

Pro Spring Security
Securing Spring Framework 6

and Boot 3-based Java Applications

Third Edition

Massimo Nardone
Carlo Scarioni

Pro Spring Security: Securing Spring Framework 6 and Boot 3–based Java
Applications, Third Edition

ISBN-13 (pbk): 979-8-8688-0034-4		 ISBN-13 (electronic): 979-8-8688-0035-1
https://doi.org/10.1007/979-8-8688-0035-1

Copyright © 2024 by Massimo Nardone, Carlo Scarioni

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Duffy
Development Editor: Laura Berendson
Coordinating Editor: Gryffin Winkler
Copy Editor: Kim Burton

Cover designed by eStudioCalamar

Cover image by Manuel Torres Garcia from Pixabay

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit https://www.
apress.com/gp/services/source-code.

Paper in this product is recyclable

Massimo Nardone
HELSINKI, Finland

Carlo Scarioni
Surbiton, UK

https://doi.org/10.1007/979-8-8688-0035-1

I would like to dedicate this book to the memory of my beloved late
mother, Maria Augusta Ciniglio. Thanks, Mom, for all the great things

you have taught me, for making me a good person, for making me
study to become a computing scientist, and for the great memories you

left me. You will be loved and missed forever. I love you, Mom. RIP.

—Massimo

v

Table of Contents

About the Authors��� ix

About the Technical Reviewer�� xi

Acknowledgments�� xiii

Introduction��xv

Chapter 1: �The Scope of Security�� 1

The Network Security Layer��� 4

The Operating System Layer�� 5

The Application Layer��� 5

Authentication�� 6

Authorization�� 7

ACLs��� 9

Authentication and Authorization: General Concepts��� 9

What to Secure�� 14

Additional Security Concerns��� 15

Java Options for Security��� 17

Summary��� 19

Chapter 2: �Introducing Spring Security��� 21

What Is Spring Security?�� 21

Where Does Spring Security Fit In?��� 23

Spring Security Overview�� 26

What Is Spring Boot?�� 28

Spring Framework 6: A Quick Overview��� 29

JDK 17+ and Jakarta EE 9+ Baseline�� 30

General Core Revision�� 30

https://doi.org/10.1007/979-8-8688-0035-1_1
https://doi.org/10.1007/979-8-8688-0035-1_1#Sec1
https://doi.org/10.1007/979-8-8688-0035-1_1#Sec2
https://doi.org/10.1007/979-8-8688-0035-1_1#Sec3
https://doi.org/10.1007/979-8-8688-0035-1_1#Sec4
https://doi.org/10.1007/979-8-8688-0035-1_1#Sec5
https://doi.org/10.1007/979-8-8688-0035-1_1#Sec6
https://doi.org/10.1007/979-8-8688-0035-1_1#Sec7
https://doi.org/10.1007/979-8-8688-0035-1_1#Sec8
https://doi.org/10.1007/979-8-8688-0035-1_1#Sec9
https://doi.org/10.1007/979-8-8688-0035-1_1#Sec10
https://doi.org/10.1007/979-8-8688-0035-1_1#Sec11
https://doi.org/10.1007/979-8-8688-0035-1_2
https://doi.org/10.1007/979-8-8688-0035-1_2#Sec1
https://doi.org/10.1007/979-8-8688-0035-1_2#Sec2
https://doi.org/10.1007/979-8-8688-0035-1_2#Sec3
https://doi.org/10.1007/979-8-8688-0035-1_2#Sec4
https://doi.org/10.1007/979-8-8688-0035-1_2#Sec5
https://doi.org/10.1007/979-8-8688-0035-1_2#Sec6
https://doi.org/10.1007/979-8-8688-0035-1_2#Sec7

vi

Core Container�� 30

Data Access and Transactions�� 31

Spring Messaging��� 32

General Web Revision��� 32

Spring MVC��� 32

Spring WebFlux��� 32

Observability��� 33

Pattern Matching�� 33

Testing�� 34

Dependency Injection��� 34

Aspect-Oriented Programming��� 36

What’s New in Spring Security 6?�� 38

Summary��� 44

Chapter 3: �Setting up the Scene�� 45

Setting up the Development Environment��� 45

Creating a New Java Web Application Project��� 52

Adding Spring Security 6 to the Java Project�� 57

Spring Security 6 Source�� 58

Configuring the Spring Security 6 Web Project�� 65

Summary��� 74

Chapter 4: �Spring Security Architecture and Design��� 75

What Components Make up Spring Security?�� 75

The 10,000-Foot View��� 75

The 1,000-Foot View��� 76

The 100-Foot View�� 77

Good Design and Patterns in Spring Security�� 116

Strategy Pattern��� 117

Decorator Pattern��� 117

SRP��� 118

DI�� 118

Summary��� 118

Table of Contents

https://doi.org/10.1007/979-8-8688-0035-1_2#Sec8
https://doi.org/10.1007/979-8-8688-0035-1_2#Sec9
https://doi.org/10.1007/979-8-8688-0035-1_2#Sec10
https://doi.org/10.1007/979-8-8688-0035-1_2#Sec11
https://doi.org/10.1007/979-8-8688-0035-1_2#Sec12
https://doi.org/10.1007/979-8-8688-0035-1_2#Sec13
https://doi.org/10.1007/979-8-8688-0035-1_2#Sec14
https://doi.org/10.1007/979-8-8688-0035-1_2#Sec15
https://doi.org/10.1007/979-8-8688-0035-1_2#Sec16
https://doi.org/10.1007/979-8-8688-0035-1_2#Sec17
https://doi.org/10.1007/979-8-8688-0035-1_2#Sec18
https://doi.org/10.1007/979-8-8688-0035-1_2#Sec19
https://doi.org/10.1007/979-8-8688-0035-1_2#Sec20
https://doi.org/10.1007/979-8-8688-0035-1_3
https://doi.org/10.1007/979-8-8688-0035-1_3#Sec1
https://doi.org/10.1007/979-8-8688-0035-1_3#Sec2
https://doi.org/10.1007/979-8-8688-0035-1_3#Sec3
https://doi.org/10.1007/979-8-8688-0035-1_3#Sec4
https://doi.org/10.1007/979-8-8688-0035-1_3#Sec5
https://doi.org/10.1007/979-8-8688-0035-1_3#Sec6
https://doi.org/10.1007/979-8-8688-0035-1_4
https://doi.org/10.1007/979-8-8688-0035-1_4#Sec1
https://doi.org/10.1007/979-8-8688-0035-1_4#Sec2
https://doi.org/10.1007/979-8-8688-0035-1_4#Sec3
https://doi.org/10.1007/979-8-8688-0035-1_4#Sec4
https://doi.org/10.1007/979-8-8688-0035-1_4#Sec20
https://doi.org/10.1007/979-8-8688-0035-1_4#Sec21
https://doi.org/10.1007/979-8-8688-0035-1_4#Sec22
https://doi.org/10.1007/979-8-8688-0035-1_4#Sec23
https://doi.org/10.1007/979-8-8688-0035-1_4#Sec24
https://doi.org/10.1007/979-8-8688-0035-1_4#Sec25

vii

Chapter 5: �Web Security�� 121

Configuring the new Spring Security 6 Project�� 126

The Special URLs��� 142

Custom Login Form�� 143

Basic HTTP Authentication��� 150

Digest Authentication��� 152

Remember-Me Authentication�� 155

Logging Out�� 158

Session Management��� 161

Summary��� 167

Chapter 6: �Configuring Alternative Authentication Providers������������������������������� 169

LDAP Authentication��� 185

Using an Embedded LDAP�� 186

X.509 Authentication�� 198

OAuth 2.0��� 200

JSON Web Token�� 201

Spring WebSocket�� 202

Java Authentication and Authorization Service�� 203

Central Authentication Service��� 203

Summary��� 204

Chapter 7: �Business Object Security with ACLs�� 205

ACL Key Concepts�� 205

Summary��� 210

Chapter 8: �Open Authorization 2.0 (OAuth 2.0) and Spring Security��������������������� 211

An Introduction to OAuth 2.0�� 211

OAuth 2.0 Security�� 213

Integrating OAuth 2.0 with Spring Security�� 214

OAuth 2.0 Login�� 217

Summary��� 238

Table of Contents

https://doi.org/10.1007/979-8-8688-0035-1_5
https://doi.org/10.1007/979-8-8688-0035-1_5#Sec1
https://doi.org/10.1007/979-8-8688-0035-1_5#Sec2
https://doi.org/10.1007/979-8-8688-0035-1_5#Sec3
https://doi.org/10.1007/979-8-8688-0035-1_5#Sec4
https://doi.org/10.1007/979-8-8688-0035-1_5#Sec5
https://doi.org/10.1007/979-8-8688-0035-1_5#Sec6
https://doi.org/10.1007/979-8-8688-0035-1_5#Sec7
https://doi.org/10.1007/979-8-8688-0035-1_5#Sec8
https://doi.org/10.1007/979-8-8688-0035-1_5#Sec9
https://doi.org/10.1007/979-8-8688-0035-1_6
https://doi.org/10.1007/979-8-8688-0035-1_6#Sec1
https://doi.org/10.1007/979-8-8688-0035-1_6#Sec2
https://doi.org/10.1007/979-8-8688-0035-1_6#Sec3
https://doi.org/10.1007/979-8-8688-0035-1_6#Sec4
https://doi.org/10.1007/979-8-8688-0035-1_6#Sec5
https://doi.org/10.1007/979-8-8688-0035-1_6#Sec6
https://doi.org/10.1007/979-8-8688-0035-1_6#Sec7
https://doi.org/10.1007/979-8-8688-0035-1_6#Sec8
https://doi.org/10.1007/979-8-8688-0035-1_6#Sec9
https://doi.org/10.1007/979-8-8688-0035-1_7
https://doi.org/10.1007/979-8-8688-0035-1_7#Sec1
https://doi.org/10.1007/979-8-8688-0035-1_7#Sec2
https://doi.org/10.1007/979-8-8688-0035-1_8
https://doi.org/10.1007/979-8-8688-0035-1_8#Sec1
https://doi.org/10.1007/979-8-8688-0035-1_8#Sec2
https://doi.org/10.1007/979-8-8688-0035-1_8#Sec3
https://doi.org/10.1007/979-8-8688-0035-1_8#Sec4
https://doi.org/10.1007/979-8-8688-0035-1_8#Sec5

viii

Chapter 9: �JSON Web Token (JWT) Authentication�� 239

The REST API�� 239

Introduction to JSON Web Token�� 242

Summary��� 279

�Index�� 281

Table of Contents

https://doi.org/10.1007/979-8-8688-0035-1_9
https://doi.org/10.1007/979-8-8688-0035-1_9#Sec1
https://doi.org/10.1007/979-8-8688-0035-1_9#Sec2
https://doi.org/10.1007/979-8-8688-0035-1_9#Sec3

ix

About the Authors

Massimo Nardone has more than 27 years of experience

in information and cybersecurity for IT/OT/IoT/IIoT,

web/mobile development, cloud, and IT architecture. His

true IT passions are security and Android. He has been

programming and teaching how to program with Android,

Perl, PHP, Java, VB, Python, C/C++, and MySQL for more

than 27 years. He holds an MSc degree in computing

science from the University of Salerno, Italy. Throughout

his working career, he has held various positions, starting

as a programming developer, then security teacher, PCI

QSA, auditor, assessor, lead IT/OT/SCADA/SCADA/

cloud architect, CISO, BISO, executive, program director, and OT/IoT/IIoT security

competence leader.

In his last working engagement, he worked as a seasoned cyber and information

security executive, CISO and OT, IoT and IIoT Security competence Leader, helping

many clients to develop and implement Cyber, Information, OT, and IoT security

activities.

His technical skills include security, OT/IoT/IIoT, Android, cloud, Java, MySQL,

Drupal, Cobol, Perl, web and mobile development, MongoDB, D3, Joomla!, Couchbase,

C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll, and Scratch. He has served as a

visiting lecturer and exercises supervisor at the Helsinki University of Technology (Aalto

University) Networking Laboratory.

He stays current with industry and security trends and is a board member of the

ISACA Finland chapter, ISF, the Nordic CISO Forum, and the Android Global Forum.

He holds four international patents (PKI, SIP, SAML, and Proxy areas). He currently

works as a cybersecurity freelancer for IT/OT and IoT. Massimo has reviewed more than

55 IT books for different publishers and has coauthored Pro JPA 2 in Java EE 8 (Apress,

2018), Beginning EJB in Java EE 8 (Apress, 2018), and Pro Android Games (Apress, 2015).

x

Carlo Scarioni is a passionate software developer, motivated

by learning and applying innovative and interesting software

development tools, techniques, and methodologies. He

has worked in the field for more than 18 years and moved

across multiple languages, paradigms, and subject areas.

He also has many years of experience working with Java

and its ecosystem. He has been in love with Spring since

the beginning, and he is fascinated by how Spring allows

building complex applications out of discrete, focused

modules and by the clever use of decorators to add cross-

cutting functionalities. He has worked mostly with data

engineering solutions in the last few years. He has been creating solutions around the

use of modern data stack components in cloud environments while at the same time

developing software using technologies such as Spark, Python, and others. 

About the Authors

xi

About the Technical Reviewer
Mario Faliero is a telecommunication engineer and

entrepreneur. He has more than ten years of experience in

radio frequency hardware engineering. Mario has extensive

experience in numerical coding, using scripting languages

(MatLab, Python) and compiled languages (C/C++, Java).

He has been responsible for developing electromagnetic

assessment tools for space and commercial applications.

Mario received his master’s degree from the University

of Siena.

xiii

Acknowledgments

Many thanks go to my wonderful family for supporting me while I was working on this

book. Luna, Leo, and Neve, you are the most beautiful reason of my life.

I want to thank my beloved late mother, Maria Augusta Ciniglio, who always

supported and loved me so much. I will love and miss you forever, my dearest mom.

Thanks to my beloved father, Giuseppe, and my brothers, Mario and Roberto, for

your endless love and for being the best dad and brothers in the world.

Many thanks to Melissa Duffy for giving me the opportunity to work as a writer on

this book, Shonmirin P. A. for doing such a great job during the editorial process and

supporting me, and Laura Berendson, development editor, for helping me to make it a

better book.

—Massimo Nardone

xv

Introduction

Denying the impact of the Spring Framework in the Java world would be simply

impossible. Spring has brought so many advantages to Java developers that we could say

it has made us all better developers.

The previous version of this book utilized Spring Security 5. Therefore, in this new

edition of the book, it is very important to note the most important changes from version

5 to version 6.

Spring Framework 6.0 was released on November 16, 2022. It came with a Java

17+ baseline and a move to Jakarta EE 9+ (in the Jakarta namespace), focusing on

the recently released Jakarta EE 10 APIs such as Servlet 6.0 and JPA 3.1. Spring’s

current version’s core building blocks of dependency injection and aspect-oriented

programming widely apply to many business and infrastructure concerns. Certainly,

application security can benefit from these core functionalities. Even in version 6, Spring

Security is an application-level security framework built on top of the powerful Spring

Framework that deals mainly with the core security concepts of authentication and

authorization, which, also in version 6, are some of the fundamental functionalities of

Spring Security.

Spring Security aims to be a full-featured security solution for your Java applications.

Although its focus is on web applications and the Java programming language, you will

see that it goes beyond these two domains.

Because there are new things in the version, the baseline for Spring Boot 3 and

Spring Security 6 is Java 17.

Also, the WebSecurityConfigurerAdapter class to configure security settings was

deprecated in version 6, using a more component-based approach and creating a bean

of type SecurityFilterChain.

AuthorizeRequests was also deprecated and replaced with authorizeHttpRequests,

and in Spring Security 6, AntMatcher, MvcMatcher, and RegexMatcher were deprecated

and replaced by requestMatchers or securityMatchers for path-based access control.

Also, in version 6, some updates were done using OAuth 2.0 and SAML 2.0.

xvi

In writing this book, we wanted to expose some of Spring Security’s internal works

along with standard explanations of how to use certain features. The idea is to teach

beyond the basics of how to do something in particular and instead focus on the

plumbing inside the framework. This is the best way to learn something: seeing how it

is built in the core. That’s not to say that the book doesn’t cover basic setups and gives

quick, practical advice on using the framework because it certainly does. The point is

that instead of saying, “Use this to do that,” we say, “This works like this… and this allows

you to….” This is a point of view that only tools like Spring can afford (because they are

open source).

With that said, we suggest that the best way to use this book is to have the Spring

Security source code checked out on your computer and go through the examples

with both the code from the book and the code from Spring Security itself. This will

help you understand each concept as it is introduced and teach more than one good

programming trick and good practice. We recommend this approach for studying

any software whenever you have the chance. If the source code is out there, grab it.

Sometimes, a couple of lines of code teach more than a thousand words. This book

primarily introduces Spring Boot 3, analyzes Spring Framework, and develops Java web

applications with Spring Security 6 and Java 17/20.

Also, Spring Security 6 supports many different authentication mechanisms, which

are introduced and developed in this book, including the H2 and PostgreSQL databases,

LDAP, X.509, OAuth 2.0, JWT, JAAS, and CAS.

�Who This Book Is For
This book is written mainly for Java developers who use Spring in their work and need to

add security to their applications in a way that leverages Spring’s proven concepts and

techniques. The book will also be helpful to developers who want to add web-layer security

to their applications, even if those applications are not fully Spring-powered at their core.

The book assumes you have knowledge of Java and some of its tools and libraries, such

as Servlet, Maven, OAuth 2.0, and JWT. It also assumes that you know what you want to

use security for and in what context you want to use it. This means, for example, we won’t

explain protocols like LDAP in depth; instead, we’ll concentrate on showing you how to

integrate Spring Security with an LDAP user store. An in-depth knowledge of Spring is not

essential because many of the concepts are introduced as we go along, but the more you

understand about Spring, the more likely you are to get out of this book.

Introduction

xvii

�How This Book Is Structured
The book is divided into nine chapters that embody a progressive study of Spring

Security. Starting from a summary of basic applications and an explanation of how the

framework is structured, the content moves on to more advanced topics, such as using

Spring Security in different JVM languages. The book follows a sequence corresponding

to how this framework is normally used in real life.

The chapters in the book cover the following.

•	 Chapter 1 introduces security in general and how to approach

security problems at the application level.

•	 Chapter 2 introduces Spring Security 6, how to use it, when to use it,

and its security functionalities.

•	 Chapter 3 introduces Spring Security with a simple example

application that secures web access at the URL level.

•	 Chapter 4 provides a full introduction to the architecture of Spring

Security, including the main components and how they interact with

each other.

•	 Chapter 5 gives in-depth coverage of the web-layer security options

available in Spring Security.

•	 Chapter 6 covers a wide array of authentication providers, including

H2 DB, LDAP, and JASS, which can be plugged into Spring Security.

•	 Chapter 7 covers access control lists (ACLs), which are used to

secure individual domain objects, and how they fit into the general

security concerns.

•	 Chapter 8 explains how to develop an application using Open

Authorization 2.0 (OAuth 2.0) Login and Spring Security

Customization.

•	 Chapter 9 shows how to integrate Spring Security into JSON Web

Token (JWT) authentication.

Introduction

https://doi.org/10.1007/979-8-8688-0035-1_1
https://doi.org/10.1007/979-8-8688-0035-1_2
https://doi.org/10.1007/979-8-8688-0035-1_3
https://doi.org/10.1007/979-8-8688-0035-1_4
https://doi.org/10.1007/979-8-8688-0035-1_5
https://doi.org/10.1007/979-8-8688-0035-1_6
https://doi.org/10.1007/979-8-8688-0035-1_7
https://doi.org/10.1007/979-8-8688-0035-1_8
https://doi.org/10.1007/979-8-8688-0035-1_9

xviii

�Prerequisites
The examples in this book are all built with Java 17 and Maven 3.9.2. The latest Spring

versions are used if possible. Spring Security 6 is the version used throughout the book.

Tomcat Web Server 10 is used for the different web applications in the book, mainly

through its Maven plugin. The laptop is a ThinkPad Yoga 360 with 8 GB of RAM. All the

projects were developed using IntelliJ IDEA Ultimate 2023.2.

You are free to use your own tools and operating system. Because everything is Java-

based, you should be able to compile your programs on any platform without problems.

�Downloading the Code
Any source code or other supplementary material referenced by the author in this book

is available to readers on GitHub (https://github.com/Apress). For more detailed

information, please visit www.apress.com/gp/services/source-code.

�Contacting the Authors
You are more than welcome to send us any feedback regarding this book or any other

subject we might help you with. You can contact Massimo Nardone via email at

massimonardonedevchannel@gmail.com and Carlo Scarioni via his blog at http://

cscarioni.blogspot.com, or you can send him email at carlo.scarioni@gmail.com.

Introduction

https://github.com/Apress
http://www.apress.com/gp/services/source-code
http://massimonardonedevchannel@gmail.com
http://cscarioni.blogspot.com
http://cscarioni.blogspot.com

1

CHAPTER 1

The Scope of Security
Security. It is an incredibly overloaded word in the IT, OT, and IoT world. It means so

many different things in many different contexts, but in the end, it is all about protecting

sensitive and valuable resources against malicious usage.

IT has many layers of infrastructure and code that can be subject to malicious

attacks, and arguably, you should ensure that all these layers get the appropriate levels of

protection.

In operational technology (OT), where generally the systems were isolated from

the external networks and operated independently, the increasing connectivity and

integration of OT systems with information technology (IT) networks and the Internet,

the risk of cyberattacks targeting these systems has significantly grown. OT security aims

to address these risks and protect against threats that could disrupt operations, cause

physical damage, or impact public safety.

In the Internet of Things (IoT), security refers to the measures and practices

implemented to protect the interconnected devices, networks, and data associated with

IoT systems, such as networks of physical objects or “things” embedded with sensors,

software, and connectivity to exchange data and perform various tasks. These objects

range from household appliances and wearable devices to industrial machinery and

infrastructure. Given the proliferation of IoT devices and their increasing integration into

various domains, securing IoT systems is critical to mitigate potential risks and protect

the privacy, integrity, and availability of their data and services.

The growth of the Internet and the pursuit of reaching more people with our

applications have opened more doors to cyber criminals trying to access these

applications illegitimately.

It is also true that good care is not always taken to ensure that a properly secured set

of services is offered to the public. And sometimes, even when good care is taken, some

hackers are still smart enough to overcome security barriers that, superficially, appear

adequate.

The first step is to define a defense-in-depth strategy and security layers.

© Massimo Nardone, Carlo Scarioni 2024
M. Nardone and C. Scarioni, Pro Spring Security, https://doi.org/10.1007/979-8-8688-0035-1_1

https://doi.org/10.1007/979-8-8688-0035-1_1#DOI

2

Defense in depth (also known as DiD) is a security strategy that involves

implementing multiple layers of defense to protect a system or network from

potential threats. It aims to provide a comprehensive and resilient security posture by

incorporating various security measures at different levels, such as physical, technical,

and administrative controls.

The defense-in-depth concept recognizes that no single security measure is fool-

proof, and relying on a single layer of defense can leave vulnerabilities. By employing

multiple layers, other layers can still provide protection even if one is breached or

compromised.

In practice, a defense-in-depth strategy can include a combination of measures such

as firewalls, intrusion detection systems, encryption, access controls, strong authentication

mechanisms, security awareness training, regular system updates and patching, network

segmentation, and physical security measures like locked doors and security cameras.

These layers collectively create a more robust and resilient security infrastructure.

The goal of a defense-in-depth strategy is to increase the difficulty for attackers,

making it harder for them to penetrate a system and move deeper into the network.

Requiring attackers to overcome multiple barriers increases the likelihood of detection

and mitigation, reducing the potential impact of a successful attack. Overall, it is a

proactive approach to security that emphasizes multiple layers of protection, reducing

the risk of successful attacks and minimizing the potential damage they can cause.

In general, a defense-in-depth strategy is a way to define how to develop the

cybersecurity of the IT infrastructure by defining how all the defensive mechanisms are

layered to protect and secure data and information. A failing or weak defense-in-depth

strategy might result from a cybersecurity attack on the IT infrastructure.

Let’s try to understand a bit more about defense-in-depth mechanisms. First, there

are three major controls.

•	 Physical controls are security measures that aim to protect the

physical infrastructure and assets. They include surveillance

cameras, access controls (such as locks and biometric systems),

perimeter fencing, security guards, and intrusion detection systems.

•	 Perimeter security focuses on securing the boundary between the

internal network and the external environment. It involves firewalls,

intrusion prevention systems (IPS), and demilitarized zones (DMZs)

to filter and monitor network traffic, control access, and prevent

unauthorized entry.

Chapter 1 The Scope of Security

3

•	 Network security measures aim to protect the internal network

infrastructure. They include technologies such as network

segmentation, virtual private networks (VPNs), intrusion detection

systems (IDS), and IPS to detect and prevent unauthorized access,

monitor network traffic, and detect and respond to potential threats.

•	 Identity and access management (IAM) controls ensure that only

authorized individuals can access systems and resources. This

includes strong authentication mechanisms like passwords, two-

factor authentication (2FA), multi-factor authentication, access

control policies, and privilege management to enforce least privilege

principles.

•	 Application security focuses on securing the software and

applications used within an organization. This involves

implementing secure coding practices, regular vulnerability

assessments and penetration testing, web application firewalls

(WAFs), and application-level authentication and authorization

mechanisms.

•	 Data encryption protects data by transforming it into a secure format

that can only be accessed with the correct decryption key. It is used

to secure data at rest (stored data) and in transit (data transmitted

over networks).

•	 Security monitoring and incident response involve continuous

monitoring of systems and networks, which is crucial to detecting

and responding to security incidents. This includes using security

information and event management (SIEM) tools, log analysis,

IDS, and incident response plans to promptly identify and mitigate

potential threats.

•	 Security awareness and training includes educating employees

and users about security best practices and potential threats is vital.

Regular security awareness training helps individuals understand

their role in maintaining a secure environment and enables them to

identify and report suspicious activities.

Chapter 1 The Scope of Security

4

By combining these major controls, organizations can establish a multi-layered

defense-in-depth security approach that provides and increases overall resilience

against various threats.

Figure 1-1 shows typical defense-in-depth mechanisms defining IT infrastructure

security layers.

Figure 1-1.  Defense-in-depth mechanisms and IT infrastructure layers

The three major security layers in an IT infrastructure are the network, the operating

system (part of the endpoint security layer), and the application itself.

�The Network Security Layer
The network security layer is probably the most familiar one in the IT world. When

people talk about IT security, they normally think of network-level security—in

particular, security that uses firewalls.

Even though people often associate security with the network level, this is only a

very limited layer of protection against attackers. Generally speaking, it can do no more

than defend IP addresses and filter network packets addressed to certain ports in certain

machines in the network.

Chapter 1 The Scope of Security

5

This is not enough in most cases, as traffic at this level is normally allowed to enter

the publicly open ports of your various exposed services without restriction. Different

attacks can be targeted at these open services, as attackers can execute arbitrary

commands that could compromise your security constraints. Tools like the popular nmap

(http://nmap.org/) can scan a machine to find open ports. Using such tools is an easy

first step in preparing an attack because well-known attacks can be used against such

open ports if they are not properly secured.

A very important part of the network-layer security, in the case of web applications,

is the use of Secure Sockets Layer (SSL) to encode all sensitive information sent along

the wire, but this is related more to the network protocol at the application level than to

the network physical level at which firewalls operate.

�The Operating System Layer
The operating system layer is probably the most important one in the whole security

schema, as a properly secured operating system (OS) environment can at least prevent a

whole host machine from going down if a particular application is compromised.

If an attacker is somehow allowed to have unsecured access to the operating system,

they can basically do whatever they want—from spreading viruses to stealing passwords

or deleting your whole server’s data and making it unusable. Even worse, they could

take control of your computer without you even noticing and use it to perform other

malicious acts as part of a botnet. This layer can include the deployment model of the

applications since you need to know your operating system’s permission scheme to

ensure that you don’t give your applications unnecessary privileges over your machine.

Applications should run as isolated as possible from the other components of the host

machine.

�The Application Layer
The primary focus of this book is on the application layer. The application security layer

refers to all the constraints you establish in your applications to make sure that only the

right people can do the right things when working through the application.

Chapter 1 The Scope of Security

http://nmap.org/

6

Applications, by default, are open to countless avenues of attack. An improperly

secured application can allow an attacker to steal information from the application,

impersonate other users, execute restricted operations, corrupt data, gain access to the

operating system level, and perform many other malicious acts.

This book covers application-level security, which is the domain of Spring Security.

Application-level security is achieved by implementing several techniques, and there

are a few concepts that help you understand better what the book covers. They are

the main concerns that Spring Security addresses to provide your applications with

comprehensive protection against threats. The following three subsections introduce

authentication, authorization, and ACLs.

�Authentication
Authentication is the process of verifying the identity of a user or entity attempting

to access an application. It ensures that the user is who they claim to be. Common

authentication methods include the following.

•	 Username and password: Users provide a unique username and

corresponding password.

•	 Multi-factor authentication (MFA): Users provide multiple forms of

identification, such as a password and a one-time verification code

sent to their mobile device.

•	 Biometric authentication: Users verify their identity using unique

physical characteristics, such as fingerprints, facial recognition, or

iris scans.

The authentication process allows an application to validate that a particular

user is who they claim they are. In the authentication process, a user presents the

application with information about herself (normally, a username and a password) that

no one else knows. The application takes this information and tries to match it against

the information stored—normally, in a database or LDAP1 (Lightweight Directory

Access Protocol) server. If the information the user provides matches a record in the

authentication server, the user is successfully authenticated. The application normally

1 LDAP is explained in some detail in Chapter 8, where various authentication providers are
covered.

Chapter 1 The Scope of Security

https://doi.org/10.1007/979-8-8688-0035-1_8

7

creates an internal abstraction representing this authenticated user in the system.

Figure 1-2 shows the authentication mechanism.

Figure 1-2.  Simple, standard authentication mechanism

�Authorization
Authorization determines what actions or resources a user can access within an

application. Once a user is authenticated, authorization mechanisms control their

permissions based on predefined rules and policies. This ensures that users can only

access the features and data they are authorized to use. Authorization can be role-based,

attribute-based, or rule-based.

•	 Role-based access control (RBAC): Users are assigned roles,

and permissions are granted based on those roles. For example, a

manager role may access certain administrative features, while a

regular user role may only access basic functionalities.

•	 Attribute-based access control (ABAC): Access is granted based

on specific attributes or characteristics of the user, such as job title,

department, or location.

Chapter 1 The Scope of Security

8

•	 Rule-based access control: Access control rules are defined based

on predefined conditions or criteria. For example, granting access

during specific timeframes or based on certain data conditions.

When a user is authenticated, that only means that the user is known to the system

and has been recognized by it. It doesn’t mean that the user is free to do whatever she

wants in said system. The next logical step in securing an application is determining

which actions the user can perform and which resources she can access. If the user

doesn’t have the proper permissions, she cannot carry out that particular action. This

is the work of the authorization process. In the most common case, the authorization

process compares the user’s set of permissions against the permissions required

to execute a particular action in the application, and if a match is found, access is

granted. On the other hand, if no match is found, access is denied. Figure 1-3 shows the

authorization mechanism.

Figure 1-3.  Simple authorization process: the authenticated user tries to access a
secured resource

Chapter 1 The Scope of Security

9

�ACLs
An access control list (ACL) manages access rights and permissions to specific resources

or objects within an application. It is typically used in conjunction with authorization.

An ACL defines who has access to a particular resource and what actions they can

perform on that resource. It consists of a list of users or groups and their corresponding

permissions (read, write, execute, etc.) for specific resources.

ACLs are part of the authorization process explained in the previous section. The key

difference is that ACLs normally work at a finer-grained level in the application. ACLs

are a collection of mappings between resources, users, and permissions. With ACLs, you

can establish rules like “User John has administrative permission on the blog post X” or

“User Luis has read permission on blog post X.” You can see the three elements: user,

permission, and resource. Figure 1-3 shows how ACLs work; they are just a special case

of the general authorization process.

�Authentication and Authorization: General Concepts
This section introduces and explains fundamental security concepts that you will come

across frequently in the book.

•	 User: The first step in securing a system from malicious attackers is

identifying legitimate users and allowing access to them alone. User

abstractions are created in the system and given their own identity.

They are the users that are later allowed to use the system.

•	 Credentials: Credentials are the way a user proves who they are.

Normally, in the shape of passwords (certificates are also a common

way of presenting credentials), they are data that only the owner of

it knows.

•	 Role: In an application security context, a role can be seen as a logical

grouping of users. This logical grouping is normally done so the

grouped users share a set of permissions in the application to access

certain resources. For example, all users with the admin role have the

same access and permissions to the same resources. Roles are a way

to group permissions to execute determined actions, making users

with those roles inherit such permissions.

Chapter 1 The Scope of Security

10

•	 Resource: Any part of the application you want to access that needs

to be properly secured against unauthorized access—for example, a

URL, a business method, or a particular business object.

•	 Permissions: The access level needed to access a particular

resource. For example, two users may be allowed to read a particular

document, but only one can write to it. Permissions can apply to

individual users or users that share a particular role.

•	 Encryption: It allows you to encrypt sensible information (normally

passwords, but it can be something else, like cookies) to make

it incomprehensible to attackers even if they get access to the

encrypted version. The idea is that you never store the plain text

version of a password but instead store an encrypted version so that

nobody but the owner knows the original one.

The following describes types of encryption algorithms.

•	 One-way encryption: These algorithms, referred to as hashing

algorithms, take an input string and generate an output number

known as the message digest. This output number cannot be

converted back into the original string. This is why the technique is

referred to as one-way encryption.

	 For example, let’s suppose the requesting client encrypts a string and

sends the encrypted string to the server. The server may have access

to the original information from a previous registration process, for

example, and if it does, it can apply the same hash function. Then, it

compares the output from this hashing to the value sent by the client.

If they match, the server validates the information.

	 Figure 1-4 shows this scheme. Usually, the server doesn’t even need

the original data. It can simply store the hashed version and then

compare it with the incoming hash from the client.

Chapter 1 The Scope of Security

11

Figure 1-4.  One-way encryption or hashing

•	 Symmetric encryption: These algorithms provide two functions:

encrypt and decrypt. A string of text is converted into an encrypted

form and then can be converted back to the original string. In this

scheme, a sender and a receiver share the same keys to encrypt and

decrypt messages on both ends of the communication. One problem

with this scheme is how to share the key between the endpoints of

the communication. A common approach is to use a parallel secure

channel to send the keys.

•	 Key: Symmetric encryption uses a single shared secret key for

encryption and decryption. This means that both the sender and

the recipient use the same key.

Chapter 1 The Scope of Security

12

•	 Speed: Symmetric encryption algorithms are generally faster and

more efficient than asymmetric encryption algorithms.

•	 Use case: Symmetric encryption is commonly used for securing

large amounts of data, such as file encryption or secure

communication between two parties who already share a

secret key.

•	 Figure 1-5 shows symmetric encryption at work.

Figure 1-5.  Symmetric encryption: the two endpoints share the same encryption/
decryption key

•	 Public key cryptography: These techniques are based on

asymmetric cryptography. In this scheme, a different key is used

for encryption than for decryption. These two keys are referred

to as the public key, which is used to encrypt messages, and the

private key, which is used to decrypt messages. The advantage of

this approach over symmetric encryption is that there is no need

to share the decryption key, so no one but the intended receiver of

the information can decrypt the message. The following describes a

normal scenario.

•	 The intended recipient of messages shares her public key with

everyone interested in sending information to her.

•	 A sender encrypts the information with the receiver’s public key

and sends a message.

Chapter 1 The Scope of Security

13

•	 The receiver uses her private key to decrypt the message.

•	 No one else can decrypt the message because they don’t have the

receiver’s private key.

The following defines the key, speed, and use case for asymmetric or PKI encryption.

•	 Key: Asymmetric encryption uses a pair of keys—a public key and

a private key. The public key is freely available to anyone, while the

owner keeps the private key secret.

•	 Encryption and decryption: The public key is used for encryption,

while the private key is used for decryption. This means the data

encrypted with the public key can only be decrypted with the

corresponding private key.

•	 Security: Asymmetric encryption provides a higher level of security

because the private key is not shared or transmitted.

•	 Use case: Asymmetric encryption is commonly used for secure key

exchange, digital signatures, and secure communication between

parties who don’t have a pre-shared secret key.

Figure 1-6 shows the public key cryptography scheme.

Figure 1-6.  Public key cryptography

The use of encryption achieves, among other things, two other security goals.

•	 Confidentiality: Potentially sensitive information belonging to one

user or group of users should be accessible only to this user or group.

Encryption algorithms are the main helpers in achieving this goal.

Chapter 1 The Scope of Security

14

•	 Integrity: Data sent by a valid user shouldn’t be altered by a third

entity on its way to the server or in its storage. This is normally

accomplished through one-way cryptographic algorithms that

make it almost impossible to alter an input and produce a corrupted

message whose encrypted hash is the same as the original message

(thus deceiving the receiver into thinking it is valid).

In practice, a combination of symmetric and asymmetric encryption is often used

in hybrid encryption. In hybrid encryption, symmetric encryption encrypts the actual

data, while the symmetric key is encrypted using the recipient’s public key (asymmetric

encryption). This approach combines the efficiency of symmetric encryption with the

security and flexibility of asymmetric encryption.

�What to Secure
Not every part of the application requires a strong security model or any security. If, for

example, one part of your application is supposed to serve static content to everyone

interested, you can simply serve this content. There probably are no security concerns to

handle here.

Anyway, when starting to work on a new application, you should think about the

security constraints that your application will have. You should think about concerns like

those in the following list and whether they apply to your particular use case.

•	 Identity management: Your application will likely need to establish

the users’ identities. Usually, your application will do different

things for different users, so you need a way to associate users with

certain functionality. You also need to protect each user’s identity

information so it can’t be compromised.

•	 Secured connections: In an Internet environment, where anyone

in the world can potentially access your system and eavesdrop on

other users accessing your system, you most likely want to secure the

communication of sensitive data using some kind of transport layer

security, such as SSL.

Chapter 1 The Scope of Security

15

•	 Sensitive data protection: Sensitive data needs to be protected

against malicious attacks. This applies to the communication layer,

individual message transmission, and credentials data stores.

Encryption should be used in different layers to achieve the most

secure application possible.

�Additional Security Concerns
There are many more security concerns than the ones explained so far. Because this

is a Spring Security book and not a general application-security book, it covers only

things related to Spring Security. However, we think it is important that you understand

that there are many more security concerns than those addressed directly by Spring

Security. The following is a quick overview of some of the most common ones. This is

only intended to make you aware of their existence, and we recommend you consult a

different source (such as a general software security textbook) to better understand all

these concerns.

•	 SQL (and other code) injection: Validating user input is vital to

application security. If data is not validated, an attacker could write

any string as input (including SQL or server-side code) and send that

information to the server. If the server code is not properly written,

the attacker could wreak significant havoc because she could execute

any arbitrary code on the server.

•	 Denial-of-service attacks: These attacks make the target system

unresponsive to its intended users. This is normally done by

saturating the server with requests to utilize all the server’s resources

and make it unresponsive to legitimate requests.

•	 Cross-site scripting and output sanitation: An injection can be

done where the target is the client part of the application. The idea

is that the attacker can make an application return malicious code

inside the web pages returned and thus execute it in the user’s

browser. This way, the attacker invisibly executes actions using the

real user’s authenticated session.

Chapter 1 The Scope of Security

16

•	 Unauthorized access: This occurs when an individual or entity

gains unauthorized entry to a system, network, or data. It can result

in data breaches, theft of sensitive information, or unauthorized

manipulation of systems.

•	 Malware and ransomware: Malware refers to malicious software

designed to disrupt, damage, or gain unauthorized access to systems.

Ransomware is a specific type of malware that encrypts data and

demands a ransom for its release. Both malware and ransomware can

lead to data loss, financial loss, and operational disruptions.

•	 Phishing and social engineering: Phishing involves fraudulent

attempts to obtain sensitive information, such as passwords or

financial details, by disguising it as a trustworthy entity via emails,

phone calls, or websites. Social engineering exploits human

vulnerabilities to manipulate individuals into revealing confidential

information or performing actions that can compromise security.

•	 Data breaches: These breaches occur when unauthorized

individuals access sensitive or confidential data, such as personal

information, credit card details, or intellectual property. Data

breaches can result in financial loss, reputational damage, and legal

consequences.

•	 Insider threats: These threats involve individuals with authorized

access to systems or information who misuse their privileges for

malicious purposes. This can include intentional data theft, sabotage,

or unauthorized disclosure of sensitive information.

•	 Weak authentication and password security: Weak or easily

guessable passwords, inadequate authentication mechanisms, and

insufficient password management practices can leave systems

vulnerable to unauthorized access and compromise.

•	 Vulnerabilities and software exploits: Software vulnerabilities, such

as unpatched or outdated systems, can be exploited by attackers to

gain unauthorized access, inject malware, or manipulate systems. It

is crucial to promptly apply security patches and updates to mitigate

these risks.

Chapter 1 The Scope of Security

17

•	 Cloud security: Organizations utilizing cloud services must address

specific security concerns, including data privacy, data segregation,

access control, and cloud provider vulnerabilities.

•	 IoT security: The proliferation of IoT devices introduces new

security challenges, including insecure device configurations, lack of

encryption, and vulnerabilities in IoT networks. Compromised IoT

devices can be used to launch attacks or gain unauthorized access to

networks.

Addressing these IT security concerns requires a comprehensive and multi-

layered approach, including implementing strong security controls, regular security

assessments, user education and awareness, incident response planning, and adherence

to security best practices.

�Java Options for Security
Java and Java EE out-of-the-box security solutions are very comprehensive. They cover

areas ranging from a low-level permission system through cryptography APIs to an

authentication and authorization scheme.

The list of security APIs offered in Java is very extensive, as the following list of the

main ones shows.

•	 Java Cryptography Architecture (JCA) supports cryptographic

algorithms, including hash-digest and digital signature support.

•	 Java Cryptographic Extensions (JCE) mainly provides facilities for

the encryption and decryption of strings and secret key generation

for symmetric algorithms.

•	 Java Certification Path API (CertPath) provides comprehensive

functionality for integrating the validation and verification of digital

certificates into an application.

•	 Java Secure Socket Extension (JSSE) provides a standardized set

of features to support SSL and TLS protocols, both client and server,

in Java.

Chapter 1 The Scope of Security

18

•	 Java Authentication and Authorization Service (JAAS) provides a

service for authentication and authorization in Java applications. It

provides a pluggable system where authentication mechanisms can

be plugged in independently to applications.

•	 Java Generic Security Services (Java GSS-API) securely exchanges

messages between communicating applications. “Introduction

to JAAS and Java GSS-API Tutorials” is a series of tutorials

demonstrating various aspects of using JAAS and Java GSS-API.

The JDK is divided into modules. The following modules contain security APIs.

•	 java.base

•	 java.security.jgss

•	 java.security.sasl

•	 java.smartcardio

•	 java.xml.crypto

•	 jdk.jartool

•	 jdk.security.auth

•	 jdk.security.jgss

For the entire list of Java release 20 security APIs, please refer to https://docs.

oracle.com/en/java/javase/20/security/security-api-specification1.html.

Figure 1-7 shows the Java platform security architecture and elements.

Chapter 1 The Scope of Security

https://docs.oracle.com/en/java/javase/20/security/security-api-specification1.html
https://docs.oracle.com/en/java/javase/20/security/security-api-specification1.html

19

Figure 1-7.  Java platform security architecture and elements

Spring Security’s main concerns are in the authentication/authorization realm. So,

it overlaps mainly with the JAAS Java API, although they can be used together, as you

will see later in the book. Most of the other APIs are leveraged in Spring Security. For

example, CertPath is used in X509AuthenticationFilter, and JCE is used in the spring-

security-crypto module.

�Summary
This chapter introduced security from a general point of view down to defense-in-

depth mechanisms. It explained in a very abstract way the main concerns in IT security,

especially from an application point of view. It also briefly described the main Java APIs

that support security at different levels.

You can see that this chapter was a very quick overview of security concerns. It is

beyond the scope of this book to go any further than this on general topics, although

some of them are studied in more depth when they apply to Spring Security. This is

nothing like a comprehensive software security guide, and if you are interested in

learning more about software security in general, you should consult the specialized

literature. The next chapter introduces Spring Security.

Chapter 1 The Scope of Security

21
© Massimo Nardone, Carlo Scarioni 2024
M. Nardone and C. Scarioni, Pro Spring Security, https://doi.org/10.1007/979-8-8688-0035-1_2

CHAPTER 2

Introducing Spring
Security
In this chapter, you learn what Spring Security is and how to use it to address security

concerns about your application.

We describe what’s new in Spring Framework and Spring Security version 6. Using

Spring Security 6 with authentication and authorization is discussed in detail.

Finally, you look at the framework’s source code, how to build it, and the different

modules forming the powerful Spring Security project.

�What Is Spring Security?
Spring Security is a framework dedicated to providing a full array of security services to

Java applications in a developer-friendly and flexible way. It adheres to the well-

established practices introduced by the Spring Framework. Spring Security tries to

address all the layers of security inside your application. In addition, it comes packed

with an extensive array of configuration options that make it very flexible and powerful.

Recall from Chapter 1 that it can be said that Spring Security is simply a

comprehensive authentication/authorization framework built on top of the Spring

Framework. Although most applications that use the framework are web-based, Spring

Security’s core can also be used in stand-alone applications.

Many things make Spring Security immediately attractive to Java developers. To

name just a few, consider the following list.

•	 It’s built on top of the successful Spring Framework. This is an

important strength of Spring Security. The Spring Framework has

become “the way” to build enterprise Java applications, and with

good reason. It is built around good practices and two simple yet

https://doi.org/10.1007/979-8-8688-0035-1_2#DOI
https://doi.org/10.1007/979-8-8688-0035-1_1

22

powerful concepts: dependency injection (DI) and aspect-oriented

programming (AOP). Also important is that many developers have

experience with Spring, so they can leverage that experience when

introducing Spring Security in their projects.

•	 It provides out-of-the-box support for many authentication
models. Even more important than the previous point, Spring

Security supports out-of-the-box integration with Lightweight

Directory Access Protocol (LDAP), OpenID, SAML 2.0, form

authentication, OAuth 2.0, Certificate X.509 authentication, database

authentication, Jasypt cryptography, and lots more. All this support

means that Spring Security adapts to your security needs—and not

only that, it can change if your needs change, without much effort

involved for the developer. More information on Jasypt cryptography

is at www.jasypt.org/.

	 This is also important from a business point of view because

the application can either adapt to the corporate authentication

services or implement its own, thus requiring only straightforward

configuration changes.

	 This also means that there is a lot less software for you to write,

because you are using a great amount of ready-to-use code that has

been written and tested by a large and active user community. To

a certain point, you can trust that this code works and use it with

confidence. And if it does not work, you can always fix it and send a

patch to those in charge of maintaining the project.

•	 It offers layered security services. Spring Security allows you to

secure your application at different levels, and to secure your web

URLs, views, service methods, and domain model. You can pick and

combine these features to achieve your security goals.

	 It is very flexible in practice. Imagine, for instance, that you offer services

exposed through RMI, the Web, JMS, and others. You could secure all

these interfaces, but maybe it’s better to secure just the business layer so

that all requests are secured when they reach this layer. Also, maybe you

don’t care about securing individual business objects, so you can omit

that module and use the functionality you need.

Chapter 2 Introducing Spring Security

http://www.jasypt.org/

23

•	 It is open source software. As part of the Pivotal portfolio,

Spring Security is an open source software tool. It also has a large

community and user base dedicated to testing and improving

the framework. Having the opportunity to work with open source

software is an attractive feature for most developers. The ability to

look into the source code of the tools you like and work with is an

exciting prospect. Whether our goal is to improve the tools or simply

to understand how they work internally, we developers love to read

code and learn from it.

�Where Does Spring Security Fit In?
Spring Security is without question a powerful and versatile tool. But like anything else, it

is not a tool that adapts to everything you want to do. Its offerings have a defined scope.

Where and why would you use Spring Security? The following lists reasons and

scenarios.

•	 You need to develop web security. Spring Security provides robust

security features for web applications, including protection against

common web vulnerabilities, such as cross-site scripting (XSS), cross-

site request forgery (CSRF), and clickjacking.

•	 You need strong mechanisms for securing URLs. You want

to restrict access to specific resources and enforce secure

communication over HTTPS.

•	 Your application is in Java, Groovy, or Kotlin. The first thing to

take into account is that Spring Security can be written in languages

like Java, Groovy, or Kotlin and generally in any language supported

by the JVM. So if you plan to work in a non-JVM language, Spring

Security won’t be useful.

•	 You need role-based authentication/authorization. This is

the main use case of Spring Security. You have a list of users and

resources and operations on those resources. You group the users

into roles and allow certain roles to access certain operations on

certain resources. That’s the core functionality.

Chapter 2 Introducing Spring Security

24

•	 You want to secure a web application from malicious users. Spring

Security is mostly used in web application environments. When

this is the case, the first thing to do is allow only the users you want

to access your application, while forbidding all others from even

reaching it.

•	 You need to integrate with OpenID, LDAP, Active Directory, and
databases as security providers. If you need to integrate with a

particular Users and Roles or Groups provider, you should look at the

vast array of options Spring Security offers because integration might

already be implemented, saving you from writing lots of unnecessary

code. Sometimes you might not be exactly sure what provider your

business requires to authenticate against. In this case, Spring Security

makes your life easy by allowing you to switch between different

providers painlessly.

•	 You need to secure your domain model and allow only certain
users to access certain objects in your application. If you need fine-

grained security (that is, you need to secure on a per object, per user

basis), Spring Security offers the access control list (ACL) module,

which help you to do just that in a straightforward way.

•	 You want a nonintrusive, declarative way for adding security
around your application. Security is a cross-cutting concern, not a

core business functionality of your application (unless you work in a

security provider firm). As such, it is better to be treated as a separate

and modular add-on that you can declare, configure, and manage

independently of your main business concerns. Spring Security is

built with this in mind. Using servlet filters, XML configuration, and

AOP concepts, the framework tries not to pollute your application

with security rules. Even when using annotations, they are still

metadata on top of your code. They don’t mess with your code logic.

As a Java developer, you must try to isolate the Java configuration

into a configuration library and decouple it from the rest of the

application in a similar way you do with XML.

•	 You want to secure your service layer the same way you secure
your URLs, and you need to add rules at the method level for

Chapter 2 Introducing Spring Security

25

allowing or disallowing user access. Spring Security allows you

to use a consistent security model throughout the layers of your

application because it internally enforces this consistent model itself.

You configure users, roles, and providers in just one place, and both

the service and web layers use this centralized security configuration

transparently.

•	 You need your application to remember its users on their next
visit and allow them access. Sometimes you don’t want or need

the users of your application to log in every time they visit your site.

Spring supports out-of-the-box, remember-me functionality so that a

user can be automatically logged in on subsequent visits to your site,

allowing them full or partial access to their profile’s functionality.

•	 You want to use public/private key certificates to authenticate
against your application. Spring Security allows you to use X.509

certificates to verify the server’s identity. The server can also

request a valid certificate from the client for establishing mutual

authentication.

•	 You need to hide elements in your web pages from certain users
and show them to others. View security is the first layer of security in

a secured web application. It is normally not enough for guaranteeing

security. But it is very important from a usability point of view

because it allows the application to show or hide content depending

on the user currently logged in to the system.

•	 You need more flexibility than simple role-based authentication
for your application. For example, suppose that you want to

allow access only to users over 18 years of age using simple script

expressions. Spring Security 3.1 uses the Spring Expression Language

(SpEL) to allow you to customize access rules for your application.

•	 You want your application to automatically handle HTTP status
codes related to authorization errors (401, 403, and others).
The built-in exception-handling mechanism of Spring Security

for web applications automatically translates the more common

exceptions to their corresponding HTTP status codes; for example,

AccessDeniedException gets translated to the 403 status code.

Chapter 2 Introducing Spring Security

26

•	 You want to configure your application to be used from other
applications (not browsers) and allow these other applications
to authenticate themselves against yours. Another application

accessing your application should be forced to use authentication

mechanisms to gain access. For example, you can expose your

application through REST endpoints that other applications can

access with HTTP security.

•	 You are running an application outside a Java EE Server. If you run

your application in a simple web container like Apache Tomcat, you

probably don’t have support for the full Java EE security stack. Spring

Security can be easily leveraged in these environments.

•	 You are running an application inside a Java EE Server. Even if you

are running a full Java EE container, Spring Security is arguably more

complete, flexible, and easy to use than the Java EE counterpart.

•	 You are already using Spring in your application and want to
leverage your knowledge. You already know some of the great

advantages of Spring. If you are currently using Spring, you probably

like it a lot. You will probably like Spring Security as well.

�Spring Security Overview
Spring Security 6 includes the following projects.

•	 Spring Security

•	 Spring Boot 3.0

•	 Spring Framework

•	 Spring Cloud Data Flow

•	 Spring Cloud

•	 Spring Data

•	 Spring Integration

•	 Spring Authorization Server

Chapter 2 Introducing Spring Security

27

•	 Spring for GraphQL

•	 Spring Batch

•	 Spring Hateoas

•	 Spring REST Docs

•	 Spring Amqp

•	 Spring Mobile

•	 Spring For Android

•	 Spring Web Flow

•	 Spring Web Services

•	 Spring LDAP

•	 Spring Session

•	 Spring Shell

•	 Spring Flo

•	 Spring Kafka

•	 Spring Statemachine

•	 Spring Io Platform

•	 Spring Roo

•	 Spring Scala

•	 Spring Blazeds Integration

•	 Spring Loaded

•	 Spring Xd

•	 Spring Social

For more information, please refer to the Spring project web page at https://

spring.io/projects.

Each of these projects is built on top of the facilities provided by the Spring

Framework itself, which is the original project that started it all. Think of Spring as the

hub of all these satellite projects, providing them with a consistent programming model

Chapter 2 Introducing Spring Security

https://spring.io/projects
https://spring.io/projects

28

and a set of established practices. The main points you see throughout the different

projects is the use of DI, XML namespace-based configuration, and AOP, which, as you

see in the next section, are the pillars upon which Spring is built. In the later versions of

Spring, annotations have become the most popular way to configure both DI and AOP

concerns.

This book introduces Spring Boot, analyzes Spring Framework, and develops Spring

Security version 6. Let’s start with Spring Boot.

�What Is Spring Boot?
Spring Boot is an open source Java-based framework generally used for developing

microservice, enterprise-ready applications. Pivotal developed it to help developers

create stand-alone and production-ready Spring applications.

Spring Boot is an easy starting point for building all Spring-based applications and

running them as quickly as possible, with minimal upfront configuration of Spring.

When this book was written, Spring Boot 3.0 was the latest release (November 2022)

using Java 17+ and Jakarta EE 9.

Note R emember that a Spring Security application can be developed with Maven
or Gradle.

Spring Security is one of the Spring projects; it is dedicated exclusively to addressing

security concerns in applications.

For more information, please refer to the documentation at https://spring.io/

projects/spring-security.

Spring Security began as a non-Spring project. It was originally known as the

“Acegi Security System for Spring” and was not the big and powerful framework it is

today. Originally, it dealt only with authorization and leveraged container-provided

authentication. Because of public demand, the project started gaining traction, as more

people started using it and contributing to its continuously growing code base. This

eventually led to it becoming a Spring Framework portfolio project, and then later it was

rebranded as Spring Security.

Chapter 2 Introducing Spring Security

https://spring.io/projects/spring-security
https://spring.io/projects/spring-security

29

The following lists Spring Security’s major releases dates.

•	 2.0.0 (April 2008)

•	 3.0.0 (December 2009)

•	 4.0.0 (March 2015)

•	 5.0.0 (November 2017)

•	 5.1.4 (February 2019)

•	 6.1.0 (May 2023)

Java configuration for Spring Security was added to the Spring Framework in Spring

3.1 and extended to Spring Security in Spring 3.2 and is defined in a class annotated

@Configuration.

Spring Security 6 requires JDK 17 and uses the Jakarta namespace.

The project for many years now has been under the Pivotal umbrella of projects,

powered by the Spring Framework itself. But what exactly is the Spring Framework?

�Spring Framework 6: A Quick Overview
We have mentioned the Spring Framework project a lot. It makes sense to give an

overview of it at this point, because many of the Spring Security characteristics we cover

in the rest of the book rely on the building blocks of Spring.

We admit we’re biased. We love Spring and have loved it for many years now. We

think Spring has so many advantages and great features that we can’t start a new Java

project without using it. Additionally, we tend to carry its concepts around when working

with other languages and look for a way to apply them because they now feel natural.

Spring Framework 5 was published in September 2017 and can be considered the

first major Spring Framework release since version 4 was released in December 2013.

Spring Framework latest release when this manuscipt was written is version 6.0.9

(May 2023).

Next, let’s briefly review the most important new features in Spring Framework 6.

Chapter 2 Introducing Spring Security

30

�JDK 17+ and Jakarta EE 9+ Baseline

•	 Entire framework based on Java 17 source code level

•	 Migration from javax to jakarta namespace for Jakarta Servlet, JPA,

and so on

•	 Runtime compatibility with Jakarta EE 9 and Jakarta EE 10 APIs

•	 Compatible with latest web servers—Tomcat 101, Jetty 11,

Undertow 23

•	 Early compatibility with virtual threads (in preview as of JDK 19)

�General Core Revision

•	 Upgrade to ASM 94 and Kotlin 17

•	 Complete CGLIB fork with support for capturing CGLIB-

generated classes

•	 Comprehensive foundation for ahead-of-time transformations

•	 First-class support for GraalVM native images

�Core Container

•	 First-class configuration options for virtual threads on JDK 21

•	 Lifecycle integration with Project CRaC for JVM checkpoint restore

•	 Support for resolving SequencedCollection/Set/Map at

injection points

•	 Support for registering a MethodHandle as a SpEL function

•	 Validator factory methods for programmatic validator

implementations

Chapter 2 Introducing Spring Security

31

•	 Basic bean property determination without javabeansIntrospector

by default

•	 AOT processing support in GenericApplicationContext

(refreshForAotProcessing)

•	 Bean definition transformation based on pre-resolved constructors

and factory methods

•	 Support for early proxy class determination for AOP proxies and

configuration classes

•	 PathMatchingResourcePatternResolver uses NIO and module path

APIs for scanning, enabling support for classpath scanning within a

GraalVM native image and the Java module path, respectively

•	 DefaultFormattingConversionService supports ISO-based default

javatime type parsing

�Data Access and Transactions

•	 Failed CompletableFuture triggers rollback for async

transactional method

•	 Support for predetermining JPA managed types (for inclusion in AOT

processing)

•	 JPA support for Hibernate ORM 61 (retaining compatibility with

Hibernate ORM 56)

•	 Upgrade to R2DBC 10 (including R2DBC transaction definitions)

•	 Aligned data access exception translation between JDBC, R2DBC,

JPA and Hibernate

•	 Removal of JCA CCI support

Chapter 2 Introducing Spring Security

32

�Spring Messaging

•	 RSocket interface client based on @RSocketExchange service

interfaces

•	 Early support for Reactor Netty 2 based on Netty 5 alpha

•	 Support for Jakarta WebSocket 21 and its standard WebSocket

protocol upgrade mechanism

�General Web Revision

•	 HTTP interface client based on @HttpExchange service interfaces

•	 Support for RFC 7807 problem details

•	 Unified HTTP status code handling

•	 Support for Jackson 214

•	 Alignment with Servlet 60 (while retaining runtime compatibility

with Servlet 50)

�Spring MVC

•	 PathPatternParser used by default (with the ability to opt into

PathMatcher)

•	 Removal of outdated Tiles and FreeMarker JSP support

�Spring WebFlux

•	 New PartEvent API to stream multipart form uploads (both on client

and server)

•	 New ResponseEntityExceptionHandler to customize WebFlux

exceptions and render RFC 7807 error responses

Chapter 2 Introducing Spring Security

33

•	 Flux return values for non-streaming media types

•	 Early support for Reactor Netty 2 based on Netty 5 alpha

•	 JDK HttpClient integrated with WebClient

�Observability
Spring 6 introduces Spring Observability , a new initiative that builds on Micrometer

and Micrometer Tracing (formerly Spring Cloud Sleuth). The goal is to efficiently record

application metrics with Micrometer and implement tracing through providers, such as

OpenZipkin or OpenTelemetry.

•	 Direct observability instrumentation with micrometer observation

is in several parts of the Spring Framework. The spring-web module

now requires io.micrometer:micrometer-observation:1.10+ as a

compile dependency.

•	 RestTemplate and WebClient are instrumented to produce HTTP

client request observations.

•	 Spring MVC can be instrumented for HTTP server observations using

org.springframework.web.filter.ServerHttpObservationFilter.

•	 Spring WebFlux can be instrumented for HTTP server

observations using org.springframework.web.filter.reactive.

ServerHttpObservationFilter.

•	 Integration with micrometer context propagation for flux and mono

return values from controller methods.

�Pattern Matching
Pattern matching was elaborated in Project Amber.

Chapter 2 Introducing Spring Security

https://spring.io/blog/2022/10/12/observability-with-spring-boot-3

34

�Testing

•	 Support for testing AOT-processed application contexts on the JVM

or within a GraalVM native image

•	 Integration with HtmlUnit 264+ request parameter handling

•	 Servlet mocks (MockHttpServletRequest, MockHttpSession) are

based on Servlet API 60 now

Many things attract us to Spring, but the main ones are the two major building blocks

of the framework: dependency injection and aspect-oriented programming.

Why are these two concepts so important? They are important because they allow

you to develop loosely coupled, single-responsibility, DRY (Don’t Repeat Yourself) code

practically by default. These two concepts, and Spring itself, are covered extensively in

other books and online tutorials; however, we’ll give you a brief overview here.

Spring Framework 6 and Spring Boot 3 need the following minimum versions.

•	 Kotlin 1.7+

•	 Lombok 1.18.22+ (JDK17 support)

•	 Gradle 7.3+

�Dependency Injection
The basic idea of DI, a type of Inversion of Control (IoC), is that instead of having an

object instantiate its needed dependencies, the dependencies are somehow given to the

object. In a polymorphic way, the objects given as dependencies to the target object that

depends on them are known to this target object just by an abstraction (like an interface

in Java) and not by the exact implementation of the dependency.

The major advantages of the IoC architecture are

•	 Easier switching between different implementations

•	 Offering a good modularity of a program

•	 A great feature for testing programs by isolating components

dependencies and allowing them to communicate through contracts

•	 Dividing the execution of a certain task from its implementation

Chapter 2 Introducing Spring Security

35

It’s easier to look at this in code than explain it; see Listing 2-1.

Listing 2-1.  The Object Itself Instantiates Its Dependencies (No Dependency

Injection)

public class NonDiObject {

private Helper helper ;

public NonDiObject () {

 helper = new HelperImpl () ;

 }

public void doStuffWithHelp() {

 helper.help() ;

 }

}

In this example, every instance of NonDiObject is responsible for instantiating its

own Helper in the constructor. It instantiates a HelperImpl, creating a tight, unnecessary

coupling to this particular Helper implementation (see Listing 2-2).

Listing 2-2.  The Object Receives Its Dependencies from Some External Source

(with Dependency Injection)

public class DiObject {

private Helper helper ;

public DiObject(Helper helper) {

 this.helper = helper;

 }

public void doStuffWithHelp() {

 helper.help() ;

 }

}

In this version, Helper is passed to DiObject at construction time. DiObject is not

required to instantiate any dependency. It doesn’t need to know how to do that, what

particular implementation type the Helper is, or where it comes from. It just needs a

helper and uses it for whatever requirement it has.

The advantage of this approach should be clear. The second version is loosely

coupled to the Helper, depending only on the Helper interface, allowing the concrete

implementation to be decided at runtime and thus giving lots of flexibility to the design.

Chapter 2 Introducing Spring Security

36

Spring dependency injection configuration is normally defined in XML files,

although later versions have turned more to annotation-based and Java-based

configurations.

�Aspect-Oriented Programming
AOP is a technique for extracting cross-cutting concerns from the main application

code and transversely applying them across the points where they are needed. Typical

examples of AOP concerns are transactions, logging, and security.

The main idea is that you decouple the main business logic of your application

from special-purpose concerns that are peripheral to this core logic, and then apply

this functionality in a transparent, unobtrusive way through your application. By

encapsulating this functionality (which is simply general application logic and not core

business logic) in its own modules, they can be used by many parts of the application

that need them, avoiding the need to duplicate this code all over the place. The entities

encapsulating this cross-cutting logic are referred to as aspects in AOP terms.

There are many implementations of AOP in Java. The most popular, perhaps, is

AspectJ, which requires a special compilation process. Spring supports AspectJ, but it

also includes its own AOP implementation, known simply as Spring AOP, which is a pure

Java implementation that requires no special compilation process.

Spring AOP using proxies is available only at the public-method level and only

when it is called outside the proxied object. This makes sense because calling a method

from inside the object won’t call the proxy; instead, it calls the real self object directly

(basically a call on the this object). This is very important to be aware of when working

with Spring, and sometimes, novice Spring developers overlook it.

Even when using its own AOP implementation, Spring leverages the AspectJ syntax

and concepts for defining Aspects.

Spring AOP is a big subject, but the principle behind the way it works is not difficult

to understand. Spring AOP works with dynamically created proxy objects that take care

of the AOP concerns around invocating your main business objects. You can think of the

proxy and Spring AOP in general simply as a decorator pattern implementation, where

your business object is the component and the AOP proxy is the decorator. Figure 2-1

shows a simple graphical representation of the concept. Thinking about it this way,

you should be able to understand Spring AOP easily. Listing 2-3 shows how the magic

happens conceptually.

Chapter 2 Introducing Spring Security

37

Figure 2-1.  Spring AOP in action

Listing 2-3.  The Business Object, Not Transactional

public class Business Object implements BusinessThing {

public void doBusinessThing() {

 / / Some business stuff

 }

}

Suppose you have an aspect for transactions. Spring creates dynamically at runtime

an object that conceptually looks like Listing 2-4.

Listing 2-4.  Spring AOP Magic

public class BusinessObjectTransactionalDecorator implements

BusinessThing {

private BusinessThing componen t ;

public BusinessObjectTransactionalDecorator(BusinessThing component) {

 t h i s . co mponent = component ;

 }

public void doBusinessThing() {

 / / some start transaction code

 component.doBusinessThing() ;

 / / some commit transaction code

 }

}

Chapter 2 Introducing Spring Security

38

Again, remember this simple idea and Spring AOP should be easier to understand.

�What’s New in Spring Security 6?
The previous version of this book utilizes Spring Security 5. There are not massive

changes from version 5 to 6. The following describes what’s new in Spring Security 6.

•	 The Spring Boot 3 and Spring Security 6 baseline is now Java 17.

•	 The WebSecurityConfigurerAdapter class has been deprecated and

removed in Spring Security 6, so now you must create a bean of type

SecurityFilterChain.

•	 Instead of using authorizeRequests, which has been deprecated,

you should now use authorizeHttpRequests, which is part of the

HttpSecurity configuration allowing you to configure fine-grained

request matching for access control.

•	 In Spring Security 6, AntMatcher, MvcMatcher, and RegexMatcher

have been deprecated and replaced by requestMatchers or

securityMatchers for path-based access control, allowing you to

match requests based on patterns or other criteria without relying on

specific matchers.

Spring Security 5’s main features are still valid and in use.

•	 By default, ContextPath is /. Use /app_name if you need to define a

specific contextPath or use the via properties; for instance, server.

servlet.contextPath=/springbootapp.

•	 The CSRF token filter has been added to the filter chain and turned

on by default since version 3+.

•	 j_username/j_password parameters: Starting with version 4, you no

longer receive the username value in the authentication request. Plus,

they were updated to username and password, removing the j_ prefix.

•	 CSRF protection was added in version 5.

•	 Password encoding is mandatory in version 5.

Chapter 2 Introducing Spring Security

39

•	 web.xml files are no longer needed starting with Servlet 3.0.

•	 Easier Spring Security configurations using Java configuration.

•	 There is an option to use a combination by setting the debug level to

DEBUG in the Log4J2 configuration file.

If you need to migrate from version 5 to version 6, we recommend to follow

the official Spring migration documentation at https://docs.spring.io/spring-

security/reference/migration/index.html.

The following are some of the most important new functionalities included in the

Spring Security 6.1.9.RELEASE.

•	 Compressing simple class name for observation

•	 Add new DaoAuthenticationProvider constructor

•	 Add NimbusJwtDecoder#withIssuerLocation

•	 Clarify documentation code snippet(s)

•	 Deprecate shouldFilterAllDispatcherTypes

•	 Document in the reference how to migrate to lambda

•	 Documentation should mention that an empty SecurityContext

should also be saved

•	 Don’t use raw XML SAML authentication request for response

validation

•	 Ensure access token isn’t resolved from query for form-encoded

requests

•	 Expression-Based Access Control do not working as explain in Spring

Security document for 6.0.2 also tried 6.0.5 the issue persist

•	 Remove OpenSaml deprecation warnings

•	 Replace deprecated OpenSaml methods

•	 Deprecate .and() along with non-lambda DSL methods

Spring Security 6 provides many new features.

Chapter 2 Introducing Spring Security

https://docs.spring.io/spring-security/reference/migration/index.html
https://docs.spring.io/spring-security/reference/migration/index.html

40

The following lists the highlights.

•	 Core

•	 SecuredAuthorizationManager allows customizing underlying

AuthorizationManager

•	 Add AuthorityCollectionAuthorizationManager

•	 OAuth 2.0

•	 Add Nimbus(Reactive)JwtDecoder#withIssuerLocation

•	 Configure principal claim name in

ReactiveJwtAuthenticationConverter

•	 SAML 2.0

•	 Support AuthnRequestSigned metadata attribute

•	 Metadata supports multiple entities and EntitiesDescriptor

•	 Add saml2Metadata to DSL

•	 Allow Relying Party to be Deduced from LogoutRequest

•	 Allow Relying Party to be Deduced from SAML Response

•	 Add RelyingPartyRegistration placeholder resolution component

•	 Support issuing LogoutResponse after already logged out

•	 Observability

•	 Customize authentication and authorization observation

conventions

•	 Web

•	 Add RequestMatchers factory class

•	 Propagate variables through And and OrRequestMatcher

•	 Docs

•	 Revisit Authorization documentation

•	 Revisit Session Management documentation

Chapter 2 Introducing Spring Security

41

•	 Revisit Logout documentation

•	 Revisit CSRF Documentation

Spring Security 5 fundamentals are still in use; they include the following.

•	 Authentication confirms truth of credentials.

•	 Authorization defines access policy for principal.

•	 AuthenticationManager is a controller in the authentication process.

•	 AuthenticationProvider is an interface that maps to a data store

which stores your user data.

•	 Authentication object is created upon authentication to hold the

login credentials.

•	 GrantedAuthority means application permission is granted to a

principal.

•	 Principal is the user that performs the action.

•	 SecurityContext holds the authentication and other security

information.

•	 SecurityContextHolder: Provides access to SecurityContext.

•	 UserDetails is a data object that contains the user credentials

and roles.

•	 UserDetailsService collects the user credentials and authorities

(roles), and builds an UserDetails object.

HTTP, LDAP, JAAS API, and CAS are some of the most important technologies Spring

Security 6 supports integration with.

Note T he Spring Security 6.0.1.RELEASE can be downloaded at https://
github.com/spring-projects/spring-security/releases.

Authentication and authorization are some of the fundamental functionalities in

Spring Security 6. They are very important functionalities because they allow the Spring

Security application to identify and authorize user, prevent unauthorized access, and

control the user authorization to access application resources.

Chapter 2 Introducing Spring Security

https://github.com/spring-projects/spring-security/releases
https://github.com/spring-projects/spring-security/releases

42

This book presents examples demonstrating how to develop an application to

authorize and authenticate users.

The Spring Security authentication/authorization flow is shown in Figure 2-2.

Figure 2-2.  Spring Security authentication/authorization functionalities flow

Spring Security is utilized via some specific modules as JAR files. The spring-

security-core.jar file contains the core.

•	 Authentication and access-control classes and interfaces

•	 Remoting support and basic provisioning APIs

JAR files are required by any application that uses Spring Security and supports the

following.

•	 Stand-alone applications

•	 Remote clients

•	 Method (service layer) security

•	 JDBC user provisioning

Chapter 2 Introducing Spring Security

43

The Spring Security 6 project’s most important modules (JAR files) include

•	 Core: spring-security-core.jar

–– org.springframework.security.core

–– org.springframework.security.access

–– org.springframework.security.authentication

–– org.springframework.security.provisioning

•	 Remoting: spring-security-remoting.jar

•	 Web: spring-security-web.jar

•	 Config: spring-security-config.jar

•	 LDAP: spring-security-ldap.jar

•	 OAuth 2.0 Core: spring-security-oauth2-core.jar

•	 OAuth 2.0 Client: spring-security-oauth2-client.jar

•	 OAuth 2.0 JOSE: spring-security-oauth2-jose.jar

•	 OAuth 2.0 Resource Server: spring-security-oauth2-resource-

server.jar

•	 ACL: spring-security-acl.jar

•	 CAS: spring-security-cas.jar

•	 Test: spring-security-test.jar

•	 Taglibs: spring-security-taglibs.jar

Spring Security XML and Java annotations can still be used in version 6 when

developing Spring Security applications.

Chapter 2 Introducing Spring Security

44

�Summary
By now, you should understand what Spring Security is useful for. You also learned

what’s new in the Spring Security 6. Along the way, we introduced some of the major

architectural and design principles behind it and how they are layered on top of the great

Spring Framework 6. Dependency injection and AOP were also discussed.

The next chapter sets up the development scene, and you will build your first Spring

Security–powered web application.

Chapter 2 Introducing Spring Security

45
© Massimo Nardone, Carlo Scarioni 2024
M. Nardone and C. Scarioni, Pro Spring Security, https://doi.org/10.1007/979-8-8688-0035-1_3

CHAPTER 3

Setting up the Scene
This chapter guides you through the process of building your first simple Spring

Security 6 project using the IntelliJ IDEA Ultimate Edition 2023.1.2. This involves the

following steps.

•	 Setting up the development environment

•	 Creating a new Java web application project without Spring Security

•	 Updating the project with Spring Security

•	 Running the example

Let’s start with setting up the development environment.

�Setting up the Development Environment
The following lists the software you need to download and install in the given order.

•	 Java SE Development Kit (JDK) 17+ (version 20 was the latest when

writing this book)

•	 Maven 3.9.2

•	 IntelliJ IDEA Ultimate Edition 2023.1.2

•	 Apache Tomcat Server 10 (External)

•	 Windows OS (This book uses Windows 11.)

Let’s go through the steps required to set up everything properly.

Your first step is to set up the JDK. It comes in an installer or package on most

operating systems, so there shouldn’t be any problems.

https://doi.org/10.1007/979-8-8688-0035-1_3#DOI

46

Note  Remember that the JDK and Java SE Runtime Environment (JRE) require, at
minimum, a Pentium II 266 MHz processor, 128 MB of memory, and 181 MB disk
for development tools for 64-bit platforms.

Download the JDK version specific to your Windows operating system from

www.oracle.com/technetwork/java/javase/downloads/jdk11-

downloads-5066655.html.

JDK 20 installed on a Windows 11 machine is used in this book, as shown in

Figure 3-1.

Figure 3-1.  Installing JDK 20

Let’s set a JAVA_HOME system variable by following these steps.

	 1.	 Open the Windows Environment Variables.

	 2.	 Add the JAVA_HOME variable and point it to the JDK installed folder

(e.g., C:\Program Files\Java\ jdk-20).

Chapter 3 Setting up the Scene

47

	 3.	 Append %JAVA_HOME%\bin to the system PATH variable so that all

the Java commands are accessible from everywhere.

The result is shown in Figure 3-2.

Figure 3-2.  Setting up the JAVA_HOME system variable

Let’s test if the JDK installation was successful. Open a command prompt and type

the code shown in Figure 3-3.

Figure 3-3.  Testing the Java installation

Great! Java is now installed and ready to be used for the examples in the book.

Chapter 3 Setting up the Scene

48

Let’s install the IntelliJ IDEA Ultimate Edition 2023.1.2 for web and enterprise

development by following these steps.

	 1.	 Download the .exe file from https://www.jetbrains.com/idea/

download/?var=1§ion=windows#section=windows

	 2.	 Install the .exe file, which in our case is named

ideaIU-2023.1.2.exe.

Once installed, the directory should look like Figure 3-4.

Figure 3-4.  The IntelliJ IDEA 2023.1.2 directory

Chapter 3 Setting up the Scene

https://www.jetbrains.com/idea/download/?var=1§ion=windows#section=windows
https://www.jetbrains.com/idea/download/?var=1§ion=windows#section=windows

49

Now IntelliJ IDEA Ultimate Edition 2023.1.2 for web and enterprise development

tool is ready to be used. Figure 3-5 shows how the dashboard looks when executing it.

Figure 3-5.  The IntelliJ IDEA Ultimate Edition 2023.1.2 for web and enterprise
development dashboard

The next step is to install Maven 3.9.2 by downloading the .zip file named apache-

maven-3.9.2-bin.zip at https://maven.apache.org/download.cgi.

Now run the IntelliJ IDEA 2023.1.2 tool and configure Maven 3.6.1. as shown in

Figure 3-6.

Chapter 3 Setting up the Scene

https://maven.apache.org/download.cgi

50

Figure 3-6.  Local Maven 3.9.2 is configured into IntelliJ IDEA 2023.1.2

Now, Maven 3.9.2 is ready to be used.

The last tool used in this book is the Apache Tomcat Server and plugin 10. The first

step is to download and install the Apache Tomcat Server 10 .exe file named apache-

tomcat-10.1.9.exe at https://tomcat.apache.org/download-10.cgiInstall the exe

file to the default folder, which is C:\Program Files\Apache Software Foundation\Tomcat

10.1. Since you need to allow Spring projects to deploy to Tomcat Servers, you need

to define Tomcat users to access Tomcat Manager. This can be done when installing

Tomacat 10, as shown in Figure 3-7, or by manually updating the file named tomcat-

users.xml in the conf directory and adding the following XML fragment inside the

<tomcat-users> element.

<role rolename="manager-gui"/>

<role rolename="manager-script"/>

<user username="tomcat" password="tomcat" roles="manager-gui, manager-

script"/>

Chapter 3 Setting up the Scene

https://tomcat.apache.org/download-10.cgiInstall

51

Figure 3-7.  Installation of Tomacat 10 with new roles

Make sure you add the Tomcat Server to IntelliJ.

Now, the Apache Tomcat Server and plugin 10 are ready to be used.

Before starting a new Spring project, you want to make sure the right JDK package

is installed into the IntelliJ IDEA 2023.1.2 IDE tool to compile your examples and avoid

the typical compiling issue where the JRE is found instead of JDK. The configuration is

shown in Figure 3-8.

Chapter 3 Setting up the Scene

52

Figure 3-8.  Configuring the JDK to compile your examples 

So now the JDK compiler is set, and you are ready to start writing and running your

first Spring web application example.

�Creating a New Java Web Application Project
With your development tools set up, you can now create your first Java web application

project using IntelliJ IDEA 2023.1.2. The built-in wizard makes creating a new Maven

project very easy.

So, let’s create your first Java EE web application named Pss01, without security,

which produces the following text: Hello Spring Security!

Here are the steps to build a simple Maven web application project.

	 1.	 Create a Java EE web application.

	 2.	 Create and update the needed .jsp file.

	 3.	 Run the Java web application using the external Tomcat Server 10.

Chapter 3 Setting up the Scene

53

First, launch the IntelliJ IDEA tool and select File ➤ New ➤ Project ➤ Jakarta EE ➤

Web Application and fill in all information about the project, as shown in Figures 3-9

and 3-10.

Figure 3-9.  Your first Java web application project 

Chapter 3 Setting up the Scene

54

Figure 3-10.  Configuration for your first Java web application project 

In Package Explorer, you should now see your Pss01 project. If you expand it and all

its children, you’ll see something like Figure 3-11.

Chapter 3 Setting up the Scene

55

Figure 3-11.  Your first Java web application project structure

In general, the structure of most Java web application projects contains the following.

•	 The target directory houses all the output of the build.

•	 The src directory contains all the source material for building the

project, its site, etc.

•	 src/main/java contains the application/library sources.

•	 src/main/resources contains the application /library resources

•	 web contains the web application sources.

•	 pom.xml is a file that describes the project.

Your next step is to update the Java web application project’s files needed for your

first simple application. Please note that for this simple Java web application example,

you do not need to add any specific dependency to the project file pom.xml, which looks

initially like Listing 3-1.

Chapter 3 Setting up the Scene

56

Listing 3-1.  The pom.xml File with Servlet Dependencies

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 �xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

https://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress</groupId>

 <artifactId>Pss01</artifactId>

 <version>1.0-SNAPSHOT</version>

 <name>Pss01</name>

 <packaging>war</packaging>

The project right now only contains one simple .jsp file named index.jsp, which

you update to show the text you wish, as shown in Listing 3-2.

Listing 3-2.  The index.jsp File

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<html>

 <head>

 <title>$Title$</title>

 </head>

 <body>

 <h2>Hello Spring Security!</h2>

 </body>

</html>

Next, click the Add Configuration button at the top-right of the IntelliJ tool to

configure how to run your first example.

You can run your project using the external Tomcat Server 10, as shown in

Figure 3-12.

Chapter 3 Setting up the Scene

57

Figure 3-12.  Configure the running steps of your first Maven project 

Now you can open you web browser and type the web address http://

localhost:8080/Pss01, as shown in Figure 3-13.

Figure 3-13.  The Java web application project running in a web browser

Your first Java web application project was done now, so let’s create a new Spring

Security 6 project.

�Adding Spring Security 6 to the Java Project
Spring Security builds upon the concepts defined in the previous section and integrates

nicely into the general Spring ecosystem. You need to understand those concepts well

to take maximum advantage of Spring Security 6. However, you can start using Spring

Security without knowing all these details and then learn them as you progress and look

to do more advanced things.

Chapter 3 Setting up the Scene

58

There are two ways to create a new Spring project.

You can create a Spring project via Spring Initializr, as discussed in Chapter 5, or via

any IDE tool, which is IntelliJ IDEA 2023.1.2.

What kind of Spring Security Maven web application do you want to create?

Let’s create a simple Spring Security example where the user must be authenticated

as a user or an admin to access a certain secure project resource.

If you are using the stand-alone installation of Spring Security reference release

and you decide not to use any IDE tool to build your Maven project, you will find many

folders inside the installation directory. Most of the folders in the directory correspond

to individual subprojects or modules that split the functionality of Spring Security into

more discrete and specialized units.

�Spring Security 6 Source
Open source software has an invaluable characteristic for software developers: free

access to all source code. With this, you can understand how tools and frameworks work

internally. You can also learn a lot about how other (perhaps very good) developers

work, including their practices, techniques, and patterns. Free access to source code also

enables us, in general, to gather ideas and experience for our development. As a more

practical matter, having access to the source code allows you to debug these applications

in the context of our application; you can find bugs or simply follow your application’s

execution through them.

Currently, Spring Security and most Spring projects live on GitHub. You probably

know about GitHub (https://github.com/). If you don’t, you should look at it because it

has become a standard public source-code repository for many open source projects in

many programming languages.

GitHub is a repository and a hosting service for Git repositories with a very friendly

management interface. The Spring Security project is in the SpringSource general

GitHub section at https://github.com/SpringSource/spring-security. To get the

code, just download and install it, as discussed earlier in this chapter.

Spring Security 6.1.0.RELEASE includes several modules and folders, as shown in

Figure 3-14.

Chapter 3 Setting up the Scene

https://doi.org/10.1007/979-8-8688-0035-1_5
https://github.com/
https://github.com/SpringSource/spring-security

59

Figure 3-14.  The Spring Security 6.1.0.RELEASE folder structure

The following are short descriptions of some of the most important modules

included in Spring Security 6.1.0.RELEASE.

•	 Core (spring-security-core) is where Spring Security’s core classes

and interfaces on authentication and access control reside.

•	 Remoting (spring-security-remoting) is the module with the

remoting classes.

Chapter 3 Setting up the Scene

60

•	 Aspect (spring-security-aspects) provides aspect-oriented

programming support within Spring Security.

•	 Config (spring-security-config) provides XML and Java configuration

support.

•	 Crypto (spring-security-crypto) provides cryptography support.

•	 Data (spring-security-data) supports integration with Spring Data.

•	 Messaging (spring-security-messaging) supports Spring Security

messaging.

•	 OAuth 2.x provides support within Spring Security.

–– Core (spring-security-oauth2-core)

–– Client (spring-security-oauth2-client)

–– JOSE (spring-security-oauth2-jose)

•	 CAS (spring-security-cas) (Central Authentication Service) supports

client integration.

•	 TagLib (spring-security-taglibs) provides various Spring Security tag

libraries.

•	 Test (spring-security-test) provides testing support.

•	 Web (spring-security-web) contains web security infrastructure code,

such as filters and other Servlet API dependencies.

Note  Remember that you are using the IntelliJ IDEA tool, where the Spring
Security 6.1.0.RELEASE is integrated and configured in it. Spring Security is used
via an XML link at the beginning of the pom.xml file.

Let’s update our previous project or create a new one named Pss02 and add Spring

Security 6.

Chapter 3 Setting up the Scene

61

Here are the steps to build a simple Spring Security Maven web application project.

	 1.	 Import the required Spring Framework and Spring Security 6

libraries into the project (into the pom.xml file).

	 2.	 Configure the project to be aware of Spring Security.

	 3.	 Configure the users and roles that will be part of the system.

	 4.	 Configure the URLs that you want to secure.

	 5.	 Create all needed Java and web files.

	 6.	 Run the Spring Security 6 project using the external Tomcat

Server 10.

Note  Implementing the Spring Security in a Spring application using XML-
or Java-based configurations is possible. In this chapter, you use the Java
configuration for your Spring Security web application since, in general, it is hardly
suggested to use XML configuration as minimum as possible.

Since we are using Maven, the first step is to include Spring Security JARs

dependencies in pom.xml.

•	 spring-security-core

•	 spring-security-config

•	 spring-security-web

•	 spring-webmvc

The following are the Maven dependencies you must add to the pom.xml file.

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-core</artifactId>

 <version>6.1.0</version>

</dependency>

Chapter 3 Setting up the Scene

62

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-config</artifactId>

 <version>6.1.0</version>

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-web</artifactId>

 <version>6.1.0</version>

</dependency>

<dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-webmvc</artifactId>

 <version>6.0.9</version>

</dependency>

The new pom.xml file is generated when the new Spring Boot 3 and Spring Security 6

project is created, as shown in Listing 3-3.

Listing 3-3.  pom.xml

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 �xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

https://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.apress</groupId>

 <artifactId>Pss02</artifactId>

 <version>1.0-SNAPSHOT</version>

 <name>Pss02</name>

 <packaging>war</packaging>

 <properties>

 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <maven.compiler.target>11</maven.compiler.target>

 <maven.compiler.source>11</maven.compiler.source>

Chapter 3 Setting up the Scene

63

 <junit.version>5.9.2</junit.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-core</artifactId>

 <version>6.1.0</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-config</artifactId>

 <version>6.1.0</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-web</artifactId>

 <version>6.1.0</version>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-webmvc</artifactId>

 <version>6.0.9</version>

 </dependency>

 <dependency>

 <groupId>jakarta.servlet</groupId>

 <artifactId>jakarta.servlet-api</artifactId>

 <version>5.0.0</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.junit.jupiter</groupId>

 <artifactId>junit-jupiter-api</artifactId>

 <version>${junit.version}</version>

 <scope>test</scope>

 </dependency>

Chapter 3 Setting up the Scene

64

 <dependency>

 <groupId>org.junit.jupiter</groupId>

 <artifactId>junit-jupiter-engine</artifactId>

 <version>${junit.version}</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-war-plugin</artifactId>

 <version>3.3.2</version>

 </plugin>

 </plugins>

 </build>

</project>

Since Spring Security was added to the project, it secures the entire project by

default. It gives a generated security password that is entered with “user” as the

username, as shown in Figure 3-15.

Figure 3-15.  Running the new Spring project

This means that if you type localhost:8080, Spring requires you to provide the newly

created username (user) and password (e6fd5a38-b7a8-4d55-b47a-9ece6e3341fa) to log

in, as shown in Figure 3-16.

Chapter 3 Setting up the Scene

65

Figure 3-16.  Secure Spring application with login page

If you enter the correct username and password, you get the “Welcome to Spring

Security 6” message, as shown in Figure 3-17.

Figure 3-17.  Successful login message

�Configuring the Spring Security 6 Web Project
To activate Spring Security web project configuration in your Maven web application,

you need to configure a particular Servlet filter that takes care of preprocessing and

postprocessing the requests and managing the required security constraints.

Let’s add now some more logic to our code.

First, let’s create the Java package where all your Java classes will be located.

•	 com.apress.pss02.springsecurity.configuration

Chapter 3 Setting up the Scene

66

Then, you must define the Java classes needed for your example under package

configuration.

•	 SecurityConfiguration

•	 AppInitializer

•	 SpringSecurityInitializer

In this example, you learn how to enable Spring Security 6 using the @

EnableWebSecurity annotation without using the WebSecurityConfigurerAdapter

class; however, this example is built on top of the spring-webmvc Hibernate integration

example.

Let’s create a new Java Spring Security configuration class named

SecurityConfiguration, which utilizes the @EnableWebSecurity annotation

to configure Spring Security–related beans such as WebSecurityConfigurer or

SecurityFilterChain.

In the new Spring Security 6 SecurityConfiguration Java class (see Listing 3-4), you

must do the following.

•	 Create two demo in-memory users named “user” and “admin”,

authorized to access a secure project resource.

•	 Use BCryptPasswordEncoder to encode the user passwords for

added security.

•	 Configure the SecurityFilterChain bean with the HTTP-based

method login to the application as basic-auth.

Listing 3-4.  SecurityConfiguration Java Class

package com.apress.pss02.configuration;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.security.config.annotation.web.builders.

HttpSecurity;

import org.springframework.security.config.annotation.web.configuration.

EnableWebSecurity;

import org.springframework.security.core.userdetails.User;

import org.springframework.security.core.userdetails.UserDetails;

Chapter 3 Setting up the Scene

67

import org.springframework.security.core.userdetails.UserDetailsService;

import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;

import org.springframework.security.crypto.password.PasswordEncoder;

import org.springframework.security.provisioning.

InMemoryUserDetailsManager;

import org.springframework.security.web.SecurityFilterChain;

import static org.springframework.security.config.Customizer.withDefaults;

@Configuration

@EnableWebSecurity

public class SecurityConfiguration {

 @Bean

 �public SecurityFilterChain filterChain1(HttpSecurity http) throws

Exception {

 http

 .authorizeHttpRequests((authorize) -> authorize

 .anyRequest().authenticated()

)

 .formLogin(withDefaults());

 return http.build();

 }

 @Bean

 public UserDetailsService userDetailsService(){

 UserDetails user = User.builder()

 .username("user")

 .password(passwordEncoder().encode("userpassw"))

 .roles("USER")

 .build();

 UserDetails admin = User.builder()

 .username("admin")

 .password(passwordEncoder().encode("adminpassw"))

 .roles("ADMIN")

 .build();

Chapter 3 Setting up the Scene

68

 return new InMemoryUserDetailsManager(user, admin);

 }

 @Bean

 public static PasswordEncoder passwordEncoder(){

 return new BCryptPasswordEncoder();

 }

}

Since Spring Security is implemented using DelegatingFilterProxy, the next step is to

create a new Java class named SpringSecurityInitializer to initialize Spring Security

using the AbstractSecurityWebApplicationInitializer class. This is done so that Spring

can do the following.

•	 Detect the instance of this class during application startup

•	 Register the DelegatingFilterProxy to use the

springSecurityFilterChain before any other registered Filter

•	 Register a ContextLoaderListener

The SpringSecurityInitializer Java class is shown in Listing 3-5.

Listing 3-5.  SpringSecurityInitializer Java Class

package com.apress.pss02.configuration;

import org.springframework.security.web.context.

AbstractSecurityWebApplicationInitializer;

public class SpringSecurityInitializer extends

AbstractSecurityWebApplicationInitializer {

 //no code needed

}

Next, include the SecurityConfiguration class to the new AppInitializer Java class,

used to initialize the HibernateConfig, SecurityConfiguration, and WebMvcConfig

classes, as shown in Listing 3-6.

Chapter 3 Setting up the Scene

69

Listing 3-6.  AppInitializer Java Class

package com.apress.pss02.configuration;

import jakarta.servlet.ServletContext;

import org.springframework.security.access.SecurityConfig;

import org.springframework.web.WebApplicationInitializer;

import org.springframework.web.context.ContextLoaderListener;

import org.springframework.web.context.support.

AnnotationConfigWebApplicationContext;

import org.springframework.web.filter.DelegatingFilterProxy;

public class AppInitializer implements WebApplicationInitializer {

 @Override

 public void onStartup(ServletContext sc) {

 �AnnotationConfigWebApplicationContext root = new

AnnotationConfigWebApplicationContext();

 root.register(SecurityConfiguration.class);

 sc.addListener(new ContextLoaderListener(root));

 �sc.addFilter("securityFilter", new DelegatingFilterProxy(

"springSecurityFilterChain"))

 .addMappingForUrlPatterns(null, false, "/*");

 }

}

Finally, update the index.jsp page, as shown in Listing 3-7.

Listing 3-7.  index.jsp

<%@ page contentType="text/html; charset=UTF-8" pageEncoding="UTF-8" %>

<!DOCTYPE html>

<html>

<head>

 <title>Welcome to Spring Security 6 authentication example!</title>

</head>

Chapter 3 Setting up the Scene

70

<body>

<h2>Welcome to Spring Security 6 authentication example!</h2>

<h2>You are an authenticated user!</h2>

</body>

</html>

The index.jsp page only displays a welcoming message if the user is authenticated.

The structure of your new Spring Security 6 project should look like Figure 3-18.

Figure 3-18.  New Spring Security 6 project structure

Chapter 3 Setting up the Scene

71

Next, build and run the Spring Security 6 project using Tomcat 10, as shown in

Figure 3-19.

Figure 3-19.  Project running configuration using Tomcat 10

You can now build the project, deploy the JAR file, start the application running on

the stand-alone Tomcat Server 10, and deploy the JAR file automatically.

Your application is deployed successfully. The web browser automatically opens

http://localhost:8080/ /Pss02/login/. The outcome is shown in Figure 3-20.

Chapter 3 Setting up the Scene

72

Figure 3-20.  Accessing the Spring Security login web page

If you try to access using the wrong credentials, you receive an error message like the

one shown in Figure 3-21.

Figure 3-21.  Accessing with the wrong login credentials

As you can see, Spring Security directly produces a login error and reminds the user

that the credentials provided are incorrect.

Chapter 3 Setting up the Scene

73

If you provide the correct user or admin credentials, you receive the content defined

in the index.jsp page, which identifies the credentials and displays a welcome message,

as shown in Figure 3-22.

Figure 3-22.  Accessing with the right admin credentials

The admin login iteration flow is shown in Figure 3-23.

Figure 3-23.  Spring Security user with admin role authentication request flow

Great! You have built your first Spring Security 6 web application.

The next chapter dives deeply into how this works internally by looking at the Spring

Security architecture.

Chapter 3 Setting up the Scene

74

�Summary
This chapter introduced all the tools needed to create the environment to develop Spring

Security Java web applications. You learned how to install and configure all the tools

needed for these examples, and you should have a good idea of what is needed to build

a Spring Security 6 project. You learned how to build your first Java web application

project without Spring Security, and then you added the security dependencies to

update it as a Spring Security 6 application. The next chapter goes deeper into the Spring

Framework architecture and design.

Chapter 3 Setting up the Scene

75
© Massimo Nardone, Carlo Scarioni 2024
M. Nardone and C. Scarioni, Pro Spring Security, https://doi.org/10.1007/979-8-8688-0035-1_4

CHAPTER 4

Spring Security
Architecture and Design
In Chapter 3, you developed an initial application secured with Spring Security. You got

an overview of how this application worked and looked at some of the Spring Security

components put into action in common Spring Security–secured applications. This

chapter extends those explanations and delve deeply into the framework.

We’ll look at the main components of the framework, explain the work of the servlet

filters for securing web applications, look at how Spring aspect-oriented programming

helps you unobtrusively add security, and, in general, show how the framework is

designed internally.

�What Components Make up Spring Security?
This section looks at the major components that make Spring Security work. It presents a

big-picture framework overview and then delves deeper into each major component.

�The 10,000-Foot View
Spring Security is a relatively flexible framework that aims to make it easy for the

developer to implement security in an application. At the most general level, it’s a

framework composed of intercepting rules for granting or not granting access to

resources. Figure 4-1 illustrates this.

https://doi.org/10.1007/979-8-8688-0035-1_4#DOI
https://doi.org/10.1007/979-8-8688-0035-1_3

76

Figure 4-1.  Spring Security 10,000-foot overview

From this view, you can think of Spring Security as an extra layer built on top

of your application, wrapping specific entry points into your logic with determined

security rules.

�The 1,000-Foot View
Going into more detail, we arrive at AOP and servlet filters.

Spring Security’s interception security model applies to two main areas of your

application: URLs and method invocations. Spring Security wraps around these two

entry points of your application and allows access only when the security constraints are

satisfied. Both the method call and the filter-based security depend on a central security

interceptor, where the main logic resides to decide whether access should be granted.

Figure 4-2 shows a detailed overview of the framework.

Chapter 4 Spring Security Architecture and Design

77

Figure 4-2.  In this view, both method calls and HTTP requests try to access a
resource, but first they must go through the Security Interceptor

�The 100-Foot View
Spring Security might seem simple conceptually, but a lot is happening internally in a

very well-built software tool. This next overview shows the main collaborating parts that

enforce your security constraints. This is particularly achievable with an open source

project like Spring Security, which allows you to get into the framework and appreciate

its design and architecture by directly accessing the source code. After that, we’ll delve

deeper into the implementation details.

What follows is the best way to understand Spring Security from the inside. The

enumeration of what we consider to be the main components of the framework helps

you know where everything belongs and how your application is enforcing the security

rules that you specify for it.

The most important Spring Security internal architecture core modules are

•	 Authentication

•	 Authorization

The process of the Authentication and Authorization modules were introduced in

Chapter 1.

Figure 4-3 illustrates all the concepts/components.

Chapter 4 Spring Security Architecture and Design

https://doi.org/10.1007/979-8-8688-0035-1_1

78

Figure 4-3.  The key components of Spring Security

�The Security Interceptor

One of the most important components of the security interceptor of the

framework is the Security Interceptor. With the main logic implemented in

AbstractSecurityInterceptor and with two concrete implementations in the form

of FilterSecurityInterceptor and MethodSecurityInterceptor (as shown in

Figure 4-4), the Security Interceptor is in charge of deciding whether a particular petition

Chapter 4 Spring Security Architecture and Design

79

should be allowed to go through to a secured resource. MethodSecurityInterceptor,

as its name should tell you, deals with petitions directed as method calls, while

FilterSecurityInterceptor deals with petitions directed to web URLs.

The Security Interceptor works with a preprocessing step and a postprocessing step.

The preprocessing step looks to see whether the requested resource is secured with

some metadata information (or ConfigAttribute). If it is not, the request is allowed

to continue its way either to the requested URL or method. If the requested resource is

secured, the Security Interceptor retrieves the Authentication object from the current

SecurityContext. If necessary, the Authentication object is authenticated against the

configured AuthenticationManager with the following method.

public interface AuthenticationManager {

 Authentication authenticate(Authentication authentication)

 throws AuthenticationException;

}

An AuthenticationManager can do mainly three things with its method.

•	 Return an Authentication with value authenticated=true if the input

represents a valid principal and can be verified

•	 Throw an AuthenticationException if the input represents an

invalid principal

•	 Return null if it can’t decide

ProviderManager (which delegates to a chain of AuthenticationProvider

instances) is the most commonly used implementation of AuthenticationManager.

ProviderManager is the most commonly used implementation of

AuthenticationManager. ProviderManager delegates to a List of AuthenticationProvider

instances. Each AuthenticationProvider has an opportunity to indicate that

authentication should be successful, fail, or indicate it cannot make a decision and

allow a downstream AuthenticationProvider to decide. If none of the configured

AuthenticationProvider instances can authenticate, authentication fails with a

ProviderNotFoundException, which is a special AuthenticationException that indicates

that the ProviderManager was not configured to support the type of authentication that

was passed into it.

An example of the AuthenticationManager hierarchy using ProviderManager is

shown in Figure 4-4.

Chapter 4 Spring Security Architecture and Design

80

Figure 4-4.  AuthenticationManager hierarchy using ProviderManager

After the object is authenticated, AccessDecisionManager is called to

determine whether the authenticated entity can finally access the resource.

AccessDecisionManager throws an AccessDeniedException if the authenticated

entity cannot access the resource. If AccessDecisionManager decides that the

Authentication entity is allowed to access the resource, the Authentication object is

passed to RunAsManager if this is configured. If RunAsManager is not configured, a no-op

implementation is called. RunAsManager returns either null (if it’s not configured to be

used) or a new Authentication object containing the same principal, credentials, and

granted authorities as the original Authentication object, plus a new set of authorities

based on the RUN_AS that is being used. This new Authentication object is put into the

current SecurityContext.

After this processing, and independently of whether or not a RUN_AS Authentication

object is used, the Security Interceptor creates a new InterceptorStatusToken with

information about the SecurityContext and the ConfigAttributes. This token is used

later in the postprocessing step of the Security Interceptor. At this point, the Security

Interceptor is ready to allow access to the secured resource, so it passes the invocation

through, and the particular secured entity (either a URL or a method) is invoked. After

the invocation returns, the second phase of the Security Interceptor comes into play,

Chapter 4 Spring Security Architecture and Design

81

and the postprocessing begins. The postprocessing step is considerably simpler and

involves only calling an AfterInvocationManager’s decide method if one is configured.

In its current implementation, AfterInvocationManager delegates to instances of

PostInvocationAuthorizationAdvice, which ultimately filters the returned objects or

throws an AccessDeniedException if necessary. This is the case if you use the post-

invocation filters in method-level security, as discussed in Chapter 5. In the case of web

security, the AfterInvocationManager is null.

That is a lot of work for the security interceptor. However, because the framework

is nicely modular at the class level, you can see that the Security Interceptor simply

delegates most of the task to a series of well-defined collaborators; under the single-

responsibility principle (SRP), it focuses on narrowly scoped responsibilities. This is a

good software design and an example you should emulate. As shown in Listing 4-1, you

paste the main parts of the code from AbstractSecurityInterceptor so that you can

see the things we’ve been talking about. Comments are included in the code so that you

can understand better what it does; they start with //----.

The AbstractSecurityInterceptor calls AccessDecisionManager, which is responsible

for making final access control decisions, and it contains three methods.

void decide(Authentication authentication, Object secureObject,

 Collection<ConfigAttribute> attrs) throws AccessDeniedException;

boolean supports(ConfigAttribute attribute);

boolean supports(Class clazz);

The Spring Security 6 class is at https://docs.spring.io/spring-security/

site/docs/current/api/org/springframework/security/access/intercept/

AbstractSecurityInterceptor.html.

The entire AbstractSecurityInterceptor course code is on GitHub at

https://github.com/spring-projects/spring-security/blob/master/

core/src/main/java/org/springframework/security/access/intercept/

AbstractSecurityInterceptor.java.

Listing 4-1.  AbstractSecurityInterceptor

protected InterceptorStatusToken beforeInvocation(Object object) {

Assert.notNull(object, "Object was null");

final boolean debug = logger.isDebugEnabled();

Chapter 4 Spring Security Architecture and Design

https://doi.org/10.1007/979-8-8688-0035-1_5
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/access/intercept/AbstractSecurityInterceptor.html
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/access/intercept/AbstractSecurityInterceptor.html
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/access/intercept/AbstractSecurityInterceptor.html
https://github.com/spring-projects/spring-security/blob/master/core/src/main/java/org/springframework/security/access/intercept/AbstractSecurityInterceptor.java
https://github.com/spring-projects/spring-security/blob/master/core/src/main/java/org/springframework/security/access/intercept/AbstractSecurityInterceptor.java
https://github.com/spring-projects/spring-security/blob/master/core/src/main/java/org/springframework/security/access/intercept/AbstractSecurityInterceptor.java

82

// --- Here we are checking if this filter is able to process a particular

type of object. For example FilterSecurityInterceptor is able to process

FilterInvocation objects. MethodSecurityInterceptor is able to process

MethodInvocation objects.

if (!getSecureObjectClass().isAssignableFrom(object.getClass())) {

throw new IllegalArgumentException("Security invocation attempted for object "

 + object.getClass().getName()

 + �" but AbstractSecurityInterceptor only configured to

support secure objects of type: "

 + getSecureObjectClass());

 }

// ---- Here we are retrieving the security metadata that maps to the

object we are receiving. So if we are receiving a FilterInvocation, the

request is extracted from it and used to find the ConfigAttribute (s) that

match the request path pattern

 �Collection<ConfigAttribute> attributes = this.

obtainSecurityMetadataSource().getAttributes(object);

if (attributes == null || attributes.isEmpty()) {

if (rejectPublicInvocations) {

throw new IllegalArgumentException("Secure object invocation " + object +

" was denied as public invocations are not allowed via this interceptor. "

 + �"This indicates a configuration error

because the " + "rejectPublicInvocations

property is set to 'true'");

 }

if (debug) {

logger.debug("Public object - authentication not attempted");

 }

publishEvent(new PublicInvocationEvent(object));

return null; // no further work post-invocation

 }

if (debug) {

logger.debug("Secure object: " + object + "; Attributes: " + attributes);

 }

if (SecurityContextHolder.getContext().getAuthentication() == null) {

Chapter 4 Spring Security Architecture and Design

83

credentialsNotFound(messages.getMessage("AbstractSecurityInterceptor.

authenticationNotFound",

 �"An Authentication object was not found in the

SecurityContext"), object, attributes);

 }

 Authentication authenticated = authenticateIfRequired();

 // ---- Here we are calling the decision manager to decide if

authorization is granted or not. This will trigger the voting mechanism,

and in case that access is not granted an exception should be thrown.

try {

this.accessDecisionManager.decide(authenticated, object, attributes);

 }

catch (AccessDeniedException accessDeniedException) {

publishEvent(new AuthorizationFailureEvent(object, attributes,

authenticated, accessDeniedException));

throw accessDeniedException;

 }

if (debug) {

logger.debug("Authorization successful");

 }

if (publishAuthorizationSuccess) {

publishEvent(new AuthorizedEvent(object, attributes, authenticated));

 }

 �// ---- Here it will try to use the run-as functionality of Spring

Security that allows a user

// --to impersonate another one acquiring its security roles, or more

precisely, its

//--GrantedAuthority (s)

Authentication runAs = this.runAsManager.buildRunAs(authenticated, object,

attributes);

if (runAs == null) {

if (debug) {

logger.debug("RunAsManager did not change Authentication object");

 }

Chapter 4 Spring Security Architecture and Design

84

 // no further work post-invocation

return new InterceptorStatusToken(SecurityContextHolder.getContext(),

false, attributes, object);

 } else {

if (debug) {

logger.debug("Switching to RunAs Authentication: " + runAs);

 }

SecurityContext origCtx = SecurityContextHolder.getContext();

SecurityContextHolder.setContext(SecurityContextHolder.

createEmptyContext());

SecurityContextHolder.getContext().setAuthentication(runAs);

 // need to revert to token.Authenticated post-invocation

return new InterceptorStatusToken(origCtx, true, attributes, object);

 }

// ---- If the method has not thrown an exception at this point, it is safe

to continue

// ---- the invocation through to the resource. Authorization has been

granted.

 }

protected Object afterInvocation(InterceptorStatusToken token, Object

returnedObject) {

if (token == null) {

 // public object

return returnedObject;

 }

if (token.isContextHolderRefreshRequired()) {

if (logger.isDebugEnabled()) {

logger.debug("Reverting to original Authentication: " + token.

getSecurityContext().getAuthentication());

 }

SecurityContextHolder.setContext(token.getSecurityContext());

 }

// ---- If there is an afterInvocationManager configured, it will

be called.

// ---- It will take care of filtering the return value or actually

throwing an exception

Chapter 4 Spring Security Architecture and Design

85

//----- if it is relevant to do so.

if (afterInvocationManager != null) {

 // Attempt after invocation handling

try {

returnedObject = afterInvocationManager.decide(token.getSecurityContext().

getAuthentication(),

token.getSecureObject(),

token.getAttributes(), returnedObject);

 }

catch (AccessDeniedException accessDeniedException) {

AuthorizationFailureEvent event = new AuthorizationFailureEvent(token.

getSecureObject(), token .getAttributes(), token.getSecurityContext().

getAuthentication(), accessDeniedException);

publishEvent(event);

throw accessDeniedException;

 }

 }

// ---- Here is the full authorization cycled finished. The response is

returned to the caller.

return returnedObject;

 }

The Security Interceptor lies at the core of the Spring Security framework. Every

call to a secured resource in Spring Security passes through this interceptor. The

AbstractSecurityInterceptor shows its versatility when you realize that two not-

very-related kinds of resources (URL endpoints and methods) leverage most of the

functionality of this abstract interceptor. Once again, this shows the effort put into the

design and implementation of the framework.

Figure 4-5 shows the interceptor in an unified modeling language (UML) class

diagram. Figure 4-6 shows a simplified sequence diagram.

Chapter 4 Spring Security Architecture and Design

86

Figure 4-5.  SecurityInterceptor UML class diagram, simplified

Figure 4-6.  AbstractSecurityInterceptor sequence diagram, simplified

You know how security interceptors work, but how do they come to be? How do they

know what to intercept? The answer lies in the next few components, so keep reading.

Chapter 4 Spring Security Architecture and Design

87

�The XML Namespace

The XML namespace is of extreme importance to the general appeal and usability of

the framework namespace, yet it is, in theory, not strictly necessary. If you know how

the Spring Framework’s namespaces work, you probably have a good idea of what is

going on when you define your security-specific XML configuration in your application

context definition files. If you don’t know how they work, maybe you think Spring is

somehow made aware of how to treat these specific elements and how to load them in

the general Spring application context. Either way, here we explain the process behind

defining a custom namespace in Spring, particularly the elements in the Spring Security

namespace.

Originally, Spring did not support custom XML. All that Spring understood was

its own classes defined in the standard Spring Core namespace, where you can define

<bean>s on a bean-to-bean basis and can’t define anything conceptually more complex

without adding that complexity yourself to the configuration.

This <bean>-based configuration was, and still is, very good for configuring general-

purpose bean instances, but it can get messy fast for defining more domain-specific

utilities. Beyond being messy, it is also very poor at expressing the business domain of

the beans you define.

We’ll explore this manual configuration later in the book, but it is not needed for

standard cases, and you should simply use the namespace. However, remember that

under the hood, the namespace is nothing more than syntactic sugar. You still end up

with standard Spring beans and objects.

Spring 2.0 introduced support for defining custom XML namespaces. Since then,

many projects have used this facility, making them more attractive to work with.

An XML custom namespace is simply an XML-based domain-specific language

(DSL), guided by the rules of an XML schema (.xsd) file that allows developers to create

Spring beans using concepts and syntax more in synch with the programming concerns

they are trying to model.

Chapter 4 Spring Security Architecture and Design

88

Note A DSL is a language customized to represent the concepts of a particular
application domain. Sometimes, a whole new language is created to support
the new domain, which is referred to as an external DSL. An existing language
is sometimes tweaked to allow for new expressions that represent the domain’s
concepts, which is an internal DSL. In the case presented in this chapter, you
are using a general-purpose language (XML); however, you are defining certain
constraints about the elements (using XSD) and thus are creating an internal DSL
to represent security concepts.

Making Spring aware of a new namespace is simple. (That’s not to say it is simple to

parse the XML’s information and convert it to beans—this depends on the complexity of

your DSL.) All you need is the following.

•	 An .xsd file defining your particular XML structure

•	 A spring.schemas file where you specify the mapping between a

URL-based schema location and the location of your .xsd file in your

classpath

•	 A spring.handlers file where you specify which class is in charge of

handling everything related to your namespace

•	 Several parser classes that parse each of the top elements are defined

in your XML file.

Chapter 8 provides some examples of how to create a new namespace element and

integrate it with Spring Security.

All the namespace configuration-related information resides in the config module

for Spring Security. In Figure 4-7, you can see the expanded structure of the config

module as seen in the IntelliJ IDEA 2023.1.2 integrated development environment (IDE)

used in this book.

Chapter 4 Spring Security Architecture and Design

https://doi.org/10.1007/979-8-8688-0035-1_8

89

Figure 4-7.  Spring Security’s file structure

The files spring.handlers and spring.schemas should reside in the META-INF

directory in the classpath so that Spring can find them there.

OK, so enough of the general namespace information. More specifically, how does

the Spring Security namespace work?

Chapter 4 Spring Security Architecture and Design

90

Let’s suppose you create and run a Spring-based application using XML-defined

application context configuration with some Spring Security namespace definitions.

When it starts to load, it looks in the application context’s namespace definitions at the

top of the XML configuration file. It finds the reference to the Spring Security namespace

(normally a reference like xmlns:security="http://www.springframework.org/

schema/security"). Using the information from the spring.handlers mapping file, it

sees that the file to handle the security elements is the final class, org.springframework.

security.config.SecurityNamespaceHandler. Spring calls the parse method of this

class for every top element in the configuration file that uses the security namespace.

Figure 4-8 shows the load-up sequence for this process.

Figure 4-8.  Sequence of loading up a Spring namespace

SecurityNamespaceHandler delegates to a series of BeanDefinitionParser objects for

the individual parsing of each top-level element. The whole list of elements supported in

the Spring Security namespace configuration is defined in the class org.springframework.

security.config.Elements as constants. This class is shown in Listing 4-2.

Chapter 4 Spring Security Architecture and Design

http://www.springframework.org/schema/security
http://www.springframework.org/schema/security

91

Listing 4-2.  Constants for All the Spring Security Namespace Elements

package org.springframework.security.config;

public abstract class Elements {

public static final String ACCESS_DENIED_HANDLER = "access-denied-handler";

public static final String AUTHENTICATION_MANAGER = "authentication-

manager";

public static final String AFTER_INVOCATION_PROVIDER = "after-invocation-

provider";

public static final String USER_SERVICE = "user-service";

public static final String JDBC_USER_SERVICE = "jdbc-user-service";

public static final String FILTER_CHAIN_MAP = "filter-chain-map";

public static final String INTERCEPT_METHODS = "intercept-methods";

public static final String INTERCEPT_URL = "intercept-url";

public static final String AUTHENTICATION_PROVIDER = "authentication-

provider";

public static final String HTTP = "http";

public static final String LDAP_PROVIDER = "ldap-authentication-provider";

public static final String LDAP_SERVER = "ldap-server";

public static final String LDAP_USER_SERVICE = "ldap-user-service";

public static final String PROTECT_POINTCUT = "protect-pointcut";

public static final String EXPRESSION_HANDLER = "expression-handler";

public static final String INVOCATION_HANDLING = "pre-post-annotation-

handling";

public static final String INVOCATION_ATTRIBUTE_FACTORY = "invocation-

attribute-factory";

public static final String PRE_INVOCATION_ADVICE = "pre-invocation-advice";

public static final String POST_INVOCATION_ADVICE = "post-

invocation-advice";

public static final String PROTECT = "protect";

public static final String SESSION_MANAGEMENT = "session-management";

public static final String CONCURRENT_SESSIONS = "concurrency-control";

public static final String LOGOUT = "logout";

public static final String FORM_LOGIN = "form-login";

public static final String BASIC_AUTH = "http-basic";

Chapter 4 Spring Security Architecture and Design

92

public static final String REMEMBER_ME = "remember-me";

public static final String ANONYMOUS = "anonymous";

public static final String FILTER_CHAIN = "filter-chain";

public static final String GLOBAL_METHOD_SECURITY = "global-method-

security";

public static final String PASSWORD_ENCODER = "password-encoder";

public static final String SALT_SOURCE = "salt-source";

public static final String PORT_MAPPINGS = "port-mappings";

public static final String PORT_MAPPING = "port-mapping";

public static final String CUSTOM_FILTER = "custom-filter";

public static final String REQUEST_CACHE = "request-cache";

public static final String X509 = "x509";

public static final String JEE = "jee";

public static final String FILTER_SECURITY_METADATA_SOURCE = "filter-

security-

metadata-source";

public static final String METHOD_SECURITY_METADATA_SOURCE = "method-

security-metadata-source";

 @Deprecated

public static final String FILTER_INVOCATION_DEFINITION_SOURCE = "filter-

invocation-definition-source";

public static final String LDAP_PASSWORD_COMPARE = "password-compare";

public static final String DEBUG = "debug";

public static final String HTTP_FIREWALL = "http-firewall";

}

From the list of elements presented in the previous class, the top-level ones used

in the XML configuration files are as follows. (Listing 4-2 refers to them by the constant

name, not the XML element name).

•	 LDAP_PROVIDER configures your application’s Lightweight Directory

Access Protocol (LDAP) authentication provider in case you

require one.

•	 LDAP_SERVER configures an LDAP server in your application.

Chapter 4 Spring Security Architecture and Design

93

•	 LDAP_USER_SERVICE configures the service for retrieving user details

from an LDAP server and populating that user’s authorities (Spring

Security uses the term “authorities” to refer to the permission names

that are granted to a particular user. For example, ROLE_USER is an

authority).

•	 USER_SERVICE defines the in-memory user service where you

can store user names, credentials, and authorities directly in the

application context definition file. This type of configuration is

specific for test environments and academic purposes because it is

easy to set up and fast.

•	 JDBC_USER_SERVICE allows you to set up a database-driven user

service, where you specify a DataSource and the queries to retrieve

the user information from a database.

•	 AUTHENTICATION_PROVIDER defines DaoAuthenticationProvider,

which is an authentication provider that delegates to an instance of

UserDetailsService, which can be any of the ones defined in the

previous three elements or a reference to a customized one.

•	 GLOBAL_METHOD_SECURITY sets up the global support in your

application to the annotations @Secured, @javax.annotation.

security.RolesAllowed, @PreAuthorize, and @PostAuthorize.

This element is the one that handles the registration of a method

interceptor that is aware of all the metadata of the bean’s methods to

apply the corresponding security advice.

•	 AUTHENTICATION_MANAGER registers a global ProviderManager

in the application and sets up the configured

AuthenticationProviders on it.

•	 METHOD_SECURITY_METADATA_SOURCE registers

MapBasedMethodSecurityMetadataSource in the application context.

It holds Map<RegisteredMethod, List<ConfigAttribute>>. It does

this so that when a request is made to a method, the method can be

retrieved, and its security constraints can be checked.

•	 DEBUG registers a DebugFilter in the security filter chain.

Chapter 4 Spring Security Architecture and Design

94

•	 HTTP is the main element for a web-based secure application. The

HTTP element is really powerful. It allows for the definition of URL-

based security-mapping strategies, the configuration of the filters, the

Secure Sockets Layer (SSL) support, and other HTTP-related security

configurations.

•	 HTTP_FIREWALL uses a firewall element and adds it to the filter chain if

it is configured. The firewall referenced should be an implementation

of Spring’s own HttpFirewall interface.

•	 FILTER_INVOCATION_DEFINITION_SOURCE has been deprecated. See

the following one.

•	 FILTER_SECURITY_METADATA_SOURCE wraps a list of <intercept-url>

elements. These elements map the relationship between URLs and

the ConfigAttributes required for accessing those URLs.

•	 FILTER_CHAIN allows you to configure the Spring Security filter

chain used in the application, which filters you want to add to the

chain, and a request matcher to customize how the chain matches

requests. The most important request matches are ant-based and

regexp-based.

The Spring Security namespace is used throughout the book, so many of the

elements described here are revisited in later chapters.

�The Filters and Filter Chain

The filter chain model is what Spring Security uses to secure web application filters

and filter chains. This model is built on top of the standard servlet filter functionality.

Working as an intercepting filter pattern, the filter chain in Spring Security is built of a

few single-responsibility filters that cover all the different security constraints required

by the application.

The filter chain in Spring Security preprocesses and postprocesses all the HTTP

requests sent to the application and then applies security to URLs that require it.

A typical filter for a single HTTP request is shown in Figure 4-9.

Chapter 4 Spring Security Architecture and Design

95

Figure 4-9.  Spring Security filter example for a single HTTP request

The Spring Security filter chain is made up of Spring beans; however, standard

servlet-based web applications don’t know about Spring beans.

From the container’s point of view, Spring Security is a single filter, which internally

contains a lot of filters with different purposes.

Spring Security is installed as a single filter in the FilterChainProxy chain, which

contains all the security needed, as shown in Figure 4-10.

Figure 4-10.  Spring Security filters overview

Chapter 4 Spring Security Architecture and Design

96

In the security filter, a special layer of indirection is installed in the

DelegatingFilterProxy container, which does not need to be a Spring bean.

The flow works so that the DelegatingFilterProxy filter delegates to

a FilterChainProxy, which instead is always a bean with a fixed name of

springSecurityFilterChain, which at the end is responsible, within your application,

for the following.

•	 Protecting the application URLs

•	 Validating the submitted username and passwords

•	 Redirecting to the login form

The DelegatingFilterProxy process containing the FilterChainProxy is shown in

Figure 4-11.

Figure 4-11.  Spring Security filter chain overview

The Spring Security filter configuration is achieved via a special servlet and two main

XML files, web.xml and applicationContext.xml. Starting with Servlet 3.0, web.xml is

no longer necessary.

This special servlet filter is needed to cross the boundaries between the standard

servlet API and life cycle and the Spring application where the bean filters reside. This is

the job of the org.springframework.web.filter.DelegatingFilterProxy. It is defined

in web.xml, which uses the WebApplicationContextUtils.getWebApplicationContext

utility method to retrieve the root application context of the application. These two

classes are from Spring Framework, not Spring Security.

Chapter 4 Spring Security Architecture and Design

97

Figure 4-12 shows the configuration of the filter chain.

Figure 4-12.  Understanding the Spring Security filter configuration. The filter in
the web.xml file has the same name as the bean in the Spring application context
so that the listener can find it

More information about migrating from Spring Security 6 filters is at

https://docs.spring.io/spring-security/reference/servlet/architecture.

html#servlet-securityfilterchain.

The filter chain is explained in Chapter 5. However, here we’ll provide an overview

of the available filters and what they do. The available filters in version 6 are defined as

enums in the org.springframework.security.web.SecurityFilterChain file.

The enums are then referenced later in the startup process when instantiating the

bean definitions for each filter. The following describes the defined filters.

•	 CHANNEL_FILTER ensures that the request is handled by the correct

channel—meaning, in most cases, it determines whether HTTPS

handles the request.

•	 CONCURRENT_SESSION_FILTER is part of the concurrent session-

handling mechanism. Its main function is to query the session to see

if it has expired (which happens mainly when the maximum number

of concurrent sessions per user are reached) and to log out the user if

that is the case.

•	 SECURITY_CONTEXT_FILTER populates SecurityContextHolder

with a new or existing security context to be used by the rest of the

framework.

Chapter 4 Spring Security Architecture and Design

https://docs.spring.io/spring-security/reference/servlet/architecture.html#servlet-securityfilterchain
https://docs.spring.io/spring-security/reference/servlet/architecture.html#servlet-securityfilterchain
https://doi.org/10.1007/979-8-8688-0035-1_5

98

•	 LOGOUT_FILTER is based, by default, on a particular URL invocation

(/logout). It handles the logout process, including clearing the

cookies, removing the “remember me” information, and clearing the

security context.

•	 X509_FILTER extracts the principal and credentials from an X509

certificate using the class java.security.cert.X509Certificate

and attempts to authenticate with these preauthenticated values.

•	 PRE_AUTH_FILTER is used with the J2EE authentication mechanism.

The J2EE authenticated principal is the preauthenticated principal in

the framework.

•	 FORM_LOGIN_FILTER is used when a username and password are

required on a login form. This filter takes care of authenticating with

the requested username and password. It handles (since Spring

4) requests to a particular URL (/login) with a particular set of

username and password parameters (username, password).

•	 LOGIN_PAGE_FILTER generates a default login page when the

user doesn’t provide a custom one. It is activated when /spring_

security_login is requested.

•	 DIGEST_AUTH_FILTER processes HTTP Digest authentication

headers. It looks for the presence of both Digest and Authorization

HTTP request headers. It can provide Digest authentication to

standard user agents, like browsers, or application clients like

SOAP. On successful authentication, the SecurityContext is

populated with the valid Authentication object.

•	 BASIC_AUTH_FILTER processes the BASIC authentication headers in

an HTTP request. It looks for the header Authorization and tries to

authenticate with these credentials.

•	 REQUEST_CACHE_FILTER retrieves a request from the request cache

that matches the current request, and it sends the cached one

through the rest of the filter chain.

Chapter 4 Spring Security Architecture and Design

99

•	 SERVLET_API_SUPPORT_FILTER. wraps the request in a request

wrapper that implements the Servlet API security methods, like

isUserInRole, and delegates it to SecurityContextHolder. This

allows for the convenient use of the request object to get the security

information. For example, you can use request.getAuthentication

to retrieve the Authentication object.

•	 JAAS_API_SUPPORT_FILTER tries to obtain and use javax.security.

auth.Subject, which is a final class, and continue the filter chain

execution with this subject.

•	 REMEMBER_ME_FILTER checks whether any “remember me”

functionality is active and any “remember me” authentication

is available if no user is logged in. If there is, this filter tries to

log in automatically and authenticate with this “remember me”

information.

•	 ANONYMOUS_FILTER checks to see whether there is already an

Authentication in the context. If not, it creates a new Anonymous one

and sets it in the security context.

•	 SESSION_MANAGEMENT_FILTER passes the Authentication

object corresponding to the authenticated user who is logged

in to the system to some configured session management

processors to do session-related handling of the Authentication.

Mainly, these processors do some kind of validation and throw

SessionAuthenticationException if appropriate. Currently,

these processors (or strategies) include only one main class, org.

springframework.security.web.authentication.session.

ConcurrentSessionControlStrategy, dealing with both session

fixation and concurrent sessions.

•	 EXCEPTION_TRANSLATION_FILTER handles the translation between

Spring Security exceptions (like AccessDeniedException) and the

corresponding HTTP status code. It also redirects to the application

entry point if the exception is thrown because there is not yet an

authenticated user in the system.

Chapter 4 Spring Security Architecture and Design

100

•	 FILTER_SECURITY_INTERCEPTOR handles the authorization

mechanism for defined URLs. It delegates to its parent class

(AbstractSecurityInterceptor) functionality (covered later in the

chapter) the actual workflow logic of granting or not granting access

to the specific resource.

•	 SWITCH_USER_FILTER allows a user to impersonate another one by

visiting a URL that has been updated from /j_spring_security_

switch_user to /login/impersonate since Spring 4. This URL

should be secured to allow certain users access to this functionality.

Also, the method attemptSwitchUser in the implementing class

SwitchUserFilter can be overridden to add constraints so that you

can use more finely-grained information to decide whether certain

users are allowed or not allowed to impersonate other users.

Many interfaces (e.g., Open ID and ConfigAttribute) have been deprecated since API

version 5.6.2. The entire list is at https://docs.spring.io/spring-security/site/

docs/5.6.2/api/deprecated-list.html.

�The Authentication Object

In Spring Security 6, the Authentication interface serves two main purposes within

Spring Security.

•	 An input to AuthenticationManager to provide the credentials a

user has provided to authenticate. When used in this scenario,

isAuthenticated() returns false.

•	 Represent the currently authenticated user. You can obtain the

current authentication from SecurityContext.

The Authentication interface contains the following.

•	 principal identifies the user. Authenticating with a username/

password is often an instance of UserDetails.

•	 credentials is usually the password. It is often cleared after the user is

authenticated to ensure it is not leaked.

•	 authorities means the GrantedAuthority instances, which are

high-level permissions the user is granted. Two examples are roles

and scopes.

Chapter 4 Spring Security Architecture and Design

https://docs.spring.io/spring-security/site/docs/5.6.2/api/deprecated-list.html
https://docs.spring.io/spring-security/site/docs/5.6.2/api/deprecated-list.html

101

The Authentication object is an abstraction representing the entity that logs in to

the system—most likely a user. Because it is normally a user authenticating, we’ll assume

so and use the term “user” in the rest of the book. There are a few implementations of

the Authentication object in the framework, as shown in Figure 4-13.

Figure 4-13.  Authentication hierarchy

An Authentication object is used when an authentication request is created (when

a user logs in) to carry around the different layers and classes of the framework the

requesting data and when it is validated, containing the authenticated entity and storing

it in SecurityContext.

The most common behavior is that when you log in to the application, a new

Authentication object is created, storing your username, password, and permissions,

which are technically known as principal, credentials, and authorities, respectively.

Authentication is a simple interface, as Listing 4-3 shows.

Note T here are many implementations of the Authentication interface. In
this book, we typically refer to the general Authentication interface when we
are not interested in the implementation type. Of course, we refer to the concrete
classes when discussing the specifics of an implementation detail.

Chapter 4 Spring Security Architecture and Design

102

Listing 4-3.  The Authentication Interface

package org.springframework.security.core;

import java.io.Serializable;

import java.security.Principal;

import java.util.Collection;

import org.springframework.security.authentication.AuthenticationManager;

import org.springframework.security.core.context.SecurityContextHolder;

public interface Authentication extends Principal, Serializable {

Collection<? extends GrantedAuthority> getAuthorities();

 Object getCredentials();

 Object getDetails();

 Object getPrincipal();

Boolean isAuthenticated();

Void setAuthenticated(boolean isAuthenticated) throws

IllegalArgumentException;

}

As Figure 4-13 shows, currently, there are a few implementations of Authentication

in the framework.

•	 UsernamePasswordAuthenticationToken: This simple

implementation contains the username and password information

of the authenticated (or pending authentication) user. It is the most

common Authentication implementation used throughout the

system, as many AuthenticationProvider objects depend directly

on this class.

•	 PreAuthenticatedAuthenticationToken: This implementation

exists for handling preauthenticated Authentication objects.

Preauthenticated authentications are those where an external system

handles the actual authentication process. Spring Security only

extracts the principal (or user) information from the external system’s

messages.

Chapter 4 Spring Security Architecture and Design

103

•	 RunAsUserToken: This implementation is used by the RunAsManager,

which the Security Interceptor calls when the accessed resource

contains a ConfigAttribute that starts with the prefix RUN_AS_. If

there is a ConfigAttribute with this value, RunAsManager adds new

GrantedAuthorities to the authenticated user corresponding to the

RUN_AS value.

�SecurityContext and SecurityContextHolder

At the heart of Spring Security’s authentication model is the SecurityContextHolder. It

contains the SecurityContext.

The SecurityContextHolder is where Spring Security stores the details of who

is authenticated. Spring Security does not care how the SecurityContextHolder is

populated. It is used as the currently authenticated user if it contains a value.

Here is an example of SecurityContextHolder usage.

SecurityContext context = SecurityContextHolder.createEmptyContext();

Authentication authentication =

 new TestingAuthenticationToken("username", "password", "ROLE_USER");

context.setAuthentication(authentication);

SecurityContextHolder.setContext(context);

The interface org.springframework.security.core.context.SecurityContext

(its implementation is SecurityContextImpl) is where Spring Security stores the

valid Authentication object, associating it with the current thread. The org.

springframework.security.core.context.SecurityContextHolder is the class used

to access SecurityContext from many parts of the framework. It is built mainly of static

methods to store and access SecurityContext, delegating to configurable strategies to

handle this SecurityContext—for example, one SecurityContext per thread (default),

one global SecurityContext, or a custom strategy. The class diagram for these classes

can be seen in Figure 4-14, and Listings 4-4 and 4-5 show the two classes.

Chapter 4 Spring Security Architecture and Design

104

Figure 4-14.  SecurityContext and SecurityContextHolder

Listing 4-4.  SecurityContext Interface

package org.springframework.security.core.context;

import org.springframework.security.core.Authentication;

import java.io.Serializable;

public interface SecurityContext extends Serializable {

 Authentication getAuthentication();

void setAuthentication(Authentication authentication);

}

The entire SecurityContextHolder reference is on GitHub at https://github.

com/spring-projects/spring-security/blob/master/core/src/main/java/org/

springframework/security/core/context/SecurityContext.java.

Listing 4-5.  SecurityContextHolder Class

package org.springframework.security.core.context;

import org.springframework.util.ReflectionUtils;

import java.lang.reflect.Constructor;

public class SecurityContextHolder {

public static final String MODE_THREADLOCAL = "MODE_THREADLOCAL";

public static final String

 MODE_INHERITABLETHREADLOCAL = "MODE_INHERITABLETHREADLOCAL";

public static final String MODE_GLOBAL = "MODE_GLOBAL";

Chapter 4 Spring Security Architecture and Design

https://github.com/spring-projects/spring-security/blob/master/core/src/main/java/org/springframework/security/core/context/SecurityContext.java
https://github.com/spring-projects/spring-security/blob/master/core/src/main/java/org/springframework/security/core/context/SecurityContext.java
https://github.com/spring-projects/spring-security/blob/master/core/src/main/java/org/springframework/security/core/context/SecurityContext.java

105

public static final String SYSTEM_PROPERTY = "spring.security.strategy";

private static String strategyName = System.getProperty(SYSTEM_PROPERTY);

private static SecurityContextHolderStrategy strategy;

private static int initializeCount = 0;

static {

initialize();

 }

public static void clearContext() {

strategy.clearContext();

 }

public static SecurityContext getContext() {

return strategy.getContext();

 }

public static int getInitializeCount() {

return initializeCount;

 }

private static void initialize() {

if ((strategyName == null) || "".equals(strategyName)) {

strategyName = MODE_THREADLOCAL;

 }

if (strategyName.equals(MODE_THREADLOCAL)) {

strategy = new ThreadLocalSecurityContextHolderStrategy();

 } else if (strategyName.equals(MODE_INHERITABLETHREADLOCAL)) {

strategy = new InheritableThreadLocalSecurityContextHolderStrategy();

 } else if (strategyName.equals(MODE_GLOBAL)) {

strategy = new GlobalSecurityContextHolderStrategy();

 } else {

try {

 Class<?> clazz = Class.forName(strategyName);

 Constructor<?> customStrategy = clazz.getConstructor();

strategy = (SecurityContextHolderStrategy) customStrategy.newInstance();

 } catch (Exception ex) {

ReflectionUtils.handleReflectionException(ex);

 }

 }

Chapter 4 Spring Security Architecture and Design

106

initializeCount++;

 }

public static void setContext(SecurityContext context) {

strategy.setContext(context);

 }

public static void setStrategyName(String strategyName) {

SecurityContextHolder.strategyName = strategyName;

initialize();

 }

public static SecurityContextHolderStrategy getContextHolderStrategy() {

return strategy;

 }

public static SecurityContext createEmptyContext() {

return strategy.createEmptyContext();

 }

public String toString() {

 �return "SecurityContextHolder[strategy='" + strategyName + "';

initializeCount=" + initializeCount + "]";

 }

}

�AuthenticationProvider

AuthenticationProvider is the main entry point for authenticating an Authentication

object. This interface has only two methods, as Listing 4-6 shows. This is one of the major

extension points of the framework, as you can tell by the many classes that currently

extend this interface. Each implementing class deals with a particular external provider

to authenticate against. So, if you come across a particular provider that is not supported

and need to authenticate against it, you probably need to implement this interface with

the required functionality. You see examples of this later in the book.

AuthenticationProvider (see Figure 4-15) is very similar to AuthenticationManager,

but it has an extra method that can be used to call a query if it supports a given

Authentication type, as shown here.

Chapter 4 Spring Security Architecture and Design

107

public interface AuthenticationProvider {

 Authentication authenticate(Authentication authentication)

 throws AuthenticationException;

 boolean supports(Class<?> authentication);

}

Figure 4-15.  AuthenticationProvider hierarchy

Here are some of the existing providers that come with the framework.

CasAuthenticationProvider

JaasAuthenticationProvider

DaoAuthenticationProvider

RememberMeAuthenticationProvider

LdapAuthenticationProvider

The entire AuthenticationProvider reference is on GitHub at https://github.

com/spring-projects/spring-security/blob/master/core/src/main/java/org/

springframework/security/authentication/AuthenticationProvider.java.

Chapter 4 Spring Security Architecture and Design

https://github.com/spring-projects/spring-security/blob/master/core/src/main/java/org/springframework/security/authentication/AuthenticationProvider.java
https://github.com/spring-projects/spring-security/blob/master/core/src/main/java/org/springframework/security/authentication/AuthenticationProvider.java
https://github.com/spring-projects/spring-security/blob/master/core/src/main/java/org/springframework/security/authentication/AuthenticationProvider.java

108

Listing 4-6.  AuthenticationProvider Interface

package org.springframework.security.authentication;

import org.springframework.security.core.Authentication;

import org.springframework.security.core.AuthenticationException;

public interface AuthenticationProvider {

 �Authentication authenticate(Authentication authentication) throws

AuthenticationException;

boolean supports(Class<?> authentication);

}

�AccessDecisionManager

AccessDecisionManager is the class in charge of deciding whether a particular

Authentication object is allowed or not allowed to access a particular resource. In its

main implementations, it delegates to AccessDecisionVoter objects, which compare

the GrantedAuthorities in the Authentication object against the ConfigAttribute(s)

required by the resource accessed, deciding whether or not access should be

granted. They emit their vote to allow access or not. The AccessDecisionManager

implementations consider the voters' output and apply a determined strategy on

whether or not to grant access. Voters, however, also can abstain from voting.

The AccessDecisionManager interface can be seen in Listing 4-7. Its UML class

diagram is shown in Figure 4-16.

Figure 4-16.  AccessDecisionManager hierarchy

Chapter 4 Spring Security Architecture and Design

109

The entire AccessDecisionManager reference is on GitHub at https://github.

com/spring-projects/spring-security/blob/master/core/src/main/java/org/

springframework/security/access/AccessDecisionManager.java.

Listing 4-7.  AccessDecisionManager

package org.springframework.security.access;

import java.util.Collection;

import org.springframework.security.authentication.

InsufficientAuthenticationException;

import org.springframework.security.core.Authentication;

public interface AccessDecisionManager {

void decide(Authentication authentication, Object object,

Collection<ConfigAttribute> configAttributes)

throws AccessDeniedException, InsufficientAuthenticationException;

boolean supports(ConfigAttribute attribute);

boolean supports(Class<?> clazz);

}

The current AccessDecisionManager implementations delegate to voters, but they

work slightly differently. The current voters, described in the following sections, are

defined in the package org.springframework.security.access.vote.

More information about AccessDecisionManager is at https://docs.spring.io/

spring-security/reference/servlet/authorization/architecture.html#authz-

access-decision-manager.

AffirmativeBased

This access decision manager calls all its configured voters, and if any of them vote that

access should be granted, this is enough for the access decision manager to allow access

to the secured resource. If no voters grant access or at least one votes not to grant it, the

access decision manager throws an AccessDeniedException denying access. If there

are only abstaining voters, a decision is made based on the AccessDecisionManager’s

instance variable allowIfAllAbstainDecisions, which is a Boolean that defaults to

false, determining whether access should be granted or not when all voters abstain.

Chapter 4 Spring Security Architecture and Design

https://github.com/spring-projects/spring-security/blob/master/core/src/main/java/org/springframework/security/access/AccessDecisionManager.java
https://github.com/spring-projects/spring-security/blob/master/core/src/main/java/org/springframework/security/access/AccessDecisionManager.java
https://github.com/spring-projects/spring-security/blob/master/core/src/main/java/org/springframework/security/access/AccessDecisionManager.java
https://docs.spring.io/spring-security/reference/servlet/authorization/architecture.html#authz-access-decision-manager
https://docs.spring.io/spring-security/reference/servlet/authorization/architecture.html#authz-access-decision-manager
https://docs.spring.io/spring-security/reference/servlet/authorization/architecture.html#authz-access-decision-manager

110

ConsensusBased

This access decision manager implementation calls all its configured voters to decide

to either grant or deny access to a resource. The difference with the AffirmativeBased

decision manager is that the ConsensusBased decision manager decides to grant access

only if more voters grant access than voters deny it. So the majority wins in this case. If

there are the same number of granting voters as denying voters, the value of the instance

variable allowIfEqualGrantedDeniedDecisions is used to decide. This variable’s value

is true by default, and access is granted. When all voters abstain, the access decision is

decided the same way as it is for the AffirmativeBased manager.

UnanimousBased

As you probably guessed, this access decision manager grants access to the resource

only if all the configured voters vote to allow access to the resource. If any voter votes to

deny the access, the AccessDeniedException is thrown. The “all abstain” case is handled

the same way as with the other implementations of AccessDecisionManager.

�AccessDecisionVoter

This discussion of the AccessDecisionManager and its current implementations should

have clarified the importance of the Access Decision Voters, because they are the ones,

working as a team, who ultimately determine if a particular Authentication object has

enough privileges to access a particular resource.

The org.springframework.security.access.AccessDecisionVoter interface is

very simple as shown in Listing 4-8.

The main method is vote, and as can be deduced from the interface, it return one of

three possible responses (ACCESS_GRANTED, ACCES_ABSTAIN, ACCESS_DENIED), depending

on whether the required conditions are satisfied.

The satisfaction or not of the conditions is given by analyzing the Authentication

object’s rights against the required resource. In practice, this means that the

Authentication’s authorities are compared against the resource’s security attributes

looking for matches.

Chapter 4 Spring Security Architecture and Design

111

The following are the current AccessDecisionVoter implementations.

•	 org.springframework.security.access.annotation.Jsr250Voter

votes on resources secured with JSR 250 annotations—namely,

DenyAll, PermitAll, and RolesAllowed. Their names are very

descriptive. DenyAll won’t allow access to the resource, independent

of the security information carried by the Authentication object

trying to access it. PermitAll allow access to everyone, regardless

of what roles they have. The RolesAllowed annotation can be

configured with a series of roles. If an Authentication object tries to

access the resource, it must have one of the roles configured in the

RolesAllowed annotation to get access granted by this voter.

•	 org.springframework.security.access.prepost.

PreInvocationAuthorizationAdviceVoter votes on resources

with expression configurations based on @PreFilter and @

PreAuthorize annotations. @PreFilter and @PreAuthorize

annotations support a value attribute with a SpEL expression.

The PreInvocationAuthorizationAdviceVoter is in charge of

evaluating the SpEL expressions (of course with the help of Spring’s

SpEL evaluation mechanism) provided in these annotations. SpEL

expressions are discussed throughout this book so this concept

becomes clearer as the book advances.

•	 org.springframework.security.access.vote.AbstractAclVoter:

This is the abstract class with the skeleton to write voters dealing

with domain ACL rules so that other implementing class builds on

its functionality to add voting behavior. Currently, it is implemented

in AclEntryVoter, which votes on users’ permissions on domain

objects. This voter is covered in Chapter 7.

•	 org.springframework.security.access.vote.AuthenticatedVoter

votes whenever a ConfigAttribute referencing any of the three

possible levels of authentication is present on the secured resource.

The three levels are IS_AUTHENTICATED_FULLY, IS_AUTHENTICATED_

REMEMBERED, and IS_AUTHENTICATED_ANONYMOUSLY. The voter emits

a positive vote if the Authentication object’s authentication level

Chapter 4 Spring Security Architecture and Design

https://doi.org/10.1007/979-8-8688-0035-1_7

112

matches (or is a stronger level in the hierarchy IS_AUTHENTICATED_

FULLY > IS_AUTHENTICATED_REMEMBERED > IS_AUTHENTICATED_

ANONYMOUSLY) the authentication level configured in the resource.

•	 org.springframework.security.access.vote.RoleVoter is

perhaps the most commonly used voter of them all. This voter,

by default, can vote on resources that have ConfigAttribute(s)

containing security metadata starting with the prefix ROLE_ (which

can be overridden). When an Authentication object tries to access

the resource, its GrantedAuthorities are matched against the

relevant ConfigAttributes. If there is a match, access is granted. If

there isn’t, access is denied.

•	 org.springframework.security.access.expression.

WebExpressionVoter: This is the voter in charge of evaluating SpEL

expressions in the context of web requests in the filter chain—

expressions like 'hasRole' in the <intercept-url> element. To use

this voter and support SpEL expressions in web security, the use-

expressions="true" attribute must be added to the <http> element.

The voters model is yet another one in the framework open for extension and

customization. You can easily create your own implementation and add it to the

framework. You see how to do this in Chapter 8.

The entire AccessDecisionVoter reference is on GitHub at https://github.

com/spring-projects/spring-security/blob/master/core/src/main/java/org/

springframework/security/access/AccessDecisionVoter.java.

Listing 4-8.  AccessDecisionVoter Interface

package org.springframework.security.access;

import java.util.Collection;

import org.springframework.security.core.Authentication;

public interface AccessDecisionVoter<S> {

int ACCESS_GRANTED = 1;

int ACCESS_ABSTAIN = 0;

int ACCESS_DENIED = -1;

boolean supports(ConfigAttribute attribute);

boolean supports(Class<?> clazz);

Chapter 4 Spring Security Architecture and Design

http://dx.doi.org/10.1007/978-1-4842-5052-5_8
https://github.com/spring-projects/spring-security/blob/master/core/src/main/java/org/springframework/security/access/AccessDecisionVoter.java
https://github.com/spring-projects/spring-security/blob/master/core/src/main/java/org/springframework/security/access/AccessDecisionVoter.java
https://github.com/spring-projects/spring-security/blob/master/core/src/main/java/org/springframework/security/access/AccessDecisionVoter.java

113

int vote(Authentication authentication, S object,

Collection<ConfigAttribute> attributes);

}

�UserDetailsService and AuthenticationUserDetailsService

The interface org.springframework.security.core.userdetails.

UserDetailsService is in charge of loading the user information from the underlying

user store (in-memory, database, and so on) when an authentication request arrives in

the application. UserDetailsService uses the provided user name to look up the rest of

the required user data from the datastore. It defines just one method, as shown in

Listing 4-9. The hierarchy is shown in Figure 4-17.

Listing 4-9.  UserDetailsServicepackage org.springframework.security.core.

userdetails

public interface UserDetailsService {

 UserDetails loadUserByUsername(String username)

throws UsernameNotFoundException;

}

Figure 4-17.  UserDetailsService hierarchy

The interface org.springframework.security.core.userdetails.

AuthenticationUserDetailsService is more generic. It allows you to retrieve a

UserDetails using an Authentication object instead of a user name String, making

it more flexible to implement. An implementation of AuthenticationUserDetailsService

(UserDetailsByNameServiceWrapper) simply delegates to a UserDetailsService

extracting the user name from the Authentication object.

Chapter 4 Spring Security Architecture and Design

114

Listing 4-10 shows the AuthenticationUserDetailsService interface. The two

main strategies (AuthenticationUserDetailsService and UserDetailsService) are used

to retrieve user information when attempting authentication. They are usually called

from the particular AuthenticationProvider used in the application. For example,

the CasAuthenticationProvider delegate to an AuthenticationUserDetailsService

to obtain the user details, while the DaoAuthenticationProvider delegates directly to

a UserDetailsService. Some other providers don’t use a user details service of any

kind (for example, JaasAuthenticationProvider uses its own mechanism to retrieve

the principal from a javax.security.auth.login.LoginContext), and some others

use a completely custom one (for example, LdapAuthenticationProvider uses a

UserDetailsContextMapper).

Listing 4-10.  AuthenticationUserDetailsService

package org.springframework.security.core.userdetails;

 �public interface AuthenticationUserDetailsService<T extends

Authentication> {

 UserDetails loadUserDetails(T token) throws UsernameNotFoundException;

}

�UserDetails

The interface org.springframework.security.core.userdetails.UserDetails object

is the main abstraction in the system, and it’s used to represent a full user in the context

of Spring Security. It can also be accessed later in the system from any point with access

to SecurityContext. Normally, developers implement this interface to store user details

they need or want (like email, telephone, address, and so on). Later, they can access this

information, which is encapsulated in the Authentication object, and they can be

obtained by calling the getPrincipal method on it.

Some of the current UserDetailsService (for example,

InMemoryUserDetailsManager) implementations use the org.springframework.

security.core.userdetails.User class, available in the framework’s core, as the

UserDetails implementation returned by the method loadUserByUsername. However,

this is another of those configurable points of the framework, and you can easily create

your own UserDetails implementation and use that in your application. Listing 4-11

shows the UserDetails interface.

Chapter 4 Spring Security Architecture and Design

115

Listing 4-11.  UserDetails Interface

package org.springframework.security.core.userdetails;

import org.springframework.security.core.Authentication;

import org.springframework.security.core.GrantedAuthority;

import java.io.Serializable;

import java.util.Collection;

public interface UserDetails extends Serializable {

Collection<? extends GrantedAuthority> getAuthorities();

String getPassword();

String getUsername();

boolean isAccountNonExpired();

boolean isAccountNonLocked();

boolean isCredentialsNonExpired();

boolean isEnabled();

}

�ACL

The ACL is the module in charge of securing your application at the individual domain

object level with a fine level of granularity. This means assigning an ID to each domain

object in your application and creating a relationship between these objects and the

different users of the application. These relationships determine whether or not a

determined user is allowed access to a particular domain. The ACL model offers a fine-

grained, access-level configuration to define different rules for accessing the objects

depending on who is trying to access it. (For example, a user might be allowed read

access while another user have write/read access over the same domain object.)

The current support for ACLs is configured to get the configuration rules from a

relational database. The data definition language (DDL) for configuring the database

comes with the framework and is in the ACL module.

ACL security is covered in Chapter 7.

�JSP Taglib

If you are working to secure a Java web application, the taglib component of the

framework is the one you use to hide or show certain elements in your pages according

to your users’ permissions.

Chapter 4 Spring Security Architecture and Design

https://doi.org/10.1007/979-8-8688-0035-1_7

116

The tags are simple to use and, at the same time, very convenient for making a more

usable web site. They help you adapt the UI of your application on a per-user (or more

commonly, per-role) basis.

�Good Design and Patterns in Spring Security
We said it before but repeat it here: One of the great aspects of working with open

source software is that you can (and should) look at the source code and understand the

software at a new, deeper level. Also, you can look at how the software is built, what is

good, and what is bad (at least by your own subjective standards) and learn how other

developers work. This can greatly impact the way you work, because you might discover

a way of doing things that you couldn’t have learned on your own.

The code for Spring Security is publicly available on GitHub at https://github.com/

spring-projects/spring-security.

Sometimes, you find things you don’t like, but that is also good. You can learn from

other people’s mistakes as much as from their successes.

Spring in general and Spring Security in particular have achieved something

invaluable in the Java development space—that is, they can make us better developers

even without our noticing it. For instance, we often ask ourselves, “How many people

would be using a template pattern for accessing databases if they weren’t using

Spring, instead of a more awkward DB access layer?” or “How many people would be

just programming against implementation classes all the time, creating unnecessary

coupling if it wasn’t for Spring’s DI support?” or “How many people would have cross-

cutting concerns, like transactions, all over their code base if it wasn’t for how easily

Spring brings AOP into the development process?”

We think helping good practices almost without noticing is a great Spring

achievement. It won’t create great developers by itself, but it helps the average developer

not make mistakes they might make if they didn’t have the support of the framework and

its principles to adhere to.

As you might see from the description of the main components of the framework,

Spring Security itself is built with good design principles and patterns in mind. Let’s

briefly look at some of the things we find interesting in the framework, and from which

you can learn.

This section won’t help you do more with Spring Security, but it serves as a way to

appreciate the good work done in constructing this fantastic framework.

Chapter 4 Spring Security Architecture and Design

https://github.com/spring-projects/spring-security
https://github.com/spring-projects/spring-security

117

�Strategy Pattern
A big part of the pluggability and modularity of the framework is achieved thanks

to the wide use of the Strategy pattern. You can find it, for example, in the type

of SecurityContext to be used, the AuthenticationProvider hierarchy, the

AccessDecisionVoters, and many other elements. Covering design patterns is outside

the scope of this book. But as a reminder of the strategy pattern’s power, we leave you

with this definition from Wikipedia: “The strategy pattern defines a family of algorithms,

encapsulates each one, and makes them interchangeable. Strategy lets the algorithm

vary independently from clients that use it.”

That definition shows a great deal of the power of working with interfaces. You

can have different implementations of the same interface and pass any of them to a

client class for doing different kinds of work. The client classes don’t need to know or

care about the implementation details they are working with. Knowing the interface or

contract is enough to leverage its job.

�Decorator Pattern
Built into Spring’s core AOP framework, you can find the Decorator pattern—mostly

in the way that your annotated business classes and methods get security constraints

applied to them. Basically, your objects have only certain meta information related

to the security constraints that should be applied to them, and then by some “Spring

magic” they get wrapped with security handling. Listing 4-12 shows the invoke method

of MethodSecurityInterceptor. You can see how the objects are decorated with

prefunctionality and postfunctionality surrounding the actual method’s invocation.

Listing 4-12.  MethodSecurityInterceptor’s Invoke Method

public Object invoke(MethodInvocation mi) throws Throwable {

InterceptorStatusToken token = super.beforeInvocation(mi);

 Object result = mi.proceed();

returnsuper.afterInvocation(token, result);

 }

Chapter 4 Spring Security Architecture and Design

118

�SRP
Spring Security’s code seems to take very seriously the single-responsibility

principle. There are many examples of it around the framework, because any

object you choose seems to have one and only one responsibility. For example, the

AuthenticationProvider deals only with the general concern of authenticating

a principal with its credentials in the system. The SecurityInterceptor is simply

in charge of intercepting the requests and delegates all security-checking logic to

collaborating objects. A lot more examples like this can be extracted from the framework.

�DI
Again, this is built into the Spring Framework itself, and of course as everything in

the Spring architecture, it is also inherited by the rest of the Spring projects, including

Spring Security. Dependency injection (DI) is one of Spring’s most important features.

Almost every component in Spring Security is configured through dependency injection.

The AccessDecisionManager is injected into the AbstractSecurityInterceptor, and

AccessDecisionVoter implementations are injected into the AccessDecisionManager.

And like this, most of the framework is built by composing components together through

dependency injection.

�Summary
This was a complex chapter, but going through the inner workings of a software tool is

the best way to understand it and take advantage of it. And that is what you did. You got

an in-depth explanation of Spring Security’s architecture, major components, and how it

works from the inside.

You should now understand how the XML namespace works, how AOP fits into the

framework, and how, in general, the servlet filter functionality is used to enforce web-

level security.

We demystified the “Spring magic” by going through all the components that help

you add security to your applications in a seemingly simple way.

You looked at some code snippets from the framework itself to better appreciate its

work and better understand why things work the way they do.

Chapter 4 Spring Security Architecture and Design

119

You also studied the modularity inherent in the framework and saw how it helps to

create flexible and extensible software.

Even with all that is covered in this chapter, this was an introduction and a reference

to have in hand when you read the upcoming chapters and you start looking at the

options to secure your applications. From now on, you will understand where everything

fits in the framework and how the different components link.

In the next chapter, you start developing an example application. You begin with

a simple web application and see how to secure it. You will use your knowledge of the

framework to tweak the configuration and test different ways of implementing security at

the web level.

Chapter 4 Spring Security Architecture and Design

121
© Massimo Nardone, Carlo Scarioni 2024
M. Nardone and C. Scarioni, Pro Spring Security, https://doi.org/10.1007/979-8-8688-0035-1_5

CHAPTER 5

Web Security
This chapter shows how to build a Java web application using Spring Security 6 in Spring

Boot 3. You see the inner workings of the security filter chain and the different metadata

options at your disposal to define security constraints in your application.

Let’s build your Java web application using Spring Security 6 in Spring Boot 3, and

please make sure you’re using Java 17+, as the baseline for Spring Boot 3 and Spring

Security 6 is now Java 17. Java 20 is used in this demo.

The following steps build the simple Spring Security Maven web application project.

	 1.	 Create a new Spring Security Spring Boot 3 project, including

Spring Security and Spring Web dependencies, using the start.

spring.io Spring Initializr website.

	 2.	 Configure the users and roles that will be part of the system.

	 3.	 Configure the URLs that you want to secure.

	 4.	 Create all needed Java and web files.

	 5.	 Run the Spring Security 6 project using the external Tomcat

Server 10.

First, you create a new Spring project named pss01_Security using the Spring

Initializr web tool at https://start.spring.io/, as shown in Figure 5-1.

Java 20, Maven, and JAR, with Spring Security and Web, are dependencies in this

example.

Once the project is generated, unzip the file and open the project with your IDE tool.

https://doi.org/10.1007/979-8-8688-0035-1_5#DOI
https://start.spring.io/

122

Figure 5-1.  New Spring project using Spring Initializr

The new project files and the pss01_Security project structure are shown in Figure 5-2.

Figure 5-2.  New Spring project structure

Chapter 5 Web Security

123

Note I mplementing the Spring Security in a Spring application using XML- or
Java-based configurations is possible. This chapter uses Java configuration for
your Spring Security web application since it is hardly suggested to use XML
configuration as minimum as possible.

If Spring Security is in the classpath, Spring Boot automatically secures all HTTP

endpoints with Basic authentication, generating a security password to be used as a

credential with “user” as the username, as shown in Figure 5-3.

Figure 5-3.  Running the new Spring project

This means that if you type localhost:8080, Spring requires that you enter user as

the username and e6fd5a38-b7a8-4d55-b47a-9ece6e3341fa as the password to log in,

as shown in Figure 5-4.

Figure 5-4.  Secure Spring application with login page

Chapter 5 Web Security

124

Since this web application is based on Spring MVC, you need to configure Spring

MVC and set up view controllers to expose the HTML templates that you will create later.

Let’s create a simple controller to get a simple “Welcome to Spring Security 6”

message when entering the right login information, as shown in Listing 5-1.

Listing 5-1.  A Simple UserController Java Class

package com.apress.pss01_Security;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.RestController;

@RestController

public class UserController {

 @GetMapping ("/welcome")

 public String welcome() {

 return "Welcome to Spring Security 6";

 }

}

If you enter the right username and password, you get the “Welcome to Spring

Security 6” message, as shown in Figure 5-5.

Figure 5-5.  Successful login message

Let’s add some more logic to our code.

First, let’s look at the new pom.xml file generated when creating the new Spring Boot

3 and Spring Security 6 projects, as shown in Listing 5-2.

Chapter 5 Web Security

125

Listing 5-2.  pom.xml

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 �xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

https://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>3.1.0</version>

 <relativePath/> <!-- lookup parent from repository -->

 </parent>

 <groupId>com.apress</groupId>

 <artifactId>pss01_security</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <name>pss01_security</name>

 <description>Spring Security demo</description>

 <properties>

 <java.version>20</java.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-security</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-test</artifactId>

 <scope>test</scope>

 </dependency>

Chapter 5 Web Security

126

 <dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-test</artifactId>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.thymeleaf.extras</groupId>

 <artifactId>thymeleaf-extras-springsecurity6</artifactId>

 <version>3.1.1.RELEASE</version>

 </dependency>

 </dependencies>

</project>

We used Thymeleaf, a Java template engine for processing and creating HTML, XML,

CSS, JavaScript, and plain text.

�Configuring the new Spring Security 6 Project
To activate Spring Security web project configuration in your Maven web application,

you need to configure a particular servlet filter that takes care of preprocessing and

postprocessing the requests and managing the required security constraints.

The next example defines two users, but only the “Admin” role is authorized to

access the secured resource called authenticated.html.

Let’s start building the Spring Security Maven web application.

First, make sure that all the tools and directories are created as described previously.

Next, create simple HTML files under a new project directory called src/main/

resources/templates/.

Your project utilizes two HTML pages.

•	 welcome.html, which is the starting welcome web page of the project

•	 authenticated.html, which is the admin web page to access when

the user successfully logs in

The welcome.html page is shown in Listing 5-3.

Chapter 5 Web Security

127

Listing 5-3.  welcome.html

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:th="https://www.thymeleaf.org">

<html lang="en">

<head>

 �<meta http-equiv="Content-Type" content="text/html;

charset=ISO-8859-1">

 <title>Spring Security 6 authentication example!</title>

</head>

<body>

<div th:if="${param.error}">

 Invalid username and password.

</div>

<div th:if="${param.logout}">

 You have been logged out.

</div>

<h2>Welcome to Spring Security 6 authentication example!</h2>

<p>Click <a th:href="@{/authenticated}">here to get authenticated!</p>

</body>

</html>

The welcome.html page only displays a welcoming message and provide the link to

the authenticated page, /authenticated.

Let’s now create the authenticated.html page; see Listing 5-4.

Listing 5-4.  authenticated.html

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:th="https://www.

thymeleaf.org"

 �xmlns:sec="https://www.thymeleaf.org/thymeleaf-extras-

springsecurity6">

Chapter 5 Web Security

128

<head>

 <title>Spring Security 6 authentication example</title>

</head>

<body>

<h2>Welcome to Spring Security 6 authentication example!</h2>

<h2 th:inline="text">You are an authenticated user: <span th:remove="tag"

sec:authentication="name">thymeleaf!</h2>

<p>click <a th:href="@{/logout}">here to logout!!</p>

</body>

</html>

Next, you need to define the Java classes needed for your example.

•	 Under package controller: UserController

•	 Under package configuration: SecurityConfiguration

Let’s create the two Java packages where your Java classes are located.

•	 package com.apress.pss01_security.configuration

•	 package com.apress.pss01_security.controller;

Create the UserController Java class under the com.apress.pss01_security.

controller package, as shown in Listing 5-5.

Listing 5-5.  UserController Java Class

package com.apress.pss01_security.controller;

import org.springframework.stereotype.Controller;

import org.springframework.ui.ModelMap;

import org.springframework.web.bind.annotation.GetMapping;

@Controller

public class UserController {

 @GetMapping("/")

 public String homePage() {

 return "welcome";

 }

Chapter 5 Web Security

129

 @GetMapping("/welcome")

 public String welcomePage() {

 return "welcome";

 }

 @GetMapping ("/authenticated")

 public String AuthenticatedPage() {

 return "authenticated";

 }

 @GetMapping ("/logout")

 public String logoutPage() {

 return "redirect:/welcome";

 }

}

Note that, for web security, it doesn’t matter if you use a Spring MVC controller

as you do here, if you use simple servlets as you did in Chapter 3, or if you use any

other servlet-based framework for developing your application. Remember that, at the

core, the web part of Spring Security attaches itself to the standard Java servlet filter

architecture. So, if your application uses servlets and filters, you can leverage Spring

Security’s web support.

Since Spring Framework 4.3, there are new HTTP mapping annotations based on

@RequestMapping.

•	 @GetMapping

•	 @PostMapping

•	 @PutMapping

•	 @DeleteMapping

•	 @PatchMapping

For instance, @GetMapping is a specialized version of the @RequestMapping

annotation, which acts as a shortcut for @RequestMapping(method = RequestMethod.

GET). @GetMapping annotated methods to handle the HTTP GET requests matched with

a certain given URI expression.

Chapter 5 Web Security

https://doi.org/10.1007/979-8-8688-0035-1_3

130

As all developers know, MVC applications aren’t service-oriented, which means a

view resolver will render the final views based on data received from the controller.

RESTful applications are designed to be service-oriented and return raw data,

generally JSON/XML. Since these applications don’t do any view rendering, there are

no view resolvers. The controller is typically expected to send data directly via the HTTP

response.

The UserController Java class, via Spring MVC, does the following.

•	 Intercepts any incoming request

•	 Converts the payload of the request to the internal structure of

the data

•	 Sends the data to model for any needed further processing

•	 Gets processed data from the model, and advances it to the view for

rendering

In our example, the UserController Java class returns a “welcome” view. The view

resolver tries to resolve the welcome.html page in the templates folder.

Let’s analyze our next Java class, SecurityConfiguration.

Chapter 2 explained how to enable Spring Security 6 using the annotation named

@EnableWebSecurity without using the WebSecurityConfigurerAdapter class,

and introduced in that chapter the Java Spring Security configuration class named

SecurityConfiguration, which utilizes the @EnableWebSecurity annotation to

help configure Spring Security–related beans, such as WebSecurityConfigurer or

SecurityFilterChain.

The following describes what SecurityConfiguration does in this example.

•	 It creates two demo in-memory users via UserDetailsService

named “user” and “admin,” which are authorized to access a secure

resource of the project so that only the admin can access the secured

“Authenticated” web resource.

•	 It uses BCryptPasswordEncoder to encode the user passwords for

added security.

•	 It configures the SecurityFilterChain bean with the username/

password Basic authentication mechanism to authenticate the users.

Chapter 5 Web Security

https://doi.org/10.1007/979-8-8688-0035-1_2

131

Listing 5-6 shows the SecurityConfiguration Java class.

Listing 5-6.  SecurityConfiguration.java

package com.apress.pss01_security.configuration;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.security.config.Customizer;

import org.springframework.security.config.annotation.web.builders.

HttpSecurity;

import org.springframework.security.config.annotation.web.configuration.

EnableWebSecurity;

import org.springframework.security.core.userdetails.User;

import org.springframework.security.core.userdetails.UserDetails;

import org.springframework.security.core.userdetails.UserDetailsService;

import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;

import org.springframework.security.crypto.password.PasswordEncoder;

import org.springframework.security.provisioning.

InMemoryUserDetailsManager;

import org.springframework.security.web.SecurityFilterChain;

@Configuration

@EnableWebSecurity

public class SecurityConfiguration {

 @Bean

 �public SecurityFilterChain filterChain1(HttpSecurity http) throws

Exception {

 http

 .authorizeHttpRequests((authorize) -> authorize

 .requestMatchers("/", "/welcome").permitAll()

 .requestMatchers("/authenticated").hasRole("ADMIN")

 .anyRequest().denyAll()

)

 .csrf(Customizer.withDefaults())

 .formLogin(withDefaults())

Chapter 5 Web Security

132

 .logout((logout) -> logout

 .logoutSuccessUrl("/welcome")

 .deleteCookies("JSESSIONID")

 .invalidateHttpSession(true)

 .permitAll()

);

 return http.build();

 }

 @Bean

 public UserDetailsService userDetailsService(){

 UserDetails user = User.builder()

 .username("user")

 .password(passwordEncoder().encode("userpassw"))

 .roles("USER")

 .build();

 UserDetails admin = User.builder()

 .username("admin")

 .password(passwordEncoder().encode("adminpassw"))

 .roles("ADMIN")

 .build();

 return new InMemoryUserDetailsManager(user, admin);

 }

 @Bean

 public static PasswordEncoder passwordEncoder(){

 return new BCryptPasswordEncoder();

 }

}

Spring Security allows you to model your authorization at the request level. In the

example, the /welcome page is permitted to all pages under /admin, requiring one

authority, while all other pages require authentication.

By default, Spring Security requires that every request be authenticated. That said,

whenever you use an HttpSecurity instance, you must declare your authorization rules.

Chapter 5 Web Security

133

Whenever you have an HttpSecurity instance, you should at least do the following.

http

 .authorizeHttpRequests((authorize) -> authorize

 .anyRequest().authenticated()

)

In our example, the following applies.

•	 “/” and “/welcome” are permitted to all.

•	 “/authenticated” can only be accessed when presenting a user with

the “Admin” role via the .hasRole(“ADMIN”) declaration.

•	 .logout((logout) -> logout is permitted to all and, if utilized, requests

the welcome.html page.

More information is at https://docs.spring.io/spring-security/reference/

servlet/authorization/authorize-http-requests.html.

In an application where end users can log in, it is important to consider how to

protect against cross-site request forgery (CSRF). Spring Security protects against CSRF

attacks by default for unsafe HTTP methods, such as a POST request, so no additional

code is necessary.

In a CSRF attack, a hacker can modify the state of any HTTP method (GET or POST),

redirecting the client, for instance, by clicking a modified link to a non-secure web page

with the result of stealing a user’s sensitive information.

Let’s look at CSRF and how to prevent CSRF attacks using Spring Security. The

following are common CSRF attacks.

•	 An HTTP GET request convinces the victim to click a fake GET link to

get sensitive information (username/password, etc.)

•	 An HTTP POST request is the same as GET but uses the

POST method.

To use the Spring Security CSRF protection, you must ensure the right HTTP

methods (PATCH, POST, PUT, DELETE, etc.) can modify the state.

As of Spring Security 6.0.1 and Spring Boot 3.0.2, the method

CookieCsrfTokenRepository.saveToken only gets called when the CsrfFilter calls

deferredCsrfToken.get(), which only gets called on POST, PUT, PATCH, and DELETE

methods. Unfortunately, the client must expect a failure on the first request under the

Chapter 5 Web Security

https://docs.spring.io/spring-security/reference/servlet/authorization/authorize-http-requests.html
https://docs.spring.io/spring-security/reference/servlet/authorization/authorize-http-requests.html

134

current implementation. Under previous versions of Spring Security, you could count on

the token’s cookie being included in the response to GET, HEAD, or OPTIONS requests.

For more information, refer to

https://docs.spring.io/spring-security/reference/6.1-SNAPSHOT/servlet/

exploits/csrf.html

In the example, the default configuration is specified explicitly using .csrf(

Customizer.withDefaults()). The default form login is used by adding line.formLogin

(withDefaults());.

The structure of your new Spring Security 6 project should look like Figure 5-6.

Figure 5-6.  New Spring Security 6 in Boot 3 project structure

Chapter 5 Web Security

https://docs.spring.io/spring-security/reference/6.1-SNAPSHOT/servlet/exploits/csrf.html
https://docs.spring.io/spring-security/reference/6.1-SNAPSHOT/servlet/exploits/csrf.html

135

Next, build and run the Spring Security 6 project.

You can now build the project, deploy the JAR file, start the application running on

the stand-alone Tomcat Server 10, and deploy the JAR file automatically.

Your application is deployed successfully. Open the web browser and type the

following link: http://localhost:8080/welcome/. The outcome is shown in Figure 5-7.

Figure 5-7.  Browsing the new Spring Security project

You can now access the security authenticated.html by clicking the Login link. The

outcome is shown in Figure 5-8.

Figure 5-8.  Accessing the Spring Security login web page

Now, if you access with bad credentials, such as without having the “ADMIN” role,

you receive an error message like the one in Figure 5-9.

Chapter 5 Web Security

136

Figure 5-9.  Accessing with wrong login credentials

As you can see, Spring Security directly produces the login error and reminds the

user that the credentials provided are incorrect.

If you next provide the right user admin/adminpassw credentials for the “Admin”

role, you will receive the content defined in the authenticated.html page, as shown in

Figure 5-10.

Figure 5-10.  Accessing with the right admin credentials

If you log out, you see the result shown in Figure 5-11 and are redirected to the

Welcome page.

Chapter 5 Web Security

137

Figure 5-11.  Logout page

When you make the HTTP request to the configured URL, and after your servlet

container deals with it, the request lands in the DelegatingFilterProxy, which

delegates the processing to the security FilterChainProxy.

In general, Spring Security utilizes a lot of filters. The HTTP request filter is used to

do the following.

•	 Intercept the request.

•	 Detect authentication (or absence of).

•	 Redirect to the authentication entry point.

•	 Pass the request to the authorization service.

•	 Send the request to the servlet or throw a security exception.

In Spring Security 6, the most important filters are the following.

•	 ForceEagerSessionCreationFilter

•	 ChannelProcessingFilter

•	 WebAsyncManagerIntegrationFilter

•	 SecurityContextPersistenceFilter

•	 HeaderWriterFilter

•	 CorsFilter

•	 CsrfFilter

•	 LogoutFilter

Chapter 5 Web Security

138

•	 OAuth2AuthorizationRequestRedirectFilter

•	 Saml2WebSsoAuthenticationRequestFilter

•	 X509AuthenticationFilter

•	 AbstractPreAuthenticatedProcessingFilter

•	 CasAuthenticationFilter

•	 OAuth2LoginAuthenticationFilter

•	 Saml2WebSsoAuthenticationFilter

•	 UsernamePasswordAuthenticationFilter

•	 DefaultLoginPageGeneratingFilter

•	 DefaultLogoutPageGeneratingFilter

•	 ConcurrentSessionFilter

•	 DigestAuthenticationFilter

•	 BearerTokenAuthenticationFilter

•	 BasicAuthenticationFilter

•	 RequestCacheAwareFilter

•	 SecurityContextHolderAwareRequestFilter

•	 JaasApiIntegrationFilter

•	 RememberMeAuthenticationFilter

•	 AnonymousAuthenticationFilter

•	 OAuth2AuthorizationCodeGrantFilter

•	 SessionManagementFilter

•	 ExceptionTranslationFilter

•	 AuthorizationFilter

•	 SwitchUserFilter

Chapter 5 Web Security

139

The following are the most important Spring Security 6 filters.

•	 BasicAuthenticationFilter tries to authenticate the user with the

header’s username and password if it finds a Basic Auth HTTP

header on the request.

•	 UsernamePasswordAuthenticationFilter tries to authenticate the user

with those values if it finds a username/password request parameter/

POST body.

•	 DefaultLoginPageGeneratingFilter generates a default login page

when enabling Spring Security unless you don’t explicitly disable that

feature.

•	 DefaultLogoutPageGeneratingFilter generates a logout page unless

you explicitly disable that feature.

•	 FilterSecurityInterceptor does the authorization.

Let’s learn more about our example’s Spring Security 6 filters.

The HTTP request and authentication processes and filters are explained in

Chapter 4.

Let’s see what happens when incorrect or correct credentials are provided

when logging in. When the browser is redirecting and asks for /login, the

following occurs, the process is the same as the first request until it reaches the

DefaultLoginPageGeneratingFilter. At this point, the filter detects the request for

/login and writes the login form’s HTML data directly in the response object. Then, the

response is rendered.

Now, try to log in with incorrect credentials. Let’s follow the request through the

framework to see what happens.

	 1.	 In the login form, type admin as the username and adminpassw

as the password.

	 2.	 When the form is submitted, the filters are activated again in

the same order. This time, however, when the request arrives

at the UsernamePasswordAuthenticationFilter, the filter

checks whether the request is for /login and sees that this is

indeed the case. The filter extracts the username and password

Chapter 5 Web Security

https://doi.org/10.1007/979-8-8688-0035-1_4

140

authentication information from the HTTP request parameters

username and password, respectively. With this information,

it creates the UsernamePasswordAuthenticationToken

Authentication object, which then sends it to the

AuthenticationManager (or, more exactly, its default

implementation, ProviderManager) for authentication.

	 3.	 DaoAuthenticationProvider is called from the ProviderManager

with the Authentication object. The DaoAuthentication provider

implements AuthenticationProvider, which uses a strategy of

UserDetailsService to retrieve the users from whichever storage

they live in. With your current configuration, it tries to find the

username of the configured InMemoryUserDetailsManager (the

implementation of UserDetailsService that maintains an in-

memory user storage in a java.util.Map). Because no user has

this username, the provider throws a UsernameNotFoundException

exception.

	 4.	 The provider catches this exception and converts it into a

BadCredentialsException to hide the fact that there is no such

user in the application; instead, it treats the error as a common

username-password combination error.

	 5.	 UsernamePasswordAuthenticationFilter catches the exception.

This filter delegates to an instance of an implementation of

AuthenticationFailureHandler, which in turn decides to

redirect the response to /login?error. This way, the login form is

displayed again in the browser with an error message.

Documentation on filters is at https://docs.spring.io/spring-security/

reference/6.1-SNAPSHOT/servlet/architecture.html#servlet-filters-review.

Restart the application and go to http:/localhost:8080/welcome, which triggers

the login page. Type admin as the username and adminpassw as the password in the

form. Then click the Login button.

•	 The request follows the same filter journey as before. This time,

InMemoryUserDetailsManager finds a user with the requested

username and returns that to DaoAuthenticationProvider, which

creates a successful Authentication object.

Chapter 5 Web Security

https://docs.spring.io/spring-security/reference/6.1-SNAPSHOT/servlet/architecture.html#servlet-filters-review
https://docs.spring.io/spring-security/reference/6.1-SNAPSHOT/servlet/architecture.html#servlet-filters-review

141

•	 After successful authentication,

UsernamePasswordAuthenticationFilter delegates to an instance

of SavedRequestAwareAuthenticationSuccessHandler, which looks

for the original requested URL (/authenticated) in the session and

redirects the response to that URL.

When http://localhost:8080/authenticated is requested, the request

works through the filter chain as in the previous cases. This time, though, you

already have a fully authenticated entity in the system. The request arrives in

FilterSecurityInterceptor.

•	 FilterSecurityInterceptor receives an access request to

/ authenticated. Then, it recovers the necessary credentials to

access that URL (ROLE_ADMIN).

•	 The AffirmativeBased access-decision manager gets called and calls

the RoleVoter voter. The voter evaluates the authenticated entity’s

authorities and compares them with the required credentials to

access the resource. Because the voter finds a match (ROLE_ADMIN is

in both the Authentication authorities and the resource’s config

attributes), it votes with an ACCESS_GRANTED vote.

•	 FilterSecurityInterceptor forwards the request to the next

element in the request-handling chain, which, in this case, is Spring’s

DispatcherServlet.

•	 The request gets to the AdminController, which simply returns the

authenticated page.

•	 This is the complete flow of the authentication and authorization

process. Figure 5-12 shows this full interaction in a pseudo

flow chart.	

Chapter 5 Web Security

142

Figure 5-12.  Overall flow of a successful authentication and authorization process

�The Special URLs
From the preceding explanation, you can see that Spring Security’s support for web

security defines a few preconfigured URLs for you to use in your application. These URLs

get special treatment in the framework. The following are the main ones.

•	 /login: This is the URL that Spring Security uses to show the login

form for the application. The framework redirects to this URL when

an authentication is needed, but it doesn’t exist yet.

•	 /logout: The framework uses this URL to log out the currently

logged-in user, invalidating the corresponding session and

SecurityContext.

Chapter 5 Web Security

143

In the previous URLs, the first thing that comes to mind is how to configure your own

login form in the application and, in general, how to customize the login process instead

of using the default one. That is what we’ll do next.

Note  /login replaced /j_spring_security_check in Spring Security 5.

�Custom Login Form
The user authentication request to your application has been made via the http.

authorizeRequests() method since Spring Security 5.

When you configure the http element via the http.authorizeHttpRequests ()

method, as you did before, Spring Security sets up a default login and logout process

for you, including a login URL, login form, default URL after login, and other options.

Basically, when Spring Security’s context starts to load up, it finds that there is no custom

login page URL configured, so it assumes the default one and creates a new instance of

DefaultLoginPageGeneratingFilter that is added to the filter chain. This filter is the

one that generates the login form for you.

If you want to configure your own form, you must do a few tasks. First, tell

the framework to replace the default handling with your own. You define the

following element as a child of the http.authorizeRequests() method in the

SecurityConfiguration Java file.

formLogin((form) -> form

This element tells Spring Security to change its default login-handling mechanism

on startup. DefaultLoginPageGeneratingFilter is no longer instantiated. Let’s try the

first configuration. With the new configuration in place, restart the application and try to

access http://localhost:8080/ /authenticated.

You are redirected to /login and get a 404 HTTP error because you haven’t defined

any handler for this URL yet, as shown in Figure 5-13.

Chapter 5 Web Security

144

Figure 5-13.  Error 404 that appears when defining a new login handler page

Let’s add a login controller in the UserController, as shown in Listing 5-7.

Listing 5-7.  Login Controller Added to the UserController

 @GetMapping("/login")

 public String loginPage() {

 return "login";

 }

Next, add the following line to the SecurityConfiguration file.

formLogin((form) -> form

 .loginPage("/login")

 .permitAll()

)

Create the login.html page from Listing 5-8 in the templates folder in your

application.

Listing 5-8.  Custom login.html

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:th="https://www.

thymeleaf.org">

Chapter 5 Web Security

145

<head>

 <title>Spring Security Example </title>

</head>

<body>

<div th:if="${param.error}">

 Invalid username and password.

</div>

<div th:if="${param.logout}">

 You have been logged out.

</div>

<h1>Spring Security v6 Custom Login Form</h1>

<h2>Login with Username and Password:</h2>

<form th:action="@{/login}" method="post">

 �<div><label> Username : <input type="text" name="username"/>

</label></div>

 �<div><label> Password: <input type="password" name="password"/>

</label></div>

 �<div><label>Remember Me:<input type="checkbox" name="remember-me"/>

</label></div>

 <div><input type="submit" value="Login"/></div>

</form>

</body>

</html>

In the authenticated.html file, replace the following line

<p>Click <a th:href="@{/logout}">here to logout!!</p>

with this

<form th:action="@{/logout}" method="post">

 <input type="submit" value="Logout"/>

</form>

Chapter 5 Web Security

146

If you restart the application and again go to http://localhost:8080/

authenticated, you should see your new login form when you get redirected to the

/login URL. The form is shown in Figures 5-14 and 5-15. If you type admin as the

username and adminpassw as the password, you can access the authenticated page, as

you did with the default login form.

Figure 5-14.  Custom login form

Figure 5-15.  Successful custom login form

Click the Logout button to sign out the current user.

If you look at the login.html, you can see certain names for the username field,

password field, the remember me checkbox, and the form element’s action attribute.

These are not random names. Spring Security expects using these particular names to

treat the authentication process correctly. Also, the form should use POST to send the

information to the server because the framework requires this.

Chapter 5 Web Security

147

The Remember Me checkbox shown in Figure 5-16 is explained later.

The element <form-login> supports many more configuration options,

including changing the authentication request parameters’ default username and

password names.

The <form-login> attributes might include

•	 always-use-default-target

•	 authentication-details-source-ref

•	 authentication-failure-handler-ref

•	 authentication-failure-url

•	 authentication-success-handler-ref

•	 default-target-url

•	 login-page

•	 login-processing-url

•	 password-parameter

•	 username-parameter

•	 authentication-success-forward-url

•	 authentication-failure-forward-url

Give this attribute the value /login. Then, in your login.html, add the content from

Listing 5-9 just after the <body> tag.

Listing 5-9.  Snippet Showing an Error in login.jsp

<div th:if="${param.error}">

 Invalid username and password.

</div>

If you restart the application and try to access http://localhost:8080/

/authenticated and use an incorrect username and password, you are sent to the login

page again, but with an “Invalid username and password.” error message shown at the

top, as shown in Figure 5-16.

Chapter 5 Web Security

148

Figure 5-16.  A custom error shown in the custom form

Note that this URL could be a different one, unrelated to the login URL. But the

common pattern is to allow the user another attempt at logging in, showing her

any errors.

•	 authentication-success-handler-ref: Reference to an

AuthenticationSuccessHandler bean in the Spring application

context. This bean is called upon successful authentication and

should handle the next step after authentication, usually deciding

the redirect destination in the application. A current implementation

in the form of SavedRequestAwareAuthenticationSuccessHandler

takes care of redirecting the logged-in user to the original requested

URL after successful authentication.

•	 authentication-failure-handler-ref: Reference to an

AuthenticationFailureHandler bean in the Spring application

context. It is used to handle failed authentication requests. When an

authentication fails, this handler gets called. A standard behavior

for this handler is to present the login screen again or return a 401

HTTP status error. This behavior is provided by the concrete class

SimpleUrlAuthenticationFailureHandler.

When authenticating a Spring Security application, there are three different

interfaces to consider: AuthenticationSuccessHandler, AuthenticationFailureHandler,

and AccessDeniedHandler.

Chapter 5 Web Security

149

Let’s develop a simple example implementation of the

AuthenticationFailureHandler interface. It returns a 500 status code when failing to

authenticate. Create the class CustomAuthenticationFailureHandler from Listing 5-10.

Listing 5-10.  AuthenticationFailureHandler Implementation for

ServerErrorFailureHandler

package com.apress.pss01_security.configuration;

import jakarta.servlet.http.HttpServletRequest;

import jakarta.servlet.http.HttpServletResponse;

import org.springframework.security.core.AuthenticationException;

import org.springframework.security.web.authentication.

AuthenticationFailureHandler;

import java.io.IOException;

public class CustomAuthenticationFailureHandler implements

AuthenticationFailureHandler {

 @Override

 �public void onAuthenticationFailure(HttpServletRequest request,

HttpServletResponse response, AuthenticationException exception)

 throws IOException {

 response.sendError(500);

 }

}

Add the following to the SecurityConfiguration class file.

.formLogin((form) -> form

 .loginPage("/login")

 .defaultSuccessUrl("/authenticated")

 .permitAll()

 .failureHandler(authenticationFailureHandler())

Chapter 5 Web Security

150

Add the following to the new bean.

@Bean

public AuthenticationFailureHandler authenticationFailureHandler() {

 return new CustomAuthenticationFailureHandler();

}

Restart the application, go to http://localhost:8080/authenticated, use a

random username and password, and click the Submit button. You should get a 500

error in the browser.

�Basic HTTP Authentication
Sometimes, you can’t use a login form for authenticating users. For instance, if your

application is meant to be called by other systems instead of a human user, showing a

login form to the other application doesn’t make sense. This is a pretty common use

case. Web services talk to each other without user interaction, ESB systems integrate

with one another, and JMS clients produce and consume messages from other systems.

In the context of HTTP-exposed interfaces that require no human user to access

them, a common approach is to use HTTP Basic authentication headers. HTTP

authentication headers allow you to embed the security information (username and

password) in the header of the request that you send to the server instead of sending it in

the body of the request, as is the case for the login form authentication.

HTTP uses a standard header for carrying this information. The header is

appropriately named Authorization. When using this header, the client that is sending

the request (for example, a browser) concatenates the username and the password with

a colon between them. Then, Base64 encodes the resulting string, sending the result in

the header. For example, if you use neve as the username and nardone as the password,

the client creates a neve:nardone string and encodes it prior to sending it in the header.

Let’s use basic HTTP authentication in your application. The first and only thing you

need to do is remove any authentication method in your SecurityConfiguration file

and instead add the following.

.httpBasic(withDefaults())

Chapter 5 Web Security

151

After replacing it, restart the application and go to http://localhost:8080/

authenticated in the browser. A standard HTTP authentication pop-up box asks for

your authentication details, as Figure 5-17 shows. Type admin and admin123 as the

username and password, and send the request. You will successfully arrive on the

movies page (see Figure 5-5).

Figure 5-17.  Standard HTTP authentication form, Basic authentication
configuration

When you use the httpBasic configuration element, Spring Security's

BasicAuthenticationFilter appears. A BasicAuthenticationEntryPoint strategy

is configured into the ExceptionTranslationFilter on startup. When you make the

first request to /movies, the framework behaves as before, throwing an access-denied

exception that the ExceptionTranslationFilter handles. This filter delegates to

a particular implementation strategy of AuthenticationEntryPoint—in this case,

BasicAuthenticationEntryPoint. BasicAuthenticationEntryPoint adds the header

WWW-Authenticate: Basic realm="Spring Security Application" to the response

and then sends the client an HTTP status of 401 (Unauthorized). The client should know

how to handle this code and work accordingly. (In the case of a browser, it simply shows

the authentication pop-up.)

When you introduce the username and password and submit the request, the

request again follows the filter chain until it reaches the BasicAuthenticationFilter.

This filter checks the request headers, looking for the Authorization header starting

Chapter 5 Web Security

152

with Basic. The filter extracts the content of the header and uses Base64.decode

to decode the string, then extracts the username and password. The filter creates a

UsernamePasswordAuthenticationToken object and sends it to the authentication

manager for authentication in the standard way. The authentication manager asks

the authentication provider to retrieve the user and create an Authentication object.

This process is standard and independent of using Basic authentication or form

authentication.

�Digest Authentication
Digest authentication helps to solve many of the weaknesses of Basic authentication,

specifically by ensuring credentials are never sent in clear text across the wire.

Digest authentication is a very close sibling of basic HTTP authentication. Its main

purpose is to avoid sending clear text passwords on the wire, as Basic authentication

does, by hashing the password before sending it to the server. This makes Digest

authentication more complex than Basic authentication.

Digest authentication works with HTTP headers in the same way that Basic

authentication does.

Digest authentication is based on using a nonce for hashing the passwords. A nonce

is an arbitrary server-generated number that is used in the authentication process

and is used only once. It is passed through the digest computation with the username,

password, nonce, URI being requested, and so on.

In the authentication process, the server and client do the digest computation, which

should match.

A nonce is central to Digest authentication. It is a value the server generates. The

following shows Spring Security’s nonce format.

Digest Syntax

base64(expirationTime + ":" + md5Hex(expirationTime + ":" + key))

expirationTime: The date and time when the nonce expires, expressed in

milliseconds

key: A private key to prevent modification of the nonce token

The main processing lies in two classes: DigestAuthenticationFilter and

DigestAuthenticationEntryPoint.

Chapter 5 Web Security

153

DigestAuthenticationFilter queries the request’s headers, looking for the

Authorization header, and then it checks that the header’s value starts with Digest. If

this is the case, the request carries the security credentials used for authentication.

DigestAuthenticationEntryPoint is the class invoked to generate a response that

demands a digest security authentication process begin. This class sets the header WWW-

Authenticate with the correct values (including the nonce) so that the client agent (the

browser) knows it has to start the Digest authentication process.

To configure the Digest authentication, update the SecurityConfiguration file with

the following lines.

.exceptionHandling(e -> e.authenticationEntryPoint(authentication

EntryPoint()))

.addFilterBefore(digestFilter());

You must ensure that you configure insecure plain text Password Storage using

NoOpPasswordEncoder.

Next, add the following bean to configure the Digest authentication.

@Autowired

UserDetailsService userDetailsService;

DigestAuthenticationEntryPoint entryPoint() {

 �DigestAuthenticationEntryPoint result = new

DigestAuthenticationEntryPoint();

 result.setRealmName("My Security App Realm");

 result.setKey("3028472b-da34-4501-bfd8-a355c42bdf92");

}

DigestAuthenticationFilter digestAuthenticationFilter() {

 DigestAuthenticationFilter result = new DigestAuthenticationFilter();

 result.setUserDetailsService(userDetailsService);

 result.setAuthenticationEntryPoint(entryPoint());

}

Chapter 5 Web Security

154

Then, define the username and password using inMemoryUserDetailsManager.

 @Override

 @Bean

 public UserDetailsService userDetailsServiceBean() {

 �InMemoryUserDetailsManager inMemoryUserDetailsManager = new

InMemoryUserDetailsManager();

 �inMemoryUserDetailsManager.createUser(User.withUsername("admin").

password(passwordEncoder.encode("adminpassw")).roles("ADMIN").

build());

 return inMemoryUserDetailsManager;

 }

If you restart the application and go to http://localhost:8080/authenticated, you

are presented with a browser dialog box asking for a username and password exactly like

the one shown for Basic authentication. This is the DigestAuthenticationEntryPoint’s

work. As explained, the entry point fills the response object with the required headers so

that the browser knows it needs to show the login form. Log in with the admin username

and adminpassw as the password, and you should be able to access the requested URL.

The browser creates its own digested message with the password input included and

puts it in the header. It also puts the rest of the information—namely, nonce, cnonce,

realm, and so on—in the Digest header. The following is a Digest header sent to the

server with your current request.

'Digest username="admin", realm=" Security Digest Authentication",

nonce="MTM1NTY3NDc3NDIy....==", uri=" /authenticated",

response="225ea6fbad618cfdf1da7d4f7efe53b8", qop=auth,

nc=00000002, cnonce="376a9b27621880bd"'

When the request reaches DigestAuthenticationFilter, the request headers

contain the required Digest authentication header. The information in this header

arrives as a CSV string containing all the required information shown in the last

paragraph, including the nonce and the client nonce (cnonce). (A nonce is an arbitrary

number used only once in a cryptographic communication. See http://en.wikipedia.

org/wiki/Cryptographic_nonce.). The filter extracts the information from the header,

retrieves the user from the UserDetailsService, and then computes the digest with the

password from the retrieved user to see if it matches the one sent in the header by the

client. If they match, access is granted.

Chapter 5 Web Security

http://en.wikipedia.org/wiki/Cryptographic_nonce
http://en.wikipedia.org/wiki/Cryptographic_nonce

155

�Remember-Me Authentication
The remember-me authentication functionality allows returning application users to use

it without logging in every time. The application remembers certain visitors, allowing

them to just open the application and be greeted with their personalized version of the

application as if they were logged in.

Remember-me functionality is very convenient for users but is also very dangerous

and recommended for private (from home) use only.

The problem should be obvious. If you use an application from a public computer

and this application remembers your profile information, the next person who accesses

that application from that computer can impersonate you with minimum effort.

It is also common practice to offer limited functionality in the remember-me session.

This means that even if you are logged in automatically, thanks to the remember-me

functionality, you won’t have access to the whole functionality of the application. More

sensitive parts of the application might require you to formally log in to use them.

This is the case, for example, with Amazon.com. When you visit Amazon.com and

log in, the next time you visit Amazon, the site remembers you, your recommendations,

your name, and other information about you. But to buy something, you must log in fully

to access that functionality.

Remember-me authentication is typically supported by sending a cookie to the

browser, which then, on subsequent sessions in the application, is sent back to the server

for auto login.

How does the remember-me functionality work in Spring Security?

Remember-me functionality in Spring Security is mainly supported by the

RememberMeServices interface and the RememberMeAuthenticationFilter class. Let’s

see how they work in the context of a request.

When the application starts, the RememberMeAuthenticationFilter is in the

server’s filter chain. Also, a TokenBasedRememberMeServices is instantiated and

injected into the AbstractAuthenticationProcessingFilter, replacing the no-op

NullRememberMeServices.

Go to http://localhost:8080/authenticated, and log in with admin as the

username and adminpassw as the password.

When the request gets into the application, UsernamePasswordAuthenticationFilter

(a subclass of AbstractAuthenticationProcessingFilter) handles the authentication

process in the standard way already explained.

Chapter 5 Web Security

156

After successful authentication, UsernamePasswordAuthenticationFilter invokes

the configured TokenBasedRememberMeServices’s loginSuccess method. This method

looks to see if the request contains the parameter remember-me to apply the remember-

me functionality. (If the property alwaysRemember is set to true in the service, it also

applies the remember-me functionality.) Because you didn’t send this request, nothing

happened.

So let’s add the parameter to the login form you have. Open the login.html file, and

paste the following element somewhere inside <form>.

<div><label>Remember Me:<input type="checkbox" name="remember-me"/>

</label></div>

In the SecurityConfiguration configuration file, add the following.

.rememberMe((remember) -> remember

 .rememberMeParameter("remember-me")

 .key("uniqueAndSecretKey")

 .tokenValiditySeconds(1000)

 .rememberMeCookieName("rememberloginnardone")

 .rememberMeParameter("remember-me")

)

These lines define the key name, the parameter name, the cookie name, and the

validity time in seconds.

Restart the application and visit http://localhost:8080/authenticated. You

should now see a check box with username and password fields. Select the check box,

and log in with admin/adminpassw.

This time, the request carries the required parameter, and

TokenBasedRememberMeServices works. It extracts the username and password from

the Authentication object and creates a token with this information and an expiration

time. And it creates an MD5 encoding out of the resulting string. This value is then

Base65-encoded with the username again and added to the response as a cookie named

rememberloginnardone that is returned to the browser. You can see this cookie in

Figure 5-18.

Chapter 5 Web Security

157

Figure 5-18.  Remember-me cookie example

Restart the application. Visit http://localhost:8080/authenticated. You should

be able to access the page without logging in.

When this request gets into the system, it is intercepted by

RememberMeAuthenticationFilter, which goes into action. The first thing the

filter does is check that there is no current Authentication in SecurityContext.

Because this means there is no user logged in, the filter calls RememberMeServices’s

autoLogin method.

Chapter 5 Web Security

158

In the standard configuration, TokenBasedRememberMeServices is the concrete class

that implements RememberMeServices. This implementation’s autoLogin method tries

to parse the incoming cookie into its composing elements, which are the username, the

hashed value of the combined elements (

base64(username + “:” + expirationTime + “:” + algorithmName + “:”

algorithmHex(username + “:” + expirationTime + “:” password + “:” + key))),

and the expiry time of the token. Then, it retrieves the UserDetails from the

UserDetailsService with the username, recomputes the hashed value with

the retrieved user, and compares it with the arriving one. If they don’t match, an

InvalidCookieException is thrown. If they do match, UserDetails is checked, and an

Authentication object is created and returned to the caller.

The autoLogin method extracts the remember-me cookie from the request,

decodes it, does some validation, and then calls the configured UserDetailsService’s

loadUserByUsername method with the username extracted from the cookie. It

then creates a RememberMeAuthenticationToken object (an implementation of

Authentication).

The RememberMeAuthenticationFilter then tries to authenticate this new

Authentication object against the AuthenticationProvider’s implementation of

RememberMeAuthenticationProvider, which simply returns the same Authentication

object after making sure that the hash from the incoming request matches the stored one

for the remember-me key.

The security interceptor uses this Authentication object to allow access to the

requested URL.

�Logging Out
Logging out is pretty simple. When you log out of an application, you want the

application to end your current session and remove any information it might have stored

on the client for you.

/logout has replaced /j_spring_security_logout since Spring Security 5.

In Spring Security, logging out is very easy. The only thing you need to do by default

is to visit /logout. Let’s try that.

Chapter 5 Web Security

159

Add the following lines to the UserController file.

@GetMapping ("/logout")

public String logoutPage() {

 return "redirect:/welcome";

}

Update the SecurityConfiguration file with the following lines.

.logout((logout) -> logout

 .logoutSuccessUrl("/welcome")

 .deleteCookies("JSESSIONID")

 .invalidateHttpSession(true)

 .permitAll()

);

.logout((logout) -> logout

 .logoutSuccessUrl("/welcome")

 .deleteCookies("JSESSIONID")

 .invalidateHttpSession(true)

 .permitAll()

);

These lines tell the application to delete the JSESSIONID cookie, invalidate the HTTP

session, and redirect to the index web page once logged out.

Now go to http://localhost:8080/aithenticated and log in with

admin/adminpassw again. Select the check box for activating remember-me

functionality. You should be able to log in without problems.

If you look at the cookies stored in your browser, you should see two cookies for

the localhost domain: JSESSIONID and rememberloginnardone. Figure 5-18 shows the

two cookies. If you log out, you would expect these two cookies to disappear from the

browser, basically removing any trace of the application from your browser. Let’s do it.

Click the logout link on the movies.jsp page. You should be logged out

of the application. If you open your browser’s cookies, you see that the cookie

rememberloginnardone is gone. The JSESSIONID cookie exists, but the framework

already invalidated the session. Figure 5-19 shows remember-me and session cookies.

Chapter 5 Web Security

160

Figure 5-19.  Remember-me and session cookies

The flow of the logout request is as follows: When the request arrives, it follows

the filter chain until it arrives at LogoutFilter. This filter notices that the URL that

is being requested is for logout. The filter calls the configured LogoutHandler(s),

which in the running application are SecurityContextLogoutHandler and

TokenBasedRememberMeServices. (They implement the LogoutHandler interface.)

SecurityContextLogoutHandler invalidates the servlet session in the standard

servlet way, calling the invalidate method on the HttpSession object and clearing the

SecurityContext from Spring Security as shown using

.logout()

.invalidateHttpSession(true).

Chapter 5 Web Security

161

TokenBasedRememberMeServices simply removes the remember-me cookie by

setting its age to 0.

Finally, the JSESSIONID cookie was deleted by adding the .logout() line.

.deleteCookies("JSESSIONID")

�Session Management
Another area of Spring Security’s web support is the management of user sessions.

One very important thing to do regarding sessions is to create a new session ID when

a user authenticates successfully. Doing this reduces the likelihood of session fixation

attacks, in which one user sets another user’s session identifier to impersonate him in

the application. Spring Security also offers a feature to specify the number of concurrent

sessions the same user can have open at any given time.

These two features are controlled by the SessionFixationProtectionStrategy

class, which implements SessionAuthenticationStrategy. This strategy is invoked

from AbstractAuthenticationProcessingFilter and SessionManagementFilter. Let’s

look at how they work.

SessionFixationProtectionStrategy is already configured by default in

UsernamePasswordAuthenticationFilter, which is configured in the application. When

you log in, this strategy is invoked. When the strategy is invoked, it retrieves the current

session (normally anonymous) and invalidates it. It immediately creates a new one. It

also tries to migrate certain attributes—normally, those used by Spring Security, but a

list can also be specified.

To summarize this strategy, when you log in, it invalidates the current session,

creates a new one, and copies certain attributes from the old one to the new one.

Since Spring Session 2.0 contains the Spring Session Core module and several

other modules like Spring Session Data MongoDB module, Spring Session Data Geode

modules, etc.

In Spring Security, you can control exactly when our session is created and how to

interact with it by defining the following line to the SecurityConfiguration class.

.sessionCreationPolicy(SessionCreationPolicy."ADD A VALUE")

Chapter 5 Web Security

162

The value can be one of the following.

•	 always: A session is always created if one doesn’t already exist.

•	 ifRequired: A session is created if required (default).

•	 never: The framework will never create a session itself, but it will use

one if it already exists.

•	 stateless: No session will be created or used by Spring Security.

The first step in enabling this feature is adding the HttpSessionEventPublisher

listener to your application to limit multiple logins for the same user through session

management.

@Bean

public HttpSessionEventPublisher httpSessionEventPublisher() {

 return new HttpSessionEventPublisher();

}

Let’s go over how to configure it in your application.

	 1.	 Add the following line to the SecurityConfiguration file.

 .sessionCreationPolicy(SessionCreationPolicy.ALWAYS)

 .maximumSessions(1))

.maximumSessions(1)) means that no multiple concurrent

sessions are possible.

	 2.	 Restart the application.

	 3.	 Open Chrome and go to http://127.0.0.1:8080/authenticated.

Log in with username admin and password adminpassw. You

should be able to access the page without a problem.

	 4.	 Open another browser, for instance, Firefox, and visit

http://127.0.0.1:8080/authenticated. Log in with the admin

username and the adminpassw password. You should be able to

access the page without a problem.

	 5.	 Go to Chrome and refresh the page. You get the message: “This

session has expired (possibly due to multiple concurrent logins

being attempted as the same user).”

Chapter 5 Web Security

163

Now let’s allow two sessions at the same time by adding the following line to the

SecurityConfiguration file.

.sessionManagement().maximumSessions(2)

Restart the application and follow the same flow as before. This time, you should

have both sessions active at the same time.

Finally, in Listing 5-11, you see the entire SecurityConfiguration Java class.

Listing 5-11.  SecurityConfiguration.java

package com.apress.pss01_security.configuration;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.security.config.Customizer;

import org.springframework.security.config.annotation.web.builders.

HttpSecurity;

import org.springframework.security.config.annotation.web.configuration.

EnableWebSecurity;

import org.springframework.security.config.http.SessionCreationPolicy;

import org.springframework.security.core.userdetails.User;

import org.springframework.security.core.userdetails.UserDetails;

import org.springframework.security.core.userdetails.UserDetailsService;

import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;

import org.springframework.security.crypto.password.PasswordEncoder;

import org.springframework.security.provisioning.

InMemoryUserDetailsManager;

import org.springframework.security.web.SecurityFilterChain;

import org.springframework.security.web.access.AccessDeniedHandler;

import org.springframework.security.web.authentication.

AuthenticationFailureHandler;

import org.springframework.security.web.authentication.

AuthenticationSuccessHandler;

import org.springframework.security.web.authentication.www.

DigestAuthenticationEntryPoint;

import org.springframework.security.web.authentication.www.

DigestAuthenticationFilter;

Chapter 5 Web Security

164

import org.springframework.security.web.session.HttpSessionEventPublisher;

@Configuration

@EnableWebSecurity

public class SecurityConfiguration {

 @Bean

 �public SecurityFilterChain filterChain1(HttpSecurity http) throws

Exception {

 http

 .authorizeHttpRequests((authorize) -> authorize

 .requestMatchers("/", "/welcome").permitAll()

 .requestMatchers("/authenticated").hasRole("ADMIN")

 .requestMatchers("/customError").permitAll()

 .anyRequest().denyAll()

)

 .csrf(Customizer.withDefaults())

 // .httpBasic(withDefaults()) using Basic Authentication

 �//.formLogin(withDefaults()) using Form Authentication

not customized

 .rememberMe((remember) -> remember

 .rememberMeParameter("remember-me")

 .key("uniqueAndSecretKey")

 .tokenValiditySeconds(1000)

 .rememberMeCookieName("rememberloginnardone")

 .rememberMeParameter("remember-me")

)

 .sessionManagement(session -> session

 �.sessionCreationPolicy(SessionCreationPolic

y.ALWAYS)

 .maximumSessions(1))

 // using customized login html page

 .formLogin((form) -> form

 .loginPage("/login")

Chapter 5 Web Security

165

 .defaultSuccessUrl("/authenticated")

 .failureUrl("/login?error=true")

 .failureHandler(authenticationFailureHandler())

 .permitAll()

)

 .logout((logout) -> logout

 .logoutSuccessUrl("/welcome")

 .deleteCookies("JSESSIONID")

 .invalidateHttpSession(true)

 .permitAll()

);

 return http.build();

 }

 @Bean

 public AuthenticationFailureHandler authenticationFailureHandler() {

 return new CustomAuthenticationFailureHandler();

 }

 @Bean

 public HttpSessionEventPublisher httpSessionEventPublisher() {

 return new HttpSessionEventPublisher();

 }

 @Bean

 public UserDetailsService userDetailsService(){

 UserDetails user = User.builder()

 .username("user")

 .password(passwordEncoder().encode("userpassw"))

 .roles("USER")

 .build();

 UserDetails admin = User.builder()

 .username("admin")

 .password(passwordEncoder().encode("adminpassw"))

 .roles("ADMIN")

Chapter 5 Web Security

166

 .build();

 return new InMemoryUserDetailsManager(user, admin);

 }

 @Bean

 public static PasswordEncoder passwordEncoder(){

 return new BCryptPasswordEncoder();

 }

 /* to use Digest Authentication

 DigestAuthenticationEntryPoint entryPoint() {

 �DigestAuthenticationEntryPoint result = new

DigestAuthenticationEntryPoint();

 result.setRealmName("My Security App Realm");

 result.setKey("3028472b-da34-4501-bfd8-a355c42bdf92");

 }

 @Autowired

 UserDetailsService userDetailsService;

 DigestAuthenticationFilter digestAuthenticationFilter() {

 �DigestAuthenticationFilter result = new

DigestAuthenticationFilter();

 result.setUserDetailsService(userDetailsService);

 result.setAuthenticationEntryPoint(entryPoint());

 }

 @Bean

 �public SecurityFilterChain filterChain(HttpSecurity http) throws

Exception {

 http

 // ...

 �.exceptionHandling(e -> e.authenticationEntryPoint(

authenticationEntryPoint()))

 .addFilterBefore(digestFilter());

 return http.build();

 } */

}

Chapter 5 Web Security

167

�Summary
This chapter covered one of the biggest concerns of the framework: web support

in Spring Security. You saw that the main functionality comes in the form of servlet

filters. This is a good thing from a standards point of view because it means you can

leverage Spring Security web support in other frameworks that use the standard Java

servlet model.

You should now know a lot of details about the main filters that build the framework,

how they work internally, and how they fit within each other and with the rest of the

framework. We explained it using practical, real-life scenarios.

The next chapter covers the second major concern of Spring Security—namely,

method-level security. We show how it compares to web-level security. You can leverage

a lot of your current knowledge to apply it to the method-level security layer.

Chapter 5 Web Security

169
© Massimo Nardone, Carlo Scarioni 2024
M. Nardone and C. Scarioni, Pro Spring Security, https://doi.org/10.1007/979-8-8688-0035-1_6

CHAPTER 6

Configuring Alternative
Authentication Providers
One of Spring Security’s strongest points is that you can plug different authentication

mechanisms into the framework. Spring Security was built to create, as much as

possible, a pluggable architecture model where different things can be plugged into the

framework easily and unobtrusively. In the authentication layer, an abstraction exists

that takes care of this part of the security process. This abstraction comes mainly in the

form of the AuthenticationProvider interface, but specific security servlet filters and

user details services also support it.

Spring Security 6 supports many different authentication mechanisms, including the

following.

•	 Databases

•	 LDAP

•	 X.509

•	 OAuth 2/OpenID Connect 1.0

•	 WebSocket

•	 JSON Web Token (JWT)

•	 JAAS

•	 CAS

Most of this chapter explains how these authentication systems work independently

of Spring Security. Although it gives you certain key details, it won’t be an in-depth

explanation. Of course, you see how Spring Security implements each of these

https://doi.org/10.1007/979-8-8688-0035-1_6#DOI

170

authentication mechanisms, and you see that they have many things in common when it

comes to the parts of Spring Security they use. This chapter focuses on how to add an H2

database to Spring Boot with Spring Security and JDBC authentication.

Let’s look at how to create a new Spring Boot project with Spring Security, Spring

Data JDBC, and H2.

Let’s go to start.spring.io and create a new project, shown in Figure 6-1, with the

following settings.

•	 Build tool: Maven

•	 Language: Java

•	 Packaging: JAR

•	 Java version: 20

Next, add the following dependencies.

•	 Web

•	 Spring Security

•	 Spring Data JDBC

•	 H2 Database

Figure 6-1.  Creating a new JDBS and H2 DB project

Chapter 6 Configuring Alternative Authentication Providers

171

Generate the project and unzip it on your machine.

You must enable and configure the H2 in-memory database console in the

application.properties file as follows.

spring.h2.console.enabled=true

spring.datasource.name=securitydb

spring.datasource.url=jdbc:h2:mem:securitydb

spring.jpa.database-platform=org.hibernate.dialect.H2Dialect

spring.datasource.driverClassName=org.h2.Driver

These lines tell the web application to enable the console, the name of the DB you

wish to use, the datasource URL and driver class, and the Spring JOA DB platform.

Let’s use the same Java classes and HTML files used in the Chapter 5, as shown in

Figure 6-2.

Figure 6-2.  New JDBS and H2 DB project

Chapter 6 Configuring Alternative Authentication Providers

https://doi.org/10.1007/979-8-8688-0035-1_5

172

Listing 6-1 shows the new pom.xml file after generating this new project.

Listing 6-1.  Updated pom.xml File

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.

w3.org/2001/XMLSchema-instance"

 �xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

https://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>3.1.0</version>

 <relativePath/> <!-- lookup parent from repository -->

 </parent>

 <groupId>com.apress.H2security</groupId>

 <artifactId>H2security</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <name>H2security</name>

 <description>Demo project for Spring Boot</description>

 <properties>

 <java.version>20</java.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-data-jdbc</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-security</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

Chapter 6 Configuring Alternative Authentication Providers

173

 </dependency>

 <dependency>

 <groupId>com.h2database</groupId>

 <artifactId>h2</artifactId>

 <scope>runtime</scope>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-test</artifactId>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-test</artifactId>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.thymeleaf.extras</groupId>

 <artifactId>thymeleaf-extras-springsecurity6</artifactId>

 <version>3.1.1.RELEASE</version>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 </plugin>

 </plugins>

 </build>

</project>

Chapter 6 Configuring Alternative Authentication Providers

174

The new Maven dependencies are JDBC and H2.

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-data-jdbc</artifactId>

 </dependency>

 <dependency>

 <groupId>com.h2database</groupId>

 <artifactId>h2</artifactId>

 <scope>runtime</scope>

 </dependency>

Let’s update our files now.

The welcome.html file remains as it is in Chapter 5.

Let’s update the authenticated.html file by adding the following lines.

<form th:action="@{/h2-console}" method="post">

 <input type="submit" value="check the h2-console"/>

</form>

Once the user is authenticated, this creates a new button to open the H2 console and

check the updated databases using our example.

The Java class named UserController remains the same as in Chapter 5.

Let’s update the SecurityConfiguration Java class to use the H2 embedded

database, as shown in Listing 6-2.

Listing 6-2.  Updated SecurityConfiguration Java Class

package com.apress.H2security.H2security.configuration;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.jdbc.datasource.embedded.EmbeddedDatabase;

import org.springframework.jdbc.datasource.embedded.

EmbeddedDatabaseBuilder;

import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;

import org.springframework.security.config.Customizer;

import org.springframework.security.config.annotation.web.builders.

HttpSecurity;

Chapter 6 Configuring Alternative Authentication Providers

https://doi.org/10.1007/979-8-8688-0035-1_5
https://doi.org/10.1007/979-8-8688-0035-1_5

175

import org.springframework.security.config.annotation.web.configuration.

EnableWebSecurity;

import org.springframework.security.core.userdetails.User;

import org.springframework.security.core.userdetails.UserDetails;

import org.springframework.security.core.userdetails.jdbc.JdbcDaoImpl;

import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;

import org.springframework.security.crypto.password.PasswordEncoder;

import org.springframework.security.provisioning.JdbcUserDetailsManager;

import org.springframework.security.web.SecurityFilterChain;

import org.springframework.security.web.util.matcher.AntPathRequestMatcher;

import javax.sql.DataSource;

@Configuration

@EnableWebSecurity

public class SecurityConfiguration {

 @Bean

 �public SecurityFilterChain filterChain1(HttpSecurity http) throws

Exception {

 http

 .csrf(csrf -> csrf.ignoringRequestMatchers("/h2-console/**"))

 .authorizeHttpRequests((authorize) -> authorize

 .requestMatchers("/", "/welcome").permitAll()

 �//.requestMatchers("/authenticated").

hasRole("ADMIN")

 �.requestMatchers("/authenticated").

hasAnyRole("USER", "ADMIN")

 �.requestMatchers(AntPathRequestMatcher.antMatch

er("/h2-console/**")).permitAll()

)

 .csrf(csrf -> csrf

 �.ignoringRequestMatchers(AntPathRequestMatcher.antM

atcher("/h2-console/**")))

 .formLogin(Customizer.withDefaults())

Chapter 6 Configuring Alternative Authentication Providers

176

 .headers(headers -> headers.disable())

 .logout((logout) -> logout

 .logoutSuccessUrl("/welcome")

 .deleteCookies("JSESSIONID")

 .invalidateHttpSession(true)

 .permitAll()

);

 return http.build();

 }

 @Bean

 EmbeddedDatabase datasource() {

 return new EmbeddedDatabaseBuilder()

 .setName("securitydb")

 .setType(EmbeddedDatabaseType.H2)

 .addScript(JdbcDaoImpl.DEFAULT_USER_SCHEMA_DDL_LOCATION)

 .build();

 }

 @Bean

 �JdbcUserDetailsManager users(DataSource dataSource, PasswordEncoder

encoder) {

 UserDetails user = User.builder()

 .username("user")

 .password(encoder.encode("userpassw"))

 .roles("USER")

 .build();

 UserDetails admin = User.builder()

 .username("admin")

 .password(encoder.encode("adminpassw"))

 .roles("ADMIN")

 .build();

 �JdbcUserDetailsManager jdbcUserDetailsManager = new JdbcUserDetails

Manager(dataSource);

 jdbcUserDetailsManager.createUser(user);

Chapter 6 Configuring Alternative Authentication Providers

177

 jdbcUserDetailsManager.createUser(admin);

 return jdbcUserDetailsManager;

 }

 @Bean

 public static PasswordEncoder passwordEncoder(){

 return new BCryptPasswordEncoder();

 }

}

Let’s analyze this new Java class.

The PasswordEncoder bean stays the same as in previous examples.

Spring Security’s JdbcDaoImpl implements UserDetailsService to support username-

and-password-based authentication that is retrieved using JDBC. JdbcUserDetailsManager

extends JdbcDaoImpl to provide management of UserDetails through the

UserDetailsManager interface. UserDetails-based authentication is used by Spring Security

when configuring to accept a username/password for authentication.

Spring Security provides default queries for JDBC-based authentication, for which

you can adjust the schema to match any customizations to the queries and the database

dialect you use.

JdbcDaoImpl requires tables to load the password, account status (enabled or

disabled), and a list of authorities (roles) for the user. The default schema is also exposed

as a classpath resource named org/springframework/security/core/userdetails/jdbc/

users.ddl, which is provided in the following listing.

create table users(

 username varchar_ignorecase(50) not null primary key,

 password varchar_ignorecase(500) not null,

 enabled boolean not null

);

create table authorities (

 username varchar_ignorecase(50) not null,

 authority varchar_ignorecase(50) not null,

 �constraint fk_authorities_users foreign key(username) references

users(username)

);

Chapter 6 Configuring Alternative Authentication Providers

178

Before configuring JdbcUserDetailsManager, you must create a DataSource. In this

example, we set up an embedded DataSource initialized with the default user schema

via the EmbeddedDatabase datasource bean created to build a new H2 database (in

our case named securitydb) using the preconfigured JdbcDaoImpl default user DDL via

DJdbcDaoImpl.DEFAULT_USER_SCHEMA_DDL_LOCATION.

@Bean

EmbeddedDatabase datasource() {

 return new EmbeddedDatabaseBuilder()

 .setName("securitydb")

 .setType(EmbeddedDatabaseType.H2)

 .addScript(JdbcDaoImpl.DEFAULT_USER_SCHEMA_DDL_LOCATION)

 .build();

The next step is to create the JdbcUserDetailsManager bean, as described in

Listing 6-3.

Listing 6-3.  JdbcUserDetailsManager Java Bean

@Bean

JdbcUserDetailsManager users(DataSource dataSource, PasswordEncoder

encoder) {

 UserDetails user = User.builder()

 .username("user")

 .password(encoder.encode("userpassw"))

 .roles("USER")

 .build();

 UserDetails admin = User.builder()

 .username("admin")

 .password(encoder.encode("adminpassw"))

 .roles("ADMIN")

 .build();

 �JdbcUserDetailsManager jdbcUserDetailsManager = new JdbcUserDetails

Manager(dataSource);

 jdbcUserDetailsManager.createUser(user);

 jdbcUserDetailsManager.createUser(admin);

 return jdbcUserDetailsManager;

}

Chapter 6 Configuring Alternative Authentication Providers

179

In this example, let’s create two users to access the authenticated resource: user/

userpassw and admin/adminpassw.

The last bean is SecurityFilterChain, as shown in Listing 6-4.

Listing 6-4.  SecurityFilterChain Java Bean

@Bean

public SecurityFilterChain filterChain1(HttpSecurity http) throws

Exception {

 http

 .authorizeHttpRequests((authorize) -> authorize

 .requestMatchers("/", "/welcome").permitAll()

 �.requestMatchers("/authenticated").hasAnyRole("USER",

"ADMIN")

 �.requestMatchers(AntPathRequestMatcher.antMatcher("/h2-

console/**")).permitAll()

)

 .csrf(csrf -> csrf

 �.ignoringRequestMatchers(AntPathRequestMatcher.antMatch

er("/h2-console/**")))

 .formLogin(Customizer.withDefaults())

 .headers(headers -> headers.disable())

 .logout((logout) -> logout

 .logoutSuccessUrl("/welcome")

 .deleteCookies("JSESSIONID")

 .invalidateHttpSession(true)

 .permitAll()

);

 return http.build();

}

Chapter 6 Configuring Alternative Authentication Providers

180

First, create requestMatchers in this bean.

•	 .requestMatchers("/", "/welcome").permitAll() permits all to

access “/” and “welcome “ pages.

•	 .requestMatchers("/authenticated").hasAnyRole("USER",

"ADMIN") permits the user and admin to access the

authenticated page.

•	 .requestMatchers(AntPathRequestMatcher.antMatcher("/h2-

console/**")).permitAll() permits access to the H2 console.

Since our Spring Boot project uses Spring Security and the class is annotated with

the @EnableWebSecurity annotation, you must disable the HTTP header frame options

and add the following to that class’s configure() method.

The frame options are necessary to prevent a browser from loading your HTML

page in an <iframe> or <frame> tag. To enable the H2 console page to load, you need to

disable this option with this line.

.headers(headers -> headers.disable())

The line .csrf(csrf -> csrf

 �.ignoringRequestMatchers(AntPathRequestMatcher.antMatch

er("/h2-console/**")))

allows ignoring RequestMatchers for the H2 “/h2-console/**” console path.

Build and run the Spring Boot application and open http://localhost:8080/welcome

in the browser window. Authenticate with “user/userpassw” or “admin/adminpassw”, as

shown in Figures 6-3 and 6-4.

Figure 6-3.  welcome.html page

Chapter 6 Configuring Alternative Authentication Providers

181

Figure 6-4.  Login page

If authenticated, you can access the autnenticated.html page, which informs that the

admin is an authenticated user and provides a “check the h2-console” button, as shown

in Figure 6-5.

Figure 6-5.  authenticated.html page

Chapter 6 Configuring Alternative Authentication Providers

182

Click the “check the h2-console” button to log in to the H2 console, as shown in

Figure 6-6.

Figure 6-6.  H2 login console page

Let’s connect now to the H2 and discover the content, as shown in Figure 6-7.

Chapter 6 Configuring Alternative Authentication Providers

183

Figure 6-7.  H2 console page with securitydb tables

The H2 console includes the two tables used for this example via JDBC

authentication, such as Authorities and Users.

Let’s run the following SQL scripts against the securitydb database to see the content

of the tables.

Chapter 6 Configuring Alternative Authentication Providers

184

The result of running the SELECT * FROM AUTHORITIES SQL script is shown in

Figure 6-8.

Figure 6-8.  H2 authorities table script outcome

There are two new authorities in the database: admin/ROLE_ADMIN and user/

ROLE_USER.

The result of running the SELECT * FROM USERS SQL script is shown in Figure 6-9.

Chapter 6 Configuring Alternative Authentication Providers

185

Figure 6-9.  H2 users table script outcome

There are two new enabled users: “user/userpassw” and “admin/adminpassw”.

These are the users who authenticate the example.

�LDAP Authentication
The Lightweight Directory Access Protocol (LDAP) is an application-level, message-

oriented protocol for storing and accessing information through an accessible tree-like

directory. A directory, in general, is simply an organized data store that allows for easy

queries in its particular domain. For example, a TV Guide is a directory that allows you to

find TV shows easily, and a phone book is a directory that provides easy access to phone

numbers.

LDAP allows the storage of very different kinds of information in a directory.

Probably the most widely known use of LDAP-like structures is the Microsoft Windows

Active Directory system. Other LDAP systems are widely used to store the corporate user

databases of many companies that serve as the centralized user store.

Chapter 6 Configuring Alternative Authentication Providers

186

LDAP is not easy to understand, and we try to explain it using the example in this

section. Let’s use the same code as in the previous section but modify it to work with

LDAP instead of database authentication. Remember that the previous section offered

a bootstrap application to start working on all the examples in this chapter, including

this one.

The first thing to do is configure your users in the LDAP directory. To do this, you

need to understand the LDAP information model, which defines the type of data you can

store in your directory.

Entries, attributes, and values define the data in LDAP. An entry is the basic unit of

information in the directory and commonly represents an entity from the real world,

like a user. Entries are normally defined by a particular object class. Each entry in the

directory has an identification known as a distinguished name (or, more commonly, DN).

Each entry in the directory also has a set of attributes that describe different things about

the entry. Each attribute has a type and one or more values.

You must define the data you need. You use users, groups, and credentials, as you

have done so far. In LDAP, the user entry definition is commonly known as people, so use

that name to define the user entries. Your user also uses the standard LDAP object class

person to define its attributes.

�Using an Embedded LDAP
For simplicity, an embedded LDAP server is used in this example since Spring Security

uses ApacheDS 1.x, which is no longer maintained, and unfortunately, ApacheDS 2.x has

only released milestone versions with no stable release. Consider updating once a stable

release of ApacheDS 2.x is available.

If you wish to use Apache DS, specify the following Maven dependencies.

<dependency>

 <groupId>org.apache.directory.server</groupId>

 <artifactId>apacheds-core</artifactId>

 <version>1.5.5</version>

 <scope>runtime</scope>

</dependency>

<dependency>

 <groupId>org.apache.directory.server</groupId>

Chapter 6 Configuring Alternative Authentication Providers

187

 <artifactId>apacheds-server-jndi</artifactId>

 <version>1.5.5</version>

 <scope>runtime</scope>

</dependency>

Let’s create a new Spring Boot project with Spring Security, Spring Web, and LDAP.

Go to start.spring.io to create a new project (as shown in Figure 6-10) with the

following settings.

•	 Build Tool: Maven

•	 Language: Java

•	 Packaging: Jar

•	 Java Version: 17

Next, add the following dependencies.

•	 Web

•	 Spring Security

•	 Spring LDAP

Figure 6-10.  Creating a new LDAP project

Chapter 6 Configuring Alternative Authentication Providers

188

Generate the project and unzip it on your machine.

You must enable and configure the H2 in-memory database console in our

application.properties file as follows.

spring.thymeleaf.check-template-location=false

spring.ldap.embedded.port=8389

spring.ldap.embedded.ldif=classpath:*.ldif

Let’s use the same Java classes from the previous example, as shown in Figure 6-11.

Figure 6-11.  LDAPSecurity project structure

Listing 6-5 shows the new pom.xml file after generating this new project.

Chapter 6 Configuring Alternative Authentication Providers

189

Listing 6-5.  Updated pom.xml

<?xml version=”1.0” encoding=”UTF-8”?>

<project xmlns=”http://maven.apache.org/POM/4.0.0” xmlns:xsi=”http://www.

w3.org/2001/XMLSchema-instance”

 �xsi:schemaLocation=”http://maven.apache.org/POM/4.0.0

https://maven.apache.org/xsd/maven-4.0.0.xsd”>

 <modelVersion>4.0.0</modelVersion>

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>3.1.0</version>

 <relativePath/> <!—lookup parent from repository —>

 </parent>

 <groupId>com.apress.LDAPsecurity</groupId>

 <artifactId>LDAPsecurity</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <name>LDAPsecurity</name>

 <description>Demo project for Spring Boot</description>

 <properties>

 <java.version>17</java.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 <!—tag::security[]—>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-security</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.ldap</groupId>

 <artifactId>spring-ldap-core</artifactId>

 </dependency>

Chapter 6 Configuring Alternative Authentication Providers

190

 <dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-ldap</artifactId>

 </dependency>

 <dependency>

 <groupId>com.unboundid</groupId>

 <artifactId>nbounded-ldapsdk</artifactId>

 <version>6.0.9</version>

 <scope>runtime</scope>

 </dependency> <!—end::security[]—>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-test</artifactId>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-test</artifactId>

 <scope>test</scope>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 </plugin>

 </plugins>

 </build>

</project>

The following are the specific Maven dependencies needed in the LDAP Spring

Security 6 example.

Chapter 6 Configuring Alternative Authentication Providers

191

<dependency>

 <groupId>com.unboundid</groupId>

 <artifactId>unboundid-ldapsdk</artifactId>

 <version>6.0.9</version>

 <scope>runtime</scope>

</dependency>

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-security</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.ldap</groupId>

 <artifactId>spring-ldap-core</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-ldap</artifactId>

</dependency>

The next step is to create the LDIF file used as an embedded LDAP server.

An LDIF file is a text file that uses LDIF formatting, a standard format for describing

directory entries in LDAP. It allows you to import and export your directory data into

or from another LDAP directory in a standard way or just to create new data or modify

existing data. You use it here to import the data with your users. Listing 6-6 shows the

LDIF file you import. You can name this file whatever you like, but it is users.ldif in this

example.

Listing 6-6.  LDIF File with the Two Users You Want to Import into the LDAP

Directory

dn: dc=example,dc=com

objectclass: top

objectclass: domain

dc: example

dn: ou=groups,dc=example,dc=com

objectclass: organizationalUnit

objectclass: top

Chapter 6 Configuring Alternative Authentication Providers

192

ou: groups

dn: cn=administrators,ou=groups,dc=example,dc=com

objectclass: groupOfUniqueNames

objectclass: top

cn: administrators

uniqueMember: uid=mnardone,ou=people,dc=example,dc=com

ou: admin

dn: cn=users,ou=groups,dc=example,dc=com

objectclass: groupOfNames

objectclass: top

cn: users

member: uid=lnardone,ou=people,dc=example,dc=com

ou: user

dn: ou=people,dc=example,dc=com

objectclass: organizationalUnit

objectclass: top

ou: people

dn: uid=lnardone,ou=people,dc=example,dc=com

objectclass: inetOrgPerson

objectclass: organizationalPerson

objectclass: person

objectclass: top

cn: Leo Nardone

sn: Leo

uid: lnardone

userPassword: {SHA}F1OkcxtiioPmVX3tJlIHzZsXkDQ=

dn: uid=mnardone,ou=people,dc=example,dc=com

objectclass: inetOrgPerson

objectclass: organizationalPerson

objectclass: person

objectclass: top

cn: Massimo Nardone

sn: Nardone

uid: mnardone

userPassword: {SHA}xcS5y9T0kjBXDpYijejbhmILFwY=

Chapter 6 Configuring Alternative Authentication Providers

193

As you can see, this code generated two users, mnardone, part of the administrators

group, and lnardone, who is not included in that group.

The SHA password was generated via http://aspirine.org/htpasswd_en.html.

The passwords are

nardone01 = {SHA}xcS5y9T0kjBXDpYijejbhmILFwY=

nardone02 = {SHA}F1OkcxtiioPmVX3tJlIHzZsXkDQ=

You can see in Listing 6-6 the hierarchical nature of the directory and how everything

inherits the DN dc=example,dc=com. You can also see how the different entries use

different standard object classes. You have created two groups: administrators and

users. You also established that lnardone is a member of the users group, mnardone is a

member of the administrators group, and the two SHA passwords.

””””””””””uccessfuccessfu——>”””””””uccessfully”””‘’”””””””””

The main class is LdaPsecurityApplication, as shown in Listing 6-7.

Listing 6-7.  LdaPsecurityApplication Java Class

package com.apress.LDAPsecurity.LDAPsecurity;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication

public class LdaPsecurityApplication {

 public static void main(String[] args) {

 SpringApplication.run(LdaPsecurityApplication.class, args);

 }

}

Next, create some needed Java classes. Start with a simple UserController, shown in

Listing 6-8, which is similar to one used in other projects in this book.

Listing 6-8.  UserController Java Class

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.RestController;

Chapter 6 Configuring Alternative Authentication Providers

http://aspirine.org/htpasswd_en.html

194

@RestController

public class UserController {

 @GetMapping("/")

 public String getLoginPage() {

 �return "You have successfully logged in Using Spring Security 6

LDAP Authentication!";

 }

}

Listing 6-8 works so that when a login is successful, the user receives a simple

message: “You have successfully logged in Using Spring Security 6 LDAP Authentication!”.

Next, update the Java class named SecurityConfiguration, shown in Listing 6-9, to

take care of the LDAP authentication.

Listing 6-9.  SecurityConfiguration Java Class

package com.apress.LDAPsecurity;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.ldap.core.support.BaseLdapPathContextSource;

import org.springframework.security.authentication.AuthenticationManager;

import org.springframework.security.config.annotation.web.builders.

HttpSecurity;

import org.springframework.security.config.annotation.web.configuration.

EnableWebSecurity;

import org.springframework.security.config.ldap.

LdapPasswordComparisonAuthenticationManagerFactory;

import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;

import org.springframework.security.ldap.userdetails.

DefaultLdapAuthoritiesPopulator;

import org.springframework.security.ldap.userdetails.LdapAuthoritiesPopulator;

import org.springframework.security.web.SecurityFilterChain;

import static org.springframework.security.config.Customizer.withDefaults;

@Configuration

@EnableWebSecurity

Chapter 6 Configuring Alternative Authentication Providers

195

public class SecurityConfiguration {

 @Bean

 �public SecurityFilterChain filterChain1(HttpSecurity http) throws

Exception {

 http

 .authorizeHttpRequests((authorize) -> authorize

 .anyRequest().fullyAuthenticated()

)

 .formLogin(withDefaults());

 return http.build();

 }

 @Bean

 �AuthenticationManager authenticationManager(BaseLdapPathContextSource

contextSource) {

 �LdapPasswordComparisonAuthenticationManagerFactory factory = new

LdapPasswordComparisonAuthenticationManagerFactory(

 contextSource, new BCryptPasswordEncoder());

 factory.setUserDnPatterns("uid={0},ou=people");

 factory.setPasswordAttribute("userPassword");

 factory.setUserSearchBase("ou=people");

 factory.setPasswordEncoder(new BCryptPasswordEncoder());

 return factory.createAuthenticationManager();

 }

 @Bean

 �LdapAuthoritiesPopulator authorities(BaseLdapPathContextSource

contextSource) {

 String groupSearchBase = "ou=groups";

 �DefaultLdapAuthoritiesPopulator authorities = new

DefaultLdapAuthoritiesPopulator

 (contextSource, groupSearchBase);

 authorities.setGroupSearchFilter("(member={0})");

 return authorities;

 }

}

Chapter 6 Configuring Alternative Authentication Providers

196

Let’s discuss the Java class.

The following lines force you to request full authentication for any URL via

formLogin.

 http

 .authorizeHttpRequests((authorize) -> authorize

 .anyRequest().fullyAuthenticated()

)

 .formLogin(withDefaults());

 return http.build();

This example uses LDAP password authentication, where password comparison

is when the password supplied by the user is compared with the one stored in the

repository. This can be done by retrieving the value of the password attribute and

checking it locally or by performing an LDAP “compare” operation, where the supplied

password is passed to the server for comparison, and the real password value is never

retrieved. An LDAP comparison cannot be done when the password is properly hashed

with a random salt.

The following lines define the LDAP password authentication.

authenticationManager(BaseLdapPathContextSource contextSource) {

 �LdapPasswordComparisonAuthenticationManagerFactory factory = new

LdapPasswordComparisonAuthenticationManagerFactory(

 contextSource, new BCryptPasswordEncoder());

 factory.setUserDnPatterns("uid={0},ou=people");

 factory.setPasswordAttribute("userPassword");

 factory.setUserSearchBase("ou=people");

 factory.setPasswordEncoder(new BCryptPasswordEncoder());

 return factory.createAuthenticationManager();

 }

Finally, to determine which authorities are returned for the user, we used the

following LdapAuthoritiesPopulator code.

 @Bean

 �LdapAuthoritiesPopulator authorities(BaseLdapPathContextSource

contextSource) {

 String groupSearchBase = "ou=groups";

Chapter 6 Configuring Alternative Authentication Providers

197

 �DefaultLdapAuthoritiesPopulator authorities = new

DefaultLdapAuthoritiesPopulator

 (contextSource, groupSearchBase);

 authorities.setGroupSearchFilter("(member={0})");

 return authorities;

 }

Start the application now with this configuration. You should be able to see the login

page via http://localhost:8080/.

Log in and access the Spring Security 6 login page, as shown in Figure 6-12.

Figure 6-12.  Application login page

In the LDAP, there are two users: mnardone and lnardone. The difference is that

mnardone is part of the administrators group, so they can access the successful page.

Log in with the mnardone username and the nardone02 password to access the

authorized page, as shown in Figure 6-13.

Figure 6-13.  LDAP login page

Chapter 6 Configuring Alternative Authentication Providers

198

The configuration is not that difficult to understand. The login configuration is

within the SpringSecurityConfiguration Java class.

The SecurityFilterChain filterChain1(HttpSecurity http) configures the

HTTP for features such as login and logout so that users can only access the URL in the

LDAP as part of the administrators group.

dn: cn=administrators,ou=groups,dc=example,dc=com

objectclass: groupOfUniqueNames

objectclass: top

cn: administrators

uniqueMember: uid=mnardone,ou=people,dc=example,dc=com

ou: admin

In this case, mnardone is part of the administrators LDAP group, so they can access

the secure page.

Remember that all your entries are relative to the domain name dc=example,dc=com.

As you can see from the example, configuring LDAP’s basic support as the

authentication solution for your application with Spring Security is not that complex.

Thanks to the modular architecture and well-thought-out XML and Java namespace, it

is very straightforward. The complexity of LDAP is LDAP itself. Although it is a simple

hierarchical system (very much like the file system in your standard Unix box), some

of the nomenclature and functionality seem a bit complex and very different from the

database-based solution you explored in the previous section.

Using LDAP as your authentication solution makes great sense in the context

of corporate intranets, where the company user base is already stored in LDAP-like

directories in a centralized manner. Plugins into this already existing user-management

infrastructure are a good way to reuse the user information within the company instead

of writing a parallel authentication datastore that needs to be kept in sync with the main

repository.

�X.509 Authentication
X.509 authentication is an authentication scheme that uses client-side certificates

instead of username-password combinations to identify the user. Using this approach, a

scheme known as mutual authentication takes place between the client and the server.

In practice, mutual authentication means that, as part of the Secure Sockets Layer (SSL)

Chapter 6 Configuring Alternative Authentication Providers

199

handshake, the server requests that the client identify himself by providing a certificate.

In a production-ready server, a proper certificate-signing authority must issue and sign

the incoming client certificate.

To work with client certificates, the application must be configured to use SSL

channels in the sections expected to deal with the authenticated user because the X.509

authentication protocol is part of the SSL protocol.

To enable X.509 client authentication in Spring Security 6, you must add the <x509/>

element to your HTTP security namespace configuration, as follows.

<http>

...

 �<x509 subject-principal-regex="CN=(.*?)," user-service-

ref="userService"/>;

</http>

The element has two optional attributes.

•	 subject-principal-regex. The regular expression used to extract a

username from the certificate’s subject name. The default value

is shown in the preceding listing. This username is passed to the

UserDetailsService to load the authorities for the user.

•	 user-service-ref. This is the bean ID of the UserDetailsService to

be used with X.509. It is unnecessary if only one is defined in your

application context.

The subject-principal-regex should contain a single group. For example, the

default expression (CN=(.*?)) matches the common name field. So, if the subject

name in the certificate is “CN=Jimi Hendrix, OU=…​”, this gives a user name of “Jimi

Hendrix”. The matches are case-insensitive. So “emailAddress=(.*?),” matches

“EMAILADDRESS=jimi@hendrix.org,CN=…​”, giving a user name “jimi@hendrix.org”.

If the client presents a certificate and a valid username is successfully extracted, there

should be a valid Authentication object in the security context. The security context

remains empty if no certificate or corresponding user can be found. You can use X.509

authentication with other options, such as a form-based login.

To set up SSL in Tomcat, you could use the pre-generated certificates in the Spring

Security samples repository to enable SSL for testing if you do not want to generate your

own. The server.jks file contains the server certificate, the private key, and the issuing

Chapter 6 Configuring Alternative Authentication Providers

200

authority certificate. Some client certificate files are also for the users from the sample

applications. You can install these in your browser to enable SSL client authentication.

To run Tomcat with SSL support, drop the server.jks file into the tomcat conf

directory and add the following connector to the server.xml file.

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true" scheme="https"

secure="true"

 clientAuth="true" sslProtocol="TLS"

 keystoreFile="${catalina.home}/conf/server.jks"

 keystoreType="JKS" keystorePass="password"

 truststoreFile="${catalina.home}/conf/server.jks"

 truststoreType="JKS" truststorePass="password"

/>

clientAuth can also be set to want if you still want SSL connections to succeed,

even if the client does not provide a certificate. Clients who do not present a certificate

cannot access any objects secured by Spring Security unless they use a non-X.509

authentication mechanism, such as form authentication.

�OAuth 2.0
OAuth 2.0 is the industry-standard protocol for authorization. You can get more

information at https://oauth.net/2/.

Since Spring Security 5.0 supports the OAuth 2.0 authorization framework and

OpenID Connect 1.0. with Spring Security 5.1. It introduced new Resource Server

support as well as additional client support.

The OAuth 2.0 implementation for authentication, which conforms to the OpenID

Connect specification and is OpenID Certified, can be used for authentication and

authorization via Google’s OAuth 2.0 APIs. For more information, please go to https://

developers.google.com/identity/protocols/OAuth2.

OAuth 2.0 supports

•	 Client

•	 Resource server

•	 Authorization server

Chapter 6 Configuring Alternative Authentication Providers

https://oauth.net/2/
https://developers.google.com/identity/protocols/OAuth2
https://developers.google.com/identity/protocols/OAuth2

201

The OAuth 2.0 client features support the client role defined in the OAuth 2.0

authorization framework. You can get more information at https://auth0.com/.

When developing an OAuth 2.0 Client, the following main features are available.

•	 Authorization code grant

•	 Client credentials grant

•	 The WebClient extension for servlet environments (for making

protected resource requests)

Spring Security 5 introduced a new OAuth2LoginConfigurer class that you can use to

configure an external authorization server.

More information is at https://docs.spring.io/spring-security/reference/

servlet/oauth2/resource-server/jwt.html#oauth2resourceserver-jwt-

architecture,

�JSON Web Token
Spring Security 5 supports JSON Web Token (JWT) authentication.

You need to do the following.

•	 Configure Spring Security for JWT.

•	 Expose the REST POST API with mapping/authenticate.

•	 Configure a valid JSON Web Token.

Specifically, to configure Spring Security and JWT, you need to perform two

operations.

	 1.	 Generate JWT by

	 a.	 Exposing a POST API with mapping/authenticating

	 b.	 Passing the correct username and password

	 2.	 Validate JWT by

	 a.	 When trying to access the GET API with a certain mapping like /Testing

	 b.	 Allowing access only if a request is valid

Chapter 6 Configuring Alternative Authentication Providers

https://auth0.com/
https://docs.spring.io/spring-security/reference/servlet/oauth2/resource-server/jwt.html#oauth2resourceserver-jwt-architecture
https://docs.spring.io/spring-security/reference/servlet/oauth2/resource-server/jwt.html#oauth2resourceserver-jwt-architecture
https://docs.spring.io/spring-security/reference/servlet/oauth2/resource-server/jwt.html#oauth2resourceserver-jwt-architecture

202

Spring Security and JWT dependencies include the following.

 <dependency>

 <groupId>io.jsonwebtoken</groupId>

 <artifactId>jjwt</artifactId>

 <version>0.9.1</version>

 </dependency>

�Spring WebSocket
Since Spring Security 5 MVC supports Spring WebSocket. For WebSocket

implementation, you want to add the following Maven dependencies.

<dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-websocket</artifactId>

 <version>6.0.10</version>

</dependency>

<dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-messaging</artifactId>

 <version>6.0.10</version>

</dependency>

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-messaging</artifactId>

 <version>6.1.1</version>

</dependency>

Then, define the configuration of WebSocket-specific security as follows:

@Configuration

@EnableWebSocketSecurity

public class WebSocketSecurityConfig {

 @Bean

 �AuthorizationManager<Message<?>> messageAuthorizationManager(

MessageMatcherDelegatingAuthorizationManager.Builder messages) {

Chapter 6 Configuring Alternative Authentication Providers

203

 messages

 .simpDestMatchers("/user/**").hasRole("USER")

 return messages.build();

 }

}

For more information on WebSockets, check out the Spring Security 6 reference

documentation at https://docs.spring.io/spring-security/reference/servlet/

integrations/websocket.html#page-title.

�Java Authentication and Authorization Service
The Java Authentication and Authorization Service (JAAS) is the standard Java support

for managing authentication and authorization. Its functionality overlaps with that of

Spring Security.

JAAS is a relatively large standard involving much more than the small amount of

information covered here. However, the main concepts are the ones we showed you, and

the goal of the section is to show the building blocks for integrating them with Spring

Security.

For more information on JAAS, check out the Spring Security 5 reference

documentation at https://docs.spring.io/spring-security/reference/servlet/

authentication/jaas.html.

�Central Authentication Service
The Central Authentication Service (CAS) is an enterprise single sign-on solution built

in Java and open source. It has a great support community and integrates into many Java

projects. CAS provides a centralized place for authentication and access control in an

enterprise.

The JA-SIG (www.ja-sig.org) CAS a is a simple, open source, independent

platform that supports proxy capabilities. Spring Security fully supports CAS for single

applications and multiple-application deployments secured by an enterprise-wide CAS

server. You can learn more about CAS at www.apereo.org/projects/cas.

Chapter 6 Configuring Alternative Authentication Providers

https://docs.spring.io/spring-security/reference/servlet/integrations/websocket.html#page-title
https://docs.spring.io/spring-security/reference/servlet/integrations/websocket.html#page-title
https://docs.spring.io/spring-security/reference/servlet/authentication/jaas.html
https://docs.spring.io/spring-security/reference/servlet/authentication/jaas.html
http://www.ja-sig.org
http://www.apereo.org/projects/cas

204

One important characteristic of CAS is that it is designed to serve as a proxy for

different authentication storage solutions. It can be used with LDAP, JDBC, or other user

stores containing real user data. This looks a lot like the way Spring Security leverages

these same user data stores.

For more information on CAS, check out the Spring Security 6 reference

documentation at https://docs.spring.io/spring-security/reference/servlet/

authentication/cas.html.

�Summary
This chapter illustrated how to use Spring Security’s modular architecture to integrate

different authentication mechanisms relatively easily. We explained some of the

authentication mechanisms that come with the framework. We demonstrated how

to authenticate your users in a database, an LDAP server, and by using client X.509

certificates. JAAS, OAuth 2.0/OpenID Connect 1.0, WebSocket, JWT, and CAS were also

introduced.

This chapter focused on showing how all these different authentication providers

relate to each other when used inside the framework. The goal was to show you that

integrating new providers into the framework is simple enough for you to try. Of course,

how easy it is depends on the authentication scheme that you want to plug in.

Other authentication providers weren’t covered in this chapter, but the main

ideas remain the same: create a connector into Spring Security that deals with the

particulars of the integrating protocol and adapt it to use the Spring Security model of

authentication and authorization.

Chapter 6 Configuring Alternative Authentication Providers

https://docs.spring.io/spring-security/reference/servlet/authentication/cas.html
https://docs.spring.io/spring-security/reference/servlet/authentication/cas.html

205
© Massimo Nardone, Carlo Scarioni 2024
M. Nardone and C. Scarioni, Pro Spring Security, https://doi.org/10.1007/979-8-8688-0035-1_7

CHAPTER 7

Business Object Security
with ACLs
This chapter introduces access control lists (ACLs) in the context of Spring Security.

Access control lists can be considered an extension to the business-level security

rules reviewed in Chapter 6. This chapter, however, looks at more fine-grained rules to

secure individual domain objects instead of the relatively coarse-grained rules used to

secure method calls on services.

This means that ACLs are in charge of securing instances of domain classes (such

as a Forum class, a Cart class, and so on), while the standard method-level rules secure

entry points determined by methods (like a Service method or a DAO method).

Securing domain objects with ACLs is conceptually simple. The idea is that any

user has a certain level of access (read, write, none, and so on) to each domain object.

A user’s level of access (permissions) to a particular domain object depends on the user

or the role or group to which the user belongs.

�ACL Key Concepts
The source code of the Spring Security ACL module or inside the .jar file itself: spring-

security-acl-6.1.3.RELEASE.jar. It is in the src/main/resources folder in the source

code, which means it is in the root of the classpath.

Spring Security’s domain object instance security capabilities center on the concept

of an access control list (ACL). Every domain object instance in our system has its own

ACL, and the ACL records details of who can and cannot work with that domain object.

Spring Security provides three main ACL-related capabilities to your application.

https://doi.org/10.1007/979-8-8688-0035-1_7#DOI
https://doi.org/10.1007/979-8-8688-0035-1_6

206

•	 A way to retrieve ACL entries for our domain objects

•	 A way to ensure a given principal is permitted to work with our

objects before methods are called

•	 A way to ensure a given principal is permitted to work with our

objects after methods are called

Note that one of the main capabilities of the Spring Security ACL module is providing

a high-performance way of retrieving ACLs.

This ACL repository capability is extremely important because every domain object

instance in our system might have several access control entries, and each ACL might

inherit from other ACLs in a tree-like structure.

Spring Security’s ACL capability has been carefully designed to provide high-

performance retrieval of ACLs, together with pluggable caching, deadlock-minimizing

database updates, independence from ORM frameworks (we use JDBC directly), proper

encapsulation, and transparent database updating.

The following are the main abstractions in Spring Security’s ACL support.

•	 Security identity (SID) is an abstraction that represents a security

identity in the system to be used by the ACL infrastructure. A security

identity can be a user, role, group, and so forth. It maps to the ACL_

SID table.

•	 Access control entry (ACE) represents an individual permission

in the ACL, making relationships between objects, SIDs, and

permissions. It maps to the ACL_ENTRY table.

•	 Object identity represents the identity of an individual domain

object instance. They are the entities on which the permissions are

set. It maps to the ACL_OBJECT_IDENTITY table.

•	 Entry stores the individual permissions assigned to each recipient.

Columns include a foreign key to the ACL_OBJECT_IDENTITY, the

recipient (i.e., a foreign key to ACL_SID), whether auditing or not

and the integer bit mask that represents the actual permission being

granted or denied.

Chapter 7 Business Object Security with ACLs

207

The ACL system uses integer bit masking so that when you have 32 bits, you can

switch on or off. Each of these bits represents a permission. By default, the permissions

are read (bit 0), write (bit 1), create (bit 2), delete (bit 3), and administer (bit 4). You can

implement your own permission instance so that the ACL framework operates without

knowledge of your extensions.

You should understand that the number of domain objects in your system has no

bearing on the fact that we have chosen to use integer bit masking. While you have 32

bits available for permissions, there could be billions of domain object instances to avoid

mistakenly believing that one is needed for each potential domain object, which is not

the case.

Now that you have a basic understanding of what the ACL system does and what it

looks like at a table-structure level, you need to understand the ACL key interfaces.

•	 ACL: This is every domain object has one and only one ACL object,

which internally holds the AccessControlEntry objects and knows the

owner of the ACL, which does not refer directly to the domain object

but instead to an ObjectIdentity. It is stored in the ACL_OBJECT_

IDENTITY table.

•	 AccessControlEntry holds multiple AccessControlEntry objects,

often abbreviated as ACEs in the framework. Each ACE refers to

a specific tuple of permission, SID, and ACL. An ACE can also be

granting or non-granting and contain audit settings. The ACE is

stored in the ACL_ENTRY table.

•	 Permission represents a particular immutable bit mask and offers

convenience functions for bit masking and outputting information.

The basic permissions (bits from 0 to 4) are contained in the

BasePermission class.

•	 SID is the abbreviation for security identity. The ACL module must

refer to principals and GrantedAuthority instances, and the SID

interface provides a level of indirection. Common classes include

PrincipalSid, which represents the principal inside an Authentication

object, and GrantedAuthoritySid. The SID information is stored in

the ACL_SID table.

•	 ObjectIdentity internally represents each domain object within the

ACL module. The default implementation is ObjectIdentityImpl.

Chapter 7 Business Object Security with ACLs

208

•	 AclService retrieves the ACL applicable for a given ObjectIdentity. In

the included implementation (JdbcAclService), retrieval operations

are delegated to a LookupStrategy, which provides a highly optimized

strategy for retrieving ACL information, using batched retrievals

(BasicLookupStrategy) and supporting custom implementations

that use materialized views, hierarchical queries, and similar

performance-centric, non-ANSI SQL capabilities.

•	 MutableAclService presents a modified ACL for persistence; this

interface is optional.

Note that our AclService and related database classes use ANSI SQL, which should

work with all major databases. At the time of writing, the system had been successfully

tested with Hypersonic SQL, PostgreSQL, Microsoft SQL Server, and Oracle.

The following is the Maven dependency in our code.

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-acl</artifactId>

 <version>6.1.3</version>

</dependency>

To get started with Spring Security’s ACL capability, you must first store your ACL

information somewhere. This means that an instantiation of a DataSource in Spring is

needed. It is then injected into a JdbcMutableAclService and a BasicLookupStrategy

instance.

Next, you need to populate the database with the four ACL-specific tables.

Finally, once you have created the required schema and instantiated

JdbcMutableAclService, you need to ensure that our domain model supports

interoperability with the Spring Security ACL package like ObjectIdentityImpl proves

sufficient because it provides many ways in which it can be used.

If you use domain objects that contain a public serializable getId() method, it returns

a type that is long or compatible with long (such as an int), and you may find that you

need not give further consideration to ObjectIdentity issues.

In general, many parts of the ACL module rely on long identifiers, and if you do not

use long (or an int, byte, and so on), you might need to reimplement several classes.

Chapter 7 Business Object Security with ACLs

209

We avoid using and supporting non-long identifiers in Spring Security’s ACL module,

as longs are already compatible with all database sequences, are the most common

identifier data type, and are of sufficient length to accommodate all common usage

scenarios.

Listing 7-1 shows how to create an ACL or modify an existing one.

Listing 7-1.  Example of ACL Java Code

// Prepare the information to be in the access control entry (ACE)

ObjectIdentity oi = new ObjectIdentityImpl(Foo.class, new Long(44));

Sid sid = new PrincipalSid("Massimo");

Permission p = BasePermission.ADMINISTRATION;

// Create or update the relevant ACL

MutableAcl acl = null;

try {

acl = (MutableAcl) aclService.readAclById(oi);

} catch (NotFoundException nfe) {

acl = aclService.createAcl(oi);

}

// Granting permissions via an access control entry (ACE)

acl.insertAce(acl.getEntries().length, p, sid, true);

aclService.updateAcl(acl);

In this simple example, prepare the information you want in the access control entry

(ACE) with ObjectIdentityImpl.

Then, retrieve the ACL associated with the Foo domain object with identifier 44.

Next, add an ACE so a principal named “Massimo” can “administer” the object. The

code fragment is relatively self-explanatory, except for the insertAce method, where the

first argument determines the position in the ACL at which the new entry is inserted.

Then, add code to create or update the relevant ACL.

Finally, grant permissions via an access control entry (ACE) at the end of the

existing ACEs. The final argument is a Boolean indicating whether the ACE is granting

or denying, which it usually grants (true), but if it denies (false), the permissions are

blocked.

Chapter 7 Business Object Security with ACLs

210

Spring Security does not provide any special integration to automatically create,

update, or delete ACLs as part of your DAO or repository operations. Instead, you

must write code similar to the preceding example for your domain objects. You

should consider using AOP on your services layer to automatically integrate the ACL

information with your services layer operations. We have found this approach to be

effective.

Once you have used the techniques described here to store some ACL information

in the database, the next step is to use the ACL information as part of authorization

decision logic, which can be done by writing your own AccessDecisionVoter or

AfterInvocationProvider that (respectively) fires before or after a method invocation.

Such classes would use AclService to retrieve the relevant ACL and then call Acl.

isGranted(Permission[] permission, Sid[] sids, boolean administrativeMode) to decide

whether permission is granted or denied.

Alternatively, you could use the following classes, which provide a declarative-based

approach to evaluating ACL information at runtime, freeing you from needing to write

any code.

•	 AclEntryVoter

•	 AclEntryAfterInvocationProvider

•	 AclEntryAfterInvocationCollectionFilteringProvider

�Summary
This chapter provided general information on how to use Spring Security’s support

for ACLs.

Chapter 7 Business Object Security with ACLs

211
© Massimo Nardone, Carlo Scarioni 2024
M. Nardone and C. Scarioni, Pro Spring Security, https://doi.org/10.1007/979-8-8688-0035-1_8

CHAPTER 8

Open Authorization 2.0
(OAuth 2.0) and Spring
Security
Spring Security is a very extendable and customizable framework. This is primarily

because the framework is built using object-oriented principles and design practices

so that it is open for extension and closed for modification. In the previous chapter, you

saw one of the major extension points in Spring Security—namely, the pluggability of

different authentication providers. This chapter covers the popular Open Authorization

2.0 (OAuth 2.0) framework. It shows how to develop login security applications using

Spring Boot, Spring Web, and OAuth 2.0 client (security) toward GitHub and Google

providers.

�An Introduction to OAuth 2.0
OAuth 2.0 is a widely used authorization framework that allows third-party applications

to access users’ resources without exposing their credentials (such as usernames and

passwords). It provides a secure and standardized way for users to grant limited access to

their data or services to other applications or services, often called clients.

It operates based on tokens, which are short-lived and revocable access credentials.

These tokens authenticate and authorize access between the client application, the

resource owner (typically a user), and the resource server (where the protected resources

are stored).

https://doi.org/10.1007/979-8-8688-0035-1_8#DOI

212

The following is a high-level overview of how OAuth 2.0 works.

•	 Client registration: The application registers with the OAuth 2.0

authorization server. During this registration, it receives a client

identifier and a client secret (a confidential key).

•	 User authentication: When the user wants to grant the client access

to their resources, they are redirected to the authorization server for

authentication. This step ensures the user’s identity and consent.

•	 Authorization grant: After the user is authenticated, they are

prompted to grant the client specific permissions to access their

resources. This is often done through an authorization code or other

types of grants.

•	 Token request: After obtaining the authorization grant, the client

requests the authorization server to exchange the grant for an

access token.

•	 Access token issuance: If the authorization server validates the

request and grants access, it issues an access token to the client.

•	 Accessing protected resources: The client can now use the access

token to access the user’s protected resources on the resource server.

The access token serves as proof of authorization.

•	 Token expiration and refresh: Access tokens typically have a limited

lifespan. When they expire, the client can use a refresh token (if

provided) to obtain a new access token without requiring the user to

re-authenticate.

OAuth 2.0 is widely used for securing APIs, allowing users to grant selective access

to their data on platforms like social media, and enabling single sign-on (SSO) across

different services.

Please note that OAuth 2.0 is not a protocol for authentication; it’s a framework for

authorization. For user authentication, OpenID Connect, an identity layer built on top

of OAuth 2.0, is often used in conjunction with OAuth 2.0 to provide both authentication

and authorization capabilities.

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

213

�OAuth 2.0 Security
OAuth 2.0 provides a framework for authorization, but it is essential to implement it

securely to protect user data and resources. The following describes some key security

considerations and best practices when using OAuth 2.0.

•	 Use HTTPS: Always use HTTPS to protect the communication

between the client, authorization server, and resource server. This

ensures the confidentiality and integrity of data transmitted during

the OAuth flow.

•	 Client authentication: Implement proper client authentication.

Depending on the OAuth 2.0 flow, clients should authenticate

themselves using client credentials or other methods like client

certificates.

•	 Authorization Code Flow: Web applications and confidential

clients should use this flow, which involves an authorization code

exchanged for an access token, reducing the risk of exposing tokens

in the browser.

•	 Token storage: Safely stores and manages access and refresh tokens

on the client side. Avoid storing tokens in insecure locations such as

browser cookies, and use secure storage mechanisms.

•	 Token validation: When receiving access tokens from the

authorization server, validate them properly. Check the token’s

signature and expiration date to ensure it’s valid.

•	 Scope permissions: Ensure that clients only request the minimum

necessary scope of permissions (access rights) from the user. This

principle is known as the principle of least privilege.

•	 User consent: Always obtain clear and informed consent from the

user before granting access to their data. Users should understand

what data the client application can access and for what purpose.

•	 Refresh token security: Protect refresh tokens as they have a longer

lifespan. Use secure storage and transmission mechanisms for

refresh tokens. Only grant refresh tokens to confidential clients when

necessary.

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

214

•	 Token revocation: Implement token revocation mechanisms. Allow

users to revoke access to their data, invalidate access tokens, and

refresh tokens when no longer needed.

•	 Rate limiting and throttling: Implement rate limiting and throttling

to protect against brute-force and denial-of-service attacks on OAuth

endpoints.

•	 Cross-site request forgery (CSRF) protection: Use anti-CSRF

tokens or other techniques to protect against CSRF attacks that trick

users into making unintended requests.

•	 Authorization server security: Secure the authorization server

against common security threats, such as injection attacks, and keep

its software and libraries current.

•	 Logging and monitoring: Implement comprehensive logging

and monitoring to detect and respond to suspicious activities and

security breaches.

•	 Token rotation: Periodically rotate client secrets and access tokens to

mitigate the risk of exposure due to unauthorized access or leaks.

•	 Security assessments: Conduct security assessments, code reviews,

and penetration testing to identify and address vulnerabilities in your

OAuth 2.0 implementation.

The security of an OAuth 2.0 implementation depends on a combination of factors

like the OAuth flow being used, the specific use case, and the client and authorization

server configurations. Therefore, it’s crucial to follow best practices, stay informed about

security updates, and adapt your OAuth 2.0 implementation to the unique requirements

of your application.

�Integrating OAuth 2.0 with Spring Security
OAuth 2.0 can be integrated with Spring Security to secure your Java-based web

applications, APIs, and microservices. Spring Security provides robust support

for implementing OAuth 2.0 authentication and authorization in a Spring-based

application.

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

215

Here’s a basic overview of implementing OAuth 2.0 using Spring Security.

•	 Add dependencies: Ensure that you have the necessary

dependencies in your project. Spring Security OAuth 2.0 module is

essential for OAuth 2.0 support. You can include it in your pom.xml

or build.gradle file.

•	 Configuration: Configure Spring Security to handle

OAuth 2.0 by creating a configuration class that extends

AuthorizationServerConfigurerAdapter. This class should provide

information about your OAuth 2.0 authorization server, client

credentials, and endpoints. Listing 8-1 shows a configuration Java

example.	

Listing 8-1.  Configure OAuth 2.0

import org.springframework.context.annotation.*;

import org.springframework.security.oauth2.config.annotation.web.

configuration.*;

@Configuration

@EnableAuthorizationServer

public class OAuth2AuthorizationServerConfig extends

AuthorizationServerConfigurerAdapter {

 @Override

 �public void configure(ClientDetailsServiceConfigurer clients) throws

Exception {

 clients.inMemory()

 .withClient("client-id")

 .secret("client-secret")

 �.authorizedGrantTypes("authorization_code", "password",

"refresh_token")

 .scopes("read", "write")

 .redirectUris("http://localhost:8080/callback");

 }

}

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

216

•	 User authentication: Configure how your application handles user

authentication. You can use the default Spring Security mechanisms

or integrate with external identity providers.

•	 Resource server configuration (optional): If you’re building an

OAuth 2.0 resource server (e.g., an API), you must configure Spring

Security to validate access tokens. You can do this by creating a class

that extends ResourceServerConfigurerAdapter. Listing 8-2 shows a

server configuration Java example.	

Listing 8-2.  Configure OAuth 2.0 Resource Server

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.security.config.annotation.web.builders.

HttpSecurity;

import org.springframework.security.config.annotation.web.configuration.

EnableWebSecurity;

import org.springframework.security.web.SecurityFilterChain;

@Configuration

@EnableWebSecurity

public class SecurityConfiguration {

 @Bean

 �SecurityFilterChain securityFilterChain(HttpSecurity http) throws

Exception {

 return http

 .authorizeHttpRequests(auth -> {

 auth.requestMatchers("/api/**").authenticated ();

 auth.anyRequest().authenticated();

 })

 .oauth2Login(withDefaults())

 .build();

 }

}

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

217

•	 Secure endpoints: Use Spring Security annotations like @Secured,

@PreAuthorize, or @PostAuthorize to secure specific methods or

endpoints in your application.

•	 User consent and authentication flow: Implement a user interface

for the OAuth 2.0 authentication flow. This includes handling

user consent and redirecting users to the OAuth 2.0 authorization

endpoint.

•	 Token storage and management: Implement token storage and

management, including access tokens, refresh tokens, and their

lifecycles. Spring Security OAuth 2.0 provides mechanisms to

handle this.

•	 Testing and validation: Thoroughly test your OAuth 2.0

implementation to ensure that the authentication and authorization

flows work as expected. You can use tools like Postman or dedicated

OAuth 2.0 clients for testing.

•	 Logging and monitoring: Implement logging and monitoring to

track security-related events and potential issues.

•	 Documentation and error handling: Provide clear documentation

for developers using your OAuth 2.0-protected resources and

implement proper error handling to respond to various OAuth 2.0–

related errors gracefully.

Remember that OAuth 2.0 implementation can vary depending on your

requirements and use cases. Spring Security provides flexibility to adapt OAuth 2.0 to

your application’s needs while following security best practices.

�OAuth 2.0 Login
OAuth 2.0 Login is a secure and standardized way for users to grant permission to third-

party applications to access their protected resources or perform actions on their behalf

without sharing their login credentials. It is commonly used for single sign-on (SSO)

and enabling users to log in to different websites or applications using their existing

credentials from a trusted identity provider (IdP).

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

218

Here’s what is included in OAuth 2.0 Login.

•	 User-centric authentication: OAuth 2.0 Login is user-centric,

focusing on the user’s consent and authorization. Users grant

permission to applications to access specific resources without

revealing their usernames and passwords.

•	 Role of the user: When users try to log in to a third-party application,

they are redirected to an IdP authentication page. The user

authenticates themselves with the IdP, which verifies their identity.

•	 Authorization Code Flow: One of the most common OAuth 2.0

Login flows.

•	 The user is redirected to the IdP’s login page.

•	 After successful authentication, the IdP asks the user for consent

to share their data with the requesting application.

•	 If the user consents, the IdP generates an authorization code.

•	 The application exchanges this authorization code for an access

token, which it can use to access the user’s resources.

•	 Single sign-on (SSO): OAuth 2.0 Login is often used for SSO

scenarios, where users can log in once and then access multiple

applications without re-entering their credentials. This reduces the

need for users to remember multiple usernames and passwords.

•	 Third-party applications: OAuth 2.0 Login enables third-party

applications to request access to a user’s resources without having

direct access to their credentials. This enhances security by limiting

the exposure of sensitive information.

•	 Scoped access: OAuth 2.0 Login allows users to grant specific

permissions (scopes) to applications, ensuring that applications only

access the data or perform the actions the user allows.

•	 Token-based authentication: OAuth 2.0 Login relies on access

tokens, which are short-lived revocable credentials used to

authenticate API requests on behalf of the user. These tokens replace

the need for the user’s username and password in each API call.

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

219

•	 Security and authorization: OAuth 2.0 Login provides a robust

framework for securing user data and resources. Users have control

over which applications have access to their data, and they can

revoke access at any time.

•	 Widely adopted: OAuth 2.0 is widely adopted across various

platforms, services, and industries. It is used by many well-known

identity providers, including Google, Facebook, and Microsoft,

making it a common choice for integrating with their services.

OAuth 2.0 Login is implemented using the authorization code grant, as specified in

the OAuth 2.0 authorization framework at https://datatracker.ietf.org/doc/html/

rfc6749#section-4.1. Similarly, OpenID Connect Core 1.0 is at https://openid.net/

specs/openid-connect-core-1_0.html#CodeFlowAuth.

The OAuth 2.0 Login feature lets users log in to the application using their existing

account at an OAuth 2.0 provider (such as GitHub) or OpenID Connect 1.0 provider

(such as Google). OAuth 2.0 Login can also authenticate toward Facebook, Twitter,

and so on.

This example seeks to configure the Spring Authorization Server with a social login

provider such as Google and GitHub and authenticate the user with OAuth 2.0 Login,

replacing the common form login.

Let’s build our authentication and login application using Spring Boot 3.x, Spring

Security 6, Spring Web, and OAuth 2.0 Client.

The first step is to create the Spring Boot Maven project using the Spring Initializr,

the quickest way to generate Spring Boot projects. You just need to choose the language,

build system, and JVM version for your project, and it is automatically generated with all

the dependencies needed.

Navigate to https://start.spring.io/ and use the Spring Initializr web-

based Spring project generator to create the Spring Boot Maven project named

OAuth2SecurityLogin, as shown in Figure 8-1.

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

https://datatracker.ietf.org/doc/html/rfc6749#section-4.1
https://datatracker.ietf.org/doc/html/rfc6749#section-4.1
https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://start.spring.io/

220

Figure 8-1.  Generate an OAuth 2.0 project using the Initializr web-based Spring
project generator

Select a Java 20 Maven project using Spring Boot version 3.1.3, and add the following

dependencies: Spring Web and OAuth 2.0 Client.

Add the Thymeleaf Java library as a dependency to the pom.xml file. It is a template

engine used to parse and transform the data produced by the application to template

files. It acts just like HTML but provides more attributes used to render data.

Fill in all the required information and then click to generate the project. A project

.zip file is automatically generated. Download and unzip the file on your machine.

Figure 8-2 shows the project in IntelliJ IDEA 2023.1.2.

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

221

Figure 8-2.  Maven project structure

The most important dependencies, which are automatically updated in the pom.xml

file, are shown in Listing 8-3.

Listing 8-3.  Needed Dependencies

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-oauth2-client</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

The entire generated pom.xml file with the added dependencies is shown in

Listing 8-4.

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

222

Listing 8-4.  pom.xml File and Dependencies

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.

w3.org/2001/XMLSchema-instance"

 �xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.

apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>3.1.3</version>

 <relativePath/> <!-- lookup parent from repository -->

 </parent>

 <groupId>com.apress</groupId>

 <artifactId>OAuth2SecurityLogin</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <name>OAuth2SecurityLogin</name>

 �<description>Demo project for Spring Boot Security and OAuth 2.0</

description>

 <properties>

 <java.version>20</java.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-oauth2-client</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 <dependency>

 <groupId>org.thymeleaf.extras</groupId>

 <artifactId>thymeleaf-extras-springsecurity6</artifactId>

 <version>3.1.1.RELEASE</version>

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

223

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-test</artifactId>

 <scope>test</scope>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 </plugin>

 </plugins>

 </build>

</project>

Let’s build our first Java controller class, UserController, in Spring MVC to specify

its methods with various annotations of the requests, such as the URLs of the endpoint,

the HTTP request method, the path variables, etc.

Listing 8-5 shows the UserController class.

Listing 8-5.  UserController Java Class

import org.springframework.stereotype.Controller;

import org.springframework.web.bind.annotation.GetMapping;

@Controller

public class UserController {

 @GetMapping("/")

 public String homePage() { return "welcome";

 }

 @GetMapping("/welcome")

 public String welcomePage() {

 return "welcome";

 }

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

224

 @GetMapping ("/authenticated")

 public String AuthenticatedPage() {

 return "authenticated";

 }

 @GetMapping ("/logout")

 public String logoutPage() {

 return "redirect:/welcome";

 }

}

The controller Java class redirects to the welcome.html page for the “/” and

“/Welcome” and authenticated.html for “/authenticated” URLs. Logout mapping is used

when logging out the user from GitHub or Google authentication.

Let’s create two simple HTML pages.

•	 welcome.html (see Listing 8-6), a simple welcome page permitted to

all users to provide the link to the authenticated html page

•	 authenticated.html (see Listing 8-7), a simple HTML page showing

the authenticated (GitHub or Google) username if authenticated

Listing 8-6.  welcome.html Page

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:th="https://www.

thymeleaf.org">

<html lang="en">

<head>

 �<meta http-equiv="Content-Type" content="text/html;

charset=ISO-8859-1">

 �<title>Spring Security 6 and OAuth 2.0 Login authentication

example!</title>

</head>

<body>

<div th:if="${param.error}">

 Invalid username and password.

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

225

</div>

<div th:if="${param.logout}">

 You have been logged out.

</div>

<h2>Welcome to Spring Security 6 and OAuth 2.0 Login authentication

example!</h2>

<p>Click <a th:href="@{/authenticated}">here to get authenticated to

GitHub or Google with OAuth 2.0 Login!</p>

</body>

</html>

Listing 8-7.  welcome.html Page

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:th="https://www.

thymeleaf.org"

 �xmlns:sec="https://www.thymeleaf.org/thymeleaf-extras-

springsecurity6">

<head>

 �<title>Spring Security 6 and OAuth 2.0 Login authentication

example!</title>

</head>

<body>

<h2>Welcome to Spring Security 6 and OAuth 2.0 Login authentication

example!</h2>

<h2 th:inline="text">You are an authenticated user: <span th:remove="tag"

sec:authentication="name">thymeleaf!</h2>

<form th:action="@{/logout}" method="post">

 <input type="submit" value="Logout"/>

</form>

</body>

</html>

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

226

You now create the most important Java class of the example,

SpringSecurityConfiguration, shown in Listing 8-8.

Listing 8-8.  SpringSecurityConfiguration Java Class

package com.apress.OAuth2SecurityLogin.configuration;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.security.config.annotation.web.builders.

HttpSecurity;

import org.springframework.security.config.annotation.web.configuration.

EnableWebSecurity;

import org.springframework.security.web.SecurityFilterChain;

import static org.springframework.security.config.Customizer.withDefaults;

@Configuration

@EnableWebSecurity

public class SecurityConfiguration {

 @Bean

 �SecurityFilterChain securityFilterChain(HttpSecurity http) throws

Exception {

 return http

 .authorizeHttpRequests(auth -> {

 auth.requestMatchers("/", "welcome").permitAll();

 auth.anyRequest().authenticated();

 })

 .oauth2Login(withDefaults())

 .formLogin(withDefaults())

 .build();

 }

}

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

227

The Spring Security Java class does the following.

•	 Allows all users to access routes “/” or “Welcome”

•	 Makes any other request (e.g., /authenticated) authenticated via

GitHub or Google

•	 Uses OAuth 2.0 Login method to log the listed providers in the

application.properties file (in our case, GitHub and Google)

•	 Uses the Spring Security 6 FormLogin

Next, let’s start configuring GitHub and Google to be accessed via OAuth 2.0 Login.

The first step is configuring the application properties file, as shown in Listing 8-9.

Listing 8-9.  application.properties Configuration

GitHub Login

spring.security.oauth2.client.registration.github.client-id= <your-github-

client-id>

spring.security.oauth2.client.registration.github.client-secret= <your-

github-client-secret>

Google Login

spring.security.oauth2.client.registration.google.client-id= <your-google-

client-id>

spring.security.oauth2.client.registration.google.client-secret= <your-

google-client-secret>

Configure Spring Security Logging

logging.level.org.springframework.security=TRACE

Adding the lines ..registration.github and ..registration.google tells Spring

Security that you want to access those social providers via OAuth 2.0.0.

Let’s now look at generating the OAuth 2.0 IDs and secret keys for Google

and GitHub.

To use Google’s OAuth 2.0 authentication method for login, you must set up a project

in the Google API console to obtain OAuth 2.0 credentials (ID and secret) to be added to

the application.properties.

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

228

Let’s follow these steps to generate the OAuth 2.0 ID and secret key for Google.

	 1.	 Create a Google OAuth consent project and then link the consent

to it. Let’s visit the Google Cloud APIs & Services console to

create the project and the consent (Figures 8-3 and 8-4) at

https://console.cloud.google.com/projectselector2/apis/

credentials/consent

Figure 8-3.  The Google Cloud console

Figure 8-4.  The Google Cloud new project page

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

https://console.cloud.google.com/projectselector2/apis/credentials/consent
https://console.cloud.google.com/projectselector2/apis/credentials/consent

229

	 2.	 Create a new consent associated with the project, as shown in

Figure 8-5.

Figure 8-5.  The Google Cloud OAuth consent

	 3.	 Next, go to the Credentials section and select “Create OAuth

client ID”.

Select “Web application” as the application type and enter an

application name.

Add the following as an authorized redirect URI, as shown in

Figure 8-6.

http://localhost:8080/login/oauth2/code/google

	 4.	 Click the Create button to obtain your client_id and client_secret

for the application.properties file, as shown in Figure 8-6.

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

230

Figure 8-6.  The Google Cloud Credentials page

Figure 8-7 shows how client_id and client_secret are used in the application.

properties file.

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

231

Figure 8-7.  The Google client_id and client_secret

Copy the generated client ID and secret to our example application.properties.

Google Login

spring.security.oauth2.client.registration.google.client-id=

740114053442-ekgdruqacm6cvk3gf715oiu45on0fqns.apps.googleusercontent.com

spring.security.oauth2.client.registration.google.client-secret= GOCSPX-3K_

W5GVzElIBzdg_qnZ7ZDVLoMWf

The application is ready to be tested.

Run the application and visit http://localhost:8080/welcome. You see the

welcome.html page shown in Figure 8-8.

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

232

Figure 8-8.  The welcome.html page

Click the “here” link to access the authenticated.html page, which automatically

redirects to the Spring login web page. This provides the list (added in application.

properties) of the social providers we are trying to access via the OAuth 2.0 Login

authentication method, as shown in Figure 8-9.

Figure 8-9.  The login page

Click the Google link to be redirected to Google for authentication.

Next, authenticate (see Figure 8-10) with your Google account credentials. You see

the Consent screen, which asks you to allow or deny access to the OAuth Client you

created earlier. Click the Allow button to authorize the OAuth Client to access your email

address and basic profile information.

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

233

Figure 8-10.  The Google selecting account page

Finally, the OAuth Client retrieves your email address and all the basic profile

information from the UserInfo endpoint you configured in Google and establishes an

authenticated session.

If the Google client credential configured in the Spring application matches the

Google OAuth configured ID and secret, then the user is authenticated, showing the

unique username, as shown in Figure 8-11; otherwise, a message error is displayed.

Figure 8-11.  Google user is authenticated

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

234

Let’s configure GitHub as an OAuth 2.0 Login provider.

	 1.	 Create a new OAuth app by going to your GitHub account settings

and navigating to the Developer settings at https://github.com/

settings/profile.

	 2.	 Go to the OAuth Apps section and click New OAuth App.

Complete the required fields, as shown in Figure 8-12.

Figure 8-12.  Create a new GitHub OAuth app

The authorization callback URL is http://localhost:8080/login/

oauth2/code/github.

	 3.	 Click register the application to receive a client_id and client_

secret to add to the application.properties file, as shown in

Figure 8-13.

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

https://github.com/settings/profile
https://github.com/settings/profile

235

Figure 8-13.  New GitHub OAuth app generates ID and secret key

Copy the ID and secret key into the application.proporties file in our application.

GitHub Login

spring.security.oauth2.client.registration.github.client-

id=f98e291404ac9cadfb50

spring.security.oauth2.client.registration.github.client-secret=e29120

1b5f8f3e368bc7380ecf0e3534ccb678a9

Rerun the application and select GitHub as the login method, as shown in

Figure 8-14.

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

236

Figure 8-14.  The GitHub account selecting the web page

If the user has a registered ID and secret key match, you can access the authenticated

page, which shows the unique username (see Figure 8-15).

Figure 8-15.  GitHub user is authenticated

This completes the demonstration on configuring OAuth 2.0 Login for Google and

GitHub. Please note that this example is only configured in the application.properties

file with some values like ID and secret key. Many other Spring Boot property mappings

values can be added as OAuth Client properties to the ClientRegistration properties,

including the following.

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

237

•	 spring.security.oauth2.client.registration.[registrationId]

•	 spring.security.oauth2.client.registration.

[registrationId].client-id

•	 spring.security.oauth2.client.registration.

[registrationId].client-secret

•	 spring.security.oauth2.client.registration.

[registrationId].client-authentication-method

•	 spring.security.oauth2.client.registration.

[registrationId].authorization-grant-type

•	 spring.security.oauth2.client.registration.

[registrationId].redirect-uri

•	 spring.security.oauth2.client.registration.

[registrationId].scope

•	 spring.security.oauth2.client.registration.

[registrationId].client-name

•	 spring.security.oauth2.client.provider.[providerId].

authorization-uri

•	 spring.security.oauth2.client.provider.[providerId].

token-uri

•	 spring.security.oauth2.client.provider.[providerId].

jwk-set-uri

•	 spring.security.oauth2.client.provider.[providerId].

issuer-uri

•	 spring.security.oauth2.client.provider.[providerId].

user-info-uri

•	 spring.security.oauth2.client.provider.[providerId].user-

info-authentication-method

•	 spring.security.oauth2.client.provider.[providerId].user-

name-attribute

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

238

�Summary
This chapter demonstrated how Spring Security can be a very extendable and

customizable framework as it is built using object-oriented principles and design

practices so that it is open for extension and closed for modification. You learned how

to use the Open Authorization 2.0 (OAuth 2.0) framework and how to develop login

security applications using Spring Boot, Spring Web, and OAuth 2.0 client (security) to

authenticate toward GitHub and Google providers.

Chapter 8 Open Authorization 2.0 (OAuth 2.0) and Spring Security

239
© Massimo Nardone, Carlo Scarioni 2024
M. Nardone and C. Scarioni, Pro Spring Security, https://doi.org/10.1007/979-8-8688-0035-1_9

CHAPTER 9

JSON Web Token (JWT)
Authentication
This chapter explores REST API and JWT authentication and authorization using Spring

Boot 3 and Spring Security 6.

In previous chapters, you saw some types of Spring Security authentication methods.

First, let’s look at the REST API and an example of JWT authentication.

�The REST API
REST, which stands for REpresentational State Transfer, is an architectural style for

designing networked applications. REST has become the predominant way of designing

an API (application programming interface) for web-based applications.

REST APIs provide a structured and standardized way for different software

applications to communicate over the Internet. They’ve become the backbone of

modern web and mobile applications, enabling seamless integration and interaction

between various services and systems.

REST APIs allow different software applications to communicate and interact with

each other over the Internet using standard HTTP methods.

The following describes REST API key concepts.

•	 Resources: In REST, everything is considered a resource. A resource

can be a data entity, an object, or any other type of information that

can be identified by a unique URL (Uniform Resource Locator).

•	 HTTP methods: REST APIs utilize standard HTTP methods to

perform operations on resources like the following.

https://doi.org/10.1007/979-8-8688-0035-1_9#DOI

240

•	 GET retrieves data from the server.

•	 POST sends data to the server to create a new resource.

•	 PUT updates an existing resource on the server.

•	 DELETE removes a resource from the server.

•	 PATCH partially updates a resource.

•	 Uniform interface: REST APIs have a uniform and consistent

interface. Each resource is identified by a URL, and different HTTP

methods are used to interact with those resources.

•	 Stateless: Each API request from a client to a server must contain all

the information needed to understand and fulfill the request. The

server doesn’t store any client state between requests.

•	 Client-server architecture: REST separates the client (the

application making the request) from the server (the application

fulfilling the request), which allows them to evolve independently.

•	 Response format: REST APIs typically return data in common

formats such as JSON (JavaScript Object Notation) or XML

(eXtensible Markup Language).

The following are simple examples of a REST API managing a list of cars.

•	 GET /cars: Retrieve a list of all cars.

•	 GET /cars/{id}: Retrieve details of a specific car.

•	 POST /cars: Create a new car record by sending car data.

•	 PUT /cars/{id}: Update details of a specific car.

•	 DELETE /cars/{id}: Delete a specific car.

The following describes the most important advantages of REST API.

•	 Scalability: RESTful architectures are scalable due to their

stateless nature.

•	 Flexibility: Clients and servers can evolve independently without

affecting each other if the API contract remains consistent.

Chapter 9 JSON Web Token (JWT) Authentication

241

•	 Wide adoption: REST is widely adopted and understood, making it

easier for developers to work with.

•	 Caching: REST APIs can use HTTP caching mechanisms to improve

performance.

•	 Language and platform independence: Since REST APIs use

standard HTTP methods and formats, they can be accessed from

various programming languages and platforms.

While REST APIs have numerous advantages, there are also some disadvantages and

limitations to consider.

•	 Lack of standardization: Despite being a widely adopted

architectural style, REST doesn’t provide strict guidelines on how to

design APIs. This can lead to inconsistencies in API design and make

it challenging to ensure uniformity across different APIs.

•	 Overfetching and underfetching: REST APIs often return fixed

data structures, which can lead to overfetching (receiving more data

than needed) or underfetching (receiving less data than needed)

of information. This can result in wasted bandwidth or additional

requests.

•	 Limited support for real-time communication: REST APIs are

typically request-response-based and may not be well-suited for real-

time communication. Implementing features like instant messaging

or live updates can be complex and might require additional

technologies.

•	 No built-in state management: REST APIs are stateless, which

means the server doesn’t store the client state. While this simplifies

server design, managing session-related information can lead to

challenges.

•	 Lack of rich semantics: REST APIs primarily rely on HTTP methods

and status codes, which may not always convey rich semantics

about the underlying operations. This can lead to ambiguity in

understanding the purpose of certain API endpoints.

Chapter 9 JSON Web Token (JWT) Authentication

242

•	 Performance overhead: REST APIs may involve additional data

parsing and serialization steps due to reliance on formats like JSON

or XML. This can introduce performance overhead, especially in

high-frequency scenarios.

•	 Multiple requests for complex operations: Complex operations

often require multiple requests to the server, leading to additional

network overhead and latency. This can be a concern for mobile

applications or in situations with limited bandwidth.

•	 Lack of flexibility in versioning: Changing a REST API while

maintaining backward compatibility can be challenging. Different

versions of the API might need to be managed, which can complicate

the development and deployment process.

•	 Security considerations: While REST APIs can be secured using

mechanisms like HTTPS and authentication, designing a secure

REST API requires careful consideration of authorization, token

management, and protection against common security vulnerabilities.

•	 Limited discoverability: Discovering the available endpoints

and their functionalities in a REST API might require external

documentation, as there’s no built-in mechanism for exposing the

API structure to clients.

�Introduction to JSON Web Token
JWT is an open standard (RFC 7519) that defines a compact and self-contained way for

securely transmitting information between parties as a JSON object. JWTs are commonly

used for authentication and authorization in web applications and APIs.

A JWT consists of three parts.

•	 Header: The header typically consists of two parts: the type of the

token (JWT) and the signing algorithm being used, such as HMAC

SHA256 or RSA.

{

 "alg": "HS256",

 "typ": "JWT"

}

Chapter 9 JSON Web Token (JWT) Authentication

243

•	 Payload: The second part of the token is the payload, which contains

the claims. Claims are statements about an entity (typically the user)

and additional metadata and can be categorized into three types.

•	 Registered Claims are predefined claims with specific meanings,

like iss (issuer), exp (expiration time), sub (subject), and more.

•	 Public Claims are custom claims that you define to convey

additional information.

•	 Private Claims are custom claims meant to be shared between

parties that agree on their usage and are not defined in any public

specification.

{

 "sub": "1234567890",

 "name": "Massimo Nardone",

 "iat": 6723561290

}

•	 Signature: To create a signature, you must sign the encoded header,

the encoded payload, a secret, and the algorithm specified in the

header. The signature is used to verify that the sender of the JWT is

who it says it is and to ensure that the message wasn’t changed along

the way.

The following explains how JWTs work.

•	 Authentication: When a user logs in, the server creates a JWT

containing the user’s information and signs it with a secret key. This

JWT is then sent to the client.

•	 Authorization: The client includes the JWT in the headers of

subsequent requests to the server. The server can then verify the

JWT’s signature and extract the user’s information from the payload

to grant access to protected resources.

Chapter 9 JSON Web Token (JWT) Authentication

244

Figure 9-1 shows how JWT works.

Figure 9-1.  JWT working diagram (source docs.spring.io)

	 1.	 The authentication filter from reading the bearer token passes a

BearerTokenAuthenticationToken to the AuthenticationManager,

which is implemented by ProviderManager.

	 2.	 The ProviderManager is configured to use an

AuthenticationProvider of type JwtAuthenticationProvider.

	 3.	 JwtAuthenticationProvider decodes, verifies, and validates JWT

using a JwtDecoder.

	 4.	 JwtAuthenticationProvider then uses the

JwtAuthenticationConverter to convert the Jwt into a Collection of

granted authorities.

	 5.	 When authentication is successful, the authentication returned is

of type JwtAuthenticationToken and has a principal that is the Jwt

returned by the configured JwtDecoder. Ultimately, the returned

JwtAuthenticationToken is set on SecurityContextHolder by the

authentication filter.

Chapter 9 JSON Web Token (JWT) Authentication

245

The following are some of the advantages of JWT.

•	 Compact: JWTs are compact and can be sent as URL parameters, in

an HTTP header, or in cookies.

•	 Self-contained: The token contains all the necessary information,

reducing the need to query a database for user information.

•	 Decentralized: Since JWTs are self-contained, the server doesn’t

need to keep session information, making it easier to scale and

distribute applications.

As per security considerations, JWTs are digitally signed, not encrypted. The

information they contain can be decoded by anyone with access to the token, but the

signature ensures its integrity. Storing sensitive data in the payload is not recommended,

as the payload can be easily decoded.

To prevent tampering, it’s important to use strong and secure algorithms for signing

the tokens.

Secrets used for signing should be kept secret. If using public-key cryptography, the

private key must be kept secure.

JWTs are widely used for building secure authentication and authorization

mechanisms in modern web applications, APIs, and single sign-on (SSO) systems.

Here’s how JWT and Spring Security can be integrated.

•	 Dependency setup: First, you must add the necessary dependencies

to your project. Your project’s build configuration should include

Spring Security and libraries related to JWT.

•	 Authentication and authorization configuration: Configure Spring

Security to manage authentication and authorization. This involves

setting up security rules, authentication providers, and user details

services. You can define which paths require authentication and

which roles are required to access certain resources.

•	 Token generation and validation: Implement logic to generate

and validate JWTs. Spring Security provides filters and classes to

handle token-based authentication. You must create a mechanism to

generate JWTs upon successful authentication and validate incoming

JWTs for authorized requests.

Chapter 9 JSON Web Token (JWT) Authentication

246

•	 Token processing filters: Use Spring Security filters to intercept

requests and perform authentication and authorization checks. You

might implement a filter that examines the incoming JWT, validates

it, and sets up the security context if the token is valid.

•	 User details and authorities: Extract user details and authorities

from the JWT payload upon successful token validation. These details

can be used to populate the Spring Security authentication context,

allowing you to control access based on user roles and permissions.

•	 Customizing authentication providers: Depending on your

authentication requirements, you might need to implement custom

authentication providers to validate JWTs against your backend

services or user databases.

•	 Access control configuration: Define access control rules using

Spring Security’s configuration. You can specify which roles are

required to access different endpoints or resources. Roles and

authorities can be derived from the JWT payload.

•	 Exception handling: Implement exception handling for cases where

JWT validation fails, or unauthorized access is attempted. Customize

error responses based on the security context.

•	 Logout and token expiration: For improved security, handle token

expiration and implement a logout mechanism. JWTs can have an

expiration time specified in their payload.

•	 Testing and documentation: Thoroughly test your JWT-based Spring

Security implementation. Also, provide clear documentation for

developers who work with the security system.

Keeping the Spring Security and JWT libraries updated is important because their

APIs and best practices evolve. Spring Security’s official documentation and online

resources often provide detailed guides on integrating JWT-based authentication and

authorization.

This chapter features an example showing how to secure a REST API using JWT

using Spring Security 6, Spring Boot 3+, and PostgreSQL.

First, download and install PostgreSQL from https://www.postgresql.org/

download/windows/.

Chapter 9 JSON Web Token (JWT) Authentication

https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/windows/

247

Next, create a new database named “jwtsecuritydb”. The username is “postgres” and

the password is “postgres”.

Figure 9-2 shows that our new PostgreSQL database is up and running.

Figure 9-2.  PostgreSQL shell console

Next, create a new Spring project named JWT_Security_Authentication using the

Spring Initializr web tool at https://start.spring.io/, as shown in Figure 9-3.

Figure 9-3.  New Spring project using Spring Initializr

This example uses Java 20, Maven, and JAR, with Spring Web, PostgreSQL Driver,

Spring Security, Spring Data JPA, and Lombok as dependencies.

Chapter 9 JSON Web Token (JWT) Authentication

https://start.spring.io/

248

The project’s file structure is shown in Figure 9-4.

Figure 9-4.  New Spring project structure

Next, add the needed dependencies in pom.xml files, such as JSON Web Token’s

io.jsonwebtoken and Jakarta XML Binding’s jaxb-api. The entire pom.xml file is shown in

Listing 9-1.

Listing 9-1.  The pom.xml File

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.

w3.org/2001/XMLSchema-instance"

 �xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

https://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>3.1.3</version>

 <relativePath/> <!-- lookup parent from repository -->

 </parent>

Chapter 9 JSON Web Token (JWT) Authentication

249

 <groupId>com.apress</groupId>

 <artifactId>JWT_Security_Authentication</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <name>JWT_Security_Authentication</name>

 <description>Demo project for Spring Boot</description>

 <properties>

 <java.version>20</java.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-data-jpa</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-security</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 <dependency>

 <groupId>io.jsonwebtoken</groupId>

 <artifactId>jjwt</artifactId>

 <version>0.9.1</version>

 </dependency> <dependency>

 <groupId>javax.xml.bind</groupId>

 <artifactId>jaxb-api</artifactId>

 <version>2.3.1</version>

 </dependency>

 <dependency>

 <groupId>org.postgresql</groupId>

 <artifactId>postgresql</artifactId>

 <scope>runtime</scope>

 </dependency>

Chapter 9 JSON Web Token (JWT) Authentication

250

 <dependency>

 <groupId>org.projectlombok</groupId>

 <artifactId>lombok</artifactId>

 <optional>true</optional>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-test</artifactId>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-test</artifactId>

 <scope>test</scope>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 <configuration>

 <excludes>

 <exclude>

 <groupId>org.projectlombok</groupId>

 <artifactId>lombok</artifactId>

 </exclude>

 </excludes>

 </configuration>

 </plugin>

 </plugins>

 </build>

</project>

Chapter 9 JSON Web Token (JWT) Authentication

251

Next, configure the application.properties file with information about the database

used, the JPA/JWT, and the server configuration, as shown in Listing 9-2.

Listing 9-2.  The application.properties File

DB Configuration

spring.datasource.url= jdbc:postgresql://localhost:5432/jwtsecuritydb

spring.datasource.username= postgres

spring.datasource.password= postgres

JPA / HIBERNATE Configuration

spring.jpa.show-sql=true

spring.jpa.hibernate.ddl-auto=create-drop

spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.

PostgreSQLDialect

spring.jpa.generate-ddl=true

Server Configuration

server.servlet.context-path=/api

server.port=8080

JWT Configuration

jwt.jwtsecret = 2b44b0b00fd822d8ce753e54dac3dc4e06c2725f7db930f3b9924

468b53194dbccdbe23d7baa5ef5fbc414ca4b2e64700bad60c5a7c45eaba56880985

582fba4

jwt.jwtExpirationTime = 36000000

User credentials

to create user with "USER" Role: http://localhost:8080/api/user/register

#{

#"firstName": "Massimo",

#"lastName": "Nardone",

#"email": "mmassimo@gmail.com",

#"password": "masspasswd",

#"userRole": "user"

#}

Chapter 9 JSON Web Token (JWT) Authentication

252

to login a user: http://localhost:8080/api/user/authenticate

#{

#"email": "mmassimo@gmail.com",

#"password": "masspasswd",

#}

Admnin credentials

to create user with "ADMIN" Role: http://localhost:8080/api/user/register

{

"firstName": "Neve",

"lastName": "Nardon",

"email": "neve@gmail.com",

"password": "nevepasswd",

"userRole": "admin"

}

to login as admin: http://localhost:8080/api/admin/hello

{

"email": "neve@gmail.com",

"password": "nevepasswd"

}

This Spring Boot JWT authentication example registers a new user and logs in with a

username and password. The user’s role can be “admin” or “user” to authorize the user

to access a certain resource.

The APIs included in our example are shown in Table 9-1.

Table 9-1.  APIs Used in This Example

Method URL Action

POST /api/user/register Registers a new account

POST /api/user/authenticate Logs into an account

GET /api/public/welcome Retrieves public content

GET /api/admin/hello Accesses the admin’s content

Let’s create our user and role models.

First, define the roles and an enum called RoleName, as shown in Listing 9-3.

Chapter 9 JSON Web Token (JWT) Authentication

253

Listing 9-3.  The RoleName Class

package com.apress.JWT_Security_Authentication.models;

public enum RoleName {

 USER, ADMIN;

}

Next, let’s define the role class, as shown in Listing 9-4.

Listing 9-4.  The Role Class

package com.ons.securitylayerJwt.models;

import jakarta.persistence.*;

import lombok.*;

import lombok.experimental.FieldDefaults;

import org.springframework.security.core.GrantedAuthority;

import java.io.Serializable;

@Entity

@Getter

@Setter

@NoArgsConstructor

@AllArgsConstructor

@FieldDefaults(level = AccessLevel.PRIVATE)

public class Role implements Serializable {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 Integer id ;

 @Enumerated(EnumType.STRING)

 RoleName roleName ;

 public Role (RoleName roleName) {this.roleName = roleName;}

 public String getRoleName() {

 return roleName.toString();

 }

}

Chapter 9 JSON Web Token (JWT) Authentication

254

The role class creates a table named “Role” with two roles, “USER” and “ADMIN”,

which define the credentials required to register a new user.

Finally, create the user model class, as shown in Listing 9-5.

Listing 9-5.  The User Model Class

package com.apress.JWT_Security_Authentication.models;

import jakarta.persistence.*;

import lombok.*;

import lombok.experimental.FieldDefaults;

import org.springframework.security.core.GrantedAuthority;

import org.springframework.security.core.authority.SimpleGrantedAuthority;

import org.springframework.security.core.userdetails.UserDetails;

import java.io.Serializable;

import java.util.ArrayList;

import java.util.Collection;

import java.util.List;

@Entity

@Table(name = "users",

 uniqueConstraints = {

 @UniqueConstraint(columnNames = "firstName"),

 @UniqueConstraint(columnNames = "lastname"),

 @UniqueConstraint(columnNames = "email")

 })

@Getter

@Setter

@AllArgsConstructor

@ToString

@NoArgsConstructor

@FieldDefaults(level = AccessLevel.PRIVATE)

public class User implements Serializable , UserDetails {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

Chapter 9 JSON Web Token (JWT) Authentication

255

 Integer id ;

 String firstName ;

 String lastName ;

 String email;

 String password ;

 String userRole ;

 @ManyToMany(fetch = FetchType.EAGER , cascade = CascadeType.PERSIST)

 List <Role> roles ;

 public User (String email , String password , List<Role> roles) {

 this.email= email ;

 this.password=password ;

 this.roles=roles ;}

 @Override

 public Collection<? extends GrantedAuthority> getAuthorities() {

 List<GrantedAuthority> authorities = new ArrayList<>();

 �this.roles.forEach(role -> authorities.add(new

SimpleGrantedAuthority(role.getRoleName())));

 return authorities;

 }

 @Override

 public String getUsername() {

 return this.email;

 }

 @Override

 public boolean isAccountNonExpired() {

 return true;

 }

 @Override

 public boolean isAccountNonLocked() {

 return true;

 }

Chapter 9 JSON Web Token (JWT) Authentication

256

 @Override

 public boolean isCredentialsNonExpired() {

 return true;

 }

 @Override

 public boolean isEnabled() {

 return true;

 }

}

The user class is mainly a model to fetch and validate all the user credentials if they

are not expired, locked, or enabled.

Next, implement the repositories needed by each model for persisting and accessing

data. In the repository package, let’s create two repositories.

•	 UserRepository fetches the user repository information, as shown in

Listing 9-6.	

•	 RoleRepository fetches the role repository information, as shown in

Listing 9-7.	

Listing 9-6.  The UserRepository Class

package com.apress.JWT_Security_Authentication.repository;

import com.apress.JWT_Security_Authentication.models.User;

import org.springframework.data.jpa.repository.JpaRepository;

import java.util.Optional;

public interface UserRepository extends JpaRepository<User,Integer> {

 Boolean existsByEmail(String email);

 Optional<User> findByEmail(String email);

}

Chapter 9 JSON Web Token (JWT) Authentication

257

Listing 9-7.  The RoleRepository Class

package com.apress.JWT_Security_Authentication.repository;

import com.apress.JWT_Security_Authentication.models.Role;

import com.apress.JWT_Security_Authentication.models.RoleName;

import org.springframework.data.jpa.repository.JpaRepository;

public interface RoleRepository extends JpaRepository<Role,Integer> {

 Role findByRoleName(RoleName roleName);

}

Let’s configure the SpringSecurityConfig class to use the security package, as shown

in Listing 9-8.

Listing 9-8.  The SpringSecurityConfig Class

package com.apress.JWT_Security_Authentication.security;

import lombok.RequiredArgsConstructor;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.security.authentication.AuthenticationManager;

import org.springframework.security.config.annotation.authentication.

configuration.AuthenticationConfiguration;

import org.springframework.security.config.annotation.web.builders.

HttpSecurity;

import org.springframework.security.config.annotation.web.configuration.

EnableWebSecurity;

import org.springframework.security.config.http.SessionCreationPolicy;

import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;

import org.springframework.security.crypto.password.PasswordEncoder;

import org.springframework.security.web.SecurityFilterChain;

import org.springframework.security.web.authentication.

UsernamePasswordAuthenticationFilter;

@Configuration

@EnableWebSecurity

@RequiredArgsConstructor

Chapter 9 JSON Web Token (JWT) Authentication

258

public class SpringSecurityConfig {

 private final JwtAuthenticationFilter jwtAuthenticationFilter ;

 private final CustomerUserDetailsService customerUserDetailsService ;

 @Bean

 �public SecurityFilterChain filterChain (HttpSecurity http) throws

Exception

 { http

 .csrf().disable()

 �.sessionManagement(session -> session.sessionCreationPolicy(Ses

sionCreationPolicy.STATELESS))

 .authorizeHttpRequests(auth ->

 auth.requestMatchers("/public/**", "/user/**").permitAll()

 .requestMatchers("/admin/**").hasAuthority("ADMIN")) ;

 �http.addFilterBefore(jwtAuthenticationFilter,

UsernamePasswordAuthenticationFilter.class);

 return http.build();

 }

 @Bean

 �public AuthenticationManager authenticationManager(AuthenticationConfig

uration authenticationConfiguration) throws Exception

 { return authenticationConfiguration.getAuthenticationManager();}

 @Bean

 public PasswordEncoder passwordEncoder()

 { return new BCryptPasswordEncoder(); }

}

Since this is the most important Spring Security class, let’s discuss it in more detail.

•	 @EnableWebSecurity: allows Spring to find and automatically apply

the class to the global web security.

•	 Spring Security loads the user details to perform authentication and

authorization. It has customerUserDetailsService interface that you

need to implement.

Chapter 9 JSON Web Token (JWT) Authentication

259

•	 PasswordEncoder used for the AuthenticationProvider if specified, it

uses plain text.

•	 (HttpSecurity http) method used from

WebSecurityConfigurerAdapter interface to tell Spring Security

how to configure CSRF (disabled to send POST API), which filter

(jwtAuthenticationFilter) and when you want it to work (filter

before UsernamePasswordAuthenticationFilter), which Exception

Handler is chosen (JwtUtilities).

•	 The implementation of customerUserDetailsService configures

AuthenticationProvider with the AuthenticationManagerBuilder.
userDetailsService() method.

•	 The “/public/**” path as a simple GET API is permitted to everyone

so that you can test a simple GET API with public content.

•	 The “/users/**” path as a POST API is permitted to everyone so that

all users can register and log in.

•	 The “/admin/**” path as a GET API is permitted only to users with

hasAuthority(“ADMIN”))

Listing 9-9 shows the CustomerUserDetailsService class.

Listing 9-9.  The CustomerUserDetailsService Class

package com.apress.JWT_Security_Authentication.security;

import com.apress.JWT_Security_Authentication.models.User;

import com.apress.JWT_Security_Authentication.repository.UserRepository;

import lombok.RequiredArgsConstructor;

import org.springframework.security.core.userdetails.UserDetails;

import org.springframework.security.core.userdetails.UserDetailsService;

import org.springframework.security.core.userdetails.

UsernameNotFoundException;

import org.springframework.stereotype.Component;

@Component

@RequiredArgsConstructor

public class CustomerUserDetailsService implements UserDetailsService {

Chapter 9 JSON Web Token (JWT) Authentication

260

 private final UserRepository UserRepository ;

 @Override

 �public UserDetails loadUserByUsername(String email) throws

UsernameNotFoundException {

 �User user = UserRepository.findByEmail(email).orElseThrow(()-> new

UsernameNotFoundException("User not found !"));

 return user ;

 }

}

Now let’s create the JWT authentication filter and the authentication provider to

make the security filter chain work.

The JwtAuthenticationFilter class is a filter that executes once per request (see

Listing 9-10).

Listing 9-10.  The JwtAuthenticationFilter Class

package com.apress.JWT_Security_Authentication.security;

import jakarta.servlet.FilterChain;

import jakarta.servlet.ServletException;

import jakarta.servlet.http.HttpServletRequest;

import jakarta.servlet.http.HttpServletResponse;

import lombok.RequiredArgsConstructor;

import lombok.extern.slf4j.Slf4j;

import org.springframework.lang.NonNull;

import org.springframework.security.authentication.

UsernamePasswordAuthenticationToken;

import org.springframework.security.core.context.SecurityContextHolder;

import org.springframework.security.core.userdetails.UserDetails;

import org.springframework.stereotype.Component;

import org.springframework.web.filter.OncePerRequestFilter;

import java.io.IOException;

@Slf4j

@Component

Chapter 9 JSON Web Token (JWT) Authentication

261

@RequiredArgsConstructor

public class JwtAuthenticationFilter extends OncePerRequestFilter {

 private final JwtUtilities jwtUtilities ;

 private final CustomerUserDetailsService customerUserDetailsService ;

 @Override

 protected void doFilterInternal(@NonNull HttpServletRequest request,

 @NonNull HttpServletResponse response,

 @NonNull FilterChain filterChain)

 throws ServletException, IOException {

 String token = jwtUtilities.getToken(request) ;

 if (token!=null && jwtUtilities.validateToken(token))

 {

 String email = jwtUtilities.extractUsername(token);

 �UserDetails userDetails = customerUserDetailsService.

loadUserByUsername(email);

 if (userDetails != null) {

 UsernamePasswordAuthenticationToken authentication =

 �new UsernamePasswordAuthenticationToken(userDetails.

getUsername() ,null , userDetails.getAuthorities());

 log.info("authenticated user with email :{}", email);

 Secu�rityContextHolder.getContext().setAuthentication(authen

tication);

 }

 }

 filterChain.doFilter(request,response);

 }

}

Let’s go over the JwtAuthenticationFilter class.

Create the JWT service class used in the JwtAuthenticationFilter class.

First, make sure the authorization header from our request is not null and that it

starts with the word bearer.

Chapter 9 JSON Web Token (JWT) Authentication

262

Next, if the request has JWT, validate it and parse the username from it. Extract our

JWT from the authorization header and use a function from the JwtSecvice class called

extractUsername to extract the value of the user email from the JWT.

Next, from the username, use UserDetails to create an Authentication object and set

the current UserDetails in SecurityContext using the setAuthentication(authentication)

method.

Finally, send to get UserDetails.

UserDetails userDetails = customerUserDetailsService.loadUserByUsername(email);

Let’s create the JwtUtilities class in the .security.jwt package, where you do the

following.

•	 extract username from JWT: extractUsername(String token)

•	 generate a JWT from email, date, expiration, secret

•	 validate a JWT: invalid signature, expired JWT token, unsupported

JWT token, and so on

Listing 9-11 shows the JwtUtilities class.

Listing 9-11.  The JwtUtilities Class

package com.apress.JWT_Security_Authentication.security;

import io.jsonwebtoken.*;

import jakarta.servlet.http.HttpServletRequest;

import lombok.extern.slf4j.Slf4j;

import org.springframework.beans.factory.annotation.Value;

import org.springframework.security.core.userdetails.UserDetails;

import org.springframework.stereotype.Component;

import org.springframework.util.StringUtils;

import java.time.Instant;

import java.time.temporal.ChronoUnit;

import java.util.Date;

import java.util.List;

import java.util.function.Function;

@Slf4j

@Component

public class JwtUtilities{

Chapter 9 JSON Web Token (JWT) Authentication

263

 @Value("${jwt.jwtsecret}")

 private String jwtsecret;

 @Value("${jwt.jwtExpirationTime}")

 private Long jwtExpirationTime;

 public String extractUsername(String token) {

 return extractClaim(token, Claims::getSubject);

 }

 �public Claims extractAllClaims(String token) {return Jwts.parser().

setSigningKey(jwtsecret).parseClaimsJws(token).getBody();}

 �public <T> T extractClaim(String token, Function<Claims, T>

claimsResolver) {

 final Claims claims = extractAllClaims(token);

 return claimsResolver.apply(claims);

 }

 �public Date extractExpiration(String token) { return

extractClaim(token, Claims::getExpiration); }

 public Boolean validateToken(String token, UserDetails userDetails) {

 final String email = extractUsername(token);

 �return (email.equals(userDetails.getUsername()) &&

!isTokenExpired(token));

 }

 public Boolean isTokenExpired(String token) {

 return extractExpiration(token).before(new Date());

 }

 public String generateToken(String email , List<String> roles) {

 �return Jwts.builder().setSubject(email).claim("role",roles).

setIssuedAt(new Date(System.currentTimeMillis()))

 �.setExpiration(Date.from(Instant.now().

plus(jwtExpirationTime, ChronoUnit.MILLIS)))

 .signWith(SignatureAlgorithm.HS256, jwtsecret).compact();

 }

Chapter 9 JSON Web Token (JWT) Authentication

264

 public boolean validateToken(String token) {

 try {

 Jwts.parser().setSigningKey(jwtsecret).parseClaimsJws(token);

 return true;

 } catch (SignatureException e) {

 log.info("Invalid JWT signature.");

 log.trace("Invalid JWT signature trace: {}", e);

 } catch (MalformedJwtException e) {

 log.info("Invalid JWT token.");

 log.trace("Invalid JWT token trace: {}", e);

 } catch (ExpiredJwtException e) {

 log.info("Expired JWT token.");

 log.trace("Expired JWT token trace: {}", e);

 } catch (UnsupportedJwtException e) {

 log.info("Unsupported JWT token.");

 log.trace("Unsupported JWT token trace: {}", e);

 } catch (IllegalArgumentException e) {

 log.info("JWT token compact of handler are invalid.");

 �log.trace("JWT token compact of handler are invalid trace:

{}", e);

 }

 return false;

 }

 public String getToken (HttpServletRequest httpServletRequest) {

 �final String bearerToken = httpServletRequest.

getHeader("Authorization");

 �if(StringUtils.hasText(bearerToken) && bearerToken.

startsWith("Bearer "))

 �{return bearerToken.substring(7,bearerToken.length()); } // The

part after "Bearer "

 return null;

 }

}

Chapter 9 JSON Web Token (JWT) Authentication

265

Let’s create the TDO classes, including the following.

•	 BearerToken sets the JWT bearer token used in our example (see

Listing 9-12).

•	 LoginDto is the data transfer object for user login (see Listing 9-13).

•	 RegisterDto is the data transfer object for user registration (see

Listing 9-14).

Listing 9-12.  The BearerToken Class

package com.ons.securitylayerJwt.dto;

import lombok.Data;

@Data

public class BearerToken {

 private String accessToken ;

 private String tokenType ;

 public BearerToken(String accessToken , String tokenType) {

 this.tokenType = tokenType ;

 this.accessToken = accessToken;

 }

}

Listing 9-13.  The LoginDto Class

package com.ons.securitylayerJwt.dto;

import lombok.AccessLevel;

import lombok.Data;

import lombok.experimental.FieldDefaults;

@Data

@FieldDefaults(level = AccessLevel.PRIVATE)

public class LoginDto {

 private String email ;

 private String password ;

}

Chapter 9 JSON Web Token (JWT) Authentication

266

Listing 9-14.  The RegisterDto Class

package com.ons.securitylayerJwt.dto;

import lombok.AccessLevel;

import lombok.Data;

import lombok.experimental.FieldDefaults;

import java.io.Serializable;

@Data

@FieldDefaults(level = AccessLevel.PRIVATE)

public class RegisterDto implements Serializable {

 String firstName ;

 String lastName ;

 String email;

 String password ;

 String userRole ;

}

Let’s create the Spring REST API Controller classes, including the following.

•	 PublicRestController is a simple REST GET API with a “/public/

welcome” link to return a welcome message (see Listing 9-15).	

•	 AdminRestController is a REST GET API with the “/admin/hello” link

to return a Welcome admin message in case the email/password are

the admin’s correct credential, the user has an “ADMIN” role, and the

valid JWT is provided (see Listing 9-16).	

•	 UserRestController is two REST POST APIs to register and log in a

user. This is discussed more in Listing 9-17.	

Listing 9-15.  The PublicRestController Class

package com.apress.JWT_Security_Authentication.presentation;

import lombok.RequiredArgsConstructor;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RestController;

Chapter 9 JSON Web Token (JWT) Authentication

267

@RestController

@RequestMapping("/public")

@RequiredArgsConstructor

public class PublicRestController {

 @GetMapping("/welcome")

 public String welcome ()

 { return "Welcome! This is a public content!" ;}

}

Listing 9-16.  The AdminRestController Class

package com.apress.JWT_Security_Authentication.presentation;

import lombok.RequiredArgsConstructor;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RestController;

@RestController

@RequestMapping("/admin")

@RequiredArgsConstructor

public class AdminRestController {

 @GetMapping("/hello")

 public String sayHello ()

 { return "Welcome you are authenticated as Admin!" ;}

}

Listing 9-17.  The UserRestController Class

package com.apress.JWT_Security_Authentication.presentation;

import com.apress.JWT_Security_Authentication.controllers.IUserService;

import com.apress.JWT_Security_Authentication.dto.LoginDto;

import com.apress.JWT_Security_Authentication.dto.RegisterDto;

import lombok.RequiredArgsConstructor;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.PostMapping;

Chapter 9 JSON Web Token (JWT) Authentication

268

import org.springframework.web.bind.annotation.RequestBody;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RestController;

@RestController

@RequestMapping("/user")

@RequiredArgsConstructor

public class UserRestController {

 private final IUserService iUserService ;

 @PostMapping("/register")

 �public ResponseEntity<?> register (@RequestBody RegisterDto

registerDto)

 { return iUserService.register(registerDto);}

 @PostMapping("/authenticate")

 public String authenticate(@RequestBody LoginDto loginDto)

 { return iUserService.authenticate(loginDto);}

}

The REST API UserService controller and its IUserService interface register a new

user in the database and log in the user.

Finally, let’s create the Spring REST APIs controller (see Listings 9-18 and 9-19) for

authentication, providing APIs for register and login actions, such as the following.

•	 api/user/register

•	 checks existing username/email

•	 creates a new user (with “USER” or “ADMIN” role based on

register input)

•	 saves User to database using UserRepository

•	 api/user/authenticate

•	 authenticates email, password

•	 updates SecurityContext using the Authentication object

•	 generates JWT

Chapter 9 JSON Web Token (JWT) Authentication

269

•	 gets UserDetails from the Authentication object

•	 response contains JWT and UserDetails data

Listing 9-18.  The IUserService Class

package com.apress.JWT_Security_Authentication.controllers;

import com.apress.JWT_Security_Authentication.dto.LoginDto;

import com.apress.JWT_Security_Authentication.dto.RegisterDto;

import com.apress.JWT_Security_Authentication.models.User;

import com.apress.JWT_Security_Authentication.models.Role;

import org.springframework.http.ResponseEntity;

public interface IUserService {

 String authenticate(LoginDto loginDto);

 ResponseEntity<?> register (RegisterDto registerDto);

 Role saveRole(Role role);

 User saverUser (User user) ;

}

Listing 9-19.  The IUserService Class

package com.apress.JWT_Security_Authentication.controllers;

import com.apress.JWT_Security_Authentication.dto.LoginDto;

import com.apress.JWT_Security_Authentication.dto.RegisterDto;

import com.apress.JWT_Security_Authentication.dto.BearerToken;

import com.apress.JWT_Security_Authentication.models.User;

import com.apress.JWT_Security_Authentication.models.Role;

import com.apress.JWT_Security_Authentication.models.RoleName;

import com.apress.JWT_Security_Authentication.repository.RoleRepository;

import com.apress.JWT_Security_Authentication.repository.UserRepository;

import com.apress.JWT_Security_Authentication.security.JwtUtilities;

import jakarta.transaction.Transactional;

import lombok.RequiredArgsConstructor;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

Chapter 9 JSON Web Token (JWT) Authentication

270

import org.springframework.security.authentication.AuthenticationManager;

import org.springframework.security.authentication.

UsernamePasswordAuthenticationToken;

import org.springframework.security.core.Authentication;

import org.springframework.security.core.context.SecurityContextHolder;

import org.springframework.security.core.userdetails.

UsernameNotFoundException;

import org.springframework.security.crypto.password.PasswordEncoder;

import org.springframework.stereotype.Service;

import java.util.ArrayList;

import java.util.Collections;

import java.util.List;

@Service

@Transactional

@RequiredArgsConstructor

public class UserService implements IUserService{

 private final AuthenticationManager authenticationManager ;

 private final UserRepository userRepository ;

 private final RoleRepository roleRepository ;

 private final PasswordEncoder passwordEncoder ;

 private final JwtUtilities jwtUtilities ;

 @Override

 public Role saveRole(Role role) {

 return roleRepository.save(role);

 }

 @Override

 public User saverUser(User user) {

 return userRepository.save(user);

 }

 @Override

 public ResponseEntity<?> register(RegisterDto registerDto) {

 if(userRepository.existsByEmail(registerDto.getEmail()))

Chapter 9 JSON Web Token (JWT) Authentication

271

 �{ return new ResponseEntity<>("email is already taken !",

HttpStatus.SEE_OTHER); }

 else

 { User user = new User();

 user.setEmail(registerDto.getEmail());

 user.setFirstName(registerDto.getFirstName());

 user.setLastName(registerDto.getLastName());

 �user.setPassword(passwordEncoder.encode(registerDto.

getPassword()));

 String myrole = "user";

 �if (registerDto.getUserRole().equals("") || registerDto.

getUserRole().equals("user")) {

 myrole = "USER";

 }

 if (registerDto.getUserRole().equals("admin")) {

 myrole = "ADMIN";

 }

 �Role role = roleRepository.findByRoleName(RoleName.valueOf

(myrole));

 user.setUserRole(registerDto.getUserRole());

 user.setRoles(Collections.singletonList(role));

 userRepository.save(user);

 �String token = jwtUtilities.generateToken(registerDto.getEmail(

),Collections.singletonList(role.getRoleName()));

 �return new ResponseEntity<>(new BearerToken(token , "Bearer

"),HttpStatus.OK);

 }

 }

 @Override

 public String authenticate(LoginDto loginDto) {

 Authentication authentication= authenticationManager.authenticate(

 new UsernamePasswordAuthenticationToken(

 loginDto.getEmail(),

Chapter 9 JSON Web Token (JWT) Authentication

272

 loginDto.getPassword()

)

);

 �SecurityContextHolder.getContext().setAuthentication(authen

tication);

 �User user = userRepository.findByEmail(authentication.getName()).

orElseThrow(() -> new UsernameNotFoundException("User not found"));

 List<String> rolesNames = new ArrayList<>();

 user.getRoles().forEach(r-> rolesNames.add(r.getRoleName()));

 �String token = jwtUtilities.generateToken(user.

getUsername(),rolesNames);

 return "User login successful! Token: " + token;

 }

}

The last Java class to update is JwtSecurityAuthenticationApplication, shown in

Listing 9-20, where the user and admin roles are populated automatically into the roles

database table, as shown in Figure 9-5.

Listing 9-20.  The JwtSecurityAuthenticationApplication Class

package com.apress.JWT_Security_Authentication;

import org.springframework.boot.CommandLineRunner;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.context.annotation.Bean;

import org.springframework.security.crypto.password.PasswordEncoder;

import com.apress.JWT_Security_Authentication.controllers.IUserService;

import com.apress.JWT_Security_Authentication.models.Role;

import com.apress.JWT_Security_Authentication.models.RoleName;

import com.apress.JWT_Security_Authentication.repository.RoleRepository;

import com.apress.JWT_Security_Authentication.repository.UserRepository;

Chapter 9 JSON Web Token (JWT) Authentication

273

@SpringBootApplication

public class JwtSecurityAuthenticationApplication {

 public static void main(String[] args) {

 �SpringApplication.run(JwtSecurityAuthenticationApplication.

class, args);

 }

 @Bean

 �CommandLineRunner run (IUserService iUserService , RoleRepository

roleRepository , UserRepository userRepository , PasswordEncoder

passwordEncoder)

 {return args ->

 { iUserService.saveRole(new Role(RoleName.USER));

 iUserService.saveRole(new Role(RoleName.ADMIN));

 };}

}

Figure 9-5.  Spring user roles added into database

The new project structure should look like Figure 9-6.

Chapter 9 JSON Web Token (JWT) Authentication

274

Figure 9-6.  Final Spring project structure

Now that all the classes are generated, let’s run and test our example: mvn

spring-boot:run

Let’s test the http://localhost:8080/api/public/welcome to see that the public REST

GET API works properly. Figure 9-7 shows the result using the Postman testing tool.

Chapter 9 JSON Web Token (JWT) Authentication

275

Figure 9-7.  Testing public REST GET API

Next, let’s register, via http://localhost:8080/api/user/register, a new user with the

“USER” role and the following credentials.

{

"firstName": "Massimo",

"lastName": "Nardone",

"email": "mmassimo@gmail.com",

"password": "masspasswd",

"userRole": "user"

}

Figure 9-8 shows the result in Postman.

Chapter 9 JSON Web Token (JWT) Authentication

276

Figure 9-8.  Registered new user with “user” role

A new user is registered with status 200 OK, and an access JSON web token is

generated. The token type is Bearer. You can use that token to log in, providing an

email/password and the newly created JSON token, via http://localhost:8080/api/user/

authenticate. Figures 9-9 and 9-10 show the results.

Figure 9-9.  Log in user with valid email/password

Chapter 9 JSON Web Token (JWT) Authentication

277

Figure 9-10.  Log in user with valid JWT

Status 200 OK validates the user login. Figure 9-11 shows the result when a wrong

password is entered.

Figure 9-11.  Forbidden login for user providing wrong password

Chapter 9 JSON Web Token (JWT) Authentication

278

Let’s create another user with the “ADMIN” role.

{

"firstName": "Neve",

"lastName": "Nardon",

"email": "neve@gmail.com",

"password": "nevepasswd",

"userRole": "admin"

}

If you try to log in using http://localhost:8080/api/admin/hello to the user API using

the admin credential, it fails because we defined that only users with an admin role can

access the admin URL. If instead you log in providing valid email/password credentials

and a valid JWT, you see what is shown in Figure 9-12.

Figure 9-12.  Log in to Admin REST API

Chapter 9 JSON Web Token (JWT) Authentication

279

The users and roles created in the database are shown in Figure 9-13.

Figure 9-13.  Created users in the database

�Summary
This chapter showed you how to secure a REST API using JWT and Spring Security 6,

Spring Boot 3+, and PostgreSQL.

Chapter 9 JSON Web Token (JWT) Authentication

281

Index

A
Access control entry (ACE), 206, 207, 209
Access control list (ACL), 9, 24, 115, 205

capability, 208
concept, 205
database classes, 208
domain classes, 205
domain objects, 207
evaluating, 210
getId() method, 208
Java Code, 209
key interfaces, 207
Spring Security, 205, 206
support, 206

AccessDecisionManager, 108, 109
AffirmativeBased, 109
ConsensusBased, 110
implementations, 108, 109
informations, 109
interface, 108
reference, 109
UnanimousBased, 110

Acegi Security System for Spring, 28
AccessDecisionVoter, 110, 111, 113
Admin REST API, 278
AdminRestController Class, 267
Application security, 3
Application security layer, 5, 6

authentication, 6, 7
authorization, 7

Aspect-oriented programming (AOP), 22,
34, 36–38

Asymmetric encryption
encryption/decryption, 13
key, 13
security, 13
use case, 13

Attribute-based access control (ABAC), 7
Authentication, 6, 7
Authentication interface, 100
Authentication mechanisms, 169, 170,

200, 204
Authentication object

creation, 101
framework, 101
implementations, 102, 103
interface, 101, 102
uses, 101

AuthenticationProvider, 106, 108, 204
AuthenticationUserDetailsService, 114
Authorization, 7–9, 132

B
<bean>-based configuration, 87
BearerToken Class, 265
Biometric authentication, 6

C
Central Authentication Service

(CAS), 60, 203
Cloud security, 17
Comprehensive security, 2
Confidentiality, 13

© Massimo Nardone, Carlo Scarioni 2024
M. Nardone and C. Scarioni, Pro Spring Security, https://doi.org/10.1007/979-8-8688-0035-1

https://doi.org/10.1007/979-8-8688-0035-1#DOI

282

CookieCsrfTokenRepository.saveToken
method, 133

Cross-site request forgery (CSRF), 23,
133, 214

Cross-site scripting (XSS), 15, 23
CustomerUserDetailsService Class, 259
Custom login form, 146

authenticated.html file, 145
authenticated page, 146
AuthenticationFailureHandler, 148
AuthenticationSuccessHandler, 148
CustomAuthenticationFailureHandler

class, 149, 150
custom error, 147, 148
DefaultLoginPageGeneratingFilter, 143
<form-login>, 147
404 error, 143, 144
http.authorizeHttpRequests ()

method, 143
http.authorizeRequests() method, 143
login controller, 144
login.html, 144–146
login.jsp, 147
SecurityConfiguration file, 144

D
Data breaches, 16
Data definition language (DDL), 115
Data encryption, 3
Decorator pattern, 36, 117
Defense in depth (DiD)

application security, 3
awareness/training, 3
combination of measures, 2
data encryption, 3
defensive mechanisms, 2
failing/weak, 2

goal, 2
IAM, 3
IT infrastructure layers, 4
monitoring/incident response, 3
multi-layered, 4
network security, 3
perimeter security, 2
physical controls, 2

Defensive mechanisms, 2
Demilitarized zones (DMZs), 2
Denial-of-service attacks, 15, 214
Dependency injection (DI), 22, 34–36, 118
Digest authentication, 98, 152–154
Domain-specific language (DSL),

87, 88

E
Embedded LDAP server, 186, 191
Encryption algorithms

one-way encryption, 10
symmetric encryption, 11, 12

Environment set up, Spring Security
6 project

Apache Tomcat 10, 50, 51
IntelliJ IDEA 2023.1.2

dashboard, 49
directory, 48
installation, 48

JAVA_HOME system
variable, 46, 47

Java installation, testing, 47
JDK

compiler, 52
configuration, 51, 52
download/installation, 46

Maven 3.9.2, 49, 50
software lists, 45

INDEX

283

F
Filter chain, 94

configuration, 97
overview, 96
Spring beans, 95

Filters, 137–139
configuration, 96
DelegatingFilterProxy filter, 96
documentation, 140
enums, 97
HTTP request, 94, 95
overview, 95
security filter, 96
servlet filter, 96
types, 97–99

Forbidden login, 277

G
GitHub, 58, 219, 234–236, 238
Groovy, 23

H
Hashing algorithms, 10
H2 console

authorities, 184
authorities table, 184
autnenticated.html page, 181
login page, 180–182
securitydb tables, 182, 183
users, 185
users table, 184, 185
welcome.html page, 180

H2 Database project
application.properties file, 171
authenticated.html file, 174
dependencies, 170

frame options, 180
Java classes and HTML files, 171
pom.xml file, 172, 173
requestMatchers, 180
SecurityConfiguration Java

class, 174–177
settings, 170

HTTP Basic authentication, 150, 151
HttpSecurity instance, 132, 133
Hybrid encryption, 14

I
Identity and access management (IAM), 3
Identity management, 14
Information technology (IT), 1
Insider threats, 16
Integrated development environment

(IDE), 88
Integrity, 14
IntelliJ IDEA 2023.1.2., 220
Internet of Things (IoT), 1
Intrusion detection systems (IDS), 2, 3
Intrusion prevention systems (IPS), 2
Inversion of Control (IoC), 34, 36
IoT security, 1, 17

J
Jasypt cryptography, 22
Java Authentication and Authorization

Service (JAAS), 18, 19, 203
Java Certification Path API

(CertPath), 17, 19
Java Cryptographic Extensions

(JCE), 17, 19
Java Cryptography Architecture

(JCA), 17

INDEX

284

Java Generic Security Services (Java
GSS-API), 18

Java Secure Socket Extension (JSSE), 17
Java SE Runtime Environment

(JRE), 46, 51
Java web application, 121
Java web application project

configuration, 54
index.jsp file, 56
Package Explorer, 54
pom.xml file, 55, 56
Pss01, 52, 53
run, Tomcat Server 10, 56, 57
structure, 54, 55
updation, 55
web browser, 57

JDBC project
DataSource, 178
dependencies, 170
Java classes and HTML files, 171
JdbcDaoImpl, 177
JdbcUserDetailsManager bean, 178
SecurityFilterChain bean, 179
settings, 170

JDK, 18
JSON Web Token (JWT), 201, 202

advantages, 245
application.properties file, 251
Authentication object, 262
BearerToken Class, 265
Controller classes, 266
definition, 242
header, 242, 243
IUserService Class, 269
JwtSecurityAuthenticationApplication

Class, 272
JwtUtilities class, 262
payload, 243

PostgreSQL database, 247
project’s file structure, 248
project structure, 273
ProviderManager, 244
PublicRestController Class, 266
RoleRepository Class, 257
secret key, 243
sensitive data, 245
signature, 243
Spring Boot, 252
Spring Security, 245
user class, 256
user model class, 254
The UserRestController Class, 267

JSP taglib, 115
JwtAuthenticationFilter Class, 260

K
Kotlin, 23, 30, 34

L
Lightweight Directory Access Protocol

(LDAP), 6, 22, 92
application login page, 197
application.properties file, 188
attributes, 186
complexity, 198
definition, 185
dependencies, 187
directory, 185, 186
entry, 186
formLogin, 196
groups, 193
LdapAuthoritiesPopulator code,

196, 197
LdaPsecurityApplication, 193

INDEX

285

LDIF file, 191, 192
login page, 197
Maven dependencies, 186, 187
password authentication, 196
plugins, 198
pom.xml file, 188–191
project, 187
project structure, 188
SecurityConfiguration Java class,

194, 195
SHA password, 193
storage, 185
TV Guide, 185
UserController Java class, 193, 194
users, 193, 197, 198
values, 186

Logging out, 158
cookies, 159, 160
flow, 160
invalidate method, 160
movies.jsp page, 159
remember-me functionality, 159, 160
SecurityConfiguration file, 159
TokenBasedRemember

MeServices, 161
UserController file, 159

Login authentication method, 232
LoginDto Class, 265

M
Malware, 16
Maven web application, 121

authenticated.html page, 127, 128
HTML files, 126
Java classes, 128
Java packages, 128
tools and directories, 126

UserController Java class, 128, 129
welcome.html page, 126, 127

Maven web application project, 52, 61
Message digest, 10
Microsoft Windows Active

Directory system, 185
Multi-factor authentication (MFA), 3, 6
Mutual authentication, 25, 198
MVC applications, 130

N
Network security, 3
Network security layer, 4, 5

O
One-way encryption, 10, 11
Open Authorization 2.0 (OAuth 2.0), 22,

40, 43, 200–201
access tokens, 212
application properties, 227
application registers, 212
authentication, 225
authorization capabilities, 212
authorization code, 213
authorization server, 212
Client, 232
client authentication, 213
ClientRegistration properties, 236
consent, 213
CSRF, 214
dependencies, 221
generated client ID, 231
GitHub, 234
Google authentication, 224
Google client credential, 233
Google Cloud, 229, 230

INDEX

286

grant, 212
HTTPS, 213
ID and secret key, 235
implementation, 217
logging and monitoring, 214, 217
Login, 217–219
overview, 212, 215
refresh tokens, 213
resource, 216
scope of permissions, 213
secret key match, 236
security, 214
Spring Security, 214, 227
Spring Security annotations, 217
steps, 228
template files, 220
third-party applications, 211
token revocation, 214
tokens, 213
token storage and

management, 217
unauthorized access, 214
UserController class, 223
user’s protected resources, 212

Open source software, 23, 58, 116
Operating system layer, 5
Operating system (OS), 5
Operational technology (OT), 1
Output sanitation, 15

P, Q
PasswordEncoder bean, 177
Password security, 16
Pattern matching, 33
Perimeter security, 2
Phishing, 16

PKI encryption, see Asymmetric
encryption

PostgreSQL shell console, 247
Postman testing tool, 274
Private key, 12
Public key, 12
Public key cryptography, 12, 13

R
Ransomware, 16
RegisterDto Class, 266
Remember-me authentication

Amazon.com, 155
autoLogin method, 158
check box, 156
cookie, 155–157
functionality, 155
login.html file, 156
problem, 155
RememberMeAuthenticationFilter,

155, 157, 158
SecurityConfiguration configuration

file, 156
TokenBasedRemember

MeServices, 155, 156, 158
UserDetails, 158
UsernamePassword

AuthenticationFilter, 155, 156
REpresentational State Transfer (REST)

advantages, 240–41
APIs, 239
authorization, 242
client state, 240
disadvantages, 241
functionalities, 242
HTTP methods, 239
JWT authentication, 239

Open Authorization 2.0 (OAuth 2.0) (cont.)

INDEX

287

list of cars, 240
performance overhead, 242
resource, 239
session-related information, 241
software applications, 239
uniform and consistent interface, 240

Resilient security, 2
RESTful applications, 130
Role-based access control (RBAC), 7, 8

S
Secured connections, 14
Secure Sockets Layer (SSL), 5, 94, 198–200
Security, 1

credentials, 9
encryption, 10
permissions, 10
resource, 10
role, 9
user, 9

SecurityConfiguration Java class, 130–132
SecurityContext class, 103, 104
SecurityContextHolder Class, 103–106
SecurityContext Interface class, 104
Security information and event

management (SIEM), 3
Security Interceptor, 78

AbstractSecurityInterceptor,
81–83, 85, 86

AccessDecisionManager, 80
AfterInvocationManager, 81
AuthenticationManager, 79, 80
FilterSecurityInterceptor, 79
InterceptorStatusToken, 80
MethodSecurityInterceptor, 79
preprocessing step, 79
ProviderManager, 79

RunAsManager, 80
Spring Security 6 class, 81
UML class diagram, 85, 86

Sensitive data protection, 15
Servlet filter, 94, 96, 126, 129, 167
Session management

configuration, 162
HttpSessionEventPublisher, 162
new session ID, 161
SecurityConfiguration file, 163
SecurityConfiguration Java class,

161, 163–166
SessionAuthenticationStrategy, 161
SessionFixationProtectionStrategy

class, 161
Single-responsibility principle

(SRP), 81, 118
Single sign-on (SSO), 212, 217
Social engineering, 16
Software exploits, 16
Spring Boot, 108

definition, 28
Spring Security, 170
versions, 34

Spring Boot project, 170
Spring Data JPA, 247
Spring Expression Language (SpEL), 25
Spring Framework 4.3, 129
Spring Framework 5, 29
Spring Framework 6

core container, 30
core revision, 30
data access and transaction, 31
Jakarta EE 9+ Baseline, 30
JDK 17+, 30
MVC, 32
observability, 33
pattern matching, 33

INDEX

288

spring messaging, 32
testing, 34
WebFlux, 32
web revision, 32

Spring project
login message, 124
login page, 123
pom.xml file, 124, 125
pss01_Security, 121, 122
run, 123
simple controller, 124
structure, 122, 248, 274
web application, 124

Spring Security, 210
built-in exception-handling

mechanism, 25
code, 116
concepts/components, 77, 78
default configuration, 134
definition, 21
features, 23, 38, 39
file structure, 89
100-Foot View, 77
1,000-Foot View, 76, 77
10,000-Foot View, 75, 76
functionalities, 39
fundamentals, 41
implementation, 61
internal architecture core

modules, 77
JAR files, 42
Java developers, 21, 23
Java EE, 26
projects, 26, 27
public/private key, 25
reasons, 23

released dates, 29
role-based authentication/

authorization, 23
URLs, 24

Spring Security 6, 81
functionalities, 42
JAR files, 43
new, 38

Spring Security 6.1.0, 58–60
Spring Security 6 project

AffirmativeBased, 141
authentication process, 141, 142
authorization process, 141, 142
configuration

admin login iteration flow, 73
AppInitializer Java class, 68, 69
@EnableWebSecurity

annotation, 66
index.jsp page, 69
JAR file, 71
Java classes, 66
Java package, 65
login web page, 71, 72
SecurityConfiguration

class, 66–68
SpringSecurityInitializer

class, 68
user/admin credentials, 73
wrong credentials, 72

creation, 58
DaoAuthenticationProvider, 140
@EnableWebSecurity, 130
environment set up (see Environment

set up, Spring Security 6 project)
filters, 137–139
FilterSecurityInterceptor, 141
HTTP request filter, 137

Spring Framework 6 (cont.)

INDEX

289

JAR file, 135
JARs dependencies, 61
login message, 65
login page, 64, 65, 140
login web page, 135
logout page, 136, 137
Maven dependencies, 61, 62
pom.xml file, 62, 63
Pss02, 60
right admin credentials, 136
running configuration,

Tomcat 10, 71
security password, 64
SpringSource, 58
steps, 45
structure, 70, 134
UsernamePasswordAuthentication

Filter, 139
web browser, 135
wrong credentials, 135, 136, 139

Spring Security web project, 126
Spring WebSocket, 202, 203
SQL injection, 15
Strategy pattern, 117
Symmetric encryption, 12

key, 11
speed, 12
use case, 12

T
Thymeleaf Java library, 220
Token revocation mechanisms, 214
Two-factor authentication (2FA), 3

U
Unauthorized access, 10, 16
Unified modeling language (UML),

85, 86, 108
URLs, 10, 22, 142
UserController Java class, 130
UserDetails, 114, 115
UserDetailsService, 113

V
Virtual private networks (VPNs), 3
Vulnerabilities, 16

W
Weak authentication, 16
Web application firewalls (WAFs), 3
Web security, 23, 81, 129

X, Y, Z
X.509 authentication, 198–200
XML namespace, 87, 118

config module, 88, 89
constants, 90–92
elements, 92, 94
load-up sequence, 90
reference, 90
requirements, 88
SecurityNamespaceHandler, 90
spring.handlers, 89, 90
spring.schemas, 89

.xsd file, 87

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The Scope of Security
	The Network Security Layer
	The Operating System Layer
	The Application Layer
	Authentication
	Authorization
	ACLs

	Authentication and Authorization: General Concepts
	What to Secure
	Additional Security Concerns
	Java Options for Security
	Summary

	Chapter 2: Introducing Spring Security
	What Is Spring Security?
	Where Does Spring Security Fit In?
	Spring Security Overview
	What Is Spring Boot?

	Spring Framework 6: A Quick Overview
	JDK 17+ and Jakarta EE 9+ Baseline
	General Core Revision
	Core Container
	Data Access and Transactions
	Spring Messaging
	General Web Revision
	Spring MVC
	Spring WebFlux
	Observability
	Pattern Matching
	Testing
	Dependency Injection
	Aspect-Oriented Programming

	What’s New in Spring Security 6?
	Summary

	Chapter 3: Setting up the Scene
	Setting up the Development Environment
	Creating a New Java Web Application Project
	Adding Spring Security 6 to the Java Project
	Spring Security 6 Source

	Configuring the Spring Security 6 Web Project
	Summary

	Chapter 4: Spring Security Architecture and Design
	What Components Make up Spring Security?
	The 10,000-Foot View
	The 1,000-Foot View
	The 100-Foot View
	The Security Interceptor
	The XML Namespace
	The Filters and Filter Chain
	The Authentication Object
	SecurityContext and SecurityContextHolder
	AuthenticationProvider
	AccessDecisionManager
	AffirmativeBased
	ConsensusBased
	UnanimousBased

	AccessDecisionVoter
	UserDetailsService and AuthenticationUserDetailsService
	UserDetails
	ACL
	JSP Taglib

	Good Design and Patterns in Spring Security
	Strategy Pattern
	Decorator Pattern
	SRP
	DI

	Summary

	Chapter 5: Web Security
	Configuring the new Spring Security 6 Project
	The Special URLs
	Custom Login Form
	Basic HTTP Authentication
	Digest Authentication
	Remember-Me Authentication
	Logging Out
	Session Management

	Summary

	Chapter 6: Configuring Alternative Authentication Providers
	LDAP Authentication
	Using an Embedded LDAP

	X.509 Authentication
	OAuth 2.0
	JSON Web Token
	Spring WebSocket
	Java Authentication and Authorization Service
	Central Authentication Service
	Summary

	Chapter 7: Business Object Security with ACLs
	ACL Key Concepts
	Summary

	Chapter 8: Open Authorization 2.0 (OAuth 2.0) and Spring Security
	An Introduction to OAuth 2.0
	OAuth 2.0 Security
	Integrating OAuth 2.0 with Spring Security
	OAuth 2.0 Login

	Summary

	Chapter 9: JSON Web Token (JWT) Authentication
	The REST API
	Introduction to JSON Web Token

	Summary

	Index

