, as
shown in Figure 10-2.

Figure 10-2. A simple thumbs-up and thumbs-down rating system

After evaluating all the prompts, you’ll be able to see which
prompt had the highest average score and the token usage
(Figure 10-3).



Figure 10-3. Example A/B test results after manually evaluating a prompt

If you still aren’t getting the level of quality you need from this
prompt, or the rest of the chain, this is a good time to
experiment with a prompt optimization framework like DSPy.
Upon defining an evaluation metric, DSPy tests different
combinations of instructions and few-shot examples in your
prompts, selecting the best-performing combination
automatically. See their documentation for examples.

AI Blog Images

One thing you can do to make your blog look more professional
is to add custom illustrations to your blog posts, with a
consistent style. At its maximum this may mean training a
Dreambooth model, as covered in Chapter 9, on your brand
style guide or a mood board of images with a certain visual
consistency or aesthetic quality you value. In many cases,

https://oreil.ly/dspy
https://oreil.ly/vercel


however, training a custom model is not necessary, because a
style can be replicated well using simple prompting.

One popular visual style among business-to-business (B2B)
companies, Corporate Memphis, is characterized by its vibrant
color palettes, bold and asymmetric shapes, and a mix of both
organic and geometric forms. This style arose as a costly
signaling technique, showing that the company could afford to
commission custom illustrations from a designer and therefore
was serious enough to be trusted. You can replicate this style
with AI, saving yourself the cost of custom illustrations, while
benefiting from the prior associations formed in consumers’
minds. Figure 10-4 shows an example of Corporate Memphis
style generated by Stable Diffusion, via the Stability AI API.

Input:

illustration of websites being linked together. 

in the style of Corporate Memphis, 

white background, professional, clean lines, warm

Figure 10-4 shows the output.

https://oreil.ly/3UHQs
https://oreil.ly/haoTZ


Figure 10-4. Corporate Memphis: “websites being linked together”

GIVE DIRECTION

Stable Diffusion is trained on many different styles, including obscure or niche styles
like Corporate Memphis. If you know the name of a style, often that’s all that’s needed
to guide the model toward the desired image. You can find a variety of art styles

within this visual prompt builder.

https://oreil.ly/nxEzu


In our blog writing project we could ask the user for an idea of
what image they want to accompany the blog post, but let’s
make it easier for them and automate this step. You can make
an API call to ChatGPT and get back an idea for what could go in
the image. When you get that response, it can form the basis of
your prompt to Stability AI, a technique called meta-prompting,
where one AI model writes the prompt for another AI model.

Input:

Describe an image that would go well at the top o

 

{text}

Output:

A seamless collage or mosaic of diverse cultural 

including traditional dances, art pieces, landma

traditional attires, symbolizing the interconnect

Stability AI hosts Stable Diffusion, including the latest models
like Stable Diffusion XL, in their DreamStudio platform. You can
also call them via API or via the Stability AI SDK (a library that
simplifies the process of making the API call). In the following

https://oreil.ly/XD_jQ


example, we’ll create a function for calling Stability AI with our
prompt.

Input:

import base64 

import os

import requests 

import uuid 

 

engine_id = "stable-diffusion-xl-1024-v1-0" 

api_host = os.getenv('API_HOST', 'https://api.sta

api_key = os.getenv("STABILITY_API_KEY") 

 

def generate_image(prompt): 

    response = requests.post( 

        f"{api_host}/v1/generation/{engine_id}/te

        headers={ 

            "Content-Type": "application/json", 

            "Accept": "application/json", 

            "Authorization": f"Bearer {api_key}" 

        }, 

        json={ 

            "text_prompts": [ 

                { 

                    "text":'''an illustration of 

                    Corporate Memphis, 

                    white background, professiona



                    colors''' 

                } 

            ], 

            "cfg_scale": 7, 

            "height": 1024, 

            "width": 1024, 

            "samples": 1, 

            "steps": 30, 

        }, 

    ) 

 

    if response.status_code != 200:

        raise Exception("Non-200 response: " + st

 

    data = response.json() 

 

    image_paths = [] 

 

    for i, image in enumerate(data["artifacts"])

        filename = f"{uuid.uuid4().hex[:7]}.png" 

        with open(filename, "wb") as f: 

            f.write(base64.b64decode(image["base6

 

        image_paths.append(filename) 

 

    return image_paths 

 

prompt = """A seamless collage or mosaic of dive



around the world, including traditional dances, a

people in various traditional attires, symbolizin

human cultures.""" 

 

generate_image(prompt)

Figure 10-5 shows the output.



Figure 10-5. A seamless collage or mosaic of diverse cultural elements from around the
world

To encapsulate the whole system for image generation, you can
bring the call to ChatGPT and the resulting call to Stability AI
together in one function that uses the
outline_result.title :



from image_generation_chain import create_image 

image = create_image(outline_result.title)

The create_image  function in image_generation_chain.py
utilizes Stable Diffusion to create an image based on a
generated title from GPT-4:

import base64 

from langchain_openai.chat_models import ChatOpen

from langchain_core.messages import SystemMessage

import os

import requests 

import uuid 

 

engine_id = "stable-diffusion-xl-1024-v1-0" 

api_host = os.getenv("API_HOST", "https://api.sta

api_key = os.getenv("STABILITY_API_KEY", "INSERT_

 

if api_key == "INSERT_YOUR_IMAGE_API_KEY_HERE": 

    raise Exception( 

        '''You need to insert your API key in the

        image_generation_chain.py file.''' 

        "You can get your API key from https://pl

    ) 

 

https://oreil.ly/cWpXH


 

def create_image(title) -> str: 

    chat = ChatOpenAI() 

    # 1. Generate the image prompt: 

    image_prompt = chat.invoke( 

        [ 

            SystemMessage(content=f"""Create an i

            that will be used for Midjourney for 

            ) 

        ] 

    ).content 

 

 

    # 2. Generate the image:: 

    response = requests.post( 

        f"{api_host}/v1/generation/{engine_id}/te

        headers={ 

            "Content-Type": "application/json", 

            "Accept": "application/json", 

            "Authorization": f"Bearer {api_key}"

        }, 

        json={ 

            "text_prompts": [ 

                { 

                    "text": f'''an illustration o

                    style of Corporate Memphis, w

                    professional, clean lines, wa

                } 



            ], 

            "cfg_scale": 7, 

            "height": 1024, 

            "width": 1024, 

            "samples": 1, 

            "steps": 30, 

        }, 

    ) 

 

    if response.status_code != 200:

        raise Exception("Non-200 response: " + st

 

    data = response.json() 

    image_paths = [] 

 

    for i, image in enumerate(data["artifacts"])

        filename = f"{uuid.uuid4().hex[:7]}.png" 

        with open(filename, "wb") as f: 

            f.write(base64.b64decode(image["base6

        image_paths.append(filename) 

    return image_paths

Here’s the high-level process:

1. With the ChatOpenAI  model, you’ll craft an image prompt
for your given title .



2. Using the Stability AI API, you’ll send this prompt to
generate an image with precise styling instructions.

3. Then you’ll decode and save this image locally using a
unique filename and return its path.

With these steps, you’re not just prompting the AI to create
textual content, but you’re directing it to bring your prompts to
life visually.

This system is flexible based on whatever style you decide to
use for blog images. Parameters can be adjusted as needed, and
perhaps this API call can be replaced in future with a call to a
custom fine-tuned Dreambooth model of your own. In the
meantime, however, you have a quick and easy way to generate
a custom image for each blog post, without requiring any
further input from the user, in a consistent visual style.

User Interface

Now that you have your script working end to end, you
probably want to make it a little easier to work with, and
maybe even get it into the hands of people who can give you
feedback. The frontend of many AI tools in production is
typically built using JavaScript, specifically the NextJS

https://nextjs.org/


framework based on React. This is usually paired with a CSS
library such as Tailwind CSS, which makes rapid prototyping of
design elements easier.

However, most of your AI code is likely in Python at this stage,
and switching programming languages and development
environments can be a daunting challenge. As well as learning
JavaScript, NextJS, and Tailwind, you may also run into a series
of issues getting a server running for your Python code, and a
database live for your application and user data, and then
integrating all of that with a frontend web design.

Instead of spending a lot of time spinning up servers, building
databases, and adjusting button colors, it might make sense to
create a simple prototype frontend to get early feedback, before
investing too much at this stage in an unproven idea. Once you
have built and tested a simple interface, you’ll have a better
understanding of what to build when you do need to get your
app production-ready.

For launching simple user interfaces for AI-based prototypes,
there are several popular open source interfaces, including
gradio and Streamlit. Gradio was acquired by HuggingFace and
powers the web user interface for many interactive demos of
open source AI models, famously including the

https://tailwindcss.com/
https://www.gradio.app/
https://streamlit.io/


AUTOMATIC1111 Stable Diffusion Web UI. You can quickly build
a Gradio interface to make it easier to run your code locally, as
well as sharing the prototype to get feedback.

We’ve created an interface that allows you to automate the
entire process within two steps. You can get access to the gradio
source code here.

Then run the gradio application by going into the chapter_10
folder within your terminal and running python3
gradio_code_example.py . The script will ask you to enter a
SERPAPI_API_KEY  and a STABILITY_API_KEY  in your
terminal.

Then you can access the gradio interface as shown in Figure 10-
6.

https://oreil.ly/GlwJT
https://oreil.ly/HNqVX
https://oreil.ly/chapter10


Figure 10-6. Gradio user interface



When you run gradio, you get an inline interface you can use
directly or a URL that you can click to open the web interface in
your browser. If you run gradio with the parameter
share=True , for example demo.launch(share=True) , you
get a publicly accessible link to share with friends, coworkers,
or early users to get feedback on your prototype.

After initializing the interface, input a topic by clicking the
Summarize and Generate Questions button. This will then
collect and summarize the Google results as well as generate
interview questions.

You’ll then need to fill in the answers for each question. Finally,
click the Generate Blog Post & Image button, which will take all
the questions, answers, and summaries and will create an
entire blog post and image using GPT-4!

EVALUATE QUALITY

The most valuable evaluation data in AI is human feedback, as it has been the key to
many AI alignment breakthroughs, including those that power ChatGPT. Asking for
feedback from users via a user interface, or even building feedback mechanisms into

your product, helps you identify and fix edge cases.

If you are building for research purposes or want to contribute
to the open source community, consider sharing your gradio



demo on Hugging Face Spaces. Hugging Face Spaces allows
anyone to host their gradio demos freely, and uploading your
project only takes a few minutes. New spaces can be created via
the Hugging Face website, or done programmatically using the
Hugging Face API.

Summary

Congratulations! You’ve journeyed through the comprehensive
world of prompt engineering for generative AI. You started with
learning the prompt engineering principles and explored the
historical context of LLMs, gaining awareness of their
capabilities and the privacy concerns they pose.

You learned how to extract structured data, apply best practices
of prompt engineering, and familiarize yourself with an LLM
package called LangChain. Then you discovered vector
databases for storing and querying text based on similarity and
ventured into the world of autonomous agents.

Also, you immersed yourself in image generation techniques
using diffusion models, learning how to navigate through this
latent space. Your journey covered everything from format
modifiers and art-style replication to inpainting and

https://oreil.ly/pSrP3


outpainting techniques. Moreover, you explored more advanced
usage cases such as prompt expansion, meme mapping, and
CLIP Interrogator, alongside many others.

Finally, you transitioned toward utilizing prompt engineering
for content writing. You learned about creating a blog writing
service that generates posts based on user responses,
mimicking their writing styles, along with topic research
strategies.

Overall, this journey not only enriched your knowledge but also
equipped you with practical skills, setting you up to work
professionally in the field of prompt engineering.

It’s been our pleasure to guide you through the wide domain of
prompt engineering for generative AI. Thank you for staying
with us to the end of this book. We trust it will become a useful
tool in all your future work with AI.

We would also greatly appreciate hearing your thoughts about
the book, as well as any remarkable projects you create using
the techniques we’ve discussed.

Please feel free to share your feedback or showcase your work
by emailing us at hi@brightpool.dev. Once again, thank you!

mailto:hi@brightpool.dev


Your curiosity and perseverance are what shapes the future of
this exciting field, and we can’t wait to see what you contribute.

Happy prompting!
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AI is a screaming hairy armadillo (Chaetophractus vellerosus).
This species of armadillo gets it name due to its habit of
squealing, or screaming, when it is handled or threatened.

The screaming hairy armadillo resides in arid areas, specifically
in regions in Argentina, Bolivia, and Paraguay. This animal
prefers subtropical or tropical regions such as dry forests,
scrubland, grassland, and deserts. White and light brown hair
cover the animal’s limbs and belly. A caparace, a thick armor
made of keratin, covers the animal’s body, a shield covers its
head, and a small band exists between its ears. The animal
typically reaches 12 to 22 inches in length, including its tail, and
weighs less than 2 pounds, with male armadillos generally
being larger than females.

The screaming hairy armadillo is an omnivore, eating small
vertebrates such as frogs, toads, lizards, birds, and rodents, as
well as fruits and vegetation. It can go long periods of time
without drinking water.

Although the IUCN Red List designates the screaming hairy
armadillo as Least Concern, it is heavily hunted in parts of
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