

About This eBook

ePUB is an open, industry-standard format for eBooks.

However, support of ePUB and its many features varies

across reading devices and applications. Use your device or

app settings to customize the presentation to your liking.

Settings that you can customize often include font, font

size, single or double column, landscape or portrait mode,

and figures that you can click or tap to enlarge. For

additional information about the settings and features on

your reading device or app, visit the device manufacturer’s

Web site.

Many titles include programming code or configuration

examples. To optimize the presentation of these elements,

view the eBook in single-column, landscape mode and

adjust the font size to the smallest setting. In addition to

presenting code and configurations in the reflowable text

format, we have included images of the code that mimic the

presentation found in the print book; therefore, where the

reflowable format may compromise the presentation of the

code listing, you will see a “Click here to view code image”

link. Click the link to view the print-fidelity code image. To

return to the previous page viewed, click the Back button on

your device or app.

Oracle Cloud

Infrastructure: A Guide to

Building Cloud Native

Applications

Oracle Cloud

Infrastructure: A Guide to

Building Cloud Native

Applications

Jeevan Gheevarghese Joseph

Adao Oliveira Junior

Mickey Boxell

Oracle Cloud Infrastructure: A Guide to Building

Cloud Native Applications

Jeevan Gheevarghese Joseph, Adao Oliveira Junior, Mickey

Boxell

Copyright© 2024 Pearson Education, Inc.

Published by Oracle Press

Hoboken, New Jersey

For information about buying this title in bulk quantities, or

for special sales opportunities (which may include electronic

versions; custom cover designs; and content particular to

your business, training goals, marketing focus, or branding

interests), please contact our corporate sales department at

corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact

governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact

intlcs@pearson.com.

All rights reserved. This publication is protected by

copyright, and permission must be obtained from the

publisher prior to any prohibited reproduction, storage in a

retrieval system, or transmission in any form or by any

means, electronic, mechanical, photocopying, recording, or

likewise. For information regarding permissions, request

forms and the appropriate contacts within the Pearson

Education Global Rights & Permissions Department, please

visit www.pearsoned.com/permissions/.

Library of Congress Control Number: 2023944840

ISBN-13: 978-0-13-790253-8

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://www.pearsoned.com/permissions/

ISBN-10: 0-13-790253-0

$PrintCode

General Manager

Mark Taub

Director, ITP Product Management

Brett Bartow

Executive Editor

Nancy Davis

Managing Editor

Sandra Schroeder

Development Editor

Christopher Cleveland

Senior Project Editor

Tonya Simpson

Copy Editor

Krista Hansing

Technical Editor

Peter Jausovec

Editorial Assistant

Cindy Teeters

Cover Designer

Chuti Prasertsith

Composition

codeMantra

Indexer

Timothy Wright

Proofreader

Jennifer Hinchliffe

Warning and Disclaimer

This book is designed to provide information about Oracle

Cloud Infrastructure. Every effort has been made to make

this book as complete and as accurate as possible, but no

warranty or fitness is implied.

The information is provided on an “as is” basis. The

authors, Oracle Press, and Pearson shall have neither

liability nor responsibility to any person or entity with

respect to any loss or damages arising from the information

contained in this book or from the use of the discs or

programs that may accompany it.

The views expressed in this book are those of the author

or authors and do not necessarily reflect the views of

Oracle.

Oracle does not make any representations or warranties

as to the accuracy, adequacy or completeness of any

information contained in this work, and is not responsible

for any errors or omissions.

Feedback Information

At Oracle Press, our goal is to create in-depth technical

books of the highest quality and value. Each book is crafted

with care and precision, undergoing rigorous development

that involves the unique expertise of members from the

professional technical community.

Readers’ feedback is a natural continuation of this

process. If you have any comments regarding how we could

improve the quality of this book, or otherwise alter it to

better suit your needs, you can contact us through email at

feedback@oraclepress.com. Please make sure to include

the book title and ISBN in your message.

We greatly appreciate your assistance.

Trademark Acknowledgments

Oracle, Java, MySQL and NetSuite are registered trademarks

of Oracle Corporation and/or its affiliates. All other

trademarks are the property of their respective owners.

Screen displays of copyrighted Oracle software and

services have been reproduced herein with the permission

of Oracle Corporation and/or its affiliates.

All terms mentioned in this book that are known to be

trademarks or service marks have been appropriately

capitalized. Oracle Press or Oracle Corporation cannot attest

to the accuracy of this information. Use of a term in this

book should not be regarded as affecting the validity of any

trademark or service mark.

mailto:feedback@oraclepress.com

Pearson’s Commitment to

Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that

reflects the diversity of all learners. We embrace the many

dimensions of diversity, including but not limited to race,

ethnicity, gender, socioeconomic status, ability, age, sexual

orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our

world. It has the potential to deliver opportunities that

improve lives and enable economic mobility. As we work

with authors to create content for every product and

service, we acknowledge our responsibility to demonstrate

inclusivity and incorporate diverse scholarship so that

everyone can achieve their potential through learning. As

the world’s leading learning company, we have a duty to

help drive change and live up to our purpose to help more

people create a better life for themselves and to create a

better world.

Our ambition is to purposefully contribute to a world

where

Everyone has an equitable and lifelong opportunity to

succeed through learning

Our educational products and services are inclusive and

represent the rich diversity of learners

Our educational content accurately reflects the histories

and experiences of the learners we serve

Our educational content prompts deeper discussions

with learners and motivates them to expand their own

learning (and worldview)

While we work hard to present unbiased content, we

want to hear from you about any concerns or needs with

this Pearson product so that we can investigate and address

them.

Please contact us with concerns about any potential bias

at https://www.pearson.com/report-bias.xhtml.

https://www.pearson.com/report-bias.xhtml

Figure Credits

Cover image: MiaStendal/AbobeStock

Figure 5-11, Figure 5-12, Figure 8-10, Figure 8-11: Grafana

Labs

Chapter 5, 6, Icons of Kubernetes: The Kubernetes

Authors

Figure 6-23, Figure 6-24: Center for Internet Security

Figure 9-6: Jenkins

Figure 9-7: Intuit

Figure 10-2, Figure 10-3, Figure 10-4: Github, Inc

Contents at a Glance

1 Introduction to Oracle Cloud Infrastructure

2 Infrastructure Automation and Management

3 Cloud Native Services on Oracle Cloud

Infrastructure

4 Understanding Container Engine for Kubernetes

5 Container Engine for Kubernetes in Practice

6 Securing Your Workloads and Infrastructure

7 Serverless Platforms and Applications

8 Observability

9 DevOps and Deployment Automation

10 Bringing It Together: MuShop

Index

Contents

1 Introduction to Oracle Cloud Infrastructure

Realms, Regions, and Availability Domains

Tenancies and Compartments

Controlling Access to Resources

Cloud Guard and Security Zones

Service Limits and Cost Management

Getting Started with Your Tenancy

Setting Up Users and Groups

Setting Up API Keys and Auth Tokens

Planning How Your Teams Will Use OCI

Summary

References

2 Infrastructure Automation and Management

One Set of APIs, Different Ways to Call Them

A Quick Terraform Primer

A Basic Introduction to the Terraform

Language

Terraform State Tracking

The OCI Terraform Provider

Setting Up the OCI Terraform Provider

Managing OCI Resources with Terraform

Simplifying Infrastructure Management with the

Resource Manager Service

Helm and Kubernetes Providers

Generating Resource Manager Stacks

Resource Discovery

Drift Detection

Generating a User Interface from Terraform

Configurations with a Custom Schema

Publishing Your Stacks with Deploy Buttons

Managing Multiregion and Multicloud

Configurations

Summary

References

3 Cloud Native Services on Oracle Cloud

Infrastructure

Oracle Container Image Registry

Working with OCIR

Image Signing

Image Scanning

Creating Containers from Images

Compute Instances

Container Instances

Container Engine for Kubernetes

Service Mesh

Serverless Functions

API Gateways

Components of an API Gateway

Working with the API Gateway Service

Messaging Systems

Streaming

Understanding the Streaming Service

Working with the OCI Streaming Service

OCI Events Service

Summary

References

4 Understanding Container Engine for Kubernetes

Monoliths and Microservices

Containers

Container Orchestration and Kubernetes

Oracle Container Engine for Kubernetes

OCI-Managed Components and Customer-Managed

Components

Control Plane

Data Plane

Billable Components

Kubernetes Concepts

Cloud Controller Manager

Nodes and Node Pools

Node Pool Properties

Worker Node Images and Shapes

Kubernetes Labels

SSH Keys

Tagging Your Resources

Creating a Cluster

Quick Create Cluster Workflow

Custom Create Cluster Workflow

Using the OCI Command-Line Interface

Using the Terraform Provider and Modules

Automation and Terraform Code Generation

Asynchronous Cluster Creation

Cluster Topology Considerations

Using Multiple Node Pools

Scheduling Workloads on Specific Nodes

Kubernetes Networking

Container Network Interface (CNI)

OCI VCN-Native Pod Networking CNI

Flannel CNI

Kubernetes Storage

StorageClass: Flex Volume and CSI Plug-ins

Updating the Default Storage Class

File System Storage

Kubernetes Load Balancer Support

Working with the OCI Load Balancer Service

SSL Termination with OCI Load Balancer

Working with the OCI Network Load Balancer

Service

Specifying Reserved Public IP Addresses

Commonly Used Annotations

Understanding Security List Management

Modes

Using Node Label Selectors

Security Considerations for Your Cluster

Cluster Topology and Configuration Security

Considerations

Authorization Using Workload Identity and

Instance Principls

Securing Access to the Cluster

OCI IAM and Kubernetes RBAC

Federation with an IDP

Summary

References

5 Container Engine for Kubernetes in Practice

Kubernetes Version Support

Upgrading the Control Plane

Upgrading the Data Plane

Upgrading an Existing Node Pool

Upgrading by Adding a Node Pool

Alternative Host OS (Not Kubernetes Version)

Upgrade Options

Scaling a Cluster

Manual Scaling

Autoscaling

Scaling Workloads and Infrastructure

Together

Autoscaler Best Practices

Cluster Access and Token Generation

Service Account Authentication

Configuring DNS

Configuring Node Local DNS Cache

Configuring ExternalDNS

Cluster Add-ons

Configuring Add-ons

Disabling Add-ons

Observability: Prometheus and Grafana

Monitoring Stack Components

Installing the kube-prometheus-stack

Operators and OCI Service Operator for Kubernetes

Getting Started with Operators on OKE

Operators for OCI, Oracle Database, and

Oracle WebLogic

Troubleshooting Nodes with Node Doctor

Configuring SR-IOV Interfaces for Pods on OKE

Using Multus

Using Bare Metal Nodes

Using Virtual Machine Nodes

Summary

References

6 Securing Your Workloads and Infrastructure

Kubernetes Security Challenges

Concepts of Kubernetes Security

4Cs of Kubernetes Security

Securing Oracle Cloud Infrastructure Container

Engine for Kubernetes (OKE)

Private Clusters

Kubernetes Role-Based Access Control

(RBAC) with OCI IAM Groups

Data Encryption and Key Management

Service

Audit Logging

Security Zones

Network Security Groups (NSGs)

Web Application Firewall (WAF)

Network Firewall

Allowed Registries

Cloud Guard

Hardening Containers and OKE Worker Nodes

Container Scanning

Container Image Signing

Center for Internet Security (CIS) Kubernetes

Benchmarks

Using SELinux with OKE

Worker Nodes Limited Access

Securing Your Workloads

Security Context

syscalls and seccomp

Open Policy Agent (OPA)

OPA Gatekeeper

Open Web Application Security Project

(OWASP)

Supporting Tools

External Container Scanning Tools

CIS-CAT Pro Assessor

Kube-bench

AppArmor

Falco

Tracee

Trivy

National Institute of Standards and Technology

(NIST) Kubernetes Benchmarks

NIST Kubernetes Benchmarks

National Checklist Program Repository

National Vulnerability Database

NIST SP 800-190 Application Container

Security Guide

Summary

References

7 Serverless Platforms and Applications

Container Instances

Architecture

Using Container Instances

Serverless Functions

OCI Functions

Using OCI Functions

Building Your First Function

Adding an API Gateway

Function Logs and Distributed Tracing

Service Mesh

Using the Service Mesh

Adding a Service Mesh to an Application

Summary

References

8 Observability

OCI Monitoring

Alarms

OCI Logging

Service Logs

Custom Logs

Audit Logs

Auditing OKE Activity

Advanced Observability in OCI

Logging Analytics

Enabling and Using Logging Analytics

Prometheus and Grafana with OKE

Using the OCI DataSource Plug-ins for

Grafana

eBPF-Based Monitoring with Tetragon on OKE

Tetragon: eBPF-Based Security Observability

and Enforcement

Running Tetragon on Oracle Container

Engine for Kubernetes (OKE)

Summary

References

9 DevOps and Deployment Automation

OCI DevOps Service

Code Repositories

Triggers

Build Pipelines

Artifacts

Environments

Deployment Pipelines

Elastically Scaling Jenkins on Kubernetes

Setting Up Jenkins on OKE

GitOps with ArgoCD

Setting Up Argo CD on OKE

Summary

References

10 Bringing It Together: MuShop

Architecture

Source Code Structure

Services

Storefront

API

Catalog

Carts

User

Orders

Fulfillment

Payment

Assets

DBTools

Edge Router

Events

Newsletter Subscription

Load

Building the Services

Infrastructure Automation

Helm Charts

Utilities and Supporting Components

Deploying MuShop

Summary

References

Index

About the Authors

Jeevan Gheevarghese Joseph is a senior principal

product manager in the Containers and Kubernetes Services

group within Oracle Cloud Infrastructure. He focuses on

product strategy for containers and Kubernetes platforms at

OCI. Jeevan also works with strategic customers as an

advisor to help them make the most of Oracle’s tooling and

technology platforms. Jeevan’s interests include application

architecture, developer tooling, automation, and cross-

product integration. Before his current role, he held

positions in the Oracle A-Team and Oracle Data Cloud. He

routinely speaks at developer events and industry

conferences.

Adao Oliveira Junior has been working in the technology

industry for more than two decades, with five years of

experience in cloud native solutions. He is a senior principal

solutions architect who excels at gathering high-level

requirements and turning them into technical solutions,

aiding customers and partners worldwide. Adao has held

various positions, including sales engineering and product

manager, in organizations like Oracle A-Team and OCI

Developer Adoption. He is a well-known figure in the cloud

native field and has made significant contributions to open-

source projects and the Kubernetes community. Adao holds

multiple Kubernetes certifications, including CKS, CKA,

CKAD, and KCNA, as well as other computer and cloud

industry certifications.

Mickey Boxell is a senior principal product manager in the

Containers and Kubernetes Services group within Oracle

Cloud Infrastructure. He has been a member of the

Kubernetes release team for many releases, including as the

communications coordinator for Kubernetes 1.24 and the

docs lead for Kubernetes 1.27. Mickey has worked in the

cloud platform and infrastructure space for the past decade.

He has spoken at numerous developer meetups and

conferences, contributed to many open-source projects, and

worked directly with many customers to help implement

Oracle technology.

About the Technical

Reviewer

Drawing from more than 15 years of experience in software

development and technology, Peter Jausovec specializes

in the cloud-native space, Kubernetes, and service meshes.

He is an international speaker, book author, and creator of

popular Kubernetes, Istio, and Envoy courses. Peter

regularly shares his technical knowledge and insights on

cloud-native technologies through his blog on

learncloudnative.com.

http://learncloudnative.com/

Dedications

Jeevan: I dedicate this book to my loving family. To my

amazing wife, Annie, for being the rock in my life and my

shoulder to lean on. Thank you for your constant support

through the endless late nights and missed weekends. To

my wonderful daughter, Eva, for the sheer joy you bring us.

I hope I can make up for every bedtime story and good night

hug I missed. To my parents, who gave me wings, pointed at

the sky, and were unafraid to let me fly: Appa, I wish you

were here to see this.

Adao: To my beloved family, you have been my rock

throughout this entire journey. Your unwavering support and

love have kept me going. This book is dedicated to you as a

small token of my appreciation for all you have done for me.

Thank you for inspiring me to pursue my passions and

believing in me when I didn’t believe in myself. I love you all

more than words can express.

Mickey: I would like to give a huge thank you to my family

for their support. To my fiancée, Rainy, thank you for always

brightening my day. To my parents, Kris and Tim, thank you

for shaping me into the person I am today.

Acknowledgments

Jeevan: Thanks to Brad Posner, who told me that I could

write a book. Without your encouragement, this idea would

not have taken shape.

I sincerely thank my coauthors, Adao and Mickey. This

book would still be just an idea without you guys. Special

thanks to our technical reviewers, Peter Jausovec, and Matt

Vander Vliet, who both had an immense impact on keeping

this book on point.

Thanks to Loïc Tregan, Matt Vander Vliet, Adao Junior, and

Peter Jausovec. I still remember the day MuShop started in a

meeting room. MuShop and its success inspired this book,

and none of it would have been possible without this team.

To all my colleagues from the Oracle A-Team. It’s a

privilege to have worked with all of you and learned from

the legends that you are. #ATeamForever

A special thanks to the mentors that I’ve had over the

years. Ric Smith, Stefan Krantz, Yogesh Bhootada, Loïc

Tregan, and Brad Posner—thank you for all the support,

direction, and help you have given me over the years to

grow and expand my horizons.

Special thanks to Nancy Davis, executive editor at

Pearson, and Christopher Cleveland, our development

editor. You believed in us when we didn’t ourselves.

Last but not least, a special thanks to the Containers and

Kubernetes team at OCI for their tireless dedication toward

building a rock-solid product. I’ll also use this opportunity to

thank my current and past colleagues in Oracle Cloud

Infrastructure for building a world-class platform and

executing a vision for a hyperscale cloud that can scale fast

and democratize the cloud provider ecosystem.

Adao: I want to express my heartfelt gratitude to Jeevan

and Mickey, who worked tirelessly to make this book a

reality. Your dedication, hard work, and unwavering support

have been invaluable throughout this journey. I am truly

blessed to have such a fantastic team of individuals who

share my passion for this project.

Special thanks to Nancy Davis, executive editor at

Pearson, and Christopher Cleveland, our development

editor. Your creativity, insights, and attention to detail have

brought this book to life. I am grateful for your unwavering

commitment to excellence and your willingness to go above

and beyond to ensure its success.

I would also like to thank our technical reviewers, Peter

Jausovec and Matthew Vander Vliet. Your support and

wisdom have been instrumental in helping us achieve our

goals. The MuShop project that we started together was a

great inspiration for this book.

Finally, I want to thank my family and friends for their

unwavering support and encouragement. Your love and

belief in me have constantly inspired and motivated me.

Thank you, everyone, for your hard work, dedication, and

support throughout this journey. This book would not have

been possible without you.

Mickey: I would like to begin by thanking Jeevan and Adao

for bringing me into this project. This book would not have

been possible without your knowledge and dedication. I

would also like to say thank you to Diane Anderson, for

helping me develop good working habits and guiding me at

the start of my career; to the Cloud Native Labs team, for

giving me space to grow and develop my understanding of

cloud native technology; to Jesse Butler, for mentoring me

and always being there to help even long after we parted

teams; to Jonathan Schreiber and Jon Reeve, for taking a

chance on me as a new product manager; and to Devika

Nair, for helping me refine my craft.

Introduction

Cloud native development has become the de-facto

architecture of choice for newly built applications. Cloud

native development gives enterprises the capability to fully

realize the advantages of leveraging a cloud platform and

enables quick iteration and portability. Cloud native

development takes a different and modern approach to

designing, building, deploying, and managing applications.

This approach places automation, elasticity, and resiliency

front and center by leveraging cloud platforms such as

Oracle Cloud Infrastructure (OCI).

OCI is a next-generation cloud designed to run any

application faster and more securely, for less. It is one of

the fastest-growing cloud platforms, in terms of customer

growth and global geographical footprint. OCI includes tools

and utilities for building new cloud native applications and

also running existing enterprise applications without

rearchitecting them. OCI is built around the pillars of AI and

autonomous systems, enterprise security, and open

standards.

Goals and Approach

Whether you are new to the cloud paradigm or new to just

OCI, this book aims to give you a complete rundown of the

services in OCI that help you build cloud native applications.

Because lines between infrastructure engineers and

developers are blurring, the book covers both infrastructure

services and developer services, as well as how to manage

them in the context of a cloud native application

development environment.

For application developers, this book covers modern

cloud native application design paradigms for those who are

new to developing on the cloud, within the context of the

services offered by OCI. Readers who are familiar with cloud

native toolchains and paradigms will find the book useful for

exploring the OCI-specific services and features that help

them make the most of moving their workloads on to OCI.

Readers new to OCI will be introduced to OCI’s central

concepts, including tenancies and compartments. This

introduction orients you with OCI terminology and offers

insights into common patterns for access control and

resource organization. Some OCI services, such as identity

and access management, are covered in detail: They are

pervasive concepts, and understanding these systems is

key to being productive on OCI. Other supporting services

are mentioned only briefly in comparison in the context of

supporting cloud native application development. The book

covers the automation platforms and practices that are key

to being productive when operating cloud native

applications and infrastructure at scale. The book then dives

deeply into cloud native platforms such as the managed

Kubernetes service and serverless platforms. Each chapter

includes complete coverage of the relevant services and

best practices for using them. Throughout the book, we use

example code or snippets to demonstrate concepts and

operational procedures. We include several real-world

examples of running or configuring popular open-source

tools on OCI. Finally, we use all the concepts and services

discussed in the book to implement a coherent application

that we have open-sourced. This example application puts

into practice the learnings around infrastructure automation

and the application development explored earlier in the

book. The application serves as a blueprint for new

application developers who might be just getting started or

as a reference point for those who are comparing OCI’s

services against other market offerings.

Who Should Read This Book?

This book is written for developers, DevOps professionals,

architects, or anyone who wants to understand the various

developer-focused features of OCI. Familiarity with OCI is not

assumed, and familiarity with the general cloud services

model is helpful but not required. The book focuses on the

cloud native services and platforms offered by OCI but does

not cover every OCI feature or platform.

How This Book Is Organized

The book is organized to give readers who are new to OCI

and cloud native development a structured journey that

starts with the basics of OCI, proceeds through

infrastructure automation tools, and then dives deep into

cloud native application development platforms. Readers

who are familiar with other cloud platforms can benefit from

the introduction to OCI and then move freely to other topics

and areas of interest. The final chapter walks through an

open-source example application, complete with

infrastructure automation code, that readers can use as a

learning tool or a reference point for implementing specific

features.

Book Structure

The book is organized into 10 chapters:

Chapter 1, Introduction to Oracle Cloud

Infrastructure: This chapter introduces the reader to

Oracle Cloud Infrastructure. Basic concepts and terminology

in OCI are introduced, along with identity and access

management. This chapter does not attempt to

exhaustively cover OCI at a high level; instead, it covers the

critical basics so that the reader is familiar with foundational

OCI constructs in the chapters that follow. The goal of this

chapter is to orient readers with OCI, and it is relevant to

both readers who have prior experience with other cloud

platforms and readers who are new to cloud-based

development.

Chapter 2, Infrastructure Automation and

Management: This chapter covers infrastructure

automation in OCI. Infrastructure management plays an

important role in cloud-based development, including when

it comes to designing applications for ephemeral and API-

driven infrastructure. This chapter covers the OCI APIs and

popular tools such as Terraform that you use to interact with

OCI in a programmatic manner.

Chapter 3, Cloud Native Services on Oracle Cloud

Infrastructure: This chapter provides a bird’s-eye view of

the various services typically used for building cloud native

applications and supporting services in that ecosystem.

Several of the key services discussed in this chapter are

covered in more depth in subsequent chapters; this chapter

provides the big picture of the various cloud native tools

and services available at your disposal in OCI.

Chapter 4, Understanding Container Engine for

Kubernetes: Cloud native application development has

coalesced around Kubernetes so much that it has become

the most common runtime service for running a cloud

native application on any cloud. This chapter introduces

Container Engine for Kubernetes, which is OCI’s managed

Kubernetes service. The fundamental concepts and features

of the service are covered in this chapter.

Chapter 5, Container Engine for Kubernetes in

Practice: This chapter dives deeper into Container Engine

for Kubernetes and looks at how to operate and run clusters

at scale. Advanced usage scenarios and configurations are

also covered in this chapter.

Chapter 6, Securing Your Workloads and

Infrastructure: As cloud native applications become more

distributed, include multiple technology stacks, and evolve

in parallel with the infrastructure, new approaches to

securing the applications and the underlying infrastructure

are required. This chapter introduces open-source and OCI

native security tools and processes to secure your

workloads and data.

Chapter 7, Serverless Platforms and Applications:

This chapter introduces OCI’s serverless platforms. These

platforms transparently handle infrastructure management.

They offer developers varying degrees of agility and control

and have been designed from the start to offer quick-and-

easy cloud native development workflows. This chapter

covers OCI services such as Functions and Container

Instances, as well as their use cases and best practices.

Chapter 8, Observability: Cloud native systems are

always in flux, as they scale and flex to meet workload

demands and optimize cost. This chapter tackles the

challenge of observing constantly changing applications and

infrastructure using common observability tools and

platforms. The chapter covers OCI infrastructure and

application observability services, such as metrics and log

analytics. Apart from the native tooling that OCI provides,

this chapter looks at popular open-source tools for

observability and shows how to integrate OCI metrics and

logging with these open-source tools.

Chapter 9, DevOps and Deployment Automation:

One of the biggest drivers for adopting cloud native

architecture is the increased development velocity and

faster evolution of your applications. This is facilitated by

agile tools that can constantly update your distributed code

bases, validate the security of your software supply chain,

and continuously deploy updates to your workloads without

interrupting business. This chapter covers the operation and

lifecycle management of owning a cloud native workload.

OCI features and services such as the DevOps platform are

discussed in this chapter. This chapter also looks at the

GitOps approach to lifecycle management and shows how

to implement such an approach on OCI with open-source

tools.

Chapter 10, Bringing It Together: MuShop: The final

chapter in this book gives you a tour of MuShop, a set of

sample applications built to showcase the approaches and

tools described in this book. It models an online shop that

consists of a set of polyglot microservices. The application

architecture demonstrates how a group of services can

interact and communicate to form a cohesive application. It

shows how failures in a distributed system such as this can

be safely handled, how individual parts of the applications

can be upgraded and scaled, and how the system as a

whole (including the infrastructure) can be secured and

monitored. The source code for the application is open and

published on GitHub, and this chapter walks you through

both the code and the various application design elements

of MuShop.

Code Examples and Cloud Resources

Throughout the book, we showcase code snippets to

demonstrate concepts and configuration options. However,

code can be verbose when presented in its complete form,

and it is often unproductive to wade through large chunks of

code to locate a few lines that demonstrate a concept. For

this reason, the code examples in the book have been kept

as brief as possible. This also helps draw your attention to

the essential code elements in each context. While this

makes for a better reading experience, we also understand

that, in many cases, you might want to see the code in its

complete form to experiment with it in a live environment

easily. We have placed several of these lengthy code

examples, scripts, and utilities in a public GitHub repository.

You will find the GitHub repository at

https://github.com/building-cloud-native-apps

We also present a complete cloud-native application

example that demonstrates the development practices and

infrastructure automation practices cohesively. This

application and its associated resources are available at

https://github.com/oracle-quickstart/oci-cloudnative

These examples are a powerful learning tool when

combined with the Always Free Tier of service offered by

Oracle Cloud Infrastructure. This gives you access to the

services provided by Oracle Cloud Infrastructure and can

help you build hands-on experience and practice the

concepts described in this book. You can sign up for the free

trial with the included Always Free Tier at

https://www.oracle.com/cloud/free/

https://github.com/building-cloud-native-apps
https://github.com/oracle-quickstart/oci-cloudnative
https://www.oracle.com/cloud/free/

1

Introduction to Oracle

Cloud Infrastructure

Oracle Cloud Infrastructure (OCI) offers a comprehensive

platform of public cloud services that enable enterprises,

Independent Software Vendors (ISVs), and startups to create

cloud-scale solutions that are secure, highly available, and

geographically distributed on one of the fastest-growing

cloud provider footprints.

Cloud adoption can empower your organization to

improve business agility and promote innovative solutions.

However, every cloud infrastructure platform uses its own

architecture and terminology. This makes the process of

getting started on a cloud platform equally challenging for

both new users and users who have worked on other cloud

platforms. Understanding these terms also helps you

understand how OCI is distributed across the globe, how it

organizes resources, and how it secures access to them. If

you are new to working on a cloud platform, this section

introduces the basic OCI terminology. On the other hand, if

you are familiar with other cloud platforms, many of these

terms and concepts might sound familiar; however, they

might also differ in small but important ways when

compared to similar terms or concepts in other cloud

platforms.

The OCI service portfolio is broad, encompassing

infrastructure services, security and identity services,

developer platforms, analytics platforms, machine learning

and artificial intelligence (AI) platforms, media services, and

more. Figure 1-1 shows a high-level overview of the various

classes of services that are available in OCI. This book

focuses on building cloud-native applications and discusses

the services and platforms in OCI that help you build

modern, distributed, and resilient applications. These

include services such as Oracle Container Engine for

Kubernetes (OKE), Oracle Container registry, OCI messaging

and observability platforms, OCI service mesh, API

gateways, and more. These services build on the

foundational concepts of how resources are distributed,

organized, secured. This chapter covers these foundational

concepts in OCI and introduces its vocabulary. To get the

most from OCI’s services, this chapter also presents a set of

best practices for effectively planning and executing your

OCI adoption.

Figure 1-1 A High-Level Overview of the Services OCI

Offers

Realms, Regions, and Availability

Domains

OCI as a cloud platform is organized into multiple realms. An

example of a realm, and the most common realm for most

users of OCI, is the OCI commercial realm. Most users do not

even realize that realms exist, because they most often

interact with just the commercial realm. A realm is a logical

construct that is spread across geographies and physical

data centers. Realms are completely isolated from each

other, even when they might share a physical location.

Examples of other realms include the government realms

for the United States, the United Kingdom, and more. These

realms have a different geographical spread than the

commercial realm.

A realm is made up of one or more regions. Regions are

geographical areas around the globe where OCI has a

presence. At the time of writing, the OCI commercial realm

is spread across more than 45 regions across the globe and

is used by OCI commercial customers (see Figure 1-2). The

OCI approach to regions is to have regions close to

customers. The OCI fundamental design and architecture

prioritizes the speed and efficiency of launching new

regions, allowing OCI to rapidly scale its footprint across the

globe. The OCI focus on enterprise workloads prioritizes

data sovereignty and business continuity requirements for

customers, which drives its strategy of building multiple

cloud regions in every country.

Regions themselves are a logical grouping of one or more

availability domains, which are physical data centers

located within the same relative geographical area. Some

regions have multiple availability domains, which means

that the region has multiple physical data centers that are

connected by a fully encrypted low-latency/high-bandwidth

network. Cloud resources can be regional in nature, as with

a Kubernetes cluster, or they can be specific to an

availability domain, as with a node (compute instance)

within that cluster. Figure 1-3 shows the OCI region

presence at the time of writing.

Figure 1-2 OCI Realms, Regions, and Availability

Domains

Figure 1-3 Oracle Cloud Infrastructure Global Footprint

An availability domain offers a construct known as a fault

domain for applications to implement fault tolerance and

high availability. Every availability domain has three fault

domains that offer completely isolated physical hardware

grouping. Each fault domain has its own hardware

resources, including power distribution units, cooling, and

more, within a single availability domain. This enables you

to ensure that redundant resources you use are isolated at a

hardware level, protecting your workloads from hardware

failure and maintenance outages. Depending on the type of

workloads and their characteristics, fault tolerance and high

availability can be implemented within a single availability

domain, spanning multiple availability domains within a

region or even spanning the workload across multiple

regions.

Tenancies and Compartments

A tenancy is a partition within an OCI realm that identifies a

single customer subscription. A tenancy is created when you

subscribe to OCI and is secure and isolated from other

tenancies. A tenancy can subscribe to any region that is

part of its realm and use the resources from any of the

subscribed regions. It also acts as the top aggregate unit for

cost management and budgeting tools that OCI provides out

of the box. These included tools, such as the tenancy

explorer, can aggregate resource use across regions to give

users insights into their tenancy’s resource use across all

geographies.

Most organizations use a single tenancy and usually want

to have a management model that is similar to their

existing processes. This generally means that they carve up

the tenancy and give individual departments or business

units more autonomous control over their own collections of

resources; the global infrastructure team then sets

standards on usage quotas, security posture, and more. In

other words, administrators usually compartmentalize their

workloads or business units. OCI offers a construct for this

exact purpose. Within a tenancy, you can organize your

resources into compartments. Compartments are not just

for organizing resources; they also let you manage who has

access to perform various operations on resources within a

compartment. This lets administrators create policies that

govern how an organization’s members access and interact

with the resources. Compartments can be hierarchical: They

can have nested compartments up to six levels deep. The

root of all compartments is tenancy itself. As a simple

example, an administrator could designate one group of

users to have only read-only access to resources within a

compartment, grant another group access to modify certain

resources, and allow yet another group complete control,

including the capability to create and terminate resources.

Although this model is common, other models are also

possible, depending on an organization’s structure and what

is conducive for the users. For instance, a large organization

might operate as a set of independent business units that

own their individual tenancies. Likewise, another

organization could be horizontally integrated, with multiple

shared databases colocated in a compartment that is

managed by a team of database administrators (DBAs).

A cloud resource, or simply a resource, is any service or

object that users create in OCI and that represents some

capability. For instance, a Kubernetes cluster, a compute

instance, a network security group, and a user account are

all examples of resources. The various services that make

up OCI offer APIs and tooling built on the APIs to enable

users to interact with and manipulate these resources.

Oracle assigns a unique identifier called an Oracle Cloud

Identifier (OCID) to all resources. Users can use OCIDs to

identify and operate on specific resources when using the

OCI API, the command-line interface (CLI), or tools such as

Terraform. OCIDs are structured as follows:

Click here to view code image

ocid1.<RESOURCE TYPE>.<REALM>.[REGION][.FUTURE USE].<UNIQUE ID>

An example OCID for a block volume could look like

ocid1.volume.oc1.iad.xxxx[truncated]xxxx and an example OCID

for a User could look like ocid1.user.oc1..xxxx[truncated]xxxx.

Note that the region identifier in an OCID is optional and is

present only for region-specific resources such as block

volumes or compute instances (they are always located in a

specific region). Global resources, such as a user, do not

have this identifier because the user is not localized to any

region but instead is valid across all regions to which the

tenancy has subscribed.

Controlling Access to Resources

A common challenge for infrastructure teams is figuring out

how to give their users a certain amount of autonomy

without compromising their security posture. This is more

challenging than it sounds. It starts with the task of

identifying users, who can be human or nonhuman. The

users can be transient because team members are

generally added and removed or because a particular

person’s access changes over time. General industry

principles such as the principle of least access promote an

access pattern in which users are given the least privileges

to accomplish their tasks and are restricted to the most

specific resources for the shortest duration of time. This

presents several challenges, such as needing to be very

specific about the resources that a user can effect and

further narrowing access to specific types of operations on

those resources that are allowed and specific time frames.

To address these needs, OCI provides a built-in identity

and access management (IAM) capability. OCI IAM enables

you to manage access to your cloud resources in a

declarative manner that spans regions. IAM provides

resources such as users, groups, and policies. A user

resource in OCI represents a subject that authenticates with

OCI and works with OCI resources. A group resource in OCI

is simply made up of zero or more users, making it simple to

manage access for a collection of users by treating them as

a logical collection. A user can be a part of multiple groups.

IAM uses policies to describe access control, and it confers

privileges to groups, never individual users. A user starts

out as not a member of any group and, hence, has no

privileges (other than perhaps changing passwords). When

a user is added to a group, the user is conferred the

privileges that the policy has granted to the group; if a user

is a member of multiple groups, the user gets the widest

permissions that are allowed by the totality of the group

memberships.

Policies are designed to be intuitive and human readable,

which makes it easy to create and maintain policies over

time. Policies follow this structure:

Click here to view code image

Allow group <group_name> to <verb> <resource-type> in compartment

 <compartment_name>

Figure 1-4 shows a policy made up of several policy

statements.

Figure 1-4 A Policy Document Consisting of Intuitive

Policy Statements

Notice that the policy statements always start with the

word allow. By default, there are no permissions; all policies

add permissions and never take away permissions. In a

policy statement, you can refer to group names using their

OCIDs or names, and you can include multiple groups

(comma separated) within the same statement.

The verbs indicate what types of operations are granted

by the policy. Verbs can be inspect, read, use, and manage. Both

inspect and read verbs allow nonmutating operations and

essentially grant read-only access. The difference between

them is that inspect restricts the amount of data you can

read about the resource, whereas read allows the user to get

complete metadata about a resource. The use verb grants

use of the resource and limited modifications to resources,

but it limits this to existing resources; it does not include

the ability to create or delete resources. Furthermore, the

use verb does not cover modifications that are equivalent to

creation and deletion.

The various verbs attempt to aggregate API operations

for each service in a generic manner. Ultimately, OCI is a

cloud platform, and every resource provided by the platform

is manipulated through the APIs that it exposes. The types

of operations that are available for each resource differ, so

the various verbs for each resource can also have different

meanings. For instance, consider the verb use in the context

of networking and in the context of storage: They could

mean different things. Therefore, OCI documentation1

provides a complete reference for each service and how the

various verbs affect each resource. The various verbs and

their effects in general terms can be summarized as follows:

inspect: Fetch a limited amount of data about a

resource

read: Fetch the complete metadata for a resource

use: Interact with the resource, without being able to

create or delete it

manage: Operate with complete control over the

resource

To illustrate these verbs in action, consider the act of

updating the Kubernetes version used by a Kubernetes

cluster running on Container Engine for Kubernetes. This is

not covered by the use verb and requires the permissions

conferred by the manage verb. On the contrary, consider the

act of generating a kubeconfig file. The cluster exists, and

generating a kubeconfig file does not modify the cluster in

any way. Therefore, a user who has permissions to use

clusters can request the configuration required to connect

to it. The manage verb, on the other hand, confers permissions

to perform any action on the resource, including upgrading

it to a newer version, creating new clusters, and terminating

existing ones.

The verb in a policy statement is followed by the

resource type. This can be a very specific resource or a

more generalized family of related resources. Although it is

good practice to individually identify the resources the

policy affects, many times resources are closely related and

often managed together. In these cases, a single policy

statement can refer to a family of resources that the policy

statement will affect equally. The primary advantage of

using family resource types is the capability to write fewer

policies and ease policy management. The downside is that

if OCI adds a new resource to a family, the existing policies

will automatically apply to the new resource, which is

sometimes undesirable. As an example, consider the

following resource types:

clusters: Represent Kubernetes clusters running on

Oracle Container Engine for Kubernetes.

cluster-node-pools: Represent a pool of nodes that act as

worker nodes for deploying and running workloads in

this cluster. A cluster may have many node pools.

cluster-work-requests: Consist of resources that track long-

running tasks, such as upgrading your cluster or scaling

your node pool, and other cluster management

operations that are executed asynchronously.

These three resource types are related to each other and

can be collectively addressed as the cluster-family aggregate

resource type. In the future, if another resource type that is

closely related to these is added, the cluster-family

aggregate resource type could encompass that resource

type as well. In other words, the aggregate resource type’s

scope can change as the services expand and evolve.

Using these resource types individually, we can craft

policies that give various groups access to very specific

operations. This approach might be well suited for

organizations that have clear responsibility boundaries or

are required to isolate access for regulatory reasons. Such

an organization might choose to use policy statements as

follows:

Click here to view code image

Allow group k8s_admin to manage clusters in compartment project_A

Allow group k8s_admin to manage cluster-node-pools in compartment

Allow group k8s_admin to manage cluster-work-requests in compartme

Allow group k8s_ops to read clusters in compartment project_A

Allow group k8s_ops to read cluster-node-pools in compartment proj

Allow group k8s_ops to read cluster-work-requests in compartment p

These policy statements identify two groups, k8s_admin and

k8s_ops. The k8s_admin group has full control over these

resources, whereas the k8s_ops group has the ability to read

the resources and their metadata. Note that both groups

have access to the same resource types, but their level of

access or the operations that members of each group are

allowed to perform are different. Using the aggregate

resource type, the same policy statements can be rewritten

as follows:

Click here to view code image

Allow group k8s_admin to manage cluster-family in compartment proj

Allow group k8s_ops to read cluster-family in compartment project_

An agile team in which developers take on multiple roles

might find it easier to create relatively coarse-grained

policies that permit the same level of access to all the

resource types within the family. It is important to note that,

when using an aggregate resource type such as cluster-

family, if the aggregate resource type adds a new individual

resource type to it, these policies will now grant access to

that new resource type, which did not exist at the time the

policy was written. Therefore, you should take care when

using aggregate resource types: Over time, the policy could

potentially give users access to more resources (but always

closely related ones) than at the time of its writing. Being

more specific might be verbose, but it is usually more

precise and consistent with the intent. The contrary view to

this approach could be that an aggregate would only ever

add resources that are closely related and, therefore, if a

closely related new resource type is added in the future, it

might invariably trigger an updating of the policy to include

the new resource type. The choice here depends on your

preference, established organizational processes, and

security posture.

The final part of the preceding policy syntax is the scope

of the policy statement—in other words, where and at what

level this policy should be applied. This is typically a

compartment. In the preceding example, the permissions

are granted to the groups k8s_admin and k8s_ops for all

resource types in the cluster-family in the compartment

named ProjectA. This keeps the policies you write simple to

read, understand, and maintain, yet keeps them flexible

enough that you can implement an access pattern to give

users the least amount of privileges to accomplish their

tasks to the most specific resources. The privileges granted

by a policy statement are limited to classes of operations

(verbs) and scoped to groups of users. The resources to

which the access is granted are limited to the resource

types and scoped to the compartment specified. When an

authenticated user attempts to perform an operation on OCI

—regardless of whether the API is used directly or a higher-

level abstraction is used (such as the Software Development

Kits [SDKs], CLI, Terraform, Ansible, or the web console)—

the IAM system checks whether the user (or, more

specifically, any group that the user belongs to) is allowed

to perform the requested operation.

Policies also offer advanced syntax elements that are a

lot more granular and nuanced than the simple syntax you

have seen so far. As part of a policy statement, you can

specify one or more conditions that must be met for access

to be granted. These conditions are based on variables that

represent either the access request itself or the resource on

which the action is taken. The variable that encapsulates

the request parameters and characteristics is named request.

The variable that represents the resource being acted upon

is named target. Using these variables enables you to make

policies a lot more fine-grained. As an example, consider

the following policy:

Click here to view code image

Allow group vendor-admins to manage clusters in tenancy

 where all { request.utc-timestamp.time-of-day between '17:00:

 '01:00:00Z',

 target.compartment.id != 'OCID_for_production_com

 request.permission != ‘CLUSTER_DELETE’}

This policy enables members of the group vendor-admins to

manage clusters in the tenancy if they meet some

conditions. The conditions are combined with the all

keyword, indicating that all the conditions need to be met if

access is to be granted. First, the group is granted the

permission only when the requests are made during a

specific time interval of the day. Second, the users are

allowed to manage clusters in any compartment except the

production compartment. Last, the CLUSTER_DELETE permission

is not granted. This uses the notion of permission, which

allows you to be very specific in your policy statements.

Permissions represent the operations that a user is allowed

to perform on a resource. These operations depend on the

resource itself. Verbs such as use and manage, in the context of

a specific service, are simply bundles of these permissions.

The Oracle documentation comprehensively covers these

advanced constructs.2

Similar to groups, OCI supports a construct called a

dynamic group. Dynamic groups are defined in terms of a

set of matching rules. All resources that match the rules are

considered members of the group. For instance, consider a

dynamic group named build-nodes that is defined by a

matching rule that matches all instances in a specific

compartment named build-nodes. The matching rule might

look as follows:

Click here to view code image

instance.compartment.id = '<compartment_ocid for the build-nodes c

Now consider the following policy:

Click here to view code image

allow dynamic-group build-nodes to use devops-repository in compar

 Project-A

Any instance created in the compartment build-nodes is

automatically a member of the dynamic group. When the

instance in this compartment tries to access a devops-

repository in the Project-A compartment, its permissions are

checked and IAM will resolve it as having access. This

access is granted because the instance that is requesting

access is part of the dynamic group build-nodes and the

dynamic group is given access through the policy.

Cloud Guard and Security Zones

Cloud Guard is an OCI service that constantly examines your

OCI resources, looking for potential security issues,

configurations that increase the attack surface, or user

activity that deviates from normal. When Cloud Guard

detects a problem, it can alert you or take corrective actions

itself. The general workflow in Cloud Guard is to define a

scope for the resources to target, usually a compartment.

When that is set, Cloud Guard continues to monitor the

resources it is targeting, using a set of detectors. The

detectors’ behavior is encapsulated in a set of rules bundled

as a recipe. When rule violations are detected, it raises a

problem. Responders then can take an appropriate action,

based on rules defined in a responder recipe. This flow and

behavior are fully customizable. You can use Oracle-

provided detector recipes to watch for issues or build your

own ruleset as a recipe. Similarly, the actions that are taken

can be customized by either using the Oracle-provided

recipes or building your own. Figure 1-5 shows the Cloud

Guard dashboard that organizes the high-level report from

Cloud Guard, enabling you to drill down into the problems

that are detected.

Even though Cloud Guard constantly watches over its list

of targets using the detectors you specify, it can be useful

to set some ground rules to prevent policy violations instead

of simply detecting and remediating them. Security zones

provide exactly this capability. Security zones work by

validating operations, such as creating or updating

resources in real time to deny operations that would result

in a violation of the zone’s rules. Security zones are created

by attaching a security zone recipe to a compartment.

Security zone recipes are a collection of security zone

policies that are applied to the security zone.

Figure 1-5 Cloud Guard Dashboard

For example, a security zone policy such as deny

block_volume_without_vault_key forces block volumes created in

a security zone to require a customer-managed encryption

key instead of the default Oracle-managed encryption key.

These policies are not always intrusion oriented; for

instance, the policy deny database_without_backup enforces all

databases within that security zone to have automatic

database backup configurations. Security policies are

categorized into several groups, based on the security

principles they help implement. You can create your own

recipes using these policies to meet your specific security

requirements. Apart from the custom recipes you can

create, all tenancies come with a default recipe named

Maximum Security Recipe that includes all available

security zone policies.

When creating a new tenancy or starting with OCI, it is

often good practice to enable Cloud Guard. Enabling Cloud

Guard is an easy process that involves the tenancy owner

granting the Cloud Guard service permissions to introspect

resources within the tenancy. Although these services are

part of OCI, they still require customers to acknowledge and

provide privileges so that they can introspect customer-

owned resources. Cloud Guard requires minimal permissions

to monitor the resources in your tenancy. With Cloud Guard

enabled, you can also use security zones, which requires an

added set of permissions. Both Cloud Guard and security

zones provide default configurations that you can customize

to your needs or use as is when you get started.

Service Limits and Cost Management

A basic understanding of service limits, quotas, budgets,

and other guardrails and cost-management features in OCI

can come in handy as you scale your workloads on OCI.

Every tenancy is preconfigured at its creation with a set of

limits for each resource type, called service limits. When

you reach the service limit for a resource, OCI does not

allow you to create more of that resource. These limits exist

to protect users from accidentally creating too many

resources. Service limits are updated automatically, based

on consumption patterns, but they also can be updated by

raising a request from the OCI web console.

Whereas service limits are set by Oracle, compartment

quotas are limits that you can set on compartments.

Compartment quotas are set through policies. Consider the

following policy:

Click here to view code image

set compute-core quotas gpu-a10-v2-count to 20 in compartment Proj

This policy caps the number of GPUs for shapes in the

VM.GPU.A10 and BM.GPU.A10 series to 20 in the

compartment named Project-A. Compartment quotas are

typically used when a project or a team is given its own

compartment and the admin wants to cap the resource

usage for the project or team by setting a compartment

quota. When the quota has been reached, no more

resources of that kind will be provisioned in that

compartment. In the preceding example, gpu-a10-v2-count is

the quota for the number of GPUs that are available through

compute shapes such as VM.GPU.A10 and BM.GPU.A10.

These are GPU-enabled compute shapes; a tenancy admin

might want to use quotas to ensure that all projects and

teams have access to these resources so that no single

team can monopolize its use or overconsume them.

These quota policies can be used to set a quota (set),

unset a quota (unset, typically to override a tenancy-wide

quota), or remove access to a resource within the specified

compartment (zero). It is important to note that, when the

compartment quota has been reached, the tenancy still has

resources that can be consumed in other compartments.

The tenancy administrator, or any user who has access to

manage compartment quotas, is in full control of these

limits. Each service exposes certain resource quotas; the

OCI documentation provides a complete reference.3

Limiting resource usage often can be a harsh step,

especially when your goal is to minimize friction and

increase team velocity while staying informed about

resource usage and projections. To address this, OCI comes

with features that help you track your cost across multiple

dimensions. A budget is a construct that can be used to

create your own soft limits on resources so that you can

keep track of your infrastructure spending and create alerts

to give you a heads-up. Alerts can be triggered when your

spending crosses thresholds that you set. Administrators

and users who have been given access to the feature can

manage budgets using a consolidated view in OCI and also

receive email alerts. Unlike compartment quotas, which are

always set at a compartment level, budgets offer the

flexibility of using cost-tracking tags or compartments to

track spending. Budgets are not evaluated in real time and

they update periodically (usually hourly). Each budget

shows the current spend as well as a forecast for the spend,

along with the last time the budget was evaluated. Figure 1-

6 shows the alert options for a budget.

Because budgets are based on costs and spending

instead of limits placed on resources themselves, they can

be used alongside compartment quotas in a complementary

manner. When bringing new workloads to OCI, it is typically

easier to set a budget and work within that constraint. This

is because, when bootstrapping a new workload, developers

might not have a good handle on the resources required

and the work typically involves a lot of initial flux in

determining resource consumption, sizing, and setting up

and tearing down ad-hoc environments. This is also the

phase where you need the most velocity to build

momentum for your team. You can keep tabs on the

spending patterns using a budget. Then when you get a

good sense of what your typical resource consumption is,

you can set quotas to tighten the rules. This avoids

accidental resource consumption, say, by a misbehaving

automation.

Figure 1-6 Creating a Budget Alert Rule

Apart from these services, OCI also includes many

governance and compliance features. Tenancy explorer is a

service that enables you to examine your tenancy to get a

cross-region view of your resource usage. Cloud Advisor,

shown in Figure 1-7, automatically and continuously

analyzes your tenancy to find cost optimizations,

performance improvements, and security posture

improvements. Transparent billing offers analysis tools

within the console that enable you to explore your spending

in multiple dimensions.

Figure 1-7 Oracle Cloud Advisor Dashboard

Getting Started with Your Tenancy

Having covered the basic OCI terminology and concepts,

this chapter moves on to look at how you can start setting

up your tenancy to support development teams, create

application environments, track costs, and set budgets. The

first step is to sign up for an account. OCI offers a paid tier,

a trial, and an always-free tier. The paid tier offers the full

breadth of metered services, and you have multiple options

to pay as you go and leverage existing licenses you might

have. The trial (at press time) offers a 30-day window with a

$300 credit to your account. The always-free tier limits the

resources you can use, but these are available to you

without charges for an unlimited time. After you have

activated your account, you can log in through

https://cloud.oracle.com and see your cloud service

dashboard.

Setting Up Users and Groups

When a tenancy is created, the email address you provided

is added as the first user in the tenancy, and this user is

added to the Administrators group. The Administrators

group is a superuser group that, by default, has complete

privileges over the entire tenancy. If you provided your

email address when you signed up for your tenancy, then

you are automatically an administrator once the tenancy

has been created. Administrators can add other users and

groups. The identity system can also be federated to an

external identity provider.

Users can always change or reset their own console

password, as well as manage their own API keys. An

administrator does not need to create a policy to give a user

those abilities.

To manage credentials for users other than yourself, you

must be in the Administrators group or some other group

that has permission to work with the tenancy. Having

permission to work with a compartment within the tenancy

is not sufficient. For more information, see the

Administrators Group and Policy.4

IAM administrators (or anyone with administration

privileges to the tenancy) can use either the console or the

API to manage all aspects of both types of credentials, for

themselves and all other users. This includes creating an

initial one-time password for a new user, resetting a

password, uploading API keys, and deleting API keys.

https://cloud.oracle.com/

Setting Up API Keys and Auth Tokens

As a Developer or a DevOps engineer, one of the first

actions to take after you have logged into your account, is

to set up your API keys. The API key is a standard 2048-bit

RSA key pair in PEM format. You upload the public key to

your user profile and keep the private key securely. Every

API call you make to OCI is signed by the private key, and

OCI verifies the signature using the public key associated

with your profile. The API keys securely authenticate you

with the OCI APIs and are essential when you work with OCI

tooling such as the command-line interface, Terraform, or

the various SDKs. You can use the console to generate the

private/public key pair for you (see Figure 1-8). If you

already have a key pair, you can choose to upload the

public key as well. OCI tooling such as the OCI CLI or

external tools such as Terraform use these API keys to sign

the requests to OCI APIs and identify the user making the

API calls. Because developers and DevOps engineers

commonly work with multiple tenancies, regions or

identities, these API keys and associated information are

typically stored in a configuration file as profiles to easily

switch between the configurations and identities. When you

use the console to add the key pair, the console also

generates a configuration file snippet that you can save.

The configuration file typically has the following elements:

user: The OCID that represents the user who owns this

key

fingerprint: The public key’s digest in two-digit groups

tenancy: The tenancy’s OCID

region: The default region to use

key_file: The path on your file system where the private

key file is located

Auth Tokens are Oracle-generated token strings that can

be used when a third party or API does not support key-

based authentication and when OCI signature-based

authentication cannot be used. Consider the example of

using Docker to pull a container image from an image

repository with the docker pull <image> command. OCI

provides a private image repository that is Docker

compatible. Docker, however, uses usernames and

passwords to authenticate with repositories, not the more

secure key-based authentication that OCI prefers. In this

scenario, you can use an auth token. Auth tokens do not

expire, and each user can have up to two auth tokens at

any given time. Similar to API keys, users have the

capability to create, update, and delete their own auth

tokens. Administrators, on the other hand, have the

capability to manage auth tokens for other users as well.

Figure 1-9 shows a user profile with two auth tokens. The

purpose of these tokens is clear from their descriptions;

however, the actual token itself can no longer be viewed. If

the token is lost, the user can delete and re-create another

token.

Figure 1-8 Generating an API Key Pair from the Console

Figure 1-9 Generating Auth Tokens

Planning How Your Teams Will Use

OCI

As you prepare to onboard your team to OCI, it is prudent to

consider a plan for how you will manage your tenancy and

set it up so that multiple teams can work within it efficiently.

You should consider how your IT and development

organizations are structured and create a synergistic

strategy for managing your tenancy. This includes planning

how your users are grouped and designing an efficient

compartment structure that makes it conducive for

developers and DevOps teams to collaborate effectively.

Development teams typically want quick and friction-free

access to resources, whereas DevOps and SecOps teams

have resource management and security posture as their

top priorities. Designing an efficient compartment structure

and a set of policies that manage access to these

compartments is critical to ensuring success for the various

stakeholder teams.

On one end of the spectrum, you can put all your

resources into the root compartment. This would make the

setup process simple, but at the same time it makes fine-

grained access control more difficult. Although this might be

useful during evaluation and basic prototyping with OCI, its

untenable for real-world use in an enterprise setting. The

other extreme would be having too many compartments

with resources that are used and managed by the same

groups located across several compartments, resulting in

very complex policies needed to manage the right level of

access to the resources and compartments. Both these

extremes are uncommon for real-world use.

One common strategy would be to set up compartments

and policies that align with the workloads. For instance,

imagine that your team is bootstrapping a new project

codenamed Hydra. You could create a new compartment

named Hydra and then create groups such as Hydra-Devs,

Hydra-Ops, Hydra-Admins, and Hydra-ReadOnly. All

resources pertaining to the Hydra project, from core

services such as networks, to developer lifecycle services

such as DevOps, to application runtimes such as Kubernetes

clusters, are all located within the compartment. The users

on the project are grouped into the various groups. Some

users could be taking on multiple roles by being a part of

multiple groups. This compartment and group structure

makes it easy to create policies that apply to each group

and give them varying levels of access to the resources in

the compartment. As an example, consider the following

policy statements:

Click here to view code image

Allow group Hydra-Admins to manage all-resources in compartment Hy

Allow group Hydra-Ops to manage cluster-family in compartment Hydr

Allow group Hydra-Ops to manage devops-family in compartment Hydra

Allow group Hydra-Devs to use cluster-family in compartment Hydra

Allow group Hydra-Devs to use devops-family in compartment Hydra

Allow group Hydra-Devs to manage devops-repository in compartment

Allow group Hydra-ReadOnly to inspect all-resources in compartment

The example shows that Hydra-Admins can act as

superusers within the compartment. This is often desirable

to scale the team of tenancy admins while maintaining the

principle of least access. A few users who belong to this

group can assume the administrator role, but only within

the confines of the Hydra project. The Hydra-Ops team has

access to manage both the cluster-family as well as the

devops-family. This means that members of this group can

create and manage OKE clusters as well as code

repositories (git), build pipelines, and more. The group

Hydra-Devs can access these same resources but cannot

make administrative changes such as creating or modifying

the clusters; however, it can create code repositories. The

Hydra-ReadOnly group can view all resources in the

compartment but cannot otherwise affect them. This model

makes it easy to create a sandboxed environment for each

workload and enables administrators to create clear and

concise policies, making them easy to understand and

manage. This approach can be thought of as a vertical

model because all layers of the stack for a particular

workload are managed together.

Similar to organizing compartments and user groups

around workloads, another common approach is to organize

around the existing organizational structures. These cases

might use compartments such as Networking, Databases,

and Middleware, and user groups such as Network-Admins,

DBAs, and DevOps that own and operate their own

collection of resources for which they are responsible. In this

model, the resources that are managed by a group are

colocated in a compartment even when these are used by

separate workloads. That is, regardless of which application

they are associated with, all databases are in the same

compartment and are administered by the same set of

DBAs, which might feel familiar to organizations that follow

a similar model in their enterprises. This model also makes

it easier to manage policies for shared resources, such as

databases that multiple applications use. Such an approach

can be thought of as a horizontal model because it typically

groups the management of a class of resources horizontally

across workloads. This model can support organizational

structures that already operate with these horizontal

dependencies.

These are broad approaches that generalize common

usage patterns. Each organization and each team’s

dynamics are different, so it is a worthwhile exercise to plan

how you want to organize your resources, group your users,

and manage access. In addition to the approaches

described here, the Oracle documentation covers other

approaches and includes an OCI Cloud Adoption Framework

that addresses best practices and provides concrete

guidance across several pillars of success, such as business

and people strategies, process design, technology

implementation, and operations.

Summary

This chapter just scratched the surface of OCI, but it gives

you a sense of the scale at which you can operate; how the

platform itself is structured; and what controls are available

to manage your workloads, organize your teams, and

provide access in a secure and efficient manner. This offers

a starting point for you to explore more features in OCI and

form preliminary ideas on how you can shape OCI to fit your

deployment process and workflows. Elasticity and resiliency

are keystones for a cloud native application. The next

chapter discusses the infrastructure automation tools and

platforms in OCI that enable you to scale infrastructure as

your application’s needs change at runtime.

References

1 OCI Policy Reference: https://docs.oracle.com/en-

us/iaas/Content/Identity/Reference/policyreference.htm

2 Advanced Policy Features : https://docs.oracle.com/en-

us/iaas/Content/Identity/policiesadvfeatures/policyadvan

cedfeatures.htm

3 Available Quotas by Service: https://docs.oracle.com/en-

us/iaas/Content/Quotas/Concepts/resourcequotas_topic-

Available_Quotas_by_Service.htm

4 Administrators Group and Policy:

https://docs.oracle.com/en-

us/iaas/Content/Identity/Concepts/overview.htm#The

https://docs.oracle.com/en-us/iaas/Content/Identity/Reference/policyreference.htm
https://docs.oracle.com/en-us/iaas/Content/Identity/policiesadvfeatures/policyadvancedfeatures.htm
https://docs.oracle.com/en-us/iaas/Content/Quotas/Concepts/resourcequotas_topic-Available_Quotas_by_Service.htm
https://docs.oracle.com/en-us/iaas/Content/Identity/Concepts/overview.htm#The

2

Infrastructure Automation

and Management

One of the primary ways in which cloud-based infrastructure

differs from traditional infrastructure is in its use of APIs to

provision and manage infrastructure. This means that the

traditional hardware procurement and refresh cycle can now

be replaced with a simple API call. This simple but powerful

construct opens the door to significant advantages and

optimization in infrastructure management. Users no longer

have to preplan for infrastructure needs; instead, they can

provision infrastructure just in time. This also unlocks cost

savings in elastically scaling infrastructure based on metrics

or other criteria. The advantages of these optimizations also

cascade into modern application design practices that can

programmatically scale infrastructure along with

applications based on real-time need.

One Set of APIs, Different Ways to

Call Them

As with any other cloud provider, Oracle Cloud Infrastructure

(OCI) provides application programming interfaces (APIs) for

all its infrastructure resources. This means that every single

infrastructure resource that OCI provides can be created and

managed using its APIs. On top of these APIs, OCI provides

software development kits (SDKs) for various programming

languages, which make the process of calling these APIs

from your favorite programming language easy and enables

you to create a new breed of software that can provision

and manage hardware by itself. For example, if you have a

Java or Python application that needs to create compute

resources or set up other infrastructure, you can use the

SDK to make the call to the OCI APIs from your language of

choice.

Taking it one step further, domain-specific languages

(DSLs) have been developed to make the process of

interacting with these APIs easier. These DSLs and tools that

build on top of these DSLs bring the power of cloud APIs to

infrastructure professionals who have no application

development background or experience. Two such popular

tools are Terraform and Ansible. Terraform uses a DSL

named HashiCorp Configuration Language (HCL) to describe

infrastructure and manage it. Ansible describes

infrastructure and configuration in YAML format. Regardless

of the format and the tools/clients used, the APIs are the

primary endpoints to the cloud platform. Users interacting

with OCI using a browser-based UI, a terminal-based CLI, or

even infrastructure-management tools such as Terraform

are simply using various channels to call the underlying

APIs. As tools and technologies evolve, OCI keeps adding

new ways to make it easier to call the APIs and use OCI.

The examples and later chapters in the book make

extensive use of Terraform for infrastructure management.

This chapter covers Terraform basics and the managed

services in OCI that use Terraform.

A Quick Terraform Primer

Terraform is an infrastructure-management tool from

HashiCorp that helps you implement practices for managing

infrastructure as code to create and manage reproducible

infrastructure in the cloud and even across cloud providers.

It works on the principle of defining infrastructure as it

should exist (in a desired state) using a configuration

language. This definition is then passed on to the Terraform

tool, which makes appropriate cloud API calls to converge on

the desired infrastructure state expressed in the

configuration.

A user starts by defining the infrastructure topology and

specifying how these resources are connected and

configured using the Terraform language. This concise and

human-readable configuration language forms the blueprint

of the infrastructure that you want to create.

The Terraform language is expressed using the HashiCorp

Configuration Language (HCL) syntax, which is also used in

other HashiCorp products. This configuration file, often

simply called the Terraform configuration, is typically source

controlled to maintain a history of the changes to the

desired infrastructure state. When Terraform configurations

are paired with a source control system to store and track

changes to the codified infrastructure, and a CI/CD tooling

to manage the deployment of this infrastructure, you can

quickly create a workflow that manages immutable,

consistent, and repeatable environments. Figure 2-1

illustrates the Terraform workflow.

Terraform interacts with external services such as cloud

providers, Software as a Service (SaaS) services, and other

APIs using plug-in modules called providers. A provider

abstracts the cloud- or service-specific detail and models

the resource mapping for the Terraform configuration

language. Every Terraform provider adds a set of resource

types and data sources that Terraform can use. You can use

these resource types and data sources in the configuration

to manage or query the respective cloud resources using

Terraform. The Terraform Registry is the main repository of

publicly available Terraform providers and hosts the OCI

provider for Terraform.

Figure 2-1 Terraform Workflow

The Terraform Registry also acts as a repository for

common cloud resource configurations that are designed to

be reusable. These reusable configurations are called

Terraform modules. Modules make it easy to ensure

consistency and replicate organizational standards in your

configurations. Modules can also cut down on duplicated

resource definitions, making it easier to maintain these

configurations over time. Consider an organization in which

multiple teams are creating and using cloud resources such

as networks. The organization might want to enforce

specific configurations for all the networks that are created.

When using a Terraform provider directly, users have full

control over the resource parameters and may choose to

configure that resource in any manner they choose. When

using a Terraform module, however, many of the

configuration options for the resource are already chosen by

the module developer, and a minimal set of configuration

options is presented to the user. In most cases, a module is

functional in nature. This means that a module might have

multiple resources, such as compute instances, load

balancers, storage volumes, and more to quickly and

consistently create a complete subsystem. Terraform

modules make it easy for the user to create the resource

with minimal input while adhering to the organizational

standards.

When the desired configuration has been expressed in

the Terraform language, the Terraform runtime can process

that configuration to construct cloud API calls and execute

those API calls against a cloud platform such as OCI.

Because the configuration is expressed in terms of the

resources and data sources supported by a provider,

Terraform calls on the respective providers to make the

actual API calls. Terraform configurations are required to

declare the specific providers they use within the

configuration, and Terraform initializes the providers when it

runs. The same Terraform configuration can also use

multiple providers, which makes it possible to interact with

several services and cloud vendors within the same

configuration to create and manage multicloud

deployments. Terraform can validate the configuration, as

well as do a dry run, by executing a terraform plan to see

what impact running the configuration, executing a terraform

apply, would have on the existing infrastructure.

Figure 2-2 illustrates the typical cycle for managing

infrastructure with Terraform. It starts with defining your

infrastructure as code using the Terraform language. Next,

you pass this configuration to Terraform and run a plan,

which causes Terraform to inspect the existing resources

and figure out the changes that need to be applied to

converge the configuration to the one that has been

provided. The result of the plan is the set of actions to be

performed on cloud resources, such as what resources are

to be created, modified, or deleted. If the plan looks valid

and the actions that will be performed are acceptable, the

developer can run an apply, which causes the plan to be

applied. During the plan and apply operations, Terraform calls

on the providers to make the API calls to query the existing

resources or manage them on the remote cloud platforms.

Resources can also be destroyed after their purpose has

been fulfilled, which is common for ephemeral resources in

the cloud. Using Terraform to destroy resources also ensures

that no resource is overlooked or left behind because

Terraform keeps tracks of every resource it creates. For

instance, suppose that you write a Terraform configuration

that creates a couple of compute instances and a load

balancer that points to them. The first time this

configuration is applied, all resources in the configuration

are created. The configuration described in the Terraform

files as code using the Terraform language now matches the

resources created in the cloud. Now, if the developer

updates the definition to include a third compute instance

and updates the load-balancer definition to point at all three

instances, Terraform will create a plan to add a new

instance and to update the existing load balancer to include

the newly created instance. Terraform will also figure out

that it needs to create the instance first so that the

instance’s IP address can be used as a back end for the load

balancer to direct traffic. When you no longer need these

resources, you can destroy them or scale down the

resources. The code you created for the infrastructure can

be run at any time to re-create the exact same resource

configuration whenever you need it.

Figure 2-2 The Typical Lifecycle for Managing

Infrastructure with Terraform

This lifecycle can also address drift in your configurations.

Drift is the change in configuration that is usually manually

applied to your infrastructure, outside of what Terraform has

been configured to do. For instance, consider a load

balancer that is configured to listen on port 443. Now

consider an operator that manually updates the

configuration to open port 80 as well. This change is not

described in the Terraform configuration; therefore, the next

time Terraform runs, Terraform will detect this change and

recommend reverting it to the original state by closing that

port. This makes it easy to ensure that your infrastructure

configurations are always well known, reproducible, and

expressed as code that can be audited.

The power of implementing infrastructure as code is fully

realized when you introduce a source control management

system to store and track changes to the codified

infrastructure and optional CI/CD tooling to manage the

deployment of this infrastructure. You then have a complete

workflow to create and manage immutable, consistent, and

repeatable environments. No one needs to guess what

configuration changes have happened to the infrastructure

over time. Adopting this model means that the only way to

manage the infrastructure is through Terraform, and

Terraform is expressed as code with full version history and

provenance tracked by the source control system.

This level of automation opens a new realm of

possibilities for application development teams to become

more agile than ever while optimizing cost. In a testing

environment, for example, tests generally are not running

continuously, which results in resource waste. With the help

of automation tools such as Terraform and a CI/CD platform,

application teams can create a test environment when

required, run these tests, and destroy the environment after

the tests have been completed. Because the infrastructure

is described as code, it can consistently be re-created any

number of times in any location. This portability also

enables application teams to quickly create consistent

environments across regions. These new opportunities help

application teams expand quickly and consistently across

the globe, create disaster recovery processes that are cost-

optimized by running a scaled-down version of the

infrastructure in the primary site, and more.

A Basic Introduction to the Terraform

Language

Terraform configurations can be expressed using the

Terraform language (using the HCL syntax) or using

JavaScript Object Notation (JSON). Although expressing

configurations in JSON makes it easier to parse using a

variety of tools, the native Terraform language using the

HCL syntax is more common and more expressive.

Throughout this book, we use the more commonly used

native syntax instead of JSON.

Terraform configurations written using the native

language (HCL) are organized into blocks. Blocks are of

different kinds and can represent an object such as a cloud

resource, an output definition, a variable, or a provider

configuration. Listing 2-1 provides an example.

Listing 2-1 Elements of the Terraform Language

Click here to view code image

Block 1

variable "tenancy_ocid" {

 default = "xxxx.xxxx.xxxx.xxxx"

}

Block 2. Note that arguments for the provider definition have be

Block 2. Note that arguments for the provider definition have be

 for brevity.

provider "oci" {

 tenancy_ocid = var.tenancy_ocid

 ...

 ...

}

Block 3

resource "oci_core_vcn" "my_vcn" {

 cidr_block = "10.0.0.0/16"

 ...

 ...

}

Block 4

resource "oci_core_subnet" "public" {

 vcn_id = oci_core_vcn.my_vcn.id

 cidr_block = cidrsubnet(var.vcn_cidr, 8, 0)

 ...

 ...

}

data "oci_identity_availability_domains" "test_availability_domain

 compartment_id = var.tenancy_ocid

}

Block 1 defines a variable named tenancy_ocid and

provides a default value for it using the argument default.

This variable can be referenced from other parts of the code

as var.tenancy_ocid.

Block 2 declares and configures a provider. This block

references the variable defined in the listing as

var.tenancy_ocid. The intention of the developer here is to

build a configuration that can be run against multiple

tenancies by turning the tenancy_id into a variable that can

be changed at runtime.

Block 3 is a resource block that represents a cloud

resource. In this case, the oci_core_vcn resource models a

virtual cloud network in OCI and is named my_vcn. The CIDR

block argument is provided with an explicit value.

Block 4 is also a resource block, and this one represents a

subnet. Subnets are created inside (virtual) networks. In

Block 4, the network to which this subnet should belong is

identified by the vcn_id argument. Note the value of this

argument: oci_core_vcn.my_vcn.id. It is clearly pointing to the

VCN created in Listing 2-1, identified by its resource type

and name: oci_core_vcn.my_vcn. However, the id attribute is

not present; the id attribute is provided by the oci_core_vcn

resource. The provider documentation lists the attributes

that can be used to configure each resource type.1

It is also worth pointing out that arguments can be

updatable or non-updatable, depending on the behavior of

the cloud resource. In the previous example, the vcn_id

argument for the resource is non-updatable. After the

subnet is created, if the value is changed and Terraform is

executed again, Terraform will notice the change. This

effectively means that the subnet will be created under a

different VCN. Terraform will delete the existing subnet and

create a new subnet with the new arguments. Here, it

makes sense because the updated configuration effectively

means that a subnet is to be moved from one VCN to

another and that the cloud provider does not support an “in-

place” update to happen for this property of the resource.

Another example could be updating the tags on a resource.

Tags can be updated in place and thus will not trigger the

re-creation of a resource. After the Terraform configuration

to model the cloud resources has been created, you perform

a dry run with Terraform. Performing a terraform plan shows

the exact changes that will be effected. To make the

changes that the dry run has outlined, a terraform apply can

be executed.

Terraform State Tracking

Terraform tracks the state of your infrastructure using a

.tfstate file. This state file is used to create associations

between the cloud resources you create when you run the

Terraform configuration and the entries defined in the

configuration. In the previous example, when you create the

actual subnet in OCI, the subnet’s identity (OCID) is

associated with the definition "oci_core_subnet" "public". In the

future, if the definition or configuration properties of the

subnet change, Terraform will use this association to know

which subnet in the VCN (identified by its OCID) to update or

re-create the resource.

Before taking any action, Terraform runs a refresh to

reconcile the state of the external real infrastructure

resources with what is defined in the configuration. The

state file is used for this reconciliation as well. If the

external real infrastructure has been changed manually

outside Terraform, there will be a delta between the state

that Terraform has been tracking and the state that is on

the real infrastructure. This drift detection capability in

Terraform can greatly enhance the security posture by

detecting unapproved infrastructure configuration changes,

keeping the infrastructure in a well-known reproducible

state. The state file also tracks dependencies between

resources. In the previous example, if the VCN were to be

re-created, the subnets would need to be re-created as well;

Terraform automatically knows this because it tracks the

dependencies between the resources in the state file.

By default, the Terraform state file is stored in a file

named terraform.tfstate. For most real use, however, the

default location is inadequate—especially when working in

teams. Consider two developers running a Terraform

configuration in parallel. They could be creating duplicate

resources because they are using their own state files and

are unaware of each other’s changes. Terraform supports

remote state to solve this problem and offers several

options to configure and store state remotely. Aside from

making the state changes transparent to everyone in the

team, remote state storage can also use locking. Locking

the state protects teams from performing multiple

simultaneous Terraform executions at the same time, thus

ensuring that each Terraform run begins with the most

recent updated state. Terraform can use one of several back

ends to manage remote state; each back end provides

support for a different storage system.

OCI object storage can be used as a remote state back

end in Terraform. This allows Terraform to use the OCI object

storage as the storage back end for Terraform state, making

it consistent across all users of the Terraform configuration.

Terraform can leverage OCI Object Storage using the HTTP

back end or the S3 back end. Table 2-1 compares the two

storage options.

Table 2-1 .tfstate Storage Option Comparison

HTTP Back End S3 Remote State

Back End

Uses standard HTTP methods Uses Object Storage

S3-compatible APIs

Requires a preauthenticated

request and no additional

authentication

Requires additional

per-user

authentication

Note

Terraform state files can potentially contain sensitive

data, especially if you use Terraform to manage

access keys, passwords, or cryptographic keys. Even

without such data, the state file contains a complete

blueprint for your cloud infrastructure and its

topology. For this reason, it’s always preferable to

consider the state file as a sensitive document.

The OCI Terraform Provider

The OCI Terraform provider2 is the component that connects

Terraform to OCI services. It models the OCI services and

APIs as Terraform objects such as resources and data

sources that can be used in Terraform configurations. The

OCI provider is open source and is available through the

Terraform Registry, which hosts the providers for all major

platforms and services. Developers and DevOps engineers

can use the OCI Terraform provider to manage OCI resources

wherever you use a Terraform distribution, including with

Terraform Cloud and the OCI Resource Manager. The

Terraform runtime and the OCI provider are also available

for installation through Oracle’s public YUM repositories.

Setting Up the OCI Terraform

Provider

When installing on OCI compute instances, the quickest way

to install Terraform CLI and the OCI provider is to use the

YUM repositories. The tools are included in the developer

repository, which is usually disabled by default. Depending

on the version of Oracle Linux, you can enable the

repository and install the packages with the following

commands:

For Oracle Linux 8:

Click here to view code image

sudo yum-config-manager --enable ol8_developer &&\

sudo yum install terraform

For Oracle Linux 7:

Click here to view code image

sudo yum-config-manager --enable ol7_developer &&\

sudo yum install terraform

Optionally, you can install the OCI Terraform provider

using YUM, although it might be preferable to manage

versions of the provider for each Terraform configuration

basis by letting Terraform download and manage the

Terraform provider as part of initialization for each

configuration. The Terraform provider for OCI is available in

the Oracle YUM repositories with the package name

terraform-provider-oci and can be installed with the following

command:

Click here to view code image

sudo yum install terraform-provider-oci

Note

If you work in a highly sensitive environment, you

might want to consider the FIPS-compatible version of

the OCI provider. The FIPS-compatible version of the

provider ensures that traffic from Terraform to OCI

service API endpoints transits over a TLS connection

established with an HTTP client using FIPS-certified

encryption. The FIPS version of the OCI Terraform

provider uses the FIPS 140-2 certified Oracle Cloud

Infrastructure Cryptographic Library for Kubernetes

instead of the Go native cryptography

implementation. Install the FIPS-compatible provider

as follows

Click here to view code image

sudo yum-config-manager --enable ol8_developer &&\

sudo yum install terraform &&\

sudo yum install terraform-provider-oci-fips

To install Terraform CLI manually on your workstation, you

can download it directly from HashiCorp

(https://www.terraform.io/downloads) for your specific

operating system.

After Terraform is installed, when it encounters a

configuration that uses the OCI provider in a provider block,

Terraform downloads the provider as part of the terraform

init process. You can also pin your configuration to a

specific version of the provider. This is useful when you

want to ensure that you always use a provider version that

you have tested your configuration with or when you need

to maintain software versioning for compliance reasons.

When you always use the latest version of a provider, you

can potentially get unexpected behavior if a provider makes

a non-backward-compatible change. You can pin the

provider version by specifying the version in the

required_providers.oci.version argument, as shown in Listing 2-

2.

Listing 2-2 Configuring the OCI Provider

Click here to view code image

terraform {

 required_providers {

 oci = {

 source = "hashicorp/oci"

 version = ">= 4.50.0"

 }

 }

}

provider "oci" {

 # variables are not shown

https://www.terraform.io/downloads

 region = var.region

 tenancy_ocid = var.tenancy_ocid

 user_ocid = var.user_ocid

 fingerprint = var.fingerprint

 private_key_path = var.private_key_path

}

The configuration in Listing 2-2 shows that the version of

the provider required is set as version 4.50.0 or later. You

can also see that the provider has been initialized with a set

of provider configuration arguments that include the

following:

region: The OCI region where this configuration will be

applied

tenancy_ocid: The tenancy OCID against which this

configuration will be applied

user_ocid, fingerprint, private_key_path: API signing key

credentials for authenticating with OCI

Using API keys is the default and most common method

for authenticating Terraform with OCI. If you have the OCI

CLI installed,3 the Terraform provider can optionally use the

OCI CLI configuration file for authentication. This can be

handy because the OCI CLI configuration file supports

profiles to work with multiple OCI tenancies or to use

different identities to authenticate with OCI, enabling you to

switch between identities and tenancies while externalizing

the authentication information from your Terraform code.

You can configure the provider to use the OCI CLI

configuration, as demonstrated in Listing 2-3. The default

configuration filename and location is ~/.oci/config. You

change this by setting the environment variable

OCI_CLI_CONFIG_FILE to point to a CLI configuration file at an

arbitrary location.

Listing 2-3 Using the CLI Configuration to Provide

Authentication Information

Click here to view code image

provider "oci" {

 tenancy_ocid = var.tenancy_ocid

 config_file_profile= 'profile_name_in_CLI_configuration_file'

}

Authenticating Without API Keys

When using automation systems and CI/CD tools, using an

API key might not be desirable. In these cases, you can

consider Instance Principal–based authentication. This

authentication method is applicable only if Terraform is

being executed from an OCI compute instance. This relies

on Instance Principals in OCI and the policies that govern

them. When using Instance Principals, you do not need to

provide the arguments used for API key-based

authentication. Your OCI Provider configuration could look

like Listing 2-4.

Listing 2-4 Using Instance Principals to Provide

Authentication Information

Click here to view code image

provider "oci" {

 auth = "InstancePrincipal"

 region = "${var.region}"

}

You can also use the token-based authentication driven

by the OCI CLI. This method avoids the use of an API signing

key and provides an interactive way to authenticate users.

This authentication method uses the OCI CLI session

authenticate flow that uses an OAuth implicit grant flow to

authorize Terraform.

Managing OCI Resources with

Terraform

When you have Terraform installed and configured, you can

start creating Terraform configurations for OCI. The OCI

Terraform provider defines several resources and data

sources that enable you to interact with the cloud resources

offered by OCI. Resource blocks in Terraform represent a

cloud resource such as a compute instance or a load

balancer. Data sources provide data about cloud resources.

They are typically used to query a cloud provider to get data

about one or more resources so that the Terraform code can

make choices based on that data.

To understand this, consider a real scenario. You need to

create two compute instances, one that uses an ARM-based

CPU and another that uses an Intel/AMD-based CPU. These

are different CPU architectures and require different

versions of the operating systems to be installed on them.

Listing 2-5 is a Terraform code snippet that makes the

instance shape a variable. If the user chooses an instance

based on the ARM architecture, the OS image is different

than if the user had chosen a shape that uses the x86

architecture.

Listing 2-5 Using Data Source to Create More Dynamic

Configurations

Click here to view code image

Only relevant attributes are shown below.

resource "oci_core_instance" "RStudio" {

 display_name = "MyInstance"

 shape = var.instance_shape

 source_details {

 source_type = "image"

 source_id = data.oci_core_images.InstanceImageOCID.images[0]

 }

}

}

data "oci_core_images" "InstanceImageOCID" {

 compartment_id = var.compartment_ocid

 operating_system = var.instance_os

 operating_system_version = var.linux_os_version

 shape = var.instance_shape

}

variable "instance_shape" {

 description = "Instance shape"

}

variable "instance_os" {

 description = "Operating system."

 default = "Oracle Linux"

}

variable "linux_os_version" {

 description = "Operating system version."

 default = "7.9"

}

To use the latest version of the operating system image

available for each architecture, you can use a data source.

The set of parameters and filters in a data source lets you

identify a resource (in this case, the operating system

image that satisfied your conditions) without having to

hard-code anything. The data source for the images accepts

the shape as an argument and lists only images that are

compatible with the provided shape. This data obtained by

the data source can be used by the compute instance

resource so that the instance uses a compatible operating

system image.

The OCI Terraform provider defines resources and data

sources for almost all services that are available through

the OCI API.

Simplifying Infrastructure

Management with the Resource

Manager Service

You already saw how OCI resources can be managed

through infrastructure-management tools such as Terraform.

The OCI provider for Terraform allows Terraform to hook into

the OCI APIs and manage OCI resources using a Terraform

language. You also learned how Terraform itself manages

state and how to use OCI object storage for shared state

when using teams. These approaches still assume that the

developers have the tooling installed and configured. Large

teams can still run into issues when trying to standardize

Terraform versions and their execution environments and

trying to coordinate between developers, despite having

state file locking.

To address these shortcomings, OCI offers a fully

managed Terraform platform called Resource Manager

Service. The Resource Manager Service is a managed

Terraform platform that can manage Terraform

configurations as stacks that encapsulate multiple resource

definitions. Stacks are first-class OCI resources that enable

teams to coordinate their infrastructure management

activity. Stacks can be based on Git repositories, ZIP files, or

Terraform configuration files uploaded to the Resource

Manager Service.

Resource Manager keeps track of the Terraform

configuration and provides lifecycle management, as in

managing the execution of the plan and apply stages. As a

managed service, it provides the execution environment for

developers to run Terraform configurations, removing the

need to maintain local tooling. Developers can also run

multiple Terraform configurations in parallel using Resource

Manager. Additionally, Resource Manager keeps track of the

Terraform state file, enabling team-based development. The

Resource Manager Service manages the Terraform

execution environment and the execution process, enabling

coordinated infrastructure management for teams. Figure 2-

3 shows the various aspects of the Resource Manager

Service.

Stacks also enable the developer to optionally omit

certain Terraform provider configuration parameters, such

as the user_ocid, from the Terraform definition. This is

because stacks themselves are OCI resources that an

authenticated and authorized user is accessing, and the

service can fill in some of the provider initialization

parameters from the execution context. This makes stacks

more portable because they can use their execution

environment to infer these values. Take a look at the

example in Listing 2-6.

Figure 2-3 Resource Manager Service Components

Listing 2-6 OCI Provider Configuration with Terraform

Click here to view code image

provider "oci" {

 # variables are not shown

 region = var.region

 tenancy_ocid = var.tenancy_ocid

 # Authentication parameters

 user_ocid = var.user_ocid

 fingerprint = var.fingerprint

 private_key_path = var.private_key_path

}

The same configuration can be expressed in Resource

Manager, as shown in Listing 2-7.

Listing 2-7 OCI Provider Configuration When Using

Resource Manager Service

Click here to view code image

provider "oci" {

 # variables are not shown

 tenancy_ocid = var.tenancy_ocid

 region = var.region

 # The authentication parameters are not required since the Resou

 authenticates the user.

}

As you can see, the authentication parameters have been

omitted from the configuration. This is possible because the

omitted values can be inferred by the service and passed on

to the Terraform runtime.

Resource Manager not only manages Terraform

executions and lifecycle, but it also provides valuable

additional integration with other OCI services and features.

These include generating Resource Manager stacks from

resource creation wizards, resource discovery, and drift

detection. The following sections cover these concepts in

more detail.

Helm and Kubernetes Providers

As a managed platform, Resource Manager Service

manages the Terraform providers that can be used through

Resource Manager. Apart from the OCI provider, several

popular third-party providers are supported, including

Ansible, Vault, TLS, Kubernetes, and Helm. In later chapters,

you interact with both the Helm and Kubernetes providers

for Terraform.

The Kubernetes provider for Terraform adds support for

creating and managing Kubernetes objects as Terraform

resources. Creation, modification, and deletion of resources

produces the same effect on the Kubernetes objects. The

provider makes it possible to manage Kubernetes objects in

a Kubernetes cluster, much the same as it enables you to

manage infrastructure resources on a cloud provider. The

example in Listing 2-8 shows a PodSpec as a Terraform

resource. The kubernetes_pod resource is provided by the

Kubernetes provider for Terraform and models a standard

Kubernetes PodSpec.

Listing 2-8 Managing Kubernetes Resources Through

Terraform

Click here to view code image

resource "kubernetes_pod" "test" {

 metadata {

 name = "nginx"

 }

 spec {

 container {

 image = "nginx:1.7.9"

 name = "example"

 port {

 container_port = 8080

 }

 liveness_probe {

 http_get {

 path = "/nginx_status"

 port = 8080

 }

 initial_delay_seconds = 3

 period_seconds = 3

 }

 }

 }

}

Listing 2-9 shows the equivalent PodSpec.

Listing 2-9 Managing Kubernetes Resources Through

PodSpec

Click here to view code image

apiVersion: v1

 kind: Pod

 metadata:

 name: nginx

 spec:

 containers:

 - name: nginx

 image: nginx:1.7.9

 ports:

 - containerPort: 8080

 livenessProbe:

 httpGet:

 path: /nginx_status

 port: 8080

 initialDelaySeconds: 3

 periodSeconds: 3

Similar to the Kubernetes provider, but perhaps more

useful in the context of automation, is the Helm provider.

Helm itself is a way to package, deploy, and manage

complex application deployments on Kubernetes. A set of

Kubernetes objects such as pods, services, and config-maps

that together make up an application are parametrized and

managed as a Helm release. The example in Listing 2-10

shows how a packaged Helm chart, the template for

generating Kubernetes manifests that make up the

application, is defined as a Terraform resource. Creation of

the resource implies creation of the release—or, in other

words, deployment of the application Helm chart.

Listing 2-10 Managing Helm Releases Using Terraform

Click here to view code image

resource "helm_release" "nginx_ingress" {

 name = "nginx-ingress-controller"

 repository = "oci://ghcr.io/nginxinc/charts"

 chart = "nginx-ingress"

 version = "0.18.0"

 set {

 name = "service.type"

 value = "ClusterIP"

 }

}

The equivalent Helm command follows:

Click here to view code image

helm install nginx-ingress-controller oci://ghcr.io/nginxinc/chart

 ingress --version 0.18.0 –set service.type=ClusterIP

The support for the Helm and Kubernetes providers

makes it possible for developers to create solutions that

automate not just infrastructure provisioning, but also the

deployment and management of cloud native workloads as

resources managed through Terraform. The Kubernetes best

practice at the time of this writing is to keep the

infrastructure components and Kubernetes/Helm provider-

managed resources (Kubernetes objects and Helm charts)

as separate Terraform modules.

The complete list of supported providers are

documented4 and are frequently updated as new providers

are added.

Generating Resource Manager Stacks

Resource Manager is integrated with other OCI resource

creation wizards in the OCI console to make the process of

generating resource definitions easy. A good example is the

Oracle Container Engine for Kubernetes (OKE). OKE is a

service that requires multiple supporting resources, such as

networks, and offers many configuration options when you

create a cluster. Instead of creating the cluster manually,

which makes the cluster difficult to reproduce because of

the sheer number of available options, you can use

Terraform to encapsulate all the options and configuration,

which can be then managed as a Resource Manager stack.

However, if you’re not familiar with the Terraform language,

the cluster re-creation workflow in the console conveniently

provides a way to export the configuration of a cluster as a

Resource Manager stack after the input is gathered. Thus,

you can provide all the configuration options for the cluster

to the cluster re-creation wizard, which then exports that

configuration to a Resource Manager stack. The stack can

then be executed, creating an OKE cluster along with all the

required components, such as VCNs, security lists, node

pools, nodes, placement configurations, and so on.

Resource Discovery

If you already have a hand-crafted solution created in OCI

using a set of resources, the resource discovery feature in

Resource Manager can generate a Terraform configuration

out of these existing resources to make the solution more

portable and easier to replicate across environments and

regions. Resource discovery works at the compartment

level; the compartment provided to the service is

considered the source compartment. Resource discovery

generates a Resource Manager stack along with a Terraform

state file that represents all the supported resources that

belong to the given source compartment. The discovery

process does not descend into nested compartments or

support multiple source compartments for the same stack.

It is also important to note that, in most cases, the stacks

generated by resource discovery provide a starting point for

the code representing the resources and require slight

modifications to be run. For instance, sensitive information

such as passwords used when creating a database are not

included in the generated code, for obvious security

reasons. Resource attributes whose values are omitted from

the generated stack are placed in an ignore_changes meta-

argument in a nested lifecycle block for the resource

definition. Similarly, resources that have been terminated or

are otherwise inactive are generally excluded from the

generated stack. Figure 2-4 shows the option for creating a

stack that captures resources from a specified

compartment.

Note

lifecycle is a nested block for meta-arguments in

Terraform that can appear in any resource block. The

ignore_changes meta-argument identifies a list of

attributes that may change outside Terraform after

the resource is created. This signals to Terraform that

changes to these values are acceptable and do not

warrant an update to reset the values. In the case of

resource discovery, attributes without values are

placed in the ignore_changes list to ensure that a

Terraform plan will still run without failure. When

creating the resources, the developer should provide

appropriate values because many of these, such as

passwords, could be mandatory parameters for

resource creation. Where appropriate, the developer

can also move them out of the ignore_changes list.

Figure 2-4 Resource Discovery in the Resource Manager

Service

Drift Detection

A critical feature that the OCI Resource Manager provides to

streamline infrastructure management at scale is drift

detection. As the name suggests, this feature can compare

actual infrastructure and its parameters with the expected

infrastructure configuration to identify drift or deviations.

As your cloud-based infrastructure scales, a compelling

motivator will be moving toward an elastic model to

optimize cost and infrastructure usage with infrastructure-

as-code practices. Imagine that you’re managing your

infrastructure through code. You expect your infrastructure

to be in sync with that code, which is fundamental to

realizing immutable infrastructure. Infrastructure

automation makes it easy to implement immutable

infrastructure, but it does not prevent users with access to

the infrastructure from making ad-hoc changes to it, such

as opening a port on your network security list. A fully

mature practitioner will have multiple checks and balances

and will have well-defined supporting processes such as

security policies to keep infrastructure secure and

immutable. Even in these cases, a malicious user or

attacker could try to make changes to the infrastructure and

compromise it.

Periodically verifying the infrastructure against the

configuration defined in the code therefore provides a

checkpoint that the infrastructure is still compliant with the

definitions. A deviation could point to ad-hoc changes,

configuration that is not yet captured in the code, or, in the

worst case, a potential intrusion or attack on your

infrastructure. The drift detection feature in Resource

Manager performs this validation by comparing the current

state of the resources with the last executed state for the

stack. Drift detection produces a report of the drift that

shows the actual resources and their parameters compared

to the configuration in the stack. Changes are highlighted to

make it easier to identify the changes, and the stack is

marked as Drifted if drift is detected. Drift detection reports

are run as asynchronous work requests, and their progress

can be tracked through these work requests. The latest drift

detection report is available on the stack details page or

through the More Actions menu; historical reports are

available from their work requests. Figure 2-5 shows a drift

detection report highlighting how the actual configuration

has drifted from the expected configuration.

Generating a User Interface from

Terraform Configurations with a

Custom Schema5

The Resource Manager Service goes beyond just managing

the lifecycle for Terraform configurations. It can also extend

the OCI console UI to make Terraform execution more

approachable to end users. This enables developers to

create Terraform configuration-based solutions that can be

configured and deployed by end users who have no

Terraform experience with an intuitive UI.

Figure 2-5 Drift Detection Report Highlighting Changes

to Resources

When a stack is loaded, the Resource Manager Service

inspects the Terraform configuration in it to identify the

variable declarations and other user input required for the

stack to execute. On the standard command line, Terraform

prompts the user to provide input through the terminal.

Resource Manager, on the other hand, renders a text input

box on the console UI for the user to provide variable

values. Although this is perfectly acceptable in some cases,

developers can include an optional schema file along with a

stack. The schema file describes how the variables and

outputs of the terraform configuration look and behave.

Figure 2-6 shows how Resource Manager can render

Terraform variables as intuitive onscreen controls.

Figure 2-6 Resource Manager Rendering Terraform

Variables with the Help of UI Hints Provided in the

Schema File

The schema file should be written in YAML and included

at the root of the stack. The YAML document contains UI

hints and structure that help the Resource Manager service

to extend the OCI console UI to support much more complex

input fields, queries, and validation. Each schema document

defines keys for various purposes. The values can be of

various types, such as string, numeric, enum, types that

query OCI APIs for existing resources, or an expression that

can be evaluated into values.

Listing 2-11 provides an example of a schema file.

Listing 2-11 Example Schema File for Terraform Stacks

Click here to view code image

Stack Metadata

title: "MuShop Cloud Native App"

description: "Microservices demo App for Oracle's Container Engine

 (OKE)"

schemaVersion: 1.1.0

version: "20190304"

Variable Groups

variableGroups:

 - title: "General Configuration"

 variables:

 - app_name

 - password

 - show_advanced

 visible: true

outputs:

 service_ip:

 type: link

 title: Application Login

 description: Open the login page for the application

primaryOutputButton: service_ip

Variables

variables:

 app_name:

 type: string

 title: "Cluster Name Prefix"

 required: true

 visible:

 and:

 - create_new_oke_cluster

 app_password:

 type: password

 required: true

 title: Admin Password

 description: The password for the admin user

 pattern: "^(?=.*[!@#%^*_+\\-:?.,\\[\\]\\{\\}])(?=.*[0-9])(?=.*

 [A-Z])(?!.*[$\\(\\)]).{8,32}$"

 visible: true

 node_pool_shape:

 type: oci:core:instanceshape:name

 title: "Select a shape for the Worker Nodes instances"

 required: true

 dependsOn:

 compartmentId: compartment_ocid

 visible:

 and:

 - create_new_oke_cluster

A typical schema file like the one in the example is

structured into at least four sections:

Stack metadata.

Variable groups: These are denoted by variableGroups.

Output section: Output groups can group outputs into

various sections for display after the stack has been

applied.

Variable metadata: The variables key specifies the

display properties and behavior of variables in the

Terraform configuration.

The next pages look at each section in detail.

Stack Metadata

The stacked metadata includes information about the stack

itself. It uses keys such as title, description, version, and

logoUrl that can provide metadata about a stack, including

its purpose and publisher information, along with how to

display the stack in the OCI console. The metadata for the

stack is shown on the console UI at the time the stack is

loaded and provides a description of the functionality that

the stack provides. Listing 2-12 shows an example.

Listing 2-12 Stack Metadata in a Schema File

Click here to view code image

title: "MuShop Cloud Native App"

description: "Microservices demo App for Oracle's Container Engine

 (OKE)"

schemaVersion: 1.1.0

version: "20190304"

locale: "en"

logoUrl: <URL/URL encoded data>

Variable Groups

This element groups variables into various sections for

display on the UI, such as grouping all networking

parameters together. The variable groups are listed under

the key variableGroups, which is at the root of the document.

The example in Listing 2-13 has three separate variable

groups, called General Configuration, OKE Cluster

Configuration, and OKE Worker Nodes. Each variable group

has a title, which forms the title for the section of input

fields in the UI, and a list of variables. The list of variables is

a reference to the variable definitions that are listed further

down in the document. Each of the variable groups can also

have a visible attribute that can be evaluated to a Boolean

that toggles the display of the entire section.

Listing 2-13 Variable Groups Can Help Structure Related

Terraform Variables on the User Interface

Click here to view code image

variableGroups:

 - title: "General Configuration"

 variables:

 - app_name

 - password

 - show_advanced

 visible: true

 - title: "OKE Cluster Configuration"

 variables:

 - create_new_oke_cluster

 - existent_oke_cluster_compartment_ocid

 - existent_oke_cluster_id

 - k8s_version

 - title: "OKE Worker Nodes"

 variables:

 - num_pool_workers

 - node_pool_shape

 - node_pool_name

In the example, the first variable group is the General

Configuration. Here you can see that this group has two

keys defined, the title and variables. The section is

presented to the user under a section with the title specified

here, and the section will render the variables listed in the

variables list. The display of the individual variables listed—

app_name, password, and show_advanced—depends on these

variables’ metadata defined in the variables section at the

root of the document. Figure 2-7 shows the OKE Worker

Nodes variable group and demonstrates how a variable

group is rendered.

Figure 2-7 OKE Worker Nodes Variable Group

Output Section

The variable group section is followed by the output section.

Here, we see two separate outputs defined. Outputs from

the stack are displayed on the Application Information tab

on the stack page after the stack has been run at least

once. Listing 2-14 shows an example.

Listing 2-14 The Output Section Provides Structure to

Terraform Outputs

Click here to view code image

outputs:

 service_ip:

 type: link

 title: Application Login

 description: Open the login page for the application

 generated_ssh_private_key:

 title: Generated Private Key

 description: The auto-generated private key. Save this to a f

 the instance.

 type: copyableString

 visible: true

The first output in the example is called the service_ip and

has attributes that include type, title, and description. The

title and description provide the metadata for displaying the

value of the output on the UI. The type determines how the

value itself is rendered; here, it is rendered as a hyperlink.

The other output is named generated_ssh_private_key and is of

type copyableString. When rendering the value, it will be

shortened for better display, along with Show and Copy

buttons for users to easily see or copy the value.

You also see a primary output button. The Application

Information tab can optionally render a button on the

Information area, which is determined by the

primaryOutputButton. In this example, it references the

service_ip, which means that the service_ip will be rendered

as the primary output button on the Application Information

tab. The button text uses the title for the service_ip; clicking

the button opens the hyperlink that is the value for the

service_ip.

Variable Definitions

The variables used in the Variable Groups are defined here,

and these correspond to the variables declared in the

Terraform configuration. Variable definitions provide

metadata for the variables, such as their type. Types such

as numeric, string, and password affect both how the

variable is rendered on the UI and its behavior. The

attributes of a variable definition can include expressions

that depend on other attributes as well. For instance, it is

possible to specify that the app name should be visible if

the create_new_oke_cluster variable is true, as shown in Listing

2-15.

Listing 2-15 Variable Definitions Provide Metadata to

Influence the Look and Behavior for Terraform Variables

Click here to view code image

app_name:

 type: string

 title: "Cluster Name Prefix"

 required: true

 visible:

 and:

 - create_new_oke_cluster

The definition of the app_password variable in Listing 2-16

specifies that it is of type password, which provides a hint to

the Resource Manager to render it as a password field on

the UI. It is also marked as a required variable, which means

that a value is expected from the user; the UI will display an

error if the user does not provide one. For this variable, the

title and description give the UI hints to display this variable

onscreen. The title provides the prompt in the description

that supplies a small textual description under the input

field. The pattern is a regular expression to validate the text

input on this field. If the value provided by the user does not

match this regular expression, the service rejects the value

and an error is displayed onscreen identifying the field that

failed the validation.

Listing 2-16 Variable Definitions Can Validate Input Data

Click here to view code image

app_password:

 type: password

 required: true

 title: Admin Password

 description: The password for the admin user

 pattern: "^(?=.*[!@#%^*_+\\-:?.,\\[\\]\\{\\}])(?=.*[0-9])(?=.*[

 (?!.*[$\\(\\)]).{8,32}$"

 visible: true

Resource Manager supports several other types of

variables, including Booleans, OCI resources, and

enumerations. Listing 2-17 shows the usage of some of

these types and how they can interact with each other.

Listing 2-17 Variable Definitions Can Reference Other

Variables to Create Complex UI Behavior

Click here to view code image

show_advanced:

 type: boolean

 title: "Show advanced options?"

 description: "Shows advanced options, such as customer-managed

 visible: true

create_new_oke_cluster:

 type: boolean

 title: "Create new OKE Cluster"

existent_oke_cluster_compartment_ocid:

 type: oci:identity:compartment:id

 title: "Existent OKE Cluster Compartment"

 description: "The compartment where you find the existent OKE Cl

 default: compartment_ocid

 required: true

 visible:

 not:

 - create_new_oke_cluster

existent_oke_cluster_id:

 type: oci:container:cluster:id

 title: "Existent OKE Cluster"

 required: true

 dependsOn:

 compartmentId: existent_oke_cluster_compartment_ocid

 visible:

 not:

 - create_new_oke_cluster

k8s_version:

 type: oci:kubernetes:versions:id

 dependsOn:

 compartmentId: compartment_ocid

 clusterOptionId: "all"

 title: "Kubernetes Version"

 required: true

 visible:

 and:

 - create_new_oke_cluster

 - show_advanced

num_pool_workers:

 type: integer

 title: "Number of Worker Nodes"

 minimum: 1

 maximum: 1000

 required: true

 visible:

 and:

 - and:

 - create_new_oke_cluster

 - not:

 - cluster_autoscaler_enabled

The show_advanced variable is of type boolean. Booleans are

presented and rendered as check boxes that represent their

value. Other variables can use the value of Boolean

variables to determine their visibility and other properties.

OCI resource variable types are special variables that

provide querying capabilities into OCI resources.

The variable existent_oke_cluster_compartment_ocid is of type

oci:identity:compartment:id. This is a hint for the Resource

Manager to query the OCI compartment IDs and show them

in a drop-down list when this variable is rendered on the UI.

The user can select a compartment from the list of

compartments shown, and the OCID for that compartment

is then passed to the cluster.

Similarly, the existent_oke_cluster_id is of type

oci:container:cluster:id. This allows the user to choose a

cluster by name from a list of existing Kubernetes clusters

rendered as a drop-down list.

The variable k8s_version is of a different type, called enum.

Enums are enumerations of specific values, and this enum

has four values. Resource Manager renders the enum as a

drop-down list; the user can choose a value from this list

that Resource Manager then provides to the Terraform

variable. A selection from only these four values is possible,

which avoids human errors and values that are beyond the

expected set of possible valid values.

The num_pool_workers variable is of type integer, which

means that it accepts only integer numbers. The UI that

Resource Manager renders for these variables validates the

input based on the type and its attributes. The integer type

variable shown here has additional attributes, such as

minimum and maximum.

This support for the notion of types in Resource Manager

prevents the user from entering accidental typographical

errors or incompatible values as if it were a free-form text

field, as with the Terraform CLI. It also makes the process of

entering values much easier for the end user. Values outside

this range trigger a validation error on this component and

inform users that they have made a choice outside the valid

range.

Beyond the example in Listing 2-17, several types exist,

each one with various supported attributes. For a full

description of these, you can look at the meta schema

published by Oracle.6

Figure 2-8 shows a portion of the UI rendered by the

example in Listing 2-17.

Figure 2-8 UI Portion Rendered by the Configuration in

Listing 2-17

The addition of metadata and types for variables enables

Terraform developers to build stacks that are presented to

end users with input fields that are less prone to human

errors and typographical errors. Developers segregate input

fields into groups, perform validation, and create more

intuitive user interfaces that turn the Terraform

configurations into deployment wizards that end users can

use even if they have no prior experience with Terraform.

Therefore, stacks with schema files allow solution

developers to create polished and complete solutions that

can be delivered directly from any web page using the

Deploy button or through the OCI Marketplace.

Publishing Your Stacks with Deploy

Buttons

The Resource Manager Service offers developers the

capability to package Terraform-based solutions into stacks

and publish these stacks over multiple channels for broad

consumption. For commercial applications and licensed

software, Oracle offers a partner program in which Oracle

partners can list their stacks as solutions in the OCI

Marketplace. Customers can consume these solutions by

deploying them in their own tenancies directly from within

OCI.

For open-source projects or other projects for which

becoming an Oracle partner is not a consideration, the

Resource Manager Service offers the capability to create

web-based deployment buttons that can be placed on any

web page. These deployment buttons are simple hyperlinks

that can be placed on any web page; when clicked, they can

load the stack into the Resource Manager Service and walk

the user through the deployment process.

The Deploy button flow supports three providers:

GitHub

GitLab

Oracle Object Storage’s preauthenticated requests

The developer builds a stack and creates a .zip file. The

file is uploaded to any of the supported providers. The

public URL for the ZIP file is used to construct the Deploy

button. Listing 2-18 shows the format for creating a Deploy

button. The <package-url> is to be replaced with the public

URL for the ZIP file from any of the supported providers. For

GitLab and GitHub, Resource Manager supports both a

direct link to the file or a link to a file published as part of a

release. In most cases, it is preferable to use the link to a

file published as part of a release in the Deploy button

because that uniquely identifies a versioned artifact.

Listing 2-18 A Stack Deploy Button in HTML

Click here to view code image

<a

 href="https://cloud.oracle.com/resourcemanager/stacks/create?zipU

 url>"

 target="_blank">

 <img

 src="https://oci-resourcemanager-plugin.plugins.oci.oraclecloud.c

 deploy-to-oracle-cloud.svg"

 alt="Deploy to Oracle Cloud"/>

Alternatively, you can use the markdown in Listing 2-19 if

you need to place a Deploy button for your stack in a

markdown file, such as in your project README in GitHub.

Listing 2-19 Stack Deploy Button in Markdown Format

Click here to view code image

 [![Deploy to Oracle Cloud]

(https://oci-resourcemanager-plugin.plugins.oci.oraclecloud.com/la

 oracle-cloud.svg)

]

(https://cloud.oracle.com/resourcemanager/stacks/create

?zipUrl=<package-url>)

When a Deploy button is clicked, the user is taken to the

OCI console. If the user is not already logged in, the user

logs into the tenancy and is immediately taken to the

Create Stack workflow, where the stack is loaded from the

provider and ready to be deployed. The user can then

proceed with configuring the stack with the required

variables and kickstart a Terraform apply job to create the

resources and deploy the solution. An example of this is

showcased in the example application for this book.

Managing Multiregion and Multicloud

Configurations

All cloud vendors provide multiple regions, for better

availability and fault tolerance. Managing these cloud

infrastructure resources as code simplifies and automates

their lifecycle management. With infrastructure defined as

code and a full-featured CI/CD system managing the

lifecycle, the next logical step is to manage your

infrastructure across regions and across cloud providers

using the same processes. With its provider-based

architecture, Terraform enables you to easily create

Terraform configurations that span multiple regions within

the same cloud provider or even transcend cloud providers.

This capability to define infrastructure in a parameterized

way and create it in any region or cloud provider opens up

new possibilities in implementing a globally distributed

disaster recovery strategy. For instance, you can easily

implement a pilot-light strategy with primary sites created

from Terraform configurations operating at scale, while the

same Terraform configuration with a lower number of

resources acts as a pilot-light standby in another region,

ready to be scaled up when required.

The providers used in a Terraform configuration are called

out and declared within the configuration. The same

Terraform configuration can have provider plug-ins for

multiple cloud platforms. To create a Terraform configuration

that spans multiple cloud providers, you can simply declare

both provider plug-ins within the Terraform configuration. At

runtime, Terraform will initialize all the declared providers.

Resources from all the initialized providers can be used in

the Terraform configuration.

Similarly, you also want to manage resources in two

separate regions for the same cloud provider. Part of any

provider configuration is the region for which the provider is

configured. To work with multiple regions simultaneously,

you can declare the cloud provider twice with aliases. Using

aliases, you can determine which region you are interacting

with for given resources. Listing 2-20 presents an example.

Listing 2-20 Multiple Provider Instances Can Be

Instantiated with Aliases to Work with Multiple Regions or

Tenancies

Click here to view code image

provider "oci" {

 alias = "phoenix"

 tenancy_ocid = var.tenancy_ocid

 region = "us-phoenix-1"

 user_ocid = var.user_ocid

 fingerprint = var.fingerprint

 private_key_path = var.private_key_path

}

provider "oci" {

 alias = "ashburn"

 tenancy_ocid = var.tenancy_ocid

 region = "us-ashburn-1"

 user_ocid = var.user_ocid

 fingerprint = var.fingerprint

 private_key_path = var.private_key_path

}

A resource block can include a provider argument, which

uniquely identifies the provider to use for that specific

resource. At runtime, when Terraform encounters a resource

block with a provider argument, it maps to the provider

definition with a matching alias and uses that provider

instance to manage the resource lifecycle. In the example in

Listing 2-21, the resource block uses the argument provider

set to oci.phoenix, which maps to the provider definition with

the alias phoenix, which then uses the provider instance

configured to use the Phoenix region.

Listing 2-21 Resource Definitions Can Refer to Specific

Provider Instances by Their Alias

Click here to view code image

resource "oci_core_virtual_network" "my_vcn" {

 cidr_block = var.vcn_cidr

 compartment_id = var.compartment_ocid

 display_name = var.vcn

 dns_label = "myvcn"

 provider = oci.phoenix

}

As discussed earlier in the chapter, environment

variables or the OCI CLI configuration file and its support for

profiles can also be used in these cases to decouple the

configuration values from the code itself. The OCI CLI

configuration file shown in Listing 2-22 describes two

profiles names, IAD and PHX.

Listing 2-22 OCI CLI Configuration File with Multiple Profiles

Click here to view code image

[IAD]

region=us-ashburn-1

tenancy=<tenancy_ocid>

user=<user_ocid>

fingerprint=<key_fingerprint>

key_file=<path to key file>

[PHX]

region=us-phoenix-1

tenancy=<tenancy_ocid>

user=<user_ocid>

fingerprint=<key_fingerprint>

key_file=<path to key file>

The Terraform provider configuration block shown in

Listing 2-23 refers to these profiles to load the provider

configuration for Terraform. Using this approach, the actual

values for authenticating with OCI can be maintained

outside the Terraform code itself. The Terraform code can

use the provider alias to distinguish between the two

profiles. This makes the Terraform code more portable, by

avoiding sensitive data from the codebase and making it

possible to inject these values later. In the example in

Listing 2-23, the two profiles represent two regions, and

with this the Terraform code can work with OCI resources in

both regions by referring to the appropriate provider alias.

Listing 2-23 Provider Configuration with Multiple Regions

Click here to view code image

provider "oci" {

 alias = "phoenix"

 config_file_profile= "PHX"

}

provider "oci" {

 alias = "ashburn"

 config_file_profile= "IAD"

}

Summary

This chapter examined how APIs are central to the cloud

platform. Regardless of how the APIs are consumed,

whether through the browser-based UI, command-line tools,

or infrastructure-management tools such as Terraform, APIs

form the primary control surface for interacting with the

cloud platform. The chapter also served as a quick primer

on Terraform, the infrastructure-management tool used

throughout this book. You also briefly learned about the

essentials of HCL, the language used for describing resource

configurations in Terraform, and saw how Terraform

integrates with multiple cloud providers using its provider-

based model.

Additionally, the chapter covered the OCI provider for

Terraform in detail, including ways to install, configure, and

authenticate with OCI. You saw how the OCI resources are

represented using the OCI provider and examined some

strategies to decouple authentication information from the

code for the infrastructure. You also investigated how

Terraform tracks infrastructure state using state files and

saw how to manage state files in OCI object storage when

operating in teams.

Next, the chapter introduced the Resource Manager

Service, a managed service for infrastructure management

using Terraform. Resource Manager automatically tracks the

Terraform state and makes team-based development of

infrastructure easy and seamless. You also looked at

additional features of Resource Manager, including drift

detection, resource discovery, and generation of Terraform

code as Resource Manager stacks from existing OCI

workflows.

Furthermore, this chapter covered some of the supported

providers inside Resource Manager, such as Kubernetes,

and Helm, which later chapters discuss. You looked at the

stack metadata, in which stacks with a schema file are

presented as workflows with an intuitive UI to the end users.

The stack metadata provides easy UI-based validations and

lookup methods for several OCI resources, as well as

common expressions. You also saw how developers can

publish their Resource Manager stacks as Deploy buttons

that can be placed on any web page. Finally, you looked at

how you can work with multiple regions or multiple cloud

providers.

References

1 OCI Terraform provider:

https://registry.terraform.io/providers/oracle/oci/latest/do

cs

2 OCI Terraform provider GitHub:

https://github.com/oracle/terraform-provider-oci

3 OCI CLI installation and configuration:

https://docs.oracle.com/en-

us/iaas/Content/API/SDKDocs/cliinstall.htm

4 Supported Terraform Providers in OCI Resource

Manager: https://docs.oracle.com/en-

us/iaas/Content/ResourceManager/Concepts/providers.ht

m

5 Extend Console Pages Using Schema Documents:

https://docs.oracle.com/en-

us/iaas/Content/ResourceManager/Concepts/terraformco

nfigresourcemanager_topic-schema.htm

6 https://docs.oracle.com/en-

us/iaas/Content/ResourceManager/Concepts/terraformco

nfigresourcemanager_topic-schema.htm

https://registry.terraform.io/providers/oracle/oci/latest/docs
https://github.com/oracle/terraform-provider-oci
https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall.htm
https://docs.oracle.com/en-us/iaas/Content/ResourceManager/Concepts/providers.htm
https://docs.oracle.com/en-us/iaas/Content/ResourceManager/Concepts/terraformconfigresourcemanager_topic-schema.htm
https://docs.oracle.com/en-us/iaas/Content/ResourceManager/Concepts/terraformconfigresourcemanager_topic-schema.htm

3

Cloud Native Services on

Oracle Cloud

Infrastructure

The Cloud Native Computing Foundation, a part of the

nonprofit Linux Foundation, is the premier body whose

charter is to foster the development of open-source and

vendor-neutral cloud native projects. According to the Cloud

Native Computing Foundation (CNCF):

Cloud native technologies empower organizations to

build and run scalable applications in modern,

dynamic environments such as public, private, and

hybrid clouds. Containers, service meshes,

microservices, immutable infrastructure, and

declarative APIs exemplify this approach.

Cloud native applications are defined by their resilient

design, capability to elastically scale using cloud platforms,

and capacity to implement efficient lifecycle management

that leverages observability and automation. The

technology platforms and tools that enable developers to

build cloud native applications are generally termed cloud

native technologies. The fundamental outcome and goal of

the cloud native paradigm is to dramatically improve

software development velocity, thereby creating innovation

that disrupts traditional business models.

Several turnkey technologies and patterns characterize

modern cloud native applications, including container

orchestration with Kubernetes, the use of service meshes

and observability, and stream- and event-based service

architecture. This chapter introduces the various services in

Oracle Cloud Infrastructure (OCI) that developers can use as

their fundamental building blocks when building cloud

native applications. The chapter covers the role each of

these services plays within the cloud native paradigm so

that you get a panoramic view of the cloud native

ecosystem that OCI offers. OCI’s fundamental focus on

openness also means that these services are compliant with

open standards or are built on top of industry-standard

open-source platforms and are interoperable with them.

Oracle Container Image Registry

Containers are a fundamental turnkey technology that

enables the creation of cloud native applications. Containers

provide the capability to bundle applications and their

dependencies into packages called container images.

Container images contain the application code and its

required dependencies, runtime, system settings, tools, and

libraries. This packaging format makes it easy to quickly

transmit application containers and run them in dynamic

environments while providing a consistent execution

environment for the application. Docker originally developed

the container image specification and runtime. For this

reason, containers and Docker are synonymous for most

users. Docker donated the container image specification

and the runtime to the Open Container Initiative1 to help

establish open standards as the container ecosystem

evolves.

Note

This book uses the abbreviation OCI to mean Oracle

Cloud Infrastructure and calls out uses of the

abbreviation for Open Container Initiative when

discussing container images.

At its core, a container image is a directory of files with

associated metadata. The container image format2 defines

the layers in a specific order that make up this directory.

These layers are combined with union mounting, a way to

combine the contents of various directories, to create a

directory that seems like it contains the combined contents.

The order of the layers is important because the layers are

overlaid on top of each other. When the same files are

present on multiple layers, the file on the upper layer

overwrites (or deletes) the same files on the lower layer.

When creating the image, each layer that makes up the

image is archived into a tar ball and compressed with GZIP.

A container image manifest describes the various layers of

the image (in their respective order) and additional

metadata such as the OS and architecture. A container

runtime can take this package, the container image, and

create an isolated execution environment for the application

contained in the container image. The container image

provides all the information for a container runtime, such as

the manifests to identify the file system layers, an index

that provides a list of manifests for various platforms,

configuration documents that describe image ordering, and

more. Using this information in the container image, a

container runtime can obtain all layers and configure a

running container. Figure 3-1 shows this model, with an

image made up of several layers of files and described by

manifests and configuration documents, while a container

runtime uses the information in an image to create a

running container.

Figure 3-1 Container/Container Image Model

Container images need to be stored in a repository,

where they can be requested, or “pulled.” Registries provide

an address for a container image—a URL that uniquely

identifies a container image, called a container reference.

Oracle Cloud Infrastructure Registry (OCIR, or Container

Registry) is a managed service that provides a container

image registry to store, serve, and manage container

images. OCIR supports multiple image formats or

specifications, including Docker V2 and the Open Container

Initiative image spec. This allows OCIR to work with several

container image specs and container runtimes that support

these image specifications. This means that, when using

OCIR, you can work with all standard container tools, such

as Docker, Podman, cri-o, and containerd. Additionally, the

service supports manifest lists, also known as image

indexes in the Open Container Initiative specification.

Manifest lists allow a single container reference to represent

multiple forms of an image (multiple manifests). Each of

these manifests is typically associated with a specific OS or

architecture so that a container runtime can pick the

manifest based on the platform that it’s running on. This is

crucial when working with images that are built for different

CPU architectures, such as amd64 (x86) and arm64 (ARM).

A typical image reference on OCIR looks like this:

Click here to view code image

iad.ocir.io/idi2cuxxbkto/demo-site:1.0.1

Breaking this image reference into its parts, you can see

the following:

The registry URL: iad.ocir.io.

The namespace: idi2cuxxbkto. OCI provides every

tenancy with a namespace, and this is shown when you

create a repository.

The repository: demo-site.

■ The tag: 1.0.1. Tags point to the digest of the image

manifest. A tag is a more human-readable pointer to an

actual digest.

The Container Registry provides a manifest (or a manifest

list) at this location for container runtimes to pull the image

(its layers and its metadata). You can also use the docker

manifest command to inspect the manifest (or manifest list)

available at a container reference:

Click here to view code image

$ docker manifest inspect iad.ocir.io/idi2cuxxbkto/demo-site:1.0.1

{

 "schemaVersion": 2,

 "mediaType": "application/vnd.docker.distribution.manifest.v2+

 "config": {

 "mediaType": "application/vnd.docker.container.image.v

 "size": 9439,

 "digest": "sha256:8bdcd2821a78c7bf91dffe1d3f0380cd6c97

 7611e7205881"

 },

 "layers": [

 {

 "mediaType": "application/vnd.docker.image.rootfs.di

 "size": 208,

 "digest": "sha256:b1c13aac26c6d0816d720f6afed6292bde

 c6e49265490c8c"

 },

 {

 "mediaType": "application/vnd.docker.image.rootfs.di

 "size": 2009946,

 "digest": "sha256:c3c2acf3bfb91ca8a0220d3d411f8f91f9

 d962c5d06beb91"

 }

]

}

Working with OCIR

As a fully managed service, OCIR ensures that you can

reliably store and serve your container images without

managing or scaling the storage and other infrastructure

resources typically required for running and operating a

container image registry. OCIR supports both public and

private access to container images managed by the service.

To expose an image publicly, you do not need any resources

(such as an Internet gateway or a load balancer) in your

tenancy because the service is fully managed. When

working with private images, you can efficiently access the

registry through a service gateway in your virtual cloud

network (VCN), which ensures that the resources that

access the images can do so in a highly efficient and secure

manner, completely within the OCI network fabric. If an

image is exposed publicly, the image can still be accessed

over a service gateway by resources inside OCI for better

throughput, and the image will also be publicly available

over the Internet. Private registries are ideal in

environments where Internet access is disallowed for

security reasons.

Image Signing

The ease of creating and distributing container images

comes with an increased exposure to security

vulnerabilities. Container images provide a way to build

software packages in layers, with developers building on top

of popular open-source images that provide basic

functionality and runtimes (such as Java) and then laying

down their application binaries and artifacts on top of these

base layers to create the final image. From a security

perspective, developers need to ensure not only that their

own software is secure, but also that every layer in their

final container image, including the layers that they built on

top of, are secure and free from vulnerabilities. They also

must consider the possibility of image tampering, in which a

malicious actor injects security vulnerabilities into an image.

Therefore, to ensure a secure container supply chain, you

must ensure that the container images (and each layer that

makes up an image) are free from vulnerabilities and that

you can verify that the image came from a trusted source

and has not been tampered with.

To ensure the provenance of container images that you

use in your environments, the OCIR service supports image

signing. Image signing is a way to confirm that the

container images you are deploying come from a trusted

source and to verify that these images have not been

tampered with. With OCIR, you can use asymmetric

cryptographic keys to ensure the authenticity of an image’s

origin and guarantee its integrity. The developer (or the CI

process) building the image pushes the image to OCIR. This

creates the image in OCIR and assigns an OCID for the

image. Now the developer can sign the image with a master

encryption key stored in the OCI Vault service and associate

the signature with the image’s OCID. For better security,

OCIR supports only asymmetric key algorithms, such as RSA

or ECDSA; symmetric key algorithms such as AES are not

supported.

When a client such as a Kubernetes cluster validates the

signature, the Vault service is checked to ensure that the

signature is valid. The service also ensures that the user

who pushed the image into the registry had access to the

master encryption key at the time the image was signed.

The signature is based on the content of the image; any

tampering or changes to the image invalidate the signature.

This gives users or systems pulling a signed image from

OCIR confidence that the source of the image is trusted and

that the image has not been tampered with. To further

ensure security within the container image supply chain,

other OCI services, such as Oracle Cloud Infrastructure

Container Engine for Kubernetes (OKE), can be configured

to accept only signed images. Figure 3-2 illustrates the

signatures for an image in OCIR and shows the results of a

signature verification. After an image in OCIR has been

signed, the signature can be verified at any time.

Figure 3-2 OCIR Showing a Repository with Signed

Images and Image Signature Verification

Image Scanning

OCIR also supports image scanning to identify vulnerabilities

in your container images. These vulnerabilities could be

within the application you are developing or within the tools

or runtimes that exist on the base layers of the image you

are building upon. Image scanning can be enabled on a per-

repository basis by adding a scanner to the repository. The

scanner looks for vulnerabilities published in the publicly

available Common Vulnerabilities and Exposures (CVE)

database.

The scanner is powered by the Oracle Cloud

Infrastructure Vulnerability Scanning Service, and it also

provides a Vulnerability Scanning REST API that you can

integrate into your CI pipeline so that a build pipeline can

build an image, push it to an OCIR repository, and

programmatically get scanning results. This enables you to

integrate image scanning into your development pipeline so

that you can identify images with vulnerabilities as early as

possible and then create CI/CD workflows that can prevent

the images from being promoted to critical environments.

Figure 3-3 shows the result of an image scan, summarizes

the issues found for the image, and gives details on each

CVE that has been identified.

When enabling the scanner on a repository that already

has images in it, the most recent four images are scanned

immediately. The scanner produces a report showing an

overall risk assessment for the image based on the scan, as

well as the individual vulnerabilities found and their risk

levels, with pointers to the CVE database for more

information on the vulnerability. OCIR automatically scans

the images as new vulnerabilities are added to the CVE

database and retains the scan results for a period of 13

months so that the risk level of the image can be assessed

over time.

Figure 3-3 Scan Results for an Image Showing the CVEs

That Are Identified on That Image, with Risk Levels,

Descriptions, and Links to the CVE Database

Creating Containers from Images

After a container image has been created and pushed to a

container image repository, the next logical step is to create

a running container from this image. A container runtime, or

a container engine, is the software that can run containers

on a host operating system.

Container Runtime vs Container

Engine

Although the two terms are used interchangeably in

many situations, they have subtle but important

differences. A container runtime simply manages the

creation and management of a container. On Linux,

this includes making the system calls to create and

configure the kernel features that enable resource

limiting, process isolation, and more. However, this

does not include capabilities such as pushing/pulling

images from remote repositories. These container

runtimes are sometimes known as low-level runtimes;

examples include runc and crun. A container engine,

on the other hand, comprises more tools and utilities,

including CLIs for managing containers, pulling and

pushing images, and so on. These are also called

high-level container runtimes; examples include

containerd and cri-o.

The container runtime uses the host operating system

kernel’s capabilities to create isolated sandboxes for

processes with resource limits. The container runtime uses

the metadata in the image to configure the isolated

execution environment that has been created using the

underlying kernel features, union mount the image layers,

and configure the mount as the root file system for the

isolated environment. Typically, this is done through

operating system–level isolation and virtualization, such as

with cgroups, namespaces, and chroot in Linux, or Hyper-V

in Windows.

Oracle Cloud infrastructure offers several choices to run

and manage container workloads, from the basic approach

of running and managing containers on compute instances

to fully autonomous and serverless offerings.

Compute Instances

The most obvious and trivial way to run a container on OCI

is to create a compute instance, install a container runtime

on that instance, and then use the tooling provided by the

container runtime to create and manage containers.

Although this is a perfectly valid model, it often involves

more (and often unacceptable) management overhead for

the developers because of the need to keep the container

runtimes, tools, and other infrastructure components

updated and patched on a rigorous schedule. However, this

approach affords you the highest amount of control in

managing your workloads.

The trivial method for booting a compute instance with a

container runtime is to install it at first boot using cloud-

init
3. Listing 3-1 shows an example cloud-init configuration

for Oracle Linux 7, to install Docker, enable the service, and

start it. The example also adds the default opc user to the

docker group so that this user can use the docker command

without using sudo.

Listing 3-1 cloud-init Example for Bootstrapping an Oracle

Linux 7 Instance with a Container Runtime

Click here to view code image

#cloud-config

bootcmd:

 - [cloud-init-per, once, enable-epel, yum-config-manager, --en

 developer_epel]

groups:

 - docker

users:

 - default

 - name: opc

groups: docker

 groups: docker

 shell: /bin/bash

 sudo: ALL=(ALL) NOPASSWD:ALL

packages:

 - docker-engine

 - docker-cli

runcmd:

 - [systemctl, daemon-reload]

 - [systemctl, enable, docker.service]

 - [systemctl, start, --no-block, docker.service]

Note

On Oracle Linux 7, the package docker-engine refers

to the Oracle Container Runtime for Docker. This

package is based on the upstream docker releases.

Oracle Linux 8 does not feature the Oracle Container

Runtime for Docker and instead uses Podman, Buildah, and

Skopeo, which is a set of container tools based on the Open

Container Initiative. All the tools are available conveniently

in a single module that can be installed with the following

command:

Click here to view code image

sudo dnf module install container-tools:ol8

This command can be used from within the cloud-init

configuration as well.

Aside from using cloud-init to set up required packages,

you can also create custom OS images with the tools

preinstalled. This approach avoids the installation process at

instance creation time. It saves several seconds when

launching an instance, which can be quite significant if you

have highly performance-sensitive workloads that

frequently need ephemeral compute instances. Several

task-based workloads belong to this category. When using

this approach, an instance is created and then the required

packages and settings are configured. A custom OS image

is created from this instance, which now includes the

packages and customizations that were applied to the

instance. New instances can thus be created using the

custom image as the OS image.

Container Instances

Container instances address the primary drawback of

running a container runtime directly on top of infrastructure,

which is the high setup and maintenance overhead

associated with it. Using the methods described in the

previous section, the setup process and methods can be

streamlined to a certain extent. However, the maintenance

of infrastructure poses an entirely different challenge. Using

infrastructure directly, developers need to take on the

responsibility for routinely updating, patching, and rebooting

their compute instances. It is also important to keep the

container runtime up to date with the latest patches and

CVEs while ensuring consistent configurations of these

runtimes. Sizing the infrastructure becomes another

challenge in this model because you need to always ensure

compute capacity for container workloads to scale

dynamically while still optimizing for cost. Instance

provisioning times can be orders of magnitude higher than

container creation and startup times, so always having “just

enough headroom” is essential to seamlessly scale the

container workload. Developers also need to ensure that

logs and metrics from containers can be collected and

pushed to analytics tools. Workload isolation is an equally

challenging problem, particularly for multitenant

applications and SaaS platforms. When building multitenant

applications and platforms, the shared infrastructure needs

to be managed carefully to prevent data leakage and

container escape attacks. These often result in solutions

that require a significant amount of custom code to ensure

that containers are placed in optimally sized instances,

containers have room to scale when needed, shared

resources are well isolated, and the fleet can be managed

and patched efficiently from an operational perspective.

Container instances address these concerns by offering a

service that enables you to create one or more containers

without managing infrastructure. The experience is like

compute instance creation, in that it enables you to specify

the CPU, the memory, network, and other resource

characteristics required for one or more containers and then

for providing container images to run. OCI provides the

compute, the container runtime, and other resources, such

as networking and storage; then it uses the metadata

provided to pull the images and create a running container

or set of containers. Here the OCI service takes care of

creating and maintaining the underlying infrastructure. The

service manages activities such as OS patching and

restarts, container runtime setup, network setup, storage

attachment, and so on. This greatly simplifies the workflow

for developers while addressing the drawbacks of the

traditional approaches. From the developer’s perspective,

the workflow is very similar to launching a compute

instance. Instead of providing an operating system image,

the developer provides the CPU memory and other resource

constraints, as well as the container images that need to be

part of the container instance.

A container instance is a lightweight container-optimized

VM that can have more than one container in it. This

enables developers to start containers much faster than

provisioning VMs while providing the same level of

hypervisor-level isolation and avoiding the management

overhead of traditional VMs. The hypervisor level allows for

a better security posture, even in the face of container

escape attacks. The containers within a container instance

all share the CPU, network, and storage resources. This is

somewhat like a pod in Kubernetes, although a container

instance should really be thought of as a lightweight VM

that can run one or more containers; it differs greatly in the

level of container orchestration features when compared to

platforms such as Kubernetes. Figure 3-4 shows how the

container instance provides hypervisor level isolation and

an environment that can run multiple containers that share

the container instance’s resources.

Figure 3-4 Container Instance and Hypervisor-Level

Isolation

Container instances integrate with OCI features such as

instance pools and autoscaling for fleet management. This

means that you can create a container-based workload fleet

that is consistently configured and can scale elastically. The

container instance also makes it easy to access container

logs and metrics for each container within the container

instance and execute commands within the containers. As

with containers, container instances are also immutable.

When a container instance is created, changing resources

such as CPU or storage is done by creating a new container

instance and discarding the old one. This includes updating

the image tags and changing the configurations for the

containers, in keeping with standard container lifecycle

management practices. This dramatically improves the

workflow for developers working with container applications

by providing a fully managed platform for infrastructure and

container runtimes.

Ideal applications for container instances include data

processing jobs such as video encoding or data analytics,

build jobs, CRUD applications, event-based actions, and task

automation.

Container Engine for Kubernetes

As containerized applications grow in scale, they tend to

become smaller and more distributed. Modern distributed

applications are designed as a network of microservices that

each implement a specific feature and communicate with

each other using well-defined interfaces. When combined

with container-based packaging, this design paradigm

enables each of these smaller services to scale, update, and

expand in their features, independent of each other. This

also helps increase the overall development velocity and

supports a more frequent release of smaller changes. As the

number of these containers rises, however, so does their

management overhead; the overall application also

increases in its complexity. Manually or statically wiring

together the containers and keeping track of their status

and health soon becomes an untenable approach. This calls

for more automation to orchestrate the container workloads.

For large container-based workloads that require significant

higher-level abstractions and orchestration, Kubernetes is

the platform of choice. Kubernetes offers much beyond

container management, and it provides features such as

autoscaling, resource management, service discovery, load

balancing, and deployment management. Kubernetes is a

CNCF graduated open-source project and can be installed

and run on public cloud, hybrid, or on-premises

infrastructures.

Kubernetes exemplifies the “pets versus cattle”

approach. The premise is that you do not treat your

infrastructure as individual hosts or resources, each with a

designated purpose and name, like a pet. Instead, you see

your infrastructure as a fleet of servers, with none serving

any special role and all being completely replaceable. For

instance, with Kubernetes, you can configure an application

container so that it is allowed to use two cores and 8GB of

memory to run, and you can request that three instances of

the application be running at any one time. Using this

configuration, called a manifest and typically represented in

YAML, Kubernetes can create the required number of

containers to meet your specification and keep track of their

health. Kubernetes can move your containers as the fleet’s

status changes and failures occur, all without intervention.

In this manner, Kubernetes enables you to describe the

configuration you desire in the deployment manifests; you

can then apply these manifests to a Kubernetes cluster that

keeps track of the containers, nodes, and other resources

and ensures that your configuration defined in the manifest

is always met. Because these manifests can be versioned,

releasing new changes and rolling back to previous

configurations becomes trivial for most applications.

Oracle Cloud Infrastructure Container Engine for

Kubernetes (OKE) is the managed Kubernetes platform for

developing modern applications from Oracle. Although you

can install Kubernetes on any infrastructure yourself, the

installation and upkeep of the administrative and platform

components in Kubernetes can be challenging. Figure 3-5

illustrates the various components of an OKE cluster.

Figure 3-5 Components in an OKE Cluster, Showing the

Oracle-Managed Control Plane and the Data Plane Where

the User Has Full Control

As a software suite that manages container-based

workloads, Kubernetes has a set of administrative

components that manage and control the cluster for tasks

such as keeping track of the nodes, workloads,

configurations, health status, and so on. The nodes on

which these control components run are called the control

plane nodes. In a managed Kubernetes platform such as

OKE, these are installed and managed by the cloud

provider. The control plane nodes do not run any workloads

other than the management processes for the cluster itself.

Users do not have access to these nodes.

The workloads themselves run on compute instances

called worker nodes. The cluster control plane processes

monitor and record the state of the worker nodes and

schedule workloads onto them. A node pool is a subset of

worker nodes within a cluster that all have the same

configuration. A cluster must have a minimum of one node

pool, but a node pool need not contain any worker nodes.

OKE supports two types of node pools that differ in how

the nodes in the pool are managed. Managed node pools

have nodes that are controlled by the user. Virtual node

pools, on the other hand, are fully managed by OCI.

Managed node pools and virtual node pools address

different use cases and usage models. A managed node is a

compute instance of the user’s choice of shape. Users have

full access to these nodes, including SSH access and the

capability to customize the nodes with user-created OS

images and cloud-init scripts. Nodes run the kubelet

process, which is responsible for ensuring that the pods

scheduled on the node are running and reporting on the

node health conditions acting as a node agent for

Kubernetes. Virtual nodes, on the other hand, leverage

Kubernetes pod configurations to create an isolated

compute environment for the pod. Each Kubernetes pod is

therefore isolated from other pods at a hypervisor level. The

configuration of the execution environment, such as the

number of CPU cores and memory, is inferred from the

resource requests and limits set on the containers in the

pod configuration. The execution environment for the pod is

fully managed by Oracle and runs abstracted, away from

the user. Virtual node pools therefore completely remove

the need to manage infrastructure when deploying

Kubernetes workloads and can be considered to be a

serverless Kubernetes platform. Although managed nodes

give users a high degree of control in accessing and

managing their nodes (as with using custom cloud-init

scripts to customize nodes), they come with the additional

overhead of managing the node’s OS and Kubernetes

upgrades. Virtual nodes, on the other hand, offer an

experience that is focused on your workload, with little or

no infrastructure management overhead. However, that

comes at the expense of having control over the

configuration of nodes. A single cluster can have both

provisioned and virtual node pools.

Table 3-1 offers a comparison of managed and virtual

nodes.

Table 3-1 Managed versus Virtual Nodes

Managed Nodes Virtual Nodes

Infrastructure

control

Users maintain

control over nodes.

Users can control

the workload but

not the

infrastructure.

Upgrades Users upgrade the

nodes.

Upgrades are fully

managed by OKE.

Isolation A node’s resources

are shared by the

pods that run on it.

A virtual node has

no physical

resources. Each

pod runs in its own

hypervisor-level

isolated compute

environment.

Managed Nodes Virtual Nodes

Resource

management

Users decide the

shapes of the nodes

and set resource

requirements and

limits for pods. The

Kubernetes

scheduler matches

pods to nodes

based on

availability.

Nodes need not be

created or

managed. Users

should set resource

requirements and

limits on pods, to

create dedicated

compute

environments for

each pod.

Node pools can also have placement configurations that

control the placement of the nodes in the node pool. These

placement configurations can be used to spread the nodes

in a node pool across multiple availability domains or fault

domains to ensure better resiliency. Creating multiple node

pools enables you to create groups of machines within a

cluster that have different configurations. Figure 3-6 shows

two node pools, one with E3.Flex shapes and another with

A1 bare-metal machines. Here, the first node pool is based

on AMD (x86)–based Flex shape virtual machine instances;

the second node pool is an ARM-based bare-metal shape.

This example also demonstrates that different node pools

can be of different shapes, CPU architectures, and bare

metal or virtual machines. Having this flexibility in your

cluster resources lets you right-size the workloads and

progressively introduce infrastructure changes to your

environments—for example, introducing ARM-based

compute for a subset of workloads or using bare-metal or

GPU-enabled nodes for compute-heavy workloads and VMs

for supporting workloads. Node pools also let you control

the placement of nodes across availability domains and

fault domains in OCI. Figure 3-6 shows the first node pool

placing nodes across all three availability domains and the

second node pool restricting nodes to just two of the three

availability domains.

Figure 3-6 Node Pools in a Cluster Can Be Used to

Control the Node Types and Their Placement, as Well as

Create Clusters with Multiple Types of Nodes in Separate

Node Pools

The node pools act as the control unit for scaling and can

be used to scale the number of compute instances up or

down, to add or remove compute capacity in the cluster.

The scaling also can be automated based on metrics.

Autoscaling is covered in more detail in Chapter 4,

“Understanding Container Engine for Kubernetes.”

Note that the number of pods that can be scheduled or

placed on a node is still dependent on the network address

space available on a node, up to a maximum of 110. Larger

nodes with more CPU cores and memory are therefore ideal

to accommodate pods with much higher resource

consumption needs. The memory and network throughput

are also important considerations when choosing a shape

for your nodes. The maximum available memory and

network bandwidth changes, based on the shape of the

node and the number of OCPUs (an OCPU is a complete

core, not just a hardware thread). Thus, the choice of shape

for the nodes also depends on the memory and network

throughput expectations for the workloads.

As one of the highest-velocity open-source projects,

Kubernetes provides support for three minor versions. This

support policy is sometimes also called an N-2 support

policy, in which the latest version and the two preceding

minor versions of Kubernetes get patches for security and

bug fixes. OKE as a managed service does not force users to

upgrade as new versions of Kubernetes are released,

although keeping your Kubernetes version up to date with

the latest security fixes and bug fixes is an important

consideration. For creating new clusters, OKE always

supports at least three versions of Kubernetes. Version

choice for new clusters moves like a rolling window as well.

When OKE adds a new version of Kubernetes as a choice for

creating new clusters, the oldest version choice remains a

choice for at least 30 days, beyond which it may be

removed. Exiting clusters that use that version are

unaffected; the removal simply means that new clusters will

have newer version choices. As support for new Kubernetes

versions is added to OKE, you can update the control plane

to the new version with a click of a button or an API call. The

control plane upgrades are completely managed by Oracle

and are transparent to the user. The Oracle-managed

control plane is always in a highly available configuration,

and the upgrade is performed in a rolling fashion so that it

does not impact the cluster’s normal operations. After the

control plane has been upgraded, the node pools can be

upgraded as well. Chapter 4 does a deep dive into OKE,

providing best practices, strategies, and tips for building

and deploying applications to OKE.

Service Mesh

As we become more accustomed to microservice-based

architectures and distributed applications, we start seeing

applications as consisting of services that communicate with

each other and forming a network of services that

implement the application. This design paradigm of creating

a network of services affords us a lot of advantages in

flexibility, development velocity, and resiliency. However, as

applications evolve, the network of microservices grows and

the complexity of managing the entire application also

increases. The task of ensuring reliable and secure service-

to-service communication and implementing observability

can have a significant impact on the development of the

services. Building these features directly into the services

makes them more brittle, impedes their capability to

change, and slows the development of features because the

application code now needs to take on additional

responsibilities. In a cloud native environment, a service

mesh is a tool that can be used to add cross-cutting

functionality, such as security or observability, to a set of

microservices.

A service mesh operates by inserting proxies between

services into the network of microservices. These network

proxies are typically deployed as a set of sidecar containers,

or containers that are deployed alongside microservice

containers. They handle the service-to-service

communication between the microservices and can

transparently implement security, observability, and

patterns for resiliency.

Oracle Cloud Infrastructure Service Mesh is a fully

managed service mesh implementation that provides

security, observability, and traffic management to cloud

native applications without any application changes or

dependencies. OCI Service Mesh creates proxies that are

containers deployed alongside your applications, in the

same Kubernetes cluster. The proxies handle traffic to the

application and provide telemetry, security, and load

balancing across pods. The proxies communicate with each

other and are aware of policies that govern communications

so that they allow only permissible communications

between services. Figure 3-7 shows how the proxies

deployed as sidecars to microservice containers

communicate with the managed components of the service

mesh to provide features such as telemetry and security.

Figure 3-7 OCI Service Mesh Is Based on Proxies That

Are Injected as Sidecar Containers to Your Pods

The service mesh has managed components that include

an IngressGateway, VirtualServices, and

VirtualDeployments, along with policy management to

support customized and secure traffic routing. These are

mapped to an application’s services and provide

abstractions for those services. When using the OCI service

mesh, the applications services are mapped to virtual

services and virtual deployments and associated policies.

These virtual services are then bound to the existing

services using binding objects. The applications are exposed

using the IngressGateway, which routes traffic to the

various VirtualServices. VirtualServices are in turn bound to

Kubernetes services that the application exposes. A virtual

service represents a customer-managed microservice in the

mesh. Each virtual service has its own configuration for the

service hostname, Transport Layer Security (TLS)

certificates (for both client and server), and Certificate

Authority (CA) bundles. A virtual deployment represents a

version of a virtual service; each virtual service has up to

five virtual deployments. Route tables are a virtual service

feature that routes ingress traffic to specific versions of the

virtual service. A virtual deployment binding associates the

pods in an application cluster with a virtual deployment in

your mesh. The virtual deployment binding resource allows

service mesh to discover pods, backing the virtual

deployment for service discovery.

The service mesh components and custom resources are

installed on a Kubernetes cluster using the OCI Service

Operator for Kubernetes (OSOK). OSOK is a collection of

operators for OCI services that includes the operator for the

service mesh. This operator provides the CRDs, roles, and

other resources required to allow users to perform actions

on the OCI service mesh using the Kubernetes API. With the

operator installed, users can interact with the service mesh

using standard tools such as kubectl.

When using the service mesh with the operator, users

can apply annotations at the namespace level to enable

sidecar injection for all pods in the namespace. The effect of

these namespace-level annotations can be overridden at a

pod level by specifying the sidecar injection on a per-pod

basis.

Serverless Functions

Serverless functions are at the pinnacle of building scalable

and distributed business logic implementations. They are

called serverless simply because the server and its runtime

environment are fully managed by the cloud vendor and are

not exposed to the application developer. The essential idea

is to create functional units of business logic that can be

packaged and executed in isolation. These are generally

focused, well-defined tasks such as file processing, in which

a file is read from a source, minimally processed or

transformed, and then either sent to a destination or takes

an action in response to an event. Functions also find use in

Internet of Things (IOT) applications, image processing,

machine learning (ML) inferencing, and other applications.

Functions usually do not exist in isolation; many times, they

are chained together to create a network of functions

(similar to microservices in that respect) that interact with

external systems. Functions are usually time bound: They

are expected to finish their execution within a slice of time,

beyond which they can be terminated. In many cases,

functions are also event driven. Their fundamental design of

running small, time-bound processes that perform well-

defined actions makes them naturally scalable and

distributed when assembled into larger systems. Functions

can be written in Python, Go, Java, NodeJS, and other

commonly used programming languages and runtime

environments. Functions should be fully self-contained and

cannot depend on any outside software or code to operate

other than calling other APIs. Being packaged into these

self-contained units allows them to start up, execute their

functionality, and then shut down quickly. Functions abstract

all infrastructure management from their users, and a cloud

platform (such as OCI) guarantees a secure execution

environment that can scale quickly as the calls to the

function increase. This also means that functions follow a

very different cost model based on actual usage rather than

the typical infrastructure that might be billed based on

resources allocated.

Oracle Functions is a fully managed Functions-as-a-

Service platform that is built on enterprise-grade Oracle

Cloud Infrastructure and powered by the Fn Project open-

source engine. The serverless and elastic architecture of

Oracle Functions means there is no infrastructure

administration or software administration for you to

perform. You do not provision or maintain compute

instances, nor are you responsible for operating system

software patches and upgrades. Oracle Functions simply

ensures that your app is highly available, scalable, secure,

and monitored. With Oracle Functions, you can write code in

Java, Python, Node.js, Go, and Ruby (and, for advanced use

cases, bring your own Dockerfile and Graal VM). You can

then deploy your code, call it directly, or trigger it in

response to events, and you get billed only for the

resources consumed during the execution.

Oracle Functions is based on Fn Project.4 Fn Project is an

open-source, container-native, serverless platform that can

be run anywhere—in any cloud or on-premises. Fn Project is

easy to use, extensible, and performant. You can download

and install the open-source distribution of Fn Project,

develop and test a function locally, and then use the same

tooling to deploy that function to Oracle Functions. You can

access Oracle Functions using the console, a Command Line

Interface (CLI), and a REST API. You can invoke the functions

you deploy to Oracle Functions by using the CLI or by

making signed HTTP requests. Oracle Functions is

integrated with Oracle Cloud Infrastructure Identity and

Access Management (IAM), which provides easy

authentication with native Oracle Cloud Infrastructure

identity functionality.

When you have written the code for a function and it is

ready to deploy, you can use a single Fn Project CLI

command to perform all the deploy operations in sequence:

1. Build a Docker image from the function.

2. Provide a definition of the function in a func.yaml file that

includes:

a. The maximum length of time the function is allowed to

execute

b. The maximum amount of memory the function is

allowed to consume

3. Push the image to the specified Docker registry.

4. Upload function metadata (including the memory and

time restrictions and a link to the image in the Docker

registry) to the Fn Server and add the function to the

list of functions shown in the console.

Figure 3-8 shows how the Functions CLI interacts with the

various components to deploy a new function.

Figure 3-8 The Components of Oracle Functions

API Gateways

An API gateway provides a layer of abstraction for the

Application Programming Interfaces (APIs) that your

applications expose. For microservice-based applications

that operate at scale, this becomes almost indispensable,

although, in many ways, an API gateway predates the

popularity of microservice architectures. API gateways can

be software-defined, self-managed platforms that you

deploy on top of infrastructure, or they can be a fully

managed service delivered by a cloud provider. Regardless

of the model, at its core, an API gateway is a service that

provides a facade around one or more of your applications’

APIs, with added features. Common features offered by API

gateways include the capability to implement a common

and consistent authentication and authorization model

across the back-end APIs, rate limiting for APIs, caching,

monitoring, API versioning, and the capability to transform

both requests and responses.

The API Gateway service in OCI is a fully managed

service that is implemented as a virtual network appliance

that you can deploy to a regional subnet. Regional subnets

are required because API gateways are always highly

available, with fault tolerance built in. When deployed in

regions with multiple availability domains, API gateways are

automatically configured across multiple ADs for fault

tolerance. In single-AD regions, an API gateway is

configured across fault domains. API gateways can be public

(accessible from anywhere on the Internet) or private

(accessible from within the VCN). API gateways always have

a private endpoint, and this is optionally exposed publicly to

create a public API endpoint. You can use a single API

gateway to link multiple back-end services and route

inbound traffic to them. These back-end services can

include HTTP APIs exposed through compute instances, load

balancers, external API providers, and OCI Functions.

Components of an API Gateway

When working with the API Gateway service, you generally

start with the gateway resource. This is the infrastructure

component, the virtual network appliance that is managed

by OCI. You can then deploy API deployment specifications

on this gateway resource. An API deployment specification is

a way to describe the back-end APIs as a set of routes. A

route is the mapping from a path to one or more methods

and then a back-end service. Routes capture the type of

resources that provide the underlying API and how to reach

that resource. For instance, an HTTP URL exposed by an

application that you are running on a compute instance

captures the private IP address or domain name, the port on

which the service is available, and the path under which to

expose or present the API and the HTTP operations that the

gateway supports for the route. The API deployment spec

also describes the policies that can validate and transform

the requests or responses. The policies are applied to every

request or response. You can also use policies to add

authentication, authorization, and monitoring. When the

deployment specification is deployed to a gateway resource,

it becomes an API deployment. The API deployment causes

the gateway to expose the API as defined in the spec and is

ready to direct traffic to the back ends described in the

spec. As API traffic flows in, the gateway applies the policies

that are specified by the API deployment spec. You can add

policies to an API deployment specification that applies

globally to all routes in the API deployment specification, as

well as policies that apply only to particular routes. Figure 3-

9 shows how an API gateway can contain multiple API

deployments with policies and routes that connect it to

various back ends.

Figure 3-9 An API Gateway Can Host Multiple API

Deployments, with Routes and Policies That Connect It to

Various Back Ends

Apart from resources such as the gateway and an API

deployment, the service exposes another resource called

the API. As shown in Figure 3-9, an API resource can be used

to create an API deployment as well. The API resource is a

representation of an API description in an open format such

as OpenAPI 3.0 or 2.0 (also known as Swagger 2.0). An API

description like this establishes the public contract for your

API, which automatically documents the endpoints, paths,

HTTP operations, and type of responses to expect from the

API. Representing the API contract in an open format such

as OpenAPI 3.0 helps to ensure the portability and tooling

for working with these APIs; these industry-standard formats

have attracted an established ecosystem of tools around

them. The API description format is machine readable and

can be processed by tools with which you can generate

documentation for the API, generate stubs for clients to call

the API without an actual implementation, generate test

cases and Software Development Kits (SDKs), and so on. An

API resource is created by uploading an API description. The

API resource can be deployed to an API gateway, creating

an API deployment. When an API resource is deployed to an

API gateway, the routes are created from the API description

because it provides the paths, the HTTP methods supported,

and expected responses. Policies and references to the

actual API implementations are added to the API description

when creating an API deployment. Creating API resources in

the API Gateway service is optional, but it is highly

recommended. You can also create an API deployment that

does not initially have an API description and then add an

API description later.

Working with the API Gateway

Service

The workflow for using an API gateway is best demonstrated

by starting with a simple API. This example shows a minimal

API for product data. The API will have methods by which

users can request a list of products or get the details of a

single product. To build this API, a developer can start with

the infrastructure resources and build an ad-hoc

deployment. This is done by creating an API deployment

from scratch, defining its routes, back ends, and so on.

Alternatively, a developer can first define the API contract

and then create the infrastructure resources and deploy the

API definition to it. The best practice is to use an API-first

approach, to define the API and its behavior without

focusing on the implementation. This API definition defines

an interface that potential consumers can start consuming

even before an implementation is created. After all, the

implementation for the API simply materializes the behavior

described by the API definition with concrete back-end

systems. The actual implementation is hidden from

consumers and can potentially be swapped out, if needed.

This is because the consumers always consume the API

through the API Gateway, which maintains the API behavior

expressed in the API definition and routes the requests to a

back end that implements that behavior. After the API is

defined, a developer can create the infrastructure and

deploy the API definition to that infrastructure. The example

presented here uses OpenAPI Spec 3.05 to define the API,

and the code snippet in Listing 3-2 shows how an API of this

nature would appear.

Listing 3-2 An Example API Definition Expressed Using the

OpenAPI Spec v3 Standard

Click here to view code image

{

 "openapi": "3.0.0",

 "info": {

 "version": "1.0.0",

 "title": "Minimal Product API"

 },

 "paths": {

 "/products": {

 "get": {

 "summary": "get all products",

 "operationId": "getProducts",

 "responses": {

 "200": {

 "description": "An array of products",

 "content": {

 "application/json": {

 "schema": {

 "$ref": "#/components/schemas/Products"

 }}}}}}

 },

 "/products/{productId}": {

 "get": {

 "summary": "Info for a specific product",

 "operationId": "getProductById",

 "parameters": [{

 "name": "productId",

 "in": "path",

 "required": true,

 "description": "The id of the product to retrieve",

 "schema": {

 "type": "string"

 }}

],

 "responses": {

 "200": {

 "description": "Expected response to a valid request",

 "content": {

 "application/json": {

 "schema": {

 "$ref": "#/components/schemas/Product"

 }}}}}}}

 },

 "components": {

 "schemas": {

 "Product": {

 "type": "object",

 "required": [

 "id",

 "name"

],

 "properties": {

 "id": {

 "type": "integer",

 "format": "int64"

 },

 "name": {

 "type": "string"

 }}

 },

 "Products": {

 "type": "array",

 "items": {

 "$ref": "#/components/schemas/Product"

 }}}}

}

OpenAPI definitions always start with the version of the

OpenAPI Spec used. Explicitly setting the version is

mandatory. Here, the spec version used is 3.0.0. This is

followed by some API metadata in the info object. The paths

section is one of the most important in the API definition; it

defines the various URL paths or routes that the API

exposes. The example here shows two paths: /products and

/products/{productId}. Each path then defines the HTTP

methods that the path will support. For each method, the

definition identifies the request parameters and request

body, where applicable, as in the case of PUT and POST

methods. Paths can contain path parameters such as

/products/{productId} or other parameter types, such as query

parameters, cookie parameters, or header parameters.

Each HTTP method also identifies the various possible

response codes and response structures.

Note

Several optional elements have been removed; for

brevity, the example shows only necessary attributes.

The OpenAPI spec website has more details on the

various attributes within the specification:

https://spec.openapis.org/oas/v3.0.0.

https://spec.openapis.org/oas/v3.0.0

With the API defined, the developer can now create an

API resource and upload the API definition to it. After the API

definition is uploaded, the API resource validates the

definition to ensure that it conforms to the specification.

Once validated, the API definition is ready to be deployed to

an API gateway. The developer can create infrastructure

resources such as the gateway at this point or use pre-

existing resources. Deploying the API to an API gateway

creates the API deployment resource. During deployment,

the service parses the API definition and creates the routes

and methods based on the definition. At this stage, the

developer can specify additional information about these

APIs, such as the back ends that implement the APIs or the

policies that need to be applied. Figure 3-10 shows how an

API deployment infers the routes and HTTP methods from

the paths specified in an API spec. To get started,

developers can use a stubbed-out back end; as real back-

end services are built out, they can simply be switched in.

Figure 3-10 The Service Can Parse the API Spec and

Populate the Routes in an API Deployment

Messaging Systems

Modern cloud native architecture that emphasizes resiliency

through scalable, loosely coupled components relies on

asynchronous messaging between components. Messaging-

based architectures allow microservices to scale and

become location transparent because systems are not

connecting to each other directly; instead, they are

communicating through messages brokered by a messaging

system. This enables load management, elasticity, and flow

control by shaping and monitoring the message queues in

the system. It also enables developers to manage failures as

messages. The asynchronous and nonblocking

communication in message-driven architectures consumes

resources only while active, delivering optimized resource

usage and cost optimizations. Today several leading CNCF

projects exist in the messaging space, including NATS.io and

Cloud Events, providing a wide array of features,

programming models, and performance characteristics.

In message-driven architectures, a message usually

represents an object and its state or a change in its state.

For instance, in an ecommerce application, a message that

is sent from a cart service to an order service can identify

an item by its ID, the quantity to be purchased, payment

information, and the user who is purchasing it. The orders

system can process the messages as they arrive, checking

inventory, processing the payment, and sending more

messages to other systems, such as a fulfillment system for

the orders placed. Here, the systems are not directly

communicating, nor do they know the other systems that

are receiving the messages. This allows for flexible

architectures—if one service were to be replaced, the other

services would not even be aware of this change. This

allows systems to scale independently and maintain well-

defined failure boundaries, avoiding cascading failures. If a

service fails, the messages intended for that failed receiver

simply wait for the system to return to an operational state

and pick up from the next message that is to be processed.

Developers thus can work with well-defined contracts

expressed as message formats, and rollout changes to parts

of the system can be done with greater velocity and agility,

yet without the need for highly coordinated release

workflows.

Several messaging approaches offer different semantics,

including message queuing and publish subscribe. These

models have three key components: message producers,

the messaging system, and message consumers. Message

producers are applications that generate messages.

Message consumers are applications that consume and

process messages. They are connected by the messaging

system, which provides features such as message storage,

message order, at-least-once delivery, and at-most-once

delivery. Note that the messaging system decouples the

producer and consumer. Each component knows only about

the messaging system, not about each other. This isolation

of each component allows them to be independently

deployed, scaled, and patched.

In message queuing, messages sent by the message

producer are stored in a buffer until they are dequeued or

consumed by another component. The message is

processed only by the message consumer that dequeues it

from the queuing system.

In the publish subscribe (Pub/Sub) model, shown in Figure

3-11, the producers (also known as publishers) publish

messages onto a topic, and the message can be processed

by all consumers (also called subscribers) who have

subscribed to the topic. Note that in the Pub/Sub model, the

same message is processed by many subscribers, unlike in

a queue.

Figure 3-11 The Pub/Sub Model Connects Distributed

Systems Using Messages That Are Published and

Consumed on a Topic

Among these three components, the messaging system

is usually the most complex. It handles message

persistence, ordering, delivery guarantees, and more. The

producer and the consumer interact with the messaging

system using an API that the messaging system provides.

The APIs provided by the messaging system aim to make

the producer and consumer code as simple as possible. For

most platforms, the producer API simply lets an application

publish a message, and the consumer API lets an

application read these messages. In practice, when there is

a multitude of producers and consumers, the messaging

system provides the heavy lifting of ensuring the

throughput, infrastructure resources, and delivery

semantics. This makes the task of running and maintaining

open-source messaging systems such as Kafka and NATS

appreciably complex and nontrivial. As a solution to this

problem, most cloud vendors provide a fully managed

messaging system that either is built on top of the open-

source tools or has API compatibility with open-source tools.

Streaming

The OCI Streaming service provides a scalable messaging

system with durable storage. It is a fully managed service

that can be used for ingesting continuous streams of data.

Streaming service is suited for building web-scale

applications and microservices that use a message-driven

architecture. These applications are typically designed

around data that is produced and processed continually and

sequentially in a Pub/Sub messaging model. The OCI

Streaming service is also suited for applications that ingest

logs, metrics, and operational telemetry, as well as other

fast data streams, such as website clickstreams. As a fully

managed service, OCI Streaming manages all infrastructure

needed to operate and scale the service, from provisioning,

deployment, maintenance, and replication to configuration

of the hardware and software that enables you to stream

data. As a user of the service, you create a stream and

configure the partitions. Streams and partitions are

resources provided by the service; they are discussed in the

next section. You can securely put and get your data from

Streaming through SSL endpoints using the HTTPS protocol.

The service ensures that user data is encrypted both at rest

and in transit, and you can bring your own encryption keys

that you manage in the OCI Vault service. Streams also

support private endpoints, which limits the visibility of your

streaming endpoint so that it is restricted within your virtual

cloud network (VCN), preventing access through the

Internet.

Understanding the Streaming Service

The OCI Streaming service is a fully managed service. As

such, it exposes a resource called a stream that

encapsulates the infrastructure required to operate a

messaging system and manage its lifecycle. Developers first

create a stream in the streaming service using the console,

CLI, Terraform, or the APIs. A stream is the primary resource

you interact with, and it can be thought of as an append-

only log. Streams are organized into stream pools that

provide a way to manage the settings for all the streams in

a pool. If you do not explicitly associate a stream with a

stream pool, the stream is created in the default stream

pool.

After a stream has been created, applications can publish

messages to it. In most cases, applications use the OCI SDK

or the APIs directly to publish messages. You can also use

the OCI console and the CLI to send messages to your

stream for testing. Another popular way for applications to

interact with the streaming service is to use the Kafka APIs,

which the streaming service supports. Every message

consists of a key and a value, both of which can be set by

the developer. Listing 3-3 shows a snippet of code using the

Python SDK to publish a message. Multiple publisher

applications can publish messages to the stream at the

same time.

Subscribers or subscriber applications can consume

messages from the stream either individually or as part of a

consumer group. The streaming APIs and SDK offer many

options for consumers to control how messages are

delivered to them.

As applications publish messages to a stream, these

messages are distributed to partitions that are managed by

the streaming service. Each partition stores a subset of the

messages that were published. Having multiple partitions

allows message consumers to consume messages from

multiple partitions at the same time. Because publishers

and subscribers can use partitions in parallel, the number of

partitions has an impact on the message throughput of the

stream. There are limits to this as well. Each partition is

limited to 1MBps of data write and 5 get requests per

second from each consumer group. When a new stream is

created, the number of partitions it should use needs to be

specified. Once created, the number of partitions in the

stream cannot be changed. Messages that are published

onto a stream by producers are routed and stored on one of

the partitions in the stream. Figure 3-12 shows an overview

of how applications can publish and receive messages using

the streaming service, as well as the various components of

the streaming service itself.

Figure 3-12 An OCI Stream Showing Various Partitions

and How Publishers and Subscribers Can Communicate

Using Messages

Working with the OCI Streaming

Service

A producer publishes a message onto the stream. The

various SDKs for languages such as Java, Python, Go,

JavaScript, and TypeScript provide wrapper methods to

access the streaming APIs. A single call to publish messages

can include multiple messages, but the total size of payload

must be 1 mebibyte (MiB) or less. Each message that is

published to the stream should contain a key and a value. If

there is more than one partition, the steaming service

determines the partition where the message is published

using the message key. Based on the key, two messages

with different keys could potentially be published on the

same partition; however, messages with the same key

always go to the same partition. If you do not specify a key,

the service considers the message to have a null key and

generates a random key for the message. Messages with

null keys trigger the generation of random keys, so these

messages do not pile up within the same partition. This

avoids accidental hot spots, with messages with null keys all

ending up on the same partition and impacting the

throughput of the system. Listing 3-3 shows a snippet of

Python code that connects to a stream on the OCI

Streaming service and publishes two messages with the

single call. It shows the Python SDK reading the config to

connect and authenticate, with OCI being loaded from a file

and a streaming client being created.

Listing 3-3 Example Code to Publish a Message Using the

Python SDK

Click here to view code image

config = oci.config.from_file()

streaming_client = oci.streaming.StreamClient(

 config, "https://service_endpoint.url")

streaming_client.put_messages(

 stream_id="<stream_OCID>",

 put_messages_details=oci.streaming.models.PutMessagesDetails(

 messages=[

 oci.streaming.models.PutMessagesDetailsEntry(

 value="FirstMessage",

 key="key_one"),

 oci.streaming.models.PutMessagesDetailsEntry(

 value="SecondMessage",

 key="key_two")])

The StreamClient provides the function put_messages, which

wraps the streaming service’s API for publishing messages.

It requires the stream ID, which is the OCID for the stream,

as well as a list of messages to publish. As mentioned

previously, there is no limit to the number of messages that

can be included in this function call, as long as the total size

of the payload is 1MB or less. The message keys can be up

to 256 bytes. The SDKS for other languages provide similar

constructs.

Note

In general, applications should strive to design

message keys that help spread the messages evenly.

If a vast majority of the messages produced in a

system have a common attribute, then using that

attribute as a message key will lead to an

overwhelming number of messages in a single

partition, while other partitions remain relatively idle.

Better throughput could be achieved by picking keys

so that a large number of unique keys can be

generated and as few messages as possible share the

same key. This ensures better distribution of

messages across the various partitions. Messages

with the same key are guaranteed to be stored in the

order in which they are published and are delivered to

consumers in the same order that they were

produced. Because messages with the same key go to

the same partition, this guarantee applies only at the

partition level.

Consumer applications consume messages from a stream

using the API or the SDKs in a manner similar to how a

producer publishes messages onto the stream. A consumer

needs to start consuming messages from some point in the

stream. Consumers use a cursor, which is a pointer to a

specific location within a stream, to do this. Messages then

are consumed starting with the one that the cursor points

to. The streaming service guarantees that the messages

from a partition are always delivered in the same order they

were produced. After a cursor has been created, the

consumer uses the GetMessages API to fetch messages. Similar

to publishing messages, a single call to the GetMessages API

returns multiple messages. By default, the number of

messages that are batched inside a single response is

based on the average message size, so as to not exceed the

stream’s throughput. You can also specify the number of

messages to be returned, as long as you do not exceed the

throughput of the stream. As the number of messages

returned from a call to the GetMessages API can vary based on

the message size, the call also returns a cursor for use with

the next GetMessages call. The cursor is returned as a response

header value in the custom header opc-next-cursor. The next

call to GetMessages can use the value returned in the header

as the cursor parameter, to get the next batch of messages.

Individual consumers can start consuming messages

from different relative points in the stream using different

types of cursors. The types of cursors include ones that

point to the following:

A specific time (cursor type AT_TIME)

The earliest message available on the stream (cursor

type TRIM_HORIZON)

A relative position within the messages on the partition,

called an offset (cursor type AT_OFFSET or AFTER_OFFSET)

Only messages published after the cursor has been

created (cursor type LATEST)

This enables consumers to keep track of the various

partitions, the position of the last message the consuming

application has consumed from the partition, and from what

position in the partition the consuming application needs to

start in case it is interrupted or terminated and needs to

restart consuming from where it left off.

Consumers can also be grouped into ConsumerGroups

that coordinate the consumption of messages from a

stream. In streams that have numerous partitions, keeping

track of offsets and partitions while dynamically scaling the

number of consumers can be cumbersome.

ConsumerGroups can push to the streaming service most of

the heavy lifting required to manage offsets and partitions

when consumers are scaled up or down. This helps

developers focus on what to do with messages instead of

having to orchestrate message consumption.

ConsumerGroups consist of multiple consumers, called

instances. The ConsumerGroups automatically manage

offset tracking, assign the various instances in the group to

specific partitions, and balance the group as instances are

created and removed in the ConsumerGroups.

ConsumerGroups are more efficient and practical for most

purposes than individual consumers simply because of the

benefits they provide at no extra cost. ConsumerGroups use

a cursor called a GroupCursor, which creates a group name

and instance name association, in addition to performing

the duties of a normal cursor. The first time a GroupCursor

is created with a new group name, the ConsumerGroup by

that name is created. When a group cursor is created with

an existing group name and a new instance name, the

consumer that requested the group cursor is added to the

group as a new instance in the group. Each instance in a

group is assigned a partition, and an instance may be

assigned more than one partition. However, two instances

will never be assigned to a single partition; if a

ConsumerGroup has more instances than partitions, the

extra instances remain idle. ConsumerGroups automatically

remove instances that have not consumed messages for

more than 30 seconds. In these cases, the idle instances in

the ConsumerGroup are assigned to a partition whose

assigned instance has been removed.

The 30-second window to request additional messages

essentially means that consumers should ideally limit the

number of messages requested to something that it can

process within 30 seconds. If it takes longer than 30

seconds to process the message and call getMessages again,

the service assumes that the consumer went offline and

allocates the partition to an idle consumer. Data is not lost

in these scenarios, though, because the default behavior of

the GroupCursor is to commit messages on the next call to

getMessages. So in a scenario in which a consumer has been

terminated, fails, or cannot process all messages within 30

seconds, the messages are not considered committed (or

processed). The partition is allocated to another consumer

(when one comes online in the group, if there are no idle

consumers), and these messages are delivered to the

consumer for processing again. Some of these messages

might have been processed by the failed consumer before it

failed, so these messages appear as redundant to the

second consumer. This also illustrates the “at least once”

delivery model of the streaming service. How the consumer

applications handle redundant messages is up to the

consuming application, and they should be designed to

account for multiple message deliveries in situations like

the aforementioned one.

Listing 3-4 shows a typical ConsumerGroup using a group

cursor to consume messages.

Listing 3-4 Consumer Group Using a Group Cursor

Click here to view code image

config = oci.config.from_file()

streaming_client = oci.streaming.StreamClient(

 config, "https://service_endpoint.url")

cursor_details = oci.streaming.models

 .CreateGroupCursorDetails(

 name="group01", instance_name="instance01",

 type=oci.streaming.models.CreateGroupCursorDetails.TYPE_TRIM_HOR

 commit_on_get=True)

response = sc.create_group_cursor(sid, cursor_details)

cursor = response.data.value

while True:

 get_response = client.get_messages(

 stream_id="ocid1.t

 streamId-Value",

 cursor,

 limit=10)

 if not get_response.data:

 return

 # Process the messages

 print(" Read {} messages".format(len(get_response.data)))

 for message in get_response.data:

 print("{}: {}".format(b64decode(message.key.encode

 b64decode(

 encode()).decode()))

 time.sleep(1)

 # use the next-cursor for iteration

 cursor = get_response.headers["opc-next-cursor"]

Listing 3-4 shows a stream client being created. A group

cursor is also created that creates a ConsumerGroup called

group01. This consumer within the group (instance) is named

instance01. The initial group cursor is used to call the

get_messages API with a message limit set to 10. This is done

to illustrate the fact that all instances in a ConsumerGroup

should try to limit messages to what they can process

within 30 seconds; a gap of more than 30 seconds between

calls to the get_messages API causes the service to consider

the instance as offline, as previously discussed. After the

messages are processed, the opc-next-cursor response header

is extracted to get the cursor for the next call to get_messages.

Note that, in this example, with commit_on_get set to True when

creating the GroupCursor, the first 10 messages that were

returned are committed when the instance calls the

get_messages the second time. If this instance takes too long

to process the first 10 messages or it went offline

unexpectedly, then these messages are not committed and

they are delivered to another instance if and when one

becomes available.

Service Connector Hub Integration

The Streaming service is integrated with the OCI Service

Connector Hub. The OCI Service Connector Hub is a

messaging bus that enables you to orchestrate data

movement between services in OCI. Using the Service

Connector Hub, you can define the source for the data, a set

of tasks that you can optionally apply to the data to process

it (such as transforming the data), and a target service to

deliver the processed data. Using the service bus connector,

you can enable use cases in which you can use a stream as

a data source, use Serverless Functions to transform the

stream’s messages, and deliver the transformed messages

to a target while maintaining Streaming’s order guarantees.

Kafka Compatibility

Streaming is compatible with most Kafka6 APIs, enabling

you to use applications written for Kafka to send messages

to and receive messages from the Streaming service

without having to rewrite your code. Streaming makes it

possible to offload the setup, maintenance, and

management of the infrastructure that hosting your own

Apache Kafka cluster requires. Streaming also takes

advantage of the Kafka Connect ecosystem to interface

directly with first-party and third-party products by using

out-of-the-box Kafka source and sink connectors. At the time

of writing, the service offers compatibility with the Kafka

APIs outlined in Table 3-2.

Table 3-2 OCI Streaming Compatibility with Various

Kafka APIs

Compatible Incompatible

Producer Compaction

Consumer Transactions

Kafka Connect Dynamic Partition Addition

Group Management Idempotent Production

Compatible Incompatible

Admin Kafka Streams

If you use Kafka APIs to publish messages to Streaming,

you can choose to do custom partitioning and explicitly map

messages to partitions. Although this gives you more

control and predictability over what messages are sent to

which partitions, the Streaming service avoids this, to keep

from accumulating too many messages in the same

partitions and creating “hotspots.” When developers take

control over partitions with custom partitioning, they also

take on the responsibility to avoid hotspots from having too

many messages within the same partitions.

The Kafka Connect support in OCI Streaming allows

developers to leverage the Kafka Connect ecosystem of

connectors to move data between systems. Several

connectors make it easy to create integrations with Oracle

platforms:

Kafka Connect JDBC, for working with the Oracle

database

Oracle Integration Cloud

Oracle Golden Gate

Kafka Connect Amazon S3 connectors, which can use

the Oracle Object Storage S3-compatible APIs

When using Kafka Connect, you need to create Kafka

Connect Configurations called harnesses on the OCI

Streaming service. A single harness can be used to

configure multiple connectors and the harness needs to be

created within the same compartment as the stream. Kafka

Connect uses internal topics to track and manage connector

and task configurations, offsets, and status. These internal

topics are automatically created by the Streaming service

and follow the convention <stream ocid>-{config|offset|status}.

These topics can be configured in the distributed worker

configuration file of the connector, typically connect-

distributed.properties.

OCI Events Service

All OCI services emit events. Events can be thought of as

status updates about lifecycle state or activities that these

services are performing. The occurrence of a change, such

as a compute instance being created (“Instance creation

started”) or the completion of a block volume backup

(“Block Volume backup complete”), can be represented as

events. Events typically capture some context about the

occurrence so that the event is actionable. An example is

the OCID of the compute instance that was created. A

downstream system can potentially take action based on

this contextual information that is captured in the event. In

large distributed systems like cloud platforms such as OCI,

numerous services and components can emit events that

signal their normal operations; in most cases, only a few

events would be interesting and acted upon. With

voluminous events being produced, the Events service

provides a way to listen to or filter only interesting events

and then use the context captured in the event to take an

action. Although any system can emit events, in the context

of the OCI Events service it is the OCI services that emit

events.

In a general sense, events are a way for systems to

communicate facts about their operations or statuses to

other systems. Although events might sound similar to a

message in a messaging system, an event described using

the CloudEvents format represents a fact. As a signal about

the occurrence of a change in a system and bundled with

contextual information about the change, an event is not

particularly intended for any one consumer. An event also

notably lacks intent. This contrasts with messages, which

usually convey some intent from one system to another. As

cloud platforms gain popularity and application design

evolves to become distributed, resilient, and more aware of

its surrounding systems, events play a crucial role in

enabling that transition. This has also led to a proliferation

of event formats, which limits the interoperability of events

across platforms. The CNCF project CloudEvents is an

emerging standard that aims to unify how event publishers

can standardize on the format used to describe an event.

This enables events to be described in a standardized

manner so that developers can build systems that can

interoperate and handle events across cloud platforms. The

OCI event service uses the CloudEvents format to describe

events. Listing 3-5 shows an OCI event that uses the

CloudEvents specification.

Listing 3-5 OCI Event Using the CloudEvents Specification

Click here to view code image

{

 "eventType": "com.oraclecloud.computeapi.launchinstance.end",

 "cloudEventsVersion": "0.1",

 "eventTypeVersion": "2.0",

 "source": "ComputeApi",

 "eventTime": "2019-08-16T12:07:42.794Z",

 "contentType": "application/json",

 "eventID": "unique_ID",

 "extensions": {

 "compartmentId": "ocid1.compartment.oc1..unique_ID"

 }

 "data": {

 "compartmentId": "ocid1.compartment.oc1..unique_ID",

 "compartmentName": "example_compartment",

 "resourceName": "my_instance",

 "resourceId": "ocid1.instance.oc1.phx.unique_ID",

 "availabilityDomain": "availability_domain",

 "additionalDetails": {

 "imageId": "ocid1.image.oc1.phx.unique_ID",

 "shape": "VM.Standard2.1",

 "type": "CustomerVmi"

 }

 },

}

The structure of the event message can be broken down

into two broad parts:

The event envelope: The event envelope

encompasses all the attributes at the top level,

including the eventID, version, eventType, and other

attributes. The event envelope is based on the cloud

event specification, and the eventType usually provides

the most basic mechanism to identify specific events to

filter for processing. In the example presented in Listing

3-5, the value for eventType is

com.oraclecloud.computeapi.launchinstance.end, and

predictably it represents the completion of a compute

instance launch.

The payload: The data or payload that is pertinent to

the event itself is contained in the data attribute. The

content and structure of the JSON payload differ for

each event type, to be pertinent to the event. The

schema for the payload can also be versioned to

support schema evolution. This is when the content of

the payload and its structure change over time to

support newer attributes and features. The

eventTypeVersion can be used to indicate what version of

the payload structure or data schema the payload is

using for the event type.

Services emit events continuously. You work with events

by creating rules that match only certain event types, tags,

or attributes contained in the event payload itself. The

filtered events are then delivered to a target service that

can act on the event. The OCI event service supports

Notifications, Streaming, and Functions as target services

where filtered events can be delivered.

Any attribute of the event can be used to filter events

into a flow of events that a developer would be interested

in. The filtering is done by creating conditions. Conditions

match the event message structure and produce a flow of

events that match the conditions, which can now be

delivered to a target service. Conditions can use various

operands such as any, all, or even wildcard-based matching.

Figure 3-13 shows the console with a matching rule.

Figure 3-13 Working with the Events Service to Create a

Matching Rule and an Action to Trigger When the Rule

Condition Is Met

The console provides an intuitive interface to create and

validate rules with sample payloads and tests for matching

conditions. Here you see that a matching rule has been

created for the event type

com.oraclecloud.objectstorage.createobject. This event type

represents an event for which a new object has been

created in object storage—in other words, a new file has

been uploaded to an object store bucket. The conditions

further check whether the bucket where the new object has

been created is named flat_files_to_process.

After events have been filtered, the filtered events are

directed to one of the supported target systems, such as

streaming, functions, or notifications. The broad goal here is

for the downstream systems to process the event data to

perform an action. For instance, when an object storage

bucket has been created, the event that notifies the

completion of the bucket creation could be used to run a

serverless function on a regular schedule to check for data

inside this bucket.

In the example, there is a single action to invoke a

specific function. The event will cause the function to be

triggered, and the function can take any action based on

the event data. In the example, you can presume that the

function will use the event payload to access the file

uploaded into the object storage bucket and perform some

ETL job to import the data contained in it to a database. In

this example, the event-driven model with a serverless

function allows developers to build completely event-driven

applications that process data when data becomes available

so that they do not have to worry about infrastructure

management.

The same event-driven principles can be applied to a

variety of situations. The event service therefore enables

application developers to build applications that can react

to changes in the infrastructure and events or occurrences

happening in the infrastructure layer directly, and then

react to them from within their applications. This means

that developers can build applications that are more

resilient, autonomous, and elastic, thereby making the

event service an important tool in building cloud native

applications.

Summary

This chapter introduced several OCI services that are key to

building cloud native applications. Although not all aspects

of these services are explored in detail, these brief

introductions should help you to see the big picture of the

various OCI services and tools at your disposal and how

they may interact. A few of the key services introduced in

this chapter, such as Container Engine for Kubernetes,

Container Instances, and OCI Functions, are examined in

much greater detail in Chapters 4, 5, and 7. It is not

mandatory to use all or any of these services in all your

cloud native applications; these are services that aim to

help developers build loosely coupled, scalable applications

at a high development velocity. Some of the managed

services aim to remove as much operational overhead as

possible so that developers can be less focused on handling

the operational aspects and more focused on developing

their applications. You should also keep in mind that OCI and

the various open-source platforms and standards

themselves are constantly evolving. New platforms and

services may be added, and some services and standards

might be eclipsed in the future by newer and more evolved

versions of themselves.

References

1 Open Container Initiative: https://opencontainers.org/

2 Open Container Initiative image format specification:

https://github.com/opencontainers/image-

spec/blob/main/spec.md

3 Cloud Init: https://cloud-init.io/

4 Fn Project: https://fnproject.io/

5 OpenAPI Specification 3.0.0:

https://spec.openapis.org/oas/v3.0.0

6 Apache Kafka: https://kafka.apache.org/

https://opencontainers.org/
https://github.com/opencontainers/image-spec/blob/main/spec.md
https://cloud-init.io/
https://fnproject.io/
https://spec.openapis.org/oas/v3.0.0
https://kafka.apache.org/

4

Understanding Container

Engine for Kubernetes

In today’s world, one of the qualities that sets apart

successful businesses is agility, the ability to keep pace with

constantly shifting trends and changing customer

expectations. It’s not enough for decision makers in the

company to adapt; the technology supporting the company

must be able to keep up as well. This is one of the areas

where cloud native development shines. Cloud native is an

approach or methodology that takes advantage of the

scalability, resilience, and efficiency of cloud infrastructure.

It enables businesses to quickly iterate without sacrificing

the quality of their service to gain an advantage over their

competition.

This chapter contextualizes the importance of cloud

native development and container orchestration using

Kubernetes and then dives into how to operate your own

Kubernetes cluster using Oracle Container Engine for

Kubernetes (OKE). By the end, you should have the tools

you need to create clusters and nodes, deploy containers,

and securely expose those containers to your users.

Monoliths and Microservices

Classic software development relies on monoliths, an

approach in which applications consist of a single code

base, including the business logic, data, and resources

needed to run the application, and are deployed to static

physical infrastructure. Monoliths contain a large amount of

code, and they commonly include complex dependencies

and require interactions between different components.

Updating one part of the application means that operators

need to build, test, and deploy the application as a whole

instead of having to do so for only the specific part being

iterated. Similar challenges apply to scaling: Even if only

one aspect of the monolith is responsible for throttling

performance and needs to be scaled, there is no capability

for it to be independently scaled. The entire monolith needs

to be deployed to larger or more performant hardware.

In contrast to the inflexibility of software monoliths, cloud

native development relies on microservices, a software

architecture approach in which applications are built as sets

of small, independent services, each responsible for a

specific business function and working in concert to deliver

a unified experience. By decoupling monoliths into

microservices, applications can be iterated faster. Each

service can be developed, tested, and deployed

independently. You can make changes to a single service

without affecting the rest of the application. This also makes

it easier to update and maintain the application. If you see a

bottleneck in one aspect of architecture, that microservice

can take advantage of the elasticity of the cloud to be

independently scaled without the need to scale the

application as a whole. Microservices are also designed to

be flexible and resilient because they can be deployed on

different servers and can continue to function even if one of

the services fails. This makes them well suited for

distributed systems and cloud environments. All of these

qualities enable microservices to address the fundamental

requirement of IT infrastructure that supports business

agility, making them the de facto standard for cloud native

software.

However, microservices can be more complex to design

and manage than monolithic applications because they

require more effort to coordinate the communication among

the different services. They also require a more robust

infrastructure to support the deployment and management

of the individual services.

Containers

After choosing to adopt a microservice approach, you might

ask, “How do I package my software into microservices?”

Separating the software from the host can be accomplished

in multiple ways. One option is to use virtual machines. A

virtual machine (VM) allows a computer to run multiple

operating systems simultaneously by creating one or more

virtual environments on physical hardware, each of which

behaves like a separate physical device.

Another option is to use containers, which enables you to

package an application, along with its dependencies,

runtime, and libraries, into a single unit that can be easily

moved and deployed on any system that supports the

container technology. A container appears to be a

standalone system, with its own root file system. Containers

are a combination of namespaces, control groups, and

supporting OS features. Figure 4-1 shows a visual of the

differences between containers and virtual machines (VMs).

Figure 4-1 Architectural Difference Between Virtual

Machines and Containers

Software containers are used for microservices instead of

VMs for a number of reasons. Containers are much more

lightweight than VMs because they do not require a

separate operating system to be installed. This means that

they can be started and stopped more quickly, and they

take up less space on the host machine. Containers are

more efficient than VMs because they share the host

machine’s operating system kernel and use resource

isolation features to ensure that each container has access

to the resources it needs to run. This means that they can

run more applications on the same hardware, which can

lead to cost savings. Containers enable you to define the

exact dependencies and configuration required for an

application to run, which means that you can deploy the

application consistently across different environments, often

referred to as portability.

Microservices can make it easier to develop and maintain

an application because each service can be developed,

tested, and deployed independently of the others.

Containers are easier to scale than VMs and can be

deployed to multiple servers or cloud environments without

the need to reconfigure the underlying infrastructure.

Additionally, you can quickly and easily adjust the number

of instances of a particular microservice in response to

changes in demand. Overall, the use of containers in

microservice architectures helps to increase the agility,

scalability, and reliability of the overall system.

However, these benefits do not come free of challenges.

This leads to questions such as the following:

How do we scale to keep pace with dynamic

workload demands?

When I grow from tens or hundreds of containers to

thousands of containers, how can I ensure that all of

my containers are healthy and running?

Container Orchestration and

Kubernetes

Kubernetes is the answer to many of these questions. At a

high level, Kubernetes is an open-source infrastructure

abstraction used to orchestrate the deployment, scaling,

and management of containerized applications. Kubernetes

leverages automation and declarative configuration. It

provides a consistent and easy-to-use interface for

managing containerized applications, regardless of the

underlying infrastructure. Kubernetes enables you to easily

scale your application up or down by adding or removing

containers as needed. This makes it easier to handle

changes in demand or load. Kubernetes can automatically

detect when a container or node has failed, and it can

automatically restart the container or replace the node to

keep the application running. With regard to portability, as

with the containers it orchestrates, Kubernetes can run on

multiple cloud platforms and also on-premises, making it

easy to move applications between environments. Overall,

Kubernetes makes it easier to deploy and manage

containerized applications in a cloud native environment,

which can help organizations increase the agility, scalability,

and reliability of their applications. More tangibly,

Kubernetes is cluster software with one or more control

plane nodes controlling a group of worker nodes. The

scheduler deploys work in the form of pods, a unit of one or

more containers, to the worker nodes using various

patterns.

Oracle Container Engine for

Kubernetes

Every new software tool comes with a learning curve, and

Kubernetes is no exception. Kubernetes comes with a new

set of concepts to learn and a large number of control plane

and node components that must be deployed and operated,

including these:

Control plane components:

kube-apiserver

etcd

kube-scheduler

kube-controller-manager

cloud-controller-manager

Node components:

kubelet

kube-proxy

The container runtime

Figure 4-2 illustrates these components.

Figure 4-2 OKE Architecture, Including Components of a

Kubernetes Cluster That Are Managed by the OKE Service

and Managed by Customers

In some cases, learning about how to do this, let alone

actually implementing it, can be overwhelming and

prevents businesses from taking the leap to modernize their

IT infrastructure. In other cases, it’s simply too complex,

costly, and time-consuming for businesses to build and

maintain an environment like this. Managed Kubernetes

offerings provide users with a simple way to automatically

deploy, scale, and manage Kubernetes. Offloading

responsibility to a provider enables developers to create a

cluster and deploy containers quickly.

Oracle Container Engine for Kubernetes (OKE) combines

production-grade container orchestration of open

Kubernetes with the control, security, IAM, and high

predictable performance of Oracle Cloud Infrastructure. OKE

fully manages the cluster control plane for you and makes it

easy to create and manage other components of your

cluster, including worker nodes, load balancer services, and

more. You can get started quickly by using a Quick Create

cluster, which streamlines cluster creation by providing an

opinionated provisioning experience and automatically

creates networking resources on your behalf. Alternatively,

you can create a cluster using existing network resources

and with a large number of configuration options using the

Custom Create workflow.

OCI-Managed Components and

Customer-Managed Components

A Kubernetes cluster consists of a group of nodes, physical

or virtual machines, that run cluster software. These nodes

fall into two categories: a control plane and a data plane.

Control Plane

The Kubernetes control plane is a set of several components

that work together to manage the overall state of a

Kubernetes cluster. The cluster control plane monitors and

records the state of the worker nodes in the cluster’s data

plane and distributes requested operations to them. It runs

on multiple control plane nodes configured for high

availability in the OKE service tenancy. When using OKE, the

cluster control plane is fully managed by Oracle.

The cluster control plane consists of these components:

kube-apiserver serves as the front end for the

Kubernetes control plane by exposing the Kubernetes

API. This includes supporting direct API calls and

requests from the Kubernetes command-line tool,

kubectl.

etcd is a distributed key-value store used to contain the

configuration data for the Kubernetes cluster. It provides

a reliable and highly available storage solution for the

control plane.

kube-scheduler watches for newly created pods and

assigns pods to nodes based on resource availability

and other constraints.

kube-controller-manager is a collection of controller

processes that manage different Kubernetes

components.

cloud-controller-manager connects your cluster to

your cloud provider’s API and runs a collection of

controller processes that are specific to your cloud

provider. For example, in the case of Oracle Container

Engine for Kubernetes, the oci-cloud-controller-manager

uses the nodeController to update and terminate worker

nodes and the serviceController to create load balancers

when Kubernetes services of type: LoadBalancer are

created. The oci-cloud-controller-manager also implements

a container-storage-interface, a FlexVolume driver, and

a FlexVolume provisioner to manage additional OCI

resources.

Data Plane

The Kubernetes data plane consists of one or more worker

nodes, where you run the containerized applications

deployed to your cluster. Each node is managed by the

control plane and contains the node components necessary

to run pods, including the following:

kubelet is the agent that communicates with the

cluster control plane to verify that containers are

running.

kube-proxy is a networking proxy used to maintain

networking rules. These rules enable network

communication to your pods from within and outside the

cluster.

The container runtime is the software responsible for

running containers. In the case of OKE, this runtime is

CRI-O.

A node pool is a set of worker nodes within a cluster

that all possess the same properties. Node pools enable

you to create groups of nodes within your cluster to

accommodate workloads with different requirements.

For example, within the same cluster, you might create

one pool of virtual machine nodes and another pool of

GPU nodes for your HPC workloads. A cluster must have

a minimum of one node pool, but a node pool does not

need to contain any worker nodes.

When creating a node pool in an OKE cluster, you must

specify the type of worker node to create:

Virtual nodes: Virtual node resources are provisioned

dynamically, as needed, and exist in the OKE service

tenancy. Virtual nodes remove the operational overhead

of upgrading your data plane infrastructure and

managing the capacity of clusters, providing a

“serverless” Kubernetes experience.

Managed nodes: Managed nodes are compute

instances in your tenancy that are managed by a

combination of you and the OKE service. Managed

nodes come with the flexibility to configure them to

meet your specific requirements, but you are

responsible for upgrading Kubernetes and host OS

versions and ensuring that capacity is properly scaled.

Billable Components

Those same categories of the control plane and data plane

can be useful to understand the billable components of your

cluster. Simply put, your control plane node usage is not

metered, but your data plane nodes are metered and billed

for their usage.

At the cluster level, you have a choice between enhanced

and basic clusters. Enhanced clusters support all available

OKE features, including features that are not supported by

basic clusters. These features include but are not limited to

virtual nodes, add-on lifecycle management, workload

access to OCI resources, on-demand node cycling, and

additional worker nodes per cluster. Enhanced clusters also

come with a financially backed service-level agreement

(SLA) tied to the availability of the Kubernetes API server.

Basic clusters support all the core functionality provided by

Kubernetes and Container Engine for Kubernetes but

support none of the enhanced features that Container

Engine for Kubernetes provides. Basic clusters come with a

service-level objective (SLO) but not a financially backed

SLA. A management fee is associated with using enhanced

clusters, whereas basic clusters do not have a fee.

Creating a new cluster of the enhanced type enables you

to use enhanced features immediately or at any point in the

future. If you choose to create a new cluster of the basic

type, you can still upgrade the cluster from a basic to an

enhanced type at any point in time. Keep in mind that you

cannot downgrade from an enhanced type cluster to a basic

type cluster.

The data plane consists of worker nodes, which are

charged based on the compute shape chosen for the node.

In the case of virtual nodes, worker nodes are charged

based on the container instance shape chosen for the node

and are assessed an additional management fee per virtual

node. The data plane is the primary source of costs for

running an OKE cluster.

Additionally, there are charges for cluster resources you

provision that are backed by OCI resources. For example,

creating a Kubernetes service of type LoadBalancer results

in the creation of an OCI Load Balancer resource, for which

you will be charged. The same is true for other Kubernetes

resources, such as persistent volumes and OCI block

storage or file system storage.

Those same categories of the control plane and data

plane can be useful in understanding the billable

components of your cluster. Simply put, you are not charged

for your control plane nodes, but you are charged for your

data plane nodes.

Kubernetes Concepts

The more you know about the intricacies of the Kubernetes

API, the more powerful you will become as a cluster

operator. Even if ultimate knowledge of the Kubernetes API

is not your goal, certain key concepts are worth knowing.

The comprehensive reference for Kubernetes concepts is the

excellent Kubernetes documentation itself. This book does

not attempt to re-create the Kubernetes documentation.

Instead, this section serves as a quick refresher for some of

the most commonly used Kubernetes resources and

concepts:

Pods: Pods are one or more containers with shared

resources, including CPU, memory, storage, and

networking. The contents of a pod are always scheduled

together. Pods are often created and destroyed as a

result of being rescheduled onto new nodes or when

new versions of an application are rolled out. Each pod

has an ephemeral IP address that is assigned when the

pod is first created and is released when the pod is

terminated. Each pod has a universally unique identifier

(UUID).

Deployments: Deployments are used to specify the

desired state of an application, including the number of

replicas of a pod or pods that should be running at a

given time. Deployments can be used to upgrade your

application by rolling out new pod versions with zero

downtime and to roll back to a previous state.

Namespaces: A Kubernetes cluster can be organized

into namespaces, to divide the cluster’s resources

among multiple users. Initially, a cluster has the

following namespaces: default, for resources with no

other namespace, and kube-system, for resources

created by the Kubernetes system.

Services: Services are an abstraction that defines a

method for accessing a pod or pods. This is the

Kubernetes way of decoupling the discovery of an

application from the application instances. This allows

one application to have a reliable address, regardless of

whether the pods that make up the application change.

Some parts of an application, such as the front ends, are

typically exposed through the ingress controller or

directly with an external IP address accessible from

outside a cluster. Other applications might choose to

use the service abstraction for service discovery

because it decouples the consumer of an application

service from the pods that make up the application

service. Kubernetes ServiceTypes enable you to specify

the way you want your pods exposed:

A LoadBalancer ServiceType creates an Oracle Cloud

Infrastructure load balancer on load balancer subnets

in your VCN. These load balancers are automatically

configured to route to the pods. The load balancer

configuration is updated when the pod configuration

changes, such as when new pods are added and

existing pods are deleted. Kubernetes clusters created

by OKE also include capabilities that can automatically

update OCI resources such as security lists when load

balancers are created and applications are exposed

using them.

A NodePort service is a type of service that exposes a

specific port on each node in the cluster. This allows

external traffic to access the service by sending

requests to a node’s IP address and the node port

specified for the service. Node port services do not

provide the same level of traffic management and load

balancing as other service types, such as LoadBalancer

and ClusterIP.

A ClusterIP service is the default service type that is

used when no other service type is specified. It assigns

an IP address from an IP pool that the cluster’s

networking plug-in (CNI) manages. On Kubernetes

clusters created by OKE, you have the choice of two

CNIs: Flannel or the OCI Native CNI. This topic is

covered in greater depth in the “Kubernetes

Networking” section.

Labels and selectors: Labels and selectors are

key/value pairs attached to objects in a Kubernetes

cluster. Labels are used to identify and organize

Kubernetes objects, such as to explain which application

a pod is associated with.

Cloud Controller Manager

The Kubernetes Cloud Controller Manager (CCM) is a

controller used to implement cloud provider–specific control

loops required for Kubernetes to function. For example, CCM

can implement a node controller that is responsible for

updating Kubernetes nodes using a cloud provider’s API and

deleting Kubernetes nodes that were deleted on your cloud.

Kubernetes introduced the CCM project to decouple the

development of cloud features from the core Kubernetes

project. Early in the existence of Kubernetes, cloud

providers were added in-tree in the kube-controller-manger

binary. To increase extensibility and remove the need to

directly interact with the Kubernetes code base, external

cloud providers were introduced. External cloud providers

are Kubernetes controllers that implement cloud provider–

specific control loops required for Kubernetes to function,

but for out-of-tree providers.

The OCI Cloud Controller Manager, which implements

OCI-specific control loops, is an example of an external

cloud provider. For example, the oci-cloud-controller-manager

implements a NodeController, which is used to update OCI

Compute nodes with cloud provider–specific labels and

addresses; it also deletes Kubernetes nodes when they are

deleted from OCI by scaling down a node pool or using the

delete node API. It also implements a ServiceController,

which is responsible for creating OCI load balancers when a

service of type: LoadBalancer is created in Kubernetes. Another

key aspect of this project is related to storage: The OCI CCM

implements a Container Storage Interface, a volume

provisioner, and a FlexVolume driver for Kubernetes clusters

running on OCI.

The CSI plug-in for OCI enables provisioning, attaching,

detaching, mounting, and unmounting of OCI block storage

volumes to Kubernetes pods via the Container Storage

Interface (CSI) plug-in interface. The volume provisioner

enables the dynamic provisioning of OCI storage resources,

such as block volumes, while the FlexVolume driver enables

the mounting of OCI block storage volumes to Kubernetes

pods using the FlexVolume plug-in interface.

Similar to the manner in which CCM was introduced to

enable extensibility for cloud providers, CSI was developed

as a standard for exposing arbitrary block and file storage

systems to containerized workloads running on Kubernetes.

Using CSI made it simpler for third-party storage providers,

such as OCI, to write and deploy plug-ins exposing new

storage systems in Kubernetes without ever having to touch

the core Kubernetes code. Most OKE users have moved from

using FlexVolume to using CSI.

Nodes and Node Pools

Worker nodes constitute the cluster data plane. Worker

nodes are where you run the applications that you deploy in

a cluster. These are compute instances with additional

software that communicates with the Kubernetes control

plane to make it a worker node that is known to the cluster

control plane. Worker node runs a number of processes,

including these:

kubelet to communicate with the cluster control plane

kube-proxy to maintain networking rules

The cluster control plane processes monitor and record

the state of the worker nodes and distribute requested

operations among them.

A node pool is a subset of worker nodes within a cluster

that all have the same configuration. Node pools enable you

to create pools of machines within a cluster that have

different configurations. For example, you might create one

pool of nodes in a cluster as virtual machines and another

pool of nodes as bare metal machines. A cluster must have

a minimum of one node pool, but a node pool need not

contain any worker nodes. Worker nodes in a node pool are

connected to a worker node subnet in your VCN.

When creating a node pool with OKE, you specify that the

worker nodes in the node pool are to be created as one of

the following:

Virtual nodes, fully managed by Oracle. Virtual nodes

provide a “serverless” Kubernetes experience, enabling

you to run containerized applications at scale without

the operational overhead of upgrading the data plane

infrastructure and managing the capacity of clusters.

You can create virtual nodes only in enhanced clusters.

Managed nodes, running on compute instances (either

bare metal or virtual machine) in your tenancy and at

least partly managed by you. Because you are

responsible for managing managed nodes, you have the

flexibility to configure them to meet your specific

requirements. You are responsible for upgrading

Kubernetes on managed nodes and for managing

cluster capacity. You can create managed nodes in both

basic clusters and enhanced clusters.

Node Pool Properties

Node pools possess a set of standard properties that are

inherited by worker nodes running in the pool. These

properties include but are not limited to the following:

The name of a node pool

The version of Kubernetes to run on new worker nodes

The number of worker nodes in a node pool and the

availability domains, fault domains, and subnets in

which to place them

The image to use for new worker nodes

The shape to use for new worker nodes

The boot volume size and encryption settings to use for

new worker nodes

The cordon and drain options to use when terminating

worker nodes

The cloud-init script to use for instances hosting worker

nodes

The public SSH key to use to access new worker nodes

Worker Node Images and Shapes

You can customize the worker nodes in your OKE cluster by

specifying the following:

The operating system image: The host image

includes the operating system and other software

required for the instance to act as a Kubernetes worker

node. Note that this option is available exclusively to

managed nodes because infrastructure management is

abstracted away by the service when using virtual

nodes.

The shape: The shape is the number of OCPUs and the

amount of memory to allocate to each newly created

instance to be used as a worker node. The choice of

shape can also dictate other infrastructure properties,

such as available network bandwidth and specialized

hardware such as GPUs.

Images

Three types of images are available for use as worker node

images, built for all shape architectures supported by OKE:

OKE images are built on top of Oracle Linux platform

images and include all the necessary configurations and

required software for use as managed nodes. They are

optimized to minimize the time it takes to provision

managed nodes at runtime when compared to platform

images and custom images. The use of OKE images

reduces managed node provisioning time by more than

half when compared to platform images.

Because the Kubernetes software is prebaked onto the

host image, OKE images bundle together the host OS

and Kubernetes version. The Kubernetes version that

you specify when creating and updating node pools

must match the Kubernetes version of your chosen OKE

image. In the console, this is automatically done for

you.

Platform images also contain the Oracle Linux

operating system, but unlike with OKE images,

additional Kubernetes software is not prebaked into the

image. When the managed node boots up for the first

time, OKE downloads, installs, and configures the

required software based on the Kubernetes version you

select. This is the legacy option available for worker

node images.

Custom images are built from OKE or Platform images

but are provided by you. They give you the option to

bring your own host image configurations. Unlike OKE

and Platform images, custom images are not explicitly

supported by OKE.

You can find the latest available images in the console in

a few ways: When creating a cluster in the Custom Create

workflow or when creating or editing a node pool, you can

view the list of supported platform images and OKE images

in the Browse All Images window (see Figure 4-3).

Figure 4-3 Selection of a Worker Node Host Image—

Here, Oracle Linux 8 Running Kubernetes 1.27.2

Shapes

OKE supports a growing variety of shapes for use as worker

nodes. These include most but not all of the shapes

available through Oracle Cloud Infrastructure. The choice of

shape can be important when it comes to supporting

specific workloads. For example, high-performance

computing or machine learning use cases can benefit from

the use of GPU shapes. These shapes are divided into two

categories: those supported for managed nodes and those

supported for virtual nodes.

Managed Nodes

The following shapes are supported for use as managed

nodes:

Flexible shapes

Bare metal shapes (including standard shapes and GPU

shapes)

HPC shapes (except in RDMA networks)

VM shapes (including standard shapes and GPU shapes)

Dense I/O shapes

The following shapes are not supported for use as

managed nodes:

Dedicated VM host shapes

Micro VM shapes

HPC shapes on bare metal instances in RDMA networks

Burstable capacity for flexible shapes

Virtual Nodes

At the time of writing, the Standard.E3.Flex and

Standard.E4.Flex shapes are supported for use as virtual

nodes. All other shapes are not supported for use as virtual

nodes.

The available shapes increase regularly. The best way to

stay on top of shape availability is directly through the

console or CLI. You find the latest available shapes in the

console in a few ways: When creating a cluster in the

Custom Create workflow or when creating or editing a node

pool, you can view the list of supported shapes in the

Browse All Shapes window (see Figure 4-4).

Figure 4-4 Selection of a Worker Node Shape—Here, the

VM.Standard.A1.Flex Shape

When using the CLI, you can view the supported OKE,

platform, and custom images in the data.shapes: section of

the response of the following command:

Click here to view code image

oci ce node-pool-options get --node-pool-option-id all

Note

Even if a shape is supported by OKE, you might not

be able to select it in your tenancy or in a particular

region because of service limits, compartment

quotas, or available capacity.

Custom cloud-init

To customize your managed worker nodes, OKE gives you

the option to add your own logic at node startup time. OKE

uses cloud-init, the industry-standard method for cloud

instance initialization, to set up compute instances as

managed nodes. The first time the instance boots up, cloud-

init runs the default startup script:

Click here to view code image

#!/bin/bash

curl --fail -H “Authorization: Bearer Oracle” -L0 http://169.254.1

 instance/metadata/oke_init_script | base64 --decode >/var/run/ok

bash /var/run/oke-init.sh

You can customize the default startup script by adding

your own logic either before or after the default logic. A

custom cloud-init script can be used to do the following:

Configure the kubelet running on the worker node

Expand the boot volume with growfs

Configure a corporate proxy or custom YUM proxies

Install mandated security tools

The customized startup script runs when a worker node

boots up for the first time. If you choose to add your own

custom logic, it can be useful to test whether that logic

negatively impacts the host’s use as a worker node. To do

so, you can run the Node Doctor script to confirm that

worker nodes on newly started instances are working as

expected.

Note

If you customize the default startup script, do not

modify the logic provided by OKE. It can be easy to

accidentally overwrite the OKE startup script, so

double-check that the script is still present before you

pass in your changes.

Using Custom cloud-init Script to Set kubelet-

extra-args on Managed Nodes

A straightforward use of a custom cloud-init script is to use

it to configure extra options on the kubelet (the primary

node agent) on managed nodes. These extra options,

sometimes referred to as kubelet-extra-args, include the

option to configure debug log verbosity. Figure 4-5 shows

how to configure a custom cloud-init script in the OCI

Console.

1. In the console, navigate to create a new node pool or

edit an existing node pool.

2. In the Show Advanced Options section, navigate to

Initialization Script, as illustrated in Figure 4-5.

3. Begin by clicking Download Custom Cloud-Init

Script Template to download a boilerplate script. The

file contains the default logic required by OKE. You can

add your own custom logic either before or after the

default logic. Remember not to modify the default logic.

4. You can choose to upload this cloud-init script or paste

your script directly into the console.

5. Use the following cloud-init script to configure the

debug level log verbosity:

Click here to view code image

#!/bin/bash

curl --fail -H "Authorization: Bearer Oracle" -L0 http://169.2

v2/instance/metadata/oke_init_script | base64 --decode >/var/r

bash /var/run/oke-init.sh --kubelet-extra-args "--v=4"

6. After clicking Add or Save Changes, depending on

whether you created a new node pool or are editing an

existing node pool, the cloud-init logic will be passed to

a newly created node.

7. To confirm the setting of debug level log verbosity,

connect to a worker node and use the sudo systemctl

status -l kubelet command. This command returns the

verbosity level as 4 for all nodes on which the preceding

cloud-init script was run.

Figure 4-5 Adding a Custom cloud-init Script to a Node

Pool to Modify the Verbosity of Logs Generated by the

Kubelet Running on the Node

Kubernetes Labels

Kubernetes labels are key/value pairs used to specify

identifying attributes of objects in a human-readable way.

Labels can be used to associate objects with a particular

application or a line of business to implement chargeback.

Another great use for labels is to organize and select nodes

when deploying applications. Each node comes with a set of

default labels, including those related to the shape and

architecture of the node. Labels enable you to target

workloads at specific node pools. You also can use an

optional node pool property to add more labels to worker

nodes directly through the OKE API and using the OCI

Console (see Figure 4-6). As with other node pool properties,

labels are attached nodes at creation time. You can

subsequently add or modify labels using the Kubernetes API.

Figure 4-6 How to Add Labels to Nodes in a Node Pool

Using the OCI Console

To see the labels of a given node, run kubectl describe node

[node name]. Listing 4-1 shows the default labels applied to a

managed node created by OKE.

Listing 4-1 Labels Automatically Added to a Managed Node

Created by OKE—These Labels Will Change, Depending on

the Shape Chosen for the Node Pool

Click here to view code image

 $ kubectl describe node 10.0.10.151

Name: 10.0.10.151

Roles: node

Labels: beta.kubernetes.io/arch=amd64

 beta.kubernetes.io/instance-type=VM.Standard.E

 beta.kubernetes.io/os=linux

 displayName=oke-c2usfphkqza-nctxoizruoq-seoda7

 failure-domain.beta.kubernetes.io/region=uk-lo

 failure-domain.beta.kubernetes.io/zone=UK-LOND

 hostname=oke-c2usfphkqza-nctxoizruoq-seoda7iqk

 internal_addr=10.0.10.151

 kubernetes.io/arch=amd64

 kubernetes.io/hostname=10.0.10.151

 kubernetes.io/os=linux

 last-migration-failure=get_kubesvc_failure

 name=NC

 node-role.kubernetes.io/node=

 node.info.ds_proxymux_client=true

 node.info/compartment.name=oracle-cloudnative

 node.info/kubeletVersion=v1.25

 node.kubernetes.io/instance-type=VM.Standard.E

 oci.oraclecloud.com/fault-domain=FAULT-DOMAIN-

 oke.oraclecloud.com/node.info.private_subnet=f

 oke.oraclecloud.com/node.info.private_worker=t

 topology.kubernetes.io/region=uk-london-1

 topology.kubernetes.io/zone=UK-LONDON-1-AD-2

SSH Keys

SSH keys are another optional node pool property. Adding

your public portion of an SSH key pair to the node pool

enables you to access the nodes directly through SSH. The

public key is added to all worker nodes in the cluster. If you

don’t specify a public SSH key, you will not have SSH access

to the worker nodes. Figure 4-7 shows a user adding an SSH

key to the node pool using the OCI Console. Note that you

cannot use SSH to directly access worker nodes in private

subnets because they have private IP addresses only; they

are accessible only by other resources inside the VCN. You

can use the Oracle Cloud Infrastructure Bastion service to

enable external SSH access to worker nodes in private

subnets.

Figure 4-7 Adding an SSH Key to a Node Pool Using the

OCI Console

Tagging Your Resources

Oracle Cloud Infrastructure Tagging allows you to add

metadata to resources, which enables you to define keys

and values and then associate them with resources. At their

most basic, tags can be used to organize resources based

on your business needs; however, tags opens up a lot of

possibilities, from cost tracking to access control.

OCI offers tagging in two flavors: free-form tags and

defined tags. Most of the advanced capabilities of tagging

are applicable to defined tags, in which you create a tag

namespace and then create a series of well-defined tag

keys for which you can use a multitude of tag values.

Although all defined tags can be used for cost analysis and

usage reporting, defined tags that are designated as cost-

tracking tags allow you to use them in OCI budgets.

Budgets can track and forecast the cost for resources and

alert you proactively when the forecast or actual

consumption crosses a threshold of the budget you have

set.

Consider a scenario in which you have a single cluster

used by several applications or teams. You might want to

implement both cost tracking and access control on a per-

application (or per-team) basis on this shared infrastructure.

Assume that each application is deployed on its own

dedicated node pool. The applications can also create and

use other resources, such as load balancers and storage,

dynamically. To get an accurate estimate of the cost for

each application, you can use tagging to tag the resources

this application uses. Similarly, you can write access policies

that restrict access for each team to only the resources that

are used by their application, using tags.

Tags can be set on clusters, node pools, load balancers,

and storage attachments. When creating a cluster, you can

set tag defaults for the various types of resources, which

you can also override with resource annotations when

needed. With the resources tagged, you can implement

features such as cost tracking, setting access controls, or

setting budgets for the various applications. Similarly, you

can use tags to keep track of the resources used by the dev,

test, and prod environments for an individual application.

Tags present a flexible way of attaching additional

metadata to resources: How you use these tags is up to

you. This affords a tremendous amount of flexibility in the

types of tags you can create and how you can leverage

them.

Creating a Cluster

You can use OKE to create new Kubernetes clusters in many

ways, including using the console (web UI), the CLI,

automation tools such as Terraform, or the APIs directly. The

console, in particular, offers two workflows to get you

started: the Quick Create and Custom Create workflows (see

Figure 4-8). The Quick Create workflow is the fastest way to

create a new cluster. This approach automatically creates

new network resources, including regional subnets for the

Kubernetes API endpoint, for worker nodes, and for load

balancers. This workflow is ideally suited if you are new to

Kubernetes and want to get started quickly.

Figure 4-8 Choosing Between the Quick Create and

Customer Create Workflows

Note

To create a cluster, you must belong to either the

tenancy’s Administrators group or a group to which a

policy grants the CLUSTER_MANAGE permission.

Quick Create Cluster Workflow

In the Console, open the navigation menu and click

Developer Services. Under Containers & Artifacts, click

Step 3.

Step 1.

Step 2.

Kubernetes Clusters (OKE).

Choose a compartment, and click Create Cluster.

Select Quick Create and then click Submit.

Either accept the default configurations (see Figure

4-9) or choose alternatives:

a. Give a name to your cluster.

b. Choose the compartment where you want your

cluster control plane and related networking

resources created.

c. Choose a Kubernetes version for your cluster

control plane.

d. Specify whether you want a private or public

Kubernetes API endpoint. In the case of a private

subnet, the Kubernetes API endpoint will be

hosted on a private subnet and assigned a private

IP address. In the case of a public subnet, the

Kubernetes API endpoint will be hosted on a

public subnet with a public IP address

automatically assigned.

e. Choose between managed and virtual nodes.

Managed Kubernetes worker nodes are compute

instances in your tenancy. Managed nodes come

with the flexibility to configure them to meet your

specific requirements, but you are responsible for

upgrading Kubernetes and host OS versions and

for ensuring that capacity is properly scaled. In

the case of virtual nodes, the resources to

execute your Kubernetes pods are provisioned

dynamically, as needed, and exist in the OKE

service tenancy. Virtual nodes remove the

operational overhead of upgrading your data

plane infrastructure and managing the capacity of

clusters.

Step 4.

Figure 4-9 The First Step in the Quick Cluster

Creation Workflow

Depending on your chosen node type, the following

steps will differ:

a. Choosing managed nodes gives you a choice

between creating a private subnet or public

subnet to host your Kubernetes worker nodes. It

also give you a choice of image to use for your

worker node hosts. These images determine the

operating system and other software used for

managed nodes. Selecting managed nodes also

gives you expanded options for the shape of your

nodes, compared to virtual nodes. Additionally,

the choice of managed nodes enables you to

customize the size and encryption options for the

boot volumes of nodes in the node pool. Select

the Specify a Custom Boot Volume Size check

box, and enter a custom size from 50GB to 32TB

to specify a custom size for the boot volume. The

specified size must be larger than the default

boot volume size for the selected image. If you

increase the boot volume size, you must also

extend the partition for the boot volume, to take

advantage of the larger size using the oci-growfs

utility. Nodes with the VM instance chosen as the

shape allow you to optionally select the Use In-

Transit encryption check box. This is not

configurable for bare metal instances. Bare metal

instances that support in-transit encryption have

it enabled by default. Boot volumes are encrypted

by default, but you can optionally use your own

Vault service encryption key to encrypt the data

in this volume. To use the Vault service for your

encryption needs, select the Encrypt This

Volume with a Key That You Manage check

box. Then select the Vault compartment and Vault

that contain the master encryption key you want

to use. Also select the master encryption key

compartment and master encryption key. If you

enable this option, this key is used for both data-

at-rest encryption and in-transit encryption.

b. Choosing virtual nodes gives you a choice of pod

shape, which determines the processor type on

which to run the pod. Note that you explicitly

specify the CPU and memory resource

requirements for virtual nodes in the pod spec.

Choosing virtual nodes also gives you the option

to apply taints to nodes in the virtual node pool.

Taints allow virtual nodes to repel pods, thereby

Step 1.

Step 2.

ensuring that pods do not run on virtual nodes in

a particular virtual node pool.

c. Both options enable you to choose the number of

nodes created in the default node pool. Both

options also allow you to optionally specify

Kubernetes labels. These labels are added to the

set of default labels already on the node and are

used to target workloads at specific node pools.

Click Next to review the details you entered for the new

cluster. If you have not selected any features restricted to

enhanced clusters, you can choose to create a basic cluster.

To do so, check the Create a Basic Cluster check box on

the Review page. Otherwise, leave the box unchecked to

create an enhanced cluster. Click Create Cluster to create

the new network resources and the new cluster. Click Close

to return to the Console.

Custom Create Cluster Workflow

The Custom Create workflow gives you the most control

over creating a new cluster. It allows you to explicitly define

the new cluster’s properties and specify which existing

network resources to use, including the existing public or

private subnets in which to create the Kubernetes API

endpoint, worker nodes, and load balancers. Because the

Custom Create workflow opens up more features and

configuration options, it is better suited for more advanced

scenarios, such as when you want to bring your own

networking resources or when you need to configure

advanced capabilities.

In the Console, open the navigation menu and click

Developer Services. Under Containers &

Artifacts, click Kubernetes Clusters (OKE).

Choose a compartment and click Create Cluster.

Step 4.

Step 3. Select Custom Create and then click Submit.

You can accept the default configurations or choose

alternatives (see Figure 4-10):

a. Give a name to your cluster.

b. Choose the compartment where you want your

cluster control plane and related networking

resources created.

c. Choose a Kubernetes version for your cluster

control plane.

Figure 4-10 The First Step in the Custom

Cluster Creation Workflow

Step 5.

Click Show Advanced Options to view other

options available for cluster configuration.

a. Specify whether to allow the deployment of

images from Oracle Cloud Infrastructure Registry

only if they have been signed by particular

master encryption keys. To enforce the use of

signed images, select Enable Image

Verification Policies on This Cluster, and then

specify the encryption key and the vault that

contains it.

b. Encrypt using an Oracle-managed key:

Encrypt Kubernetes secrets in the etcd key-value

store using a master encryption key that is

managed by Oracle.

c. Encrypt using a key that you manage:

Encrypt Kubernetes secrets in the etcd key-value

store using a master encryption key (stored in the

Vault service) that you manage.

d. Specify how to manage cluster add-ons. Select

Configure Cluster Add-ons to enable or disable

specific add-ons, select add-on versions, opt into

and out of automatic updates by Oracle, and

manage specific customizations. Select the

appropriate cluster add-on and set options as

appropriate. See “Configuring Cluster Add-ons.”

e. Specify whether to add cluster tags to the cluster,

initial load balancer tags to load balancers

created by Kubernetes services of type

LoadBalancer, and initial block volume tags to

block volumes created by Kubernetes persistent

volume claims. Tagging enables you to group

disparate resources across compartments and

also allows you to annotate resources with your

own metadata.

Step 6.

Step 8.

Step 7.

After clicking Next, choose between VCN-native

pod networking and Flannel overlay for your

network type. VCN-native pod networking allows

Kubernetes pods to connect directly to a VCN

subnet and communicate natively through a VCN

with other pods, other services, and the Internet.

Flannel overlay configures an overlay network for

pod communication. Note that if you choose the

Flannel overlay option, you will not be able to

create virtual nodes or specify a subnet for pod

communication.

Choose the networking setup for your cluster:

a. Select an existing VCN in which to provision your

cluster.

b. Optionally, choose a Kubernetes load balancer

service subnet to host load balancers. The load

balancer subnet must be different from worker

node subnets, can be public or private, and can

be regional or AD specific.

c. Select a public or private Kubernetes API endpoint

subnet to act as a regional subnet to host the

cluster’s Kubernetes API endpoint. The

Kubernetes API endpoint is assigned a private IP

address. If you selected a public subnet for the

Kubernetes API endpoint, you can also assign a

public IP address to the API endpoint. Note that

assigning a public IP address makes this cluster

accessible from the Internet.

d. Optionally, you can use security rules defined for

one or more network security groups (NSGs) to

control access to the cluster’s Kubernetes API

endpoint.

After clicking Next, you can define the properties

for node pools for your cluster.

Step 9.

a. Begin by choosing a name, compartment, and

Kubernetes version for your node pool. By default,

the version of Kubernetes specified for the control

plane nodes is selected. The Kubernetes version

on worker nodes must be either the same version

as that on the control plane nodes or an earlier

version that is still compatible.

b. Choose between managed and virtual nodes.

Managed Kubernetes worker nodes are compute

instances in your tenancy. Managed nodes come

with the flexibility to configure them to meet your

specific requirements, but you are responsible for

upgrading Kubernetes and host OS versions and

for ensuring that capacity is properly scaled. In

the case of virtual nodes, the resources to

execute your Kubernetes pods are provisioned

dynamically, as needed, and exist in the OKE

service tenancy. Virtual nodes remove the

operational overhead of upgrading your data

plane infrastructure and managing the capacity of

clusters.

Depending on your chosen node type, the following

steps will differ:

a. Choosing managed nodes gives you a choice of

creating a private or public subnet to host your

Kubernetes worker nodes. It also give you a

choice of image to use for your worker node

hosts. These images determine the operating

system and other software used for managed

nodes. This also gives you expanded options for

the shape of your nodes, compared to virtual

nodes. Additionally, the choice of managed nodes

enables you to customize the size and encryption

options for the boot volumes of nodes in the node

pool. Select the Specify a Custom Boot

Volume Size check box, and enter a custom size

from 50GB to 32TB to specify a custom size for

the boot volume. The specified size must be

larger than the default boot volume size for the

selected image. If you increase the boot volume

size, you must also extend the partition for the

boot volume to take advantage of the larger size

using the oci-growfs utility. Nodes with the VM

instance chosen as the shape allow you to

optionally select the Use In-transit Encryption

check box. This is not configurable for bare metal

instances; bare metal instances that support in-

transit encryption have it enabled by default. Boot

volumes are encrypted by default, but you can

optionally use your own Vault service encryption

key to encrypt the data in this volume. To use the

Vault service for your encryption needs, select the

Encrypt This Volume with a Key That You

Manage check box. Then select the Vault

compartment and Vault that contain the master

encryption key you want to use. Also select the

master encryption key compartment and master

encryption key. If you enable this option, this key

is used for both data at rest encryption and in-

transit encryption.

b. Choosing virtual nodes give you a choice of pod

shape, which determines the processor type on

which to run the pod. Note that you explicitly

specify the CPU and memory resource

requirements for virtual nodes in the pod spec.

Choosing virtual nodes also provides you with the

option to apply taints to nodes in the virtual node

pool. Taints enable virtual nodes to repel pods,

thereby ensuring that pods do not run on virtual

nodes in a particular virtual node pool. You must

Step 10.

Step 11.

Step 12.

also choose the subnet that will host your virtual

nodes.

c. Both options allow you to choose the number of

nodes created in the default node pool.

Optionally, you can specify Kubernetes labels.

These labels are added to the set of default labels

already on the node and are used to enable

targeting workloads at specific node pools.

Additionally, you must specify a placement

configuration for your node pool. This

configuration determines the subnets, availability

domain, and (optionally) fault domain in which to

place worker nodes. Finally, you must also select

the subnet to be used for pod communication.

Here, you can define the number of pods per

node, as well as the security rules defined in the

network security group (NSG) to control access to

the pod subnet.

Click Next to review the details you entered for

the new cluster. If you have not selected any

features restricted to enhanced clusters, you can

choose to create a basic cluster. To do so, check

the Create a Basic Cluster check box on the

Review page. Otherwise, leave the box unchecked

to create an enhanced cluster.

Click Create Cluster to create the new network

resources and the new cluster.

Click Close to return to the console.

Using the OCI Command-Line

Interface

You can also create clusters with ease using the OCI CLI.

This approach enables you to create clusters using

automation tools and shell scripts. It is an option for when

Terraform might present a steep learning curve or when you

simply want to automate the creation of these resources

and you do not necessarily care about maintaining these

resource configurations or tracking drift from its initial

configuration.

Because the OCI CLI works on individual OCI resources, it

should be noted that the Kubernetes cluster is a separate

resource from the node pools that belong to the cluster.

When creating clusters, you use both of these resources to

create a functional Kubernetes cluster using OKE. Node

pools always belong to a cluster, so you first create a

cluster resource. This cluster resource represents the

control plane elements that are managed by Oracle. When

you have a cluster and a cluster OCID, you add a node pool

to this cluster. This can be done with the cluster and node

pool resources, as follows:

Click here to view code image

oci ce cluster create [OPTIONS] # use –- help for full list of opt

oci ce node-pool create [OPTIONS]

The first command, cluster create, creates a cluster with

the properties that are set by the options for this command.

The second command, node-pool create, creates a node pool

and includes a reference to the cluster OCID for the cluster

created by the first command. This creates the node pool

that belongs to that cluster. The CLI can also include options

to manage control flow in scrips, such as to wait for an

action to complete. A more complete example in Listing 4-2

showcases a variety of options that you can pass when you

are creating a cluster.

Listing 4-2 Options Available When Creating an OKE

Cluster Using the OCI CLI

Click here to view code image

oci ce cluster create \

 --name demo-cluster \

 --kubernetes-version v1.26.2 \

 --compartment-id … \

 --vcn-id … \

 --type ENHANCED_CLUSTER \

 --endpoint-public-ip-enabled true \

 --endpoint-subnet-id … \

 --service-lb-subnet-ids '["…"]' \

 --wait-for-state SUCCEEDED \

 --wait-interval-seconds 10 \

 --max-wait-seconds 600

The command in Listing 4-2 creates a cluster named

demo-cluster in the specified compartment and attached to

a specific VCN. The cluster type is specified as an

ENHANCED_CLUSTER, and the Kubernetes API endpoint is

configured to have a public IP address. The command also

includes options to block until the creation of that cluster

has entered a state named SUCCEEDED. The command waits a

maximum of 600 seconds for this to occur and checks the

progress every 10 seconds.

Similarly, Listing 4-3 demonstrates a more complete

example for creating a node pool.

Listing 4-3 Options Available When Creating a Managed

Node Pool for an OKE Cluster Using the OCI CLI

Click here to view code image

oci ce node-pool create \

--cluster-id … \

--name my-node-pool \

--node-image-id … \

--compartment-id … \

--kubernetes-version v1.26.2 \

--node-shape VM Standard E4 Flex \

node shape VM.Standard.E4.Flex \

--node-shape-config "{\"memoryInGBs\": 8, \"ocpus\": 1}" \

--pod-subnet-ids "[\"…\"]" \

--placement-configs "[{\"availability-domain\":\"xxxx:US-ASHBURN-A

 \"subnet-id\":\"…\", \"faultDomains\":[\"FAULT-DOMAIN-3\", \"FAU

 {\"availability-domain\":\"xxxx:US-ASHBURN-AD-1\", \"subnet-id\"

 \"faultDomains\": [\"FAULT-DOMAIN-1\", \"FAULT-DOMAIN-2\"]}]" \

--size 1 \

--region=us-ashburn-1

The command creates a new node pool for the cluster

that is identified with the provided cluster-id. The new node

pool is named my-node-pool and uses Kubernetes version

1.26.2. The shape of the nodes within the node pool is set

to E4 flex; because this is a flexible shape, the shape

configuration option specifies the number of CPUs and the

amount of memory each of the nodes should have. The

placement configuration is another JSON-formatted attribute

that describes how the nodes within this node pool are to be

placed across availability domains and fault domains.

When using the CLI, you might want to know the

supported values for the various configuration options. You

can view the supported values using the following

command:

Click here to view code image

oci ce node-pool-options get --node-pool-option-id all

The command lists the various supported values for

every option you can set for a node pool. The data.sources

element in the response from the command describes the

options and their possible values. These values can often

change as well. For instance, the OS images are published

every month, and getting the latest image is recommended

when you create new clusters. Similarly, permissible values

for the other options can change, as with the list of

supported shapes, which is constantly being expanded to

include new shapes that OCI rolls out for general use.

Similarly, the supported Kubernetes versions change

periodically as new versions of Kubernetes are released.

JSON-Formatted Configuration

As you can see from the previous examples, OKE exposes

several configuration options to control various aspects of

your cluster and its node pools. This can make CLI

commands lengthy and verbose. It is often desirable to

encapsulate these verbose configuration options into a

single document, which can potentially be source controlled

for change tracking.

To make this possible, the OCI CLI includes an option to

provide the entire cluster configuration as a JSON

document. This includes all the parameters that are

configurable and presented to the CLI in a predefined JSON

format that the CLI then parses before creating or updating

the resource. To understand the expected structure of this

JSON document, you can use the following commands:

Click here to view code image

For the cluster resource

oci ce cluster create --generate-full-command-json-input

For the node-pool resource

oci ce node-pool create --generate-full-command-json-input

This generates a JSON document template that shows the

various options that can be provided. Not all options are

mandatory; the official documentation describes the

mandatory and optional parameters. You can customize this

document with your own values and configurations. This

JSON document now serves as a template for your cluster or

your node pool; when you create new clusters or node

pools, you can provide this JSON document as input instead

of using a verbose CLI command that is hard to read and

often difficult to reproduce. The example that follows

demonstrates creating a cluster and a node pool from a

preexisting JSON template:

Click here to view code image

For the cluster resource

oci ce cluster create --from-json my-oke.json

For the node-pool resource

oci ce node-pool create --from-json my-oke-nodes.json

The advantage of this approach is that the document that

describes the configuration can be source controlled to

track changes to it over time. It also enables automation

workflows, in case you need to repeatedly stamp out

clusters of predefined configurations.

When using the JSON-based configuration, option values

can still be provided on the command line. If an option is

configured in both the JSON document and the command

line, the value specified on the command line takes

precedence. Think of this as overriding the JSON template-

based value with the one on the command line for that

individual command invocation.

Using Custom Images for Your Nodes

Unlike using the console, using the CLI, Terraform, or the API

directly enables you to also specify a custom operating

system image for your nodes. Using a custom OS image for

your node pool is common when you have additional

software that you need to include in the base image for your

Kubernetes nodes. This could be endpoint protection

software such as threat monitoring and antivirus, agents for

observability, or basic tools, programs, and operating

system configurations that are mandated by your

organization.

Under most circumstances, you want to use an official

Oracle OKE image as the base for your customizations. OKE

publishes operating system images for various operating

system versions, with a monthly cadence. These are

published as OCI images in every region, and the OCIDs of

these images are published in the Oracle documentation.1

To use one of these images as the basis for your custom

image, you can import that image and customize it with

tools such as Ansible. Alternatively, you can simply create a

compute instance with the desired image, perform your

customizations, and then create an image from the

customized compute instance. Note that you should not

create an image from an existing Kubernetes node on which

you have performed customizations. This is because when a

compute instance has joined a Kubernetes cluster as a

worker node, that node has data about the specific cluster it

is part of. Creating an image from this node would also

capture the cluster’s identity information, which would

create a conflict when this image is used to create another

node that needs to join a new Kubernetes cluster.

Listing 4-4 shows the CLI command to create a new

compute instance using one of the publicly available OKE

node images.

Listing 4-4 Process to Create a Compute Instance Using an

OKE Worker Node Image

Click here to view code image

oci compute instance launch \

--display-name OKE_NODE_CUSTOM \

--compartment-id … \

--availability-domain xxxx:US-ASHBURN-AD-1 \

--shape VM.Standard.E4.Flex \

--shape-config "{\"memoryInGBs\": 8, \"ocpus\": 1}" \

--subnet-id … \

--image-id … # Image OCID for public OKE Image

This creates a compute instance using an OKE node

image. This compute instance does not join any cluster

because the instance was not launched by a node pool (and

did not have an OKE cloud-init script) and, therefore, does

not have any Kubernetes cluster information configured

within it. After the compute instance has been launched,

you can customize the instance with additional software or

configuration. When the required customization has been

done, you can generate an image from this instance that

includes the customization you have performed. The image

still retains the Kubernetes components, such as the

kubelet, which remains uninitialized.

Now you can use your customized image to launch your

OKE nodes by providing the image ID of your custom image

when you create a node pool. Listing 4-5 shows a complete

example of what this might look like.

Listing 4-5 The Process of Creating a Node Pool with a

Customized Image Using the OCI CLI

Click here to view code image

oci ce node-pool create \

--cluster-id … \

--name my-node-pool \

--node-image-id … \ # OCID of your customized image

--compartment-id … \

--kubernetes-version v1.26.2 \

--node-shape VM.Standard.E4.Flex \

--node-shape-config "{\"memoryInGBs\": 8, \"ocpus\": 1}" \

--pod-subnet-ids "[\"…\"]" \

--placement-configs "[{\"availability-domain\":\"xxxx:US-ASHBURN-A

 \"subnet-id\":\"…\", \"faultDomains\":[\"FAULT-DOMAIN-3\", \"FAU

 DOMAIN-1\"]}]" \

--size 1 \

--region=us-ashburn-1

Note

After the image has been created, it can still be

edited. For instance, you can change the image’s

launch mode or network attachment mode. This can

be useful when you work with highly network

sensitive applications that need to leverage

hardware-assisted networking or SRIOV networking

for the network attachments made to instances

launched from this image. Changing the network

attachment mode from VIRTIO mode to SRIOV mode

exposes the underlying virtual function from the

hardware network card to the operating system

directly without involving any virtualization layers.

Using the Terraform Provider and

Modules

Kubernetes clusters can be created with OKE using APIs and

automation as well. In fact, for most production use, you

should prefer the Terraform-based automation or the OCI CLI

approach. The advantage of using automation is

consistency and repeatability, along with all the advantages

of infrastructure as code described in Chapter 2,

“Infrastructure Automation and Management.” OCI provides

a full-featured Terraform provider that includes the

Kubernetes cluster2and node pool3 resources. Data sources4

also are available that can query the existing resources and

their properties. In addition to the Terraform provider, OCI

has made available a Terraform module5 that can quickly

create a cluster and its associated resources as a single

unit. The module also provides several preconfigured

examples to get you started quickly.

Listing 4-6 shows a snippet of the Terraform code from

the example application showcased in Chapter 10, “Bringing

It Together: MuShop,” that is used to create an OKE cluster

using Terraform. The Terraform configuration allows for

extensive templating and customizations that enable you to

create okay clusters and related resources in a consistent

and configurable manner. The Terraform configuration

expresses the desired state for the cluster and its

associated resources. When the Terraform configuration is

executed, Terraform introspects the existing resources and

creates a plan that identifies the delta between the

currently existing resources and how they need to be

changed to match the intended configuration that is

expressed in the Terraform configuration. Moreover,

because Terraform tracks the state of these resources, you

can use it to detect changes to these configurations over

time. These changes that occur to the configuration

overtime are called drift. Terraform can be rerun to return

the configuration to its intended state. Note that although

most properties of the resource can be updated in place,

some properties of a resource might cause Terraform to

delete the resource and then re-create it. When working

with Kubernetes clusters, it is important to understand what

these properties are so that inadvertently updating a

property does not result in the deletion and recreation of a

resource such as a node pool.

Listing 4-6 Snippet of Terraform Code from an Example

Application

Click here to view code image

resource "oci_containerengine_cluster" "oke_cluster" {

 compartment_id = local.oke_compartment_ocid

 kubernetes_version = (var.k8s_version == "Latest") ? local.k8s_l

 name = "${var.app_name} (${random_string.deploy_id

 vcn_id = oci_core_virtual_network.oke_vcn[0].id

 endpoint_config {

 is_public_ip_enabled = (var.cluster_endpoint_visibility == "Pr

 : true

 subnet_id = oci_core_subnet.oke_k8s_endpoint_subnet

 nsg_ids = []

 }

ti {

 options {

 service_lb_subnet_ids = [oci_core_subnet.oke_lb_subnet[0].id]

 add_ons {

 is_kubernetes_dashboard_enabled = var.is_kubernetes_dashboar

 is_tiller_enabled = false # Default is false,

 reference

 }

 admission_controller_options {

 is_pod_security_policy_enabled = var.is_pod_security_policy_

 }

 kubernetes_network_config {

 services_cidr = lookup(var.network_cidrs, "KUBERNETES-SERVIC

 pods_cidr = lookup(var.network_cidrs, "PODS-CIDR")

 }

 }

 image_policy_config {

 is_policy_enabled = false

 }

}

Automation and Terraform Code

Generation

If you are new to Terraform and the learning curve looks

steep, the OCI console offers a way for you to still get the

benefits of infrastructure as code. Both the Quick Create

and Custom Create workflows offer a Save as Stack option

at the end of the workflow (see Figure 4-11). Choose this

option to generate Terraform code that captures the

configuration you specified for the cluster and its

components in the console. The generated Terraform code

with the configuration values is packaged as a resource

manager stack. This stack can be executed from within the

Oracle Resource Manager service, which runs Terraform to

build a Kubernetes cluster based on the configuration that

was captured. Now you can also use the features of

Resource Manager, such as drift detection, to ensure that

your clusters’ configuration is not drifting from its expected

values due to manual or ad-hoc changes.

Figure 4-11 Summary of the Resources That Will Be

Created Using the Oracle Resource Manager Service; the

Save as Stack Generates a Terraform Configuration from

the Options Provided to the Wizard

Asynchronous Cluster Creation

Regardless of the method you use to create a cluster, the

act of setting up a new Kubernetes cluster control plane,

and subsequently the data plane, is asynchronous. This

means that the cluster creation API returns immediately

(regardless of whether it is invoked through the console, CLI,

or Terraform) and the cluster moves into a provisioning

state. The progress of cluster creation can be tracked

through a work request that is available under the cluster

details page. The data plane or the node pools are created

when the control plane creation is complete. In most cases,

however, you do not need to wait for the data plane to be

fully provisioned before deploying workloads. When the

Kubernetes API endpoint is available, you can deploy pods

or other Kubernetes resources to the cluster even if no data

plane nodes are available. The resources simply remain in

pending status until those data plane nodes are available.

Cluster Topology Considerations

OKE offers a set of flexible options in structuring your

cluster topology. Various choices can help you decide how

and where you create your data plane nodes, to meet your

objectives. For example, you might choose to have a

topology with a node pool that places its nodes across

availability domains, a topology that restricts the node to a

single availability domain, or a topology for which you need

multiple node pools, each connected to a separate subnet

for network-level isolation. The Node Pool resource in OKE

provides these options for creating a wide range of

topologies.

Using Multiple Node Pools

Because each node pool can be configured with a unique set

of parameters, using multiple node pools enables you to

deploy workloads running in the same cluster to the pool

that best matches the needs of the workloads. Using

multiple OKE node pools can provide more flexibility and

control over your Kubernetes cluster, allowing you to

optimize resources, improve security, increase availability,

and scale your applications more efficiently. Specifically:

Resource requirements: Each node pool can be

configured with a specific worker node’s shape,

depending on the needs of your workloads. For

example, if you have some workloads that require GPU

resources and others that require high memory

resources, you might create two separate node pools,

each with the shape optimized for the specific use case.

Availability: Each node pool can be configured with

placement configurations that control the distribution of

nodes across availability domains (ADs) and fault

domains (FDs). By creating multiple node pools with

worker nodes in different ADs and/or FDs, you can

ensure that your cluster is more resilient to failures. If

one AD or FD goes down, your workloads can still run on

the nodes in the other pools.

Cost optimization: You might use multiple node pools

to optimize the cost of running your cluster. By using

different types of worker nodes with different prices, you

can save money by paying for only the resources that

you actually need. For example, you could use nodes

backed by low-cost preemptible instances for fault-

tolerant or development workloads and then use higher-

cost nodes for production workloads that require higher

performance.

Security and isolation: You might also use multiple

node pools to improve the security of your cluster. For

example, you could create a dedicated node pool for

workloads that need to be isolated from other workloads

for security reasons. This can be achieved by running

the workload on a separate set of nodes with stricter

access controls.

Scheduling Workloads on Specific

Nodes

Under most circumstances when using Kubernetes, you

should let the Kubernetes scheduler manage which nodes in

the cluster are chosen for your workloads. The Kubernetes

scheduler examines your pod resource requests and

matches them with nodes that can satisfy those resource

requests. This also allows the control plane to reschedule

workloads onto available capacity when failures are

detected. This automated and hands-off approach to

workload management is one of the major advantages of

using Kubernetes. However, in some scenarios, you need to

exert control over what nodes your workload can be

scheduled on. For instance, if your workload requires access

to specialized hardware on specific nodes, you want to make

this known to the Kubernetes control plane so that the

scheduler can take this into consideration when making

scheduling decisions. To schedule your workloads to specific

Kubernetes node pools in OKE, you can use node selectors

or node affinity, taints and tolerations, and other Kubernetes

constructs, such as topology spread constraints.

Node selectors enable you to specify a label on a node

pool and then use that label in your pod specification to

select the node pool where you want to schedule your

workload. For example, if you have a node pool labeled as

gpu with GPU shapes selected, you can use the following

node selector in your pod specification:

spec:

 nodeSelector:

 nodepool: gpu

This ensures that your pod is scheduled on a node in the

gpu node pool. The same approach can be used with other

node shapes, such as ARM.

Node affinity enables you to specify more complex rules

to match nodes based on labels or other attributes. For

example, Listing 4-7 demonstrates using node affinity to

match nodes with a specific label and not match nodes with

another label.

Listing 4-7 A Manifest File That Includes a Node Affinity and

Expression to Match the Pod to a Node with the gpu Node

Selector

Click here to view code image

spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: nodepool

 operator: In

 values:

 - gpu

 - key: nodepool-type

 operator: NotIn

 values:

 - preemptible

This ensures that your pod is scheduled on a node in the

gpu node pool that is not labeled as preemptible.

Taints and tolerations are a way for you to influence the

scheduler and make sure that pods are not placed on nodes

that need to be reserved for more critical workloads. For

instance, if you have GPU nodes in your cluster, you likely

want to deploy workloads that take advantage of those

GPUs onto those nodes. A pod that selects a GPU node with

a node selector will be assigned to an available GPU node,

but this does not prevent other workloads that do not

leverage or need the GPUs from being scheduled on the

GPU node as well. For instance, a MySQL pod that does not

use the GPU can also be scheduled on the GPU node. This

can potentially lead to resource exhaustion because the

MySQL pod has been allocated CPU resources, and it does

not consume GPUs. If a few of these pods are allocated to

the GPU node, when a real GPU workload is deployed, it

could fail to schedule because there are no available CPUs

on the GPU node, even though all the GPUs might be free.

In these cases, you need a way for these specific nodes

(such as the GPU node) to reject or repel a pod (such as the

MySQL pod) unless the pod is specifically designed to use

the node, like an actual GPU workload. This is exactly what

taints and tolerations do.

Taints are added to nodes, and tolerations are defined in

the pod specification. When you taint a node, it will repel all

the pods except those that have a toleration for that taint. A

node can have one or many taints associated with it.

Pod topology spread constraints offer you a declarative

way to configure pod scheduling that is based on some

topology key. This is done by grouping the nodes into

“domains,” on the basis of having the same node label and

value. In the example in Listing 4-8, the topology key used

is kubernets.io/arch. This is a well-known label that kubelet

sets based on the CPU architecture of the node. If the

cluster had both x86- and ARM-based nodes, the x86 nodes

could have the value amd64 and the ARM nodes could have

the value arm64 for the same node label. Pod topology spread

constraints use this to split the nodes into two groups or

domains, the x86 nodes and the Arm nodes. The scheduler

tries to achieve balance among all the groups, so in the

example, a similar number of pods will be allocated across

each group. Similarly, by choosing another key, such as the

availability domain or the fault domain, you can spread your

pods across these groups, to prevent pods from being co-

scheduled and potentially leading to a larger impact in case

of a disruption.

Listing 4-8 Manifest File That Includes a Topology Spread

Constraint, a Topology Key, and the Action to Take

Depending on Whether the Key Is Present

Click here to view code image

spec:

 topologySpreadConstraints:

 - maxSkew: 1

 topologyKey: kubernetes.io/arch

 whenUnsatisfiable: DoNotSchedule

 labelSelector:

 matchLabels:

 app: wordpress

Kubernetes Networking

OKE relies on Oracle Cloud Infrastructure (OCI) virtual cloud

networks (VCN). These are virtual versions of traditional

network architectures that enable you to connect your OCI

resources, such as compute instances and storage volumes,

to each other and to the Internet. VCNs provide a logically

isolated network environment in the cloud that you can

customize to meet your needs. VCNs allow you to define the

IP address range for your network, create subnets, and

specify security rules to control inbound and outbound

traffic.

OKE uses VCNs to provide a secure, isolated networking

environment for Kubernetes clusters. When you create a

Kubernetes cluster using OKE, you can choose to create a

new VCN through the cluster Quick Create workflow or use

an existing one through the Custom Create workflow. If you

choose to create a new VCN, OKE creates a new VCN with a

default set of subnets, security lists, and routing tables. If

you choose to bring your own VCN, it is important to make

sure that the rules are set up correctly, to ensure proper

communication throughout your cluster.

Each node in the cluster is launched in a subnet. OKE

supports network security policies, which allow you to

define fine-grained rules to control traffic between pods in

your Kubernetes cluster. These policies are enforced by the

Kubernetes network plug-in running on each node in the

cluster.

Container Network Interface (CNI)

The Kubernetes networking model assumes that pods have

unique and routable IP addresses within a cluster. In the

Kubernetes networking model, pods use those IP addresses

to communicate with each other, the cluster control plane,

other resources (for example, storage), and the Internet.

Kubernetes clusters use Container Network Interface (CNI)

plug-ins for network resource management, such as to

implement network connectivity for pods running on worker

nodes. The CNI consists of a specification and libraries for

writing plug-ins to configure network interfaces in Linux

containers, along with a number of supported plug-ins. CNI

plug-ins configure network interfaces, provision IP

addresses, and maintain connectivity. All the node pools in a

cluster use the same CNI plug-in.

OKE supports two types of pod networking out of the box:

VCN-native pod networking and Flannel overlay (see Figure

4-12). When creating a Kubernetes cluster with OKE, the

network type you select for the cluster determines the CNI

plug-in that is used for pod networking.

Choosing VCN-native pod networking as the network

type deploys the OCI VCN-Native Pod Networking CNI

plug-in to your nodes.

Choosing the Flannel overlay network type deploys the

flannel CNI plug-in to your nodes.

Figure 4-12 Process of Choosing a CNI During the

Cluster Creation Process

Note

You can use the OCI VCN-Native Pod Networking CNI

plug-in with both virtual node pools and managed

node pools. You can use the Flannel CNI plug-in with

managed node pools.

OCI VCN-Native Pod Networking CNI

The OCI VCN-Native Pod Networking CNI plug-in uses the

VCN’s CIDR block to provide IP addresses to pods and

enables other resources within the same subnet (or a

different subnet) to communicate directly with pods in a

Kubernetes cluster. Pod IP addresses are directly routable

from other VCNs connected to that VCN, from on-premises

networks, and from the public Internet.

Because pods are directly routable, you can use native

VCN functionality to control access to and from pods using

security rules defined as part of network security groups or

security lists. The security rules apply to all pods in all the

worker nodes connected to the pod subnet specified for a

node pool. You can also use VCN flow logs to observe the

traffic to, from, and between pods, which is useful for

troubleshooting and compliance auditing purposes. This

also enables you to use route tables and routing rules to

route incoming requests to pods based on routing policies.

Apart from these management features, because pods are

directly connected to the virtual cloud network, no

encapsulation is involved in packet transmission; this

generally offers consistent performance for workloads that

are sensitive to small amounts of latency.

Worker nodes running in clusters using the OCI VCN-

Native Pod Networking CNI plug-in are connected to two

subnets specified for the node pool: a worker node subnet

and a pod subnet. The worker node subnet supports

communication between processes running on the cluster

control plane (such as kube-apiserver, kube-controller-

manager, and kube-scheduler) and processes running on

the worker node (such as kubelet and kube-proxy). The

worker node subnet can be private or public and can be a

regional subnet or an AD-specific subnet. The pod subnet

supports communication between pods and direct access to

individual pods using private pod IP addresses. The pod

subnet can be private or public, and it must be a regional

subnet. The pod subnet enables communication between

pods on the same worker node or on other worker nodes,

with OCI services (through a service gateway), and with the

Internet (through a NAT gateway). You specify a single pod

subnet for all the pods running on worker nodes in a node

pool. You can specify the same pod subnet or different pod

subnets for different node pools in a cluster. You can specify

the same pod subnet for node pools in different clusters.

The worker node subnet and the pod subnet must be in the

same VCN and can be the same subnet. If they are in the

same subnet, you should define security rules in network

security groups to route network traffic to worker nodes and

pods.

Something important to note about VCN-Native Pod

Networking is that you might find yourself limited by the

number of VNICs available to your chosen worker node

shape. A minimum of two VNICs are attached to each

worker node: One is connected to the worker node subnet,

and the other is connected to the pod subnet. By default, 31

IP addresses are assigned to the VNIC for use by pods

running on the worker node. These IP addresses are

preallocated in the pod subnet before pods are created in

the cluster. If you want more than 31 pods on a single

worker node, the shape you specify for the node pool must

support more than the minimum two VNICs. The additional

VNICs can be connected to the pod subnet, to provide

further IP addresses to support more pods. Similarly, VCN-

Native Pod Networking consumes IP addresses from the

virtual cloud network, which can pose challenges when

working in an environment with a constrained IP space.

Note

Regardless of whether you are using the add-on API, a

feature used to gain control over operational software

deployed to OKE clusters, Oracle is responsible for

deploying updates to the OCI VCN-Native Pod

Networking CNI plug-in. The updates are applied only

when worker nodes are next rebooted.

Flannel CNI

The Flannel overlay network is a simple private overlay

virtual network that attaches IP addresses to containers.

The Flannel overlay network uses its own CIDR block to

provision pods and worker nodes with IP addresses instead

of using IP addresses from a VCN’s CIDR block. Because the

pods in the private overlay network are accessible only from

other pods in the same cluster, you can specify the same

Flannel CIDR block for multiple clusters.

Because Flannel provides overlay network, it can be

advantageous when you have a lot of pods, each of which

requires an IP address, and your network has limited IP

space in your cloud network. In these cases, Flannel creates

the pods on its own overlay network, and your IP space is

left untouched. In other words, if the density of pods per

node presents an obstacle using the OCI VCN-Native Pod

Networking CNI, consider using the Flannel CNI plug-in

because the number of pods per worker node is not

determined by the node shape. The disadvantage of using

Flannel is that it can involve packet encapsulation, which

incurs a performance hit and might not be appropriate for

workloads with a high sensitivity to the network

performance.

Kubernetes Storage

When a container is deleted or re-created, data stored

inside the root file system can disappear. You can use

persistent volumes (PVs) to store data outside containers to

prevent data loss. PVs are simply storage in the cluster

provisioned either dynamically using storage classes or by

an administrator. You can think of it as a resource in a

cluster just like a node is a resource in a cluster. Persistent

volumes provide a mechanism for keeping your stored data

intact even when the containers using the storage are

terminated. To request persistent storage, you create a

persistent volume claim (PVC), which is then bound to a

persistent volume. Whereas a pod is a request by a user to

consume node resources, a PVC is a request by a user to

consume storage resources in the form of persistent

volumes. Just as users can request specific levels of CPU

and memory resources through pods, users can request

specific size and access modes, including ReadWriteOnce,

ReadOnlyMany, and ReadWriteMany, through persistent volume

claims.

OKE provides two options for provisioning PVCs for OCI

resources:

The Oracle Cloud Infrastructure Block Volume service,

which uses either the FlexVolume or CSI (Container

Storage Interface) volume plug-ins to connect to OKE

clusters

The Oracle Cloud Infrastructure File Storage service,

which uses the CSI volume plug-in to connect to OKE

clusters

This section discusses the various storage options

available to OKE, including their pros and cons and ways to

use these storage options effectively for your workloads.

Because OKE has the capability to create and manage these

storage resources on your behalf, you need to configure OCI

IAM policies to work with storage services. The policies that

are required can vary, depending on the topology that you

set up; see the official product documentation.

StorageClass: Flex Volume and CSI

Plug-ins

A StorageClass provides a way for cloud providers or

administrators to describe the “classes” of storage that they

offer. The StorageClass specified for a PVC controls which

volume plug-in to use to connect to Block Volume service

volumes. Two storage classes are defined by default, oci-bv

for the CSI volume plug-in and oci for the FlexVolume plug-

in. If you don’t explicitly specify a value for storageClassName in

the YAML file that defines the PVC, the cluster’s default

storage class is used. The cluster’s default storage class is

initially set according to the Kubernetes version that was

specified when the cluster was created. Before Kubernetes

1.24, this was the oci StorageClass used for the FlexVolume

plug-in. For Kubernetes 1.24 and onward, this is oci-bv

StorageClass for the CSI volume plug-in. OKE adds new

functionality only to the CSI volume plug-in. The CSI plug-in

comes with benefits, including the CSI topology feature,

which ensures that worker nodes and volumes are colocated

in the same availability domain, and the CSI volume plug-in

does not require access to underlying operating system and

root file system dependencies.

Updating the Default Storage Class

For clusters created on Kubernetes version 1.23 and earlier,

and subsequently upgraded to Kubernetes version 1.24 or

later, the default storage class is not changed during the

upgrade process. This means that unless you manually

update your default storage class, it remains oci. To shift

from oci to oci-bv as the default storage class, perform the

following steps.

This removes oci as the default storage class:

Click here to view code image

kubectl patch storageclass oci -p '{"metadata": {"annotations": {"

 beta.kubernetes.io/is-default-class":"false"}}}'

This adds oci-bv as the default storage class:

Click here to view code image

kubectl patch storageclass oci-bv -p '{"metadata": {"annotations":

 {"storageclass.kubernetes.io/is-default-class":"true"}}}'

When provisioning a persistent volume claim, you can

explicitly specify the volume plug-in to use to connect to the

Block Volume service. This is done by specifying a value for

storageClassName in the YAML file that defines the PVC:

Specify storageClassName: "oci-bv" to use the CSI volume

plug-in.

Specify storageClassName: "oci" to use the FlexVolume

volume plug-in.

If the cluster administrator has not created any suitable

PVs that match the PVC request, you can dynamically

provision a block volume using the CSI plug-in specified by

the oci-bv storage class’s definition (provisioner:

blockvolume.csi.oraclecloud.com). For example, you can define a

PVC in a file called example-csi-pvc.yaml, as demonstrated in

Listing 4-9.

Listing 4-9 Manifest File Used to Create a Persistent

Volume Claim

Click here to view code image

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: exampleclaim

spec:

 storageClassName: "oci-bv"

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 50Gi

Then you can create the PV:

Click here to view code image

kubectl create -f example-csi-pvc.yaml

You can verify that the PVC was created by running the

following:

kubectl get pvc

You can use this PVC when creating other Kubernetes

objects, such as pods. For example, you can use the pod

definition in Listing 4-10 to create a pod that uses the

exampleclaim PVC as the volume, which is mounted at /data by

the pod.

Listing 4-10 Example Manifest File Used to Create a Pod

That Uses the Previously Created Persistent Volume Claim

Click here to view code image

apiVersion: v1

kind: Pod

metadata:

 name: example

spec:

 containers:

 - name: example

 image: example:latest

 ports:

 - name: http

 containerPort: 80

 volumeMounts:

 - name: data

 mountPath: /usr/share/example/html

 volumes:

 - name: data

 persistentVolumeClaim:

 claimName: exampleclaim

You can verify that the pod is using the new persistent

volume claim by entering the following command:

kubectl describe pod example

File System Storage

The Oracle Cloud Infrastructure File Storage Service (FSS)

provides a scalable and distributed network file system that

uses the NFS v3 protocol. This makes FSS ideal for

Kubernetes use cases in which shared storage is required.

FSS also scales dynamically without any upfront

provisioning, making it simple to use and scale. The CSI

volume plug-in that is included with OKE provides support

for Kubernetes Persistent Volumes that are backed by the

FSS. These persistent volumes can be shared by pods that

simultaneously call all reads and writes to the volume,

otherwise known as the ReadWriteMany (RWX) access

mode.

Before you can successfully leverage FSS storage in your

Kubernetes cluster, it is important to understand FSS-

specific terminology. Because FSS is an NFS V3 file system,

you need an IP address or a DNS name that you can use to

mount the file system. This is provided by a mount target in

OCI. A mount target can be used to make multiple file

systems available to users. An NFS client connects to the

mount target to access a file system. An export controls

how an NFS client accesses the file system when connecting

to a mount target. Exporting is the act of making a file

system available through a mount target. A file system

must have at least one export in a mount target for

instances to access and mount that file system. When you

export a file system, a path to uniquely identify the file

system within the mount target is specified. You can

associate multiple file systems to a single mount target; this

path is called the export path.

You can use the CSI volume plug-in to connect clusters to

file systems created by the File Storage service. The CSI

volume plug-in supports dynamic provisioning to

dynamically create the required resources, such as the

mount target and the file system itself, when a persistent

volume claim is presented to the cluster. Although this

dynamic provisioning capability is handy, FSS file systems

are usually long-lived storage solutions that are used by

multiple pods as durable shared storage. For this typical use

case, it is more desirable to mount and use an existing file

system than to create new file systems in an ephemeral

fashion. The CSI volume plug-in also supports this model of

using a preexisting file system and mount target.

To work with the File Storage service using the CSI

volume plug-in, you need to define a storage class that sets

up the parameters required when creating and managing

file systems and mount targets. The StorageClass definition

provides a template for creating the underlying resources.

Consider the StorageClass definition in Listing 4-11.

Listing 4-11 Manifest Used to Define a StorageClass for

Managing FSS File Systems

Click here to view code image

kind: StorageClass

apiVersion: storage.k8s.io/v1

metadata:

name: oci-fss

 name: oci fss

provisioner: fss.csi.oraclecloud.com

parameters:

 availabilityDomain: US-ASHBURN-AD-1

 mountTargetOcid: …

 compartmentOcid: …

 kmsKeyOcid: …

 exportPath: /shared

 exportOptions: [{ "source" : "0.0.0.0/0", "requirePrivilegedSou

 false, "access" : "READ_WRITE", "identitySquash" : "ROOT" }]

 encryptInTransit: "false"

This storage class can create new persistent volumes

backed by the file system service. The file systems are

created in the availability domain specified in the

configuration. The mountTargetOcid specifies the amount target

to use for the file systems created by this storage class.

Instead of providing the mountTargetOcid, you can also provide

a mountTargetSubnetOcid. If the mountTargetSubnetOcid is provided

instead of the mountTargetOcid, a new mount target is created

in the given subnet. Note that, under most circumstances,

you want to use a mountTargetOcid. The number of mount

targets can be limited, and you typically want to associate

multiple file systems to a single mount target. The kmsKeyOcid

specifies the OCID for your own encryption key that is

managed in the OCI vault, for encrypting the data stored on

the volume. Data in the file system service is always

encrypted, and this option replaces the Oracle managed key

that is used by default to encrypt your data in the file

system service with your own key. The exportPath and the

exportOptions determine how the file system is made

available through the mount target.

With the storage class created, you can now use a

persistent volume claim that refers to this storage class to

dynamically create the file system, export it, and attach it

to your workload. Consider the persistent volume claim

definition in Listing 4-12.

Listing 4-12 Manifest Used to Define a Persistent Volume

Claim for an FSS File System

Click here to view code image

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: fss-claim

spec:

 accessModes:

 - ReadWriteMany

 storageClassName: "oci-fss"

 resources:

 requests:

 storage: 100Gi

This volume claim specifies a storage class name but not

a persistent volume name. This means that the CSI volume

driver uses dynamic provisioning to create the required

resources, such as the file system. The example references

the storage class OCI FSS shown in the prior listing, which

specifies a mount target OCID. If the storage class is

configured with a mountTargetSubnetOcid, the CSI volume driver

also creates a mount target in the given subnet as part of

the dynamic provisioning process, to satisfy this volume

claim.

It is worthwhile to note that, although you need to set a

storage size that is required by the PersistentVolumeClaim

object, this size has no effect on the file system. This is

because the OCI file system service transparently scales on

demand as more data is written to the file system.

When using dynamic provisioning as shown in Listing 4-

11, the export path configured on the storage class is used

for exporting the file system that is created. The export

path determines the path under the mount point where the

file system will be made available. Therefore, when using

this approach, you are usually limited to creating only a

single file system with a given storage class object. This is

because the export path for each file system has to be

unique within a mount target, and the storage class sets

this statically. This means that there can be only one

volume claim referring to this storage class for dynamic

provisioning; a second volume claim using this storage class

for dynamic provisioning will create a file system and would

attempt to use the same export path, which would result in

an error. If you used the mountTargetSubnetOcid as well, you can

create a new mount target each time you use dynamic

provisioning; however, you might hit the tenancy limit for

the number of mount targets you can have.

For these reasons, in most cases, you typically will want

to pre-create a mount target and reference that in the

storage class. You can also leave out the exportPath

parameter from the storage class, which will result in a new

PV and file system being generated dynamically each time

a PVC is created. The new file system will be exposed by the

mount target with a default export path that corresponds to

the display name of the file system generated by the CSI

volume plugin. Under most circumstances, this will be the

behavior you need.

You could also exert more control by provisioning all

persistent volumes beforehand. The following example

shows how to create a persistent volume object and

reference it from your persistent volume claim to get more

control over the resources.

To use an existing mount target and a file system, you

must create a persistent volume definition that refers to

these existing resources. Consider the example in Listing 4-

13.

Listing 4-13 Manifest Used to Define a Persistent Volume

Backed by an FSS File System

Click here to view code image

apiVersion: v1

kind: PersistentVolume

metadata:

 name: fss-volume

spec:

 capacity:

 storage: 100Gi

 volumeMode: Filesystem

 accessModes:

 - ReadWriteMany

 persistentVolumeReclaimPolicy: Retain

 csi:

 driver: fss.csi.oraclecloud.com

 volumeHandle: ocid1.filesystem.xxx:10.0.0.1:/shared

The persistent volume definition describes a volume that

can be used by many pods as shared storage due to the

ReadWriteMany access mode. The CSI section of the

definition specifies the driver to be used and the volume

handle. The volume handle points to the existing resources

to be used for this volume. It has three elements to it: the

OCID of the file system, the IP address of the mount target,

and the export path. Once a persistent volume representing

an existing file system and the options for accessing it has

been created, you can use a persistent volume claim to bind

to this volume. Consider the example in Listing 4-14, which

demonstrates using a persistent volume claim that refers to

this persistent volume.

Listing 4-14 Manifest Used to Create a Persistent Volume

Claim Bound to an Existing Persistent Volume Backed by an

FSS File System

Click here to view code image

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: fss-claim

spec:

 accessModes:

 - ReadWriteMany

 storageClassName: ""

 resources:

 requests:

 storage: 100Gi

 volumeName: fss-volume

This volume claim is similar to the one used for dynamic

provisioning, with a few notable differences. The first

obvious difference is that the volume name attribute is set;

it directly refers to the persistent volume that has been

created to interact with the preexisting file system. This

binds the persistent volume to this claim after verifying the

storage class and the storage requirements. The second

difference is that the storage class name has been set to an

empty string. This explicitly disables dynamic provisioning

for this volume claim. Note that omitting the storage class

from the configuration is not the same as setting it to an

empty string. This is because, when the storage class is

omitted, the default storage class is used, if one is

configured. Setting the storage class to the empty string

requires the persistent volume claim to be bound to a

persistent volume that has no storage class. As before, the

storage request does not have any impact on the actual file

system; the storage request is considered when binding the

persistent volume to the persistent volume claim. If the

volume specifies a storage capacity that is lower than the

requested capacity in the claim, the volume claim will not

be bound to the volume. Therefore, it is best to use the

same storage capacity values for both the volume and the

volume claim when using FSS with your Kubernetes cluster.

Kubernetes Load Balancer Support

When you create a service that has its type set to

LoadBalancer, Kubernetes attempts to create a load balancer

to expose the service. When running on a cloud provider,

the Cloud Controller Manager (CCM) is responsible for

calling the appropriate APIs on the cloud provider to create

and wire the load balancer to the underlying pods. The OCI

CCM performs this task on OKE and enables you to manage

traffic and the properties of the load balancers. The OCI

CCM runs on the OKE control plane and is present on all OKE

clusters.

OCI offers two types of load balancers: the standard Load

Balancer service, which offers Layer 7 capabilities, and a

network load balancer, which offers Layer 4 (TCP/UDP) level

load balancing. When creating Service objects, you can add

annotations to the Service definition’s metadata that tell

the CCM to create and set up the load balancer in a certain

way. Annotations are additional name-value elements in the

spec that are read by the CCM that control its behavior. The

complete list of annotations and configuration parameters is

provided in the CCM documentation.6 The annotations for

the Layer 7 Load Balancer service are with either

service.beta.Kubernetes.io or oci.oraclecloud.com (for OCI-specific

features), and the annotations for network load balancers

are prefixed with oci-network-load-balancer.oraclecloud.com.

Working with the OCI Load Balancer

Service

The OCI Load Balancer service is the default choice used by

the OCI CCM when creating service objects that are of type

LoadBalancer. This OCI service offers a highly available and

fault-tolerant proxy that can be located across multiple

availability domains. Because this is a Layer 7 load balancer

service, it can support advanced HTTP routing policies, and

it has additional features, such as SSL termination. This is a

flexible infrastructure service, meaning that the service

automatically scales between a minimum bandwidth value

that is always guaranteed and an optional maximum

bandwidth value as required by actual real-time traffic,

without any intervention. It offers you a choice of public or

private IP addresses and is appropriate for load balancing

most applications.

When a cluster is created, the user is prompted to

allocate a subnet for placing load balancers. The user also

has the choice of configuring the subnets for the node

pools. When a service of type LoadBalancer is created, the

CCM creates a load balancer within the subnet and wires

them to the pods located on the compute nodes within the

node pools. The traffic flow among these various subnets is

governed by the VCN’s network security groups and

security lists. Traffic from external sources such as clients

and users outside the OKE cluster, or even the network, is

managed and routed by the various configurations for the

NSGs and security lists. In OKE, you can decide whether to

let the CCM automatically configure these elements for you

so that, as you deploy a service, the associated network

configuration is updated to route traffic to it by opening the

required ports and adding the required access rules.

Alternatively, you can manage this yourself if you want a

more predictable configuration and you do not want to

provide access to the service to make changes to your

network’s traffic and security settings. The configuration

choices are controlled by a set of annotations that you can

provide in the ServiceSpec or the YAML that defines the

service.

To understand the various annotations, their effects, and

how best to use them, consider Listing 4-15, which is the

most basic service definition for a Kubernetes service, along

with a pod that it can point to.

Listing 4-15 Manifest Used to Create an NGINX Pod, Along

with a Service of Type LoadBalancer, Backed by the OCI

Load Balancer Service

Click here to view code image

apiVersion: v1

kind: Pod

metadata:

 name: nginx

 labels:

 app.kubernetes.io/name: proxy

spec:

 containers:

 - name: nginx

 image: nginx:stable

 ports:

 - containerPort: 80

 name: http-web-svc

apiVersion: v1

kind: Service

metadata:

 name: nginx-service

spec:

 type: LoadBalancer

 selector:

 app.kubernetes.io/name: proxy

 ports:

 - name: http

 protocol: TCP

 port: 80

 targetPort: http-web-svc

This creates a single pod that runs nginx, pulling the

image tagged stable. The pod is labeled with

app.kubernetes.io/name: proxy. Next, the Service definition or

the ServiceSpec defines the service as type: LoadBalancer. The

selector causes the service to route traffic to pods with the

label app.kubernetes.io/name: proxy. Port 80 on the Service (load

balancer) is exposed, and it points to the port named http-

web-svc exposed by the pod (also port 80). So much is clear

from the definition. When OKE encounters this service spec,

it sets up the required infrastructure resources, such as the

actual load balancer, listeners, health checks, security rules,

and more. Because you did not specify any annotations, the

CCM uses the default values for its configuration and sets

up the following resources:

A Layer 7 load balancer, 100Mbps

An ephemeral public IP, if the load balancer subnet is a

public subnet (chosen at cluster creation)

Instructions to round-robin among all back ends (this

example has just a single one)

Updates to security lists for both the load balancer and

the node subnets

On the node subnet’s security list, an ingress rule is

added to allow for ingress on the host port that is

opened for pod traffic.

On the load balancer subnet, an ingress rule for port 80

is added where the service is exposed externally, and

egress rules are added to enable egress from the load

balancer to the node subnet on the host port for pod

traffic.

Although OKE offers some secure and sensible defaults,

in most circumstances, you need to exert some control over

these defaults or be explicit in these configurations, for

better visibility and predictability with the configuration in a

production setting. The previous service spec can be

rewritten explicitly as shown in Listing 4-16.

Listing 4-16 How to Add Annotations to the Load Balancer

Manifest to Configure Your LoadBalancer Service

Click here to view code image

... Pod Spec Truncated ...

apiVersion: v1

kind: Service

metadata:

 name: nginx-service

 annotations:

 oci.oraclecloud.com/load-balancer-type: "lb"

 service.beta.kubernetes.io/oci-load-balancer-security-list-man

 "All"

 service.beta.kubernetes.io/oci-load-balancer-shape: "flexible"

 service.beta.kubernetes.io/oci-load-balancer-shape-flex-min: "

 service.beta.kubernetes.io/oci-load-balancer-shape-flex-max: "

 oci.oraclecloud.com/loadbalancer-policy:"ROUND_ROBIN"

spec:

 type: LoadBalancer

 selector:

 app.kubernetes.io/name: proxy

 ports:

 - name: http

 protocol: TCP

 port: 80

 targetPort: http-web-svc

Note

The annotation service.beta.kubernetes.io/oci-load-

balancer-shape can select a fixed shape, such as 100Mbps.

However, Oracle plans to deprecate these fixed

shapes in the future. Using flexible load balancers

with the upper and lower bounds set to the same

number is a way to achieve a similar configuration.

SSL Termination with OCI Load

Balancer

The OCI Load Balancer service supports SSL termination at

the load balancer. When using Kubernetes services, you can

configure and manage this directly from the Kubernetes

cluster using standard Kubernetes tooling. To set this up,

you need to leverage the following two annotations:

service.beta.kubernetes.io/oci-load-balancer-ssl-ports This

annotation configures the ports to enable SSL

termination on the corresponding load balancer listener.

service.beta.kubernetes.io/oci-load-balancer-tls-secret This

annotation references a TLS secret, which is a built-in

secret type in Kubernetes for storing certificates and

their associated keys. You need to create a Kubernetes

secret of type kubernetes.io/tls and populate it with the

certificate and the private key. Then refer to the secret

object by its name in this annotation to install the

certificate on the load balancer listeners and have SSL

enabled.

To examine this in action, consider the example in Listing

4-17.

Listing 4-17 The Same Manifest Previously Used to Define

the LoadBalancer Service, but Now with Additional

Annotations and an HTTPS Port

Click here to view code image

... Pod Spec Truncated ...

apiVersion: v1

kind: Service

metadata:

 name: nginx-service

 annotations:

 oci.oraclecloud.com/load-balancer-type: "lb"

 service.beta.kubernetes.io/oci-load-balancer-security-list-man

 "All"

 service.beta.kubernetes.io/oci-load-balancer-shape: "flexible"

 service.beta.kubernetes.io/oci-load-balancer-shape-flex-min: "

 service.beta.kubernetes.io/oci-load-balancer-shape-flex-max: "

 oci.oraclecloud.com/loadbalancer-policy:"ROUND ROBIN"

/ p y _

 service.beta.kubernetes.io/oci-load-balancer-ssl-ports: "443"

 service.beta.kubernetes.io/oci-load-balancer-tls-secret: ssl-c

 secret

spec:

 type: LoadBalancer

 selector:

 app.kubernetes.io/name: proxy

 ports:

 - name: http

 protocol: TCP

 port: 80

 targetPort: http-web-svc

 - name: https

 port: 443

 targetPort: http-web-svc

This is the same service definition as in the earlier

example, with the two new added annotations and an

added port for HTTPS. Configuring SSL termination requires

that you configure the SSL certificate on the load balancer.

When configuring SSL termination at the load balancer for a

Kubernetes service, Kubernetes can configure the SSL

certificate for the load balancer. The expectation here is

that the required SSL certificate and private key is provided

to the CCM as a Kubernetes secret of type TLS. Kubernetes

provides a built-in secret type kubernetes.io/tls for storing a

certificate and its associated keys that are typically used for

TLS. The annotation service.beta.kubernetes.io/oci-load-

balancer-tls-secret should point to this secret, and you can

see this referencing ssl-certificate-secret in Listing 4-17. The

secret itself should have a key and a certificate that

contains the private key and the certificate that you want to

use. This can be created with the --key and the --cert flags

for kubectl create. For example, if there were a certificate and

key named tls.crt and tls.key in the current directory, you

could use the following command to create the secret of

type kubernetes.io/tls:

Click here to view code image

kubectl create secret tls ssl-certificate-secret --key tls.key --c

Working with the OCI Network Load

Balancer Service

The network load balancer is a nonproxy load balancer in

OCI that performs pass-through load balancing of Layer 4

(TCP/UDP/ICMP) traffic. It is a highly available load balancer

that provides a regional virtual IP (VIP) address. The load

balancer can elastically scale without requiring a minimum

or maximum bandwidth configuration. It also provides the

benefits of flow logs and source and destination IP address

preservation. The network load balancer does not directly

respond to a client ICMP or TCP/UDP ping packet. Instead,

the network load balancer directs the packet to a back-end

server in accordance with the load balancing policy. The

back-end server then returns a response to the client. The

primary advantages of the network load balancer are its

capability to preserve source and destination IP addresses,

low latency and high throughput load balancing, and the

ability to handle UDP traffic. To choose network load

balancer when creating a Kubernetes service, you can set

the annotation oci.oraclecloud.com/load-balancer-type: nlb on

your service definition, as shown in Listing 4-18.

Exposing UDP Applications and Preserving IP

Addresses

If you choose the network load balancer to expose a UDP

application or to preserve IP addresses, you need additional

configuration to support these use cases. For exposing UDP

applications, you need to set the protocol field in the service

definition’s port configuration. The default value for protocol

is TCP.

Similarly, to preserve source IP addresses, you need to

configure the externalTrafficPolicy parameter for the service

and set up your security lists to allow traffic from the source

IP range. Although enabled by default, you use the

annotation oci-network-load-balancer.oraclecloud.com/is-preserve-

source: "true" to explicitly enable source IP preservation. The

externalTrafficPolicy is set to Local to ensure that Kubernetes

does not relay the request through other nodes, which is the

default behavior. Services that want to have the source IP

preserved should always include this parameter and set

externalTrafficPolicy: Local in the service definition.

Additionally, the security list or the NSG rules for the nodes

also need to allow traffic from these original sources to

reach the nodes. This is different than with the Layer 7 load

balancer because, in that case, the clients communicate

with the load balancer, which then proxies the requests to

the nodes. The nodes thus would be receiving traffic from

the load balancer, and the security lists or NSG rules for the

nodes could be configured to accept traffic from the load

balancer. When preserving client IP, the nodes’ security list

or NSG rules need to be configured to allow traffic from the

clients directly because the load balancer is not proxying

the requests. Table 4-1 outlines an example security list

rule.

Table 4-1 Example Security List Rule

State Source Protocol/Destination

Port

Description

State Source Protocol/Destination

Port

Description

Stateful 0.0.0.0/0

or

subnet

CIDR

ALL/30000-32767 Allows worker

nodes to

receive

connections

through the

OCI network

load balancer

with the source

IP preserved

If the client IPs are known (or are from an internal/known

subnet), the security list rule or NSG rule can restrict the

source to the known CIDR block for the source. If the service

is exposed publicly, the source CIDR needs to be set to

0.0.0.0/0 for allowing traffic from anywhere.

Listing 4-18 shows these configurations in an example.

Listing 4-18 Manifest Used to Create a Network Load

Balancer

Click here to view code image

... POD SPEC TRUNCATED ...

apiVersion: v1

kind: Service

metadata:

 name: nginx-service

 annotations:

 oci.oraclecloud.com/load-balancer-type: "nlb"

 oci-network-load-balancer.oraclecloud.com/is-preserve-source:

spec:

 type: LoadBalancer

 externalTrafficPolicy: Local

 selector:

app kubernetes io/name: proxy

 app.kubernetes.io/name: proxy

 ports:

 - port: 80

 protocol: UDP

 targetPort: 80

This listing shows the nginx service example, as shown

earlier; however, this time the configuration explicitly

requests a network load balancer instead of the standard

(Layer 7) load balancer by setting the annotation

oci.oraclecloud.com/load-balancer-type: "nlb". By setting the

protocol:UDP in the port configuration, OKE ensures that the

listener created for the network load balancer is configured

to accept UDP. Additionally, the configuration to preserve

source IPs is enabled by providing the annotation oci-

network-load-balancer.oraclecloud.com/is-preserve-source: "true"

and setting the parameter externalTrafficPolicy: Local. It is

assumed that the NSG rule or the security list rule to allow

traffic from the source IPs to the nodes has been created.

Specifying Reserved Public IP

Addresses

When you create a public load balancer or network load

balancer with OKE, an ephemeral public IP address is

assigned to that load balancer. In many circumstances, you

might want to have a predefined and known IP address for

your service. OCI allows you to reserve public IP addresses.

When you create a public load balancer or network load

balancer with OKE, you can choose to assign one of your

reserved public IP addresses to that load balancer. To

configure a public IP address for your load balancer, you

need to specify the IP address field in your service

definition, and your load balancer must be created in a

public subnet. Suppose that 150.136.125.124 is one of your

reserved IP addresses. To assign that IP to a load balancer

created by the OKE, consider the example in Listing 4-19.

Listing 4-19 Manifest Used to Create a LoadBalancer

Service with a Reserved Public IP Address

Click here to view code image

apiVersion: v1

kind: Service

metadata:

 name: nginx-service

spec:

 type: LoadBalancer

 loadBalancerIP: 150.136.125.124

 selector:

 app.kubernetes.io/name: proxy

 ports:

 - name: http

 protocol: TCP

 port: 80

 targetPort: http-web-svc

Commonly Used Annotations

The complete list of annotations is documented on the

GitHub page for the Cloud Controller Manager; however, this

section and the list herein covers the most common and

frequently used annotations. Note the prefixes to the

various annotations. Certain OCI-specific annotations and

those that are common to both load balancers and network

load balancers are prefixed with oci.oraclecloud.com. Load

balancers use a mix of service.beta.kubernetes.io and

oci.oraclecloud.com prefixes, while network load balancer–

specific annotations are prefixed with oci-network-load-

balancer.oraclecloud.com.

oci.oraclecloud.com/load-balancer-type This annotation is

used to switch between the type of load balancer. The

possible values are lb for the OCI load balancer (Layer 7)

or nlb for the OCI network load balancer (Layer 4).

service.beta.kubernetes.io/oci-load-balancer-shape This

template determines the load balancer’s capacity

(bandwidth) for ingress and egress traffic. It should be

set to flexible. Fixed-bandwidth shapes such as

100Mbps, 400Mbps, and 8000Mbps are now deprecated.

This should be used in conjunction with

service.beta.kubernetes.io/oci-load-balancer-shape-flex-min,

which sets the minimum guaranteed bandwidth, and the

optional service.beta.kubernetes.io/oci-load-balancer-shape-

flex-max, which sets the load balancer’s maximum

capacity that it will scale to.

service.beta.kubernetes.io/oci-load-balancer-subnet1 This is

the OCID of a subnet to attach the load balancer to

when the default choice selected at cluster creation

needs to be overridden for a specific service. If the

subnet provided is regional, only a single subnet needs

to be configured. When using AD-specific subnets, a

value also needs to be provided for

service.beta.kubernetes.io/oci-load-balancer-subnet2 to

maintain high availability of the load balancer.

service.beta.kubernetes.io/oci-load-balancer-health-check-

timeout This is the maximum time, in milliseconds, to

wait for a reply to a health check. A health check is

successful only if a reply returns within this timeout

period. By default, this is set to 3000, or 30 seconds. You

should consider increasing this value for services that

are backed by pods that can potentially take more time

to start and respond to health check requests. You can

also use this in conjunction with

service.beta.kubernetes.io/oci-load-balancer-health-check-

retries, which sets the number of times a failed health

check is retried before the back-end server is marked as

unhealthy, and service.beta.kubernetes.io/oci-load-balancer-

health-check-interval, which lets you control the interval

between health checks.

service.beta.kubernetes.io/oci-load-balancer-security-list-

management-mode This annotation determines how the CCM

handles security list updates, to allow traffic among

multiple components as services are exposed. This is a

crucial setting in most cases, and is covered in detail in

the next section. The permissible values for it are All

(the default), Frontend, and None.

oci.oraclecloud.com/oci-network-security-groups When using

network security groups (NSGs) to manage and secure

traffic flow, this annotation is used to designate the

newly created load balancer for the given NSG. The NSG

rules that you create and associate with this NSG

dictate how traffic flow and security are handled.

oci.oraclecloud.com/loadbalancer-policy This specifies the

load balancer algorithm used to distribute traffic to the

back-end servers. The default is to use ROUND_ROBIN, which

treats the back ends as a list, sends each incoming

request to the next server in the list, and wraps around

to the start of the list after each pass through the list.

This type of distribution ensures that all back-end

servers get relatively the same number of requests, but

it does not account for when the request is a simple one

that can be completed quickly or one that can be time-

consuming. It also assumes that the back ends are all

fairly similar in their capabilities for the load to be well

balanced across all back ends. You can choose to use

the LEAST_CONNECTIONS or IP_HASH algorithms. Use

LEAST_CONNECTIONS to have the service choose a back-end

server that has the least active connections at that

moment to route the request to. This ensures that there

is no imbalance between servers that are handling long-

lived requests and servers that are receiving smaller

requests. The IP_HASH algorithm uses a hashing function

to calculate a hash value from the client’s IP address so

that requests from the same IP address are always

routed to the same back-end server. Although this offers

the capability to achieve some level of stickiness, which

could be important to some applications, it can also

create an imbalance if a large number of clients connect

to the service through a proxy. In this case, the proxy’s

IP would be perceived as the source IP, and the hashing

function would always send these requests to the same

back-end server. If many clients are behind a proxy, that

can cause the load to not be well balanced and can

potentially overburden an individual back-end server.

Understanding Security List

Management Modes

The annotation service.beta.kubernetes.io/oci-load-balancer-

security-list-management-mode controls how the CCM manages

security lists for the load balancer subnet and the node

subnet. Appropriate ingress and egress rules on these

subnets are required for traffic flow because the default

behavior for subnets is to disallow all traffic. The annotation

can have the following values:

All: When the value is set to All, the CCM manages

security lists for both the node subnets and the load

balancer subnets. When a pod is started on a node and

is exposing a set of container ports, these ports are

within the network namespace for the pod. Ports are

exposed on the host as well to route traffic from the

host namespace to the pod namespace. From a VCN

networking perspective that sees the hosts and not the

pods or containers running on them, these ports on the

host need to have security list rules that allow traffic to

them. The CCM looks up the subnets for each of the

nodes where the pods are running because each node

pool can potentially be located on a different subnet;

then the CCM adds security list rules that allow these

specific host ports to receive traffic from the load

balancer subnet.

Similarly, the CCM updates the security list rules for

the load balancer subnet to send traffic to these ports

on the node subnet. Because the load balancer is

exposing the application and listening on the configured

load balancer port, the CCM also adds a security list rule

to allow incoming traffic to the load balancer port.

In this mode, because the CCM is updating resources

such as the security list, it is possible for infrastructure

management tools that track resource state, such as

Terraform, to flag these modifications as configuration

drift.

Frontend: When the value is set to Frontend, the CCM

manages security lists for only the front end, or the

ingress for the load balancer subnet. Here, it is assumed

that you have already configured security rules that

open the node port range for your node subnets to the

load balancer subnet, with egress rules on the load

balancer subnet and ingress rules on the node subnets.

None: In this mode, the CCM does not do any security list

rule management. You need to configure these rules

externally, such as with Terraform, using well-known

ports on the load balancer ingress side and using the

node port range between the load balancer and node

subnets.

Using Node Label Selectors

As discussed previously in the chapter, the node label

selector annotation in OKE is used to organize a subset of

nodes in your cluster. In the context of exposing your

application using a service, these label selectors enable you

to define a subset of nodes to act as the back end for your

service. By default, when you deploy a set of pods and

expose it using a service, the pods can be located in any

node within your cluster, based on how Kubernetes

schedules them. In some cases, however, you might want to

exert control over what nodes are chosen to be in the back-

end set for a service. This can be useful in scenarios such as

node upgrades, during which you want to control when

traffic moves to a new set of nodes without impacting your

existing workloads.

The key idea with using node label selectors is that you

label your nodes first; then you can update your service to

include a node label selector, which causes the CCM to

update the load balancer and include only nodes that match

the label selector in the back-end set for the load balancer

listener. Consider the example of updating a set of nodes

and wanting to update the service to switch over to the new

fleet without impacting the workloads. The example here

starts off with the existing service and labeled nodes. For

example, consider the following command:

Click here to view code image

kubectl label nodes 10.0.1.2 10.0.1.2 10.0.1.3 app-tier=frontend

This gives three nodes the label app-tier=frontend. With the

nodes labeled, you can deploy a workload that is pinned to

these nodes with a definition like the one in Listing 4-20 to

ensure that the pods are all created on nodes with the

specified node selector.

Listing 4-20 Manifest Used to Define a Deployment That

Ensures All Pods It Creates Are Scheduled onto Nodes with

the Frontend Selector

Click here to view code image

apiVersion: apps/v1

kind: Deployment

metadata:

 name: frontend-deployment

 labels:

 app: frontend

spec:

 replicas: 3

 selector:

 matchLabels:

 app: frontend

 template:

 metadata:

 name: frontend

 labels:

 app: frontend

 spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: app-tier

 operator: In

 values:

 - frontend

 containers:

 - name: frontend

 image: frontend:1.0.0

 ports:

 - containerPort: 80

 name: http-web-svc

Note

In this example, it is assumed that there are several

nodes in the cluster, some of which do not match the

label selector used here.

The nodeAffinity for this deployment restricts the pods

running the frontend:1.0.0 container image to the three

nodes that were labeled with app-tier=frontend. A service

definition can now use the node label selector annotation to

select the specific nodes to be added to the load balancer

back-end set, as shown in Listing 4-21.

Listing 4-21 Manifest Used to Define a Service with a Back-

End Set That Includes Only Nodes Created with the Frontend

Selector

Click here to view code image

apiVersion: v1

kind: Service

metadata:

 name: frontend-service

 annotations:

 oci.oraclecloud.com/node-label-selector: app-tier=frontend

spec:

 type: LoadBalancer

 selector:

 app: frontend

 ports:

 - name: http

 protocol: TCP

 port: 80

 targetPort: http-web-svc

The annotation ensures that only nodes that carry the

label app-tier=frontend will be included in the back-end set for

the load balancer’s listener. Label selectors can be in

several formats, including exclusions such as app-

tier!=database, which selects all that have the key app-tier but

whose value is not database.

Note

Kubernetes supports a feature gate named

ServiceNodeExclusion to label nodes that should be

excluded from a load balancer. OKE enables this

feature gate by default. This means that you can label

your nodes with node.kubernetes.io/exclude-from-external-

load-balancers to keep the node from being added to

the back-end set of a service.

Now imagine that you want to cycle the nodes that are

running the front-end application, and you create three new

nodes. You can label them as app-tier=frontend-v2, as shown

here:

Click here to view code image

kubectl label nodes 10.0.1.4 10.0.1.5 10.0.1.6 app-tier=frontend-v

The deployment can now be updated to include the new

nodes labeled app-tier=frontend-v2, and the service definition

can be updated to include both the new nodes and the old

nodes:

Click here to view code image

oci.oraclecloud.com/node-label-selector: app-tier=frontend,app-tie

When you have ensured that the pods are available on

the new node pool, you can drop the old node pool from the

back-end set for the load balancer by setting the annotation

as follows:

Click here to view code image

oci.oraclecloud.com/node-label-selector: app-tier=frontend-v2

The old nodes can now be cordoned and drained without

impacting traffic because the load balancer directs traffic

only to the new nodes.

Security Considerations for Your

Cluster

As you deploy your applications into a Kubernetes cluster

and operate it, security for your cluster and your application

becomes important. Unauthorized access can potentially

cause application outages that impact business. Worse, it

can lead to data breaches that have long-term impacts. This

section helps you understand the various facets of a cluster

and its infrastructure that needs to be secured, along with

ways to achieve it. A wider discussion of securing both your

applications and your infrastructure, understanding attack

vectors, considering the cloud native security ecosystem,

and developing a system’s overall security posture is

covered in Chapter 6, “Cloud Native Security.”

Security for your cluster can broadly be categorized into

securing the runtime infrastructure and securing access to

the cluster. Securing the runtime infrastructure refers to

how security principles are applied to the cluster

infrastructure topology and its configuration. Setting up

secure access to the cluster considers the controls and

configuration for the access paths, authentication

mechanisms, and authorization mechanisms to ensure that

users can be provided with only the necessary capabilities.

On the other hand, securing access to the cluster and

establishing good practices for authorization prevents

attack vectors that originate from within an organization.

Observability through metrics, log analytics, and auditing is

also a key component in having a good security strategy.

Cluster Topology and Configuration

Security Considerations

The benefit of having a well-thought-out strategy for

infrastructure security is the ability to prevent intrusions

into your infrastructure components and data—in other

words, the capability to shield yourself from attack vectors

that originate from the outside. The following sections look

at several considerations from an infrastructure perspective.

Cluster Component Visibility

When you create an OKE cluster, one of your first choices is

to select the subnets and visibility for the Kubernetes API

endpoint and the worker nodes. When using the Quick

Create workflow, you are asked to choose the visibility of

your Kubernetes API endpoint and your worker nodes. You

can opt to make either component public or private. When

you use the Custom Create workflow, you are asked to

choose the subnets where you want to place your

Kubernetes API endpoint, your load balancers, and your

worker nodes. If you choose a public subnet, you can assign

public IP addresses for these elements; on the other hand, if

you choose a private subnet, these elements remain

private. Figure 4-13 shows the choices in the Quick Create

workflow.

Figure 4-13 Choosing Between Private and Public

Endpoints for the Kubernetes API and the Kubernetes

Worker Node Subnets

When you expose the Kubernetes endpoint to be public,

your Kubernetes endpoint is available via a public IP. This

means that, from a visibility or network reachability

standpoint, it is open to the Internet for anyone to realize

that a Kubernetes API server exists at this location. Access

to the API server’s resources is still controlled by the user’s

authorization credentials, so an unauthorized user will be

refused service by the API server itself. A public API

endpoint is desirable for ease of use because it allows you

to connect directly to the API server over the Internet. On

the other hand, for most production applications, a private

API endpoint can be considered a better and more secure

choice because it limits the visibility and reachability of the

API server to locations within the virtual cloud network

where your cluster is located. To access the API server and

interact with it using a client such as kubectl, users typically

need a bastion host (also sometimes called a jump host)

from where they can connect to the API server.

Following similar reasoning, the visibility of the worker

nodes should also be limited to be private so that they can

be reached only from within the version cloud network. This

means that, to access the nodes directly or log into them

using SSH, they would need to be within the virtual cloud

network, such as on a bastion server. Having private worker

nodes does not mean that you cannot expose your

workloads externally. A service exposed as a load balancer

will cause an OCI load balancer to be created and wired to

the pods, and the communication between the load

balancer and the private nodes running the pods will be

traffic that is private to the virtual cloud network. This will

work as long as the load balancer and the worker node

subnets are configured to allow communication between

each other. If you are using the Quick Create workflow,

these security list rules are set up by the service; if you are

using the Custom Create workflow, the required rules are

documented in the official documentation for a static

configuration. It is also worthwhile to note that the OKE CCM

(Cloud Controller Manager) is set up by default to update

the security lists for the subnets when services are created

and destroyed. This ensures that only the required ports are

opened, and only while they are needed.

Setting Up NSG Rules and Security List Rules

When you set up an OKE cluster using the Quick Create

workflow, the service creates the networking components

using a simple dedicated network and configures the

components appropriately. In a production scenario,

however, you will likely have a different and more complex

network topology that is shared with other resources and is

perhaps managed by a dedicated team. When you are

reusing existing network components, it is important to

configure them in a manner that allows the OKE

components, especially the control plane and data plane, to

effectively communicate with each other. You can perform

these configurations using security list rules, NSG rules, or

both. Recall that security lists are attached to subnets, and

the rules take effect at a subnet level. NSG rules, on the

other hand, are applied at a VNIC level. If you use both

approaches to control network traffic security, the effect is

additive: The effective rule should be the union of the NSG

rules and the security list rules. If either of them allows

communication between two components, the traffic is

allowed.

As a general rule, it is recommended to separately

manage the ingress and egress rules for the Kubernetes API

endpoint, the load balancers, and the worker nodes. This

allows for maximum flexibility without compromising

security. When using NSGs, you can have all these elements

in the same subnet but still treat the ingress and egress

separately by creating NSG rules because NSG rules are

applied at a VNIC level. If you are using security list rules, it

is important to place these components in separate subnets

so that their ingress and egress can be controlled

appropriately using security list rules. Consider the diagram

in Figure 4-14.

Figure 4-14 Architecture of Network Security Groups

and Security Lists

The dashed boundary lines represent security lists or

NSGs. Security lists contain rules that govern egress and

ingress traffic for the entirety of the subnet. NSGs contain

rules that control ingress and egress for traffic on the VNIC

for each component, such as the API server endpoint, load

balancers, or nodes. In this regard, NSGs offer more fine-

grained control at the VNIC level for securing traffic.

Regardless of the mechanism used to control ingress and

egress traffic, the general recommendation is to use either

separate subnets with their own security lists or separate

NSGs to secure traffic to the various OKE components. This

is because, in most cases, you will need to secure each

component differently. For example, you will want to ensure

that your public load balancer allows incoming traffic from

the Internet, but you wouldn’t want to allow external traffic

from the Internet to reach your nodes. Having these

components in separate subnets or NSGs will make it easy

to implement traffic security to meet your needs.

When choosing to place the components in separate

subnets, the Kubernetes API endpoint subnet can be small,

with room for just three IP addresses. The size of the load

balancer subnet depends on how many load balancers you

will have within this cluster; this number is generally low, so

this subnet can also be relatively small, similar to the

Kubernetes APU endpoint subnet. The node subnet, on the

other hand, can potentially be large, in case you need to

support a fairly large number of nodes within your cluster.

You can also have node pools in separate subnets to

implement use cases for when you might want isolation at a

fundamental level between workloads.

When considering how to set up the ingress and egress

rules between these components, the fundamental rules to

remember are those outlined in Figure 4-14. They are listed

here in a brief form. The complete network ingress and

egress rules are detailed in the official documentation.7

The API endpoint should be able to egress to the control

plane on port 443, usually over a service gateway.

The API endpoint should expose 6443 to allow clients to

access it. This can be restricted to a specific CIDR or

opened to all sources.

The API endpoint needs to communicate with the worker

nodes.

TCP ports 6443 and 12250 should be reachable from

the nodes or the pod network (when using native pod

networking).

ICMP 3,4 should be open for ingress and egress

between the API endpoint and worker nodes, for path

discovery.

The worker nodes should be able to communicate with

the other worker nodes and the pod network (when

using native pod networking).

The worker nodes should also be able to communicate

with the control plane and the API endpoint.

The load balancer should be able to communicate with

the worker nodes on the node port range. This rule can

be added by the service at runtime when services are

annotated to have OKE manage the security list rules on

behalf of the application.

Using Compartments to Control Access

OCI compartments can be used effectively to control access

to resources. In the case of OKE, you can use compartments

to set up various components in separate compartments, to

gain fine-grained control over how these resources are

accessed and used. For example, you might want to create

your network configuration, such as your VCN, subnets, and

more, in a specific compartment—for example, a network to

which the network engineers have full access but

developers have only read access. You might also want to

create your nodes in a separate compartment, such as

Kubernetes, to which your developers have full access and

network engineers have only read access. You can take this

concept up a notch by placing each of your node pools into

separate compartments. This type of a configuration is

particularly attractive for users who run multitenant

Software as a Service (SaaS) applications. You can now

isolate the workloads of one tenant into a specific node pool

and compartment, and create an IAM policy that restricts

access to that given compartment—and, thereby, the node

pool. You can ensure that pod scheduling respects these

boundaries using node taints and tolerations. OCI also offers

guidance and automation on bootstrapping environments

with predefined and secure isolation models, such as the CIS

OCI Landing Zone, which is based on the independent

Center for Internet Security (CIS) Foundations Benchmark

v1.2 for OCI.

Creating Groups with Limited Access

When starting out with a new service, it is common to rely

on superuser privileges. This practice usually gets quicker

results because it involves less friction in terms of security

controls. However, when teams move from running proof-of-

concepts into running production applications, thought

should be given to how access control is structured,

implemented, and enforced. For instance, consider an

organization in which infrastructure management is carried

out by a dedicated team and application development is

carried out by a development team. When planning access,

consider these organizational standards and subdivisions

within teams. For example, infrastructure engineers focused

on networking require different identity and access than

infrastructure engineers focused on image hardening and

OS security. Similarly, developers working on the front end

of your application don’t need the same level of privileges

as developers managing your database.

OCI IAM and its policy-driven access model offer several

approaches and a flexible way to implement access control,

depending on your organizational needs and structure.

Access is always denied by default, and policies have an

additive effect, making them simple to craft and audit

through OCI audit logs and Cloud Guard.

Enabling Image Signature Verification

OKE clusters support image signature verification, which

ensures that containers created on the cluster are created

from images that have not been tampered with and come

unmodified from an authentic source. Images in OCIR can

be signed with a master encryption key that you manage.

When an image is signed, the signature associates the

image to the encryption key used to sign it. You can

configure the same encryption key on OKE to verify

signatures; during signature verification, OKE uses the key

to verify the signature. The signature takes into account the

contents of the image and when any of the bits in the image

have been manipulated. For example, in a man-in-the-

middle attack, signature verification would fail and OKE

would refuse to pull the image from OCIR. Image verification

includes an additional step of signing the images that you

push, but this is a quick and simple operation that can easily

be integrated into a build pipeline. Consider the example in

Listing 4-22.

Listing 4-22 Example of Using the OCI CLI to Sign and

Upload a Container Image to the OCI Registry Service

Click here to view code image

oci artifacts container image-signature sign-upload \

 --compartment-id COMPARTMENT_ID \

 --kms-key-id KEY_OCID \

 --kms-key-version-id KEY_VERSION_ID \

 --signing-algorithm ALGORITHM \ # eg : SHA_224_RSA_PKCS_PSS

 --image-id IMAGE_OCID \

 --description "Image Signing"

This command signs the given image identified by

IMAGE_OCID with a key and a key version identified by KEY_OCID

and KEY_VERSION_OCID, using the specified algorithm. The

algorithm supported by the key is chosen at the time the

key is created, and not all algorithms can support a

signature. For example, AES keys are symmetric keys that

do not support signatures, whereas RSA and ECDSA keys

are asymmetric keys that do support it.

With image signature verification enabled, every image

that is pulled is then verified for its signature validity. Within

your pod spec, you should refer to specific images using

their digest value, such as image_name@sha256:xxxxx, instead of

a transient tag, such as image_name:latest or image_name:1.0.0. In

some emergencies, it might be necessary to “break glass”

to deploy an image that would normally fail the signature

verification onto a cluster that has the feature enabled. To

do this, you use the following policy on the pod spec:

Click here to view code image

oracle.image-policy.k8s.io/break-glass: "true"

This allows the cluster to bypass the image verification

for this container alone. Needless to say, it is a best practice

to have linting enabled for your code repositories and to

configure policy check alerts on the audit logs so that the

“break glass” function is used only in emergencies and so

that alarms are raised when it is.

Encrypting Kubernetes Secrets

A secret is an object in Kubernetes that is typically used to

store and distribute sensitive data such as passwords,

tokens, or configuration information. Secrets are similar to

ConfigMaps in how you use them, and they decouple the

sensitive information from the application or the container

image. Although secrets decouple the application from

having to bake sensitive data into the application or the

container image, you need to take an informed approach in

how your cluster is configured to ensure that secrets are

handled and managed safely.

Secrets, like ConfigMaps and most other data that

Kubernetes stores, are stored in the etcd datastore. etcd

runs on the control plane. When you run your own control

plane, by default, the data in etcd is stored unencrypted.

Anyone with the appropriate API permissions or direct

access to etcd can thus access and modify secrets.

When you are using OKE, the control plane is managed

by Oracle, and you do not have direct access to it. OKE also

manages the etcd datastore for you, and it uses the OCI

Block Volume Storage service to persist etcd data. These

block volumes are always encrypted, by default, so your

secrets, ConfigMaps, and all other Kubernetes objects that

are stored in etcd are encrypted at rest. Oracle manages

and periodically rotates these encryption keys without any

action from you, and this default encryption is always on.

In some scenarios, you might want to bring your own

encryption key to encrypt the data in etcd and manage the

lifecycle and key rotations yourself. This might be required

for compliance reasons or simply because you want to

ensure that the data is encrypted with a key that you

manage and that Oracle does not have access to. OKE

supports this model as well: You can choose to bring your

existing keys and store them in the OCI Vault, where you

can use them to encrypt the secrets in etcd. This option is

available only while creating a cluster, using the Custom

Create workflow, and using the APIs and Terraform provider.

When you create the cluster, you can choose a Vault and a

master encryption key that you have imported to the Vault

or generated by yourself. In either case, Oracle does not

have access to the key, and you can manage this key.

Note that, when you manage your own keys, if you delete

the keys, the secrets encrypted by the key become

inaccessible. There is no way to recover the secrets at this

point.

When you use your own keys to encrypt secrets in etcd,

you might also want to implement key rotation to

periodically update the key. When you rotate keys, the key’s

OCID does not change, but it will have a new value and be

considered a new version of the key. Any Kubernetes secret

created from that point onward will be encrypted using the

new version of the key. Existing secrets will remain

encrypted with the old version of the key. This does not

introduce any problems, but you have the choice to re-

encrypt all the existing secrets as well. For instance, if you

suspect that the old key has been compromised, you might

want to re-encrypt the existing secrets with the new key.

You can re-encrypt the existing secrets in your cluster with

the new key using a simple one-line script:

Click here to view code image

kubectl get secrets --all-namespaces -o json | kubectl annotate --

 - encryption-key-rotation-time="<time>"

Authorization Using Workload

Identity and Instance Principls

When your workload needs to access an OCI API such as

read or write from an object storage bucket, you need a way

to provide access and permissions to allow this. This can be

achieved using either workload identity or instance

principals. These two mechanisms achieve similar goals, but

have differences that make them appropriate for specific

scenarios. It is important to understand the security

implications of choosing one method over the other so that

you choose the right approach for any given situation.

Using Instance Principals

Instance principals are a powerful feature in OCI that

confers identity and permissions to any compute instance in

OCI, including OKE worker nodes. When a compute instance

that has been given certain privileges is running a workload,

the workload is allowed to interact with the OCI APIs using

the credentials and permissions allowed for that instance. In

the case of OKE, any of the pods running on such a node

can call OCI APIs. Although the scheduler can be influenced

to ensure that only selective workloads are running on a

node, using this feature with OKE leads to a less than ideal

governance model. If a running pod has a vulnerability that

lets a malicious user gain access to a workload, the attacker

can then leverage the instance principals to perform deeper

actions and cause further damage. To use instance

principals, you need to create a dynamic group that selects

a set of compute instances based on matching criteria. After

the dynamic group is created, you can create an OCI IAM

policy that grants permissions to this dynamic group.

Consider the following example that defines a dynamic

group with a matching criterion:

Click here to view code image

All {instance.compartment.id='<COMPARTMENT_ID>', tag.projectA.env.

This dynamic group selects all instances in the

compartment with the ID COMPARTMENT_ID and further narrows

the instances selected using a tag. Assume that there is a

tag namespace of projectA and a tag key named env. The

matching rule in the previous example selects all instances

that have this tag with the value set to prod. It can be

assumed that all nodes that belong to projectA’s prod

environment may carry this tag. Therefore, the dynamic

group would select all of projectA’s instances in a given

compartment with the projectA.env tag set to prod.

With the dynamic group created, all that remains to be

done is to create an IAM policy that gives this dynamic

group access to the required OCI resources. Consider the

following example:

Click here to view code image

Allow dynamic-group projectA-prod to use buckets in compartment Pr

This policy allows members of the dynamic group named

projectA-prod, which are the instances selected by the

matching criteria of the dynamic group, to use object

storage buckets that are in the compartment called projectA.

This approach is valid when all the workloads or

applications that may run on these instances are trusted.

For Kubernetes nodes, this might not be a good general-

purpose solution because the applications that are running

on this node are not entirely predictable. Take care to

ensure that untrusted workloads or applications are not

started on nodes because this could abuse the privileges

conferred on the nodes. Of course, you can control node

scheduling with features such as node affinity, taints and

tolerations, or custom schedulers; however, those use cases

are generally the exception, not the norm.

Using Workload Identity

For most workloads that need to access OCI APIs, such as to

read/write to an object storage bucket, as in the previous

example, the preferred approach is to implement workload

identity. Workload identity is a feature that enables you to

provide access and permissions to your workloads running

as pods on OKE. Pods with a specific service account, in a

specific cluster, and in a specific Kubernetes namespace are

selected and can be given permissions to access OCI APIs.

OCI IAM defines a workload resource with this combination

of cluster, namespace, and service account. You can write

policy statements using these variables to allow a workload

access to OCI resources. Applications can then use the OCI

SDK and the new OKE authentication provider that

authenticates the API calls simply based on the workload’s

identity, which is defined by service account, namespace,

and cluster. Figure 4-15 illustrates the different components

of the workload identity architecture, including adding the

OCI SDK to customer code that is then deployed to the

cluster as a pod.

Figure 4-15 Workload Identity Architecture Showing

Where a Customer Uses the OCI SDK to Enable

Workloads to Authenticate to OCI IAM

This approach considerably narrows the access and

ensures that principles of least access are upheld. If

Kubernetes moves the pod around multiple nodes in the

cluster, access is uninterrupted because the identity rests

with the workload (identified by service account,

namespace, and cluster), not the instance where the pod

runs. This also enables you to control what applications

have access to what OCI APIs, unlike with instance

principals, which are inherited by any workload that is

running on the given instance. Using OCI IAM policies to

manage access also ensures a consistent way of managing

and auditing access throughout OCI. API requests made

using the workload identity are tracked in OCI audit and can

be used to satisfy compliance requirements or to monitor

for access violations and suspicious activity.

To use workload identity, you need the typical Kubernetes

resources, such as namespaces and service accounts.

Create a namespace for your application if one already

does not exist. This creates a boundary for your application,

and you deploy your pods and other resources within this

namespace. Consider the following example that creates a

namespace called my-app:

Click here to view code image

kubectl create namespace my-app

Create a service account that the pods of the application

can use. Pods that are part of your workload will use this

service account to run. These service accounts can also be

used to enable Kubernetes RBAC for the pod. Consider the

following example, which creates a service account named

my-app-sa in the namespace my-app:

Click here to view code image

kubectl create serviceaccount my-app-sa \

--namespace my-app

The application pods deployed to the my-app namespace

should now use this my-app-sa service account when running.

This can be set in the pod spec, as demonstrated in Listing

4-23.

Listing 4-23 Manifest Used to Create a Pod That Uses the

my-app-sa Service Account

Click here to view code image

apiVersion: v1

kind: Pod

metadata:

 name: my-application

spec:

serviceAccountName: my-app-sa

automountServiceAccountToken: true

containers:

 - name: my-application

 image: my-application:1.0.0

 ports:

 - containerPort: 8080

Define an IAM policy to grant the workload resource

access to other OCI resources. As with other IAM policies,

the policy defines what permissions are granted to the

principal. Consider the example in Listing 4-24, which shows

a policy that checks the incoming request to ensure that it

meets the criteria for the workload identity, the combination

of service account, namespace, and cluster ID. Processes

that are running in pods with the service account my-app-sa,

that are running within the my-app namespace, and that are

in a cluster with a specified CLUSTER_OCID are allowed to use

object storage buckets in the compartment named ProjectA.

Listing 4-24 Example OCI IAM Policy Used to Grant the

Target Workload Access to OCI Resources

Click here to view code image

Allow any-user to use buckets in compartment ProjectA where all {

request.principal.type = 'workload',

request.principal.namespace = 'my-app',

request.principal.service_account = 'my-app-sa',

request.principal.cluster_id = 'CLUSTER_OCID'}

With the service account and the IAM policy in place, for

the workload to access OCI (for example, to use the object

storage APIs as indicated in the policy), it needs to use the

OKE workload identity provider. Consider the example in

Listing 4-25 using the OCI Java SDK.

Listing 4-25 Example of Using the OCI Java SDK to Enable

a Workload to Access OCI IAM

Click here to view code image

[...]

final OkeWorkloadIdentityAuthenticationDetailsProvider provider =

 .OkeWorkloadIdentityAuthenticationDetailsProviderBuilder()

 .build();

 /* create the client using the workload identity provider */

 ObjectStorage osClient =

 ObjectStorageClient.builder().region(Region.US_PHOENIX

 build(provider);

[...]

At runtime, when the API call is made, the OKE

authentication provider validates the workload identity

(service account, namespace, and cluster) and issues a

short-lived resource token from the OCI identity service. For

most workloads, this approach offers a secure method of

accessing OCI APIs without having to grant access too

widely or having to manage credentials as secrets that need

to be rotated and managed.

Securing Access to the Cluster

Clients interact with Kubernetes through the APIs exposed

by the API server. This includes interactions for basic actions

such as creating a pod, or more complex ones such as

deploying an operator. When a client interacts with the API

server, the client is authenticated using the credentials that

it provides. On OKE, the default method for a client such as

kubectl to authenticate with the API server is to use a short-

lived token.

Once authenticated, the client credentials are subjected

to authorization checks using role-based access control

(RBAC). OKE clusters have RBAC enabled by default. RBAC

in Kubernetes lets you implement fine-grained access

control using the standard Kubernetes roles and

RoleBindings. Roles and RoleBindings are bound to

namespaces, while ClusterRoles and ClusterRoleBindings are

valid across the cluster. A role represents a set of

permissions that allow actions on a set of resources and API

groups—for example, allowing the get and list verbs on the

pods resource in the core API group. A set of default

Kubernetes ClusterRole and ClusterRoleBinding objects, such as

the cluster-admin ClusterRole, is created along with the

cluster. Many of the default ClusterRoles and

ClusterRoleBindings are prefixed with system:, indicating that

these are created and managed by the cluster control

plane.

OCI IAM and Kubernetes RBAC

OKE comes preconfigured with an authorizer that integrates

with OCI IAM. For example, OKE considers anyone in the OCI

IAM Administrators group to be a Kubernetes cluster-admin as

well. However, you can—and should—create more fine-

grained access policies using Roles and RoleBindings as a best

practice. This way, you can maintain and manage

appropriate access while maintaining principles of least

access. Because the OKE Authorizer integrates Kubernetes

RBAC with OCI IAM, it becomes easy to create and manage

RoleBindings that associate OCI IAM groups and users to

Kubernetes roles.

As an example, consider two users, Bob and Bill. Bob is a

member of the Administrators group in OCI IAM, and Bill is a

member of the Developers group in OCI IAM. Bill wants to get

full privileges to create and manage Kubernetes resources,

but only in the ProjectA namespace. By default, Bob has full

access to the cluster, whereas Bill has no access. The first

step that you might consider for giving Bill access to the

cluster would be to add the group Developers to an IAM policy

that lets the group members use OKE clusters:

Click here to view code image

Allow group Developers to use clusters in compartment <compartment

This grants the members of the Developers group, including

Bill, the CLUSTER_USE permission. Next, you can create a

RoleBinding in the ProjectA namespace that binds the cluster-

admin ClusterRole to the Developers group. This can be done

with a RoleBinding, as demonstrated in Listing 4-26.

Listing 4-26 Example Manifest Used to Create a Cluster

Role Binding That Maps an OCI IAM Group to a Kubernetes

Role

Click here to view code image

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: namespace-admin

 namespace: projectA

subjects:

- kind: Group

 name: [OCID_for_the_Developers_IAM_group]

 apiGroup: rbac.authorization.k8s.io

roleRef:

 kind: ClusterRole

 name: cluster-admin

 apiGroup: rbac.authorization.k8s.io

By creating this RoleBinding, you have associated or

granted the cluster-admin ClusterRole to the Developers IAM

group by providing the group’s OCID. Because you created a

RoleBinding and not a ClusterRoleBinding, it grants the cluster-

admin privileges to the Developers group only in the ProjectA

namespace, not across the cluster. With the RoleBinding in

place, and because Bill is a member of the Developers group,

when he tries to perform an operation such as creating a

pod, he is able to do so because the authorizer will allow

this request based on his IAM group memberships. Similar

to the example here, you can also create a ClusterRoleBinding

instead of a RoleBinding, and you can replace the

subjects.kind: Group with a subjects.kind: User to bind the role

to a single IAM user instead of a group.

Federation with an IDP

The integration between OCI IAM and Kubernetes RBAC can

extend to federated identities and groups as well. OCI IAM

supports federation with identity providers that adhere to

the Security Assertion Markup Language (SAML) 2.0

protocol. Federation enables enterprises to integrate their

existing identity provider (IdP) with OCI. Once configured,

users can log into OCI and use their existing enterprise

usernames and passwords through their familiar single sign-

on (SSO) login page. When administrators set up federation

in OCI IAM with an IdP, they map the existing groups from

the IdP to OCI IAM groups. When creating RoleBinding and

ClusterRoleBindings, you can continue to use the OCID for the

OCI IAM group to which the IdP group has been mapped.

When changes to group memberships occur on the IdP—for

example, Bob moved from the Developers group to the

SiteReliability group—these changes are synchronized to the

mapped groups as well and will correctly reflect the access

given to the users by virtue of their group memberships.

Summary

This chapter introduced Container Engine for Kubernetes

(OKE). You looked at the basic terminology for the service,

including what constitutes the control plane and data plane,

and you examined ways to create a new cluster and

automate that process. This chapter also introduced the

various Kubernetes networking models that are available for

use with OKE and storage features that are integrated with

various OCI storage services through the Kubernetes

persistent volume mechanism. This was followed by a

discussion on load balancer support and various

configurations to support a wide array of workload types.

Additionally, you examined the cluster topology

configurations and security considerations, including setting

up security rules for various methods of access control.

Finally, the chapter discussed ways to secure access to the

cluster, including integrating Kubernetes RBAC with OCI IAM

and configuring identity federation with an external identity

provider (IdP).

References

1 All Image Families: https://docs.oracle.com/en-

us/iaas/images/

2 oci_containerengine_cluster:

https://registry.terraform.io/providers/oracle/oci/latest/do

cs/resources/containerengine_cluster

3 oci_containerengine_node_pool:

https://registry.terraform.io/providers/oracle/oci/latest/do

cs/resources/containerengine_node_pool

4 Data source: oci_containerengine_clusters:

https://registry.terraform.io/providers/oracle/oci/latest/do

cs/data-sources/containerengine_clusters

5 Terraform OKE for Oracle Cloud Infrastructure:

https://registry.terraform.io/modules/oracle-terraform-

modules/oke/oci/latest

https://docs.oracle.com/en-us/iaas/images/
https://registry.terraform.io/providers/oracle/oci/latest/docs/resources/containerengine_cluster
https://registry.terraform.io/providers/oracle/oci/latest/docs/resources/containerengine_node_pool
https://registry.terraform.io/providers/oracle/oci/latest/docs/data-sources/containerengine_clusters
https://registry.terraform.io/modules/oracle-terraform-modules/oke/oci/latest

6 Load balancer annotations:

https://github.com/oracle/oci-cloud-controller-

manager/blob/master/docs/load-balancer-

annotations.md

7 Security Rule Configuration in Network Security Groups

and/or Security Lists: https://docs.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengnetworkconfi

g.htm#securitylistconfig

https://github.com/oracle/oci-cloud-controller-manager/blob/master/docs/load-balancer-annotations.md
https://docs.oracle.com/en-us/iaas/Content/ContEng/Concepts/contengnetworkconfig.htm#securitylistconfig

5

Container Engine for

Kubernetes in Practice

Container Engine for Kubernetes in OCI enables you to

quickly get started with Kubernetes. However, managing a

fleet of clusters or a large cluster with several node pools

and multitenant workloads running on it can be a bigger

challenge than getting started. Owning a cluster also

involves planning for and executing routine activities such

as patching and upgrading. The burden imposed by these

activities also varies by the node pool type. For instance,

when using a managed node pool, you have direct control

over the underlying node operating system and are

responsible for keeping the operating system up to date. On

the other hand, when using virtual nodes, the infrastructure

is fully managed by Oracle; the user simply triggers an

upgrade process at a desired time. Your runbooks for

managing cluster components therefore will vary,

depending on the specific configuration of your cluster. You

might also need to leverage third-party software and use

custom configurations to go beyond the defaults provided

by the service. This chapter examines the processes and

best practices for managing your clusters, integrating with

third-party products and services, and using customized

infrastructure configurations for your cluster components.

You can view the clusters created in your tenancy by

opening the navigation menu in the console and clicking

Developer Services. Under Containers & Artifacts, click

Kubernetes Clusters (OKE). Then choose a compartment.

You will see the names, statuses, number of node pools,

VCN, Kubernetes version, and creation date of all clusters in

that compartment and region, as illustrated in Figure 5-1.

This overview page is useful for keeping track of the high-

level status of your clusters. Clusters running Kubernetes

versions earlier than the latest available version display a

warning indicating that upgrading to the latest version is

recommended. From this page, you can jump directly to the

Cluster Details page of a specific cluster by clicking the

name of the cluster in the Name column. Similarly, you can

jump directly to the node pool and VCN pages by clicking on

the name in the Node Pool and VCN columns, respectively.

Figure 5-1 Clusters of Varying Statuses and Kubernetes

Versions on the Clusters Page of the OCI Console

Kubernetes Version Support

The upstream Kubernetes project is constantly evolving.

Changes made to the project are referred to as

enhancements. The Kubernetes project loosely defines

enhancements as a change that a blog would be written

about, that needs significant effort or changes Kubernetes in

a significant way, or that users will notice or come to rely

on. Enhancements are introduced in new minor versions

that are typically released every four months. Patches to

address bugs are released monthly or, if needed, more

frequently, and are cut from the most recent three minor

release branches maintained by the upstream Kubernetes

project. Kubernetes versions are expressed as x.y.z, where x

is the major version, y is the minor version, and z is the

patch version.

Oracle Container Engine for Kubernetes (OKE) generally

supports three versions of Kubernetes at a given time. For a

minimum of 30 days after the announcement of support for

a new Kubernetes version, OKE continues to support the

oldest of the three Kubernetes versions that were previously

available. After that time, the oldest Kubernetes version

ceases to be supported. When creating a new OKE cluster, it

is recommended that you use the most recent Kubernetes

version available. When OKE supports a new Kubernetes

version, it is recommended that you upgrade existing

clusters to use that new Kubernetes version as soon as

possible. OKE will not forcibly upgrade clusters if they

become unsupported. If your clusters are running an

unsupported version, you will be able to upgrade both the

control plane and the data plane through unsupported

versions to reach a supported one.

Because Kubernetes includes a control plane and a data

plane, upgrading a cluster must be done in two parts. The

control plane nodes and worker nodes that comprise the

Step 1.

Step 2.

Step 3.

Step 4.

cluster can run different versions of Kubernetes, provided

that you follow the Kubernetes version skew support policy

detailing the maximum supported difference in versions

between each component of a cluster. For example, kubectl

is supported within one minor version, either older or

newer, of the Kubernetes API server. The Kubernetes control

plane must be upgraded before the data plane.

Upgrading the Control Plane

You upgrade control plane nodes by upgrading the cluster

and specifying a more recent Kubernetes version for the

cluster. Control plane nodes running older versions of

Kubernetes are upgraded. Because Container Engine for

Kubernetes distributes the Kubernetes control plane on

multiple Oracle-managed control plane nodes to ensure high

availability (distributed across different availability domains

in multi-AD regions where this is possible), you’re able to

upgrade the Kubernetes version running on control plane

nodes with zero downtime to the Kubernetes API. The steps

for upgrading the control plane are as follows:

In the OCI Console, open the navigation menu and

click Developer Services.

Under Containers & Artifacts, click Kubernetes

Clusters (OKE).

From the Compartment drop-down menu, choose a

compartment that contains a cluster you have

permission to upgrade.

The Version column displays the Kubernetes

version of each cluster. Clusters running older

versions display a warning stating, “Upgrading to

the latest version is recommended.” Click the

name of the cluster you want to upgrade.

Step 5.

Step 6.

On the Cluster Details page, if a newer Kubernetes

version than the one running on the control plane

nodes in the cluster is available (see Figure 5-2),

the Upgrade Available button is enabled at the top

of the page.

Figure 5-2 Cluster Details Page with a Recommendation

to Upgrade to the Latest Available Kubernetes Version

Click Upgrade Available and select the

Kubernetes version to which you want to upgrade

the control plane nodes (see Figure 5-3). Keep in

mind that, after you upgrade your cluster control

plane, it cannot be downgraded.

Step 8.

Step 7.

Figure 5-3 Upgrade Cluster Control Plane Window That

Enables You to Select a New Kubernetes Version for Your

Control Plane

Click Upgrade to apply the update to your cluster.

After you click Upgrade, you will see the status of

the cluster change to Updating. You can track the

status of the upgrade by clicking the Work

Requests tab and then clicking the work request

to open the Work Requests Details page. When the

process is complete, the work request status

moves from In Progress to Succeeded and the

control plane nodes will be running the newer

Kubernetes version. From that point on, the new

Kubernetes version will appear as an option when

defining node pools parameters.

You can update the cluster control plane using the CLI by

passing in the OCID of the cluster you want to upgrade and

the Kubernetes version you want to upgrade to:

Click here to view code image

oci ce cluster update --cluster-id <cluster-ocid> --kubernetes-ver

 <kubernetes-version-number>

If you want to upgrade to a version of Kubernetes that is

more than one version ahead of the version currently

running on the control plane nodes, you must upgrade to

each intermediate version in sequence, without skipping

versions. Skipping minor versions while upgrading a control

plane is not supported by OKE or the upstream Kubernetes

project.

Upgrading the Data Plane

Following the upgrade of your control plane to a new version

of Kubernetes, you can create worker nodes running the

newer version as well. Alternatively, you can continue to

create nodes running older versions of Kubernetes, as long

as the older versions are compatible with the control plane

Kubernetes version. As long as you follow the Kubernetes

version skew support policy described in the Kubernetes

documentation, the control plane nodes and worker nodes

that comprise the cluster can run different versions of

Kubernetes. Each component of a cluster has its own skew

policy, and the official Kubernetes documentation should be

treated as the ultimate source of truth when it comes to

compatibility. Generally, worker nodes are expected to

function without issue as long as their kubelet version is

within two minor versions of the control plane. For example,

the worker node version for a 1.26 control plane should be

1.26, 1.25, or 1.24.

When it comes to upgrading worker nodes, OKE

recommends following the approach of the upstream

Kubernetes project by treating nodes as “cattle, not pets.”

For those unfamiliar, this phrase is used to describe an

environment in which you should consider your resources as

easily replaceable as opposed to something you would feel

distressed about losing. In this context, that means that

rather than updating the kubelet on existing worker node

hosts, you should terminate the instance and replace it with

one running the updated Kubernetes version. This approach

applies to the host OS version and other node pool

properties as well. Given this recommendation, you can

choose one of two paths: upgrading an existing node pool

or creating a new node pool.

OKE enables you to define the properties of a node pool,

including Kubernetes version, host image, shape, and more,

which are then passed down to all the nodes in a pool. This

also allows you to update the properties of a node pool. Any

node created after the properties are updated will come

online with the updated properties. For example, if you

change the node pool’s Kubernetes version to the latest

available Kubernetes version, only nodes created after the

change is made will come online with the new version.

Existing nodes will continue to run the previous Kubernetes

version. The same is true for the other properties of the

node pool. The question becomes, how do you move

workloads from nodes running the old properties to nodes

running the new ones: little by little or all at once?

Upgrading an Existing Node Pool

Upgrading an existing node pool provides you with a

mechanism for moving workloads little by little. The

approach is useful for users who lack extra capacity or

prefer to keep costs low. This approach enables you to

sequentially replace as few as one node at a time by adding

nodes to a node pool or taking existing nodes offline as you

Step 1.

Step 2.

Step 3.

incrementally move work to newly created ones that

possess new parameters. You begin by specifying a more

recent Kubernetes version for the existing node pool. Then

you delete each worker node. OKE allows you to select

cordon and drain options, which prevents new pods from

starting on the target node or nodes and deleting existing

pods, respectively. You can specify to have a new worker

node be created to take the place of each worker node that

you delete, to ensure that the node pool matches the

desired node pool size. All new worker nodes starting in the

pool will be running the more recent Kubernetes version you

specified. Depending on your availability requirements, you

can choose to scale the desired size of the node pool before

you terminate nodes, to limit service disruptions. A larger

capacity of nodes to run your workloads means more space

for pods to be scheduled, as well as a lower likelihood of

pods left unscheduled. We recommend leveraging pod

disruption budgets for your application to ensure that a

sufficient number of replica pods is running throughout the

deletion operation. Pod disruption budgets limit the number

of instances of your application that can be down at the

same time because of a voluntary disruption. The steps for

upgrading an existing node pool are as follows:

In the OCI Console, open the navigation menu and

click Developer Services. Under Containers &

Artifacts, click Kubernetes Clusters (OKE).

On the Cluster List page, choose a compartment

and click the name of the cluster where you want

to change the Kubernetes version of the worker

nodes.

On the Cluster Details page, select the Node

Pools tab. This tab shows the current Kubernetes

version of the node pool(s). Click the name of the

node pool whose nodes you want to upgrade.

Step 4.
On the Node Pool Details page, click Edit and, in

the Version field, specify the Kubernetes version

required for your worker nodes (see Figure 5-4).

Keep in mind that the Kubernetes version you

specify must be compatible with the version that is

running on the control plane nodes. In the case of

OKE images (a worker node image type optimized

for use with OKE clusters), under Image, you need

to click Change Image and, with OKE Worker

Node Images selected as your Image Source,

choose an image that matches the updated

Kubernetes version. Click Select Image.

Figure 5-4 Edit Node Pool Panel, Which Enables You to

Modify the Properties of an Existing Node Pool—in This

Case, by Selecting a New Kubernetes Version

Step 6.

Step 5. Click Save Changes to save the change.

You must now delete existing worker nodes so that

new worker nodes are started with the new

Kubernetes version. For the first worker node in the

node pool, on the Node Pool page, display the

Nodes tab and select Delete Node from the

Actions menu beside the node you want to delete.

Either accept the defaults for advanced options or

click Show Advanced Options and specify the

alternatives, as follows:

Eviction Grace Period (Mins): The length of

time allowed for nodes to be cordoned and

drained before termination. Either accept the

default of 60 minutes or specify an alternative

value between 0 and 60. To skip cordoning and

draining worker nodes, specify 0 minutes.

Force Terminate After Grace Period: The

instruction on whether to terminate worker nodes

at the end of the specified eviction grace period,

even if they have not been successfully cordoned

and drained. Select this option if you want worker

nodes terminated at the end of the eviction grace

period, regardless of whether they have been

successfully cordoned and drained. Deselect this

option if you want to preserve worker nodes that

have not been successfully cordoned and drained

by the end of the eviction grace period. Node

pools containing worker nodes that fail to be

terminated within the specified eviction grace

period have the Needs Attention status. The

status of the work request that initiated the

termination operation will be set to Failed, and the

termination operation will be cancelled.

Step 7.

Step 8.

Do Not Decrease Node Pool Size: The option

to maintain the current size of the node pool. By

default, the size of the node pool will be

decremented by one after a node is terminated,

and a new node will not come online. To ensure

that a new node running the updated Kubernetes

version comes online, select this option.

Click Delete to delete the worker node. A work

request is launched to delete the worker node. You

can track the status of the work request by

navigating to the Work Requests tab of the Node

Pool Details page and choosing the appropriate

work request from the Work Requests table.

Repeat the previous step for each remaining

worker node in the node pool until all worker nodes

in the node pool are running the desired

Kubernetes version.

As an alternative to steps 6–8, you can use the OKE

on-demand node cycling feature. This feature

provides a one-click operation to replace existing

nodes with updated nodes. To minimize service

disruption, you can specify a maximum number of

additional nodes that can be added to the node

pool during an upgrade, referred to as max-surge.

Increasing max-surge raises the number of nodes that

can be upgraded simultaneously. To account for

budget and capacity constraints, you can specify a

maximum number of nodes that can become

unavailable at a given time during an upgrade.

Increasing the max-unavailable value raises the

number of nodes that can be upgraded in parallel

in a single node pool. When using max-unavailable,

nodes will be cordoned/drained based on the node

Step 6.

Step 7.

pool’s evictionGracePeriod and terminated before a

new node comes online, to avoid extra costs.

After you save the changes to the node pool

parameters in step 5, navigate to the Node Pool

Details page and click Cycle Nodes.

On the page shown in Figure 5-5, specify a value

for Maximum Surge, the number of nodes that

can be upgraded simultaneously. This value can be

an integer or a percentage. This value cannot be

greater than the total number of nodes currently

running in the pool.

Figure 5-5 The Cycle Nodes Window on the Node Pool

Details Page Gives You the Ability to Cycle the Nodes in

Your Node Pool

Step 8.

Step 9.

Step 1.

Step 2.

Step 3.

Specify a value for Maximum Unavailable, the

number of nodes that can simultaneously become

unavailable. This value can be an integer or a

percentage. This value cannot be greater than the

total number of nodes currently running in the

pool.

Click Cycle Nodes to replace all the nodes in your

node pool. A work request is launched to cycle the

worker nodes. You can track the status of the work

request by navigating to the Work Requests tab of

the Node Pool Details page and choosing the

appropriate work request from the Work Requests

table.

Upgrading by Adding a Node Pool

Another option for updating nodes in your cluster is to

create an additional node pool and move workloads from

your existing pool to the newly created one. This approach

requires capacity to create a second node pool of the same

size as your original node pool. The steps to do this are as

follows:

In the OCI console, open the navigation menu and

click Developer Services. Under Containers &

Artifacts, click Kubernetes Clusters (OKE).

On the Cluster List page, choose a compartment

and click the name of the cluster where you want

to change the Kubernetes version of the worker

nodes.

On the Cluster Details page, select the Node

Pools tab. This tab shows the current Kubernetes

version of the node pool(s). Click Add Node Pool

Step 4.

to create a new node pool with your desired

parameters.

On the Add Node Pool panel (see Figure 5-6), in the

Version field, specify the Kubernetes version

required for your worker nodes. Keep in mind that

the Kubernetes version you specify must be

compatible with the version that is running on the

control plane nodes. In the case of OKE images, a

worker node image type optimized for use with

OKE clusters, under Image, you need to click

Change Image and then, with OKE Worker Node

Images selected as your image source, choose an

image that matches the updated Kubernetes

version. Click Select Image. Fill out the rest of the

node pool parameters with your desired values.

Step 6.

Step 7.

Step 8.

Step 9.

Step 5.

Figure 5-6 The Add Node Pool Panel, Which Enables You

to Add a New Node Pool with Your Chosen Options to Your

Existing Cluster

Click Add to create the new node pool.

A work request is launched to delete the worker

node. You can track the status of the work request

by navigating to the Work Requests tab of the Node

Pool Details page and choosing the appropriate

work request from the Work Requests table.

After the new node pool becomes active and the

nodes in the new node pool become ready, you can

begin to shift work from one pool to the other. To do

so, for the first worker node in the original node

pool, prevent new pods from starting on a node by

entering kubectl cordon <node_name>. You can do

this for multiple nodes in parallel using a label

selector. To do so, label the nodes in your node pool

and then enter kubectl drain --selector

<your_node_pool_label>. After cordoning your nodes,

you can delete pods running on those nodes by

entering kubectl drain <node_name>. This can also be

done in parallel by entering: kubectl drain --

selector <your_node_pool_label>.

When you have drained all the worker nodes from

the original node pool and pods are running on

worker nodes in the new node pool, you can delete

the original node pool. On the Cluster Details page,

click the Node Pools tab and then select Delete

Node Pool from the Actions menu beside the

original node pool.

A work request is launched to delete the node pool.

You can track the status of the work request by

navigating to the Work Requests tab of the Node

Pool Details page and choosing the appropriate

work request from the Work Requests table.

Alternative Host OS (Not Kubernetes

Version) Upgrade Options

Although we advocate for an immutable infrastructure

approach in which nodes are terminated and re-created

instead of being updated in place, it is possible to update

existing nodes in place. This approach might be preferred

for stateful workloads that are complicated or time-

consuming to reschedule.

One option is to connect to your worker nodes using SSH

and run a YUM update as you would with any OS to ensure

that it is patched. If a reboot is required, drain your pods off

that node while rebooting (or just let Kubernetes [k8s]

reschedule them—no additional capacity is needed during

upgrade).

Run the os-updater tool on your worker nodes. If a reboot

is required, drain your pods off that node while rebooting (or

just let Kubernetes reschedule them). No additional capacity

is needed during an upgrade.

Scaling a Cluster

Scaling OKE clusters occurs differently for the control plane

and the data plane. The OKE platform scales the control

plane nodes without the need for you to intervene.

Manual Scaling

The number of virtual nodes and managed nodes in a

cluster can be scaled manually by specifying a new value

for the node count property of the node pool or by adding

more node pools with nodes to the cluster. When you

increase or decrease the node count in the node pool, the

service creates or destroys the required number of nodes to

converge onto the new node count set on the node pool.

When performing scale-up operations, the service respects

the placement configuration provided on the node pool, and

the nodes that are created have the most up-to-date

configuration of that node pool. For instance, if you updated

any of the node pool properties (for example, the cloud-init

script), the updated configuration is applied to the new

nodes that are created. Manual scaling can be performed

using the OCI console, Terraform automation, the OCI CLI, or

the APIs directly. You can scale applications manually by

updating manifest files. Figure 5-7 shows the window in the

Node Pool Details page that can be used to specify a new

desired size for your node pool, as well as to define

placement configurations used to control the distribution of

nodes across availability domains and fault domains.

Figure 5-7 Use the Edit Node Pool Page to Specify a

New Desired Size for Your Node Pool and Define

Placement Configurations Used to Control the

Distribution of Nodes Across Availability Domains and

Fault Domains

Autoscaling

To optimize resources, you can automatically scale at the

node and pod levels of your cluster. Autoscaling at the node

level is accomplished by deploying the Kubernetes Cluster

Autoscaler. Autoscaling at the pod level is accomplished by

deploying the Kubernetes Metrics Server to collect resource

metrics from each worker node in the cluster and then

deploying either the Kubernetes HorizontalPodAutoscaler

(HPA), which is used to adjust the number of pods in a

deployment, or the Kubernetes Vertical Pod Autoscaler

(VPA), which is used to adjust the resource requests and

limits for containers running in a deployment’s pods.

Kubernetes resource requests are values specified when

creating pods to control the resources (for example CPU and

memory) guaranteed for a given container. The scheduler

takes these values into account when deciding which node

to schedule your workloads onto. Kubernetes resource limits

are also specified when creating pods and are used to

ensure a cap on the resources used by a given container.

You will see examples of both resource management tools

when we discuss VPA in the “Vertical Pod Autoscaler”

section of this chapter.

Autoscaling the data plane depends on the type of nodes

chosen for your node pools. In the case of virtual nodes,

scaling data plane capacity based on workload demands is

largely done for you. Infrastructure-level scaling of a virtual

node pool is managed by OKE, which means that the

underlying infrastructure capacity is scaled automatically

and there is no need to use the Kubernetes Cluster

Autoscaler. You can use the Kubernetes Cluster Autoscaler

and the Kubernetes Vertical Pod Autoscaler with managed

node pools only. You can use the Kubernetes Metrics Server

and the Kubernetes HorizontalPodAutoscaler with both

virtual node pools and managed node pools.

Cluster Autoscaler

You can use the Kubernetes Cluster Autoscaler to

automatically resize the number of nodes in managed node

pools based on workload demands. Resizing enables you to

ensure the availability of your application and optimize

costs. The Kubernetes Cluster Autoscaler adds worker nodes

to a node pool when a pod cannot be scheduled in the

cluster because of resource constraints; it removes worker

nodes from a node pool when nodes have been

underutilized for a given period of time and when pods can

be rescheduled on other nodes.

Note

The Cluster Autoscaler scales the number of nodes in

a node pool based on resource requests instead of the

resource utilization of nodes in the node pool.

The Kubernetes Cluster Autoscaler is configured per node

pool using a configuration file that specifies the node pools

to target for expansion and contraction. The Cluster

Autoscaler manages only node pools referenced in the

configuration file. The file also enables you to specify the

minimum and maximum sizes for each node pool, in

addition to other settings. Because the Cluster Autoscaler

itself runs on nodes in your cluster, it is important to ensure

that at least one node pool in a cluster is not managed by

the Kubernetes Cluster Autoscaler, to avoid a situation in

which all Cluster Autoscaler nodes are evicted and cannot

be rescheduled. This is also a good reason to ensure that

you configure the Cluster Autoscaler deployment to have

multiple replicas.

Keep in mind that although the Cluster Autoscaler is

managing the capacity of your node pools, you should avoid

manually changing the size of node pools or managing

them using another tool, such as Terraform; the different

capacity management systems will conflict as they try to

reconcile one another’s changes to reach different desired

states.

Using the Cluster Autoscaler

Before using the Cluster Autoscaler, you must configure the

identity and access management policies to allow the

Cluster Autoscaler to add and remove nodes from your node

pools. To do so, follow these steps:

Step 1.

Step 2.

Step 3.

Step 4.

Create a dynamic group to contain the node pools

that you want to manage with the Cluster

Autoscaler, and add a rule to the group that

includes all instances in the compartment that you

plan to manage with the Cluster Autoscaler: ALL

{instance.compartment.id = '<compartment-ocid>'}.

Next, create a policy to allow worker nodes to

manage node pools:

Click here to view code image

Allow dynamic-group acme-oke-cluster-autoscaler-dyn-grp t

cluster-node-pools in compartment <compartment-name>

Allow dynamic-group acme-oke-cluster-autoscaler-dyn-grp t

instance-family in compartment <compartment-name>

Allow dynamic-group acme-oke-cluster-autoscaler-dyn-grp t

in compartment <compartment-name>

Allow dynamic-group acme-oke-cluster-autoscaler-dyn-grp t

virtual-network-family in compartment <compartment-name>

Allow dynamic-group acme-oke-cluster-autoscaler-dyn-grp t

compartment <compartment-name>

Allow dynamic-group acme-oke-cluster-autoscaler-dyn-grp t

compartments in compartment <compartment-name>

Replace <dynamic-group-name> with the name of the

dynamic group you created earlier, and replace

<compartment-name> with the name of the

compartment in which the cluster belongs.

Copy the Cluster Autoscaler configuration file, and

edit it to apply to your node pools.

Create a file called cluster-autoscaler.yaml with the

following contents:

Click here to view code image

apiVersion: v1

kind: ServiceAccount

metadata:

 labels:

 k8s-addon: cluster-autoscaler.addons.k8s.io

 k8s-app: cluster-autoscaler

 name: cluster-autoscaler

 namespace: kube-system

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: cluster-autoscaler

 labels:

 k8s-addon: cluster-autoscaler.addons.k8s.io

 k8s-app: cluster-autoscaler

rules:

 - apiGroups: [""]

 resources: ["events", "endpoints"]

 verbs: ["create", "patch"]

 - apiGroups: [""]

 resources: ["pods/eviction"]

 verbs: ["create"]

 - apiGroups: [""]

 resources: ["pods/status"]

 verbs: ["update"]

 - apiGroups: [""]

 resources: ["endpoints"]

 resourceNames: ["cluster-autoscaler"]

 verbs: ["get", "update"]

 - apiGroups: [""]

 resources: ["nodes"]

 verbs: ["watch", "list", "get", "patch", "update"]

 - apiGroups: [""]

 resources:

 - "pods"

 - "services"

 - "replicationcontrollers"

 - "persistentvolumeclaims"

 - "persistentvolumes"

 verbs: ["watch", "list", "get"]

apiGroups: ["extensions"]

 - apiGroups: ["extensions"]

 resources: ["replicasets", "daemonsets"]

 verbs: ["watch", "list", "get"]

 - apiGroups: ["policy"]

 resources: ["poddisruptionbudgets"]

 verbs: ["watch", "list"]

 - apiGroups: ["apps"]

 resources: ["statefulsets", "replicasets", "daemonset

 verbs: ["watch", "list", "get"]

 - apiGroups: ["storage.k8s.io"]

 resources: ["storageclasses", "csinodes"]

 verbs: ["watch", "list", "get"]

 - apiGroups: ["batch", "extensions"]

 resources: ["jobs"]

 verbs: ["get", "list", "watch", "patch"]

 - apiGroups: ["coordination.k8s.io"]

 resources: ["leases"]

 verbs: ["create"]

 - apiGroups: ["coordination.k8s.io"]

 resourceNames: ["cluster-autoscaler"]

 resources: ["leases"]

 verbs: ["get", "update"]

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: cluster-autoscaler

 namespace: kube-system

 labels:

 k8s-addon: cluster-autoscaler.addons.k8s.io

 k8s-app: cluster-autoscaler

rules:

 - apiGroups: [""]

 resources: ["configmaps"]

 verbs: ["create","list","watch"]

 - apiGroups: [""]

 resources: ["configmaps"]

 resourceNames: ["cluster-autoscaler-status", "cluster

 verbs: ["delete", "get", "update", "watch"]

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

name: cluster autoscaler

 name: cluster-autoscaler

 labels:

 k8s-addon: cluster-autoscaler.addons.k8s.io

 k8s-app: cluster-autoscaler

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cluster-autoscaler

subjects:

 - kind: ServiceAccount

 name: cluster-autoscaler

 namespace: kube-system

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: cluster-autoscaler

 namespace: kube-system

 labels:

 k8s-addon: cluster-autoscaler.addons.k8s.io

 k8s-app: cluster-autoscaler

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: cluster-autoscaler

subjects:

 - kind: ServiceAccount

 name: cluster-autoscaler

 namespace: kube-system

apiVersion: apps/v1

kind: Deployment

metadata:

 name: cluster-autoscaler

 namespace: kube-system

 labels:

 app: cluster-autoscaler

spec:

 replicas: 3

 selector:

 matchLabels:

 app: cluster-autoscaler

template:

 template:

 metadata:

 labels:

 app: cluster-autoscaler

 annotations:

 prometheus.io/scrape: 'true'

 prometheus.io/port: '8085'

 spec:

 serviceAccountName: cluster-autoscaler

 containers:

 - image: iad.ocir.io/oracle/oci-cluster-autoscale

}}

 name: cluster-autoscaler

 resources:

 limits:

 cpu: 100m

 memory: 300Mi

 requests:

 cpu: 100m

 memory: 300Mi

 command:

 - ./cluster-autoscaler

 - --v=4

 - --stderrthreshold=info

 - --cloud-provider=oci-oke

 - --max-node-provision-time=25m

 - --nodes=1:5:{{ node pool ocid 1 }}

 - --nodes=1:5:{{ node pool ocid 2 }}

 - --scale-down-delay-after-add=10m

 - --scale-down-unneeded-time=10m

 - --unremovable-node-recheck-timeout=5m

 - --balance-similar-node-groups

 - --balancing-ignore-label=displayName

 - --balancing-ignore-label=hostname

 - --balancing-ignore-label=internal_addr

 - --balancing-ignore-label=oci.oraclecloud.co

 imagePullPolicy: "Always"

 env:

 - name: OKE_USE_INSTANCE_PRINCIPAL

 value: "true"

 - name: OCI_SDK_APPEND_USER_AGENT

 value: "oci-oke-cluster-autoscaler"

Step 5.

Step 6.

Step 7.

Change the image path of the Kubernetes Cluster

Autoscaler image in the cluster-autoscaler.yaml file to

an image stored in the OCIR Registry. Images are

available in a number of regions:

a. Find the following line: - image:

iad.ocir.io/oracle/oci-cluster-autoscaler:{{ image tag

}}

b. Update it to the appropriate region and

Kubernetes version: - image: phx.ocir.io/oracle/oci-

cluster-autoscaler:1.25.0-6. This image is from the

Phoenix region and was built to run on Kubernetes

1.25.

Specify the node pools that you want the Cluster

Autoscaler to manage. You can specify multiple

node pools:

a. Find the following line: - --nodes=1:5:{{ node pool

ocid 2 }}. This line is formatted as --nodes=<min-

nodes>:<max-nodes>:<nodepool-ocid>. <min-nodes> and is

used to define the minimum number of nodes

allowed in the node pool. The number of nodes

will not drop below this number. <max-nodes> is used

to define the maximum number of nodes allowed

in the node pool. The number of nodes will not

increase above this number. <nodepool-ocid> is used

to define the node pools you want to manage by

the Cluster Autoscaler.

b. You can specify other supported Cluster

Autoscaler parameters at this time.

c. Save the cluster-autoscaler.yaml file.

Deploy the Kubernetes Cluster Autoscaler to the

cluster:

Click here to view code image

kubectl apply -f cluster-autoscaler.yaml

Step 8. View the Kubernetes Cluster Autoscaler logs to

confirm a successful deployment. These logs also

indicate whether the workload of node pools in the

cluster is currently being monitored:

Click here to view code image

kubectl -n kube-system logs -f deployment.apps/cluster-au

Metrics Server

The Kubernetes Metrics Server is a set of Kubernetes

resources that you can deploy to your cluster that collects

resource metrics from the kubelet processes running on the

data plane nodes in your cluster. Metrics Server collects

these metrics and exposes them through the Kubernetes

API, using custom resources that represent metric readings.

To deploy the Kubernetes Metrics Server to a cluster with

managed node pools, use the following command:

Click here to view code image

kubectl apply -f https://github.com/kubernetes-sigs/metrics-server

 download/<version-number>/components.yaml

Update <version-number> with the Kubernetes Metrics Server

version that you want to deploy (for example, v0.6.3).

Because the Kubernetes Metrics Server is being actively

developed, the version number will change over time.

To deploy the Kubernetes Metrics Server to a cluster with

virtual node pools, you need to first disable the liveness and

readiness checks for the metric server because virtual

nodes do not expose these URLs for the metric server. To

make this change, download the manifest file components.yaml

to a local directory from https://github.com/kubernetes-

sigs/metrics-server/releases/download/<version-

number>/components.yaml. Ensure that the URL is updated

with the latest version number, as in the previous example.

Open the components.yaml file in a text editor of your choice,

and remove the livenessProbe and readinessProbe sections (see

Listings 5-1 and 5-2) from the manifest of the metrics-server

deployment.

Listing 5-1 livenessProbe Section

Click here to view code image

livenessProbe:

 failureThreshold: 3

 httpGet:

 path: /livez

 port: https

 scheme: HTTPS

 periodSeconds: 10

Listing 5-2 readinessProbe Section

Click here to view code image

readinessProbe:

 failureThreshold: 3

 httpGet:

 path: /readyz

 port: https

 scheme: HTTPS

 initialDelaySeconds: 20

 periodSeconds: 10

Deploy the Kubernetes Metrics Server by entering this

line:

Click here to view code image

kubectl apply -f <local-location>/components.yaml

Update with the local directory containing the

components.yaml file that you just modified.

Confirm that the Kubernetes Metrics Server has been

deployed successfully and is available by entering this line:

Click here to view code image

kubectl get deployment metrics-server -n kube-system

HorizontalPodAutoscaler

You can use the Kubernetes HorizontalPodAutoscaler to

automatically scale a workload resource, such as the

number of pods in a deployment, a replica set, or a stateful

set, based on that resource’s CPU or memory utilization. The

HorizontalPodAutoscaler can help applications scale out to

meet increased demand or scale when demand decreases.

You can set a target metric percentage to meet when

scaling applications.

The HorizontalPodAutoscaler does not need to be

manually installed into a cluster because it is a standard API

resource in Kubernetes. However, it does require the

installation of a metrics source, such as the Kubernetes

Metrics Server. The Metrics Server is used to collect

resource metrics directly from the kubelets running in your

cluster. It exposes those metrics through the Kubernetes

API. You can use the Kubernetes HorizontalPodAutoscaler

with both managed node pools and virtual node pools.

To use the HorizontalPodAutoscaler, if you have not

already done so, follow the steps to deploy the Kubernetes

Metric Server.

Next, create a HorizontalPodAutoscaler Resource. In this

example, the resource will maintain a minimum of one and

a maximum of five replicas and will aim for an average CPU

utilization of 50%:

Click here to view code image

kubectl autoscale deployment example --cpu-percent=50 --min=1 --ma

This will maintain a minimum of one and a maximum of

five replicas of the pods controlled by the example

deployment. It will also increase and decrease the number

of replicas of the deployment to maintain an average CPU

utilization of 50% across all pods. If the average CPU

utilization falls below 50%, the HorizontalPodAutoscaler will

reduce the number of pods in the deployment to the

minimum of 1 that you specified. If the average CPU

utilization goes above 50%, the HorizontalPodAutoscaler will

increase the number of pods in the deployment to the

maximum of 5 that you specified.

You can confirm the current status of the

HorizontalPodAutoscaler by entering this line:

kubectl get hpa

The output from the kubectl get hpa command shows the

current status, including the deployments, target

percentages, minimum and maximum pods, replicas, and

age of the resource:

Click here to view code image

NAME REFERENCE TARGET MINPODS MAXPOD

php-apache Deployment/php-apache/scale 0% / 50% 1 10

You can try out the HorizontalPodAutoscaler by deploying

a sample application and then generating load against the

application in reaction to the load. This sample application

includes a container called hpa-example that is exposed using

a service:

Click here to view code image

apiVersion: apps/v1

kind: Deployment

metadata:

 name: php-apache

spec:

 selector:

Step 2.

Step 1.

 matchLabels:

 run: php-apache

 template:

 metadata:

 labels:

 run: php-apache

 spec:

 containers:

 - name: php-apache

 image: registry.k8s.io/hpa-example

 ports:

 - containerPort: 80

 resources:

 limits:

 cpu: 500m

 requests:

 cpu: 200m

apiVersion: v1

kind: Service

metadata:

 name: php-apache

 labels:

 run: php-apache

spec:

 ports:

 - port: 80

 selector:

 run: php-apache

To deploy the sample application, follow these steps:

Enter this line:

Click here to view code image

kubectl apply -f https://k8s.io/examples/application/php-

Create an autoscaler, which can be accomplished

using the kubectl autoscale command. To match a

target CPU utilization across all pods,

HorizontalPodAutoscaler dynamically increases and

decreases the number of replicas of a given

Step 3.

Step 4.

deployment. In this case, you set a target CPU

utilization of 50%. You can also set a floor and a

ceiling for the number of replicas, to ensure that

the number of replicas does not drop below a

minimum or increase beyond a maximum. In this

case, you set a minimum of 1 and a maximum of

10 replicas. To create the HorizontalPodAutoscaler

for the php-apache application, enter this line:

Click here to view code image

kubectl autoscale deployment php-apache --cpu-percent=50

--max=10

To check the current status of

HorizontalPodAutoscaler, enter the following:

kubectl get hpa

You will see an output similar to this:

Click here to view code image

NAME REFERENCE TARGET MINPODS MAXPODS

php-apache Deployment/php-apache/scale 0% / 50% 1 10

In this example, you can see in the TARGET column

that the current CPU utilization is 0%. This is

because there is currently no load on the

application.

To see HorizontalPodAutoscaler in action, you can

generate load against the application. To do so, you

create an additional pod to send a loop of requests

to the php-apache application. In your terminal, enter

the following:

Click here to view code image

kubectl get hpa php-apache --watch

Step 5.

Open a second terminal to ensure that load

generation continues, and enter the following:

Click here to view code image

kubectl run -i --tty load-generator --rm --image=busybox:

--restart=Never -- /bin/sh -c "while sleep 0.01; do wget

http://php-apache; done"

After allowing time for the load generation pod to

come online, you will begin to see a higher CPU

utilization—for example:

Click here to view code image

NAME REFERENCE TARGET MINPODS MAXPODS

php-apache Deployment/php-apache/scale 300% / 50% 1 10

Next, you will see additional replicas created to

reach the target of 50% utilization across all pods:

Click here to view code image

NAME REFERENCE TARGET MINPODS MAXPODS

php-apache Deployment/php-apache/scale 300% / 50% 1 10

In this example, CPU utilization increased to 300%

of the original value specified in the resource

request. Consequently, the

HorizontalPodAutoscaler resized the deployment to

seven replicas. If you generate even more load

against the application, you will see

HorizontalPodAutoscaler scale up to the maximum

number of replicas, which you set as 10.

You can see the resized replica count in the

deployment itself by entering this line:

Click here to view code image

kubectl get deployment php-apache

Step 6.

Step 7.

You will see an output similar to this:

Click here to view code image

NAME READY UP-TO-DATE AVAILABLE AGE

php-apache 7/7 7 7 30s

After a few minutes, you will see the CPU utilization

approximately reach the target utilization value:

Click here to view code image

NAME REFERENCE TARGET MINPODS MAXPODS

php-apache Deployment/php-apache/scale 45% / 50% 1 10

To stop generating load, navigate to the terminal

where you created the busybox pod and enter the

following:

<Ctrl> + C

After a few minutes, you will see the utilization

drop down to 0% and HorizontalPodAutoscaler will

scale down the replicas to the minimum of one:

Click here to view code image

NAME REFERENCE TARGET MINPODS MAXPODS

php-apache Deployment/php-apache/scale 0% / 50% 1 10

To delete the HorizontalPodAutoscaler, enter the

following:

Click here to view code image

kubectl delete horizontalpodautoscaler.autoscaling/php-ap

To remove the sample application, enter this:

Click here to view code image

kubectl delete deployment.apps/php-apache service/php-apa

Vertical Pod Autoscaler

The Kubernetes Vertical Pod Autoscaler (VPA) can improve

cluster resource utilization by automatically adjusting the

resource requests and limits for containers running in a

deployment’s pods. The Vertical Pod Autoscaler can update

resource requests automatically based on usage to right-

size the resources available for each pod while maintaining

ratios between limits and requests specified in the initial

container’s configuration. This applies to pods that are over-

requesting resources and under-requesting resources based

on their usage over time. The Vertical Pod Autoscaler has

three components:

The Recommender monitors resource consumption

and provides recommended CPU and memory request

values for a container.

The Admission plug-in configures new pods to use the

recommended resource requests on new pods that are

created or re-created because of changes made by the

Updater.

The Updater checks for pods with incorrect resources

and terminates them so that they can be re-created with

the updated request values.

Unlike the HorizontalPodAutoscaler, which is already

present on clusters, the Vertical Pod Autoscaler must be

deployed to your cluster. As with the

HorizontalPodAutoscaler, the Vertical Pod Autoscaler

requires the installation of a metrics source, such as the

Kubernetes Metrics Server, in the cluster.

To use the HorizontalPodAutoscaler, if you have not

already done so, first follow the steps to deploy the

Kubernetes Metric Server. Then deploy the Vertical Pod

Autoscaler as follows:

Step 4.

Step 1.

Step 2.

Step 3.

Download the Vertical Pod Autoscaler source code

from GitHub:

Click here to view code image

git clone https://github.com/kubernetes/autoscaler.git

Change to the vertical-pod-autoscaler directory:

Click here to view code image

cd autoscaler/vertical-pod-autoscaler

Deploy the Vertical Pod Autoscaler:

./hack/vpa-up.sh

Verify that the Vertical Pod Autoscaler pods have

been created successfully:

Click here to view code image

kubectl get pods -n kube-system

The output from this command shows the vpa-admission-

controller, vpa-recommender, and vpa-updater pods:

Click here to view code image

vpa-admission-controller-7c7666f6cd-lcjzn 1/1 Running 0

recommender-786476d7cc-7qk7k 1/1 Running 0

updater-79d74db98b-f2zv7 1/1 Running 0

After deploying the Vertical Pod Autoscaler pods, you can

use them to recommend and set resource requests for

resources in your cluster. To do so, you must create a VPA

config for the resource for which you want to receive

recommendations or to autoscale. When it comes to the

manner in which resources are managed, VPA offers the

choice of these modes:

In Auto mode, VPA assigns resource requests at pod

creation time and updates resource requests of existing

pods.

In Recreate mode, VPA assigns resource requests at

pod creation time and updates resource requests of

existing pods. Recreate differs from Auto because, with

Recreate, pods are evicted when updates to requested

resources differ significantly from the original

recommendation. This is used when you must ensure

that pods are restarted when resource requests change.

In Initial mode, VPA assigns resource requests only at

pod creation time and does not update resource

requests at any other time.

In Off mode, VPA does not automatically assign

resource requests for pods. Recommendations are still

calculated and are available for you to review in the VPA

object. This mode essentially allows you to audit the

values that VPA recommends instead of having them

actively applied.

Note

In the example in Listing 5-3, the update mode is not

specified. By default, the mode is set to Auto.

You can try out the Vertical Pod Autoscaler by deploying a

sample application and then generating load against the

application in reaction to the load. This sample application

includes a container called hamster and a VPA config, as

demonstrated in Listing 5-3.

Listing 5-3 Sample Application and VPA Configuration to

Scale the Application

Click here to view code image

This config creates a deployment with two pods, each requesting

and trying to utilize slightly above 500 millicores (repeatedly

0.5s and sleeping 0.5s).

It also creates a corresponding Vertical Pod Autoscaler that adj

requests.

Note that the update mode is left unset, so it defaults to "Auto

apiVersion: "autoscaling.k8s.io/v1"

kind: VerticalPodAutoscaler

metadata:

 name: hamster-vpa

spec:

 # recommenders field can be unset when using the default recomme

 # When using an alternative recommender, the alternative recomme

 # can be specified as the following in a list.

 # recommenders:

 # - name: 'alternative'

 targetRef:

 apiVersion: "apps/v1"

 kind: Deployment

name: hamster

 resourcePolicy:

 containerPolicies:

 - containerName: '*'

 minAllowed:

 cpu: 100m

 memory: 50Mi

 maxAllowed:

 cpu: 1

 memory: 500Mi

 controlledResources: ["cpu", "memory"]

apiVersion: apps/v1

kind: Deployment

metadata:

 name: hamster

spec:

 selector:

 matchLabels:

 app: hamster

 replicas: 2

template:

 e p a e

 metadata:

 labels:

 app: hamster

 spec:

 securityContext:

 runAsNonRoot: true

 runAsUser: 65534 # nobody

 containers:

 - name: hamster

 image: registry.k8s.io/ubuntu-slim:0.1

 resources:

 requests:

 cpu: 100m

 memory: 50Mi

 command: ["/bin/sh"]

 args:

 - "-c"

 - "while true; do timeout 0.5s yes >/dev/null; sleep 0

To create the deployment and config, enter this line:

Click here to view code image

kubectl create -f examples/hamster.yaml

Deploying the hamster application creates a deployment

with two pods and a Vertical Pod Autoscaler pointing at the

deployment. Similar to HorizontalPodAutoscaler, VPA

enables you to specify minimum and maximum values for

the target resources using minAllowed and maxAllowed. You can

verify that the application is deployed using the following

command:

Click here to view code image

$ kubectl get pods -l app=hamster

NAME READY STATUS RESTARTS AGE

hamster-65cd4dd797-8vglx 1/1 Running 0 43s

hamster-65cd4dd797-pcwpf 1/1 Running 0 44s

Describing one of the pods in the application shows the

resource requests for that pod. Replace the pod name with

one of the pods running in your cluster, and navigate to the

requests section of the output to see the current request

values, as demonstrated in Listing 5-4.

Listing 5-4 Current Requested CPU and Memory Values

from the Sample Application Pod

Click here to view code image

kubectl describe pod hamster-65cd4dd797-pcwpf

[… output truncated…]

requests:

 cpu: 100m

 memory: 50Mi

[… output truncated…]

Each of the pods in the hamster application runs a

container that tries to utilize more cores and memory than

requested. VPA watches these pods and, after a few

minutes, updates the CPU and memory request to match

the needs of the application. To see this happen in real time,

watch the pods running in the application and wait for VPA

to start a new pod with updated request values:

Click here to view code image

kubectl get --watch pods -l app=hamster

When you see a new pod come online, describe the pod

and navigate to the requests section of the output to see

the current request values, as demonstrated in Listing 5-5.

Listing 5-5 Updated Requested CPU and Memory Values

from the Sample Application Pod

Click here to view code image

kubectl describe pod hamster-7cbfd64f57-wmg4

[… output truncated…]

requests:

 cpu: 587m

 memory: 262144k

[… output truncated…]

You can also view the recommendations made by VPA for

the hamster application. To do so, enter the following:

Click here to view code image

kubectl describe vpa/hamster-vpa

The Recommendation section of the output shows the

recommendations:

Click here to view code image

Name: hamster-vpa

Namespace: default

Labels: <none>

Annotations: <none>

API Version: autoscaling.k8s.io/v1

Kind: VerticalPodAutoscaler

Metadata:

Creation Timestamp: 2023-06-07T22:56:14Z

Generation: 4

Resource Version: 25877689

UID: 07e060c6-b46d-407c-961a-df92bcb6c6b6

Spec:

Resource Policy:

 Container Policies:

 Container Name: *

 Controlled Resources:

 cpu

 memory

 Max Allowed:

 Cpu: 1

 Memory: 500Mi

 Min Allowed:

 Cpu: 100m

 Memory: 50Mi

Target Ref:

 API Version: apps/v1

 Kind: Deployment

 Name: hamster

Update Policy:

 Update Mode: Auto

Status:

Conditions:

 Last Transition Time: 2023-06-07T22:57:03Z

 Status: True

 Type: RecommendationProvided

Recommendation:

 Container Recommendations:

 Container Name: hamster

 Lower Bound:

 Cpu: 203m

 Memory: 262144k

 Target:

 Cpu: 587m

 Memory: 262144k

 Uncapped Target:

 Cpu: 587m

 Memory: 262144k

 Upper Bound:

 Cpu: 1

 Memory: 500Mi

Events: <none>

To remove the sample application, use the following

command:

Click here to view code image

kubectl delete -f examples/hamster.yaml

To remove the Vertical Pod Autoscaler, navigate to the

directory into which it was downloaded, and use the

following command:

./hack/vpa-down.sh

Scaling Workloads and Infrastructure

Together

The Cluster Autoscaler scales nodes based on the resource

requests made by pods, not the actual utilization of

resources or performance characteristics of your workload.

In most situations, you need a way to automatically detect

degraded performance from your application and to

automatically take actions to mitigate this. For instance, if

your application receives more than an average amount of

traffic, you might need to scale out to better serve the

requests. This workload-level scaling is typically

accomplished by using the HorizontalPodAutoscaler or the

Vertical Pod Autoscaler.

Therefore, it is common practice to combine the Cluster

Autoscaler and the HorizontalPodAutoscaler to automate

the process of workload and infrastructure scaling, based on

metrics. Continuing the example, if your pods are constantly

hitting a high CPU utilization rate, the

HorizontalPodAutoscaler can create new pods to spread the

load, in order. This can create new resource requests from

the new pods that are created, which might not be satisfied

by the existing nodes. Once the existing resources in the

cluster are exhausted, these pods are unschedulable

because there are not enough resources to be allocated;

then the Cluster Autoscaler kicks into action and creates

new nodes to satisfy the updated resource requests. In this

manner, you can scale both your workload and the

infrastructure required to run the workload, based on the

operational characteristics and metrics from your workload.

Autoscaler Best Practices

It is a best practice to design applications running on node

pools managed by the Cluster Autoscaler to be disruption

tolerant—for example, by means of pod disruption budgets.

The Cluster Autoscaler automatically and dynamically adds

and removes worker nodes. In the process, pods are moved

from one worker node to another, which can cause

disruptions if not properly accounted for. The Kubernetes

Cluster Autoscaler respects pod scheduling and eviction

rules, including the eviction grace period configured for your

node pool. These rules might prevent the Cluster Autoscaler

from being able to terminate a worker node.

When deploying workloads across availability domains,

we recommend that you create one node pool per

availability domain. For instance, when working with a

region that has three availability domains, you can create

three node pools: one for each availability domain. Now you

can configure the Cluster Autoscaler to scale each of those

node pools independently. Node pools in Container Engine

for Kubernetes use a placement configuration to determine

the spread of nodes across availability domains and fault

domains. The node pool always tries to balance the number

of nodes across its placement configuration. Consider this

scenario when you have hit your soft resource limit for the

specific CPU type or compute shape that you are using for

your nodes in one of the availability domains. The shapes

are available in the other availability domains; however, the

single node pool with a placement configuration that

spreads the nodes across all the three availability domains

might not create new nodes because the spread of nodes

would no longer be balanced. On the other hand, instead of

creating a single node pool, if you configure separate node

pools for each of the availability domains, you do not

encounter this imbalance. This is because each node pool is

restricted to a single availability domain and can scale

independently of each other. Even if you hit a soft resource

limit in a single availability domain, only that node pool is

prevented from scaling, whereas the others can still provide

new capacity for your workloads.

Because the Cluster Autoscaler itself is a set of pods that

you deploy onto your cluster, you should ensure that you

deploy multiple replicas for the autoscaler into your cluster.

If the autoscaler itself is evicted for a higher-priority

workload during a scaling event, the cluster no longer has

the capability to scale. You should also ensure that multiple

replicas of the autoscaler are deployed across multiple

nodes.

Caution

When you use the Cluster Autoscaler to manage a

node pool, you should not manually update or scale

this node pool. The autoscaler will notice this change

and could override your manual changes with the

autoscaler’s configuration.

The Cluster Autoscaler and the HorizontalPodAutoscaler

are often used in conjunction with each other. It is therefore

important to understand the interactions between these two

mechanisms and know how to control their behavior. For

instance, setting an appropriate stabilization window in the

HorizontalPodAutoscaler for either the scale-up or the scale-

down events can control how aggressively new pods are

created or destroyed. Transitively, this also impacts the

frequency with which the Cluster Autoscaler creates and

destroys new nodes. Misconfigurations with these

interactions could potentially lead to race conditions or

aggressive node scale-up or scale-down events that might

not be productive.

Step 1.

Step 2.

Cluster Access and Token Generation

You can use the Kubernetes command-line tool, kubectl, to

perform operations on clusters created with Container

Engine for Kubernetes. kubectl is used to communicate with

a Kubernetes cluster’s control plane using the Kubernetes

API, for example, to create, get, describe, and delete

resources in your cluster. Your version of kubectl must be

compatible with the Kubernetes version of your OKE control

plane. To be compatible, Kubectl must be either the same

version as your control plane or one version ahead or

behind your control plane. kubectl uses a configuration file,

or kubeconfig, stored in the $HOME/.kube directory.

To access a cluster configured with a private Kubernetes

API endpoint, you must configure your virtual cloud network

for access or configure a bastion using the Oracle Cloud

Infrastructure Bastion service.

Install kubectl following the upstream Kubernetes

documentation, if you have not already done so.

Set up the kubeconfig file.

a. Generate an API signing key pair. Navigate to the

Profile menu in the console, and click User

Settings. Click the API Keys tab and then click

Add API Key. Either use OCI to generate an API

key pair or upload a PEM format key pair

generated yourself, paste the contents of the

public key, and click Add.

b. If you have not already done so, install and

configure the Oracle Cloud Infrastructure CLI.

c. Set up the kubeconfig file by navigating to the

Cluster Details page of the Kubernetes cluster you

want to access and clicking Access Cluster, as

shown in Figure 5-8. These instructions include

the capability to connect using Cloud Shell, the

command line built directly into the OCI console,

or using local access.

Figure 5-8 Steps for Configuring Cluster Access on the

Cluster Details Page of the OCI Console

Clicking the Local Access option opens the

steps for how to create a /.kube directory to store

the kubeconfig file and how to access the

kubeconfig for your cluster via the VCN-Native

public or private endpoint. Choose the

appropriate options, and then set your

kubeconfig variable with export

KUBECONFIG=$HOME/.kube/config. If a kubeconfig file

already exists in the specified location, details

for the new cluster are added as a new context

to the existing kubeconfig file, and the current

Step 1.

Step 2.

context element in the kubeconfig file is updated

to point to the newly created cluster context.

In your terminal, enter kubectl, followed by the command

for the operation you want to perform on the cluster—for

example, kubectl get pods.

A single kubeconfig file can include the details for

multiple Kubernetes clusters. Each cluster is referred to as a

context. The cluster specified by the current context in the

kubeconfig file is the cluster on which operations will be

performed. The kubeconfig file generated by OKE includes

an OCI CLI command that dynamically generates an

authentication token and inserts it when you run a kubectl

command. For this to function correctly, the OCI CLI must

also be available on your shell’s executable path. The

authentication tokens generated by the OCI CLI command in

the kubeconfig file are short lived and specific to individual

users, which means they cannot be shared between users

to access a Kubernetes cluster.

Service Account Authentication

In addition to authenticating access to a Kubernetes cluster

by means of an automatically generated OCI CLI command,

users can authenticate by means of a Kubernetes service

account. In some situations, automatically generated

authentication tokens might be impractical. For example,

you might be leveraging tools such as continuous

integration and continuous delivery (CI/CD) pipelines that

require long-lived authentication tokens. One solution is to

use a Kubernetes service account:

Begin by creating a service account: kubectl -n kube-

system create serviceaccount <service account name>.

Create a new clusterrolebinding with permissions

appropriate for your use case, and bind it to the

Step 3.

service account you just created. For example, this

is how to create a clusterrolebinding with

administrative access: kubectl create

clusterrolebinding --clusterrole=cluster-admin --

serviceaccount=kube-system: <service account name>.

Note

It is important to properly scope the permissions of

roles in your cluster. The cluster admin role has every

permission for every resource in the cluster, which is

most likely too wide a scope for any one user in your

organization.

Next, create a Kubernetes secret that stores the

authentication token for the service account.

a. To do so, create a kubeconfig-secret.yaml file with the

following content:

Click here to view code image

apiVersion: v1

kind: Secret

metadata:

 name: kubeconfig-secret

 namespace: kube-system

 annotations:

 kubernetes.io/service-account.name: kubeconfig-sa

type: kubernetes.io/service-account-token

b. Create the token with kubect apply -f kubeconfig-

secret.yaml.

c. View the details of the secret by describing the

secret you just created: kubectl describe secrets

kubeconfig-secret -n kube-system.

d. The output from the preceding command includes

a Base64-encoded authentication token as a

Step 4.

Step 5.

Step 6.

value of the token element. Obtain the value of

the service account authentication token, and

assign its value to an environment variable after

decoding it from Base64: TOKEN=kubectl -n kube-

system get secret oke-kubeconfig-sa-token -o

jsonpath=’{.data.token}’ | base64 --decode.

You can then add the service account and the

associated service account authentication token as

a user in the kubeconfig file. Add the service

account (and its authentication token) as a new

user definition in the kubeconfig file by entering

the following kubectl command: kubectl config set-

credentials --token=$TOKEN.

Set the user in the kubeconfig file for the current

cluster context to be the new service account user

you created: kubectl config set-context --current --

user=<service-account-name>.

After doing so, other tools may use the service

account authentication token when accessing the

cluster.

This kubeconfig file can be used across processes and

tools to access the cluster.

Configuring DNS

Kubernetes uses DNS records pervasively for services and

pods so that they can be discovered and communicated

with using DNS names instead of IP addresses. When

Kubernetes creates pods and services, it publishes

information that the kubelet uses to configure DNS entries

for them. OKE clusters use CoreDNS, a general-purpose DNS

server that also supports plug-ins, as its DNS server, which

you will see running as a pod in the kube-system namespace of

your cluster.

CoreDNS maintains its configuration properties in a

configuration file referred to as a Corefile. When deployed

on Kubernetes, the Corefile is maintained as a Kubernetes

ConfigMap that is provided to the CoreDNS pods when they

are launched. You can view the default CoreDNS settings by

using the command demonstrated in Listing 5-6.

Listing 5-6 Default CoreDNS Settings of an OKE Cluster

Click here to view code image

kubectl get cm coredns -n kube-system -o yaml

apiVersion: v1

data:

 Corefile: |-

 .:53 {

 errors

 health {

 lameduck 5s

 }

 ready

 kubernetes cluster.local in-addr.arpa ip6.arpa {

 pods insecure

 fallthrough in-addr.arpa ip6.arpa

 }

 prometheus :9153

 forward . /etc/resolv.conf

 cache 30

 loop

 reload

 loadbalance

 }

 import custom/*.server

kind: ConfigMap

metadata:

 name: coredns

 namespace: kube-system

 ...TRUNCATED...

The default configuration includes several plug-ins, such

as loadbalance and health, as in the example in Listing 5-6. Of

these, the import plug-in is noteworthy and provides the

mechanism for you to safely extend and customize the

configuration. The default Corefile’s import plug-in is set up

to import other configurations by looking for and importing

config files that have the extension .server from the custom

directory. The location of the custom directory is relative to

the location of the Corefile.

When you need to customize CoreDNS behavior, such as

when specifying a forwarding server for your network traffic,

enabling logging for debugging DNS queries, or configuring

your environment’s custom domains and upstream

nameservers, you can override the default configuration by

creating your own Corefile as a ConfigMap named coredns-

custom. Because the default Corefile imports everything with

a .server extension, all you have to do is make sure that the

configmap you create has a key that ends in .server.

Consider the example in Listing 5-7.

Listing 5-7 Corefile, a configmap Used to Customize

CoreDNS

Click here to view code image

apiVersion: v1

kind: ConfigMap

metadata:

 name: coredns-custom

 namespace: kube-system

data:

 custom.server: |

 corp.local {

 cache

 forward . _IP_ADDRESS_OF_YOUR_RESOLVER_

 }

This ConfigMap defines a custom Corefile named

custom.server that sends all requests within the corp.local

domain to the nameserver whose IP address is provided to

the forward plug-in. When the custom Corefile is created as

Step 1.

Step 2.

a ConfigMap, as in Listing 5-7, the CoreDNS pods can be

restarted to load the new config. Because CoreDNS runs as

a DaemonSet, you can simply delete the pods to have

Kubernetes re-create them with the updated configuration.

The default pod definition for the CoreDNS pods loads the

default Corefile from the ConfigMap and mounts it at

/etc/coredns within the coreDNS container. The default pod

definition also mounts an optional config volume from a

ConfigMap named coredns-custom at /etc/coredns/custom. The

customized Corefile, custom.server in Listing 5-7 is visible to

the pod at /etc/coredns/custom/custom.server. The import plug-in

from the default Corefile loads and merges this custom

configuration because it meets the import pattern of ending

in .server and is located in a directory named custom that is

relative to the location of the default Corefile.

OKE also offers a way to customize and control the

default Corefile contained in the configmap coredns, which is

useful when you want to update the configuration and, say,

remove plug-ins from the default plug-in chain. This can be

done using the Add-Ons feature. CoreDNS is deployed as a

cluster add-on, so it can be configured through the add-on

setup process as well. To do this, follow these steps:

Navigate to your cluster and the Add-ons section

under Resources.

Choose the CoreDNS add-on (see Figure 5-9).

Step 3.

Step 4.

Figure 5-9 Option to Customize CoreDNS by Passing in a

Custom ConfigMap

In the Options drop-down, choose Customize

CoreDNS ConfigMap.

In the value section, provide the value true.

With the CoreDNS add-on customized, you can

provide your own default ConfigMap named coredns. During

upgrades, OKE will not replace this customized

configuration.

Configuring Node Local DNS Cache

Typically, pods that run with the dnsPolicy: ClusterFirst

perform DNS queries using the kube-dns service. The service

might be running on another node, and this can introduce

latency for DNS lookups. The kube-dns service’s clusterIP is

translated to the DNS server endpoint using IP tables rules.

This can involve connection tracking, and when there are a

lot of UDP DNS lookups, the conntrack table sometimes can

fill up (usually because UDP entries have to time out in the

conntrack table, unlike with TCP). To avoid these issues and

improve performance, NodeLocal DNSCache runs a DNS

caching agent on cluster nodes as a DaemonSet. Pods reach

out to the DNS caching agent running on the same node

always (because it is a DaemonSet) and thus can avoid

iptables DNAT rules and connection tracking. If the local

cache experiences a cache miss, it still queries kube-dns;

however, the number of these queries that have to go

through iptables rules DNAT and conntrack is significantly

reduced.

Note

CoreDNS also runs its service under the name kube-dns

to ensure compatibility with applications and systems

that rely on that common name without having a

dependency on the DNS server implementation.

The steps to set up the NodeLocal DNS cache are

described in Kubernetes documentation1; however, this

process involves setting a kubelet flag named --cluster-dns

to override the default. To add this kubelet flag in OKE, you

can use the Custom Cloud-Init feature described in Chapter

4, “Understanding Container Engine for Kubernetes,” which

allows you to pass in these kubelet flags. Consider the

following example cloud-init script:

Click here to view code image

#!/bin/bash

curl --fail -H "Authorization: Bearer Oracle" -L0 http://169.254.1

 instance/metadata/oke_init_script | base64 --decode >/var/run/ok

bash /var/run/oke-init.sh --cluster-dns "CLUSTER_DNS"

This simple script does not actually modify the cloud-init

script itself. Instead, it downloads the default startup script

and runs it with the --cluster-dns flag. The value of CLUSTER_DNS

should be set to something that does not collide with

anything else on the cluster. For this reason, it is

recommended that you use an address in the link local

range of 169.254.0.0/16, such as 169.254.0.10.

Configuring ExternalDNS

When building public applications and services, you often

expose your application using a Kubernetes service of type

load balancer. A public load balancer is allocated a public IP

address as well, but you then need to update the DNS

entries for your application so that the domain name, such

as https://api.my-app.com, can now point at your newly created

load balancer’s IP address, making the application available

over it. ExternalDNS is an add-on to Kubernetes that can

create these DNS records for services in ExternalDNS

providers, including OCI DNS. It eliminates the manual work

of setting up DNS records in your DNS provider and makes

Kubernetes services seamlessly discoverable. Note that

ExternalDNS is not a DNS server such as CoreDNS. It does

not perform the functions of DNS; instead, it automates the

task of creating and updating DNS configuration in an

ExternalDNS provider. The ExternalDNS provider supports

OCI DNS, among several other DNS providers. The process

of setting up and configuring ExternalDNS depends on the

provider you want to use and is documented on the

project’s GitHub page.2

https://api.my-app.com/

Cluster Add-ons

In the context of Kubernetes, the term add-ons refers to

operational tools and features used to support and extend

the functionality of Kubernetes clusters. This area includes

software essential to the proper functioning of a cluster,

such as CoreDNS, kube-proxy, and a container network

interface (CNI) such as Flannel or Oracle Cloud

Infrastructure (OCI) native pod networking. It also includes a

growing portfolio of optional add-on software used to extend

core Kubernetes functionality and improve cluster

manageability and performance, such as the Kubernetes

Dashboard, Oracle Database Operator, and WebLogic

Kubernetes Operator. In a more concrete sense, add-ons

include the software deployed to the kube-system

namespace that is present by default when you create a

cluster.

The OKE add-on feature gives you the capability to

control add-ons deployed to your clusters. You can choose

to disable or opt out of using a specific add-on altogether.

For example, you can choose to disable the OCI native pod

networking CNI and bring your own alternative CNI, such as

Calico. If you have specific compliance or audit

requirements, you can choose to pin to an add-on version

and control when to update the add-on. Alternatively, you

can choose to have Oracle fully manage your add-ons,

including enabling automatic updates.

Each add-on comes with a set of customizable options.

For example, CoreDNS, a general-purpose authoritative DNS

server commonly found in Kubernetes environments, comes

with the option to bring your own Kubernetes ConfigMap,

with a Corefile section that defines CoreDNS behavior. This

Corefile configuration includes several CoreDNS plug-ins

with different DNS functions to extend the basic

functionality. These supported customizations enable you to

tailor your add-ons to your specific use cases while still

benefitting from lifecycle management by Oracle.

Configuring Add-ons

You can configure add-ons either during the cluster creation

process or after you create your cluster. To configure add-

ons during cluster creation in the Console, click Show

Advanced Options on the first page of the custom cluster

creation flow, scroll down to the Configure Cluster Add-ons

panel, and click the add-on you want to customize. For

example, to use the optional Kubernetes dashboard add-on,

you can click on the Kubernetes dashboard add-on to open a

panel that enables you to choose whether you want to

enable or disable the add-on. Enabling the add-on deploys

the Kubernetes dashboard as a pod to your cluster. The

same panel also allows you to choose to have Oracle

automatically manage the lifecycle of the add-on, including

updating the add-on as new versions are released over time,

or to pin your add-on version and meet internal security and

compliance requirements.

Each add-on comes with several configuration options.

Some options are common to all add-ons; others are add-on

specific. In the case of the Kubernetes dashboard, you can

specify the number of replicas you want to make of the

Kubernetes dashboard pod and then use node selectors and

tolerations to control onto which nodes Kubernetes

schedules a given add-on. For the complete list of key/value

pairs used to pass on add-on specific arguments to the

cluster, consult the Oracle documentation.

After you create your clusters, you can view your

deployed add-ons by navigating to the Add-ons tab on the

Clusters Details page. Here, you can see a list of deployed

add-ons, details on whether they’re automatically updated,

the status, and the add-on version (see Figure 5-10).

Figure 5-10 Displaying a List of the Add-ons Currently

Deployed to Your Cluster

You can also configure add-ons after you create a cluster.

To do so, click Manage Add-ons. This selection opens a

panel showing all available add-ons. Clicking into an add-on

gives you the capability to update the configuration. To

apply the updates, click Save Changes. To track the

changes in real time, navigate to the Work Requests tab and

click the appropriate work request.

Not all add-ons can be deployed to all node types. For

example, the Kubernetes dashboard runs on managed

nodes but not virtual nodes.

Disabling Add-ons

Two options are available if you want to remove an add-on

from your cluster: You can remove it, which actively deletes

it from your cluster, or you can disable it, which leaves the

pods running in your cluster. If you disable an essential

cluster add-on, a warning indicates that you have taken

responsibility for deploying and configuring an alternative

add-on to provide equivalent functionality.

Observability: Prometheus and

Grafana

Prometheus and Grafana are some of the most commonly

used tools for metrics and monitoring with Kubernetes. The

kube-prometheus project offers a “batteries included”

experience to get started with Prometheus and Grafana on

Kubernetes. It is built on top of the Prometheus Operator for

Kubernetes that implements the operator pattern to

manage Prometheus deployments on Kubernetes. The

project also includes prebuilt Grafana dashboards and

Prometheus rules to create an end-to-end solution for

monitoring Kubernetes clusters. This project offers a good

starting point for most Kubernetes users.

The kube-prometheus project can be deployed in two

ways: directly using the manifests provided or using the

Helm chart. Deploying from the manifest files is the

simplest way to get started, but the kube-prometheus

project uses Jsonnet to customize the manifests, if

customization is desired. If you are new to Jsonnet, the

Helm chart offers a simpler and more widely used method

to customize the manifests before deployment. In this

document, we use the Helm chart to deploy the kube-

prometheus-stack.

Monitoring Stack Components

Several CNCF projects are used in combination to create this

monitoring stack. These include the Prometheus Monitoring

system and time series database; Alertmanager, which can

deliver rule base alerts in response to events; and Grafana,

for visualizing the monitoring data and interacting with it.

The next sections look at each of these in detail.

Installing the kube-prometheus-stack

You can install the kube-prometheus-stack using Helm. The

default installation does not use persistent storage, so the

collected metrics will be lost if the pods are restarted. To

overcome this, you can customize the values.yaml passed to

the Helm chart, with added storage configuration. Create a

new file named values-oci.yaml (see Listing 5-8).

Listing 5-8 File Used to Configure Default Values for the

Prometheus Stack

Click here to view code image

cat <<EOF > values-oci.yaml

prometheus:

 prometheusSpec:

 storageSpec:

 volumeClaimTemplate:

 spec:

 storageClassName: oci-bv

 accessModes: ["ReadWriteOnce"]

 resources:

 requests:

 storage: 50Gi

EOF

Note

This is a minimal configuration of the default values,

and the charts offer a lot more configuration options.

Notably, this setup does not cover the creation of an

ingress resource for Grafana or Prometheus, so these

services will be accessed later using a port-forward. If

you want to configure a LoadBalancer or an ingress

for the components, you can customize this through

the Helm chart.

Now add the Helm repo and update the charts:

Click here to view code image

helm repo add prometheus-community https://prometheus-community.gi

 helm-charts

helm repo update

Install the chart, providing the values-oci.yaml with

overrides for the default chart values.

Click here to view code image

helm install kube-prometheus-stack \

 --namespace monitoring \

 --create-namespace \

 -f values-oci.yaml \

prometheus-community/kube-prometheus-stack

In a few moments, the Kubernetes resources are

provisioned and the monitoring stack then is operational. To

track the progress of the deployment, use the following

command and ensure that all resources are ready:

Click here to view code image

kubectl get statefulsets,deploy,svc,po -n monitoring

Note

You might have to run this command repeatedly, or

you could prepend the command with watch -n5 to

execute the command every 5 seconds until all

resources are ready. This requires you to have the

watch utility installed.

When all resources are ready, you can get the default

password for the Grafana UI from the Kubernetes secret that

was created during the deployment:

Click here to view code image

kubectl get secret kube-prometheus-stack-grafana -o jsonpath="{.da

 password}" -n monitoring | base64 --decode;echo

To log into the Grafana UI, you need to expose the service

for Grafana. You can use a port-forward for this. The service

that is created for Grafana is listening on port 80, by

default. To create a port-forward, you can use the following

command, which forwards port 3000 on the host to the

service’s port 80:

Click here to view code image

kubectl --namespace monitoring port-forward svc/kube-prometheus-st

 3000:80

You can now access the Grafana UI at

http://localhost:3000.

The kube-prometheus-stack [https://github.com/prometheus-

community/helm-charts/tree/main/charts/kube-prometheus-stack#kube-

prometheus-stack] comes bundled with a set of dashboards.

These dashboards provide commonly used metrics and

serve as examples of creating your own dashboards.

The bundled dashboards are grouped into the General

folder. You can navigate to the list of dashboards through

https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack#kube-prometheus-stack

Dashboards > Browse > General, as shown in Figure 5-

11.

Figure 5-11 Set of Default Dashboards Available

Through Grafana

From here, clicking any of the dashboards opens it and

displays the metrics, as illustrated in Figure 5-12. Most

dashboards are parametrized, meaning that you can specify

the scope of the data displayed by narrowing the data to a

specific cluster, namespace, and even resources within a

namespace.

Figure 5-12 Example Grafana Dashboard Monitoring

Pod Bandwidth

Operators and OCI Service Operator

for Kubernetes

Operators in Kubernetes are a way to package, run, and

manage the entire lifecycle of a Kubernetes-native

application, including actions such as upgrades. Any

application that is built to rely on and take advantage of the

Kubernetes features and tools for its operation and

management can be called a Kubernetes-native application.

By itself, Kubernetes provides many features and

capabilities to manage applications as pods, make them

resilient to failures, and scale them up or down, based on

need. However it also typically relies on the assumption that

pods are arbitrarily replaceable. This model works well for

stateless applications, and modern distributed application

design practices promote this approach of preferring

stateless services that inherently have properties such as

better scalability. However, most applications require you to

manage state; this state can be pushed down and

consolidated further down the stack, but this still requires a

workload-specific approach for handling replication of the

state and for managing failover scenarios. For instance, how

a sharded database is managed differs from how MySQL is

managed, and Kubernetes would not be expected to know

these differences. Similarly, some software components,

such as a distributed cache, often have their own notion of

what a “cluster” means, how to join and maintain

membership in the cluster, and elect a leader among

members of those specific components. Complex software

systems can also have dependencies among their

components, startup ordering requirements, specialized

initialization and termination handling across dependent

components, and more.

When the requirements of specialized stateful workloads

go beyond the level of capabilities that Kubernetes offers as

a general-purpose platform for all types of workloads, you

need a way to manage that in a Kubernetes environment.

When these applications operate outside Kubernetes, they

often require the help of human actors to perform the

required orchestration and to effectively operate the stack.

If you move away from these manual operations and apply

modern principles such as building software to automate

the management of systems to this problem of managing

complex and customized workflows for stateful applications

in Kubernetes, you approach the notion of operators. For

example, the Oracle database operator for Kubernetes

knows the details of how to manage multiple types of

databases, such as a sharded database on Kubernetes. In

addition to making the process of setting up the workload

easier, an operator also continuously monitors the workload

and performs actions such as routine upgrades, data

backups, and failover. Operators and the operator

framework make use of the standard Kubernetes extension

mechanisms. This means that operators work with the

existing tooling for Kubernetes. Operators bring a custom

resource definition (CRD) and the operator code that

monitors for changes to the CRD and takes appropriate

action.

Although operators make it easy to manage complex

applications on top of Kubernetes, writing an operator can

be challenging. The Operator SDK is a framework that uses

the Kubernetes controller-runtime library to make writing

operators easier. The Operator SDK provides high-level APIs

and tools such as the operator-sdk CLI to make it easier to

develop and work with operators.

Another component of the operator framework is the

Operator Lifecycle Manager (OLM). The OLM provides an

easy way for users to manage operators themselves. The

process of installing, upgrading, and keeping operators up-

to-date is made easier by using the OLM. For those

developing operators, the OLM offers a model to package

operators with declarative dependencies and offers

discoverability for operators.

Getting Started with Operators on

OKE

To install operators and work with them, the first step is to

install the operator framework and tooling. The installation

for the operator framework is documented in the official

Operator Framework page.3 The following command

showcases the installation on macOS:

Click here to view code image

brew install operator-sdk

This installs the operator-sdk CLI tool, which offers a

streamlined way to install the OLM. The OLM is installed into

a target Kubernetes cluster, such as an OKE cluster:

Click here to view code image

$ operator-sdk olm install --version 0.20.0

...

...

INFO[0079] Successfully installed OLM version "latest"

This installs the OLM and its required components into

your cluster. It also creates a dedicated namespace named

olm for these components. When OLM is installed on the

cluster, you can use it to install and manage community

operators. To list the operators available, use the following

command:

Click here to view code image

kubectl get packagemanifest -n olm

Operators for OCI, Oracle Database,

and Oracle WebLogic

Oracle offers several operators that can help you manage

and operate Oracle products and services directly from your

Kubernetes cluster using familiar Kubernetes tooling. These

range from operators that help you deploy and manage a

sharded Oracle database on your Kubernetes cluster to the

OCI Service Operator for Kubernetes (OSOK), which helps

you create and manage OCI services such as the MySQL

database or Object Storage buckets. It also includes

operators that can manage WebLogic server clusters

deployed on top of Kubernetes.

The OCI Service Operator for Kubernetes (OSOK)4 makes

it easy to create, manage, and connect to OCI resources

from a Kubernetes environment. OSOK supports the

following services at the time of writing:

Autonomous Database Service

Oracle Streaming Service

MySQL DB System Service

Service Mesh Service

The operator enables you to manage these services as if

they were part of your application. When the operator is

installed,5 it sets up the custom resources that represent

these resources in OCI. The operator also installs the

controllers that react to these resource definitions by

invoking the OCI APIs on your behalf to manage the service.

This effectively allows you to manage OCI services using

Kubernetes tooling and a Kubernetes resource definition in

YAML. Consider the example in Listing 5-9.

Listing 5-9 Managing OCI Services

Click here to view code image

apiVersion: oci.oracle.com/v1beta1

kind: MySqlDbSystem

metadata:

 name: mysql_db

spec:

 compartmentId: ...compartment.ocid...

 displayName: ApplicationDatabase

Step 1.

 shapeName: MySQL.VM.Standard.E4.8.128GB

 subnetId: ...subnet...

 configuration:

 id: MySQL.VM.Standard.E4.8.128GB.HA

 availabilityDomain: ...avaiability.domain...

 adminUsername:

 secret:

 secretName: ...kubernetes.secret...

 adminPassword:

 secret:

 secretName: ...kubernetes.secret...

The manifest represents an object of kind: MySqlDbSystem,

which is not a standard Kubernetes object, but a custom

resource that is managed by the OSOK operator. When this

manifest is deployed alongside the standard Kubernetes

pods and services that make up an application, you are

effectively creating the application database in OCI. The

standard Kubernetes controllers take on the task of creating

the pods for the application; the controller that the OSOK

operator installed knows how to interpret the resource

definition for the MySqlDbSystem and make the appropriate

calls to OCI to create this database instance of OCI if it does

not exist.

Another operator that is available from Oracle is the

Oracle Database Operator. The Oracle Database Operator

supports multiple database deployment models that you

can directly manage from your Kubernetes cluster. These

offer a wide range of configuration options from dedicated

autonomous databases on the OCI infrastructure to

multitenant databases and containerized sharded

databases within the cluster.

The operator itself can be installed by following the

documentation, or you can enable it as an add-on for your

cluster. To install the operator through OKE add-ons, follow

these steps:

Navigate to the add-ons section for the cluster.

Step 3.

Step 4.

Step 2.

Step 5.

Select Oracle Database Operator.

Select a version or choose to keep the operator

automatically updated.

Select the check box to enable the operator add-

on.

Save your changes.

Figure 5-13 shows configuring the database

operator as an add-on.

Figure 5-13 Oracle Database Operator as a Cluster Add-

on

As with any operator, you can use the CRDs that are

enabled to describe the database and configuration you

need; the operator then can create and help you operate

the database. Listing 5-10 showcases the CRD for an Oracle

sharded database.

Listing 5-10 CRD for an Oracle Sharded Database

Click here to view code image

apiVersion: database.oracle.com/v1alpha1

kind: ShardingDatabase

metadata:

 name: shardingdatabase-sample

 namespace: shns

spec:

 shard:

 - name: shard1

 storageSizeInGb: 50

 - name: shard2

 storageSizeInGb: 50

 catalog:

 - name: catalog

 storageSizeInGb: 50

 ...TRUNCATED ...

Oracle sharding distributes segments of a data set across

many databases (shards), which can be distributed across

multiple systems or locations. When combined together, the

individual shards make up a single logical database. This

greatly improves the scalability of the database while still

maintaining Oracle database features, such as powerful SQL

and strong consistency guarantees. The Sharding Database

controller that is installed to your cluster with the Oracle

Database Operator deploys Oracle sharding topology as a

stateful set when it encounters a CRD such as the one

shown in Listing 5-10. The Sharding Database controller

also manages the typical lifecycle of Oracle sharding

topology in the Kubernetes cluster.

Additionally, Oracle offers a WebLogic Kubernetes

Operator that can be used to create and manage WebLogic

clusters and applications on Kubernetes. The WebLogic

Kubernetes Operator is highly flexible and can be configured

in a multitude of ways. These include the capability to

configure WebLogic domains as Kubernetes resources (using

CRDs), manage multiple WebLogic domains across

namespaces, scale domains by adding or removing

managed servers, integrate the operations with

HorizontalPodAutoscaler, and more. Consider the partial

example in Listing 5-11.

Listing 5-11 Manifest Used to Create the WebLogic

Kubernetes Operator

Click here to view code image

apiVersion: "weblogic.oracle/v1"

kind: Cluster

metadata:

 name: sample-domain1-cluster-1

 namespace: sample-domain1-ns

 labels:

 weblogic.domainUID: sample-domain1

spec:

 replicas: 2

 clusterName: cluster-1

apiVersion: "weblogic.oracle/v9"

kind: Domain

metadata:

 name: sample-domain1

 namespace: sample-domain1-ns

 labels:

 weblogic.domainUID: sample-domain1

spec:

 configuration:

 model:

 auxiliaryImages:

 - image: "phx.ocir.io/weblogick8s/quick-start-aux-image:v1"

 domainHomeSourceType: FromModel

 domainHome: /u01/domains/sample-domain1

 image: "container-registry.oracle.com/middleware/weblogic:12.2.1

 serverStartPolicy: IfNeeded

 serverPod:

 resources:

 requests:

 cpu: "250m"

 memory: "768Mi"

 replicas: 1

 clusters:

 - name: sample-domain1-cluster-1

...TRUNCATED ...

In the partial example in Listing 5-11, the CRDs describe

both a Cluster resource and a Domain resource. The Domain

resource is a way to provide the WebLogic domain

configuration, a WebLogic install, and other components

and configurations to run the domain. A Cluster resource

models a WebLogic cluster within a given WebLogic domain.

Because WebLogic has its own notion of what a “cluster” is

and how cluster operations such as scaling function, the

Cluster resource bridges Kubernetes to the WebLogic notion

of a cluster. This makes operations such as scaling a

WebLogic cluster possible through Kubernetes tooling and

integrates it with typical Kubernetes scaling processes such

as the HorizontalPodAutoscaler. The Domain resource and

Cluster resource do not replace the traditional WebLogic

configuration files; instead, they cooperate with those files

to describe the Kubernetes artifacts of the corresponding

domain.

Troubleshooting Nodes with Node

Doctor

As with most software systems, you will occasionally

encounter issues with your cluster that you need to

troubleshoot. With a managed Kubernetes service such as

OKE, the control plane is fully managed by the cloud

provider and the data plane is managed by the user. This

means that most issues that require you to gather data and

analyze will be related to the data plane. These issues can

range from infrastructure and OS-level issues with the data

plane nodes, to problems with components such as the

kubelet, the CNI, or other system pods and DaemonSets

that run on the data plane. Troubleshooting these

components can usually be done with some common

diagnostic commands; however, a deep knowledge of

Kubernetes is usually required to do this. When using OKE,

users have access to additional tooling provided by OCI,

called Node Doctor. Node Doctor helps users gather

diagnostic data, provides suggestions, and troubleshoots

data plane–related issues without requiring users to have a

deep knowledge of Kubernetes- or Linux-based systems.

The tool can also create support bundles that users can

provide to Oracle support, avoiding time-consuming back-

and-forth communications as support engineers ask for

diagnostic data.

Node Doctor is a script that is preinstalled on the data

plane nodes for OKE clusters; it is available in the location

/usr/local/bin/node-doctor.sh. You can run Node Doctor by

executing the script after logging into the data plane node

using SSH, or you can execute it using the OCI Run-

Command feature. The OCI console also includes a useful

step-by-step guide that walks you through the process,

regardless of how you want to run the Node Doctor tool. The

guide can be accessed by navigating to the Node Pool

Details page and then clicking the Troubleshoot Nodes

button. Figure 5-14 shows the guide that provides you with

specific instructions for the selected cluster and node pool.

Figure 5-14 Steps to Run Node Doctor Available from

the Console

When you run Node Doctor, you can choose to use the --

check flag to get a health report for the node, with a

summary of the checks performed and the issues identified,

along with suggested actions to resolve the issues (see

Listing 5-12).

Listing 5-12 Getting a Health Report for a Node

Click here to view code image

$ sudo /usr/local/bin/node-doctor.sh --check

INFO: /usr/local/bin/oke node doctor tar gz already exists and MD5

INFO: /usr/local/bin/oke-node-doctor.tar.gz already exists and MD5

pip requires Python '>=3.7' but the running Python is 3.6.8

Running node doctor...

PASS node health...

PASS DNS lookup...

PASS kubelet cert rotation flag...

PASS kubelet logs...

PASS iscsi health...

PASS service health...

PASS instance metadata...

WARN cloud-init version...

SKIP cloud-init status...

SKIP chef onboard status...

PASS image and instance info...

Command line error: one of the following arguments is required: --

 --dump --dump-variables --set-enabled --enable --set-disabled --

SKIP yum status...

PASS flannel status...

PASS coredns status...

PASS proxymux-client status...

PASS kube-proxy status...

PASS pods in ImagePullBackOff...

PASS pods failed mounting volume...

FAIL proxymux client registration status...

PASS runc version...

PASS pod usage...

PASS br_netfilter module availability...

NODE DOCTOR REPORT

17/19 checks passed

2 Signal(s) generated

Signal 1: CLOUD_INIT_CUSTOMIZED

Description:

Instance user_data is different from OKE native cloud init

Signal 2: PROXYMUX_CLIENT_REGISTRATION_FAILURE

Description:

Proxymux client is not able to register with proxymux server

Resolution 1: CHECK_VCN_K8S_ENDPOINT

Description: Network related failures have been detected Please v

Description: Network related failures have been detected. Please v

 network settings. Most likely, port 12250 in the security list o

 endpoint VCN is misconfigured.

Useful links: ['https://docs.oracle.com/en-us/iaas/Content/ContEng

 contengnetworkconfig.htm', 'https://docs.oracle.com/en-us/iaas/C

 Concepts/contengnetworkconfigexample.htm']

Related Signals:

PROXYMUX_CLIENT_REGISTRATION_FAILURE: Proxymux client is not able

 proxymux server

Node doctor scan is complete. Report has been saved at /var/log/ok

 oke-node-doctor-2092328.log

Alternatively, if you are working with support, you can

use the --generate flag to generate a TAR file that collects

multiple log files, diagnostic command output, and other

data that helps you or the support team quickly analyze the

state of the node from multiple fronts. Contained in the data

collected as a bundle is information and output from

diagnostic commands, including VNIC details, iptables rules,

and storage information. The tools try to limit the data

collected, with a goal to keep the bundle’s size less than

10MB; however, this might mean that log files with critical

data must be truncated. To prevent this, you can combine

the --generate flag with the --large flag to avoid a size goal

for the generated bundle or combine the --since and --until

flags to restrict the data collected within a time boundary.

Listing 5-13 shows Node Doctor usage for generating a

support bundle and some of the logs and diagnostics that

are included in the bundle.

Listing 5-13 Generating a Support Bundle Using Node

Doctor

Click here to view code image

[opc@oke-c4ttjqph3ga-ng23fijlpfa-ssw6zpcbyua-5 ~]$ sudo /usr/local

 doctor.sh --generate --large

--- TRUNCATED ---

Generating node doctor bundle...

Generated /tmp/oke-support-bundle-2023-04-19T19-17-08.tar

[opc@oke-c4ttjqph3ga-ng23fijlpfa-ssw6zpcbyua-5 ~]$ tar -tf /tmp/ok

 bundle-2023-04-19T19-17-08.tar

--- TRUNCATED ---

home/opc/TEMP_DIR/tmpypxxadi7/system/iptables_filter

home/opc/TEMP_DIR/tmpypxxadi7/system/iptables_nat

home/opc/TEMP_DIR/tmpypxxadi7/system/crictl_pods

home/opc/TEMP_DIR/tmpypxxadi7/system/crictl_images

home/opc/TEMP_DIR/tmpypxxadi7/logs/

home/opc/TEMP_DIR/tmpypxxadi7/logs/kubelet.gz

home/opc/TEMP_DIR/tmpypxxadi7/logs/containers/kube-flannel-ds-zb9z

 install-cni.log.gz

home/opc/TEMP_DIR/tmpypxxadi7/logs/containers/proxymux-client-dgbc

 proxymux-client.log.gz

home/opc/TEMP_DIR/tmpypxxadi7/logs/containers/csi-oci-node-sncjp_k

 node-driver.log.gz

--- TRUNCATED ---

Configuring SR-IOV Interfaces for

Pods on OKE Using Multus

When highly network-oriented workloads require setting up

secondary network interfaces within pods, you can use a

meta CNI such as Multus6 to achieve this. The secondary

network interfaces that are usually attached in these cases

have specialized networking capabilities or properties, such

as single root IO virtualization (SR-IOV).

SR-IOV is a specification that allows a single PCIe device

to appear to be multiple separate physical PCIe devices. SR-

IOV works by introducing the idea of physical functions (PFs)

and virtual functions (VFs). A PF is used by the host and

usually represents a single NIC port. VF is a lightweight

version of that PF. With appropriate support, SR-IOV

presents a way for the physical hardware (such as a

SmartNIC) to present itself as several distinct (network

interface) devices. With containers, you can then move one

of these interfaces (a VF) from the host into the network

namespace for a container or a pod so that the container

can now directly access the interface. The advantage this

offers is that you get none of the overhead with virt-io and

you get native device performance.

Significant differences exist between how the interfaces

are created and managed when using bare metal nodes

(you have full control over the hardware) and VM-based

nodes (a hypervisor abstracts your access to the underlying

hardware and you do not have as much control over it).

Specifically, when using VMs, you do not typically have

access to the PF. In both cases, however, Multus is used to

provide additional network interfaces to pods. The sections

that follow look at how these secondary network interfaces

are created and examine the different plug-ins used to

manage them.

Using Bare Metal Nodes

When running on bare metal nodes, you can leverage the

SR-IOV CNI plug-in to manage SR-IOV virtual functions as

resources that can be allocated on a node and use the

Multus meta CNI to add network interfaces to pods. The

approach has several layers and components. At its crux, a

Kubernetes device plug-in manages a set of virtual functions

and publishes it as an allocatable resource on the node.

When a pod requests such a resource, the pod can be

assigned to a node where the resource is available and an

SR-IOV CNI can plumb the virtual function into the pod’s

network namespace. A CNI meta plug-in such as Multus

handles multiple network attachments to the pod so that

the pod can communicate over both the SR-IOV and the

overlay networks.

You first set up a number of VFs on the SR-IOV-capable

smartNICs, which then present themselves as individual

NICs. You then configure these VFs with MAC addresses that

OCI recognizes. These VFs are created outside Multus,

either manually (as described in this tutorial) or using a

script that can be invoked at node creation time. At this

point, you have a pool of VFs, each identified by the host as

a separate NIC, and an OCI MAC address. The Kubernetes

network plumbing working group maintains a special-

purpose network device plug-in that discovers and

publishes VFs as allocatable node resources. The SR-IOV CNI

(also from the Kubernetes network plumbing working group)

works alongside the device plug-in and manages the

assignment of these virtual functions to the pod based on

the pod lifecycle.

Now you have one or more nodes with a pool of VFs that

are recognized and managed by the SR-IOV device plug-in

as allocatable node resources. These can be requested by

pods. The SR-IOV CNI plumbs (moves) the VF into the pod’s

network namespace upon pod creation and releases the VF

(moves it back to the root namespace) upon pod deletion.

This makes the VF available to be allocated for another pod.

A meta plug-in such as Multus can provide the VF

information to the CNI and manage multiple network

attachments on the pod. Figure 5-15 illustrates a pod with

three network interfaces attached, with the first interface

eth0 being used for liveness and readiness probes, as well

as kubelet and Kubernetes API server communications. The

two other interfaces are connected to two separate

networks, and the workload is assumed to be able to make

use of these interfaces to communicate with them

individually.

Figure 5-15 Pod with Multiple Network Interfaces

Providing Connectivity to Multiple Networks

The first task is to set up the bare metal hosts by creating

the VFs on the PCIe device. This can be done by setting the

number of desired VFs in

/sys/class/net/${PHYSICAL_DEVICE}/device/sriov_numvfs. The

${PHYSICAL_DEVICE} can be identified by running ip addr show

and looking for the primary interface. These steps can be

condensed into a simple script, as provided in Listing 5-14.

Listing 5-14 Script to Create and Verify the VFs

Click here to view code image

Gets the physical device. Alternatively, just run 'ip addr show'

 primary iface to set $PHYSDEV

URL=http://169.254.169.254/opc/v1/vnics/

baseAddress='curl -s ${URL} | jq -r '.[0] | .privateIp''

PHYSDEV='ip -o -4 addr show | grep ${baseAddress} | awk -F: '{gsub

 \t]$/,"",$2);split($2,out,/[\t]+/);print out[1]}''

Add two VFs

echo "2" > /sys/class/net/${PHYSDEV}/device/sriov_numvfs

Verify the VFs

ip link show ${PHYSDEV}

Next, you need to assign OCI MAC addresses to the VFs.

These VFs that were just created have autogenerated MAC

addresses to begin with (or 000). For the traffic from these

VFs to be permissible on the OCI network, you need to set

MAC addresses that OCI provides. These can be generated

by creating VNIC attachments or using the API for it. From

the OCI console, create the same number of VNIC

attachments on the host as the number of VFs created.

Note the MAC addresses of each VNIC attachment. Now

these MAC addresses that are recognized by OCI can be

assigned to each of these VFs that was created earlier. This

completes the host setup. At this point, you have a bare

metal instance with multiple VFs that have OCI-generated

MAC addresses, as confirmed in Listing 5-15.

Listing 5-15 Setting the MAC Addresses and Assigning

Them to the Previously Created VFs

Click here to view code image

'''

For each MAC address from the VNIC attachments

ip link set ${PHYSDEV} vf <n= 0..numVFs> mac <MAC Address from VNI

 spoofchk off

verify all VFs have Mac addresses from OCI

ip link show ${PHYSDEV}

'''

With the host setup completed, the next step is to install

the SR-IOV CNI and device plug-in. The SR-IOV CNI enables

the configuration and use of SR-IOV VF networks from within

pods; the device plug-in discovers and advertises the SR-

IOV capable network devices on the node. This makes these

SR-IOV devices allocatable resources on the node that pods

can request, just as a pod requests CPU and memory.

This SR-IOV CNI can be installed on any Kubernetes

cluster that is running Kubernetes version 1.16 or later. The

CNI runs on the cluster as a daemon set. Because it is

common for only some nodes in the cluster to have SR-IOV,

nodes without SR-IOV devices are handled gracefully by the

device plug-in itself:

Click here to view code image

git clone https://github.com/k8snetworkplumbingwg/sriov-cni.git &&

 sriov-cni

kubectl apply -f images/k8s-v1.16/sriov-cni-daemonset.yaml && cd..

The primary purpose of the device plug-in is to discover,

advertise, and track the usage of the SR-IOV-capable

network devices on the node, so a configuration (expressed

as a ConfigMap) is required to enable it to create the device

plug-in endpoints. The configuration is specific to the NIC

hardware and identifies the devices and the drivers used. To

create this configuration, you need to know the vendor ID,

device ID, and driver used by the device. This can be done

with standard tools such as lspci. Listing 5-16 shows how to

find the vendor ID and device ID.

Listing 5-16 How to Find the Vendor and Device IDs

Click here to view code image

lspci -nn|grep Virtual

31:02.0 Ethernet controller [0200]: Broadcom Inc. and subsidiaries

 Ethernet Virtual Function [14e4:16dc]

31:02 1 Ethernet controller [0200]: Broadcom Inc and subsidiaries

31:02.1 Ethernet controller [0200]: Broadcom Inc. and subsidiaries

 Ethernet Virtual Function [14e4:16dc]

The example in Listing 5-16 shows two VFs because we

filtered the output of lspci with the keyword Virtual. lspci

reads through the sysfs entries and presents the information

in an easy-to-understand (and easy-to-parse) manner. In the

example here, 31:02.0 represents the bus number (31),

device number (02), and function (0). lspci uses libpci,

which uses the PCI identification data in

/usr/share/hwdata/pci.ids to decode information such as

vendor and device numbers; it then uses that information

here to identify the device class (0200) as an Ethernet

controller and present the vendor information (Broadcom).

The last bit of information provides the vendor ID (14e4) and

device ID (16dc). You can cross-check this with the hwdata that

lspci uses. The output shows that it is indeed an Ethernet

virtual function from the vendor:

Click here to view code image

cat /usr/share/hwdata/pci.ids|grep 16dc

 16dc NetXtreme-E Ethernet Virtual Function

With the device ID and vendor ID identified, you now

need to find the drivers used. You can do this by searching

/sys for the driver user on the PCI bus number, device

number, and function. In the example here, the PCI bus,

device, and function can be seen from the previous lspci

output: 31:02.0. Searching sysfs for this device reveals the

driver name to be bnxt_en, as shown in Listing 5-17.

Listing 5-17 How to Find the Drivers Used

Click here to view code image

filtering based on the PCIe slots.

Find /sys | grep drivers.*31:02.0|awk -F/ '{print $6}'

bnxt_en

Now you have the information to set up the configuration

for the SR-IOV device plug-in. Create a configMap; it should

be named sriovdp-config and should have a key config.json.

Listing 5-18 shows an example of how this configMap should

look.

Listing 5-18 Example configMap

Click here to view code image

cat << EOF > sriovdp-config.yaml

apiVersion: v1

kind: ConfigMap

metadata:

 name: sriovdp-config

 namespace: kube-system

data:

 config.json: |

 {

 "resourceList": [

 {

 "resourceName": "netxtreme_sriov_rdma",

 "resourcePrefix": "broadcom.com",

 "selectors": {

 "vendors": ["14e4"],

 "devices": ["16dc"],

 "drivers": ["bnxt_en"],

 "isRdma": false

 }

 }

]

 }

EOF

kubectl create -f sriovdp-config.yaml

This configuration lets the device plug-in look for PCIe

devices that match the selectors in the configuration and

advertise that the node has this type of resource. Pods then

can request these by the resourceName in the configuration. An

example of how a pod requests these resources is

presented later in the chapter, in Listing 5-21.

With the config map created, the device plug-in can be

installed as a DaemonSet:

Click here to view code image

git clone https://github.com/k8snetworkplumbingwg/sriov-network-de

 && cd sriov-network-device-plugin

kubectl create -f deployments/k8s-v1.16/sriovdp-daemonset.yaml &&

With the DaemonSets deployed, you can check the

container logs for troubleshooting. After a successful

deployment, the node should list the virtual functions as

allocatable resources. In this example, because you created

two VFs and configured them with resourceName:

netxtreme_sriov_rdma and resourcePrefix: broadcom.com, you see

that the node now has two of these

broadcom.com/netxtreme_sriov_rdma resources that can be

requested by pods, along with the CPU, memory, and other

resources on the node (see Listing 5-19).

Listing 5-19 Output of Running kubectl get nodes to See VFs

as Allocatable Node Resources

Click here to view code image

'''

kubectl get node <node_name> -o json | jq '.status.allocatable'

{

 "broadcom.com/netxtreme_sriov_rdma": "2",

 "cpu": "128",

 "ephemeral-storage": "37070025462",

 "hugepages-1Gi": "0",

 "hugepages-2Mi": "0",

 "memory": "527632840Ki",

 "pods": "110"

}

'''

With the SR-IOV CNI and device plug-in set up, pods can

now request these resources. However, you still need a way

to plumb multiple network interfaces to a pod. This can be

done by Multus, so the next task is to install Multus.

Multus is a meta plug-in that can chain multiple CNI plug-

ins such as the SR-IOV CNI plug-in and the Flannel CNI plug-

in, to support “multi-homed” pods or pods with multiple

network interfaces. Installing Multus is done by simply

applying the Multus DaemonSet:

Click here to view code image

git clone https://github.com/k8snetworkplumbingwg/multus-cni.git &

kubectl apply -f images/multus-daemonset.yml && cd ..

To attach additional interfaces to the pods, you need a

configuration for the interface to be attached. This is

encapsulated in the custom resource of kind:

NetworkAttachmentDefinition. This CRD is created when Multus is

installed. This configuration is essentially a CNI

configuration packaged as a custom resource. Listing 5-20

shows a NetworkAttachmentDefinition that uses the VFs created

earlier.

Listing 5-20 Example Manifest Used to Create a

NetworkAttachmentDefinition Custom Resource

Click here to view code image

cat << EOF > sriov-net1.yaml

apiVersion: k8s.cni.cncf.io/v1

kind: NetworkAttachmentDefinition

metadata:

 name: sriov-net1

 annotations:

 k8s.v1.cni.cncf.io/resourceName: broadcom.com/netxtreme_sriov_

spec:

spec:

 config: '{

 "type": "sriov",

 "cniVersion": "0.3.1",

 "name": "sriov-network",

 "ipam": {

 "type": "host-local",

 "subnet": "10.20.30.0/25",

 "routes": [{

 "dst": "0.0.0.0/0"

 }],

 "gateway": "10.20.10.1"

 }

}'

EOF

kubectl apply -f sriov-net1.yaml

Pods can now request additional interfaces using an

annotation and resource request. The resource request

helps the scheduler assign the pod based on VF availability

on nodes, and the annotation lets the meta plug-in (Multus)

know which NetworkAttachmentDefinition (CNI Config) to use.

Listing 5-21 shows an example with a test pod.

Listing 5-21 Example Manifest Used to Create Pods That

Will Be Scheduled Based on the Availability of VFs on Nodes

Click here to view code image

Create the first pod

cat << EOF | kubectl create -f -

apiVersion: v1

kind: Pod

metadata:

 name: testpod1

 annotations:

 k8s.v1.cni.cncf.io/networks: sriov-net1

spec:

 containers:

 - name: appcntr1

 image: centos/tools

 imagePullPolicy: IfNotPresent

 command: ["/bin/bash", "-c", "--"]

 args: ["while true; do sleep 300000; done;"]

 resources:

 requests:

 broadcom.com/netxtreme_sriov_rdma: '1'

 limits:

 broadcom.com/netxtreme_sriov_rdma: '1'

EOF

Create a second pod

cat << EOF | kubectl create -f -

apiVersion: v1

kind: Pod

metadata:

 name: testpod2

 annotations:

 k8s.v1.cni.cncf.io/networks: sriov-net1

spec:

 containers:

 - name: appcntr1

 image: centos/tools

 imagePullPolicy: IfNotPresent

 command: ["/bin/bash", "-c", "--"]

 args: ["while true; do sleep 300000; done;"]

 resources:

 requests:

 broadcom.com/netxtreme_sriov_rdma: '1'

 limits:

 broadcom.com/netxtreme_sriov_rdma: '1'

EOF

With two pods created, you should be able to see that

they are both running. Each pod is annotated with the

k8s.v1.cni.cncf.io/networks: sriov-net1 annotation, which tells

Multus that this pod needs to be attached to the network

whose configuration is defined in the

NetworkAttachmentDefinition named sriov-net1. Of course, this is

the CNI configuration, and it establishes the default routes

and IP address management. Additionally, the pod is

making a resource request for the resource

broadcom.com/netxtreme_sriov_rdma and is requesting a count of 1

of these resources. This effectively tells the Kubernetes

scheduler that this pod needs to be allocated to a node that

has at least one of these VFs available. When the network

attachment has been made, the device plug-in updates the

node and decrements the number of available VFs by one.

When this pod is terminated, the VF that it has been using is

released, and the device plug-in updates the node and

increments the number of available VFs by one.

After the pods have been deployed, you can check that

they both have multiple interfaces. You also can check the

communication between the pods over the SR-IOV devices,

as demonstrated in Listing 5-22.

Listing 5-22 Verifying That the Deployed Pods Have

Multiple Interfaces and Can Communicate over SR-IOV

Click here to view code image

Verify that both pods have two interfaces. An 'eth0' on the ove

'net1' which is the VF.

kubectl exec -it testpod1 -- ip addr show

kubectl exec -it testpod2 -- ip addr show

Checkout the routes

kubectl exec -it testpod1 -- route -n

kubectl exec -it testpod2 -- route -n

test communication

kubectl exec -it testpod1 -- ping <IP for net1 on pod2>

Using Virtual Machine Nodes

Significant differences exist in how the interfaces are

created and managed between bare metal and virtual

machines. On a VM, you do not have access to the physical

functions (PFs) on a PCIe device, so you must instead use

the cloud provider APIs to interact with the PCIe device in

order to create and manage the SR-IOV virtual functions

(VFs) on them.

On VMs, you still use Multus to provide multiple

interfaces to a pod; however, the SR-IOV CNI and the

associated device plug-in are not used. This is because the

SR-IOV CNI requires direct access to the underlying

hardware. To overcome this challenge, you can use the OCI

networking APIs for VNICs, to create a VF on the PF as in the

bare metal scenario and give the VM direct and

unobstructed access to this VF. These VFs now can be

attached to a compute instance, including OKE nodes, as

network interfaces. These interfaces/VFs can be moved to

the network namespaces for pods, which allow the pod to

use the VF directly and exclusively as a network interface.

From the perspective of the pods, they are not able to

distinguish between the two and, in both cases, have access

to a VF that they can directly use.

To give a VM direct access to a VF, you need to launch

the VM with the VFIO network attachment mode instead of

the default paravirtualized mode. This choice is controlled

by the launch mode for the compute instance. When the

network attachment mode is set as VFIO, you can create

network attachments using the OCI APIs, which creates VFs

on the underlying PF and provides the VF directly to the VM.

The OS on the host recognizes these as network interfaces.

When the VF is available to the VM, it can be moved to the

pod namespace. In this model, the VFs are created using

OCI APIs instead of system commands in the bare-metal

scenario. Figure 5-16 shows the VFs (ens5 and ens6) being

moved into the pod namespace as net0 and net1.

Figure 5-16 A Pod with Multiple Network Interfaces—

Additional Interfaces Are Made Available to the Pod by

Moving Them from the Host’s Network Namespace to the

Pod’s Network Namespace

The first task in setting up SR-IOV-based secondary

interfaces for pods is to prepare the nodes in a manner

similar to the bare metal servers. In the case of VMs, each

node that requires access to SR-IOV interfaces must be

prepared for hardware-assisted network attachments before

it can be used by pods. This is done by editing the nodes

and updating their network attachment type.

Note

The method described here can be performed through

the OCI console, which makes it easier to

comprehend; however, this method is limited to

clusters that operate using the Flannel CNI. The goal

of updating the launch options is to essentially launch

these nodes in the hardware-assisted (SR-IOV) mode,

which creates a VF on the underlying PF and provides

that to the VM when a network attachment is made.

An alternate way to accomplish this, which also is

applicable for clusters using the OCI native CNI, is to

create a custom image based on the standard OKE

image; edit the image capabilities and set the image

to launch instances using the hardware-assisted (SR-

IOV) mode; and then use this custom image for your

node pools.

To update the nodes to use the hardware-assisted (SR-

IOV) mode, edit the instance properties of the node as

shown in Figure 5-17.

Figure 5-17 How to Edit the Properties of an Existing

Compute Instance

On the instance properties, click Show Advanced

Options to view the additional properties. On the Launch

Options tab, choose Hardware-Assisted (SR-IOV)

Networking for the networking type, as illustrated in Figure

5-18.

Figure 5-18 Updating the Networking Type of an

Instance to Use Hardware-Assisted (SR-IOV) Networking

Note

After an instance has been switched from

paravirtualized network attachment to hardware-

assisted (SR-IOV or VFIO) mode, it is no longer eligible

for live migration for infrastructure maintenance.

The update workflow prompts you to reboot the instance.

After the reboot, the instance has VFIO network

attachments. This can be verified on the console, as Figure

5-19 illustrates.

Figure 5-19 Current Launch Options for the Instance,

Including the VFIO Network Attachment

Additionally, you can verify that your instances are using

SR-IOV network attachments to connect to a node using

SSH and use lspci to list the PCI devices on the VM. You

should be able to see the underlying virtual function directly

on the VM instead of a device using a virtio driver (such as

the storage controller in Listing 5-23.

Listing 5-23 Using lspci to Verify That the Virtual Function

Is Directly Visible from the VM

Click here to view code image

 $ lspci

00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PM [Natoma]

00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Tr

00:01.1 IDE interface: Intel Corporation 82371SB PIIX3 IDE [Natoma

00:01.2 USB controller: Intel Corporation 82371SB PIIX3 USB [Natom

 (rev 01)

C00:01.3 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 0

00:02.0 VGA compatible controller: Device 1234:1111 (rev 02)

00:03.0. Ethernet controller: Mellanox Technologies MT28800 Family

 Virtual Function]

00:04.0 SCSI storage controller: Red Hat, Inc. Virtio SCSI

At this point, the node has a single VNIC attachment,

which is the primary VNIC used for all communications to

the node. Because the instance is using hardware-assisted

network attachments, the network attachment is visible to

the node as a virtual function on the underlying hardware.

For pods to have exclusive use of a virtual function (VF), you

need additional VFs on the VM. This can be provided using

the console or API to add VNIC attachments to the instance.

These VNIC attachments are VFs on the underlying PF. They

can be verified with lspci.

To add VNIC attachments, from the instance page, choose

Attached VNICs and click Create VNIC, as shown in

Figure 5-20.

Figure 5-20 Creating a VNIC in the Console

On this page, you can configure the VNIC using the VCN

and subnet that is needed, as demonstrated in Figure 5-21.

Figure 5-21 Selecting the VCN and Subnet for Use with

Your VNIC

When this is configured, you should verify that the VNIC

can be seen on the host as a virtual function (as before) by

connecting to the node using SSH and running lspci, as

demonstrated in Figure 5-22.

Figure 5-22 Displaying the VNIC on the Host as a VF

When you add a secondary VNIC to a Linux VM instance,

a new interface (that is, an Ethernet device) is added to the

instance and automatically recognized by the OS. However,

DHCP is not active for the secondary VNIC, and you must

configure the interface with the static IP address and default

route. The next step is to configure the OS for secondary

VNICs. OCI provides documentation and a script for

configuring the OS for secondary VNICs. To configure the

secondary VNIC, download the script on the node and run it

based on the instructions provided in the OCI

documentation.

After the script for configuring the secondary VNICs has

been run, you should verify that the interface is now

connected, with its IP address and default route. To check

that this has been configured, use the command ip addr as

shown in Figure 5-23 or a similar tool like nmcli.

Figure 5-23 Verifying Whether the Interface Is Now

Connected

Optionally, it would be a good practice to verify the

routing using a ping to reach the secondary IP addresses

from each other. In Figure 5-24 and Figure 5-25, 10.0.10.238 is

the secondary IP on a second node in the cluster. This

completes the host setup for the nodes.

Figure 5-24 Verifying Connectivity Between the

Secondary VNICs

Figure 5-25 Verifying Connectivity Between the

Secondary VNICs from the Other Direction

With the host setup completed, you can now install

Multus on the cluster. The installation of Multus follows the

exact same steps as for the bare metal nodes. This is

because Multus is just software that runs on the cluster and

does not care about the node types.

With Multus installed on the cluster, you are ready to

attach multiple interfaces to pods. To do this, you need a

configuration for the interface to be attached, which is

expressed as a NetworkAttachmentDefinition just as before, for

bare metal nodes. This configuration is essentially a CNI

configuration packaged as a custom resource. When using

VMs, there is no access to the underlying hardware, and the

VM is directly given access to one or more virtual functions

on the physical NIC. The goal for the

NetworkAttachmentDefinition is to provide an SR-IOV virtual

function that has already been created for the exclusive use

of a single pod so that the pod can take advantage of the

capabilities without interference of any layers in between.

To grant a pod exclusive access to the VF, you can leverage

the host device plug-in that enables you to move the

interface from the default or the root namespace into the

pod’s namespace so that it has exclusive access to it.

The examples in Listing 5-24 show

NetworkAttachmentDefinition objects that configure the

secondary ens5 interface that was added to the nodes. The

ipam plug-in configuration determines how IP addresses are

managed for these interfaces. In this example, because you

want to use the same IP addresses that were assigned to

the secondary interfaces by OCI, you use the static ipam

configuration with the appropriate routes. ipam configuration

also supports other methods, such as host-local or dhcp, for

more flexible configurations.

Listing 5-24 Creating the Objects Used to Configure the

Secondary ens5 Interface Added to the Nodes

Click here to view code image

network attachment for the first node. Note the IPaddress assig

'ipam' configuration.

cat << EOF | kubectl create -f -

apiVersion: "k8s.cni.cncf.io/v1"

p

kind: NetworkAttachmentDefinition

metadata:

 name: sriov-vnic-1

spec:

 config: '{

 "cniVersion": "0.3.1",

 "type": "host-device",

 "device": "ens5",

 "ipam": {

 "type": "static",

 "addresses": [

 {

 "address": "10.0.10.93/24",

 "gateway": "0.0.0.0"

 }

],

 "routes": [

 { "dst": "10.0.10.0/24", "gw": "0.0.0.0" }

]

 }

 }'

EOF

network attachment for the second node. Note the IPaddress assi

'ipam' configuration.

cat << EOF | kubectl create -f -

apiVersion: "k8s.cni.cncf.io/v1"

kind: NetworkAttachmentDefinition

metadata:

 name: sriov-vnic-2

spec:

 config: '{

 "cniVersion": "0.3.1",

 "type": "host-device",

 "device": "ens5",

 "ipam": {

 "type": "static",

 "addresses": [

 {

 "address": "10.0.10.238/24",

 "gateway": "0.0.0.0"

 }

],

 "routes": [

 { "dst": "10.0.10.0/24", "gw": "0.0.0.0" }

]

 }

 }'

EOF

With Multus configured with these additional network

attachment definitions, pods can now request additional

interfaces using an annotation. The annotation lets the

meta plug-in (Multus) know what NetworkAttachmentDefinition

(CNI Config) to use to provide additional interfaces when the

pod is created.

Note

When using a static configuration like the one shown

in Listing 5-24, the pods need to have node affinity

set so that the pod is scheduled on the node where

the desired host device is available. This differs from

the approach when using bare metal nodes: In that

case, you can use the SR-IOV device plug-in that

keeps track of the VFs that are available on the node.

Listing 5-25 shows an example with a test pod.

Listing 5-25 Creating a Test Pod That Requests Additional

Interfaces

Click here to view code image

Create the first pod

cat << EOF | kubectl create -f -

apiVersion: v1

kind: Pod

metadata:

 name: testpod1

 annotations:

 k8s.v1.cni.cncf.io/networks: sriov-vnic-1

spec:

 containers:

 - name: appcntr1

 image: centos/tools

 imagePullPolicy: IfNotPresent

 command: ["/bin/bash", "-c", "--"]

 args: ["while true; do sleep 300000; done;"]

EOF

Create a second pod

cat << EOF | kubectl create -f -

apiVersion: v1

kind: Pod

metadata:

 name: testpod2

 annotations:

 k8s.v1.cni.cncf.io/networks: sriov-vnic-2

spec:

 containers:

 - name: appcntr1

 image: centos/tools

 imagePullPolicy: IfNotPresent

 command: ["/bin/bash", "-c", "--"]

 args: ["while true; do sleep 300000; done;"]

EOF

With two pods created and in the running state, you

should be able to see that additional network interfaces

were created during the creation of the pods. Multus

provides the eth0 interface that is backed by the default CNI

(Flannel, in this example) and an additional net1 interface

that is the SR-IOV virtual function. You can describe the pods

and observe the Events section of the output to see the

various events, including the interfaces attached to the pod

(see Figure 5-26).

Figure 5-26 Events Associated with Creating Additional

Network Interfaces When the Pods Were Started

After the pods have started, you can perform a quick test

(see Listing 5-26) to verify that the pods have multiple

network interfaces attached to them.

Listing 5-26 Verifying That the Pods Have Multiple Network

Interfaces Attached to Them

Click here to view code image

Verify that both pods have two interfaces. An 'eth0' on the ove

'net1' which is the VF, along with the IP address for the secon

kubectl exec -it testpod1 -- ip addr show

kubectl exec -it testpod2 -- ip addr show

The output should be similar to Figure 5-27 and Figure 5-

28.

Figure 5-27 Output for the First Pod of the Test to Verify

That Pods Have Multiple Network Interfaces Attached to

Them

Figure 5-28 Output for the Second Pod of the Test to

Verify That Pods Have Multiple Network Interfaces

Attached to Them

After you have verified that the pods have the SR-IOV

interfaces attached to them in addition to the primary

interface, you can verify the communication between the

two pods over these secondary (SR-IOV) interfaces using

the commands in Listing 5-27.

Listing 5-27 Testing Connectivity Between the Two Pods

over the Secondary Interfaces

Click here to view code image

test communication

kubectl exec -it testpod1 -- ping -I net1 <ip address for seconda

 other pod/node>

kubectl exec -it testpod2 -- ping -I net1 <ip address for seconda

 other pod/node>

The output should be similar to Figure 5-29 and Figure 5-

30.

Figure 5-29 Output of the Connectivity Test for the First

Pod

Figure 5-30 Output of the Connectivity Test for the

Second Pod

Optionally, you can validate that the pods are routable

using their network attachments by trying to reach them

from the VMs or any other source within the VCN using the

commands in Listing 5-28.

Listing 5-28 Verifying Whether the Pods Are Routable from

Another Source Within the VCN, Such as a VM

Click here to view code image

Test that the pod is routable from outside Kubernetes. This is

 node1.

ping 10.0.10.238

similarly, from node 2

ping 10.0.10.93

The output should resemble Figure 5-31 and Figure 5-32.

Figure 5-31 Output of the Routability Test for the First

Pod

Figure 5-32 Output of the Routability Test for the

Second Pod

Summary

This chapter examined what it is like to own and operate a

Kubernetes cluster with Container Engine for Kubernetes.

The chapter started with the most common and most

frequent task that Kubernetes operators perform: upgrades.

You examined upgrades for your control plane and looked at

several strategies for upgrading your data plane or nodes.

Then you delved into strategies for scaling a cluster to meet

the demands of workloads—after all, workloads and their

characteristics change. The chapter discussed various

autoscaling mechanisms, including the

HorizontalPodAutoscaler (HPA), the Vertical Pod Autoscaler

(VPA,) and the Kubernetes Cluster Autoscaler, which scales

the cluster infrastructure. You also looked at some

autoscaler best practices and the interactions between the

HPA and the Cluster Autoscaler, which are commonly used

together to orchestrate and automate cluster scaling

operations and to optimize cost. Additionally, you examined

other day 2 operational concerns, such as service account

authentication, client token generation, and DNS

configuration both within the cluster and using ExternalDNS.

The chapter moved on to look at extending cluster

functionality with cluster add-ons and did a deep dive on

setting up a monitoring stack based on Prometheus and

Grafana. You also looked at operators for Kubernetes,

including the operators for OCI, Oracle Database, and

Oracle WebLogic. A critical aspect of managing your own

cluster is troubleshooting it when you encounter issues. You

saw how Node Doctor from OCI helps you diagnose and

troubleshoot issues with your cluster nodes.

Finally, you looked at an advanced configuration that

showcases several techniques for cluster configuration and

customization by deploying a meta CNI and additional

device plug-ins on both bare metal and virtual machine

nodes, to grant additional networking capabilities for your

pods.

References

1 Setting up a NodeLocal DNS cache:

https://kubernetes.io/docs/tasks/administer-

cluster/nodelocaldns/#configuration

https://kubernetes.io/docs/tasks/administer-cluster/nodelocaldns/#configuration

2 Setting up ExternalDNS for Oracle Cloud Infrastructure

(OCI): https://github.com/kubernetes-sigs/external-

dns/blob/master/docs/tutorials/oracle.md

3 OKE Operator Framework page:

https://sdk.operatorframework.io/docs/installation/

4 OCI Service Operator for Kubernetes (OSOK):

https://github.com/oracle/oci-service-operator

5 Installing the Operator SDK:

https://github.com/oracle/oci-service-

operator/blob/main/docs/installation.md#install-

operator-sdk

6 Multus CNI:

https://github.com/k8snetworkplumbingwg/multus-cni

https://github.com/kubernetes-sigs/external-dns/blob/master/docs/tutorials/oracle.md
https://sdk.operatorframework.io/docs/installation/
https://github.com/oracle/oci-service-operator
https://github.com/oracle/oci-service-operator/blob/main/docs/installation.md#install-operator-sdk
https://github.com/k8snetworkplumbingwg/multus-cni

6

Securing Your Workloads

and Infrastructure

“Kubernetes has become the de-facto standard for

managing containerized applications. It is used by

many organizations to deploy, scale, and manage

their applications in a distributed environment.

However, with the rise of Kubernetes, there has been

an increased focus on Kubernetes security. Security

is essential to any infrastructure, and Kubernetes is

no exception.”

—Anonymous

Securing workloads on Kubernetes and the connected

infrastructure is one of the most important—and, at the

same time, one of the most forgotten and procrastinated—

steps in deployments. The goal of this chapter is to highlight

the various security aspects of running Kubernetes in

production. These sections look at the various facets of

security related to Kubernetes and dive deeper into some of

the more common tools and practices of securing workloads

and infrastructure when using Kubernetes.

Kubernetes Security Challenges

A Kubernetes cluster is a complex system made up of a

large number of moving parts, ranging from the core

Kubernetes components and controllers to third-party and

open-source software add-ons. Moreover, Kubernetes is a

distributed system that uses networks to communicate and

orchestrate work. It also relies on more fundamental

building blocks, such as a container runtime and operating

system features. This means that the security challenges of

running Kubernetes are distributed across several strata:

Access control: Kubernetes provides several access

control mechanisms, such as role-based access control

(RBAC) and network policies, to control access to the

Kubernetes application programming interface (API) and

resources. Misconfigurations or incorrect use of these

mechanisms can lead to unauthorized access.

Network security: Kubernetes is designed to run

containerized applications in a networked environment;

however, this introduces several challenges, such as

handling network segmentation, securing the network,

and managing network policies.

Container security: Kubernetes uses containers to run

applications, which means that the security of the

containers is critical. Vulnerabilities in the containers

can be exploited to gain unauthorized access to the

Kubernetes environment.

Supply chain security: The container image supply

chain involves several parties, including developers,

maintainers, and third-party software vendors. Any of

these parties can introduce vulnerabilities into the

container images, which can then be exploited to gain

unauthorized access.

Concepts of Kubernetes Security

With the expansive nature of Kubernetes security, it is often

easier to think about security pillars for your Kubernetes

cluster instead of the nebulous concept of securing your

cluster as a whole. With this view you can identify and

segregate some of the primary security pillars, as follows:

Authentication: The process of verifying the identity of

a user or process. Kubernetes supports several

authentication mechanisms, such as X.509 client

certificates, static token files, bootstrap tokens, and

OpenID Connect tokens.

Network security: The process of protecting the

network and its resources from unauthorized access,

misuse, modification, and denial. Kubernetes supports

several network security mechanisms, such as network

policies and network segmentation.

Container security: The process of protecting the

container and its resources from unauthorized access,

misuse, modification, and denial. Kubernetes supports

several container security mechanisms, such as

container vulnerability scanning, image signing, and

least privilege.

Threat modeling: The process of identifying,

understanding, and mitigating the security risks to a

system or application. Threat modeling is a critical step

in the software development lifecycle.

4Cs of Kubernetes Security

The Kubernetes project promotes a layered view for cloud

native security that is complementary to the defense-in-

depth approach to security. The four layers of security,

proposed by the Kubernetes project, is the recommendation

to secure the cloud, clusters, containers, and code. In most

cases, this model cuts down on cross-team dependencies to

implement security because each layer is owned and

managed by an individual team. Furthermore, this layered

view of securing your workloads can make it easy to keep a

tight focus on the individual areas or layers. Figure 6-1

illustrates the 4Cs of Kubernetes security.

Figure 6-1 4Cs of Kubernetes Security

It is important to note that vulnerabilities at the cluster

layer can significantly affect the layers within, including the

code layer. This means that even if you try to protect your

code layer, it might still be vulnerable if there are issues

with the cluster layer.

Each component of a cluster has its own potential

security concerns, which the next section explores.

Container security relies on trusted code. By combining

container vulnerability scanning and image signing, you can

ensure that nothing has been modified, thus preventing any

malicious activity that could bypass the least privileges

required.

Numerous cloud providers exist, each with their own

security best practices and settings. Although most are

secure, it’s always a good idea to research the settings

yourself instead of relying solely on the provider’s security

measures. This is especially important if you are using a

multicloud strategy with different security configurations.

The next section covers Oracle Cloud Infrastructure

Container Engine for Kubernetes (OKE) and the supporting

infrastructure.

Securing Oracle Cloud Infrastructure

Container Engine for Kubernetes

(OKE)

Securing the cloud infrastructure for the managed

Kubernetes is the first C of the 4Cs of Kubernetes security,

and this is the first layer to secure your workloads.

Oracle Cloud Infrastructure is a security-focused cloud

provider that offers a highly secure computing environment.

It starts with off-box virtualization and is complemented by

secure defaults for all infrastructure components at every

level. This focus on security extends to the Kubernetes

clusters created by OKE. These clusters have secure

configurations with minimal access, by default, and feature

different options and configurations to accommodate

corporate policies and methodologies.

With Oracle managing the Kubernetes Control Plane, the

security implementations remain on the cloud layer,

allowing abstraction for the cluster to use standard

Kubernetes security features—the second C layer.

Private Clusters

Creating a private cluster is an option when provisioning a

new OKE cluster, making the Kubernetes API endpoint

private and accessible only from within the cluster’s virtual

cloud network (VCN). Using this option, you can have a

private cluster with no public IP address. To access

Kubernetes APIs from tools such as kubectl, you need to use

a bastion host or a connection that has access to the private

network.

The section “Creating a Cluster” in Chapter 4,

“Understanding Container Engine for Kubernetes,” covers

the creation of a private cluster using the OCI console, CLI,

and Terraform.

Using a private endpoint and private workers, you isolate

the nodes and pods from the Internet, by default, for either

managed or virtual node pools.

Other extra measures to guarantee that your cluster will

stay private include using security zones with the

Maximum-Security Recipe, which prevents any user,

including administrators, from exposing the cluster to the

Internet. In this case, if you need to create Load Balancers

that expose services to the Internet, you need to use a

subnet that is not part of the security zone or use a subnet

from a different VCN and configure the peering. Figure 6-2

illustrates the separation of resources on a private cluster.

Figure 6-2 Private Cluster Diagram

For an extra level of security for a private cluster, you can

consider limiting the images used by the deployments by

using a private registry, such as Oracle Cloud Infrastructure

Registry (OCIR), or a private repository, such as Harbor, to

ensure that only trusted images are used.

Accessing Private Clusters

Bastion hosts (also known as jump boxes) are the most

common way to access private clusters. Bastion hosts are

virtual machines that are deployed in the same VCN as the

cluster. Bastion hosts are used to access the cluster’s

Kubernetes API endpoint. Bastion hosts are not part of the

cluster and are not managed by Kubernetes. Bastion hosts

are not required to be running at all times; they can be

started and stopped as needed. To create a new bastion

host, you can use the OCI Console, OCI CLI, or OCI Terraform

Provider to create a new compute instance that is either in

the same VCN as the cluster or that has connectivity to the

cluster’s VCN.

Another option for accessing private clusters is Bastion

Service, a service that runs in the cluster and provides

access to the cluster’s Kubernetes API endpoint. Different

from the Bastion Host, the Bastion Service does not need a

compute instance to run and does not need to be in the

cluster’s VCN. As with the other resources, you can create

the Bastion Service with any OCI tool.

Another powerful tool to access private clusters is the

OCI Cloud Shell, a browser-based shell that you can use to

access OCI resources. OCI Cloud Shell is a fully managed

service that runs in the cloud and provides access to OCI

resources without the need to install and configure any

software on your local machine. After configuring the

kubeconfig file, you can change the OCI Cloud Shell network

to be the same VCN as the Cluster, selecting a subnet that

has access to the cluster’s Kubernetes API endpoint. Figure

6-3 illustrates the OCI Cloud Shell option to access a private

network.

Figure 6-3 OCI Cloud Shell Ephemeral Private Network

Setup

In some cases, you might not want to use bastion hosts

or jump boxes to access your private clusters. Instead, you

can use a VPN connection to access the cluster’s

Kubernetes API endpoint. To create a VPN connection or a

remote peering connection with access to a different cloud

or on-premises network, you need to configure the

connection according to your network topology. Figure 6-4

illustrates different options to access and maintain OKE

private clusters.

Figure 6-4 Different Access Options for OKE Private

Clusters

When deploying apps to private clusters and using tools

such as Terraform (using the Terraform Kubernetes/Helm

providers) or OCI Ansible modules, you can use the OCI

Bastion Service or OCI Cloud Shell to access the cluster’s

Kubernetes API endpoint. When using OCI Resource

Manager, you can create a private endpoint and configure

the Terraform Kubernetes Provider to use the private

endpoint.

Listing 6-1 provides an example of a Terraform

Kubernetes Provider configuration using the OCI Resource

Manager private endpoint.

Listing 6-1 OCI Resource Manager Private Endpoint

Terraform HCL Script

Click here to view code image

...

resource "oci_resourcemanager_private_endpoint" "private_kubernete

 compartment_id = local.oke_compartment_ocid

 display_name = "Private Endpoint for OKE"

 description = "Resource Manager Private Endpoint for OKE"

 vcn_id = var.vcn_id

 subnet_id = var.k8s_endpoint_subnet_id

 freeform_tags = var.cluster_tags.freeformTags

 defined_tags = var.cluster_tags.definedTags

}

Resolves the private IP of the customer's private endpoint to a

data "oci_resourcemanager_private_endpoint_reachable_ip" "private_

 endpoint" {

 private_endpoint_id = var.create_new_oke_cluster ? oci_resourc

 private_endpoint.private_kubernetes_endpoint.id : var.existent_o

 private_endpoint

 private_ip = trimsuffix(oci_containerengine_cluster.o

 endpoints.0.private_endpoint, ":6443")

}

...

provider "kubernetes" {

host = (var.cluster_endpoint_visibility == "Priv

 ("https://${data.oci_resourcemanager_private_endpoint_reachable_

 kubernetes_endpoint.ip_address}:6443") : (yamldecode(module.oke.

 ["clusters"][0]["cluster"]["server"])

cluster_ca_certificate = base64decode(yamldecode(module.oke-quicks

 ["clusters"][0]["cluster"]["certificate-authority-data"])

insecure = (var.cluster_endpoint_visibility == "Priv

 false

exec {

 api_version = "client.authentication.k8s.io/v1beta1"

 args = ["ce", "cluster", "generate-token", "--cluster-i

 yamldecode(module.oke-quickstart.kubeconfig)["users"][0]["user"]

 [4], "--region", yamldecode(module.oke-quickstart.kubeconfig)["u

 ["user"]["exec"]["args"][6]]

 command = "oci"

 }

}

Kubernetes Role-Based Access

Control (RBAC) with OCI IAM Groups

Kubernetes offers different ways to manage access to the

cluster. The most common way is to use Kubernetes RBAC, a

method of regulating access to computer or network

resources based on the roles of individual users within an

enterprise. RBAC enables you to define roles and assign

them to users or groups. You can then use these roles to

control access to Kubernetes resources. Figure 6-5 illustrates

the Kubernetes RBAC relationship.

Figure 6-5 Kubernetes RBAC

OKE natively integrates the clusters with the OCI Identity

and Access Management (IAM) service. OCI IAM provides

strong user authentication to access your clusters and gives

you authorization to use the OKE API so that you can define

cluster administrators and cluster users.

Chapter 4 covers the integration between OCI IAM and

Kubernetes RBAC in detail, including identity federation.

Following the principle of least privilege, your users can

access only the Kubernetes resources that they’re

authorized to. Kubernetes RBAC is aware of OCI user

identities and can bind Kubernetes roles to OCI users. To

streamline the configuration of Kubernetes RBAC, OKE

added support for binding Kubernetes roles to OCI IAM

groups. As a result, the Kubernetes RBAC configuration is

greatly simplified. Moreover, you can apply the Kubernetes

role definition and the binding to OCI groups across multiple

clusters.

Consider the example of a product inventory application.

This application runs in the Kubernetes namespace inventory.

An OCI group named inventory-app-admin includes OCI users

responsible for the lifecycle of the inventory application. A

Kubernetes role allows full access to the namespace

inventory. This role is bound to the OCI group inventory-app-

admin. As a result, all users in the OCI group inventory-app-admin

can create and delete any applications in the namespace

inventory, but not in any other namespaces.

Administrators can simply add or remove members to or

from groups using the Oracle Cloud Console or API.

OCI IAM Multifactor Authentication (MFA) for

Kubernetes API

The authentication of a user who makes Kubernetes API

requests through the kubectl CLI relies on an RSA public key

in PEM format (minimum 2,048 bits). Although this

authentication method is strong, you might want to add a

second factor to complete the authentication. OKE supports

OCI IAM MFA. With MFA enabled in the IAM service, when a

user connects to a cluster Kubernetes API, the RSA key is

checked, which is the first factor. The user is then prompted

to provide a second verification code from a registered MFA

device, such as a phone, as the second factor. The two

factors work together, offering an extra layer of security to

verify the user’s identity and complete the authentication

process.

Note that, to use MFA, you must have a registered MFA

device and the OCI policies to enforce the security. You also

need to update the kubeconfig file to use the MFA token. For

more information, see the OCI documentation.

Data Encryption and Key

Management Service

By default, OCI provides data encryption for all data stored

in the cloud. This includes block volumes, boot volumes, file

storage, volume backups, and other services. OKE

consumes these services transparently to Kubernetes,

including encryption at rest.

You might want to manage the encryption keys for some

use cases. For example, you can use OCI Vault, a Key

Management Service (KMS), to create, manage, and use

encryption keys to encrypt and decrypt data. You can also

use the OCI KMS service to manage the lifecycle of the

encryption keys. OCI Vault offers keys in highly available

and durable hardware security modules (HSMs) that meet

Federal Information Processing Standards (FIPS) 140-2

Security Level 3 security certification.

Using customer-managed encryption keys (CMEK) for OKE

with OCI Vault, you first need to create a vault and a key in

OCI Vault. Then you enter the OCID of the key on the OKE

cluster provisioning for each component that you want to

use with CMEK instead of Oracle-managed keys, as

illustrated in Figure 6-6.

Figure 6-6 OCI Vault Create Key Example

After creating the vault and key, you can enable them on

different parts of your Kubernetes cluster. You can reuse the

same vault/key for all resources or select a different one for

each resource. Figure 6-7 illustrates the resources where

you can use customer-managed encryption keys.

Figure 6-7 Resources That Can Use CMEK

Managing Secrets

In Kubernetes, secrets are used to securely store and

manage sensitive information. Secrets can store credentials,

API keys, tokens, and other sensitive data that applications

require for secure communication or access to external

services. Kubernetes secrets are Base64 encoded and

stored as an API resource within the cluster.

When using Container Engine for Kubernetes to create

Kubernetes clusters, you have two options for storing

application secrets:

Kubernetes secret objects that are stored and managed

inside etcd

External secrets that use the Kubernetes Secrets Store

CSI driver

Kubernetes secret objects can be stored and managed in

etcd, an open-source distributed key-value store that

Kubernetes uses for cluster coordination and state

management. In Kubernetes clusters created by Container

Engine for Kubernetes, etcd writes data to and reads data

from block storage volumes in the Oracle Cloud

Infrastructure Block Volume service. By default, Oracle

encrypts data in block volumes at rest; this includes etcd

and Kubernetes secrets. This encryption is managed by

Oracle using a master encryption key, meaning that no

action is required on your part. You can also bring your own

encryption keys through the OCI Vault service to encypt

these secrets in etcd as well.

External secrets can be securely stored and managed

through the Kubernetes Secrets Store CSI driver (secrets-

store.csi.k8s.io). This driver integrates secrets stores with

Kubernetes clusters as CSI volumes, to enable the mounting

of multiple secrets, keys, and certificates stored externally

into pods. When this driver is attached, the data in the

volume is mounted into the application container’s file

system. OCI Vault is an example of an external secrets

store. Oracle offers the open-source OCI Secrets Store CSI

Driver Provider to enable Kubernetes clusters to access

secrets in Vault. Figure 6-8 illustrates the interaction of

Kubernetes secrets with the OCI Vault using the Kubernetes

CSI.

Figure 6-8 Kubernetes Secrets Connecting to the OCI

Vault Using CSI

In this model, the Kubernetes Secrets Store CSI Driver

Provider is deployed to the Kubernetes cluster as a DaemonSet.

The DaemonSet ensures that a CSI driver pod is running on

each node in the cluster. The Kubernetes Secrets Store CSI

Driver Provider communicates with the Vault service to

retrieve secrets. The Kubernetes Secrets Store CSI Driver

Provider mounts the secrets as a volume in the pod. Now

the application running in the pod can access the secrets as

files in the volume. The Kubernetes Secrets Store CSI Driver

Provider can also be configured to renew and rotate the

secrets before they expire automatically.

To configure this in your cluster, you need to create the

appropriate OCI policies and decide whether you will use

user principals or instance principals to access the OCI

Vault. You can then install the CSI driver and create a

Kubernetes resource of the kind SecretProviderClass to link the

secret volume to the OCI Vault secret. The specific steps for

configuring the OCI secret store driver can be found at the

oci-secrets-store-csi-driver GitHub repository.1

Both aforementioned options enable you to use master

encryption keys from other tenancies. You simply need to

include the appropriate policies to authorize the tenancy

running OKE to use keys from other tenancies. The OCI

documentation2 covers the specific policies required and

the detailed steps for configuration.

Audit Logging

Audit logging plays a crucial role in maintaining the security,

compliance, and operational integrity of Kubernetes

clusters. It provides a detailed record of all activities within

the cluster, including API calls, configuration changes, and

resource access. Audit logs enable organizations to do the

following:

Identify and investigate security incidents: Audit

logs provide a valuable source of information for

detecting and investigating potential security breaches

or unauthorized access attempts.

Ensure compliance: Many industry regulations and

standards, such as PCI-DSS and HIPAA, require

organizations to maintain comprehensive audit logs to

demonstrate compliance with security and privacy

requirements.

Support incident response and forensics: If a

security incident occurs, audit logs serve as a valuable

resource for understanding the sequence of events,

identifying the root cause, and conducting forensic

analysis.

On OKE, all Kubernetes audit events are made available

in the OCI Audit service. It’s crucial to monitor user and

application activity on your Kubernetes cluster, to detect

any unusual behavior or security breaches. This service

provides a unified overview of all user activity across your

applications on OCI. You can easily spot security incidents

by monitoring successful and unsuccessful login attempts,

such as identifying whether your cluster is under attack.

Additionally, you can link Kubernetes audit events to other

audit events in your OCI tenancy, such as updates to your

clusters or resources.

To visualize the logs, you have two standard interfaces on

the OCI console: Audit Events,3 shown in Figure 6-9, and

Audit Logs,4 shown in Figure 6-10. The information is also

available for other tools, including OCI Logging Analytics

and third-party tools such as Datadog.

Figure 6-9 Example of Audit Events from OKE API Server

Audit Logs

Figure 6-10 Example Activity Stream of the Audit

Events from the Kubernetes API

More information on the OCI Audit service can be found in

Chapter 8, “Observability.”

Security Zones

Oracle Cloud Infrastructure (OCI) security zones offer a

comprehensive approach to securing workloads and data in

the cloud. A security zone is a logically isolated and self-

contained compartment within OCI that provides enhanced

security and regulatory compliance capabilities. The

following list describes the benefits of using OCI security

zones:

Enhanced security isolation: OCI security zones

provide a high level of security isolation between

different compartments within an OCI tenancy. Each

security zone operates as an independent security

boundary, allowing organizations to isolate sensitive

workloads and data from other parts of their cloud

infrastructure. This isolation helps mitigate the risk of

lateral movement and unauthorized access, protecting

critical assets from potential security threats.

Regulatory compliance: Security and compliance are

top priorities for many organizations. OCI security zones

are designed to meet the stringent security and

regulatory requirements of various industries, such as

finance, healthcare, and government. These zones

incorporate security controls and practices that align

with industry standards, including data sovereignty,

data residency, and compliance certifications. By

leveraging security zones, organizations can address

specific regulatory requirements and confidently deploy

workloads that require adherence to strict compliance

frameworks.

Network segmentation: Network segmentation is a

crucial aspect of cloud security. OCI security zones offer

granular control over network traffic flow, allowing

organizations to define and enforce access policies

between different security zones. This segmentation

helps limit the lateral movement of threats within the

cloud environment, minimizing the impact of potential

security breaches. Administrators can define security

rules and access controls specific to each security zone,

ensuring that only authorized traffic is allowed to enter

or leave the zone.

Enhanced access control: OCI security zones provide

fine-grained access controls, enabling organizations to

enforce strict permissions and privileges within each

zone. Administrators can define security policies and

identity and access management (IAM) rules tailored to

the specific requirements of each security zone. This

level of access control ensures that only authorized

users and applications have the necessary permissions

to interact with resources within a given zone, reducing

the risk of unauthorized access and data breaches.

Monitoring and logging: Visibility into security events

and activities is crucial for maintaining a secure cloud

environment. OCI security zones offer robust monitoring

and logging capabilities, providing organizations with

detailed visibility into the security posture of each zone.

Administrators can monitor network traffic, access logs,

and security events within security zones, enabling

them to promptly detect and respond to potential

security incidents. OCI’s Logging Service and other

monitoring tools can be integrated with security zones

to provide real-time insights and proactive threat

detection.

Disaster recovery and business continuity: OCI

security zones support disaster recovery and business

continuity strategies by providing isolation and

redundancy across different zones. Organizations can

deploy resources and replicate data across multiple

security zones within the same region or different

regions. This redundancy ensures that, if a localized

failure or disaster occurs, critical workloads and data will

remain accessible and operational in a separate security

zone, minimizing downtime and preserving business

continuity.

Network Security Groups (NSGs)

Network security groups (NSGs) are essential components of

the overall network security architecture within the Oracle

Cloud ecosystem. They play a vital role in safeguarding

cloud resources and protecting critical workloads from

unauthorized access, network threats, and potential

vulnerabilities. NSGs provide several benefits and features

to secure your network infrastructure:

Network segmentation and isolation: NSGs enable

network segmentation by allowing administrators to

define security rules at the subnet level. Administrators

can restrict traffic flow between subnets or between on-

premises networks and the cloud by specifying ingress

and egress rules. This segmentation enhances security

by isolating different components of an application,

preventing unauthorized lateral movement within the

network, and limiting the potential impact of security

breaches.

Access control and allowlisting: NSGs provide fine-

grained control over network traffic by allowing

administrators to define specific rules to allow or deny

access based on IP addresses, ports, and protocols. This

capability enables administrators to create allowlists of

trusted sources, effectively blocking traffic from

unknown or untrusted sources. By implementing access

control policies through NSGs, organizations can enforce

the principle of least privilege and reduce the attack

surface.

Defense against external threats: NSGs act as a

first line of defense against external threats by filtering

and blocking malicious traffic at the network level.

Administrators can define rules to block common attack

vectors, such as denial-of-service (DoS) attacks, port

scanning, or brute-force attempts. By proactively

preventing such attacks, NSGs contribute to maintaining

the availability, integrity, and confidentiality of cloud

resources.

Traffic monitoring and logging: NSGs offer

comprehensive logging and monitoring capabilities.

They allow administrators to track network traffic

patterns, monitor access attempts, and identify

potential security incidents or anomalies. By analyzing

NSG logs and leveraging security monitoring tools,

organizations can proactively detect and respond to

security threats, ensuring timely incident response and

minimizing the impact of potential breaches.

Compliance and regulatory requirements: Many

industries and organizations have specific compliance

and regulatory requirements concerning data

protection, privacy, and security. NSGs can help meet

these requirements by implementing security controls

and enforcing network policies aligned with industry

standards. They enable organizations to demonstrate

due diligence and adherence to security best practices,

facilitating compliance audits and ensuring a solid

security posture.

Dynamic and scalable security: OCI network security

groups provide flexibility and scalability in managing

security policies. Administrators can easily modify

security rules to accommodate changing business

needs, add or remove rules to reflect application

updates, and scale security configurations alongside

resource scaling. This dynamic nature of NSGs ensures

that security measures remain effective even in

dynamic cloud environments with evolving

requirements.

NSGs are essential for Kubernetes deployments on OKE.

They provide critical security capabilities, such as pod-to-

pod communication security, protection against external

threats, access control and segmentation, compliance

adherence, monitoring and auditing capabilities, and

dynamic scalability. By leveraging NSGs effectively,

organizations can enhance the overall security posture of

their OKE clusters and protect critical workloads and data.

The section “Setting Up NSG Rules and Security List

Rules,” in Chapter 4, covers how to configure NSG rules and

security list rules to secure OKE.

Web Application Firewall (WAF)

The OCI Web Application Firewall (WAF) can help secure web

applications deployed on Oracle Kubernetes Engine (OKE)

on first-mile security, offering robust protection against web-

based attacks (including attacks to REST APIs), mitigating

vulnerabilities, and enhancing the overall security posture of

web applications.

WAF operates at the application layer (Layer 7) of the

network stack, enabling it to inspect and filter HTTP/S traffic

directed at web applications running on OKE. By analyzing

the content of web requests and responses, WAF can detect

and prevent a wide range of common web-based attacks,

such as cross-site scripting (XSS), SQL injection, and

malicious file uploads. WAF also provides Layer 7 DDoS

mitigation provided by Specialists in Oracle Cloud customer

support. To use the mitigation service, you must allow the

specialists to access your tenancy using IAM service

policies. Layer 3/4 (L3/4) DDoS attack mitigation is part of

the regular infrastructure service.

WAF also provides intelligent threat detection and

prevention by using sophisticated threat-detection

algorithms and security rules to identify and block malicious

traffic. It leverages machine learning and behavioral

analytics to detect anomalies, including advanced threats

that traditional signature-based security mechanisms might

not recognize. This proactive approach helps protect web

applications from evolving attack techniques and zero-day

vulnerabilities. It allows administrators to define and

enforce custom security policies tailored to the specific

needs of their web applications. These policies include

rulesets, allowlist/blocklist configurations, and rate-limiting

thresholds. By customizing the security policies,

organizations can strike a balance between application

security and legitimate traffic, ensuring protection without

impacting the functionality and performance of the web

application. WAF also provides a built-in set of security rules

that cover common vulnerabilities and attack patterns.

Oracle security experts regularly update and maintain these

rules to address emerging threats. With automatic rule

updates, organizations can protect their web applications

against the latest attack vectors without manual

intervention. Figure 6-11 illustrates the recommended and

preset WAF rules, with the option to turn them on or off.

Figure 6-11 Predefined WAF Rules Available to Activate

OCI WAF offers access rules (see Figure 6-12) that can

intercept inbound web traffic before it reaches the OKE

cluster. These rules can be applied to a specific Kubernetes

workload with HTTP metadata (such as HTTP header,

method, user agent, and URL with particular content) or a

geographical location. The actions on the access rule

include Log and Allow, Detect Only, Block, Redirect, Bypass,

and Show CAPTCHA. This integration ensures that web

application traffic is inspected and protected at the edge,

reducing the risk of attacks reaching the underlying

applications and infrastructure.

Figure 6-12 WAF Access Rules

OCI WAF offers comprehensive monitoring capabilities,

providing real-time visibility into web traffic and security

events. Administrators can access detailed logs, metrics,

and reports to gain insights into web application traffic

patterns, attack attempts, and overall security posture.

Additionally, OCI WAF can generate alerts and notifications

when suspicious activity or potential security incidents are

detected, enabling timely response and mitigation. It is also

designed to handle high volumes of web traffic, and it can

scale dynamically to meet application demands. OCI WAF

operates across multiple availability domains within OCI,

providing high availability and fault tolerance. This ensures

that web applications are protected even during periods of

high traffic or when infrastructure failures occur.

You can provision WAF in two different ways. One way,

you can create a Load Balancer that is not managed by

Kubernetes, enable the web application firewall under the

Security tab, and configure it to be in front of the

LoadBalancer
5 managed by a Kubernetes resource (Ingress

Controller or Service Type LoadBalancer). Figure 6-13

illustrates the option for the WAF as a Service (WaaS)

configured directly on the Load Balancer.

Figure 6-13 OCI Load Balancer Creation UI, with the

Option to Enable WAF Policy

Alternatively, you can create a new WAF edge policy6 and

configure the DNS to point to the endpoints you want to

protect on Kubernetes, as illustrated in Figure 6-14. This is

the recommended option if you want full control on the

rules and configurations.

Figure 6-14 Example WAF Edge Policy

The architecture diagram in Figure 6-15 shows an

application that is protected by the Web Application

Firewall. The diagram shows that the microservices within

Kubernetes continue to function seamlessly despite the

addition of the WAF. When a request is made, the DNS

routes it to the WAF for validation before being directed to

the Load Balancer managed by Kubernetes’ Ingress

Controller. In a multicluster setting (not depicted), the OCI

Traffic Manager’s Global Load Balancer collaborates with the

WAF without any impact on Kubernetes cluster workloads.

This means that the WAF can be added to any existing

application and can be removed from the architecture

without any code changes or deployments.

Figure 6-15 Ecommerce App (MuShop) Diagram

Example Showing Multiple OCI Services, Including WAF

Network Firewall

Network Firewall is a cloud-based network security service

that allows customers to filter traffic based on IP addresses,

ports, and protocols. A stateful firewall enables customers to

define rules to allow or deny traffic to and from their

resources in the cloud. Network Firewall is a fully managed

service that is integrated with other Oracle Cloud

Infrastructure services, such as the Compute, Load

Balancing, and Kubernetes Engine services. It is combined

with the OCI Logging service to give customers visibility into

their network traffic. OCI Network Firewall is powered by

Palo Alto Networks.

Network Firewall acts as a security control point between

the Internet and the resources within an OCI virtual cloud

network (VCN). The network firewall allows organizations to

define and enforce granular access control policies based on

source IP addresses, destination IP addresses, ports, and

protocols. It helps protect applications and data from

unauthorized access and network-based threats.

By combining the capabilities of OCI Network Firewall and

OKE, organizations can establish a secure environment for

their Kubernetes deployments. The integration between

these services enables the following security measures:

Network segmentation: OCI Network Firewall allows

organizations to define security rules that control traffic

flow between different VCNs, subnets, and resources.

Administrators can enforce network segmentation by

properly configuring the firewall rules and isolating OKE

clusters from other resources within the VCN. This

ensures that only authorized traffic can reach the

Kubernetes clusters.

Access control policies: OCI Network Firewall provides

fine-grained access control policies that can be applied

to inbound and outbound traffic. By defining firewall

rules based on source IP addresses, destination IP

addresses, ports, and protocols, organizations can

restrict access to OKE clusters, allowing only trusted

sources to communicate with the Kubernetes API server

and worker nodes. This helps prevent unauthorized

access and protects against potential attacks.

Application layer security: Beyond network-level

security, OCI Network Firewall allows organizations to

define rules based on specific application protocols and

payloads. This enables deep packet inspection and the

capability to detect and block malicious activities at the

application layer. Organizations can identify and block

any unauthorized or suspicious activities by defining

rules that match the traffic patterns of Kubernetes API

calls and container communications.

Logging and monitoring: OCI Network Firewall

provides detailed logging and monitoring capabilities,

allowing organizations to track and analyze network

traffic. By integrating with OCI logging and monitoring

services, administrators can gain visibility into network

activities, detect anomalies, and respond to security

incidents promptly.

Figure 6-16 illustrates an example production architecture

using the OCI Network Firewall service to manage all traffic

into and out of a multicluster deployment.

Figure 6-16 Multicluster Deployment with Network

Firewall Architecture

Allowed Registries

Allowed registries refer to the container image registries

that are permitted to be used within a cluster. These

registries are the trusted sources from which Kubernetes

nodes can pull container images for deploying and running

applications. Using allowed registries alone does not ensure

that only approved images can be used. To accomplish this,

you need controllers acting on Kubernetes.

Controlling the allowed registries helps enforce security

and compliance policies, ensuring that only approved and

verified images are used in the cluster. To enforce allowed

registries, you can use admission controllers that intercept

registry requests for validation before the Kubernetes API

Server commits them.

One recommended option is to use the Open Policy Agent

(OPA) to create a policy that denies resources to container

registries that do not match specific registries.

Listing 6-2 shows an example of OPA configuration using

Rego to deny pods in a specific namespace from using

container registries that do not match a specific registry.

Listing 6-2 Example of OPA Policy Written in Rego, Allowing

Only ocir.io Registries on the Cluster

Click here to view code image

package admission

import data.k8s.matches

deny[{

 "id": "container-image-allowlist",

 "resource": {

"kind": "pods"

 kind : pods ,

 "namespace": namespace,

 "name": name

 },

 "resolution": {"message": msg},

}] {

 matches[["pods", namespace, name, matched_pod]]

 container = matched_pod.spec.containers[_]

 not re_match("^ocir.io/.+$", container.image) # The actual val

 msg := sprintf("invalid container registry image %q", [contain

}

The Rego Policy file can be directly loaded into OPA

Gatekeeper as a configmap or as a ConstraintTemplate,

illustrated in Listing 6-3.

Listing 6-3 OPA Gatekeeper Manifest with Rego Policies

Click here to view code image

apiVersion: templates.gatekeeper.sh/v1

kind: ConstraintTemplate

metadata:

name: k8sallowedrepos

spec:

crd:

 spec:

 names:

 kind: K8sAllowedRepos

 validation:

 openAPIV3Schema:

 type: object

 properties:

 repos:

 type: array

 items:

 type: string

targets:

 - target: admission.k8s.gatekeeper.sh

 rego: |

 package k8sallowedrepos

 violation[{"msg": msg}] {

container := input review object spec containers[]

 container := input.review.object.spec.containers[_]

 satisfied := [good | repo = input.parameters.repos[_] ; go

 startswith(container.image, repo)]

 not any(satisfied)

 msg := sprintf("container <%v> has an invalid image repo <

 repos are %v", [container.name, container.image, input.parameter

 }

 violation[{"msg": msg}] {

 container := input.review.object.spec.initContainers[_]

 satisfied := [good | repo = input.parameters.repos[_] ; go

 startswith(container.image, repo)]

 not any(satisfied)

 msg := sprintf("container <%v> has an invalid image repo <

 repos are %v", [container.name, container.image, input.parameter

 }

After the new ConstraintTemplate creation, the new

constraint can be consumed and configured, as illustrated in

Listing 6-4.

Listing 6-4 Example of yaml manifest to consume the

Gatekeeper manifest ConstraintTemplate

Click here to view code image

 apiVersion: constraints.gatekeeper.sh/v1beta1

 kind: K8sAllowedRepos

 metadata:

 name: allowed-container-registries

 spec:

 match:

 kinds:

 - apiGroups: [""]

 kinds: ["Pod"]

 namespaces:

 - "production"

 parameters:

 repos:

 - "ocir.io/tenancy/namespace/*"

 - "ghcr.io/account/*"

The section “Open Policy Agent (OPA),” later in this

chapter, provides more information about OPA, OPA

gatekeeper, and OPA Rules/Rego.

Controlling the allowed registries on OKE ensures that

container images used within the cluster come from trusted

and approved sources. This is one step in enforcing security

and compliance, preventing unapproved sources, promoting

standardization, optimizing resources, and offering

configuration flexibility for a secure and controlled

deployment environment for containerized applications.

Cloud Guard

OCI Cloud Guard is a comprehensive, unified security and

compliance monitoring service. It helps organizations

proactively identify, prioritize, and resolve security issues

across their OCI environments, including OKE. By leveraging

machine learning and AI technologies, Cloud Guard

continuously analyzes telemetry data and configuration

settings to detect potential security risks, threats,

misconfigurations, and compliance violations. Cloud Guard

is always active and evaluating the default rules. You can

add detectors and responder recipes to extend the feature

set for Cloud Guard to have custom notifications and

monitor your own custom conditions for your infrastructure

security posture. The key features of OCI Cloud Guard

include the following:

Security monitoring: Cloud Guard continuously

monitors the security posture of OCI resources,

including compute instances, storage, networks, and

databases, to identify security vulnerabilities and

threats.

Automated security policies: Predefined security

policies are provided, based on industry best practices

and regulatory standards. These policies can be

customized or extended to align with specific security

requirements.

Real-time notifications: Cloud Guard sends real-time

alerts and notifications when security incidents are

detected, enabling prompt action and mitigation.

Threat intelligence integration: This feature

integrates with Oracle’s Threat Intelligence service,

which offers up-to-date threat intelligence feeds,

enhancing the detection and response capabilities of

Cloud Guard.

Compliance monitoring: This feature provides built-in

compliance frameworks and checks, such as CIS

benchmarks, to ensure adherence to security standards

and regulatory requirements.

Security recommendations: Cloud Guard provides

actionable recommendations to address security issues

and guides users on best practices for securing their OCI

resources.

Figure 6-17 shows Cloud Guard in action, with its

dashboard showing the security score, the risk score, and

an overview of the security posture for the entire tenancy.

Administrators can use this reporting to examine and

analyze the data, to quickly zone in on the resources that

are security threats and/or challenges. Administrators then

can create detector and responder recipes to automate how

certain conditions are detected and addressed.

Figure 6-17 OCI Cloud Guard Dashboard Overview

Hardening Containers and OKE

Worker Nodes

Containers and OKE worker nodes are critical components of

a Kubernetes cluster that attackers frequently target.

Containers are designed to be lightweight and portable, but

they can also introduce security risks if they are not

properly secured. Kubernetes worker nodes are the compute

instances in a cluster that are responsible for running

containers; if these nodes are compromised, an attacker can

gain access to the entire cluster.

Hardening measures, such as limiting container

privileges, implementing RBAC, configuring network

security, and monitoring Kubernetes cluster activity, can

help prevent attacks and detect malicious activity.

Container Scanning

Containers are essential to modern application development

because they provide a lightweight, scalable, and portable

way to package and deploy applications. However,

container images can also contain security vulnerabilities

that attackers can exploit. In a Kubernetes environment,

where containers are managed and orchestrated by

Kubernetes, it is critical to scan container images before

deployment, to identify any security vulnerabilities.

Container scanning tools can detect various security

issues, including known vulnerabilities in the software

components and libraries used in the container image,

misconfigurations in the container, and other security-

related issues. By detecting and addressing these issues,

container scanning can significantly reduce the risk of

security breaches in Kubernetes environments.

How to Implement Container Scanning on OKE

Container scanning can be implemented on OKE using

various tools and techniques. These are some of the popular

approaches:

OCIR container image scanning: The Oracle Cloud

Infrastructure Registry (OCIR) enables users or systems

to push container images to repositories and enable the

scanning of container images stored in the OCIR for

published security vulnerabilities in the publicly

available Common Vulnerabilities and Exposures (CVE)

database. When repository scanning is enabled, the OCI

Vulnerability Scanning service scans any images that

you push into the repository and any images that are

already present. Repositories with scanning enabled are

automatically rescanned when new vulnerabilities are

added to the list of threats. For every scanned image

you can view the scan results, the risk level for each

scan, the description of each vulnerability, and the link

to the CVE database. Figure 6-18 illustrates the creation

of a target for Container Image Scanning, with the

option to select the scanning recipe and the repositories

that will be automatically scanned.

Figure 6-18 OCIR Container Image Scanning Target

Creation Screen

External container image scanning for container

repositories: Kubernetes can integrate with container

image scanning tools such as Aqua Security, Twistlock,

NeuVector, and Alcide, which scan container images for

security vulnerabilities before they are deployed. This is

important if you are not using OCIR or if you want to

check for container image vulnerabilities from external

repositories.

Kubernetes resources image scanning: Some tools

integrate into OKE to check for vulnerabilities on the

container images defined on Kubernetes resources such

as deployments, StatefulSets, and DaemonSets. Tools

such as Snyk and Sysdig provide this kind of service.

Quickstarts to deploy these solutions are available on

the Oracle Quickstarts repo. Here are some examples:

Snyk.io (https://snyk.io/)7

Sysdig.com (https://sysdig.com/)8

Continuous integration/continuous deployment

(CI/CD) pipelines: CI/CD pipelines can include

container scanning as part of the automated build

process, to ensure that container images are scanned

before deployment.

Kubernetes admission controllers: Admission

controllers enforce policies on Kubernetes objects before

they are created or modified. By using admission

controllers, organizations can implement policies that

require container images to be scanned before

deployment. OKE supports the use of the

ImagePolicyWebhook admission controllers, to allow

only images that pass the enforced rule.

Best Practices for Kubernetes Container

Scanning

The following are some best practices to follow when

implementing container scanning on OKE:

Enable OCIR image scanning: Enabling image

scanning for container images hosted on the ocir.io is

https://snyk.io/
https://sysdig.com/

the first step, allowing better control on the same

infrastructure that is running the OKE.

Use multiple scanning tools: Running multiple

container scanning tools increases the likelihood of

detecting security vulnerabilities. Each tool has

strengths and weaknesses, so using multiple tools can

provide a comprehensive scan of container images.

Implement scanning in the CI/CD pipeline:

Implement container scanning as part of the CI/CD

pipeline to ensure that container images are scanned

before deployment. This helps catch vulnerabilities early

in the development process, reducing the risk of

security breaches.

Monitor scanning results: Monitor the results of

container scanning to identify trends and patterns. This

helps identify potential risk areas and allows

organizations to take appropriate measures to address

them.

Stay up to date: Keep scanning tools and libraries up

to date, to ensure that they can detect the latest

security vulnerabilities. Container scanning tools should

be updated regularly to ensure that they can detect

newly discovered vulnerabilities.

Container scanning is an essential security practice for

Kubernetes environments. By implementing container

scanning on OKE, organizations can identify and mitigate

potential security vulnerabilities in container images before

deployment. Container scanning tools can detect various

security issues, including known vulnerabilities,

misconfigurations, and other security-related issues. By

following best practices, organizations can ensure that

container scanning is implemented effectively and

efficiently in Kubernetes environments, reducing the risk of

security breaches.

Container Image Signing

To enhance your runtime security, you can also sign your

container images with cryptograph keys. You can configure

OKE to pull container images that are signed and its

signature verified. This ensures that only signed images that

have not been tampered with can be deployed to OKE. The

section “Enabling Image Signature Verification,” in Chapter

4, has more details on container image signing.

Center for Internet Security (CIS)

Kubernetes Benchmarks

The Center for Internet Security (CIS) is a community-driven

nonprofit organization that provides many free and paid

resources to improve IT security. The CIS Kubernetes

Benchmark is a set of security recommendations designed

to help organizations secure their Kubernetes deployments.

This section provides an overview of the CIS Kubernetes

Benchmark and shows how to implement its

recommendations to secure an OKE cluster. You also see

practical examples and best practices to help organizations

comply with the CIS Kubernetes Benchmark. A free

downloadable benchmark can be found at

www.cisecurity.org/benchmark/kubernetes.9 For OKE, the

benchmark is named Oracle Cloud Infrastructure Container

Engine for Kubernetes (OKE). On this benchmark, you will

find a comprehensive set of best practices and security

controls designed to help organizations secure their

Kubernetes deployments; it also provides guidelines for

securing the Kubernetes worker nodes and some Kubernetes

control plane components.

The benchmark covers a wide range of security controls,

including these:

http://www.cisecurity.org/benchmark/kubernetes

Cluster configuration

Network security

Authentication and authorization

Cluster hardening

Logging and auditing

Secure communication between Kubernetes

components

Pod security

Node security

The benchmark can be consumed as a reading guide or

can be made available for tools such as CIS-CAT Pro and

Kube-bench to automate security checks and remediations.

References on both tools can be found in the “Supporting

Tools” section.

The CIS Benchmark has two levels for OKE. Level 1 has

practical recommendations, and the OKE Control Plane

follows what is most beneficial. The minimum

recommendations necessary for the worker nodes is applied

for a secure node without impeding the usage and

performance. The customer is responsible for hardening the

worker nodes to the next level. Level 2 extends Level 1 and

is intended for environments or use cases in which security

is the most important concern. Applying Level 2

recommendations can affect the Kubernetes functionality

and performance.

One of the primary and most basic purposes of the CIS

Kubernetes Benchmark is to ensure that your cluster is

configured with secure settings. This includes enforcing TLS

communication for all components, disabling insecure

communication protocols, and disabling anonymous access.

Similarly, the benchmark evaluates the network security

aspects of your cluster. Kubernetes provides a rich set of

network security features that can be leveraged to secure

your cluster. For example, you can configure network

policies to control traffic between pods, implement network

segmentation, and enforce secure communication over the

network. The benchmark can provide feedback on the

current networking configuration in your cluster and best-

practice suggestions to improve it. It also evaluates the

security for the communication between Kubernetes

components. Kubernetes components communicate with

each other using various protocols, and it is important to

ensure that these communications are secure. The CIS

Kubernetes Benchmark provides recommendations for

securing communication between Kubernetes components,

including configuring Transport Layer Security (TLS) and

using secure communication protocols.

The benchmark also evaluates the Kubernetes

authentication and authorization configuration. Kubernetes

provides several authentication and authorization

mechanisms, such as role-based access control (RBAC), that

can be used to control access to the Kubernetes API server

and other cluster components. The CIS Kubernetes

Benchmark provides recommendations for implementing

secure authentication and authorization practices.

Logging and auditing are critical for detecting and

investigating security incidents in your Kubernetes cluster.

The CIS Kubernetes Benchmark provides recommendations

for configuring Kubernetes logging and auditing to ensure

that all security-related events are captured.

The best practices for implementing the CIS Kubernetes

Benchmark are as follows:

1. Regularly review and update your Kubernetes cluster

configuration to ensure that it remains compliant with

the CIS Kubernetes Benchmark.

2. Automate as much of the benchmark implementation as

possible using tools such as Kubernetes manifests and

configuration management tools.

3. Regularly review Kubernetes logs and audit logs to

detect and investigate potential security incidents.

4. Use RBAC to control access to Kubernetes components

and resources.

5. Use network segmentation to limit the impact of

potential security breaches.

Using SELinux with OKE

SELinux is a Linux kernel security module that provides a

mechanism for enforcing mandatory access control policies.

This section covers how SELinux can be used with

Kubernetes to enhance the security of your Kubernetes

environment. SELinux is based on the principle of

mandatory access control (MAC), which means that every

process and user on the system is assigned a security

context that determines its level of access to system

resources. SELinux defines security contexts for files,

processes, sockets, and other system resources. Each

security context is associated with a set of rules that

governs the interactions between processes and system

resources.

SELinux has three modes of operation:

Enforcing: SELinux enforces the security policies

defined in the security context. Any attempt to violate

the security policies results in an access denial.

Permissive: SELinux logs all the security violations but

does not enforce the policies.

Disabled: SELinux is disabled, and no security policies

are enforced.

By default, SELinux is enabled on OKE worker nodes and

is set to run in permissive mode. When run in permissive

mode, SELinux does not enforce access rules; it only

performs logging. To enforce access rules, set SELinux to

run in enforcing mode. When run in enforcing mode,

SELinux blocks actions that are contrary to the policy and

logs a corresponding event in the audit log. To set SELinux

to run in enforcing mode, you must set a custom cloud-init

for your worker nodes, as discussed in Chapter 4.

Consider the cloud-init script in Listing 6-5, which sets the

SELinux policy on OKE nodes to enforcing mode.

Listing 6-5 Setting the SELinux Policy on OKE Nodes to

Enforcing

Click here to view code image

#!/bin/bash

curl --fail -H "Authorization: Bearer Oracle" -L0 http://169.254.1

 instance/metadata/oke_init_script | base64 --decode >/var/run/ok

bash /var/run/oke-init.sh

setenforce 1

sed -i 's/^SELINUX=.*/SELINUX=enforcing/' /etc/selinux/config

When SELinux is running in enforcing mode, you can

define security contexts for Kubernetes objects such as

pods, containers, and volumes. You can use the

securityContext field in the pod specification to define the

security context for a pod. The security context can include

the SELinux options field, which allows you to specify the

SELinux security context for the pod.

Consider the example in Listing 6-6.

Listing 6-6 SELinux Configuration in a Pod YAML Manifest

Click here to view code image

apiVersion: v1

kind: Pod

metadata:

name: nginx-pod

spec:

 containers:

 - name: nginx

 image: nginx

 securityContext:

 seLinuxOptions:

 level: s0

 categories: c123,c456

In this example, you define a pod named nginx-pod and set

the security context for the nginx container using the

seLinuxOptions field. The level option sets the SELinux security

level to s0, and the category options c123 and c456 define the

SELinux categories.

Patching Worker Nodes

OKE provides a managed control plane where the CVEs and

other security tasks are done regularly and automated.

Kubernetes version updates can be requested by customers

and done through a button on the OCI Console, as illustrated

in Figure 6-19.

Figure 6-19 Upgrading the Kubernetes Version

For the customer-managed worker nodes, the Kubernetes

version updates are also done at the customer’s

convenience. Still, the customer manages the operating

system, and major upgrades need to be planned. OCI

provides tools and agents to scan and report CVEs and

other possible vulnerabilities. Figure 6-20 illustrates the

version upgrade lifecycle of the worker nodes on the same

node pool.

Figure 6-20 Worker Node Cycling for a Node Pool Can

Safely Update Worker Nodes

The importance of regularly updating Kubernetes worker

nodes and patching vulnerabilities to maintain security

cannot be understated. New vulnerabilities are constantly

being discovered, and attackers are always developing new

methods of attack.

If the workload needs public worker nodes, monitoring

and constant patching need to be mandatory and must be

part of the organization’s DevSecOps strategy.

Worker Nodes Limited Access

Regarding security, limiting external access to the

production environment is crucial. It is essential to strike a

balance between granting end users appropriate access and

avoiding unnecessary access. This involves several layers of

protection, with the number of layers and their complexity

varying, based on the sensitivity of the information being

safeguarded.

Securing network traffic requires more than just making

edge decisions. A series of firewalls working together must

protect every connection between nodes, as well as

intranode communication.

A dynamic CI/CD environment presents unique security

challenges because of its constantly changing nature. To

address this, scanning and verification tools should be

integrated into the pipeline, with ongoing assessments

carried out to quickly identify and resolve issues.

In addition to using container-specific security tools, such

as SELinux, Kerberos, and SAML, noncontainer specific tools

should be utilized to manage access at each layer, from the

hardware to the application.

Securing Your Workloads

This section emphasizes the need for robust security

measures, to protect Kubernetes workloads from potential

vulnerabilities and attacks.

Security Context

Container security at scale can be challenging: The annual

CNCF survey consistently ranks security as one of the top

challenges for organizations that have adopted containers

for most of their workloads. One particular aspect might

contribute to this complexity: When you run containers,

Linux operating system security concepts can bleed into the

developer realm, whereas it previously existed only on the

infrastructure and DevOps realms. This means that the

change in the developer workflow, with developers now

delivering an application container instead of an application

package, is not just a packaging change. The new packaging

format, containers, also needs to account for the security of

the container environment. Thus, it is essential for

developers who build and package their code to do so while

still paying attention to the security posture. It is equally

important for administrators to understand container

settings and PodSpecs, to identify potentially misconfigured

workloads that could pose a security risk.

Container runtimes and the underlying Linux features

they are built upon, such as cgroups and namespaces,

expose a plethora of options. For example, to run the

processes inside a container as a specific user, Docker

provides the --user flag. Within Kubernetes, the

securityContext for a container or a pod determines how these

are configured. Effectively using the features provided by

the securityContext is an essential but often overlooked

aspect. This could be because the options on offer are often

unfamiliar to application developers, who largely focus on

the app development stack, not on the Linux security best

practices. This section describes the most common

configuration options for securityContext; the Kubernetes

documentation covers all the allowed configuration

parameters.10

Kubernetes securityContext settings can be defined in both

the spec.pod and spec.containers portions of the resource

manifest (PodSpec and ContainerSpec APIs). Formally, the

securityContext set at the PodSpec is called the

PodSecurityContext, and the term SecurityContext refers to the

configuration in the ContainerSpec. However, these are

always applied at a container level, and specifying

PodSecurityContext is a quick way to uniformly apply the same

securityContext configuration to all containers running within

the pod. If the securityContext setting is configured for both

the PodSpec and the ContainerSpec, the configuration at

the ContainerSpec takes precedence; you can think of this

as the PodSecurityContext configuration being overridden by

the SecurityContext configuration.

runAsNonRoot

As the name indicates, the runAsNonRoot setting set to true

tells the kubelet to validate that the container is not running

as root. Processes inside containers are run as root by

default when no alternatives are provided. Because

containers share a kernel, this also means that the process

has the same access as the root account on the host.

Containers use Linux features such as cgroups and

namespaces to isolate the container; however, vulnerability

exploits and misconfigurations can potentially give an

attacker a path for escaping the container. As a general rule,

there should be no reason for the vast majority of workloads

to run as root. The runAsNonRoot configuration provides a

mechanism to enforce this for your workloads.

As a best practice, your Dockerfile should create a user

and set the default user as well, as shown in Listing 6-7.

Listing 6-7 Example Dockerfile Not Using Root User To Be

Able To Be Deployed as runAsNonRoot on Kubernetes

Click here to view code image

RUN groupadd -g 10001 myapp && \

useradd -u 10000 -g myapp \

&& chown -R myapp:myapp /app

USER myapp:myapp

Note

The UID and GID specified are larger numbers, to

avoid the possibility of these UIDs and GIDs existing

on the host and inheriting privileges. Using a larger

number—say, 10,000 or higher—reduces the chance

of a user or group existing on the host with the same

UID/GID.

Occasionally, the image you are running might not define

a nonroot user, and you might not have direct control over

the Dockerfile. This can often happen when the image

comes from a vendor that no longer exists or that is

refusing to add and set a default nonroot user. In these

cases, as a last resort, you can create your own image

based on the original by extending the Dockerfile, adding

the new UID/GID, and setting those as the default.

To maintain a good security posture for the cluster, you

set runAsNonRoot: true for your workloads. This ensures that

the processes inside the container cannot use UID 0. If the

runAsNonRoot is omitted, it has the same effect as setting it to

false. If possible, you should always set runAsNonRoot

explicitly, even if it is set to false for a workload that

absolutely must run as root. This clearly communicates the

intention and ensures that changes to the values can easily

be audited.

runAsUser and runAsGroup

These configurations are used to run containers using the

provided values for the UID and GID. They override the

default UID and GID set within the container image and are

often used in conjunction with the runAsNonRoot option. It is

common for developers to provide an image with a nonroot

user created but not set as the default. In this case, you can

easily use the runAsUser and runAsGroup attributes to configure

the included users. Specifying these values explicitly, even

if they are set as the default in the image, makes them

more visible and easier to track changes. These options

should be used with care, and the values should not be set

randomly. Many workloads have specific requirements on

the UID and GID for the processes. For example, a container

might need access to files that are accessible only by the

user or group set by default in the image. In such cases,

overriding these values could cause the application to

malfunction.

As a best practice, do not rely on the runAsUser or runAsGroup

settings to set the container processes’ UID and GID: They

could cause incompatibilities or could potentially be

removed later. Instead, the user and group should be

created within the container image, and runAsUser or

runAsGroup should be used to explicitly state the UID and

GIDs, along with setting runAsNonRoot to true.

readOnlyRootFilesystem

If you have a stateful workload that needs to write data, you

can take advantage of the storage mechanisms in

Kubernetes, including ephemeral volumes and persistent

volumes. Alternatively, your application might store state in

a database. Writes to the container’s filesystem are made to

the container’s top writable layer. The data is ephemeral

and is not easily portable across nodes; any data written

locally on the container will not persist when the pod is

restarted. For this reason, containers in your workload

generally do not need the capability to write to the

container filesystem. However, the container filesystem

opens some security concerns. If attackers are able to gain

access to the container, they can update the configuration

of the container when the container filesystem is writable.

For example, an attacker could install new software

packages within the container and open up new attack

vectors. To avoid this, you can set the container’s root

filesystem to be read-only. Note that this attribute is

available only on the SecurityContext, not on the

PodSecurityContext.

privileged

Setting the privileged attribute to true runs the container in

privileged mode, which is essentially equivalent to running

as root on the host. The default value for this attribute is

false; it is available only on the SecurityContext, not on the

PodSecurityContext. As a best practice, you should consider

explicitly setting this to false so that the intent of running a

container without privileged mode is clear and changes can

be easily tracked.

capabilities

POSIX capabilities are a kernel feature that allows for

granular control over the kernel calls a process can make.

The idea is to group all the privileged kernel calls into

related categories and then assign processes only to the

categories they need. With the capabilities attribute, you

have the capability to drop or add capabilities to containers.

The default set of capabilities that a container gets is

determined by the container runtime. Using the

capabilities.add and capabilities.drop attributes, you can

provide one or more capabilities as a comma-separated list.

You use the -all keyword to cover all capabilities. As a best

practice, consider dropping all capabilities and adding only

the capabilities that your workload actually needs, as shown

in Listing 6-8.

Listing 6-8 Example of SecurityContext.capabilities on a

Deployment YAML Manifest

Click here to view code image

securityContext:

 capabilities:

 drop:

 - all

 add: ["NET_ADMIN", "SYS_TIME"]

syscalls and seccomp

System calls are the fundamental interface between user-

level programs and the operating system kernel, often

abbreviated as syscalls. They provide a means for

applications to request services from the operating system,

such as file operations, network communication, process

management, and more. Every time an application needs to

interact with the underlying system, it uses syscalls to

perform the necessary operations.

Container Isolation and syscalls

Containerization technologies such as Docker and CRI-O

leverage the underlying Linux kernel’s features, such as

namespaces and cgroups, to provide isolation between

containers. syscalls play a crucial role in enabling this

isolation by acting as the gatekeepers between the

container and the host operating system. When a

containerized application makes a syscall, it is intercepted

by the container runtime, such as Docker or containerd,

before it reaches the underlying kernel. The runtime

validates the syscall, ensuring that it complies with the

container’s defined isolation policies. This validation

includes checking whether the syscall is allowed, restricted,

or prohibited, based on the container’s configuration.

seccomp and syscall Filtering

Kubernetes employs several mechanisms to control and

filter syscalls. One such mechanism is seccomp, or secure

computing mode, which enables administrators to define a

policy for a container that specifies which syscalls are

permitted. Restricting the set of allowed syscalls

significantly reduces the attack surface of a container and

enhances its security. seccomp works by leveraging Linux’s

seccomp-bpf (Berkeley Packet Filter) mechanism, which

filters syscalls using a predefined filter expression. This

expression can be customized to allowlist or blocklist

specific syscalls, based on the container’s requirements.

Kubernetes provides a default seccomp profile, but users

can also define their own profiles, for fine-grained control.

The example in Listing 6-9 uses a seccomp profile for

syscall auditing.

Listing 6-9 Example of a YAML Pod Manifest File Using

securityContext.seccompProfile

Click here to view code image

apiVersion: v1

kind: Pod

metadata:

name: audit-pod

labels:

 app: audit-pod

spec:

 securityContext:

 seccompProfile:

 type: Localhost

 localhostProfile: profiles/audit.json

 containers:

 - name: test-container

 image: hashicorp/http-echo:0.2.3

 args:

 - "-text=just made some syscalls!"

 securityContext:

 allowPrivilegeEscalation: false

By default, seccomp allows only restricting specific

system calls, such as read(), write(), exit(), and sigreturn().

All other system calls are prohibited.

Mode 2 enables the utilization of BPF and eBPF filters to

determine which system calls are permitted. After the eBPF

program is created and installed into the kernel, all system

calls pass through the filter. Additional features and

generalizations of BPF have been added throughout the

years.

Capabilities and Privileged Containers

In addition to seccomp, Kubernetes employs capabilities to

further control container permissions. Capabilities allow

containers to perform specific privileged operations, such as

changing network settings or accessing kernel-level

resources. By default, Kubernetes drops most capabilities,

ensuring that containers run with the minimum necessary

privileges; however, administrators can selectively enable or

disable capabilities, based on the requirements of their

applications.

Syscall Interception and User-Space Proxies

In some cases, Kubernetes deployments include user-space

proxies such as Envoy (used by Istio), for traffic

management and observability. These proxies often

intercept network-related syscalls to enable advanced

networking features such as service discovery, load

balancing, and mutual TLS authentication. By intercepting

syscalls, these proxies can modify network behavior at

runtime, enabling a more flexible and dynamic networking

environment for Kubernetes clusters.

Open Policy Agent (OPA)

Open Policy Agent (OPA) is a general-purpose policy engine

that provides a flexible and policy-driven approach to

enforce rules and regulations in Kubernetes deployments.

OPA allows organizations to define and enforce policies such

as access control, data filtering, and configuration validation

across various domains. OPA relies on the declarative

language Rego to express policies. These policies are

expressed as rules and can be evaluated against data, to

determine compliance.

OPA Integration with Kubernetes

OPA can be integrated with Kubernetes in various ways to

enforce policies across different aspects of the cluster:

Admission control: OPA can be integrated with

Kubernetes admission controllers to validate and mutate

requests made to the cluster. Admission controllers

intercept requests for creating or modifying Kubernetes

resources and apply policy-based checks before allowing

or rejecting them. OPA can evaluate admission policies

using Rego and enforce custom policies for resource

creation and modification.

Policy enforcement: OPA can be used to enforce

policies at runtime by integrating with dynamic

admission control in Kubernetes. This enables fine-

grained policy enforcement based on real-time data and

context. For example, OPA can be used to enforce pod-

to-pod communication policies, network policies, or

even access control policies based on user roles and

permissions.

Configuration management: OPA can be used to

manage and enforce configuration policies for

Kubernetes resources. With OPA, organizations can

define policies for resource configurations, such as

ensuring that containers use specific versions, enforcing

resource limits, or validating security-related

configurations. OPA can evaluate the desired state

against defined policies and reject or modify

configurations that violate the policies.

Governance and compliance: OPA can help

organizations maintain governance and compliance

within their Kubernetes environments. By defining

policies that align with industry regulations or internal

security standards, OPA can ensure that Kubernetes

resources adhere to these policies. This includes policies

for image scanning, secrets management, auditing, and

more.

Deploying OPA on OKE

OPA integrates seamlessly with Kubernetes, enabling

administrators to define and enforce policies specific to their

Kubernetes deployments. This integration is typically

achieved using the Kubernetes admission control

mechanism, which intercepts API requests and evaluates

them against OPA policies before allowing them to proceed.

OPA can be deployed as a standalone service, integrated as

a sidecar container alongside other application containers,

or used as a library within an application. The chosen

deployment method depends on the organization’s specific

requirements and use cases.

You can deploy OPA to OKE in two ways, as illustrated in

Figure 6-21. The first is to use plain OPA and Kube-mgmt,

which is enabled as the Kubernetes Admission Controller.

This option is more complex and needs to make changes to

the ValidationAdmissionController and some mutating

controllers; it is not covered in this book. For more

information on the supported admission controllers on OKE,

check the documentation.11

Figure 6-21 OPA Deployment Options

The second approach is to use OPA Gatekeeper, an

extension of the Open Policy Agent (OPA) project. OPA

Gatekeeper offers a first-class integration between OPA and

Kubernetes for policy enforcement.

OPA Gatekeeper includes additional features on top of the

basic OPA:

An extensible, parameterized policy library

Native Kubernetes CRDs for instantiating the policy

library (constraints)

Native Kubernetes CRDs for extending the policy library

(constraint templates)

Audit functionality

The upcoming section “OPA Gatekeeper” provides

additional details.

Defining Policies with Rego

Rego is the declarative language used by OPA to express

policies. It provides a flexible syntax for defining rules and

constraints that govern Kubernetes resources. Rego policies

can be written to validate resource configurations, enforce

naming conventions, restrict image usage, ensure

compliance with security standards, and perform custom

checks tailored to the organization’s requirements.

Listing 6-10 provides an example of a Rego declarative

policy.

Listing 6-10 Example Rego Declarative Policy

Click here to view code image

package kubernetes.admission

import future.keywords

deny contains msg if {

 input.request.kind.kind == "Pod"

 some container in input.request.object.spec.containers

 image := container.image

 not startswith(image, "hooli.com/")

 msg := sprintf("image '%s' comes from untrusted registry", [im

}

Policy Decision and Enforcement

A request to the Kubernetes API server triggers the

admission control webhook configured with OPA. The

webhook forwards the request to OPA, which evaluates the

request against the defined policies in Rego. OPA returns a

policy decision to the admission control webhook, indicating

whether the request is allowed or denied, based on policy

evaluation. The webhook then enforces the decision by

either allowing or rejecting the request.

Dynamic Policy Updates and Live Configuration

Changes

One of the advantages of using OPA with Kubernetes is its

capability to dynamically update policies without requiring a

cluster restart. This dynamic behavior enables

administrators to make policy changes on the fly and adapt

to evolving requirements. OPA can fetch policy updates from

external sources or integrate them with configuration

management tools, ensuring that policy changes are

propagated efficiently throughout the cluster.

Auditing and Compliance Reporting

OPA’s policy engine provides organizations with valuable

insights into the compliance status of their Kubernetes

deployments. Organizations can generate compliance

reports and audit trails by logging policy decisions and

evaluations. These reports help demonstrate adherence to

regulatory standards and provide visibility into any potential

policy violations or security gaps.

OPA Gatekeeper

OPA Gatekeeper is an admission controller for Kubernetes

that integrates with OPA to enforce policies during resource

creation and modification. It enables administrators to

define and enforce policies using the Rego language,

ensuring that Kubernetes resources comply with specific

requirements and constraints (see Figure 6-22).

Figure 6-22 OPA Gatekeeper

Benefits of OPA Gatekeeper

OPA Gatekeeper offers several benefits for policy

enforcement in Kubernetes deployments:

Declarative policy enforcement: Policies can be

defined using the Rego language in a declarative

manner, making it easier to express complex constraints

and requirements.

Kubernetes-native integration: OPA Gatekeeper is

purpose-built for Kubernetes and integrates seamlessly

into the admission control workflow, enforcing policies

during resource creation and modification.

Policy as code: Policies defined using OPA Gatekeeper

are treated as code, allowing for version control,

collaboration, and auditability. They can be stored

alongside other Kubernetes manifests and managed

using standard Git workflows.

Dynamic policy evaluation: OPA Gatekeeper enables

dynamic policy evaluation based on real-time data and

context. Policies can reference external data sources,

making it possible to enforce policies that depend on

information from external systems or services.

Deploying OPA Gatekeeper

Deploying OPA Gatekeeper on the OKE cluster requires

setting up the following components:

OPA Gatekeeper constraint templates: Constraint

templates are used to define the types of policies that

OPA Gatekeeper can enforce. These templates specify

the structure and parameters of the policies.

Organizations can use built-in templates provided by the

OPA Gatekeeper project or create custom templates

based on their specific needs.

Constraints: Constraints are instances of constraint

templates that define specific policy rules. They specify

the desired state and properties that Kubernetes

resources should adhere to. Constraints are used to

evaluate resources against policies during admission

control.

OPA Gatekeeper controller: The OPA Gatekeeper

controller is responsible for managing constraint

templates, constraints, and the policy evaluation

process. It communicates with the OPA server to enforce

policies and validate resources during admission control.

You can deploy OPA Gatekeeper using the manifest with

predefined settings:

Click here to view code image

kubectl apply -f https://raw.githubusercontent.com/open-policy-age

 gatekeeper/master/deploy/gatekeeper.yaml

Step 1.

Step 2.

Step 3.

Alternately, you can deploy OPA Gatekeeper using the

Helm chart, as demonstrated here:

Click here to view code image

helm repo add gatekeeper https://open-policy-agent.github.io/gatek

 charts

helm upgrade --install gatekeeper/gatekeeper --name-template=gatek

 --namespace gatekeeper-system --create-namespace

Enforcing Policies with OPA Gatekeeper

After you deploy OPA Gatekeeper and set up the necessary

components, you can define and enforce policies using

constraint templates and constraints. The policy

enforcement workflow typically involves the following steps:

Defining constraint templates: Administrators

define constraint templates using the Rego

language. These templates specify the structure,

parameters, and conditions of the policies to be

enforced. The Rego language provides flexibility to

express complex policies using logical operators,

pattern matching, and iteration.

Creating constraints: Based on the defined

constraint templates, administrators create

constraints that apply specific policies to

Kubernetes resources. Constraints define the

desired state and properties that resources must

conform to. They are associated with constraint

templates and are evaluated during admission

control.

Evaluating admission control: When a resource

creation or modification request is made to the

Kubernetes API server, the OPA Gatekeeper

Step 4.

controller intercepts the request as part of the

admission control process. It evaluates the

resource against the defined constraints using the

OPA server. If the resource violates any policies,

then the request is rejected and the resource is not

created or modified.

Continuously enforcing policy: OPA Gatekeeper

provides continuous policy enforcement by

ensuring that resources remain compliant even

after they are admitted. It periodically reevaluates

existing resources against the defined policies,

detecting and alerting any policy violations or

drifts.

Open Web Application Security

Project (OWASP)

The Open Web Application Security Project (OWASP) is a

widely recognized nonprofit organization that focuses on

improving the security of software applications.

OWASP provides a wealth of knowledge and resources to

help organizations identify and address common security

vulnerabilities in web applications and APIs. Its flagship

project, the OWASP Top Ten, highlights the most critical

security risks applications face. The OWASP community

actively develops tools, guides, and best practices to help

organizations build secure software.

Kubernetes introduces unique security challenges that

organizations must address to ensure their containerized

applications’ integrity and confidentiality. In a cloud native

environment powered by Kubernetes, containers

themselves must be properly secured. Organizations should

ensure that container images are free from vulnerabilities

and adhere to secure coding practices. OWASP guides

secure container development and the use of secure base

images.

Properly configuring Kubernetes clusters is critical for

maintaining security as well. Misconfigured clusters can

lead to unauthorized access, data breaches, and other

security incidents. Organizations should follow Kubernetes

security best practices, such as implementing strong

authentication and authorization mechanisms, enabling

encryption, and restricting access to sensitive resources.

OWASP guidance on secure network design can be

applied to Kubernetes environments as well. This is because

Kubernetes networking introduces additional challenges in

securing communication between pods, services, and

external resources. OWASP provides guidance in using

network policies, ingress controllers, and secure

communication protocols, such as Transport Layer Security

(TLS), that are recommended to protect network traffic.

Similarly, OWASP recommendations on secure key

management can be applied to Kubernetes secrets and

other sensitive data. Managing sensitive information such

as API keys, passwords, and certificates is crucial in

Kubernetes. Organizations should follow the best secure

secret management practices, including proper encryption,

restricted access, and secure storage mechanisms.

Leveraging OWASP Best Practices on OKE

Some of the best practices and resources available to

leverage OWASP guidance for OKE clusters include the

following:

OWASP Top Ten: The OWASP Top Ten list of common

vulnerabilities and corresponding mitigation techniques

(https://owasp.org/www-project-kubernetes-top-ten/)12 is

a valuable resource in securing web applications.

Although Kubernetes is not a web application, many

https://owasp.org/www-project-kubernetes-top-ten/

security risks identified by OWASP, such as injection

attacks, broken authentication, and insecure access

control, are still relevant in Kubernetes deployments.

Organizations should review the OWASP Top Ten and

apply relevant mitigations to their Kubernetes

environments.

OWASP Secure Coding Practices: OWASP provides a

comprehensive set of secure coding practices that can

be applied to containerized applications running on OKE.

These practices cover areas such as input validation,

output encoding, access control, and error handling.

Adhering to these practices helps reduce the risk of

common application-level vulnerabilities. Secure Coding

Practices extend to OCI SDK usage with access to the

infrastructure services.

OWASP tools and libraries: OWASP offers a range of

security tools and libraries that can be integrated into

the CI/CD pipeline and runtime environment of

Kubernetes applications. For example, tools such as

OWASP Zed Attack Proxy (ZAP) can be used to perform

security testing on containerized applications during

development and deployment.

Continuous security testing and monitoring: In

addition to applying OWASP best practices,

organizations should implement continuous security

testing and monitoring in their Kubernetes

environments. This includes vulnerability scanning of

container images, runtime monitoring of cluster

activities, and regular security assessments. The OWASP

toolset provides several resources for security testing,

including dependency checkers, vulnerability scanners,

and secure code analysis tools. This chapter covered

many resources integrated into the OWASP toolset and

practices.

Supporting Tools

This section describes tools that were tested on OKE and

can support the security activities and your DevSecOps

strategy.

External Container Scanning Tools

Several tools are available for Kubernetes container

scanning. These are some popular open-source tools:

Trivy: Trivy is an open-source vulnerability scanner for

containers. It can scan container images for

vulnerabilities and generate a report. Trivy can be

integrated with Kubernetes and can scan containers in a

Kubernetes cluster.

Anchore: Anchore is an open-source container image

analysis tool. It can scan container images for

vulnerabilities, configuration issues, and policy

violations. Anchore can be integrated with Kubernetes

and can be used to scan containers in a Kubernetes

cluster.

Clair: Clair is an open-source vulnerability scanner for

containers. It can scan container images for

vulnerabilities and generate a report. Clair can be

integrated with Kubernetes and can be used to scan

containers in a Kubernetes cluster.

Aqua Security: Aqua Security provides a

comprehensive container security platform, including

container scanning, runtime protection, and compliance

monitoring. Aqua Security can be integrated with

Kubernetes and can be used to scan containers in a

Kubernetes cluster.

Step 1.

Step 2.

Step 3.

CIS-CAT Pro Assessor

CIS-CAT Pro Assessor is a tool developed by the Center for

Internet Security that automates assessing the security

configurations of various technologies, including Kubernetes

clusters. It uses CIS Benchmarks, consensus-based

guidelines that provide recommendations for secure system

configurations. Using CIS-CAT Pro Assessor, organizations

can identify vulnerabilities, misconfigurations, and security

weaknesses within their Kubernetes environments.

To leverage the advanced capabilities of CIS-CAT Pro

Assessor with Kubernetes Benchmarks, follow these steps:

Download CIS-CAT Pro Assessor: CIS-CAT Pro

Assessor is a commercial tool that can be obtained

from the Center for Internet Security. After

acquiring the tool, follow the installation

instructions provided by CIS.

Obtain the Kubernetes Benchmarks: Download

the CIS Kubernetes Benchmarks from the CIS

website. The benchmarks are available in various

formats, including YAML and JSON. Make sure you

obtain the Oracle Cloud Infrastructure Container

Engine for Kubernetes (OKE) Benchmark.

Configure CIS-CAT Pro Assessor: When CIS-CAT

Pro Assessor is installed, you need to configure it to

work with Kubernetes Benchmarks. This involves

specifying the location of the benchmark files and

setting up any required parameters or options. The

configuration file should contain information about

your Kubernetes deployment, such as the API

server URL, authentication credentials, and the

location of the Kubernetes configuration file. OKE

kubeconfig needs the oci-cli to be installed and

configured for the same tenancy of the cluster, or

Step 4.

using the --profile parameter if more than one

profile is on the same machine.

Run the assessment: Launch CIS-CAT Pro

Assessor and initiate the assessment process by

providing the necessary inputs, such as the target

Kubernetes cluster information. The tool

automatically evaluates the cluster’s security

configurations against the CIS Kubernetes

Benchmark. You can run the assessment using the

command line or the graphical user interface (GUI),

as shown in Figure 6-23.

Figure 6-23 CIS-CAT Pro Assessor GUI

Step 5.

Listing 6-11 provides an example of running the

assessment using the CIS-CAT CLI using OKE Benchmark.

Listing 6-11 CIS-CAT CLI: Using the OKE Benchmark

Click here to view code image

./Assessor-CLI.sh -b benchmarks/CIS_Oracle_Cloud_Infrastructure_Co

 for_Kubernetes(OKE)_Benchmark_v1.3.0-xccdf.xml

Listing 6-12 provides an example of running the

assessment using the CIS-CAT CLI using a custom

configuration file.

Listing 6-12 CIS-CAT: Using Custom Configuration File

Click here to view code image

./Assessor-CLI.sh --config-xml /CIS/kubernetes_assessment-configur

Review the assessment results: CIS-CAT Pro

Assessor generates a comprehensive report

highlighting deviations from the recommended

configurations outlined in the Kubernetes

Benchmark (see Figure 6-24). Carefully review the

report to identify areas that require attention or

remediation.

Figure 6-24 CIS-CAT Pro Assessor Report

kube-bench

kube-bench is a security auditing tool developed by Aqua

Security. It automates checking Kubernetes configurations

against the CIS Kubernetes Benchmark. This benchmark

provides a comprehensive set of best practices for securing

Kubernetes deployments.

After running all the checks, kube-bench gives you a

formatted output of FAIL, WARN, and PASS benchmarks. It

supports various output formats, including console, JSON,

and JUnit XML, making it easy to integrate with other tools

and systems. Figure 6-25 illustrates the log report of the

Kubernetes job executed by kube-bench against the OKE.

Figure 6-25 kube-bench Log Report from the

Kubernetes Job Execution

Using kube-bench with OKE requires you to have cluster-

admin access; you also must have deployed the provided

job.yaml or installed the kube-bench CLI.

To deploy as a job using the generic Kubernetes

Benchmark, run the following commands:

kubectl apply -f job.yaml

You can monitor the job’s progress:

Click here to view code image

kubectl logs -f job/kube-bench

Additionally, you can retrieve the job’s results:

Click here to view code image

kubectl logs job/kube-bench > kube-bench-results.txt

Running kube-bench using the CLI is simple as well:

kube-bench run --targets node

You can find the configurations for OKE in the book’s

GitHub repository.

-- oke-1.4.0

 |-- config.yaml

 |-- controlplane.yaml

 |-- managedservices.yaml

 |-- master.yaml

 |-- node.yaml

 '-- policies.yaml

To include an OKE-specific benchmark, download the OKE

benchmark from the book’s GitHub repository, copy it to the

kube-bench/cfg directory, and run the following command:

Click here to view code image

kube-bench run --benchmark oke-1.4.0

kube-bench provides detailed results indicating the

compliance status of each check in the CIS Kubernetes

Benchmark. It highlights failed or skipped checks, enabling

you to identify potential security vulnerabilities or

misconfigurations. Analyze the results carefully, taking

appropriate actions to remediate any security issues

discovered.

AppArmor

AppArmor is an alternative Linux Security Module (LSM) to

SELinux. Support for it has been incorporated in the Linux

kernel since 2006. It has been used by Oracle Linux, SUSE,

Ubuntu, and other distributions. AppArmor supplements the

traditional UNIX discretionary access control (DAC) model by

providing mandatory access control (MAC). In addition to

manually specifying profiles, AppArmor includes a learning

mode, in which violations of the profile are logged but not

prevented. This log can then be turned into a profile, based

on the program’s typical behavior.

Consider some AppArmor facts:

It allows administrators to associate a security profile to

a program that restricts its capabilities

It is sometimes considered easier to use than SELinux

It is considered filesystem neutral (no security labels

required)

For an AppArmor profile to be used by a pod, it must be

available on the node where it is assigned. There is no

native process for Kubernetes to load policies. As a result,

you need to ensure that policies are loaded on every node

where AppArmor-required pods are scheduled and that the

scheduler is unaware of which nodes have profiles. Adding

profiles can be done during node installation with a tool

such as Ansible or Puppet, at least for some of the nodes. If

only some nodes will have profiles installed, you can use a

NodeSelector or a taint to ensure that the scheduler

chooses the appropriate node. Another solution is to deploy

a DaemonSet and allow the pod to modify the host and add

profiles. This would assign the responsibility to the cluster

administrators, if they are different from the administrators

responsible for operating system configuration and security.

If you need to disable AppArmor on the entire cluster

(perhaps to troubleshoot), you pass the --feature-

gates=AppArmor=false option.

AppArmor has several administrative utilities for

monitoring and control (see Table 6-1).

Table 6-1 AppArmor Administrative Utilities

Program Use

apparmor_status Shows the status of all profiles and

processes with profiles.

apparmor_notify Shows a summary for AppArmor log

messages.

complain Sets a specified profile to complain

mode.

enforce Sets a specified profile to enforce

mode.

disable Unloads a specified profile from the

current kernel and prevents it from

being loaded upon system startup.

logprof Scans the log file and suggests

modifications to augment the existing

profile if there are new AppArmor

events that are not covered by it. If

AppArmor is running, the updated

profiles are reloaded and processes are

set to run under their proper profiles.

easyprof Helps set up a basic AppArmor profile

for a program.

On an Oracle Linux system, AppArmor has the following

monitoring and controlling utilities:

Click here to view code image

 $ rpm -qil apparmor-utils | grep bin

/usr/bin/aa-easyprof

/usr/sbin/aa-audit

/usr/sbin/aa-autodep

/usr/sbin/aa-cleanprof

/usr/sbin/aa-complain

/usr/sbin/aa-decode

/usr/sbin/aa-disable

/usr/sbin/aa-enforce

/usr/sbin/aa-genprof

/usr/sbin/aa-logprof

/usr/sbin/aa-notify

/usr/sbin/aa-remove-unknown

/usr/sbin/aa-status

...

/usr/sbin/complain

/usr/sbin/decode

/usr/sbin/disable

/usr/sbin/enforce

Note that many of these utilities can be invoked with

either their short or long names:

Click here to view code image

 opc:/etc/apparmor.d > ls -l /usr/sbin/*complain

-rwxr-xr-x 1 root root 1442 Jan 25 07:37 /usr/sbin/aa-complain*

lrwxrwxrwx 1 root root 11 Feb 11 13:02 /usr/sbin/complain -> aa-

Falco

Falco is a container runtime security tool that deploys to

your cluster and starts gathering data for analysis in real

time. Falco runs a set of rules against this constant stream

of data and raises alerts when the rules detect an event.

Falco is deployed to a Kubernetes cluster as a DaemonSet,

ensuring that it runs on all nodes. From here, it can start

instrumenting system calls, Kubernetes audit logs, and

other data sources. Falco can correlate the data from these

multiple sources to create a more complete picture of the

events in your environment. The capability to instrument

system calls is what makes Falco interesting; the Linux

system calls power basically everything from opening a file

to sending a packet of data to a network device. This means

that malicious attackers have to use system calls even if

they manage to circumvent other security precautions.

Instrumenting system calls can be challenging because they

are so pervasive in the normal functioning of the OS; adding

instrumentation can negatively affect the system

performance. To instrument system calls efficiently, Falco

offers a kernel module that is very performant or an eBPF

probe for systems that can use eBPF. Figure 6-26 illustrates

the high-level architecture for Falco.

Figure 6-26 Architecture Diagram for Falco

Tracee

Tracee is a tool that allows for the real-time monitoring of

system calls and kernel events. Although all actions are

traced, you can grep through the output to narrow it to a

particular pod. The information shown has a precise time

stamp, uts_name, UID, PID, return code, event, and

arguments. For Tracee to run, you need to provide at least

three volume locations with the -v option for the kernel

information to be pulled (such as /lib/modules/ and /usr/src),

as well as ephemeral information such as /tmp/tracee. Many

options are available for working with the traced

information, such as capturing data that a container writes

to disk or memory, for further investigation, as well as

extracting binaries from a container. All of these features

allow Tracee to provide in-depth tracing of an entire

container or pod. Although Clair uses alpine-secdb (which

covers back-ported fixes), it is not complete—it might have

half as many issues as are currently discovered.

Trivy

Trivy is a simple and comprehensive vulnerability scanner

for containers. Each time Trivy is run, it retrieves a more

complete list of vulnerabilities (vuln-list) to analyze.

Because this list is downloaded from Alpine Linux, it is most

complete when analyzing Alpine and RHEL/CentOS. In a

large environment, you might want to set up your own

server of the vuln-list, and then use Trivy in client mode and

pass the address and port of the server. This does not

download the database; instead, it references the common

one on the server. This approach also helps in an air-gapped

environment, where you can download the list on an

external system, check the contents, and manually install

the list on a protected server. Another reason Trivy might be

a more accurate scanner in finding issues is that it checks

the middle layers of an image to find the version of the

static linking library. Several continuous integration (CI)

tools have easy-to-use integration files for using Trivy in a

CI/CD pipeline.

National Institute of Standards and

Technology (NIST) Kubernetes

Benchmarks

The National Institute of Standards and Technology (NIST)

has developed Kubernetes Benchmarks, a comprehensive

set of guidelines and best practices to ensure the secure

deployment and operation of Kubernetes clusters. This

section explores the key components of the NIST Kubernetes

Benchmarks and discusses how organizations can leverage

them to enhance their Kubernetes security posture.

Staying informed about security threats requires reading

numerous publications. To start, check out the Federal

Information Processing Standard (FIPS) and visit the

Computer Security Resource Center Publications web page

for standards, special publications, research reports, and

more.13

The vast amount of information can be overwhelming, so

consider using the Cybersecurity Framework (CSF) to

organize security into five activities: identify, protect,

detect, respond, and recover.

By breaking down cybersecurity into manageable

activities and categories, you can focus on the most

important information for your current role and expand your

knowledge over time.

NIST Kubernetes Benchmarks

The Kubernetes Benchmarks provided by NIST are a

valuable resource for organizations looking to secure their

Kubernetes deployments. They offer a systematic approach

to assess and validate the security configurations and

controls within a Kubernetes environment. The benchmarks

cover various aspects of Kubernetes security, including

authentication, authorization, network policies, and logging.

By adhering to these benchmarks, organizations can reduce

the risk of security incidents, enhance their ability to detect

and respond to threats, and maintain compliance with

relevant industry standards and regulations.

Configuration and hardening guidelines: One of the

fundamental aspects of Kubernetes security involves

ensuring the proper configuration and hardening of the

cluster components. The NIST Kubernetes Benchmarks

provide detailed recommendations for securing the

Kubernetes control plane, worker nodes, and associated

resources. These guidelines include recommendations

for securing the Kubernetes API server, restricting

privileged access, enabling secure communication

channels, configuring pod security policies, and

implementing network segmentation.

Authentication and authorization controls:

Authentication and authorization mechanisms ensure

that only authorized entities can access and operate

within a Kubernetes cluster. The Kubernetes

Benchmarks outline best practices for implementing

strong authentication mechanisms, such as mutual TLS

authentication, integration with external identity

providers, and the enforcement of secure password

policies. Additionally, the benchmarks provide guidance

on implementing fine-grained authorization controls

using Kubernetes role-based access control (RBAC) and

other relevant mechanisms.

Network policies and segmentation: Effective

network policies and segmentation are essential for

isolating workloads, preventing lateral movement within

a cluster, and protecting sensitive data. The Kubernetes

Benchmarks provide recommendations for defining

network policies that restrict traffic flows between pods

and namespaces, implementing network segmentation

through the use of network plug-ins, and enabling

encrypted communication between components using

Transport Layer Security (TLS).

Logging and monitoring: Comprehensive logging and

monitoring are crucial for detecting and investigating

security incidents within a Kubernetes cluster. The

benchmarks highlight the importance of configuring

centralized logging for Kubernetes components,

capturing relevant log events, and retaining logs for an

appropriate duration. Additionally, the benchmarks

emphasize the implementation of robust monitoring

solutions that can provide real-time visibility into the

cluster’s security posture and facilitate timely incident

response.

Implementing Kubernetes Benchmarks:

Organizations should adopt a systematic approach to

effectively implement the NIST Kubernetes Benchmarks.

This involves performing a security assessment of the

Kubernetes cluster against the benchmark

recommendations, identifying areas of noncompliance

or potential vulnerabilities, and remediating them

accordingly. Organizations can leverage various tools

and technologies to automate the assessment process

and continuously monitor their Kubernetes environment

for compliance deviations or security incidents.

National Checklist Program

Repository

The National Checklist Program (NCP), defined by the NIST

SP 800-70 Rev. 4, is the U.S. government repository of

publicly available security checklists (or benchmarks) that

provide detailed low-level guidance on setting the security

configuration of operating systems and applications.14 NCP

provides guidance on secure configuration and vulnerability

assessments for various operating systems and

applications, including Kubernetes and operating systems

used by the containers.

National Vulnerability Database

The National Vulnerability Database (NVD) is a resource

offered by the National Institute of Standards and

Technology (NIST), a physical sciences laboratory run by the

U.S. government. NIST also manages the Computer Security

Resource Center (CSRC), which provides access to

documents such as Federal Information Processing

Standards (FIPS) and Special Publications (SP). The NVD

contains a wealth of information, including checklists for

compliance, known issues, and specialized vulnerabilities.15

NIST SP 800-190 Application

Container Security Guide

The NIST SP 800-190 Application Container Security Guide

provides an overview of containers and their security

challenges. It also provides recommendations for securing

container-based applications throughout the entire

application lifecycle.16

Summary

Security is such a pervasive and multifaceted topic that

entire books have been dedicated to it. This chapter merely

scratched the surface of security practices in a cloud native

environment. To start, you looked at the 4Cs of cloud native

security and examined the various security controls,

features, and best practices for securing your workloads and

infrastructure. You explored several security controls

services and features offered by Oracle Cloud Infrastructure.

You worked your way through the various layers, including

cluster-level security controls, containers, and container

supply chain security, and you looked at best practices and

tools to ensure secure coding. You also examined several

third-party and open-source tools that are popular in the

cloud native community for implementing security best

practices and ensuring a good security posture.

References

1 Secrets Store CSI Driver Provider for OCI Vault:

https://github.com/oracle/oci-secrets-store-csi-driver-

provider/blob/main/GettingStarted.md

2 Master Encryption Keys in Other Tenancies:

https://docs.oracle.com/en-

us/iaas/Content/ContEng/Tasks/contengencryptingdata.h

tm#contengencryptingdata_topic_Encryption_keys_in_ot

her_tenancies

3 Audit events: https://cloud.oracle.com/audit/events

4 Audit logs: https://cloud.oracle.com/logging/audit

5 LoadBalancer: https://cloud.oracle.com/load-

balancer/load-balancers

6 WAF edge policies: https://cloud.oracle.com/waf/policies

https://github.com/oracle/oci-secrets-store-csi-driver-provider/blob/main/GettingStarted.md
https://docs.oracle.com/en-us/iaas/Content/ContEng/Tasks/contengencryptingdata.htm#contengencryptingdata_topic_Encryption_keys_in_other_tenancies
https://cloud.oracle.com/audit/events
https://cloud.oracle.com/logging/audit
https://cloud.oracle.com/load-balancer/load-balancers
https://cloud.oracle.com/waf/policies

7 Snyk.io (https://snyk.io/): https://github.com/oracle-

quickstart/oke-snyk

8 Sysdig.com (https://sysdig.com/)8:

https://github.com/oracle-quickstart/oke-sysdig

9 Kubernetes CIS Benchmark:

https://www.cisecurity.org/benchmark/kubernetes

10 securityContext Options:

https://kubernetes.io/docs/reference/kubernetes-

api/workload-resources/pod-v1/#security-context-1

11 Supported admission controllers:

https://docs.oracle.com/en-

us/iaas/Content/ContEng/Reference/contengadmissionco

ntrollers.htm

12 OWASP Top Ten reference: https://owasp.org/www-

project-kubernetes-top-ten/

13 NIST Computer Security Resource Center:

https://csrc.nist.gov/publications

14 National Checklist Program (NCP):

https://nvd.nist.gov/ncp/repository

15 National Vulnerability Database (NVD):

https://nvd.nist.gov/

16 NIST SP 800-190 Application Container Security Guide:

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIS

T.SP.800-190.pdf

https://snyk.io/
https://github.com/oracle-quickstart/oke-snyk
https://sysdig.com/
https://github.com/oracle-quickstart/oke-sysdig
https://www.cisecurity.org/benchmark/kubernetes
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#security-context-1
https://docs.oracle.com/en-us/iaas/Content/ContEng/Reference/contengadmissioncontrollers.htm
https://owasp.org/www-project-kubernetes-top-ten/
https://csrc.nist.gov/publications
https://nvd.nist.gov/ncp/repository
https://nvd.nist.gov/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf

7

Serverless Platforms and

Applications

Serverless platforms enable users to focus more on the

applications they build than on infrastructure management.

In this sense, the word serverless is a misnomer because

serverless applications still require a server infrastructure to

run. However, the servers on which applications run and the

management of these servers generally are abstracted from

developers by the cloud infrastructure provider. The rise of

serverless platforms can be seen as a direct result of cloud

adoption, in many cases. Applications are increasingly

adopting cloud native design principles such as automation,

immutability, and observability to take advantage of the

elasticity, resilience, and cost advantages offered by public

cloud providers. Developers thus can offload most of the

infrastructure management to the cloud provider itself. This

means that challenges that previously required custom

solutions, such as scaling a system based on application

metrics, can now be fully handed over to a cloud provider.

For new applications, this often delivers a significant

reduction in the time it takes to bring it to production:

Teams no longer need an initial infrastructure setup that can

potentially delay the start; the process of owning and

operating the application also becomes significantly simpler,

with no infrastructure management activity such as

patching and updating servers.

The term serverless stretches across a wide range of

services with varying degrees of capabilities. The term also

can vary in meaning depending on how infrastructure is

abstracted from developers. Some approaches require

developers to use specific libraries and packaging methods;

other approaches impose a lesser burden on the application

development and packaging. The level of management and

control that various platforms offer over the infrastructure

can also differ. Some platforms autonomously manage

scalability, and others let developers assign a guaranteed

set of resources to their applications, with more control over

scaling and cost management. Ultimately, these differences

offer a choice to developers in building applications so that

they can use the tools and processes that offer the right

level of control and agility.

Container Instances

Container Instances in Oracle Cloud Infrastructure (OCI)

offers a streamlined way of running application containers.

At its core, Container Instances offer a simple and secure

way to quickly launch containerized workloads on OCI,

without the need to plan and manage servers or other

infrastructure. The service manages the provisioning,

lifecycle, patching, and upgrades for the infrastructure,

allowing users to focus on application development.

Compared to the alternative (in which a compute instance is

spun up, a container runtime is installed, and then its

lifecycle is managed through scaling and patching),

Container Instances offer a faster path for deploying

existing container workloads without modification and then

operating them without infrastructure management

overhead.

The experience for creating a container instance is

simple: The user picks the number of CPU cores and

memory, along with the container images that the user

wants to run. Advanced controls throttle individual

containers within a container instance, manage graceful

container termination, provide environment variables, and

override start-up parameters for the containers that users

want to run. Container images can be pulled from any

container image registry, including the OCI Container Image

Registry (OCIR), and third-party registries such as ghcr.io,

quay.io, and DockerHub, among others. When a container

instance is launched, it can be allocated public or private IP

addresses, and the application can be exposed to users. The

Container Instances service also provides logging and

monitoring capabilities out of the box. All infrastructure

management, including patching and upgrades, is handled

by the service transparently, without any burden on the

user or the workload.

Architecture

A container instance is an OCI resource similar to a compute

VM that is fine-tuned to run containerized applications.

Container instances offer hypervisor-level isolation between

each other and can support multiple containers within a

given container instance. Within a container instance, the

containers can interact with each other, similar to

containers in a Kubernetes pod. Containers can

communicate with each other over the loopback interface

and 127.0.0.1, and they can share ephemeral storage. The

strong isolation between container instances that this

architecture provides can even protect workloads from

being compromised by potential container escape

vulnerabilities. A malicious user that escapes a container

has visibility to the other containers within the container

instance but is isolated from other container instances at

the hypervisor level, thus limiting the attack vectors. Figure

7-1 illustrates the architecture for container instances.

Figure 7-1 Container Instances Offer Strong Isolation

Without Infrastructure Overhead

Using Container Instances

When you launch a container instance, you can choose

several parameters that control how the container instance

behaves and reacts to events. In addition to choosing the

name for the container instance, you can choose the

number of OCPUs and memory to allocate to the container

instance. This compute capacity is shared among all

containers in the container instance, but the service also

offers the capability to throttle resources allocated to each

container so that a single container cannot hog the resource

in the container instance. You can also select the networking

properties for the container instance, including the subnets,

NSGs, and more. If you allocate a public IP address to the

container instance, the instance can be reachable from the

Internet, as long as the NSG rules or security lists allow

traffic and as long as an application within one of the

containers in the container instance is listening on an open

port.

Container instances support setting a restart policy. This

is important because the containers in a container instance

are not managed by a container orchestration tool such as

Kubernetes. The restart policy for the container instance

determines how container exits within the container

instance are handled. A restart policy of Always restarts an

exited container always, and this is a good choice for

services that you always want running, such as a web

server or a database. On the other hand, a container that

just performs some one-time activity is generally expected

to exit once the job is done, and these can choose a restart

policy of Never. The choice of OnFailure is appropriate for

containers that you expect to exit, but with an exit code of

0; this setting restarts the container if it exits with a nonzero

exit code.

Container instances can also be configured with a

graceful shutdown timeout. This value determines how long

the service will wait for a container inside a container

instance to exit before forcibly killing the container after the

container instance has received a termination request. This

is important for application containers that might be holding

external resources, such as database connections, and need

to clean up before exiting. When you terminate a container

instance, the container instance terminates the containers,

which gives containers a way to clean up before exiting. The

container instance then waits for the duration set for the

graceful shutdown before forcibly terminating it. Figure 7-2

shows the restart policy and graceful shutdown time period.

Figure 7-2 Container Instances Offer a Restart Policy

That Manages How Containers Within the Container

Instance Are Restarted

A container instance can run multiple containers within it,

and each of these containers can also be configured

independently. These options include the capability to

throttle resources per container, overriding the container

image’s startup options and setting the environment

variables for the container. An example can help in

examining these settings.

Imagine that you are deploying an application that is

accompanied by a sidecar container that exports logs from

the application to an external datastore. You assume that

the application is following standard best practices for

configuring the application using environment variables and

externalized configuration. You start by creating the

container instance and choosing the desired amount of

OCPUs and memory for all containers that you plan to place

within the container instance. After you choose the

network’s configuration and, optionally, the restart policy,

you can choose the containers that you want to place in the

container instance (see Figure 7-3). The container image for

each container can be from a different repository; OCIR is

the default option; however, there is support for any

external or third-party registry.

Figure 7-3 Container Images Can Be Sourced from the

Oracle Container Image Registry (OCIR) or Any External

Registry

After you choose the image, you can configure it. The

example in Figure 7-4 uses a Java application, so here you

can set some application properties and JVM arguments

using the environment variables. Optionally, you can also

enable resource throttling on the instance, which limits the

amount of resources (such as CPU and memory) that a

container can consume from the container instance.

Resource limits can be set using absolute units or

percentages. In the example in Figure 7-4, the CPU usage

for the application container is limited to 75% of what is

available to the container instance.

Figure 7-4 Container Instances Can Throttle Resources

for Each Container Within It, Giving Developers Greater

Control over How Resources Are Allocated Among

Containers

Similarly, you can add a sidecar (say, a fluentd container

from DockerHub) and throttle it to 25% of the CPU. This

configuration for the resource throttling ensures that the

app container does not consume more than 75% of the CPU

and that the fluentd container does not consume more than

25%. Assuming that these are the only containers in the

container instance, this effectively guarantees up to 25% of

the CPU to fluentd and up to 75% of the CPU to the app

container. By default, containers can consume as many

resources as possible; therefore, you could have resource-

throttled only the fluentd container to 25% and left the

application container without any limits. Such a

configuration would limit the fluentd container from

consuming any more than 25% of the CPU, while allowing

the app container to use as much CPU as it needs, without

guaranteeing any fixed quota of CPU for the fluentd

container. Based on application needs, these resource

throttles can be used to optimally allocate resources to the

containers in your container instance.

Configuration for each container also includes overriding

some of the image defaults, such as the working directory,

the command, and the entry point arguments, as illustrated

in Figure 7-5. These parameters correspond to the

respective WorkingDir, Cmd, and Entrypoint configuration

properties in the Open Container Initiative Specification.1

Figure 7-5 Each Container in a Container Instance Can

Be Configured Using Environment Variables and Startup

Options

Serverless Functions

Functions-as-a-Service (FaaS) platforms are the ubiquitous

serverless computing model in which you develop an

application and then deploy and operate it without any

infrastructure management. Functions typically use a

programming model that leverages a software stack that

includes components that are purposely built for integrating

the function with a service that manages the infrastructure

needs and scaling for the application. This enables you to

quickly build highly scalable applications and operate them

purely from the application’s business functionality and

feature needs. This model lets you focus on application

development without factoring in infrastructure

management and thereby enables a drastically faster time

to bring applications to production usage.

As the name indicates, a serverless function typically

models a single action. Functions can be invoked directly or

can be triggered by events. Most cloud platforms have an

events service that provides a mechanism for your

applications or other services to be notified about actions

that occur within a cloud environment. An event service

captures metadata about the occurrence of an action in the

environment (say, a file being uploaded to an object storage

bucket) and delivers the event to any service or application

that is subscribing to it. Functions are commonly written to

respond to events, as in the aforementioned example in

which a file is being uploaded to an object storage bucket

and now can be read by the function to perform some data

processing. Functions and events can be chained together

to create complex flows of data that are triggered by

various events. This allows for the creation of an elastic and

reactive system that springs into action when it needs to.

Because the operational infrastructure for functions is

abstracted away from the user and usually managed by a

cloud provider, these platforms can optimize the resource

usage by automatically scaling the resources for function

invocations. Functions can be spun up when they are

invoked, scaled up to meet demand peaks, and scaled down

when they are no longer being invoked. Therefore, functions

do not always need a running process because they are

instantiated and scaled based on actual usage or

invocations.

Functions also typically enforce the use of a prescriptive

programming model, an SDK, or libraries that coordinate

and manage the lifecycle of the function from the cloud

service. These models can also place requirements and take

an opinionated approach to how functions are developed,

run, and managed. For instance, because most FaaS

platforms abstract infrastructure management, functions

are typically charged by the number of invocations instead

of the usual infrastructure units of billing, such as CPUs.

Functions can use as many CPUs as they need, and scale as

they need, and the user pays for only how many times the

function is invoked. With models like these, platforms can

limit how long a function can run, what programming

languages can be used to build functions, and more. These

choices can also prevent portability of your functions across

cloud providers, causing a gradual vendor lock-in for your

applications. Care should be taken to evaluate the

functions’ platform so that you do not have to sacrifice

portability and productivity to gain the features of a

serverless FaaS platform.

OCI Functions

Oracle Cloud Infrastructure Functions is a fully managed

FaaS platform that is based on the Fn Project open-source

engine. Fn Project is an open-source, container-native,

serverless platform that can be run anywhere—in any cloud

or on-premises. With OCI Functions, you develop your

application in Java, Python, Node, Go, Ruby, and C# using

the Function Development Kit (FDK) and then deploy it to

the platform. Advanced users can also bring their own

Dockerfile or use GraalVM. No infrastructure administration

or software administration is necessary for you to perform.

You do not provision or maintain compute instances, and

operating system software patches and upgrades are

applied automatically. OCI Functions simply ensures that

your app is highly available, scalable, secure, and

monitored. You can then deploy your code, call it directly, or

trigger it in response to events, and get billed only for the

resources consumed during the execution. Figure 7-6

illustrates how the OCI Functions service integrates with

other systems and services to provide a model that

responds to events and other triggers.

Figure 7-6 The Functions Service Integrates with Other

Systems and Can Respond to External Triggers

Using OCI Functions

An application is the most fundamental resource you create

when you start working with OCI Functions. An application

resource can be considered as a logical container for

grouping functions. An application can have multiple

functions inside it. Functions within an application can share

configuration variables and resources, which are allocated

to the application. For instance, networking resources, such

as subnets to run the functions in, and the logging

configurations for functions are configured at the application

level when defining the application. When functions from

different applications are invoked simultaneously, the

application construct acts as the isolation boundary,

ensuring that the functions are executed in isolation from

each other. Ideally, similar and closely related functions

should be grouped into a single application, for better

efficiency and performance.

The function itself is a piece of code that you write using

the Functions FDK. This code is built and packaged as a

container image. When working with the OCI Functions

service, developers can use the Fn CLI tool or the OCI Code

Editor built into the OCI Console to generate the scaffolding

for your functions code, build your function, deploy it to OCI,

and manage the lifecycle of the function. The OCI Cloud

Shell also comes with the Fn CLI preinstalled, if you need to

experience it without installing and setting up a local

development environment. Each function is part of an

application and contains metadata that is stored on the OCI

Functions service that tells the service how to create the

execution environment for the function and execute it.

To create an OCI function, you start by creating a new

application or choosing an existing application within which

to create the new function. Then the function is created

using the CLI or the OCI Code Editor. Creating the function

includes generating the code scaffolding and the function

metadata. Figure 7-7 shows the scaffold generated within

the OCI Code Editor.

Figure 7-7 The Code Editor in the OCI Console Comes

Preconfigured with Plug-ins for Functions That Can

Generate Code Scaffolding and Deploy Functions

The OCI Functions tooling also enables you to customize

the scaffolding it creates for you, such as using your own

Dockerfile to build the final container image or using your

own custom image to base the function on. When you have

generated the scaffold and written the code to accomplish

the task you want your function to perform, you can deploy

the function. Deploying the function using the tooling

provided by OCI Functions will build your code, package it

as a container image, and push the container image to the

image repository. This deployment process also pushes the

function metadata to the OCI Functions service, which

identifies the image to use for the function, and properties

for the function, such as the version of the function and the

runtime. After the function is deployed, it can be invoked

directly or in response to events. In most circumstances,

functions are invoked in response to a cloud event. The OCI

Functions service manages the lifecycle of the infrastructure

used for function invocations and scales it up or down in

real time, based on invocations. After a function has been

deployed, you can gather metrics and other observability

data from it, as well as manage the lifecycle and security

controls for it. Figure 7-8 outlines the overall process.

Figure 7-8 The High-Level Developer Workflow for

Building and Deploying OCI Functions

Building Your First Function

To get started with OCI Functions, you first create an

Application. This is easily done though the console, by

choosing a name for your application, the VCN, and the

subnet to use for the function (see Figure 7-9). With an

Application to group your functions, you can now start with

creating your first function.

Figure 7-9 The Basic Configuration Elements for

Creating an Application

The essential prerequisites are the OCI Functions CLI and

a configuration profile for the OCI CLI. The Fn CLI uses the

OCI CLI configuration to authenticate itself with the OCI

Functions service. The OCI Cloud Shell and the OCI Code

Editor both support building functions out of the box; this is

the easiest way to get started with OCI Functions.

Note

You can also configure a local development

environment to use with OCI Functions. The steps

required for this setup are covered in the OCI

Functions documentation.2

Start by opening the OCI Cloud Shell. When using the OCI

Cloud Shell, the Fn CLI is already installed for you. The Fn

CLI configuration is grouped into contexts. A context

specifies the OCI Functions endpoints, the compartment to

which deployed functions will belong, and the container

image registry to use for the functions you build. The OCI

Cloud Shell comes preconfigured with two contexts, a

default context and a region-specific one. The regional

context should be set as the default, to ensure that this

uses the following commands:

Click here to view code image

fn list context # Shows the contexts that are availabl

 # This should show two contexts, with

 # regional context set as the current

fn use context <ctx_name> # Explicitly set the context to the re

Note

These commands can be found on the application’s

Getting Started page, where the relevant OCIDs are

prepopulated for you in a manner that is easy to copy

and paste into the OCI Cloud Shell.

The preconfigured regional context has already set up

the OCI Functions endpoints for the region. You now need to

configure the compartment to which the functions will

belong, as well as the container image registry. To configure

these parameters, use the following commands,

substituting the placeholders for the compartment_ocid and the

image registry prefix:

Click here to view code image

fn update context oracle.compartment-id <compartment_ocid> # sets

 under which functions will be created.

fn update context registry <region_key>.ocir.io/<tenancy-namespace

 prefix]

When you deploy a function, the Fn CLI builds a container

image and pushes the container image to the registry that

is configured. Therefore, you should also log into the

registry. For OCIR, you need to generate an Auth token from

your User Settings page (which is accessed using your

logged-in profile icon on the top right of the screen), which

you can use to log in to your registry.

Click here to view code image

docker login -u '<tenancy-namespace>/<username>' <region_key>.ocir

Note

If you use the Oracle Identity Cloud service to

federate your user account, the username is in the

form <tenancy-

namespace>/oracleidentitycloudservice/<username>.

With the CLI configured, you can now create a function

using the OCI Cloud Shell. On the OCI Functions page,

choose to create a new function in the OCI Code Editor, as

demonstrated in Figure 7-10.

Figure 7-10 Accessing the OCI Code Editor for Creating

a Function

When the OCI Code Editor launches, it walks you through

creating a scaffold for your application. Alternatively, you

can open the OCI Code Editor, navigate to the application

object within the OCI Function plug-in, and create a function

directly from within the OCI Code Editor, as shown in Figure

7-11.

Figure 7-11 The OCI Code Editor Has Built-in Support for

Working with OCI Functions

The OCI Code Editor walks you through a workflow to

start your function. It offers the capability to start from a

template, an existing Git repository, or a sample (see Figure

7-12).

Figure 7-12 The OCI Code Editor Offers Multiple Options

to Bootstrap a New Function

For your first function, you can start from a template and

choose the language you want to develop your function in.

The example in Figure 7-13 shows Python. You are prompted

for the function name, and the OCI Code Editor then

generates a scaffold for the function that you can expand

upon.

Figure 7-13 When Starting from an OCI Functions

Template, You Can Build Your Function Using a Wide

Range of Languages and SDKs

When the scaffold is created, it will have files named

func.yaml, func.py, and requirements.txt. The func.py and the

requirements.txt are part of the scaffold, with starting code

and dependencies. The func.yaml is the function definition. It

looks similar to Listing 7-1.

Listing 7-1 An Example of a Function Definition Generated

by the OCI Code Editor

Click here to view code image

schema_version: 20180708

name: myfunction

version: 0.0.1

runtime: python

build_image: fnproject/python:3.9-dev

run_image: fnproject/python:3.9

entrypoint: /python/bin/fdk /function/func.py handler

memory: 256

This function definition identifies the function and several

of its properties, including the runtime to use, the container

images to use for building the function container, and the

base image for the runtime. It also shows the entry point to

use when the container image is generated and the amount

of memory to request for the function. The OCI Functions

service uses this definition to set up the runtime

environment for the function at execution time.

With the scaffold generated, you can now build and test

the function. The OCI Code Editor offers tools to commit the

generated resources to a Git repository, including public

repositories such as GitHub, and directly use the cloud

editor to deploy and invoke the function. You can also use

the terminal to quickly deploy and test your function using

the Fn CLI. To do this, right-click func.py and choose Open in

Terminal. The terminal window opens in the location where

your function code is located. From here, you can build and

deploy the function to the application in one step using the

command in Listing 7-2.

Listing 7-2 An Example Showing a Function Deployment in

Progress

Click here to view code image

$ fn deploy --app my-application

Deploying myfunction to app: my-application

Bumped to version 0.0.11

Using Container engine docker to push

Pushing iad.ocir.io/xxxxxxxxx/functions/myfunction:0.0.11 to docke

 The push refers to repository [iad.ocir.io/xxxxxxxxx/functions/m

466fd30b96ba: Pushed

7464153686f5: Pushed

3ffc4f8259bf: Pushed

7656fdef3d98: Pushed

23ca6a735cc7: Layer already exists

b939f13c738d: Layer already exists

606f5e26329f: Layer already exists

0.0.11: digest: sha256:01e409b27ddb01c810fbe705b541dbfb6142485eabc

 40cc2 size: 1781

Updating function myfunction using image iad.ocir.io/xxxxxxxxx/fun

 myfunction:0.0.11...

When the function is deployed, you can invoke it. On the

OCI Functions page in the console, you can see the invoke

endpoint (see Figure 7-14).

Figure 7-14 The OCI Console Displays the Invoke

Endpoint for a Function After It Has Been Deployed

To invoke a function directly using the invoke endpoint,

you need to sign your requests. This authenticates the

request with your identity. The most common way to do this

is to use the raw-request feature of the OCI CLI. This enables

you to use the OCI CLI to directly send requests to OCI

resources such as your function, and the OCI CLI will handle

the request signing. To use this to invoke the function

directly, use the command in Listing 7-3. The example here

shows a POST request because the default scaffolding code

generated by the OCI Code Editor can parse a JSON request

body, if one is provided. Listing 7-3 shows the typical

response.

Listing 7-3 An Example of How to Invoke a Function

Manually Using the OCI CLI

Click here to view code image

$ oci raw-request --http-method POST --target-uri <invoke_endpoin

 body '{"name":"user"}'

{

 "data": {

 "message": "Hello user"

 },

 "headers": {

 "Content-Length": "25",

 "Content-Type": "application/json",

 "Date": "Tue, 14 Mar 2023 04:53:57 GMT",

 "Fn-Call-Id": "01GVF7FGZB1BT0S38ZJ00E8QXM",

 "Fn-Fdk-Runtime": "python/3.9.13 final",

 "Fn-Fdk-Version": "fdk-python/0.1.51",

 "Opc-Request-Id": "21D2172E020D43EFB212A3EB4B15A02E/xxxxxxxxxx

 xxxxxxxxxxxxxxxx"

 },

 "status": "200 OK"

}

When a function is invoked for the first time, the OCI

Functions service pulls the function’s container image from

the specified container registry, runs it as a container, and

executes the function. If there are subsequent requests to

the same function, OCI Functions directs those requests to

the same container. If there are concurrent requests to the

function, the OCI Functions service creates more containers,

as needed, to scale up; after a period of being idle, the

containers are scaled down as well.

To prevent the initial delay in serving a function call, you

can also set up provisioned concurrency. Provisioned

concurrency is a feature of OCI Functions by which the

service always maintains the execution infrastructure for at

least a certain minimum number of concurrent function

invocations. Enabling provisioned concurrency ensures that

your functions will have sub-second latencies from the very

first invocation.

Adding an API Gateway

In most situations, the function endpoints are not directly

exposed to external users. Instead, the function is wrapped

by an API Gateway to provide some API shaping and control.

Step 1.

Step 3.

Step 5.

Step 6.

Step 7.

Step 8.

Step 2.

Step 4.

The quickest way to create a gateway is through the OCI

console, as shown here:

Click Developer Services -> API Gateway from

the sidebar on the left.

Click the Create Gateway button.

Enter the following values (you can use a different

name if you’d like):

Name: function-gateway

Type: Public

Virtual Cloud Network: Pick one from the

dropdown

Subnet: Pick the subnet from the dropdown

Click Create.

When the gateway is created, click the

Deployments link from the sidebar on the left.

Under Deployments, click the Create Deployment

button. Make sure the From Scratch option is

selected at the top, and enter the following values

(you can leave the other values as they are—no

need to enable CORS, Authentication, or Rate

Limiting):

Name: functions

Path prefix: /functions

Compartment:

API Logging Policies: Information

Click Next to define authentication, and choose No

Authentication.

Click Next to define the route. Enter the following

values for Route 1:

Path: /my-function

Step 9.

Step 10.

Methods: POST

Type: Oracle Functions

Application: my-application (or other, if you used

a different name)

Function name: myfunction

Click Next and review the deployment.

Click Create to create the gateway deployment.

When deployment completes, navigate to it to

get the URL for the gateway. Click the Show link next to the

Endpoint label to reveal the full URL for the deployment. It

should look like this:

Click here to view code image

https://j2fd2x25qkrtupcrtxvienbywy.apigateway.us-ashburn-1.oci.cus

 oci.com/functions

You can now use the following command to test your

function through the gateway:

Click here to view code image

curl -X POST -d '{"name": "user"}' https://j2fd2x25qkrtupcrtxvien

 apigateway.us-ashburn-1.oci.customer-oci.com/functions/myfunctio

Function Logs and Distributed Tracing

After you have created a function, you want to observe the

performance metrics of the function. Occasionally, when a

function is not performing or behaving as expected, you also

need to troubleshoot and debug it. As a serverless service,

this can initially sound challenging because developers will

not have access to the “servers” that are running these

functions. However, the OCI Functions service provides

multiple ways to enable developers to productively

troubleshoot their code.

OCI Functions shows information about function

invocations in metric charts. These are available on the

console, by default, and include several metrics, such as the

number of times a function is invoked, the duration for

which the function runs, and invocations that resulted in a

throttle (HTTP 429, “Too many requests”) or an error.

If you notice that your function metrics indicate an error

or that the result of an invocation provided an unexpected

response, you should enable logging for the function.

Enabling logging automatically gathers the logs that a

function emits from its code into the OCI Logging service.

These log events capture the actual log line and metadata

that can be searched through and analyzed further in the

Logging service.

Logging can be enabled for an application and all

functions within it. The logs are sent to a Log resource in a

LogGroup; if these resources do not exist, they are created

for you. Figure 7-15 illustrates the logging controls at the

application level.

Figure 7-15 Logging Controls for an Application

Consider the code in Listing 7-4 in a function handler.

Listing 7-4 A Function Demonstrating Logging

Click here to view code image

def handler(ctx, data: io.BytesIO=None):

 name = "World"

 logging.getLogger().info("Inside Python function")

 try:

 body = json.loads(data.getvalue())

 name = body.get("name")

 except (Exception, ValueError) as ex:

 logging.getLogger().info('error parsing json payload: ' +

 return response.Response(

 ctx, response_data=json.dumps(

 {"message": "Hello {0}".format(name)}),

 headers={"Content-Type": "application/json"}

)

As the handler is invoked, the code logs the line Inside

Python Function. When logging is enabled, these log lines are

captured and collected within the Logging service, as

demonstrated in Figure 7-16. Developers can add more logs

for specific conditions that help follow the code execution

path and identify runtime conditions and data to

troubleshoot a function.

Figure 7-16 Logs from the Function Are Sent to the

Logging Service, Where They Can Be Queried, Analyzed,

or Exported to Other Systems

Beyond metrics and logging, the OCI Functions service

also integrates with the Log Analytics service to provide

deep performance analysis and tracing. As with logging,

tracing can be enabled for an application; the traces are

sent to an application performance monitoring (APM)

domain in the Log Analytics service. If an APM domain does

not exist, one is created for you.

With tracing enabled, you can add tracing spans directly

in your code. Consider the example in Listing 7-5.

The code adds the Zipkin tracing libraries to the

application. Using these, every function in the code adds

metadata such as service_name and span_name. The main

handler function sets the span name Function Handler. From

within this function, it invokes two other functions, do_work

and do_more_work. Both these functions add their spans and

sleep for a short duration (150ms). Note that the second

function, do_more_work, also throws an exception.

Listing 7-5 An Example Function Illustrating the Use of

Zipkin Libraries for Tracing

Click here to view code image

import io

import json

import logging

import requests

import time

from collections import namedtuple

from py_zipkin.zipkin import zipkin_span

from py_zipkin.encoding import Encoding

from fdk import response

def handler(ctx, data: io.BytesIO=None):

 tracing_context = ctx.TracingContext()

 with zipkin_span(

 service_name=tracing_context.service_name(),

 span_name="Function Handler",

 transport_handler=(

 lambda encoded_span: transport_handler(

 encoded_span, tracing_context

)

),

 zipkin_attrs=tracing_context.zipkin_attrs(),

 encoding=Encoding.V2_JSON,

 binary_annotations=tracing_context.annotations()

):

 name = "World"

 logging.getLogger().info("Inside Python function")

 try:

 body = json.loads(data.getvalue())

 name = body.get("name")

 except (Exception, ValueError) as ex:

 logging.getLogger().info('error parsing json payload:

 do_work(ctx)

 do_more_work(ctx)

 return response.Response(

 ctx, response_data=json.dumps(

{"message" "Hello {0}" format(name)})

 {"message": "Hello {0}".format(name)}),

 headers={"Content-Type": "application/json"}

)

transport handler, needed by py_zipkin

def transport_handler(encoded_span, tracing_context):

 return requests.post(

 tracing_context.trace_collector_url(),

 data=encoded_span,

 headers={"Content-Type": "application/json"},

)

def do_work(ctx):

 with zipkin_span(

 service_name=ctx.TracingContext().service_name(),

 span_name="Doing Error Prone work",

 binary_annotations=ctx.TracingContext().annotations()

) as example_span_context:

 try:

 logging.getLogger().debug("Doing some complex task")

 time.sleep(0.15)

 except (Exception, ValueError) as error:

 example_span_context.update_binary_annotations(

 {"Error": True, "errorMessage": str(error)}

)

 else:

 FakeResponse = namedtuple("FakeResponse", "status, mes

 fakeResponse = FakeResponse(200, "OK")

 # how to update the span dimensions/annotations

 example_span_context.update_binary_annotations(

 {

 "responseCode": fakeResponse.status,

 "responseMessage": fakeResponse.message

 }

)

def do_more_work(ctx):

 with zipkin_span(

 service_name=ctx.TracingContext().service_name(),

 span_name="Do more work",

 binary_annotations=ctx.TracingContext().annotations()

) as example_span_context:

 try:

 logging.getLogger().debug("Doing some complex task")

time sleep(0 15)

 time.sleep(0.15)

 # throwing an exception to show how to add error messa

 raise Exception('do_more_work - failed. Handling error

 except (Exception, ValueError) as error:

 example_span_context.update_binary_annotations(

 {"Error": True, "errorMessage": str(error)}

)

 else:

 FakeResponse = namedtuple("FakeResponse", "status, mes

 fakeResponse = FakeResponse(200, "OK")

 # how to update the span dimensions/annotations

 example_span_context.update_binary_annotations(

 {

 "responseCode": fakeResponse.status,

 "responseMessage": fakeResponse.message

 }

)

The trace for a function invocation shows the topology of

the calls, as well as the spans, their duration, and their

status (see Figure 7-17).

Figure 7-17 Traces Can Be Visualized to Quickly Identify

Performance Bottlenecks

Tracing enables developers to visually see the code

execution flow and quickly identify where code execution

time is spent. This allows developers to identify bottlenecks

and address them quickly.

Service Mesh

As application services evolve into smaller and more

focused services that scale independently, they get more

distributed. This creates a challenge to manage the

constantly evolving set of services and the communication

between them. Common challenges include securing the

communication between the services, managing traffic

between services, and implementing observability across a

range of services. A service mesh is an infrastructure layer

for facilitating these service-to-service communications

between services or microservices. A proxy-based model

typically is used to accomplish this.

The OCI Service Mesh uses such a proxy-based model

based on the Envoy proxy. The proxy runs alongside each

microservice, which receives configuration information from

a managed control plane. These proxies are separate from

the services themselves, so the services and the application

code do not need to change or even know about the proxy

to use a service mesh. In a Kubernetes environment, these

proxies run within the same pod as the application, but as

separate containers and separate processes; thus, they are

often called sidecars. The service mesh uses the proxies to

implement security, observability, and traffic management

on behalf of your application because the proxy acts as a

facade to the actual application. Figure 7-18 shows how the

OCI Service Mesh introduces new resources into an existing

application and transparently provides new features and

functionality.

Figure 7-18 The OCI Service Mesh Can Transparently

Add New Capabilities and Rules to an Existing Application

Without Code Changes, Using Its Proxy-Based Model

Using the Service Mesh

When the service mesh has been installed in your cluster,

you can access the OCI Service Mesh using the OCI console,

OCI CLI, REST APIs, and the Kubernetes CLI tool kubectl.

However, you can manage your mesh resources either

through the OCI APIs (Console, CLI, or Terraform) or through

Kubernetes. When creating the mesh resources, you need to

pick an approach. If you create the mesh resources with the

OCI APIs, these resources will exist only on the control

plane, with no corresponding resource definitions (CRDs)

created in the Kubernetes cluster. However, if you choose to

create these resources as CRDs in your Kubernetes cluster,

the Kubernetes operator creates their definitions on the

mesh control plane. The Kubernetes resources that you

create using the CRDs become the source of truth, in this

case, and you should continue to use this approach for

modifying and managing the resources. Mesh resources

managed by the Kubernetes operator cannot be modified

using the OCI Console, CLI, or Terraform. In most cases, it

might be more natural to manage these resources as

Kubernetes resources. Mesh resources are closely

associated with your application resources, and this is the

most common way users interact with mesh resources.

As Figure 7-18 illustrated, the OCI service mesh consists

of resources that are mapped to application components

such as VirtualDeployments, VirtualServices,

IngressGateways, and more. These resources are

instrumental in providing the Service Mesh features. Figure

7-19 shows the various resources that make up the service

mesh and how they are related.

Figure 7-19 The Various Resources That Make Up a

Service Mesh

The relationships and interactions between these

resources can seem quite daunting at first, but these

become easier to understand in the context of an example

application.

Adding a Service Mesh to an

Application

Consider this simple deployment of nginx in Listing 7-6. This

consists of a Deployment resource and a Service resource,

to keep the example simple. The Deployment is backed by a

replicas set with two replicas, as indicated by the replicas

property in the deployment spec. The replicas set creates

and manages the two pods of nginx. The pods have the

label app: nginx, and the service targets all pods with the

same label. The service is of type LoadBalancer, which

indicates that the Kubernetes cluster will create an

appropriate load balancer on the cloud provider and wire it

to the pods targeted by the service.

Listing 7-6 Kubernetes Resources That Describe an

Application Without a Service Mesh

Click here to view code image

apiVersion: v1

kind: Service

metadata:

 name: my-nginx-svc

 labels:

 app: nginx

spec:

 type: LoadBalancer

 ports:

 - port: 80

 selector:

 app: nginx

apiVersion: apps/v1

kind: Deployment

metadata:

 name: my-nginx

 labels:

 app: nginx

spec:

 replicas: 2

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: nginx:1.14.2

 ports:

 - containerPort: 80

To add a service mesh to this application, we can

introduce the service mesh resources into the mix that wrap

and encapsulate these Kubernetes resources.

The Mesh is the top-level resource that includes all mesh

resources; it represents the boundary of services and traffic

that the service mesh manages. The mesh also identifies a

certificate authority that will be used to generate

certificates to secure communications among the workloads

that are covered by the service mesh. Listing 7-7 shows the

definition of a mesh resource.

Listing 7-7 Mesh Resource Definition

Click here to view code image

kind: Mesh

apiVersion: servicemesh.oci.oracle.com/v1beta1

metadata:

 name: nginx

spec:

 compartmentId: ocid1.compartment.oc1..

 aaaaaaaahgeqvnooufd5efvafgiobngb2xfcih62h3u7o2sq2wfhei5ddgoa

 certificateAuthorities:

 - id: ocid1.certificateauthority.oc1.iad.

 amaaaaaab5uyggqan7pi3iozlv2g7godjk5jclf3tlbrtlfar4c7sk3f72uq

 displayName: nginx-mesh

 mtls:

 minimum: PERMISSIVE

IngressGateways are the entry point of traffic into all

resources managed by the mesh. All incoming traffic passes

through the ingress gateway, so it implements customized

security policies on how to manage this ingress and

transparently provide observability and traffic shaping for

the services within the mesh. For example, the ingress

gateway can be configured to enable encryption on all

incoming traffic using TLS or to keep track of an access log.

An ingress gateway can be configured with a set of DNS

hostnames and listener ports that clients use to make their

requests to. Clients communicate with the application

through the ingress gateway using one of these hostnames

and ports where the ingress gateway is listening. The

ingress gateway is an optional resource and is not

mandatory for all situations. The ingress gateway handles

traffic as it enters the application, which provides the

capability to track the traffic from the start. Without an

ingress gateway, you would not have service mesh control

over this segment in the traffic flow. Listing 7-8 shows a

typical ingress gateway. Notice that it is associated with a

mesh resource.

Listing 7-8 An Example IngressGateway Illustrating

Hostnames and Listeners

Click here to view code image

kind: IngressGateway

apiVersion: servicemesh.oci.oracle.com/v1beta1

metadata:

 name: nginx-ingress-gateway

spec:

 compartmentId: ocid1.compartment.oc1..

 aaaaaaaahgeqvnooufd5efvafgiobngb2xfcih62h3u7o2sq2wfhei5ddgoa

 mesh:

 ref:

 name: nginx

 hosts:

 - name: nginxHost

 hostnames:

 - nginx.example.com

 listeners:

 - port: 8080

 protocol: HTTP

 tls:

 mode: DISABLED

 accessLogging:

 isEnabled: true

The ingress gateway resource is supported by resources

such as an IngressGatewayDeployment and an

IngressGatewayRouteTable. The ingress gateway resource

defines the properties and configuration of the ingress

gateway, which is an OCI resource. In a Kubernetes cluster,

the ingress gateway is manifested as a set of Kubernetes

resources, such as pods, that implement the configuration

defined in the ingress gateway. This is accomplished by an

IngressGatewayDeployment resource. This resource exists

only on the Kubernetes cluster; it uses the configuration

from the ingress gateway it is attached to and configures

the Kubernetes resources in the cluster. This can be seen as

a manifestation of the ingress gateway resource from the

mesh service within a Kubernetes context and is analogous

to the Kubernetes Ingress resource. When using the service

mesh, the IngressGatewayDeployment resource replaces

the Ingress resource. Listing 7-9 shows an example ingress

gateway deployment. Notice that the ingress gateway

deployment has options to autoscale the number of pods

handling the ingress traffic. The ingress gateway

deployment creates a Kubernetes service, and the

service.type can be used to control what type of service is

created.

Listing 7-9 An Example IngressGatewayDeployment

Resource That Wraps an IngressGateway

Click here to view code image

apiVersion: servicemesh.oci.oracle.com/v1beta1

kind: IngressGatewayDeployment

metadata:

 name: nginx-ingress-gateway-deployment

 labels:

 mesh-ingress: nginx

spec:

 ingressGateway:

 ref:

 name: nginx-ingress-gateway

 deployment:

 autoscaling:

 minPods: 2

 maxPods: 4

 ports:

 - protocol: TCP

 port: 8080

 serviceport: 80

 service:

 type: LoadBalancer

An IngressGatewayRouteTable defines traffic routing

rules that are applied to the traffic that is coming through

an ingress gateway. These route rules are applied to the

specific ingress gateway hosts and ports. For HTTP requests,

the ingress gateway route table has route rules that match

an incoming request’s path and directs the requests to one

of the virtual services. Listing 7-10 shows an ingress

gateway route table. It is associated with an ingress

gateway, and the routeRules determine how traffic arriving on

this ingress gateway gets routed to the various downstream

virtual services.

Listing 7-10 An IngressGatewayRouteTable Illustrating

Various Route Rules to Be Applied

Click here to view code image

apiVersion: servicemesh.oci.oracle.com/v1beta1

kind: IngressGatewayRouteTable

metadata:

 name: nginx-ingress-gateway-route-table

spec:

 compartmentId: ocid1.compartment.oc1..

 aaaaaaaahgeqvnooufd5efvafgiobngb2xfcih62h3u7o2sq2wfhei5ddgoa

 ingressGateway:

 ref:

 name: nginx-ingress-gateway

 routeRules:

 - httpRoute:

 destinations:

 - virtualService:

 ref:

 name: mesh-nginx

 ingressGatewayHost:

 name: nginxHost

A VirtualService is a logical service definition in a service

mesh. In a typical Kubernetes application with pods and

services, a virtual service represents the service mesh

wrapper around multiple versions of a Kubernetes service. It

is typically used to implement traffic flow control and

management when deploying two versions of the service

alongside each other. This makes it easy to implement

canary deployments and have a solid rollback strategy in

case the new version is deemed unstable. Listing 7-11

shows a virtual service.

Listing 7-11 An Example VirtualService

Click here to view code image

kind: VirtualService

apiVersion: servicemesh.oci.oracle.com/v1beta1

metadata:

 name: mesh-nginx

spec:

 mesh:

 ref:

 name: nginx

 defaultRoutingPolicy:

 type: UNIFORM

 compartmentId: ocid1.compartment.oc1..

 aaaaaaaahgeqvnooufd5efvafgiobngb2xfcih62h3u7o2sq2wfhei5ddgoa

 hosts:

 - mesh-nginx

Virtual services are backed by one or more virtual

deployments that represent a single version of the

Kubernetes service. In this regard, virtual deployments are

associated with individual Kubernetes services. Virtual

services and virtual deployments use DNS for service

discovery; this allows applications to use consistent DNS

names provided by the virtual services, while the service

mesh can work with multiple versions of a Kubernetes

service and perform traffic management transparently. The

virtual service directs traffic to its associated virtual

deployment based on a virtual service route table. Listing 7-

12 shows a virtual deployment as well as a virtual service

route table. Note that the virtual service does not refer to

the virtual deployments backing it, but the individual virtual

deployments carry a reference to the virtual service. The

virtual service route table determines how traffic is

distributed to each virtual deployment that is part of the

virtual service. To better understand these ServiceMesh

objects and their relationships, consider the diagram in

Figure 7-20.

Figure 7-20 Traffic Flow Through VirtualServices and

VirtualDeployments, Based on the Configuration

Contained in VirtualServiceRouteTables

Listing 7-12 An Example VirtualDeployment

Click here to view code image

kind: VirtualDeployment

apiVersion: servicemesh.oci.oracle.com/v1beta1

metadata:

 name: nginx-v1

spec:

 virtualService:

 ref:

 name: mesh-nginx

 compartmentId: ocid1.compartment.oc1..

 aaaaaaaahgeqvnooufd5efvafgiobngb2xfcih62h3u7o2sq2wfhei5ddgoa

 listener:

 - port: 80

 protocol: HTTP

 accessLogging:

 isEnabled: true

 serviceDiscovery:

 type: DNS

 hostname: nginx-v1

apiVersion: servicemesh.oci.oracle.com/v1beta1

kind: VirtualServiceRouteTable

metadata:

 name: nginx-route-table

spec:

 compartmentId: ocid1.compartment.oc1..

 aaaaaaaahgeqvnooufd5efvafgiobngb2xfcih62h3u7o2sq2wfhei5ddgoa

 virtualService:

 ref:

 name: mesh-nginx

 routeRules:

 - httpRoute:

 destinations:

 - virtualDeployment:

 ref:

 name: nginx-v1

 weight: 100

 isGrpc: false

 path: /

 pathType: PREFIX

A virtual deployment is a logical resource that is

managed by the service mesh control plane. It needs an

implementation or a manifestation of that definition on the

platform it runs. Within a Kubernetes cluster, this is a

VirtualDeploymentBinding, which connects the control plane

definition of virtual deployment to the pods running on the

Kubernetes cluster.

Here you have a typical application made up of several

pods that is exposed as a service. Now consider that you

deployed a newer version of this application. The diagram in

Figure 7-20 shows two versions of this application, v1 and

v2, each exposed as its own service that is mapped to its

own set of resources. You can use the service mesh features

to perform some traffic management so that you can slowly

transition users from the older version of the application to

the newer version. The new version of the application is

represented by the new virtual deployment,

VirtualDeployment-2; the old version is represented by the

virtual deployment VirtualDeployment-1. The virtual service

can now direct traffic to either virtual deployments. This

traffic management policy is defined by the virtual service

route table associated with the virtual service.

Similar to these resources, the mesh supports access

policies that define access rules for communication between

virtual services and to external services. Access policies

exist for the entire mesh and control whether

communication is allowed between any given source and a

destination. These sources and destinations can be internal

or external. One example of internal communication is the

common use case of one virtual service communicating

with one or more other virtual services within the mesh

boundary. In a microservice architecture, this type of control

is helpful if you want to ensure that only a select set of

services can communicate with a sensitive service.

Examples of external communication include use cases in

which clients outside the mesh communicate to virtual

services through an ingress gateway where you can allow

the ingress gateway to communicate with only a subset of

virtual services. Another common example is an access

policy that allows a virtual service within the mesh to

communicate to a limited set of external destinations.

Listing 7-13 shows an access policy resource that is allowing

communication from the ingress gateway to a virtual

service.

Listing 7-13 An Example Access Policy Controlling

Communication Between an IngressGateway and a

VirtualService

Click here to view code image

kind: AccessPolicy

apiVersion: servicemesh.oci.oracle.com/v1beta1

metadata:

 name: nginx-policy

spec:

 mesh:

 ref:

 name: nginx

 compartmentId: ocid1.compartment.oc1..

 aaaaaaaahgeqvnooufd5efvafgiobngb2xfcih62h3u7o2sq2wfhei5ddgoa

 rules:

 - action: ALLOW

 source:

 ingressGateway:

 ref:

 name: nginx-ingress-gateway

 destination:

 virtualService:

 ref:

 name: mesh-nginx

By default, every mesh is secure and denies all

communication, which includes ingress, egress, and

communication within the mesh. When the service mesh

resources are created, you must create an access policy to

enable communication. These policies can be fine-grained,

identifying exact sources and destinations, or they can be

broader and target multiple virtual services or use wildcards

for external hostnames.

With the application and the mesh resources deployed,

the CRDs for the mesh jump into action to set up the

proxies and implement the mesh. You can check the

progress and status for the various resources using the

command in Listing 7-14.

Listing 7-14 Interacting with Service MeshResources Using

Kubernetes Tooling

Click here to view code image

$ kubectl get meshes,virtualservices,virtualdeployments,virtualser

 es,ingressgateways,ingressgatewayroutetables,accesspolicies,virt

 bindings,ingressgatewaydeployments

NAME ACTIVE AGE

mesh.servicemesh.oci.oracle.com/nginx True 5d1h

NAME ACTIVE AG

virtualservice.servicemesh.oci.oracle.com/mesh-nginx True 5d

NAME ACTIVE A

virtualdeployment.servicemesh.oci.oracle.com/nginx-v1 True 5

NAME ACTIVE

virtualserviceroutetable.servicemesh.oci.oracle.com/nginx-route-ta

 5d1h

NAME

ingressgateway.servicemesh.oci.oracle.com/nginx-ingress-gateway

NAME

ingressgatewayroutetable.servicemesh.oci.oracle.com/nginx-ingress-

 table True 5d1h

NAME ACTIVE AG

accesspolicy.servicemesh.oci.oracle.com/nginx-policy True 5d

NAME

virtualdeploymentbinding.servicemesh.oci.oracle.com/nginx-binding

NAME

ingressgatewaydeployment.servicemesh.oci.oracle.com/nginx-ingress-

 deployment True 5d1h

The first time you deploy the resources, you might notice

a time delay for them to move to the ACTIVE state. This is

expected because the resources are created in the control

plane and reconciled. To look for potential issues or to check

on progress, you can check the logs on the controller

manager for the OCI service operator:

Click here to view code image

kubectl logs -n oci-service-operator-system deploy/oci-service-ope

 controller-manager -f

With the service mesh deployed and your application

managed by the service mesh, you can now use the mesh

resources to implement traffic shaping using virtual service

route tables and control both north/south and east/west

traffic access using access policies.

Summary

This chapter examined three key serverless platforms for

application development on OCI. The main characteristic of

all these systems is that they involve no infrastructure

management and can automatically scale to meet the rising

needs of your application. The three services examined in

this chapter are each aimed at a different type of use case.

Container Instances makes the process of running

containers easy by completely removing infrastructure

management and letting you focus on your containers,

while still providing features such as resource throttling and

configuration. OCI Functions provide an even more agile

experience, in which the OCI Functions SDKs and CLI directly

work with your code to make them fully managed functions

that can scale for full elasticity. They also integrate with

multiple OCI services and external triggers to help you

create reactive applications. Finally, OCI Service Mesh

introduces a method to transparently add new capabilities

to your existing Kubernetes-based applications with the help

of a fully managed service mesh. The OCI Service Mesh,

based on the Envoy proxy, lets you easily add features such

as mTLS, traffic shaping, and observability to your

applications without requiring any code changes. Serverless

platforms and services often act as a way to build scalable

integrations among multiple systems or to enhance existing

systems with new capabilities in a cloud native manner.

References

1 OCI Image Specification:

https://github.com/opencontainers/image-

spec/blob/main/config.md

2 Functions QuickStart on Local Host:

https://docs.oracle.com/en-

us/iaas/Content/Functions/Tasks/functionsquickstartlocal

host.htm

https://github.com/opencontainers/image-spec/blob/main/config.md
https://docs.oracle.com/en-us/iaas/Content/Functions/Tasks/functionsquickstartlocalhost.htm

8

Observability

Cloud native architectures and paradigms introduce new

challenges and opportunities related to systems

management and observation. Monolithic applications are

being broken into microservices, applications and their

runtime environment and configurations are getting

packaged as containers, and infrastructure is becoming

ephemeral. Just as these general paradigms are changing,

so should the techniques and tools to observe and monitor

them. The distributed nature of these application

architectures requires the ability to observe a multitude of

systems in isolation and correlate these metrics to get a

complete view. The polyglot nature of these systems also

give us opportunities to gather metrics and performance

data from individual systems using tools and techniques

that are optimal for each service or unit, without needing to

manage dependencies, choosing tools that work across a

wide range of technologies, or deal with cascading effects

from other systems. The same notions apply to

infrastructure. With ephemeral infrastructure, it can be

daunting to track infrastructure changes across time and

other dimensions, such as the correlated impact on

applications, cost, and fault tolerance.

Observability can be defined as the capability to track

and trace the happenings within your systems, at both the

application and infrastructure levels. This data helps you

understand and reason about behaviors you see within the

system. In many cases, it is not enough to just observe and

reason about observed behavior. You also need to be able to

predict future behavior.

Oracle Cloud Infrastructure (OCI) offers several tools and

solutions to observe your applications and services. In

keeping with OCI’s open approach to the platform, you can

also bring in your own tools that you might be more

comfortable with. These include tools and platforms that

gather metrics or logging, use agents or ingest log data, or

use tools such as Extended Berkeley Packet Filter (eBPF) to

gain insights into your workloads. This chapter takes a look

at the various services and some popular open-source tools

that you can use to observe your cloud native applications

deployed to OCI.

OCI Monitoring

OCI Monitoring is a service that keeps track of your

resources across OCI using resource metrics, and then alerts

you to various conditions using alarms. A metric is a data

point related to the health, capacity, or performance of any

resource in OCI. These data points have time stamps,

dimensions, and other metadata. Metric data can originate

from OCI services or can be published by your own

applications. The most common and trivial example of a

metric is the CPU and memory utilization of a compute

instance. Metrics can be unique as well, such as the number

of unschedulable pods in an OKE cluster or the number of

vulnerabilities found by a vulnerability scan. Several OCI

services report metrics out of the box; the most common of

these are the compute instance metrics. Every compute

instance reports metrics such as its own CPU and memory

utilization. In this example, the CPU utilization value for an

instance is the metric (a measured value); it is accompanied

by the time stamp for that measurement. A metric definition

adds data to the metric, such as metadata that indicate the

unit of measure for the value in the metric, and dimensions

that are attributes for that measurement. The compute

instance OCID, its availability domain, and its compartment

are examples of dimensions that can be added to the metric

and its metadata to form a metric definition.

Additionally, a metric definition includes a metric

namespace that acts as a grouping construct for identifying

and grouping the class of resources where the metric

originates. The raw metric data emitted from the various

sources, such as the services in OCI and the various

applications, is consumed and aggregated by the

monitoring service. Figure 8-1 shows how the metric data

flows through the monitoring service.

Figure 8-1 Typical Flow of Observability Data in OCI

Once the raw metrics have been ingested by the

monitoring service, it can be queried to get the aggregated

data. These queries are the primary mechanisms through

which data is extracted from the service and are the most

fundamental way to monitor your resources in OCI. Metric

queries are written in Monitoring Query Language (MQL), an

intuitive query language that is similar to natural language.

The OCI console includes Metrics Explorer, an intuitive

query builder that helps you construct the queries in a

visual environment (see Figure 8-2).

Figure 8-2 The Metrics Explorer in OCI Offers an

Intuitive Visual Query Builder for Querying Metrics

The Metrics Explorer can help you construct most

common queries visually. Besides the visual query builder,

the Metrics Explorer offers an Advanced mode that enables

you to write your own MQL queries. Understanding MQL can

be useful: With it, you can build advanced queries and use

the monitoring service from the CLI, SDKs, and APIs. MQL

queries have components such as the metric to be queried

(such as CpuUtilization); an interval that determines the

aggregation window of the raw metric data (CPU utilization

for every 1 minute); and a statistic, which is the aggregation

function applied (such as max). Taken together, a query of

this nature would be expressing a request to get the mean

CpuUtilization in intervals of 1 minute. The monitoring

service would aggregate the raw data points for the

CpuUtilization metric in windows of 1 minute and get the

max value from each 1-minute window. The resulting

aggregated data for the metric that is returned from the

service is called a metric stream. The MQL syntax for this

query follows:

CpuUtilization[1m].max()

This simple query shows the required parts of an MQL

query—the metric, interval, and statistic. Different

resources, such as the various OCI service or custom

applications, emit different metrics; therefore, the metric

you can query from the monitoring service depends on what

has been ingested. The OCI documentation1 covers every

metric that is emitted by the various OCI services. The

interval can be specified in minutes (as in 1m), hours (as in

2h), or days (as in 5d). The valid intervals in a query also

change, depending on the time range for the query. For

instance, a query pulling data for the past 30 days requires

the minimum interval to be 1d. The service also supports

several statistics, including counts, min, max, mean, various

percentiles, and rates (rate of an occurrence). Beyond these

required components, MQL syntax includes features that are

much more powerful in targeting specific resources,

grouping them and aggregating metrics. The general form

of an MQL query that includes these optional components is

as follows:

Click here to view code image

metric[interval]{dimensionname=dimensionvalue}.groupingfunction.st

As you can see, MQL can include dimensions that you can

use as a filter in your queries and grouping functions to

determine how the metrics are aggregated. Dimensions are

attributes from the metric data that you can use to filter

your query and restrict it to certain data points with these

attributes. For example, to look at the CpuUtilization in a

single region or a single availability domain, you could use

the dimension filter to restrict the query. Similarly, you

might want to group the data in a way that makes it easy to

work with. MQL supports grouping functions such as groupBy

or grouping. The groupBy grouping function groups the metrics

by one or more attributes, to aggregate them. The grouping

function, on the other hand, aggregates all the metric

streams from the query into a single aggregation.

To understand these components a bit better, let’s look at

an example. Imagine that you want to track underutilized or

abandoned OKE clusters in development environments.

Reclaiming underutilized or abandoned cloud resources is a

common cost optimization approach. Here, the intent

behind the notion of utilization is fairly vaguely defined, and

it could mean several things. It could refer to the cluster

whose nodes exhibit the most/least CPU utilization, but a

critical workload that experiences sudden volatility in usage

or traffic could lead to false positives. Another way to define

utilization could be to look for clusters that see very few API

server calls. Clusters running production workloads

generally see fewer API server calls than clusters running in

a development environment. For this example, let’s use this

metric to identify clusters that see comparatively fewer API

server requests. The OKE service exposes a metric named

APIServerRequestCount that you can use to accomplish this.

Consider the following query:

Click here to view code image

APIServerRequestCount[1m].groupBy(clusterId).rate()

The query tracks the rate of Kubernetes API server

requests in 1-minute intervals. Then it groups the data by

cluster ID and produces one metric stream per cluster. On

the console, this can appear as shown in Figure 8-3.

Figure 8-3 The Metrics Explorer Generating a Graph for

a Custom Query to Track API Requests Across Multiple

Kubernetes Clusters

In this example, you can see three lines, corresponding to

the three metric streams. Each metric stream represents a

single cluster because the query groups the metrics data by

clusterId. If there were four clusters, the groupBy grouping

function would group the data into four metric streams; the

console then would show four lines representing the four

metric streams. From the figure, it is clear that one cluster is

seeing more API server requests than the other two. Having

this query on a dashboard can help users and infrastructure

admins quickly identify potentially underutilized resources

on which to focus cost optimization efforts.

A dimension filter can filter the data points based on the

dimensions available in the raw data. Consider the following

example:

Click here to view code image

APIServerRequestCount[1m]{clusterId = "ocid1.cluster.oc1.iad.

 aaaaaaaadcnof56t6ijrxbzjluujrjlwwvxz7u3guqxi7cyy5cemaalmxtlq"}.r

The preceding query demonstrates a dimension filter that

filters out the metric data for all but one cluster, identified

by its OCID, and gets the rate of Kubernetes API server

requests. Dimension filters can use fuzzy filters to match

multiple filter values and conditions. If you had a set of

clusters and you wanted to track the same

APIServerRequestCount metric across this set of clusters, you

could use a fuzzy filter such as the one that follows:

Click here to view code image

APIServerRequestCount[1m]{clusterId =~ "*cemaalmxtlq|*jluujrjlwwv"

 groupBy(clusterId).rate()

The query has three noteworthy aspects:

1. The =~ comparison operator specifies a fuzzy match.

2. The * wildcard in the dimension filter matches zero or

more characters. This wildcard is used to create a

match with a partial OCID, much like a regular

expression.

3. The | acts as the OR operation for the dimension filter

values, which causes the dimension filter to do a fuzzy

match on either of the two partial values.

The combined effect of this query is that you track the

APIServerRequestCount metric in 1-minute intervals, and the

query uses a dimension filter that uses fuzzy matching to

filter the metric data that matches either of the two OCIDs.

Then the results are grouped by the clusterId. This grouping

generates two metric streams because the dimension filter

also uses the clusterId to filter data that matches either of

two clusters. Finally, the rate of requests is the statistic that

is reported by the query for both metric streams.

Apart from the metrics that OCI services emit, your own

applications can emit metrics to be ingested by the OCI

Monitoring service. To use the service from within your

applications, the easiest method is to use the OCI SDKs. The

SDK includes code examples that demonstrate how this API

can be integrated with your applications; it can be found on

GitHub.2 Metrics are secured by IAM, so to use the service,

you also need to give access to your applications through

policies such as the one that follows:

Click here to view code image

Allow dynamic-group ObservableApps to use metrics in tenancy where

 metrics.namespace='AppMetricsNamespace'

Here, it is assumed that ObservableApps is a dynamic group

that includes the instances where your application is

running.

Alarms

Closely related to, and often used in conjunction with,

metrics, are alarms. Alarms are simply notifications

triggered by a specified condition. In the case of OCI, the

monitoring service uses the notifications service to send a

message when a condition is met. Alarms are also based on

the same MQL queries. In addition to the query structure

that has been examined so far, an alarm query has a

condition. Consider the following example:

Click here to view code image

UnschedulablePods[1m].grouping().max() >= 1

This line tracks the number of unschedulable pods across

clusters. If there is at least 1 unschedulable pod, it raises an

alarm. The MQL syntax is the same as before, except for the

addition of a condition, >= 1. This is the condition that the

alarm continuously evaluates; if it becomes true, the alarm

starts to fire.

Every alarm definition also includes a severity that you

can set, based on the criticality you assign to your query.

The available severity levels are Critical, Error, Warning, and

Info. Severity is an arbitrary value that the user creating an

alarm can set, based on the perceived importance of the

alarm. For example, an unschedulable pod might be an Info-

level alarm in some applications but a Critical-level alarm

for other applications. In practice, alarms often require

tuning and these severity levels can change over time. For

instance, when you start with a new application, you might

set the alarms and severity levels based on an educated

guess. Over time, however, you might notice that some

alarms are noisy and get triggered too often without much

impact to the application, so you could then adjust the

trigger conditions and severity. You might also notice that

you missed creating some alarms, as you find better

predictors of trouble for your applications. This makes

tuning your alarms an activity worth revisiting periodically.

Much like the Metrics Explorer, the OCI console has a

visual interface to define and manage alarms. This interface

enables you to create MQL queries both visually and with

straight MQL (Advanced mode). Unlike the Metrics Explorer,

however, here you can add conditions to the query and

specify what actions to take when the alarm is firing. The

actions could raise the alarm by using the notifications

service or publishing it to the streaming service. Figure 8-4

shows this interface to define alarms that are triggered

based on metrics being collected continuously from OCI

resources or your own applications.

Figure 8-4 Creating Alarms That Are Triggered by

Resource Metrics That Meet Desired Conditions

The notification service is a low-latency PubSub

messaging service within OCI that supports durable

messages with delivery guarantees. It provides topics and

subscriptions, in which a service or application can send

messages to a topic via the Notifications service. When a

message is published to a topic, the Notifications service

sends the message to all of the topic’s subscriptions. When

the alarm destination is the notification service, you can

choose to publish formatted text, pretty printed JSON, or

raw JSON to the destination, as illustrated in Figure 8-5. The

choice depends on how you want to process the notification.

For instance, if you want to directly create a PagerDuty

subscription, perhaps formatted text is the most

appropriate. On the other hand, if you need to send it to a

function to perform some action, such as to trigger the

creation of a compute instance to automatically resolve an

alarm, the JSON-formatted message is likely more

appropriate.

Figure 8-5 Alarms Can Be Sent to the Notifications

Service, Which Can Trigger Other Systems for Corrective

Actions.

Similar to the Notification service, the delivery

destination can be a stream in the OCI Streaming service.

The streaming service supports only JSON message format.

OCI Logging

Logs are a fundamental source of insight into your

applications and the services you use. Log data often

includes diagnostic information that can help you

troubleshoot issues and understand the performance

characteristics of your application. Logs can also provide

intelligence about the security posture of your cloud

resources and keep track of changes to your infrastructure,

its configuration, and who made them. The OCI Logging

service provides a fully managed and scalable way to

manage logs across applications and OCI services in your

tenancy. The OCI Logging service provides features to store,

organize, and search log data. Log data can come from OCI

services when you enable them or from your own

applications.

The first thing most people think about when hearing

about logs is log files. Although the idea of representing and

recording an event in an application or service in a file is

still relevant, services such as OCI Logging provide a

persistence mechanism that is efficient for searching,

indexing, and applying data processing techniques. A log in

this context is an OCI resource with its own OCID. You can

think of this resource as a store for event data collected

from an OCI service or your own applications. The actual log

message that an application or service writes to standard

out (STDOUT) is a log event that is captured in the log. The

logging system captures the entire context of what happens

when the service or application emitted the log message;

this is why the log entry is called a log event. The

information contained in the log event depends on the

event type. All OCI services have log events that capture a

great deal of contextual data about the event. Logs

themselves are organized into log groups, logical containers

for logs that help you organize similar logs. Log groups also

help secure and manage these logs by applying IAM policies

to log groups that determine who has access to the logs. For

instance, you might want to create log groups based on the

sensitivity of the log messages contained within logs. Logs

that contain sensitive information can be grouped together

into a separate log group. IAM policies can then be set up in

such a way that access to this log group requires a specific

role. This effectively restricts access to sensitive information

and controls access purely through the use of policies.

Figure 8-6 shows this hierarchy of logging resources.

Figure 8-6 Hierarchy of Logging Resources

Service Logs

Service logs are logs from the various OCI services, and they

are the most common type of logs in OCI. Service logs

provide insight into the utilization, health, and performance

of these services. These logs are collected by the OCI

Logging service, which is made available to you and can be

queried. Service logs are enabled in OCI Logging. This is

simply because the services themselves emit log events

that are discarded if they are not captured by enabling the

log for a service. Users can easily enable logs for any

service using the console. When you enable a service log,

you must add it to a log group (see Figure 8-7); you can

select the service and a resource provided by the service

when enabling the service log. When the log is enabled, the

log events pertaining to the resource are collected and

indexed in the log from where it can be queried. Service logs

can also be ingested into other services, where they can be

combined with other operational data to provide more

insight into your business and any applications running on

OCI.

Figure 8-7 Enabling Logging for a Service—in This Case,

a Specific OCI Function

Custom Logs

The logs that are created by your applications can be

ingested into the OCI Logging service. These are called

custom logs. The main reason to ingest custom logs is to

put your application logs in the same context as the

infrastructure logs, to draw correlations between them and

derive deeper insights. Unlike service logs that are enabled,

custom logs are ingested into the OCI Logging service. The

log resource is the same; however, the source behaves

differently here. Service logs create high-fidelity log events

with detailed contextual information. Custom logs, on the

other hand, typically originate from a log file. OCI provides

an agent to extract, parse, and ingest directly to the OCI

Logging service. Typically, each line in a log file is

considered to be a separate log event. Depending on the log

format, the information in the log line can be tokenized or

parsed to generate the fields of the log event to index it and

make it searchable. Some logging formats, such as a web

server, might be common, so parsers and tokenizers might

exist for these; custom applications, on the other hand,

might have a custom log format that requires a custom

tokenizer. To set up custom logs, you create an agent

configuration, as shown in Figure 8-8.

Figure 8-8 Agent Configuration for Custom Logs—the

Image Shows the Log Inputs but Does Not Show the

Parser Configuration (Which Can Be Selected for Each

Log Input)

The agent configuration starts with determining the

group of hosts from which to get the logs. This is typically a

dynamic group. The dynamic groups are listed so that you

can easily pick one. In the example shown in Figure 8-8, the

agent configuration is set up to ingest container logs from

all containers running on a given OKE cluster. For this, the

user first defines a dynamic group that contains all nodes

that make up the cluster. It is not necessary to keep the

granularity at the cluster level: The user could have created

a dynamic group that picked a select subset of nodes in the

cluster (say, GPU nodes used for a machine-learning

workload) or all nodes across an availability domain or

region, regardless of whether they were OKE nodes. The

dynamic group has to be given access to the OCI Logging

service so that the agents running on these hosts can push

the log files to the service. Next, you configure the various

log sources. These can be one or more paths where the log

files of interest to you are located on the hosts. In the

example, you see a single path for /var/log/containers/*,

which ingests all log files in this location. You can set up

multiple paths to ingest from multiple sources

simultaneously. For every input, you also set up the parser

options to tokenize the log files to convert them into log

events. More than 200 predefined parsers that cover

popular log file formats such as Kubernetes Audit Logs, etcd

logs, Apache logs, and syslog are supported, apart from

generic formats such as JSON and XML. You can also create

custom parsers used to tokenize your application’s log files

that use a custom format for log data. Finally, you choose

the destination log resource in the OCI Logging service to

which the events from the log files should be ingested. After

they are ingested, the log events are indexed and become

searchable like service logs.

Audit Logs

OCI also tracks how and when each service is being

accessed, and by whom. It captures metadata about the

access or action performed to the resource, to provide a

complete view into how your resources are being accessed

and how. This is called the audit log and is separate from

service logs. The audit service calls to all OCI API endpoints

as log events. Because the service operates at the API level,

log events are generated for all operations, regardless of

whether they originate from within OCI or externally, and

regardless of the clients (such as the CLI, the SDK, or

custom applications) used to make the API calls.

The audit event is structured data and uses a well-

defined schema called the audit schema to publish audit

events. Using the standardized message structure provided

by the schema makes it easy for consumers to listen to

audit events, process them, and build automation code that

can react to certain events. It is also worthwhile to note that

OCI offers mechanisms to listen to events and take actions

based on those using services, such as Cloud Guard, that do

not involve custom code development. Event data in the

audit schema is structured into a payload and an envelope.

The payload is the data about the specific API call that is

provided by the service that was the target of the API call.

This can include the OCID for the resource that is targeted

by the API call; information about the request, response,

and identity of the caller; any resource state changes; and

more. This payload is wrapped in an envelope that uses the

CNCF CloudEvents3 standard. Listing 8-1 shows an example

audit log event.

Listing 8-1 Example Audit Log Event

Click here to view code image

{

 "datetime": 1667373839959,

 "logContent": {

"dataschema": "2 0"

 "dataschema": "2.0",

 "id": "346d7f82-ea45-48fe-b7b4-a6cb3fb56dad",

 "oracle": {

 "enantednted": "ocid1.compartment.oc1..xxxx",

 "ingestedtime": "2022-11-02T07:24:08.990Z",

 "loggroupid": "_Audit",

 "enanted": "ocid1.tenancy.oc1..xxxx"

 },

 "source": "oke-k8sApiEndpoint-subnet-xxxx",

 "specversion": "1.0",

 "time": "2022-11-02T07:23:59.959Z",

 "type": "com.oraclecloud.virtualNetwork.GetSubnet",

 "data": {

 "additionalDetails": {

 "X-Real-Port": 59226

 },

 "availabilityDomain": "AD2",

 "compartmentId": "xxxxxxxx",

 "compartmentName": "AppDev",

 "resourceId": "ocid1.subnet.oc1.iad.xxxx",

 "definedTags": {},

 "eventGroupingId": "xxxx/xxxx",

 "eventName": "GetSubnet",

 "freeformTags": {},

 "identity": {

 "authType": null,

 "callerId": null,

 "callerName": null,

 "consoleSessionId": null,

 "credentials": "xxxx,

 "ipAddress": "10.240.2.7",

 "principalId": "xxxx",

 "principalName": "oke",

 "tenantId": "xxxx",

 "userAgent": "Oracle-JavaSDK/2.11.1 (Linux/4.14.35-2047;Ja

 VM GraalVM EE)"

 },

 "message": "oke-k8sApiEndpoint-subnet-xxxx GetSubnet succeed

 "request": {

 "action": "GET",

 "headers": {},

 "id": “xxxx/xxxx/xxxx",

 "parameters": {},

 "path": "/20160918/subnets/ocid1.subnet.oc1.iad.xxxx"

}

 },

 "response": {

 "headers": {},

 "message": null,

 "payload": {},

 "responseTime": "2022-11-02T07:23:59.959Z",

 "status": “200”

 },

 "stateChange": {

 "current": null,

 "previous": null

 }

 }

 }

}

The logcontent contains the overall envelope for the event.

The data element within the envelope contains the resource-

specific audit information. The envelope structure is the

same for all events, regardless of the service; however, the

payload contained in the data section is dependent on the

type of the event.

Auditing OKE Activity

Audit logging captures activity within a service that can be

used to create an audit trail of events and occurrences. It

can be used to answer questions such as, “Who did what

and when ?” Audit logging is an important part of several

security and compliance programs because it maintains an

immutable log of events and changes that occur within the

services. In the case of cloud native execution environments

such as OKE, these events can occur on two different levels:

The infrastructure level, where some infrastructure

configuration for your cluster is changing, such as the

number of nodes in a node pool, the shape of the

instances, or the version of Kubernetes being used.

These changes are captured by the audit service along

with metadata such as who made the change, when the

change was made, whether the change was successful,

and the previous and current states of the resources

affected by the change.

Within the execution environment itself. In the case of a

Kubernetes cluster, these could be changes to the

Kubernetes resources or actions and events that are

performed on the cluster objects. For instance, if a user

deploys a new pod onto the cluster, that event needs to

be audited. In fact, for platforms such as OKE, these

activities are more common and frequent than

infrastructure events.

OKE captures changes to the Kubernetes objects in the

audit log to provide a full audit trail of cluster events that

occur within the cluster. These include all interactions with

the Kubernetes API, including those made by nonhuman

users such as service accounts. For example, consider an

OKE cluster that deploys its workloads in a GitOps model

using ArgoCD. ArgoCD runs as a workload on the cluster

and periodically checks a Git repository for changes to the

application deployment YAMLs. When a change is detected,

ArgoCD deploys the change and updates the Kubernetes

objects. This is an example of when there is no human

interaction in the deployment process; the Kubernetes

objects are updated by an automated system that identifies

itself with a service account. Listing 8-2 shows a PATCH event

in which a change is deployed to the cluster.

Listing 8-2 Example PATCH Event: Change Deployed to

Cluster

Click here to view code image

{

"d t ti " 1667528786186

 "datetime": 1667528786186,

 "logContent": {

 "data": {

 "additionalDetails": null,

 "availabilityDomain": null,

 "compartmentId": "ocid1.compartment.oc1..

 aaaaaaaagup7orev5wck2z3nh5hd6kgoaubksrundbrndocucev5dzct7wsq",

 "compartmentName": "AppDev",

 "definedTags": null,

 "eventGroupingId": "c45ef9f5-5ec2-4dc8-a83b-2f9f2ba3ab64",

 "eventName": "io.argoproj.v1alpha1.applications.patch",

 "freeformTags": null,

 "identity": {

 "authType": "Native",

 "callerId": null,

 "callerName": null,

 "consoleSessionId": null,

 "credentials": "",

 "ipAddress": null,

 "principalId": null,

 "principalName": "system:serviceaccount:argocd:argocd-appl

 controller",

 "tenantId": "",

 "userAgent": "Go-http-client/2.0"

 },

 "message": "io.argoproj.v1alpha1.applications.patch succeede

 "request": {

 "action": "PATCH",

 "headers": null,

 "id": "c45ef9f5-5ec2-4dc8-a83b-2f9f2ba3ab64",

 "parameters": null,

 "path": "/apis/argoproj.io/v1alpha1/namespaces/argocd/appl

 wordpress"

 },

 "resourceId": "ocid1.cluster.oc1.iad.

 aaaaaaaadcnof56t6ijrxbzjluujrjlwwvxz7u3guqxi7cyy5cemaalmxtlq",

 "response": {

 "headers": null,

 "message": null,

 "payload": null,

 "responseTime": "2022-11-04T02:26:26.201Z",

 "status": "200"

 },

 "stateChange": {

 s a eC a ge {

 "current": {

 "responseObject": null

 },

 "previous": {

 "requestObject": null

 }

 }

 },

 "dataschema": "2.0",

 "id": "c45ef9f5-5ec2-4dc8-a83b-2f9f2ba3ab64",

 "oracle": {

 "compartmentid": "ocid1.compartment.oc1..

 aaaaaaaagup7orev5wck2z3nh5hd6kgoaubksrundbrndocucev5dzct7wsq",

 "ingestedtime": "2022-11-04T02:26:35.914Z",

 "loggroupid": "_Audit",

 "tenantid": ""

 },

 "source": "",

 "specversion": "1.0",

 "time": "2022-11-04T02:26:26.186Z",

 "type": "io.argoproj.v1alpha1.applications.patch"

 }

}

Advanced Observability in OCI

Advanced observability in OCI refers to a set of services that

provide observability across several services and correlate

information across structured and unstructured data. This

includes, for example, the capability to derive insights by

correlating data across logs and metrics from various

services to form a more complete view of the systems and

processes that are under observation. The advantage of

using this set of advanced observability tools is that users

can derive deep business insights and drive root cause

analysis instead of focusing on surface-level problems. As

an example, consider a scenario in which the metrics from

an application indicate degraded performance for one of its

service endpoints. The metrics from the application can

point to the endpoint that is performing poorly and help you

identify the issue. However, this issue could have been

occurring in some other component, and that component

might have been logging warnings about degraded

performance for a while. In this instance, the capability to

correlate the performance degradation on the service with

the logs that described a potential warning on another

service could have helped you to find the root cause for this

issue and address it more quickly. In practice, however, the

root cause for an issue could be a result of multiple separate

systems interacting with each other in unexpected ways,

with several smaller inefficiencies having a cumulative

effect. The advanced tools in OCI are designed to observe a

wide range of systems, from databases and file systems to

Kubernetes clusters and application logs. This gives the

advanced tools in OCI the capability to correlate metrics and

log data across several layers in the stack, to create a

complete 360-degree view of your workloads across

applications, infrastructure, and external systems.

Logging Analytics

The biggest challenge with observability when operating at

scale is the sheer amount of noise that it generates under

normal operating conditions. Millions of events can be

happening every second in a large enough set of distributed

applications. Sifting through the noise to identify real events

and signals and then correlate them to form insightful and

actionable information is a real challenge. For instance, it

would be trivial to monitor the network latencies and set up

an alarm. This might be useful with a single application, but

an application development team is less likely to be taking

on infrastructure or network management responsibilities so

that it can remediate a problem. An infrastructure or

network team, on the other hand, would have multiple

applications to service; when operating at scale, these

alarms and events simply become noise. Another common

example involves a security team. Security events can

include file access, network connections, and process

spawning, all of which can lead to a lot of noise in the raw

data.

When discussing observability in this context, a common

phrase used is “single pane of glass” for monitoring and

observing systems and processes. The true intention of this

phrase is to indicate visibility into all aspects of a system so

that you can fully visualize and observe it from all angles

and vantage points. In practice, however, this is harder to

define (not implement) than it looks. This is because, as you

saw in the earlier example, the view that is relevant to an

operations and site reliability engineer might be very

different from what is relevant to a developer or a

penetration tester. Medium and large organizations have

various personas, ranging from DevOps teams, to DBAs, to

developers, to security teams. When you need observability

in a “single pane of glass” across these teams, you need

observability across your IT landscape, not just a few

applications. It is also desirable to limit the number of tools

used, to keep maintenance and dependencies in check. Log

analytics is the general approach to solving this at scale.

Industry solutions include Splunk and App Dynamics, among

others.

OCI Logging Analytics is an OCI native service that

provides these advanced analytic capabilities so that you

can derive insights from across your entire IT landscape.

OCI Logging Analytics can ingest data from various sources

and correlate this to automatically generate complete

application topologies and other visualizations. This makes

it easy for every persona to have a relevant view, without

having to invest time in capturing every metric and building

every possible visualization. Figure 8-9 shows an example in

which OCI Logging Analytics has constructed a topology

diagram for an application based on the log analysis.

Figure 8-9 Logging Analytics Can Create Visual

Representations of Applications and Systems, Along with

How They Communicate, Based on Logs from the Various

Systems—the Image Shows the Microservices That Make

Up the MuShop Application Being Visualized, Based on

the Logs Each Service Generates

These advanced analytical abilities can automatically

learn patterns from the constant flow of metric and log data

and can be used to identify unusual usage patterns that

might indicate a security event or predict problems. These

tools can be customized with additional log parsers as well.

Enabling and Using Logging Analytics

Logging Analytics works with OCI Logging and uses OCI IAM

to control access, as with other services. The process of

configuring the service includes setting up relevant IAM

policies, followed by configuring how data is ingested into

the Logging Analytics service. Log ingestion can ingest logs

from both your tenancy and your on-premises resources.

Additionally, the service can be configured to ingest audit

logs from OCI, for added fidelity. Logs from compute

instances and on-premises servers are collected by the

compute management agent and sent over to the log group

that is created for it. Although this host-level data is

necessary, in the case of cloud native applications deployed

to a Kubernetes cluster, you also need cluster-level metrics

and logs to fully analyze the state of your workloads. To

enable this, Logging Analytics uses fluentD to collect

Kubernetes system/service logs, Linux system logs, and

application pod/container logs. A preconfigured fluentD

container can be deployed to your Kubernetes cluster as a

DaemonSet, which continually collects data and ingests it

into Log Analytics.

OCI Logging Analytics also includes built-in knowledge

about well-known large-scale enterprise systems such as

EBS. This is particularly useful when Oracle E-Business Suite

(EBS) or a similar enterprise application suite is extended

with custom bespoke applications that are now moving into

a cloud native model. In these scenarios, Log Analytics can

automatically discover your EBS or similar enterprise

application deployment, including all its components and

layers, and correlate it with systems that interact with it,

such as a microservice running on a Kubernetes cluster.

Prometheus and Grafana with OKE

Prometheus and Grafana are some of the most widely used

tools for monitoring metrics in Kubernetes. The kube-

prometheus project provides a comprehensive experience

for deploying Prometheus and Grafana on Kubernetes. It is

based on the Prometheus Operator for Kubernetes, which

uses the operator pattern to manage Prometheus

deployments. The project provides pre-built Grafana

dashboards and Prometheus rules, making it a complete

monitoring solution for Kubernetes clusters. This project is

an ideal starting point for most Kubernetes users. Chapter 5

includes the complete steps to deploy and manage this

stack on OKE.

Using the OCI DataSource Plug-ins for

Grafana

OCI provides data source plug-ins for Grafana that enable

you to create panels and dashboards that query OCI directly.

Data sources for both OCI Logging4 and OCI Metrics5 are

available. The capabilities and query methods of each data

source are different; in the case of the OCI plug-ins, you

construct queries based on the region, compartment, metric

namespace, and other OCI-specific dimensions. The OCI

data source plug-in for Grafana has a customized Query

Editor UI that is tuned for the features and capabilities that

the plug-in exposes. In Grafana, you can combine data from

multiple data sources onto a single dashboard, but each

panel is tied to a specific data source. You can also create

alerts based on OCI metrics using Alertmanager. You can

download and install these plug-ins from the Grafana

marketplace (see the “Resources” section at the end of the

chapter).

eBPF-Based Monitoring with Tetragon

on OKE

Security applications often have requirements and scenarios

that are very broad in nature, such as being able to watch

for all programs that are opening a sensitive file and

perhaps even terminating programs that are exhibiting

behaviors you are not expecting. The deepest you can get is

down to the operating system kernel itself because very

little activity in the OS escapes the kernel. Implementing

these security protocols broadly across a system often leads

to performance degradation of unacceptable levels because

the tools typically run outside the kernel’s privileged

execution context. This leads most users to settle for

monitoring specific applications or smaller parts of a

system. Building this functionality directly into the kernel or

as kernel modules that execute within the kernel space

often lets a program have very low overhead, but

traditionally this comes at the cost of security and

maintenance of these kernel modules. eBPF fundamentally

changes this equation by providing a method of introducing

new functionality that can execute in a sandboxed and

privileged context without changing kernel source code or

loading a kernel module. It essentially functions by creating

a paradigm similar to a programming language virtual

machine, such as Java. Modern Java programs are compiled

into platform agnostic bytecode. This bytecode is consumed

by the Java Virtual Machine (JVM), which uses a built-in Just-

In-Time (JIT) compiler to convert the bytecode into native

machine code to get native performance. Similarly, eBPF

programs have a bytecode representation. BPF is deeply

tied to the Linux kernel and can be considered a virtual

machine inside the kernel. The in-kernel JIT compiler

consumes an eBPF program in the eBPF bytecode and

compiles it into native code that can execute in the kernel

space.

eBPF uses an event-based model to load programs, and

eBPF programs are written to “hook” into network events,

systems calls, and more. When an event that an eBPF

program hooks into is called, the eBPF program is loaded

into the kernel after verification and JIT compilation. The

verification step ensures that the program is safe to run,

has the right privileges, and can run to completion; the JIT

compilation ensures native performance. In many cases,

eBPF programs are written in higher-level languages and

compiled into the bytecode representation. These are then

loaded into a running kernel after JIT compilation, based on

the events that the programs are hooked into.

Tetragon: eBPF-Based Security

Observability and Enforcement

Tetragon is a cloud native eBPF-based tool that performs

security observability and enforcement. It is a component of

the Cilium project. Using eBPF, Tetragon filters and observes

events and applies policies in real time without sending

events to an agent that is running outside the kernel.

Tetragon can address numerous security and observability

use cases by filtering for events such as a workload opening

a network connection, accessing a file, or even starting a

process inside a container. For instance, a shell process

being started inside an application container could be

considered a security event. Someone could be trying to

troubleshoot an issue, or this could be some malicious

activity—either way, it should trigger a security check to

rule out an attack on the system. The same could be said

about network connections being opened or files being read.

Tetragon can trace and filter these activities while

introducing little to no overhead, usually at the earliest

stage that these events can be detected in software.

Tetragon is ideally suited for all Kubernetes workloads,

and it runs as a DaemonSet in each node on the cluster.

Tetragon can then pull metadata from the Kubernetes API

server and correlate that metadata with the events

observed within the kernel of each node. Tetragon makes it

easy to set up real-time filters for these activities and more

using TracingPolicies. A TracingPolicy is a custom resource

created by Tetragon that enables admins and DevSecOps

teams to create and deploy filters for kernel events as

Kubernetes resources. A TracingPolicy can match system

calls, process attributes and arguments, and also trigger an

action on matches.

Running Tetragon on Oracle

Container Engine for Kubernetes

(OKE)

Tetragon can be deployed to Kubernetes clusters on OKE

using the Helm chart published by the Tetragon project.

After it is installed, the TracingPolicy Custom Resource

Definition (CRD) is created and Tetragon runs on the cluster

nodes as a DaemonSet.

Prerequisites for Oracle Linux

OKE uses Oracle Linux, and Tetragon relies on having the

BPF Type Format (BTF) support in the kernel. Recent Oracle

Linux kernels include this out of the box. For this reason,

users should use a kernel that is 5.4.17-2136.305.3.el7uek

or newer. Tetragon also does not provide support for ARM

(linux/arm64) architecture; at the time of writing, it provides

only x86 (linux/amd64) support. If you have ARM nodes in

your OKE cluster, the DaemonSet will stay in the

Init:CrashLoopBackOff status.

Recent versions of the OKE node images are based on

kernels that include BTF support. This caveat for BTF

support is applicable only for clusters in which the node OS

has not been updated in a while, not for newly created

clusters. If you are unsure, the best way to check whether

you have BTF support is to log in to the node using SSH and

run ls /sys/kernel/btf. You should see the kernel (vmlinux)

and modules listed here.

To check the version of the kernel that your nodes are

using, run uname -a on the node. If you are running an older

version of the kernel, you can upgrade the version on the

node pool configuration. However, this affects only newly

created nodes; existing nodes are not upgraded

automatically to ensure continuity for the workloads that

might be running on them. You can follow the node pool

upgrade process to bring your existing nodes up to the

newer kernel versions.

When you have ensured that you are running on a recent

version of the kernel on your nodes, you can get started

with Tetragon installation using the Tetragon Helm chart.

You can follow the instructions from the Tetragon GitHub

page as well. To use the Helm chart Tetragon, follow these

instructions:

Click here to view code image

helm repo add cilium https://helm.cilium.io

helm repo update

helm install tetragon cilium/tetragon -n kube-system

kubectl rollout status -n kube-system ds/tetragon -w

If you see that Tetragon pods are in a CrashLoopBackOff

state, this could be caused by one of two reasons. The most

likely reason is that this is occurring on ARM-based nodes, if

you have them in your cluster. Tetragon does not yet run on

ARM as of the time of writing. To confirm that this is the

case, use the following line:

kubectl describe pod

You will then see the init container named tetragon-

operator. This is likely failing and in a terminated state, with

an exit code of 1. You can use the following line to view the

init container logs:

Click here to view code image

kubectl logs <pod_name> -c tetragon-operator -n kube-system

You might see the reason for the init container to

terminate as standard_init_linux.go:228: exec user process

caused: exec format error, indicating that the binary is not

meant for use on ARM CPU architecture.

The second reason Tetragon pods are in a CrashLoopBackOff

state could be that you have an older kernel on your node,

and BTF support is not included in it. To verify this, get the

container logs for the failing container in the pod, as

described previously. If the lack of BTF support in the kernel

is the issue, you will see an error message similar to the

following:

Click here to view code image

aborting kernel autodiscovery failed: Kernel version BTF search fa

 not included in supported list.

Use --btf option to specify BTF path and/or '--kernel' to specify

This is expected on nodes that have not had their OS

updated for a while. To resolve this, the node pool

configuration needs to be updated and the nodes need to

be upgraded, following the standard node pool upgrade

process.

When the DaemonSet is ready and the Tetragon pods are

in the Running state, you can start listening to events on your

nodes. Out of the box, Tetragon can monitor process

execution. Tetragon emits the events it matches in JSON

format, and the logs can be observed with the following

command (assuming that you have jq installed):

Click here to view code image

kubectl logs -n kube-system -l app.kubernetes.io/name=tetragon -c

 -f | jq

Depending on what activity is occurring on your cluster,

you will see a stream of JSON objects that represent these

events. Listing 8-4 shows sample output from a cluster that

was running ArgoCD, where it was cloning a Git repository.

Listing 8-4 Example Logs from Tetragon Showing Activities

That It Is Tracking

Click here to view code image

{

 "process_exec": {

 "process": {

 "exec_id": "MTAuMC4xMC4yMTg6OTE0MTQ2NjAzODU0MDcwOjEwNDA4Ng==

 "pid": 104086,

 "uid": 999,

 "cwd": "/tmp/_argocd-repo/83c509d8-f9ba-48c3-a217-a927813496

 "binary": "/usr/bin/git",

 "arguments": "rev-parse HEAD",

 "flags": "execve clone",

 "start_time": "2022-06-07T17:03:42.519Z",

 "auid": 4294967295,

 "pod": {

 "namespace": "argocd",

 "name": "argocd-repo-server-7db4cc4b45-cpvlt",

 "container": {

 "id": "cri-o://1c361244fcb1d89c02ef297e69a13bd80fd4d575a

 0711e17",

 "name": "argocd-repo-server",

 "image": {

 "id": "quay.io/argoproj/argocd@sha256:85d55980e70f8f70

 d55e51f8a7fc4b45d698f0a7ffef0fea",

 "name": "quay.io/argoproj/argocd:v2.3.4"

 },

 "start_time": "2022-05-31T16:57:53Z",

 "pid": 319

 }

 },

 "docker": "1c361244fcb1d89c02ef297e69a13bd",

 "parent_exec_id": "MTAuMC4xMC4yMTg6MzA4OTk3NTAyODQyMTEzOjExM

 "refcnt": 1

 }

 },

 "node_name": "10.0.10.218",

 "time": "2022-06-07T17:03:42.519Z"

}

The event stream as JSON output is verbose and hard to

understand, but it is information dense. You have several

ways of ingesting this JSON data and deriving analytical

information from it. The obvious one is to use the Tetragon

CLI tool. Isovalent, the company behind Cilium and

Tetragon, also offers a full-featured commercial product that

can analyze and visualize this data, to make it more

actionable and easier to assimilate.

Installing the Tetragon CLI

The Tetragon CLI is useful to filter events by pod, host,

namespace, or process. The CLI can be downloaded from

the GitHub releases page. Simply download the tool based

on your operating system and CPU architecture, and untar it

to a standard location such as /usr/local/bin, or add the path

to the binary to your PATH variable for your shell.

Alternatively, if you have go installed on your workstation

where you want to run the CLI, you can download and install

it with the commands in Listing 8-5.

Listing 8-5 Installing the Tetragon CLI

Click here to view code image

GOOS=$(go env GOOS)

GOARCH=$(go env GOARCH)

curl -L --remote-name-all https://github.com/cilium/tetragon/relea

 tetragon-cli/tetragon-${GOOS}-${GOARCH}.tar.gz{,.sha256sum}

sha256sum --check tetragon-${GOOS}-${GOARCH}.tar.gz.sha256sum

sudo tar -C /usr/local/bin -xzvf tetragon-${GOOS}-${GOARCH}.tar.gz

rm tetragon-${GOOS}-${GOARCH}.tar.gz{,.sha256sum}

With the Tetragon CLI installed, the events from the log

files can be pretty printed simply by sending the JSON

output to the CLI command tetragon observe, as shown here:

Click here to view code image

kubectl logs -n kube-system ds/tetragon -c export-stdout -f | tetr

TracingPolicies for FileAccess and Network

Observability

TracingPolicies are custom resources that make it easy to

set up real-time filters for kernel events. A TracingPolicy can

not only match and filter system calls for observability, it

can also trigger an action on these matches. Tetragon offers

a few examples that showcase this capability, to inspire

your own TracingPolicies.

Apply the example tracing policies for file access and

network observability, as shown here:

Click here to view code image

kubectl apply -f https://raw.githubusercontent.com/cilium/tetragon

 examples/sys_write_follow_fd_prefix.yaml

kubectl apply -f https://raw.githubusercontent.com/cilium/tetragon

 examples/tcp-connect.yaml

With these additional TracingPolicies enabled, Tetragon

starts tracing file access and network activity, as

demonstrated in Listing 8-6.

Listing 8-6 An Example Showing the Tetragon CLI

Displaying Events Such as File Access and Network Calls

Click here to view code image

$ kubectl logs -n kube-system ds/tetragon -c export-stdout -f | te

...[output truncated]

 process default/xwing /bin/bash

 open default/xwing /bin/bash /etc/passwd

 close default/xwing /bin/bash

 open default/xwing /bin/bash /etc/terminfo/x/xterm

 close default/xwing /bin/bash

 process default/xwing /bin/cat /etc/passwd

 open default/xwing /bin/cat /etc/passwd

 close default/xwing /bin/cat

 exit default/xwing /bin/cat /etc/passwd 0

 process default/xwing /usr/bin/curl -Lv https://cloud.oracle.com

 open default/xwing /usr/bin/curl /etc/ssl/openssl.cnf

 close default/xwing /usr/bin/curl

 open default/xwing /usr/bin/curl /etc/hosts

 close default/xwing /usr/bin/curl

 open default/xwing /usr/bin/curl /etc/resolv.conf

 close default/xwing /usr/bin/curl

 connect default/xwing /usr/bin/curl tcp 10.244.1.152:65175 -> 23

 open default/xwing /usr/bin/curl /etc/ssl/certs/ca-certifica

 close default/xwing /usr/bin/curl

 sendmsg default/xwing /usr/bin/curl tcp 10.244.1.152:65175 -> 23

 bytes 517

 sendmsg default/xwing /usr/bin/curl tcp 10.244.1.152:65175 -> 2

 bytes 126

 sendmsg default/xwing /usr/bin/curl tcp 10.244.1.152:65175 -> 2

 bytes 109

 sendmsg default/xwing /usr/bin/curl tcp 10.244.1.152:65175 -> 2

 bytes 31

 close default/xwing /usr/bin/curl tcp 10.244.1.152:65175 -> 2

 exit default/xwing /usr/bin/curl -Lv https://cloud.oracle.com

 exit default/xwing /bin/bash 0

...[output truncated]

These events are monitored directly from within the

kernel, so very little can be obfuscated or masked by a

malicious actor.

The primary downside to this approach is that actions

you can take (such as killing a process that reads a file) are

reactionary: You know about the event as it is happening,

not beforehand. Still, it is extremely powerful to be able to

have a low-overhead solution for filtering and matching

events at the kernel level and being able to create policies

that can help you observe and act on them.

Summary

This chapter covered several services and choices that

enable you to observe both your infrastructure and your

applications in OCI. OCI services always emit metrics and

logs that can be captured and analyzed. The services that

enable this functionality can also do it for your applications.

OCI Monitoring can capture, store, and search through the

metric data that OCI services and your applications

generate. Monitoring is also integrated with alarms that can

trigger other systems by creating notifications. OCI Logging

can capture, index, and search through logs generated by

OCI services and your application. This can help you

understand patterns in application use and behavior. OCI

Logging also includes audit logging and support for custom

logging for your applications. Apart from these services, the

OCI Logging Analytics service has features that can ingest

metrics and logs from a multitude of services and provide

deep insights into your applications and infrastructure, with

minimal configuration. You can also bring in your own tools

and processes to monitor your OCI resources and assets. For

most cloud native applications running on Kubernetes, the

Prometheus and Grafana stack is a popular choice for

gathering and visualizing metrics. This chapter included an

overview of setting up this popular set of tools on OKE,

including how to set up OCI plug-ins for Grafana. eBPF is an

emerging technology that is often used for observability,

and this chapter also covered its installation and use on OCI

with the popular open-source project Tetragon.

References

1 Supported monitoring services:

https://docs.oracle.com/en-

us/iaas/Content/Monitoring/Concepts/monitoringovervie

w.htm#SupportedServices

2 SDK example for posting metric data for your

application to OCI Monitoring:

https://github.com/oracle/oci-java-sdk/blob/master/bmc-

examples/src/main/java/MonitoringMetricPostExample.ja

va

3 CloudEvents: https://cloudevents.io/

4 OCI Logs data source for Grafana:

https://grafana.com/grafana/plugins/oci-logs-datasource/

5 OCI Metrics data source for Grafana:

https://grafana.com/grafana/plugins/oci-metrics-

datasource/

https://docs.oracle.com/en-us/iaas/Content/Monitoring/Concepts/monitoringoverview.htm#SupportedServices
https://github.com/oracle/oci-java-sdk/blob/master/bmc-examples/src/main/java/MonitoringMetricPostExample.java
https://cloudevents.io/
https://grafana.com/grafana/plugins/oci-logs-datasource/
https://grafana.com/grafana/plugins/oci-metrics-datasource/

9

DevOps and Deployment

Automation

Automation is a key element of building and managing

cloud native applications at scale. Cloud platforms and cloud

native architecture patterns have more loosely coupled

moving parts than a traditional monolithic application

deployed on persistent legacy hardware platforms. Although

cloud native architecture provides unprecedented

development velocity, resilience, and cost optimization, it

also introduces additional operational overhead. Automation

is an essential component to overcome this overhead and

realize the benefits of a cloud native approach to application

development.

Automation systems are not a new concept; many have

existed since long before cloud native development was a

mainstream idea. Several of these platforms have

introduced support for working with cloud platforms and

environments such as Kubernetes clusters. The advent of

cloud native development has also given rise to a new

breed of tools and approaches for continuous

integration/continuous deployment (CI/CD) systems that

embrace DevOps culture. One example is building

infrastructure as code, a type of automation that enables

you to use code to express the flows that build, test, deploy,

and manage your applications as well as infrastructure.

Managing these automation flows as definitions that

describe the automation flow in an easy-to-read format is

one way to introduce DevOps practices to CI/CD systems.

These codified automation flows can be source controlled,

making them easy to replicate and to use for tracing

changes and making the automation platform itself more

resilient to failures. A traditional system might rely on an

always active pool of agents that are kept around

indefinitely to perform the various tasks of a CI/CD system,

such as to compile applications, run tests, and orchestrate

deployment jobs. In a traditional environment, this is

acceptable because operations teams are working with

preprovisioned capacity that is specifically allocated for the

CI/CD system. In a cloud-based environment, however, this

leads to a massive waste of resources because these

resources could have been requested just-in-time, allowing

the system to optimize on cost while also being able to

scale well beyond the preprovisioned capacity by which a

traditional CI/CD system is limited.

Several of the tools that embrace a DevOps approach are

themselves cloud native. Some are cloud-based services,

such as GitHub actions; others are self-hosted platforms

that support cloud native deployment models, such as

ArgoCD and Jenkins. Jenkins, one of the most popular CI/CD

platforms, has evolved from its on-premises origins to a

modern cloud-aware platform. This also puts Jenkins in a

unique position to handle non-cloud native pipelines and

targets (such as building, testing, and deploying a

monolithic application to an on-premises server) just as well

as it can handle cloud native pipelines and targets (such as

building and pushing container images and deploying

microservices to a Kubernetes cluster). Because Jenkins is

based on a plug-in model, it can be extended, and new

functionality can be added quite easily. A thriving plug-in

ecosystem is one of the main advantages of using Jenkins.

OCI has plug-ins that help integrate Jenkins with the OCI

platform as well. Tools such as ArgoCD and Flux take an

opinionated approach to continuous deployment, called

GitOps.

This chapter explores different automation platforms and

methods, such as Jenkins, GitOps, ArgoCD, GitHub Actions,

and OCI’s native DevOps service, and how they work with

OCI.

OCI DevOps Service

The OCI DevOps service is a fully managed CI/CD service

that helps developers get started quickly and reap the

benefits of a DevOps-oriented software development culture

using OCI. The service includes everything required for

building and delivering software, including managed Git

repositories, build pipelines, repositories for build artifacts

and Docker images, and sophisticated deployment

management tools. As with most other OCI services, the

DevOps service provides an open platform. The DevOps

service can integrate with a variety of external tools to

enable developers to choose the specific features of the

service that give them the most benefit, instead of asking

them to use the entire platform. For instance, a developer

might have an existing Git repository and build tools within

the enterprise for compliance reasons, but might use the

DevOps service deployment tooling for its capability to

integrate with private OKE clusters. This section introduces

the DevOps service and examines some of the most

common integrations and workflows when building cloud

native applications.

The OCI DevOps service relies on several concepts that

should be familiar to most developers. Nevertheless, it pays

to introduce these concepts and how they relate to each

other. This way, you can start to see the service as a set of

capabilities to choose from and integrate with your favorite

tools and open-source solutions.

The fundamental grouping construct in DevOps is that of

a project. A project provides a common space for grouping

DevOps capabilities that work in concert to build and deliver

a related set of applications. The project can group DevOps

resources such as code repositories, build pipelines,

artifacts, triggers, deployment pipelines, and environments

that are related to a set of applications that are managed

together, typically by the same team. Figure 9-1 illustrates

the components and overall workflow in the DevOps

service:

Figure 9-1 DevOps Service Components and Workflow

1. Code is committed into a code repository. The code

repository could be mirrored from an external repository

using a DevOps connection.

2. Committing code can trigger a build pipeline.

3. A build pipeline executes a build specification.

4. Execution of the build pipeline typically creates

artifacts.

5. A build can trigger a deployment pipeline.

6. The deployment pipeline delivers artifacts to a target

environment.

Code Repositories

Code repositories are Git repositories that are hosted and

managed by the DevOps service. You can access these

repositories using SSH or HTTPS; the access is controlled

through OCI Identity and Access Management (IAM). The

SSH mode of access uses an SSH key pair that is configured

as OCI API keys. Although you can use the same key pair for

multiple uses (say, for the CLI as well as Git access), using

separate key pairs for groups of resources is typically a good

way to isolate and even remove access to specific sets of

resources, and it limits the reach of any one key pair.

When using SSH, the username you specify is in the

format [federation_provider/]user_name@tenancy_name

The HTTPS mode of access uses Auth Tokens, which are

also managed through OCI IAM. When using HTTPS, the

username you specify is in the format

tenancy_name/[federation_provider/]user_name

In either case, the federation_provider is optional and

used only when using federated identities.

External Connections and Mirroring

Repositories

In many scenarios, especially when transitioning from an

existing source control provider to OCI DevOps, you might

want to use the existing repo as the primary repository. In

these cases, you can choose to mirror, or periodically sync,

the commits from the existing repository to the DevOps

platform so that you can set up and validate any automation

processes without impacting developers’ workflows until you

are ready to make a switch.

Mirroring works with both GitLab and GitHub using

personal access tokens (PATs). These tokens are generated

on the respective platforms and should have the capability

to read the repositories; they are stored as secrets in an OCI

vault. An external connection is a DevOps resource that can

connect and access external services such as GitHub or

GitLab on behalf of the user.

External connections can be used for build source

integration when a build pipeline can use the external

repository directly. External connections can be used by

repository mirroring as well, which updates your code

repository in OCI with commits from an external repository.

Repository mirroring uses the external connection resource

to query and access external repositories using the personal

access token associated with that external connection. The

steps to set up mirroring are as follows:

1. Create an access token in GitHub/GitLab.

2. Add it as a secret to an OCI vault.

3. Create an external connection.

4. Create a dynamic group for external connections.

5. Create a policy to grant it read permissions on vault

secrets.

6. Choose the external connection for mirroring a

repository. The console lists the external repositories

available.

7. Choose the repository to mirror, and set the interval for

the sync operation.

Triggers

As the name suggests, triggers in the DevOps service are a

way to start build pipelines in response to an event in the

source management system, such as pushing new commits

to a branch. The most common use for a trigger is to start a

build when a new commit is pushed to the repository or

when a Pull Request is merged. The type of events that can

be used in a trigger depends on the type of the repository.

GitHub and GitLab repositories have collaboration flows that

use Pull Requests (also known as Merge Requests in GitLab).

When using these repositories, triggers can be based on

events related to Pull Requests, such as when a Pull Request

is opened, updated, merged, or reopened.

Note

Deployment triggers are stages in the build pipelines

and are similar in naming to triggers within a DevOps

project. However, these are stages that the build

service supports to trigger external workflows.

Build Pipelines

Build pipelines are one of the most central constructs in the

DevOps service. At a high level, build pipelines provide a

fully managed continuous integration environment within

OCI that consists of an orchestration model and a managed

environment for building application code into artifacts.

Build pipelines also integrate with artifact repositories and

deployment tooling.

The build pipeline uses a set of stages to describe the

build process and to allow the developer to control its flow.

A typical build pipeline executes multiple stages, such as

running a build tool (which performs the actual build),

storing the artifacts (such as application bundles or

container images) into an artifact repository, and triggering

other processes. Stages in a DevOps pipeline are predefined

and represent the various actions, such as compiling source

code, running vulnerability checks, and delivering artifacts

that form the overall build process. Stages can be executed

in sequence or in parallel. For instance, if a single source

repository contains the source code for multiple

microservices, you can make the build process more

efficient by building the microservices in parallel. In such

cases, the DevOps pipeline can perform complex

orchestrations, such as performing multiple builds in

parallel, storing the individual artifacts, and handling

multiple deployments.

Build pipelines provide the following stages:

1. Managed Build

2. Deliver Artifacts

3. Trigger Deployment

4. Wait

Of these, the Managed Build stage is the heart of the

build pipeline. This stage provides a managed build

environment, an ephemeral compute instance for running

builds—a build runner. The build process for running a build

is described as code that uses a build specification that you

commit to your source repository. The Managed Build stage

is simply pointed to the repository and told where to expect

the build specification; the service does the rest. The build

specification describes the build environment and the build

process in a sequence of steps that is executed by the build

runner.

The other stages provide supporting control flow, such as

delivering the artifacts generated by the Managed Build

stage to appropriate repositories. If the managed build

generates a container image, the Deliver Artifacts stage can

move that image in to OCIR; similarly, if the managed build

produces a language-dependent artifact, such as a .jar file

or similar generic artifact, it can deliver those to the Artifact

Registry.

The Trigger Deployment stage can trigger a deployment

pipeline, typically after a managed build has run and the

artifacts it created have been delivered to a repository.

The Wait stage pauses the pipeline for a specific

duration. This is useful when interacting with external

systems that might take a few moments to process an

action. For instance, an artifact repository might want to run

a vulnerability scan on every new artifact before allowing

users to pull that artifact from the repository.

Understanding the build_spec Structure

The build specification describes how a build runner should

run a build. It is a YAML document that describes how the

build runner should be configured and what steps should be

run by the build, in what order. The default name for the

build specification is either build_spec.yaml or build_spec.yml,

and the managed build looks for it in the root of the source

repository. If the file is located in a nonstandard location, the

Managed Build stage configuration can specify a relative

path to it. When a Managed Build stage is executed, the

service performs the following sequence of actions:

1. Provisions a build runner. An ephemeral instance is

provisioned to perform the build.

2. Sets up the build environment. The build runners are

configured with tools and runtimes, such as the JDK or

Android runtimes, source control utilities, CLIs, and tools

such as gradle, Docker, and the OCI CLI.

3. Downloads the source code onto the build runner.

4. Locates, parses, and validates the build_spec.yaml file.

5. Executes the build_spec configuration, including

handling the environment setup, downloading input

artifacts, performing the build steps, and saving the

output artifacts.

If multiple artifacts must be built from the same source

repository, one strategy to consider is to use multiple build

spec files that can be run in parallel stages within the build

pipeline. Parallel managed build steps are run on separate

build runners. This typically speeds up the overall build

process for when multiple artifacts need to be built. The

builds can be executed in isolation, without depending on

artifacts from each other. Listing 9-1 shows a sample

build_spec.yaml file.

Listing 9-1 Sample build_spec.yaml File

Click here to view code image

Metadata section

version: 0.1

component: build

timeoutInSeconds: 6000

runAs: root

shell: bash

Environment section

env:

 # these are local variables to the build config

 variables:

 key: "value"

 # the value of a vaultVariable is the secret-id (in OCI ID forma

 OCI Vault service

 # you can then access the value of that secret in your build_spe

 vaultVariables:

 # exportedVariables are made available to use as parameters in s

 Pipeline stages

 # For this Build to run, the Build Pipeline needs to have a BUIL

 parameter set

 exportedVariables:

 - BUILDRUN_HASH

steps:

 - type: Command

 name: "Export variables"

 timeoutInSeconds: 40

 command: |

 export BUILDRUN_HASH='echo ${OCI_BUILD_RUN_ID} | rev | cut -

 echo "BUILDRUN_HASH: " $BUILDRUN_HASH

 uname -a

 docker --version

 onFailure:

 - type: Command

 timeoutInSeconds: 40

 command: |

 echo "Handling Failure"

 echo "Failure successfully handled"

 timeoutInSeconds: 400

 runAs: root

 - type: Command

 timeoutInSeconds: 1200

 name: "Build container image"

 command: |

 cd ${OCI_PRIMARY_SOURCE_DIR}

 docker build -t demo-hugo-site:${BUILDRUN_HASH} -f Dockerfil

 onFailure:

 - type: Command

 command: |

 echo "Handling Failure"

 echo "Failure successfully handled"

 timeoutInSeconds: 60

 runAs: root

outputArtifacts:

 - name: output01

 type: DOCKER_IMAGE

 location: <region>.ocir.io/<tenancy_namespace>/demo-site:${BUI

The example shows that the build spec is divided into

multiple sections. The first section shows metadata about

the build spec itself. The version indicates the version of the

build spec used; at the time of writing, the only supported

value is 0.1. The component indicates the kind of spec file this

is; for build spec files, the only applicable value is build, as

shown. The default shell used for running builds on a build

runner is bash, and this can be overridden to use sh with the

shell attribute. Build runners do not support sudo; for

scenarios that need superuser privileges, the runAs attribute

can be set to root to execute either the whole build or an

individual step as the root user. The timeoutInSeconds sets the

timeout for steps at the build scope. If the timeout is not

specified, the implicit default is 8 hours, which is also the

maximum value allowed for timeouts.

The env sections hold environment variables that can be

used during the build. env can have three types of variables,

named variables, vaultVariables, and exportedVariables. variables

are key-value pairs that are declared and whose values can

be updated by any build step. vaultVariables are OCI vault

secrets that can be used during the build process. The

typical purpose for these is to reference a password or an

auth token used to log into a private OCIR registry so that

images that are built by a build pipeline can be uploaded to

the registry. In the build spec, the value of this variable is an

OCID that represents the vault secret. When the build

runner executes the build, it fetches the actual secret and

provides it to all the build steps that reference this variable.

This avoids having to create build_spec.yaml files that

embed secrets. exportedVariables are a list of variables that

are declared and whose value can be set in any stage of the

build. A value set for the variable is available in all

subsequent steps of the build spec. In the example,

BUILDRUN_HASH is an exported variable whose value is set in the

first step. It is then used in the subsequent step to tag the

container image that was built.

The steps section of the build spec specifies the

commands that are to be sequentially executed for running

the build. The command can be a multiline command or a

single-line command, and each command can be

accompanied by a timeout value that overrides the timeout

for this step from the one set at the build spec scope. The

name is a descriptive field that can be used to trace the

progress of the build or to troubleshoot the build using logs.

Every step can also have an optional onFailure attribute that

is also of type Command, which runs the specified command to

perform cleanup or otherwise gracefully exit the build step

in the event of a failure. The runAs and timeoutInSeconds values

can be overridden at each step from the build scoped

values set in the metadata section.

The outputArtifacts identifies the artifacts produced by the

build. Artifacts can be of either BINARY or DOCKER_IMAGE type. For

a BINARY artifact, the location points to where the artifact can

be found. If the artifact cannot be found in the specified

location, the build fails. If the artifact is of type DOCKER_IMAGE,

the image needs to have been either built or pulled by one

of the build steps, or the build fails. The location attribute

for an artifact of type DOCKER_IMAGE is the image name and

tag.

Artifacts

Artifacts in DevOps are resources that identify entities that

can be deployed. Artifacts are typically created by a build

pipeline as its output. However, they can also exist

independently and be created or managed outside a build

pipeline because the build and deploy aspects of the

DevOps service can be used independently. This is usually

the case for artifacts that are created by external build

tools, which can be represented in the deployment service

using the artifact resource. Likewise, the artifacts that are

produced by the build pipelines can be represented by the

artifact resource, and their deployment can be handled

using external tools.

Artifacts can be of various types, including a container

image in OCIR, a generic artifact such as a .jar file that is

stored in the Artifact Registry, Kubernetes deployment

manifests, or Helm charts. For most cloud native

applications, developers will be building their applications

as container images and deploying to platforms such as

OKE using a Kubernetes manifest or a Helm chart.

To use the OCIR container image repository with a build

pipeline, the user first creates an artifact that represents

this image repository. This creates the artifact resource that

the DevOps build pipeline can use to interact with the

container image repository to push the image that the build

generates. The build service includes a stage called Deliver

Artifacts that can be used after the Managed Build stage to

deliver the artifacts created from a managed build to an

artifact repository. The Deliver Artifacts stage maps the

outputArtifacts identified in the build spec with artifact

resources in the DevOps service. This mapping ensures that

the artifacts created in the build are propagated and

delivered to the appropriate artifact stores.

Figure 9-2 shows a build pipeline with a Managed Build

stage that uses a build spec from a source repository. The

Managed Build stage uses the build spec to execute the

various steps in the build and produces artifacts such as a

container image. The outputArtifacts section of the build spec

identifies the artifacts that are created by the build. The

subsequent Deliver Artifacts stage associates the artifacts

identified in the outputArtifacts section of the build to a

DevOps artifact resource. The stage then delivers the

artifact (such as the container image) to the artifact store

(such as OCI Container Image Registry).

Figure 9-2 A Build Pipeline with a Deliver Artifacts Stage

That Maps the Results of a Build to Artifact Resources

and Delivers the Artifacts to the Artifact Store

Artifact references are most used by deployment

pipelines to represent and identify the workload that is to be

deployed to a target platform. Helm charts and Kubernetes

manifests are typical examples of artifacts that are not

generated by a build process; instead, they are stored

either as an inline artifact (Kubernetes manifest) or in OCIR

(Helm chart). These artifacts are referenced by deployment

pipelines during deployment.

Environments

Environments are resources in DevOps that represent the

target platforms or execution environments for deploying

your artifacts. They identify a target platform, such as an

OKE cluster, and the environment reference is used to

interact with these target platforms when deploying

artifacts to them. The DevOps service supports multiple OCI

services, such as OKE, Compute Instance Groups, and OCI

Functions, to be represented as environment resources. The

kind of artifact is related to the kind of environment in which

artifacts have a natural deployment target type. For

instance, a Kubernetes manifest or a Helm chart is always

deployed to a Kubernetes cluster, whereas an instance

group deployment configuration is targeted at a compute

instance group.

The environment reference is most used from the

deployment pipeline, as a way to identify an execution

environment for a deployment. The target environment can

be in any region that the tenancy is subscribed to. This

enables the DevOps service to roll out changes to

global/multiregion applications with ease and precision.

Deployment Pipelines

A deployment pipeline is the feature that provides the

continuous deployment capability in the DevOps service.

Deployment pipelines can be used to construct deployment

workflows that push artifacts onto environments. Like the

build pipelines, deployment pipelines consist of stages that

can be run serially or in parallel. A deployment pipeline’s

stages can be categorized as stages that perform workflow

control, perform integrations, or do deployments to target

environments. Each group offers various strategies that can

be used to form a complete workflow. For instance, control

stages provide control flow in the deployment process, such

as when getting approvals for deployments or performing

traffic shift between environments. Deployment pipelines

natively support advanced deployment strategies such as

blue-green deployments or canary deployments out of the

box. This native support for these deployment models

makes it easy to implement them in application deployment

workflows using deployment pipelines. The build pipeline

and deployment pipeline can be used independently or with

each other. They are loosely coupled, to allow developers to

use their proffered tools for each job. For instance, an

enterprise might mandate that its builds be done on existing

on-premises environments and tooling. A build pipeline also

offers integration between build and deployment pipelines,

allowing variable export and triggering deployments on

successful builds.

In a cloud native environment, the most common

deployment environment is an OKE cluster. For a better

security posture, OKE clusters are usually configured with

private API endpoints that are accessible only from within

the tenancy or from an on-premises network that is peered

with the VCN. This limited visibility for the Kubernetes API

endpoints can add configuration steps to the deployment

tool that needs to access these APIs. Deployment pipelines

can also easily deploy to private OKE clusters. To set up

deployments to private OKE clusters, at the time of creating

the OKE environment, select the VCN and the subnet where

the Kubernetes API endpoint has been created (see Figure

9-3). Access can further be controlled using the security

lists or NSGs on the subnet.

Figure 9-3 Setting Up Deployments to Private OKE

Clusters

Understanding Deployment Strategies

Consider an application that is deployed to OKE. The

deployment process applies the application definition, which

could be a set of Kubernetes manifests, to the OKE cluster.

In this process, the build system is not involved, and it is

assumed that the container images that are required for the

application are already built and available at the repository

URL that is referenced in the manifest files. These images

could have been built by the DevOps build pipeline, or they

could have been built by other tools, perhaps on an on-

premises build system. How the application was built and

packaged does not matter to the deployment tooling

because the deployable artifacts here are either a set of

Kubernetes manifests or a Helm chart. These deployable

artifacts can reference the container images needed to run

the application.

The deployment offers three kinds of deployment

strategies for OKE-based environments:

In-place deployments

Blue/green deployments

Canary deployments

In-place deployments are the most basic: This type of

deployment simply amounts to redeploying an application

over the existing one. In-place deployments are optimal, in

terms of resource usage, but they also afford lesser control

over the rollout (and potential rollback) of the changes

because the newly deployed changes are made available to

all users at the same time.

A blue-green deployment model maintains two identical

environments. One is considered the blue (live traffic)

environment, and the other is the green (no live traffic)

environment. New versions are deployed to the green

environment, and regression tests and sanity checks are

performed. When everything looks good, the traffic is

switched from the blue environment to the green

environment; the green environment is then considered to

be the new blue environment. Although this strategy

requires more resources (a second environment), it affords

much better control over the transition. If the sanity checks

fail, the traffic switch does not have to happen. If an issue is

detected, even after the traffic has switched, a rollback

process is simple and just switches the traffic back to the

old environment. This strategy is more suited to

applications that are highly sensitive to disruptions.

Finally, canary deployments offer a strategy to gradually

move traffic from one version to another. When deployed to

OKE environments, the canary and blue-green strategies

use namespaces within the same cluster. They also rely on

an ingress resource, for which a NGINX ingress controller

needs to be installed in the cluster. In OKE-based

environments, the primary difference in the way these two

strategies operate is how the traffic is shifted from the old

deployment to the new deployment. In the blue-green

strategy, the traffic is switched from one environment to

another, based on validation and approval, and all the

traffic is switched. This means that users experience either

the old application or the new one.

The canary strategy, by contrast, temporarily shifts a

specific percentage of traffic from the production version to

the new version until approval to deploy to production is

received. Once the approval to deploy to production is

received, the production deployment is replaced and all

traffic then is restored to the production deployment. While

the canary version is deployed and waiting to be approved

for production deployment, users can experience both

versions of the application.

Setting Up a Canary Deployment

Performing a canary deployment to an OKE cluster is one of

the most common tasks for developers to carry out when

working with deployment pipelines. To get started, first

deploy the NGINX ingress controller on to the OKE cluster

using the Kubernetes manifests that the project publishes:

Click here to view code image

kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingr

 controller-v1.2.0/deploy/static/provider/cloud/deploy.yaml

Note

The installation instructions for the latest version can

be found at https://kubernetes.github.io/ingress-

nginx.

This creates the ingress-nginx namespace and installs the

NGINX ingress controller. The ingress controller uses a

LoadBalancer to expose the ingress resources externally. Its

IP address can be retrieved from the service object in the

ingress-nginx namespace using the following command:

Click here to view code image

kubectl get svc/ingress-nginx-controller -n ingress-nginx

Next, create an artifact. The artifact in Listing 9-2 deploys

an Apache Tomcat container with six replicas. This

Kubernetes deployment can be exposed to other resources

using a ClusterIP service. Finally, an ingress resource

exposes the service externally under the path /tomcat using

the NGINX ingress controller. This can be created as an

inline artifact.

Listing 9-2 An Example Apache Tomcat Deployment

Click here to view code image

apiVersion: apps/v1

kind: Deployment

metadata:

https://kubernetes.github.io/ingress-nginx

 name: tomcat

 labels:

 app: tomcat

spec:

 replicas: 6

 selector:

 matchLabels:

 app: tomcat

 template:

 metadata:

 labels:

 app: tomcat

 spec:

 containers:

 - name: tomcat

 image: tomcat:9

 ports:

 - containerPort: 8080

apiVersion: v1

kind: Service

metadata:

 name: tomcat-service

 labels:

 app: tomcat

spec:

 ports:

 - port: 80

 name: http

 targetPort: 8080

 selector:

 app: tomcat

 type: ClusterIP

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: ingress-tomcat

spec:

 rules:

 - http:

 paths:

 - path: /tomcat

 pathType: Prefix

 backend:

 service:

 name: tomcat-service

 port:

 number: 80

 ingressClassName: nginx

Next, add a deployment pipeline and add a canary

deployment stage to the pipeline. The canary deployment

stage prompts for the environment reference, the artifact

reference, and the canary namespace, as shown in Figure 9-

4.

Figure 9-4 Adding a Canary Deployment Stage to the

Pipeline

Optionally, you can validate the deployment using a

function that can run tests against the new version and

return a true or false response to the deployment pipeline.

You can also see the traffic limits for the canary. This is the

percentage of traffic the canary deployment will receive; it

can range from 1% to 25% of the traffic. You can also set

the number of approvals required to perform the production

deployment. When the required approvals have been

received, the deployment is made to the production

namespace of your choice in the cluster. A basic canary

deployment with all its steps looks like Figure 9-5.

Figure 9-5 Steps of a Basic Canary Deployment

When the deployment pipeline runs, it deploys the

artifact (the manifest) to the canary namespace. It then

performs the traffic shift step, which annotates the NGINX

ingress with canary annotations that direct a percentage of

traffic to the canary deployment. The ingress resource for

the canary deployment would be annotated as shown in the

following example. These annotations cause the ingress

controller to ensure that only the predefined percentage of

traffic is sent to the canary deployment:

Click here to view code image

nginx.ingress.kubernetes.io/canary: true

nginx.ingress.kubernetes.io/canary-by-header: redirect-to-canary

nginx.ingress.kubernetes.io/canary-weight: 25

The deployment process blocks and waits on the

approval stage. When the approval has been received, the

deployment pipeline resumes by reverting the traffic shift

and promoting the canary deployment to production. The

blue-green strategy also works in a similar fashion: The

artifacts described in the previous listings can be used to

replace the canary build stage with a blue-green

deployment that deploys the new version of the application

to a separate namespace in Kubernetes and switches traffic

after an optional verification step.

Elastically Scaling Jenkins on

Kubernetes

Jenkins1 is probably the most well-known CI/CD server today.

The long history of Jenkins as an active open-source project

has led it to continuously evolve and integrate new

technologies such as Kubernetes. Jenkins uses a plug-in

model for extensions, and its plug-in ecosystem boasts a

vibrant community that is continuously adding and

extending capabilities. Some Jenkins plug-ins, such as

BlueOcean, offer an opinionated CI/CD workflow with a

simplified user interface; others, such as the Kubernetes

plug-in, fundamentally change how Jenkins operates. Jenkins

itself can be deployed on to a Kubernetes cluster, for better

management and elasticity.

At a high level, Jenkins operates on the concept of having

a controller and having multiple agents. This is similar to

Kubernetes itself, in some respects. The controller in Jenkins

manages the various agents, monitors them, and schedules

jobs on the agents under its management. The agents in

Jenkins are the worker nodes that perform jobs. Continuous

delivery in Jenkins is typically done using Jenkins pipelines.

The pipeline is the definition of the steps that are needed

for code in a code repository to be built into software

packages and for those packages to be delivered to your

end users. Jenkins uses a text file named Jenkinsfile to

express these steps and is typically source controlled

alongside the application source. When a build job is

started, the steps in the Jenkinsfile are executed on an

agent to which the controller assigns the job.

In traditional on-premises environments, Jenkins uses a

system in which a set of controllers is configured with a

predefined set of Jenkins agents. The agents are either bare

metal machines or VMs that are preconfigured for certain

use. They can be preconfigured in a homogeneous way, in

which an enterprise has a baseline configuration for all build

jobs; they also can have specific configurations or software

packages, such as compilers or other build tools,

preinstalled on them. These static installations usually do

not get a lot of utilization because an agent that has been

configured for a specific project with specialized tooling will

not typically be used 24×7 unless it is a very high velocity

project. Keeping track of the configuration on the agents

can also be cumbersome over time.

Jenkins does not require agents to be static. An agent can

be a bare metal machine, a virtual machine, or a container.

This can be a machine on-premises, or it can be in the

cloud. The only real requirement for an agent is that it must

be any type of compute that can run Java. This is because

the component that runs on the agent and communicates

with the controller requires Java. Applying the cloud native

best practices and principles to the Jenkins model and

leveraging the plug-in model in Jenkins, the Kubernetes

plug-in allows Jenkins to operate using Kubernetes

primitives.

Note

Oracle has made an OCI plug-in available that can

provision OCI compute instances of any shape and

dynamically connect them as agents to a Jenkins

controller.

Setting Up Jenkins on OKE

Setting up a scalable Jenkins environment on OKE is as easy

as installing the Jenkins Helm chart. The command in Listing

9-3 adds the Jenkins Helm chart repository and installs

Jenkins in a namespace called jenkins; then it overrides the

serviceType and servicePort to use a load balancer listening on

the default HTTP port. Running the commands displays

further commands to be run that show the default

generated password for the default user admin, how to

identify the load balancer IP address, and how to access the

Jenkins login page.

Listing 9-3 Adding the Jenkins Helm Repo and Configuring

the Namespace serviceType and servicePort

Click here to view code image

helm repo add jenkins https://charts.jenkins.io

helm repo update

helm install jenkins jenkins/jenkins -n jenkins --create-namespace

--set controller.serviceType=LoadBalancer \

--set controller.servicePort=80

Note

This installation is a good starting point for exploring

how to run Jenkins on OKE. The Jenkins Helm chart

gives the developer a lot of control. Developers

should refer to the official documentation to

implement security and configuration practices that

are suited for production use.

The Helm chart installs the Kubernetes plug-in and

configures it for using the same Kubernetes cluster where

you are installing Jenkins. The Kubernetes plug-in enables a

Jenkins server to create agents that are pods. As pods,

these “agents” are created when they are needed and

discarded when the job is completed. The Kubernetes plug-

in has a configuration that points it to a target Kubernetes

cluster where new pods will be created to serve as Jenkins

agents. Each project defines the agent configuration as a

pod template in the Jenkinsfile that is associated with that

project. When the Jenkins pipeline executes, a new pod is

created in the Kubernetes cluster using the configuration in

the Jenkinsfile. This configuration can include the specialized

tools required for each project. For instance, one project

could be using Java 11 and another could be using Java 15,

and you no longer must have agents that are preconfigured

with these tool chains always on standby. Instead, the agent

configuration is expressed as a pod that can be based on

container images that have the required tooling. Listing 9-4

shows an example of this configuration in a Jenkinsfile.

Listing 9-4 Example Pod Template in a Jenkinsfile

Click here to view code image

podTemplate(yaml: '''

 apiVersion: v1

 kind: Pod

 spec:

 containers:

 - name: gradle

 image: gradle:7-jdk11

 command:

 - sleep

 args:

 - 99d

''') {

 node(POD_LABEL) {

 stage('Clone repo') {

 git 'https://github.com/oracle-quickstart/oci-cloudnat

 container('gradle') {

 stage('Clean'){

 sh 'cd src/orders && gradle clean '

 }

 stage('Build app') {

 sh 'cd src/orders && gradle compileJava '

 }

 stage('Run Tests') {

 sh 'cd src/orders && gradle test '

 }

 stage('package app') {

 sh 'cd src/orders && gradle bootJar'

 }

 }

 }

 }

}

Note

The build stages are split into separate steps, to

demonstrate nested stages. In most builds, this can

be a single nested step.

The podTemplate defines a pod for running as an agent. The

example in Listing 9-4 shows a single container that uses

the gradle:7-jdk11 image. The pod definition can have

multiple containers as well. The Kubernetes plug-in always

has one container named jnlp in the pod; that container

runs the Jenkins JNLP agent service that connects to the

Jenkins controller and registers the pod as an agent. The

first stage clones the Git repo for the application source

code. The container('gradle') construct selects the container

named gradle from the podTemplate to run its nested stages.

The next few stages run inside the gradle container; they run

the build and unit tests before packaging the application as

a JAR file. Figure 9-6 shows the pipeline execution in Jenkins.

Figure 9-6 Example Jenkins Pipeline Execution

This means that each project can define its build

environment and use tools and configurations that are

unique to it without having to maintain a large fleet of

agents. Because these dependencies are also described as

code in the Jenkinsfile that is source controlled, developers

can easily implement changes to the build environment and

tools with the complete traceability that the source control

system provides. As the job is queued in Jenkins, perhaps

because of a new commit in the source control, the

Kubernetes plug-in spawns a pod as an agent and executes

the pipeline on that pod. When the job is complete, the pod

or that agent is terminated. In this way, Jenkins can truly

become elastic, running on a smaller fleet with better

utilization rates and using the underlying capabilities of

Kubernetes. It also opens the doors to using Kubernetes-

based scaling (such as cluster autoscaling) to grow and

shrink the Jenkins fleet when required.

GitOps with ArgoCD

Developer workflows are centered on source control

systems (usually Git) for application code and infrastructure

expressed as code. GitOps is a set of practices that expand

on developers’ Git-based workflows to provide automated

workflows for applications as well as infrastructure. This

enables every change in the system, application, or

infrastructure to be traced back to a Git commit. Developers

can keep track of changes and known good configurations

while simplifying and standardizing the workflows for both

infrastructure and application changes. Ops and support

teams get better visibility into changes and can quickly re-

create configurations to help troubleshoot issues. This

makes deployments and rollbacks clear and predictable.

With GitOps, a desired configuration is described as code

in the Git repository. This could be an application expressed

as a Kubernetes manifest or infrastructure expressed as

Terraform code. Changes to this configuration are detected

by a tool such as ArgoCD2 or Flux,3 which can trigger a

synchronization or reconciliation of the target environment

to the new definition. This enables you to build a completely

Git-based workflow using existing practices that developers

are accustomed to. For instance, opening a pull request can

be detected, and the result could be deployed to a test

environment to have automated tests run on it, to ensure

that the merge of the pull request will not cause

regressions. A merge of that pull request then could deploy

the now-tested code to the production environment.

Kubernetes can express applications and infrastructure

through Kubernetes manifest files. This makes it an ideal

candidate to be operated using the principles of GitOps.

Kubernetes is not a hard requirement for implementing a

GitOps model, but it makes for a natural fit. Other tools can

implement GitOps as well. For instance, automation

frameworks such as Ansible and Terraform can also be used

to achieve GitOps principles. Regardless of the tools used or

the platforms targeted by the deployment process, the

essential concept in GitOps is that the Git repository acts as

the single source of truth for configurations. Changes to

these configurations are propagated to target environments

by tools that interface with the Git repository and leverage

Git-based workflows.

We chose to show how to deploy ArgoCD onto an OKE

cluster and create a GitOps pipeline to describe how you

can achieve GitOps practices in OCI. The choice to use

ArgoCD was arbitrary, and other tools (such as FluxCD) are

equally applicable. Tools such as ArgoCD have one

fundamental difference in how they operate, when

compared to other tools in the space, such as Jenkins or

GitLab: ArgoCD is Kubernetes focused, has Kubernetes-

specific workflows, and understands Kubernetes objects

natively. Tools such as ArgoCD are typically deployed on the

Kubernetes cluster and work on the principle of pulling

changes into a cluster. This is contrary to general-purpose

tools such as Jenkins or GitLab that can exist outside the

cluster as an independent system and push changes onto

one or more target clusters when changes are detected in

the Git repository.

ArgoCD itself runs on the Kubernetes cluster. The

application controller in ArgoCD continuously monitors

running applications and compares the live application state

against the desired application state that is defined in the

Git repository. This is what lets ArgoCD act when the

configuration on the cluster diverges from what is in the Git

repository. If a new configuration change has been pushed

to the Git repository, ArgoCD detects that there is a

difference between the desired state in Git and the current

state in the cluster and then acts. It works in the reverse

direction as well. Because the configuration contained in the

Git repository is the source of truth, any changes on the

cluster that Argo CD detects are a deviation from the

desired configuration in the Git repository and cause

ArgoCD to act as well. Running within the cluster also lets

ArgoCD visualize the various Kubernetes objects that make

up entire application deployments and their relationships.

Note

Although it is not mandated by GitOps principles, a

best practice when using GitOps is to separate the

code repositories from the configuration repositories.

This allows the typical application workflow to be

undisturbed, and perhaps even use existing tooling to

build the code, test it, and archive the artifacts.

However, once this has been done, a separate

workflow can be kicked off to update the

configuration that is updating the Kubernetes

manifests or the Helm charts to reference the newly

built images or configuration values. This allows the

CI and CD portions of the workflow to operate

completely independently from each other.

Developers thus have more freedom when it comes to

modifying the tools or workflows, without having to

worry about cascading changes to other workflows.

This separation of the application configuration from

the application code also lets multiple teams

collaborate effectively without stepping on each

other’s toes.

Setting Up Argo CD on OKE

Setting up Argo CD on OKE is as simple as deploying the

ArgoCD manifests. The official documentation for deploying

ArgoCD covers the steps in detail and also provides

additional and optional tools for managing your deployment

flow. To get started, create a namespace for ArgoCD and

deploy the stable manifests from the ArgoCD GitHub

project:

Click here to view code image

kubectl create namespace argocd

kubectl apply -n argocd -f https://raw.githubusercontent.com/argop

 stable/manifests/install.yaml

This sets up ArgoCD on the cluster. By default, the

ArgoCD server is exposed as a service of type ClusterIP. To

access the server, developers can either create a port-

forward for temporary access or change the service to use a

LoadBalancer or ingress to expose the server more

permanently.

The following command sets up a port-forward that

listens on port 8080 on localhost and forwards to port 443 on

the service:

Click here to view code image

kubectl port-forward service/argocd-server 8080:443 -n argocd

While the port-forward is running, developers can access

locahost:8080 to access ArgoCD. Using a port-forward can

potentially result in a warning from the browser about the

service using a self-signed certificate. The port-forward is

temporary and is available only on the environment where

kubectl is running. This can be useful for testing but not

suitable for long-term or multiuser access.

To use a public LoadBalancer resource for the service,

and to expose it externally and more permanently, the

service object can be patched as follows:

Click here to view code image

kubectl patch svc argocd-server -n argocd -p '{"spec": {"type":

 "LoadBalancer"}}'

Alternatively, if the developer is using a private load

balancer (in a private subnet) to limit exposure of services,

as is popular in many enterprise environments, the

annotations for a private load balancer can be added to the

patch command as well. The additional annotation that

follows creates an internal or private Load Balancer:

Click here to view code image

kubectl patch svc argocd-server -n argocd -p '{

 "metadata":{

 "annotations":{

 "service.beta.kubernetes.io/oci-load-balancerinternal":"t

 }

 },

 "spec":{

 "type":"LoadBalancer"

 }

}'

When the ArgoCD service is exposed, developers can log

into the ArgoCD UI. Visit https://localhost:8080 if you are using

port-forwarding, or use the IP address of the ArgoCD server

if you are using a LoadBalancer. To log into the UI, you can

retrieve the password for the default user. During

installation, this password was generated by ArgoCD and

stored as a Kubernetes secret. To retrieve the value, use the

following code snippet:

Click here to view code image

kubectl -n argocd get secret argocd-initial-admin-secret -o jsonpa

 password}" | base64 -d; echo

ArgoCD extends Kubernetes with custom resources such

as Application. After logging into the ArgoCD UI, developers

can create an Application in ArgoCD. These custom

resources follow the GitOps model and define an application

and its expected configuration using the deployable

resource definitions stored in a Git repository. The

Application resource in ArgoCD identifies the Git repository

URL, the branch in the git repository to track changes from,

and the path to the resource definition files, among other

metadata. These resource definitions can be plain manifest

files, Helm charts, or kustomize4 overlays. Figure 9-7 shows

an application that is managed by ArgoCD.

Figure 9-7 Managing an Application Using ArgoCD

ArgoCD runs a controller, named the Application

Controller, in the OKE cluster and constantly monitors for

changes between the live state and the target state. The

live state is the state of the application deployed on the

cluster. It can include the number of replicas or whether a

service is of type LoadBalancer or ClusterIP. The target state is

the desired state of the application, and it is defined by the

resource definitions and values that are stored in the Git

repository in the branch that the ArgoCD Application

resource is tracking. The live and target state can diverge if

someone pushes a new commit to the branch that the

Application is tracking or if someone updates the live state

using kubectl commands such as patch, scale, create, delete, or

apply. If the live state and target state have diverged,

regardless of where the change originated, ArgoCD

considers this Application OutOfSync. Applications that are

OutOfSync can be Synced, which essentially applies the

definitions and values in the Git repository to converge the

live state to the target state. This is because, when using

GitOps practices, the Git repository is considered the source

of truth.

Because ArgoCD constantly compares the live state with

the desired state, it can also visualize the live state with

several views. This can be a useful tool for visualizing

applications and their topology. ArgoCD tracks the desired

state in Git, so it can also create diffs between the live state

and the desired state. This can help developers and ops

teams trace application changes, troubleshoot issues, or roll

back deployments.

Apart from the CD tooling, the Argo project offers tools

such as Argo Rollouts and Argo Workflows. Argo Rollouts

support multiple deployment strategies, such as canary

deployments and blue-green deployments for Kubernetes.

Argo Workflow provides a workflow engine that can be used

to manage and scale data processing or similar workflows.

Summary

This chapter looked at a set of automation platforms and

approaches for managing cloud native applications at scale.

As cloud native applications get more distributed and

loosely coupled, these options make it easy to build a

loosely coupled fleet of applications that can move at

various velocities and use the best-of-breed technologies for

what they need to do. However, this also makes the task of

building, deploying, patching, and upgrading this growing

fleet of applications a challenge in itself. Automation tools

and processes described in this chapter focus on this

problem; they range from native platforms that are offered

by OCI (such as the DevOps platform) to open-source

platforms (such as Jenkins) and systems such as ArgoCD

that embrace newer methodologies (such as GitOps). With

its built-in feature set that supports OCI native services and

integration with external tools and systems, the OCI DevOps

platform offers a way to build and manage applications

within OCI. This helps you consolidate tools and processes

onto OCI, making management simple and effective. On the

other hand, for users who already have a well-established

process of managing cloud native applications, cloud native

platforms in OCI (such as OKE) can seamlessly integrate

with open-source tools such as Jenkins or ArgoCD so that

you can bring your tools of choice and operate without

altering your workflows.

References

1 Jenkins: https://www.jenkins.io/

2 Argo: https://argoproj.github.io/

3 Flux: https://fluxcd.io/

4 https://kustomize.io

https://www.jenkins.io/
https://argoproj.github.io/
https://fluxcd.io/
https://kustomize.io/

10

Bringing It Together:

MuShop

Throughout this book, we’ve examined many cloud native

development principles, techniques, and technologies. In

this chapter, we describe a sample application, MuShop

(pronounced Mew-Shop), that puts several of these notions

and services in OCI into practice. The goal of this application

is to provide a working example that implements the cloud

native application design principles and technologies and

showcases the operational model for such an application. It

can act as a reference point for implementation concepts

ranging from application development patterns to

infrastructure and deployment automation, or it can act as

inspiration for your own microservices. The complete source

code for the example application is available on GitHub.1

It can be daunting at first for enterprise application

developers to shift perspective to cloud native processes

and practices, and it is common to view them with a healthy

dose of skepticism. Yet cloud native applications are

evolving and growing in scale all around us every day. As

enterprises increasingly move to cloud providers for

infrastructure, applications teams often face the tough

choice of whether to refactor an enterprise application to a

cloud native model or to simply “lift and shift” to cloud

infrastructure. Many application teams choose to “lift and

shift” because it offers the path of least resistance, short-

term cost savings, and lower risk. The long-term costs,

however, typically uncover the design shortcomings of the

original application, which was never designed to be

computationally elastic or to minimize operational cost. This

is natural because these applications were designed for a

CapEx2 world, with an upfront infrastructure cost. The

possibility of further cost optimization on the cloud

invariably forces development teams to look for an

operationally efficient model and to refactor the

applications to achieve that elasticity. This path of lift-and-

shift followed by planned optimization has proven to be a

successful playbook for many organizations.

MuShop fits that traditional notion of a data-driven,

transactional application, but reinvented as a set of

distributed microservices and operated using cloud native

principles and technologies. The reason to choose a

transactional application for this example and not

something more esoteric is to keep it within the realm of

these everyday enterprise applications.

The motivation to build this application as a reference

sample and demonstrate the various concepts and services

covered in this book is twofold:

To demonstrate the concepts to users who are new to

cloud native development and to provide a deployable

reference point that acts as a sandbox and a learning

tool. Deploying code to a sandbox and examining how

each component works is one of the best learning tools

for developers.

For experienced cloud native developers who are new to

OCI, it provides a familiar application construct while

introducing them to platforms and services within OCI.

MuShop showcases concepts, practices, and OCI services

that are commonly used for cloud native development. In

some respects, it has been overengineered, to prove a point

or demonstrate features. For instance, most microservices

in MuShop use a different programming language,

framework, or technology stack. This is simply to

demonstrate the polyglot possibilities with microservice

architecture and the freedom it affords developers to

choose the right tools for the job. This is not intended to

suggest that all cloud native applications should consist of

polyglot services. This chapter calls out these design

choices and discusses them in detail. The name MuShop is a

tongue-in-cheek reference to using micro (μ, mu) services to

implement an e-commerce site that sells products for cats

(mew!).

Architecture

Microservices architecture breaks down complex software

systems into smaller, independent application processes.

These smaller applications focus on some specific

functionality that they can provide as a service, exposed

through a well-defined interface. These applications are

independently deployed and operated, but they

communicate with each other over the interfaces they

expose. The originally complex system now consists of

much smaller entities that focus on very specific areas and

functionality, so it becomes easier to isolate bottlenecks,

scale the system, rearchitect just parts of it (maintaining the

interface contracts), and more. This is not just an

architectural approach to building modern applications that

are scalable, portable, and resilient; it is also a software

development methodology, in that it enables independent

teams to build, test, and release software in relative

isolation. This approach also allows teams to implement

functionality, using any tools or technology stacks of their

choice, as long as the interface contracts and API protocols

are honored. Many of these applications also leverage the

twelve-factor application methodology,3 which is a set of

popular guiding principles to implement software that is to

be delivered as a service. Because most microservices are

implementations in which some functionality is delivered as

a service, the twelve-factor methodology is great at

providing implementation guidance.

MuShop implements an e-commerce use case—a website

that delivers a shopping experience for products, carts,

order management, and more. MuShop consists of several

microservices written in various languages, using

frameworks and libraries that are popular in their respective

communities. Each service exposes or provides a REST API

that makes up the features of the service. The choice to use

REST as the API protocol in these services (instead of other

choices, such as gRPC) is a conscious one; although gRPC

offers several advantages over REST in terms of efficiencies

and performance, REST is more familiar to the wider

audience and makes the examples more relatable for users.

Figure 10-1 shows the high-level architecture of MuShop.

Figure 10-1 High-Level Architecture of the MuShop

Example Application—Each Microservice Uses Its Own

Stack to Demonstrate the Polyglot Nature of This

Application

It might not look like a typical n-tier architecture of a

traditional data-driven application; instead, it could look like

a web of dependencies. The tiered model still exists within

these applications; however, it has been up-leveled to show

the individual services and the interactions between them.

A quick glance can show you the critical services that many

other services depend on and illustrate what each service

interacts with. The diagram also separates the applications

and services that are deployed to a Kubernetes cluster from

platforms and services outside the cluster. All the

components that are deployed to the cluster are component

services and supporting services of MuShop, and these

services depend on external services that are outside the

cluster. Examples of these external dependencies include an

autonomous Oracle database and object storage buckets.

Most architectures have external dependencies that are

managed cloud services, legacy systems, or self-managed

systems that are run outside the cluster itself. Although this

is natural and common, care should be taken to decouple

them from the applications using configuration. Strong

dependence on these external services can introduce

vendor lock-in and make the application less portable.

Therefore, it is key to design applications so that these

dependencies can be managed as externalized

configuration or using standard interfaces and APIs. These

could be a standard object storage API or an Object

Relational Mapping (ORM) framework, such as JPA in Java-

based applications, to abstract your applications from hard

dependencies on the underlying database.

MuShop manages these external dependencies through

configuration that can be provided to the individual

containers. This configuration can be in the form of

environment variables or configuration files that are

provided to the containers at runtime (such as a config map

in Kubernetes). This allows the same containers to be run

with different configuration options, such as for

development environments and production environments.

An architectural goal of adopting a cloud native

development model is to improve system resilience. One

way to do that is to eliminate single points of failure in the

system. A single service that is used by several other

services has the potential to become a bottleneck.

Microservice architectures make it easy to identify these

services and plan accordingly. External dependencies pose

a similar challenge, as with dependence on a single

database. Microservice architectures often recommend a

database-per-service model, with each service using its own

database on a dedicated infrastructure. MuShop, however,

opts for a slightly modified take on this pattern by using

separate database schemas on a shared database

infrastructure in its default configuration. This is done to

demonstrate application-level isolation while keeping the

infrastructure needs of a sample application to a minimum.

From a service perspective, and for implementation

purposes, this is close to the database-per-service pattern.

A mere configuration change to how the application

connects to databases can switch from multiple schemas to

completely separate databases. Because configuration is

external to the application containers for the services,

switching between a shared database infrastructure and

dedicated databases for each service can be achieved

without requiring code changes or rebuilding the container

images. When appropriate, this pattern can also be used to

share database resources in dev/test environments; then a

switch can be made to use dedicated databases for more

critical environments, simply using external configuration.

Source Code Structure

The source code for MuShop is managed in a single

repository, to make it easier to work with and understand

the entire system in the same context. This style of using a

single source code repository to store multiple projects is

sometimes called a monorepo. The typical manner of

source-controlling an individual project in its own repository

is called a multirepo in this context.

Multirepos are familiar to most developers and are the

norm. The choice to use a monorepo or multirepo for your

microservices applications depends on a set of factors that

should be carefully considered. By their nature,

microservices have a smaller codebase, fewer developers,

and fewer dependencies than the system as a whole. A

multirepo typically gives these teams more autonomy, and

these projects can move independently. The commit

histories for each project look clean, with commits related to

just that project or service. Additionally, code reviews are

streamlined and focused, and CI/CD configurations are

simple because they focus on building just a single service

or application. In sensitive environments, multirepos can

meet compliance and security needs around who has

access to sensitive code. On the other hand, multirepos can

silo developers, and when a single small team works on

several services, multirepos have to work across

repositories, which can be counterproductive as the number

of repositories increases. The drawbacks are easily

understood with an example. Consider a team that uses a

multirepo to implement a new feature. If a feature is to be

implemented across three separate services, then, by

extension, it is spread across three separate repositories.

This can make it difficult to see the whole feature in its

entirety because its code is spread across the repositories.

This approach might also be overkill when the same team

members are forced to switch among the three repositories

to make quick changes that are then tracked as three

separate code commits. Multirepos can also act as an

organization barrier, siloing developers into their own

corners and features.

A monorepo, on the other hand, can encourage

consistency of coding standards and styles when using the

same programming language and comparable tech stacks.

Additionally, you get a complete view of the larger system

as a whole. The dependencies of the whole system can be

analyzed at once, and useful reports can be generated

easily in a monorepo. Above all, a monorepo breaks down

organizational walls between developers and promotes

collaboration. On the flip side, with large teams and

complex systems comprised of numerous microservices, a

monorepo can be quite chaotic, with the commit history

muddled by commits, merges, and conflict resolutions

across teams. Care also needs to be taken to craft your

CI/CD pipelines so that the changes to the repository trigger

the appropriate build and deployment workflows.

Beyond these pros and cons, organizational and

compliance requirements might dictate the choice of source

code structuring. MuShop uses a monorepo primarily

because of its role as an example application. As such, we

wanted to make it easier for users to get started with

MuShop; not having to clone multiple repositories was a

choice we made to support that.

Within MuShop, the source code is primarily organized

into two groups:

Code that automates the deployment, including

infrastructure automation. This can be found under the

directory deploy.

The source code for each of the microservices. This can

be found under src. MuShop uses a variety of

programming languages and frameworks for its

services. Each service under the src acts as an

independent project, with its own dependency

management, build tools, tests, and packaging. The

common aspect is that all the services are packaged as

container images and follow the general principles of

the twelve-factor application methodology.

Figure 10-2 shows the high-level view.

Figure 10-2 The Layout of the MuShop Code Repository

To familiarize yourself with MuShop, clone it to your

workstation. You need to have Git4 installed. If you are new

to using Git, a client such as the GitHub desktop

(https://desktop.github.com)5 is highly recommended.

To clone the repo, run the following command:

Click here to view code image

git clone https://github.com/oracle-quickstart/oci-cloudnative.git

This clones the repository to your workstation, and you

should be able to browse the source code.

Services

The source code for every service that makes up MuShop

can be found in the src folder. MuShop takes a polyglot

approach to microservices, with each service choosing a

https://desktop.github.com/

different programming language and framework and having

its own stack. Some of these services are built for both the

x86 (amd64) and ARM (arm64) platforms, which enables more

portability for workloads as ARM-based compute platforms

are becoming more mainstream with cloud providers. This

offers an example of how to implement a development

workflow to target multiple architectures for your workloads

and effectively package them as containers that support

these multiple architectures. Each service is responsible for

a single function; their nuances are described in the

sections that follow.

Storefront

Technology stack: JavaScript

Target architecture: amd64/arm64

Description: The Storefront is a responsive single-page

web application that implements the MuShop storefront.

This is the web page that users visit to shop at MuShop. As

the user browses the store, adds items to the cart, and

creates orders on the browser, this web application makes

calls to the other services that expose these respective

services. Instead of having the storefront depend on and

know about every back-end API and how to access it, these

APIs are aggregated by the API service, which becomes the

single entry point for the storefront to access all services.

The API service acts as a facade for the APIs provided by the

various microservices.

The application uses UIKit (https://getuikit.com) for the UI

components. It also uses axios (https://axios-http.com) as

its HTTP client to make API calls to the API service.

API

https://getuikit.com/
https://axios-http.com/

Technology stack: nodeJS

Target architecture: amd64/arm64

Description: This service acts as a storefront back end.

It is written in Node.js and orchestrates services for

consumption by the Storefront web application. The

storefront UI makes its API calls to the API service, which

then passes these along to the respective implementations.

The API service acts as a facade for the APIs provided by the

various microservices, such as the Catalog service for

browsing the store, Carts service for adding items and

keeping track of them across sessions, and Orders Service

to create and manage orders. Its role is similar to that of a

reverse proxy, or a very lightweight API gateway. The design

choice of not using a managed full-featured API gateway

service such as the OCI API Gateway was made simply

because it does not require most of the features offered by

such platforms. Implementing a service discovery

mechanism and using that directly from the client

(storefront) is another way to get a similar effect without

the added facade, and this could be more efficient in some

circumstances. However, this shifts the API orchestration

overhead to the client and removes the capability to have

centralized management for API endpoints.

The API service also supports a “mock mode,” which

completely mocks the services underneath. This is generally

useful for the development and testing of the API

consumers (such as the storefront web application) without

having real implementations for the actual microservices.

Most API gateways can also provide similar functionality, to

enable these use cases of parallel development.

Catalog

Technology stack: Go

Target architecture: amd64/arm64

Description: The Catalog service provides an API for

querying the catalog/product information. The product data

is stored on Oracle Autonomous Database. The service uses

the GOdror (Go Driver for Oracle DB) with GoKit to interact

with the Oracle DB from Go. The API exposed by the service

is read only, and the sample application uses an SQL script

that is run at application deployment time to seed the

catalog data into the database.

Carts

Technology stack: Java, using the Helidon framework

Target architecture: amd64/arm64

Description: This service provides a cart that users can

use while shopping. The cart is tied to the user profile and is

persisted in an Oracle database. The Carts service uses the

Autonomous Database’s JSON features to store cart data as

JSON documents instead of relational tables. This service

provides an example for building a Java-based microservice

using the Helidon framework (https://helidon.io/), as well as

demonstrating the features of the Oracle database for JSON

document storage, queries, and joins across document and

relational data models.

It is built using the maven build tool.

User

Technology stack: TypeScript, NextJS, and TypeORM

Target architecture: amd64/arm64

Description: The User service manages customer

accounts, customer profile data, and authentication. The

User service provides the capability to create new user

https://helidon.io/

accounts and update their profile information. It also

handles authentication in MuShop because introducing an

identity-management solution would have been overkill for

a sample application. Identity information maintained by

other services (such as the order created by a user) can

reference user identifiers (such as a user ID) provided by

the User service. It is important to note that MuShop uses a

slightly modified version of the database-per-service

pattern, which is essentially that every microservice has its

own database. As an example application, to keep resource

usage minimal while promoting the architectural patterns

that promote data isolation and better resiliency than, say,

using multiple databases, MuShop uses multiple schemas.

This means that services that use user information, such as

the orders service, maintain its data in a separate schema

or database from the user service. Validation of identifiers is

done across services, not by a traditional foreign key

relationship that is common in monolithic applications.

The users service is built in TypeScript using the NestJS

(https://nextjs.org/) framework, which uses progressive

JavaScript to build efficient Node.js server applications. It

also uses TypeORM, which is an Object Relational Mapper

for TypeScript and JavaScript. Oracle DB connectivity is

enabled by the official node-oracledb package from Oracle,

for Node.js.

Orders

Technology stack: Java, using the SpringBoot framework

Target architecture: amd64/arm64

Description: The orders microservice is a lightweight

application built using SpringBoot

(https://spring.io/projects/springboot) that leverages Spring

JPA for database connectivity. It exposes a REST API for

https://nextjs.org/
https://spring.io/projects/springboot

order management operations. The application is typical of

a spring JPA application and exposes CRUD operations on

orders. It interacts with the user service over the REST API

to track and validate users for whom the orders are created.

It also interacts with the Fulfillment service over an

asynchronous message bus (NATS.io). As orders are created,

it sends messages to the fulfillment service to fulfill them.

This interaction is meant to showcase a messaging-driven

pattern, which is common in microservices and many

modern reactive architectures. Messaging systems promote

elasticity, scaling, and loose coupling for services that

operate at different velocities in a cloud native

environment. If the order volume spikes, the service can

scale up, but a related service can be cushioned from these

spikes using the message bus, which buffers the increased

order flow to a rate that the fulfillment service is capable of.

More importantly, messaging systems can set failure

boundaries. If the fulfillment system goes down, that failure

should not cascade onto other services, such as orders. The

messaging service that sits between microservices and the

asynchronous communication model prevents these

cascading failures.

It uses gradle (https://gradle.org/) as its build tool.

Fulfillment

Technology stack: Java, using the Micronaut framework

Target architecture: amd64/arm64

Description: Fulfillment application models an

asynchronous service that models a fulfillment workflow

based on incoming messages that represent orders that

have been placed. The messaging platform used is nats.io,

and the fulfillment application listens for messages

appearing on a topic. The application reads these messages

https://gradle.org/

and sends reply messages to indicate the processing of

orders on a separate topic that the orders application listens

to. The orders application updates the status of an order

based on the messages it receives from the fulfillment

service. This message-driven flow between the orders and

fulfillment applications showcases the asynchronous

patterns that can be used in cloud native applications.

The Fulfillment application is written in Java and uses the

Micronaut (https://micronaut.io/) framework. It is built using

the gradle build tool. This application is built as a native

binary using the GraalVM (https://www.graalvm.org/) native

image compiler. The GraalVM native image compiler can

create platform-specific native binaries for several

languages, including Java. The native image is machine

code, and no traditional Java Virtual Machine (JVM) is

required to run it. This improves the performance of the

application, in most cases. The gradle build included can be

configured to switch between creating a standard Java

bytecode and using the native image. For the Fulfillment

application, there is an order of magnitude difference in the

performanc due to its use of the GraalVM Native Image

compiler.

Payment

Technology stack: Go

Target architecture: amd64/arm64

Description: This is a bare-bones service written in Go

that performs a simple validation out of the box and can be

expanded to cover new use cases and integrations. Because

MuShop was built to showcase microservices architectures

and was often used in hands-on workshops and meetups,

the payment service scaffold primarily acted as the bare-

https://micronaut.io/
https://www.graalvm.org/

bones service to expand on and make code changes to

these settings.

Assets

Technology stack: Node.js

Target architecture: amd64/arm64

Description: This is a container used during deployment

of the application that pushes the image assets used by the

application to OCI object storage. It contains a Node.js OCI

client and the images used in the application. These images

are uploaded to the object storage bucket that is provided

as a parameter. It runs only during deployment and exists

after the images are uploaded to the object storage. The

object storage bucket to use for the images is typically

created by infrastructure automation such as Terraform, and

the URLs are provided to the Helm chart. Users can

optionally override this as well.

DBTools

Technology stack: None. This is a collection of utilities.

Target architecture: amd64/arm64

Description: This container packages common runtime

tools for database interactions that are used across services

to interact with the database. For instance, MuShop services

that interact with the database might need to set up or

update the database schema when a new version is

deployed or seed data into the database when first run. This

container packages the tools used to execute database

scripts so that they can be run as Kubernetes jobs when

required.

Edge Router

Technology stack: None

Target architecture: amd64/arm64

Description: This is an optional container running the

Traefik proxy, for use in development environments.

Events

Technology stack: Go

Target architecture: amd64/arm64

Description: The Events service is an optional service

that captures events from the storefront and sends them to

an event stream. Stream-processing applications can listen

on this stream and react to it. This service is intended to

showcase integration with the OCI streaming service.

Newsletter Subscription

Technology stack: Node.js

Target architecture: amd64/arm64

Description: The newsletter subscription is a serverless

function that is hosted on the OCI Functions platform. When

users sign up for the MuShop newsletter, the storefront

captures the email address and invokes the function

through the OCI API gateway. The function sends an email

to the recipient, informing them that they are subscribed to

a newsletter. Note that the subscription is not tracked or

stored anywhere; the sample application simply showcases

how to invoke a function through an API gateway and how

to send emails using the Oracle Email Delivery service.

Load

Technology stack: Python

Target architecture: amd64/arm64

Description: The load directory contains a set of test

scripts that use the locust.io stress-testing tool. The tool lets

developers define user behavior using Python scripts. The

scripts themselves send HTTP requests and receive

responses much like the Storefront. Locust.io lets

developers define user flows by creating conditional logic

based on the responses received and creating more

requests based on values from previous requests. Flows can

be randomized as well. When the flow is defined, the

locust.io tool can spawn multiple instances that simulate

users and hit the services concurrently. MuShop uses these

load scripts to test the functionality, as well as simulate

users for creating realistic load conditions to test scaling

operations and the resiliency of the microservices.

Building the Services

The source code for every service that makes up MuShop

can be found in the src folder. Microservices consist of

multiple smaller applications that are each built

independently. Compared to a traditional monolithic

application, building microservices can often be complex,

with each application having subtle nuances in its build

processes. On top of this, for a polyglot application such as

MuShop, in which each service is built using separate tool

chains, maintaining these build tool chains can become

overwhelming. Imagine maintaining a local build

environment with the compilers and tools to build Go

applications, Java applications (some using maven, others

using gradle), TypeScript applications, and more. Now

consider every team member who needs to build these

applications maintaining a similar setup on their

workstations and the whole team being in lock-step with

upgrades to all versions of compilers and tools. Even though

these microservices vary widely in the build tools they use,

they all share a common packaging format of a container

image. Ultimately, the end result of each of these build

processes is a container image.

To address the complexity of the build tooling and

standardize it for teams, it is a common and preferred

practice for containerized application development to also

containerize the build tools and processes. Instead of

requiring developers to maintain these tool chains, the build

tools and processes are contained within a container, the

application code to be built is mounted onto a container,

and the build and packaging are executed within the

container. This makes the build process smooth and

extremely portable because the build tools and build

environment no longer need to be maintained locally.

Because the containers that provide the build environment

are built from Dockerfiles, it helps to codify the build

environment and the tools it is expected to have and to

maintain a history of how the build environment changes

over time. Docker also provides support for multistage

builds that help with adding software and build tools for

build stages, but basing the final output image on a slimmer

base image that includes only the runtime dependencies.

For instance, the final image for an application need not

include a package manager or build tools when the build

stages use containers that have these components.

Avoiding image bloat by retaining only runtime

dependencies for the applications optimizes the image for

its size and minimizes its attack surface.

MuShop takes this approach, and each microservice

describes how it is built by providing a Dockerfile. These

Dockerfiles also take advantage of Docker’s multistage

builds to optimize the final images. Listing 10-1 shows an

abbreviated version of the Dockerfile for the Orders service.

Listing 10-1 An Example Showing the Multistage Builds

Using Docker

Click here to view code image

Stage 1 : Setup the build environment

FROM gradle:6.5 as buildenv

RUN mkdir -p /usr/src/app

WORKDIR /usr/src/app

COPY settings.gradle /usr/src/app

COPY build.gradle /usr/src/app

Stage 2 : Build the application

FROM buildenv as appbuild

COPY src /usr/src/app/src

RUN gradle clean test bootJar

Stage 3 : Application container

FROM openjdk:13-slim

COPY --from=appbuild /usr/src/app/build/libs/orders-1.0.0.jar /app

 1.0.0.jar

EXPOSE 80

ENTRYPOINT java $JAVA_OPTS -jar /app/orders-1.0.0.jar --port=80

The build process is divided into three stages. The first

stage sets up the build environment. It starts off by

choosing the gradle container image as the base image

because the application uses gradle as its build tool. It then

adds the gradle settings file and build file for the

application. This is set up as a single stage, to take

advantage of how Docker runs multistage builds. When this

build is run by Docker, it creates an intermediate container

for this stage, and this can be cached. If there are no

changes to the files in this container—that is, the gradle

settings and the build file (which includes library

dependencies)—then this container does not have to be re-

created in subsequent builds, making those subsequent

builds faster.

The second stage adds the application source code and

runs the actual gradle build. This works because this stage

is based on the intermediate container created in the first

stage, which includes the gradle build tools and settings

required for this build. This container gets updated every

time the source code changes, which is expected because

you need to rebuild the application when you make changes

to the code.

The last stage builds the final application container.

Notice that it starts with a new base image. It does not

carry on from the build environment you set up and used in

the first two stages because when you run the application,

you do not need the build tools (such as gradle). You can

keep the image small and lightweight by including only the

runtime components you need. Because Orders is a Java

application, you need a Java runtime, and this is why here

you base the final application container on the openjdk:13-

slim base image. It provides the basic Java runtime needed

for this Java application. This stage simply copies the

executable JAR file you built during the previous stage and

then sets up the container to run the application.

Once again, the multistage build optimizes the build

process here. If changes are made to the command-line

flags or other parameters that are passed to the application,

then a change to the final stage of the build without any

source code changes will be very fast. This is because the

first two stages are unaffected and the previously cached

intermediate containers are still up to date; the build can

then skip to the third stage directly without actually

rebuilding the application.

The build flow for each application might be different and

is based on the build process for the respective

programming language and packaging models for the

frameworks used. Because the builds are run in containers

as well, automation systems can easily build these images

and integrate with image repositories or sophisticated

deployment models. MuShop is published on GitHub, so it

uses GitHub workflows to automate the application and

image build processes. MuShop also uses GitHub workflow

features to support multiple CPU architectures for images so

that these can be even more portable. The complete GitHub

workflow for the applications can be seen by examining the

.github/workflows directory. Here the containers.yaml workflow

lays out the automated process that builds and pushes

container images when their source code is updated. The

docs.yaml file lays out the process for publishing docs to the

GitHub site. There is a workflow to manage stale open

issues on GitHub as well.

Infrastructure Automation

Infrastructure automation is a key operational characteristic

in cloud native application architectures, and MuShop

demonstrates these concepts using the OCI Terraform

provider. The infrastructure management code is in the

deploy/complete/terraform directory. The infrastructure

automation flow covers the creation and management of

resources such as the virtual network, the OKE cluster, and

the worker node pool. The code is split into multiple files

that work with specific resource areas, for better readability

and maintainability. Module usage was consciously avoided

for this Terraform configuration, for a few reasons. First, this

approach would provide a more complete example of how

these resources are used. Second, modules would have

introduced external dependencies that are more difficult to

control.

As with IAM policies, some OCI resources are always

created in the home region for a tenancy. For this reason,

you will notice that the Terraform configuration uses

multiple provider definitions, one for the home regions and

the other for the region where resources are deployed.

Listing 10-2 demonstrates multiple providers to interact

with multiple regions at the same time.

Listing 10-2 An Example Showing Multiple Terraform

Provider Definitions to Work with Multiple Regions

Simultaneously

Click here to view code image

provider "oci" {

alias = "home_region"

tenancy_ocid = var.tenancy_ocid

region = lookup(data.oci_identity_regions.home_region.regions[0],

user_ocid = var.user_ocid

fingerprint = var.fingerprint

private_key_path = var.private_key_path

}

provider "oci" {

alias = "current_region"

tenancy_ocid = var.tenancy_ocid

region = var.region

user_ocid = var.user_ocid

fingerprint = var.fingerprint

private_key_path = var.private_key_path

}

The Terraform configuration also uses the kubernetes and

helm providers to deploy the application after the

infrastructure resources are built. The default configuration

values and parameters are provided in the included

terraform.tfvars.example file. This file should be renamed to

terraform.tfvars before use. The Terraform configuration can

be customized by changing the values in this file. Listing 10-

3 shows the boilerplate code that contains placeholders that

should be replaced with actual values.

Listing 10-3 An Example terraform.tfvars File with

Placeholder Values—the Content of This File Determines

How Terraform Authenticates with OCI

Click here to view code image

OCI authentication

tenancy_ocid = "ocid1.tenancy....."

fingerprint = "" # e.g.: "5f:53:..." or leave blank if using Cloud

user_ocid = "" # e.g.: "ocid1.user..." or leave blank if using Clo

private_key_path = "" # e.g.: "/users/user/.oci/oci_api_key.pem"

Deployment compartment

compartment_ocid = "ocid1.compartment...."

region

region = "us-ashburn-1"

The Terraform configuration can also be directly imported

into the OCI Resource Manager service. The resource

manager can load the Terraform configuration from a

remote URL and generate a user interface for users to

provide custom values for the terraform.tfvars configuration

file. This provides a one-click experience for managing the

infrastructure deployment and the application deployment.

The direct link to import a stack into resource manager can

be used for any Resource Manager Stack and can be used

as an example to provide templated environments for team-

based development. For instance, if the platform

engineering team wants to standardize infrastructure

topologies, it can provide a standardized stack that

application teams can use that is guaranteed to have the

topology and configuration that the platform team

approved.

Helm Charts

As with most microservice applications on Kubernetes,

MuShop consists of multiple pods, replica sets, services,

config maps, and other Kubernetes resources. Each service

in MuShop offers multiple configuration options that

determine the behavior of the system. This configuration

can be maintained in the Kubernetes manifests, but doing

so for applications that have numerous moving parts and

configuration options can be a challenge. Apart from

becoming verbose and growing in complexity over time, this

approach comingles the configuration data with the

Kubernetes resource definitions.

In a typical development workflow, as you release new

versions of your software, you want to build your containers

once but then configure these containers and your

Kubernetes deployments differently in your test and

production environments. For instance, with MuShop,

several of the services use databases; which database to

connect to is a configuration option for these services. In a

development environment, the service might use a shared

database, whereas in production it might get a dedicated

database. As developers, we want to make sure that the

code that we build and test is exactly the code that we run

in production. By decoupling the configuration from the

code, we can ensure that the same application and the

same container can be configured to run in various

environments. However, maintaining a set of Kubernetes

manifests for each deployment environment becomes hard

to scale and keep track of.

A Helm chart provides a templating mechanism for

Kubernetes manifests so that you do not have to maintain

separate manifests for various configurations. Helm charts

separate the Kubernetes resource definitions from the

configuration values. The resource definitions are

maintained in a template form with placeholders that can

be replaced for actual values. The configuration values are

separated from resource definitions, and this configuration

is maintained in a human-readable YAML document,

commonly referred to as a values file. Having configuration

values consolidated like this makes it easy to understand

the configuration values and maintain them over time.

Because the configuration values are separate, it is also

easy to keep track of changes by simply storing the

configuration in a source control system. When a Helm

chart is installed to a cluster, Helm replaces the placeholder

values in the manifest templates using the configuration

values from the values file provided to it. This effectively

creates a complete manifest using these values. This

generated manifest is applied to the Kubernetes cluster.

Listing 10-4 shows a deployment manifest template

(truncated, for brevity), and Listing 10-5 shows a values.yaml

file helm parameter. Listing 10-6 shows the full manifest

file.

Listing 10-4 An Example of a Deployment Manifest

Template

Click here to view code image

apiVersion: apps/v1

kind: Deployment

metadata:

 name: api-server

spec:

 replicas: {{ .Values.replicaCount }}

 template:

 spec:

 containers:

 - name: api-server

 image: "{{ .Values.image.repository }}:{{ .Values.image.

i P llP li {{ V l i llP li }}

 imagePullPolicy: {{ .Values.image.pullPolicy }}

Listing 10-5 values.yaml File

Click here to view code image

replicaCount: 1

image:

 repository: iad.ocir.io/oracle/ateam/mushop-api

 tag: 2.3.2

 imagePullPolicy: IfNotPresent

Listing 10-6 Resulting Deployment Manifest

Click here to view code image

apiVersion: apps/v1

kind: Deployment

metadata:

 name: api-server

spec:

 replicas: 1

 template:

 spec:

 containers:

 - name: api-server

 image: iad.ocir.io/oracle/ateam/mushop-api:2.3.2

 imagePullPolicy: IfNotPresent

As shown in Listing 10-4, the manifest template has

several placeholder values. The YAML-based values.yaml file

shown in Listing 10-5 defines these values in a way that is

easy to navigate, read, and understand. The YAML format

also makes this a well-organized format. At runtime, the

placeholders in the template are replaced by the values

from the values.yaml file, to generate a full manifest as shown

in Listing 10-6.

The Helm charts for MuShop are responsible for

deploying and configuring each of the services in the

system. Helm charts can reference other Helm charts from

within it. This makes it easy to compose an application out

of independent Helm charts. Every microservice in MuShop

provides its own Helm chart, which exposes its

configuration parameters in a well-defined form. This Helm

chart for an individual service can be used to configure and

manage that service alone. Several of these Helm charts

can be pulled together to create a higher-level Helm chart

that configures and manages multiple services. MuShop is

organized in this manner, and the MuShop Helm charts are

found under the path <repository_location>/deploy/complete/Helm-

chart/mushop/. Here you will find the top-level chart, which is

made up of multiple subcharts, one for each service. The

subcharts can be found under the charts directory, as Figure

10-3 illustrates.

Figure 10-3 The MuShop Helm Chart Consists of

Multiple Subcharts—the Application Can Be Configured

Differently for Various Environments by Using Customized

values.yaml Files

Each application or microservice has its own

configuration and resources that are modeled by a Helm

chart that can provision and manage that application. Each

of these subcharts contains a values.yaml file that provides

sensible and secure defaults for the application. The top-

level MuShop Helm chart is composed of the subcharts for

each of the microservices, along with some global resources

and templates. Even though each microservice (subchart)

provides its own values, the top-level chart can override

values that are set by them. This enables developers to

manage the configuration centrally. Finally, the user can

provide a fully customized YAML file that fully expresses the

configuration and overrides any of the configurations that

have been set underneath. Figure 10-3 shows several of

these values-files for various environments such as values-

dev.yaml, values-test.yaml, and values-prod.yaml. When changing

values for a subchart, only the elements that need to be

changed are specified in the top-level values-file; the values

not specified are not overridden, and the defaults from the

chart’s values-file are still applied.

If you are new to using Helm charts with subcharts, this

might seem confusing at first. Consider this example. The

Orders Service has its default values defined within the

orders subchart by the developers of the Orders Service,

who have provided some sensible defaults. In this example,

the application expects environment variables to be set for

the container. Listing 10-7 shows the default values.yaml that

the orders subchart provides, with its defaults. Note the

newOrdersSubject: mushop-orders, which determines the name of

the subject onto which messages are posted when new

orders are created. The developers of the orders service

have set the default to be mushop-orders, which is a

reasonable default.

Listing 10-7 The Values File in Each Subchart Sets the

Defaults for All Configuration Parameters—This Example

Shows a Snippet from the values.yaml for the Orders Chart

Click here to view code image

env:

 zipkin: zipkin.jaeger.svc.cluster.local

 javaOpts: -Xms32m -Xmx150m -XX:MaxRAM=150m -Djava.security.egd=f

 -Doracle.jdbc.fanEnabled=false -XX:+UnlockExperimentalVMOptions

 -Dlogging.level.mushop.orders=INFO -Dspring.zipkin.enabled=false

 natsHost: “nats”

 natsPort: 4222

 newOrdersSubject: mushop-orders

 shippedOrdersSubject: mushop-shipments

However, when deploying MuShop to a development

environment, you might need to override this. At the time of

performing a Helm install, the user can provide a

customized values.yaml file, such as values-dev.yaml. This file

would contain only the configuration parameters that need

to be overridden, nothing else. Listing 10-8 shows such a

value file in which the newOrdersSubject is overridden to have a

value of test-env-orders. The other values in the orders Helm

chart are still in effect, but the value for the newOrderSubject

has been overridden.

Listing 10-8 An Example Showing Selective Values from

the Underlying Chart Being Overridden

Click here to view code image

... (truncated for brevity)

The environment specific override.

orders:

 env:

 newOrdersSubject: test-env-orders

...

Utilities and Supporting Components

As with most applications, MuShop also uses third-party

open-source software, where required. Within the

application, MuShop uses the NATS messaging system to

asynchronously connect microservices and set failure

boundaries. MuShop also uses software that is outside the

core application, to support its functionality. The monitoring

stack is a good example. Observability is essential to

smoothly running a microservices-based application

because of the sheer number of moving parts in the system.

MuShop uses the Grafana and Prometheus stack for

monitoring and installs these to the Kubernetes cluster as

well. To keep the code well organized, the core application

Helm chart is separate from the supporting software. This

helps to easily keep track of application changes, separate

from changes to the supporting software. MuShop maintains

these in a separate chart called MuShop Utilities. The

MuShop Utilities chart includes the following components:

Prometheus: Monitoring system and time series

database for monitoring events from the workloads

running in the cluster.

Grafana: Utility for querying, visualizing, and alerting

based on metrics data. It integrates with Prometheus as

the data source.

metrics-server: Metrics Server, which collects resource

metrics from kubelets and exposes them.

ingress-nginx: Kubernetes ingress controller

implementation, which uses Nginx as its reverse proxy

and load balancer.

cert manager: A certificate controller that obtains

certificates from issuers and periodically renews them.

MuShop uses it to issue and manage SSL certificates

when you configure your own domain name with

MuShop.

Jenkins: A popular CI/CD tool. It is not installed by

default, but it can be enabled. If it is installed, it will be

preconfigured to run builds by spinning up a pod to run

the build and tearing it down after the build is complete.

Deploying MuShop

MuShop is designed to showcase multiple deployment

options for your cloud native applications in OCI. The

process is fully automated and covers both infrastructure

and application deployments because the sample is

designed to be deployed with no prior knowledge about

tools and services in OCI. When building your own

applications, you should consider whether this is the right

approach for you. Most enterprise organizations tend to

separate infrastructure management and application

development. In these cases, infrastructure teams might

use automation tools such as Terraform or the OCI Resource

Manager service, and application teams might be using

continuous delivery tools such as Jenkins or the OCI DevOps

service.

The default MuShop deployment itself is a simple but

highly coordinated affair, and it is worthwhile to dive into

the details of how the process works. As described in earlier

sections, the infrastructure is managed by a Terraform

configuration packaged as an OCI Resource Manager stack.

The application is packaged as a Helm chart that can be

deployed to a Kubernetes cluster using Helm. The process

can be kicked off simply by using the Deploy button on the

GitHub page. Figure 10-4 shows the Deploy button on the

GitHub page.

Figure 10-4 Deploy Buttons Can Be Embedded

Anywhere and Can Launch the OCI Resource Manager to

Deploy Infrastructure and Applications

Clicking the button takes you to the OCI Resource

Manager service where the stack will be imported. The

button is simply an HTML link to the Resource Manager

service, with a query parameter that points at the stack that

needs to be deployed. In the case of MuShop, new versions

are released as stacks (zipped Terraform configuration with

a schema.yaml) through GitHub releases. You can create links

or buttons like these that point to your stacks as well.

Some application configuration is exposed to the user,

and these cases are captured by Terraform. Terraform

passes these to the Helm chart using the values.yaml file

used for the Helm chart. Figure 10-5 and Listing 10-9

showcase how some of these Helm chart values are set

from Terraform based on user input in the OCI Resource

Manager service.

Figure 10-5 The OCI Resource Manager Can Provide an

Intuitive User Interface for the Terraform Code

Listing 10-9 The OCI Resource Manager Supplies the User-

Provided Values to the Terraform Code

Click here to view code image

Create namespace mushop for the mushop microservices

resource "kubernetes_namespace" "mushop_namespace" {

 metadata {

 name = "mushop"

 }

 depends_on = [oci_containerengine_node_pool.oke_node_pool]

}

Deploy mushop chart

resource "helm_release" "mushop" {

 name = "mushop"

 chart = "../helm-chart/mushop"

 namespace = kubernetes_namespace.mushop_namespace.id

 wait = false

 set {

 name = "global.mock.service"

 value = var.mushop_mock_mode_all ? "all" : "none"

 }

 # ...[truncated for brevity]

}

When the Terraform configuration is applied, it uses the

OCI provider for Terraform to create the basic infrastructure

components, such as networks, databases, and the

Kubernetes cluster itself. After the infrastructure

components are created, the Terraform configuration uses

the Kubernetes and Helm providers for Terraform to interact

with the cluster that was created and installs the Helm chart

to the cluster to complete the deployment.

You can access additional instructions regarding the

deployment options and variations of MuShop on the

documentation website.6 This includes deploying with Istio7

Service Mesh and integrating with OCI Logging and

Analytics. Additionally, there is a variation of MuShop8

where all services use Micronaut.9

Summary

This chapter took a deep dive into MuShop, a reference

application that applies the concepts described throughout

this book. From structuring source code for your

microservices to exploring the various build practices and

deployment models that improve development velocity, the

example application (and its more than a dozen services, all

built using a variety of technologies) showcases how you

can effectively compose a complex application from a set of

microservices and manage it effectively. This chapter also

provided a walk-through of the deployment automation

using Terraform and Helm charts, which can hopefully

inspire your own Helm charts for your applications.

References

1 MuShop Source Code on GitHub:

https://github.com/oracle-quickstart/oci-cloudnative

2 CapEx, which stands for capital expenditures, pertains

to the financial resources a company puts into physical

assets like properties, equipment, or infrastructure.

These assets are anticipated to bring advantages to the

company over a few years and are not regarded as

expenses in the current period.

3 The Twelve-Factor Methodology: https://12factor.net/

4 Git: https://git-scm.com

5 GitHub Desktop: https://desktop.github.com

6 MuShop Documentation: https://oracle-

quickstart.github.io/oci-cloudnative/

7 Istio: https://istio.io/

8 MuShop Variation using Micronaut:

https://github.com/oracle-quickstart/oci-micronaut

9 Micronaut: https://micronaut.io/

https://github.com/oracle-quickstart/oci-cloudnative
https://12factor.net/
https://git-scm.com/
https://desktop.github.com/
https://oracle-quickstart.github.io/oci-cloudnative/
https://istio.io/
https://github.com/oracle-quickstart/oci-micronaut
https://micronaut.io/

Index

A

access/access control, 241

cluster, 154, 160–161

code repository, 359

mandatory, 272

policy, 328

role-based, 248–249

add-ons, 203

configuring, 203–204

removing, 205

Administrators group, 14–15

aggregate resource type, 8–9

agility, 93

alarms, 336–338

allowed registries, 264–266

Anchore, 287

annotations

commonly used, 144–146

load balancer manifest, 139–140

metadata, 137

Ansible, 19–20

API, 5, 19

definition, 75–77

deployment, 74, 78

gateway, 73

adding to a function, 314–315

components, 74

workflow, 75–77

Kafka, 81

key pair, 15

messaging system, 80

resource, 75

route, 74

AppArmor, 291–292

application/s. See also container/s

adding a service mesh, 321–330

cloud native, 55

Kubernetes-native, 208

microservices, 93–94, 95

MuShop, 381–382. See also MuShop

architecture, 382–384

source code structure, 384–386

serverless, 299

state, 208–209

Aqua Security, 287

architecture

container instance, 300–301

MuShop, 382–384

OKE (Oracle Container Engine for Kubernetes), 97

VMs versus containers, 94–95

WAF (Web Application Firewall), 260

ArgoCD, 376–380

artifacts, 364–366

asynchronous cluster creation, 124

audit logging, 253–255, 343–344, 345–347

auth tokens, 15–16

authentication

Instance Principal-based, 29

multifactor, 250

service account, 197–199

token, 197

token-based, 29

automation, 357–358

GitOps, 376–377

infrastructure, 394–395

Terraform, 122

autoscaling, 176–183

availability domain, 2, 4

B

bare metal nodes, SR-IOV, 218–226

bastion host, 244

block, 23

lifecycle, 37

provider, 24

resource, 24

variable, 24

Boolean, variable, 48

budget, 12–13, 110

build_spec structure, 361–364

building OCI Functions, 308–310

context, 309

deployment, 312–313

function definition, 311–312

invoking the function, 312–313

scaffold, 310–311

C

canary deployment, 368–372

CCM (Cloud Controller Manager), 101–102, 137, 146–

147

CI/CD (continuous integration/continuous deployment),

357–358, 372

CIS (Center for Internet Security) Kubernetes

Benchmark, 270–272

CIS-CAT Pro Assessor, 287–289

Clair, 287

CLI (command-line interface), 15

cluster create command, 117–119

node-pool create command, 117–119

Tetragon, installing, 354

cloud

infrastructure, 19

platform, 1

Cloud Advisor, 13–14

Cloud Guard, 10–11, 266–267

cloud native, 55, 93–94

cloud-controller-manager, 98

CloudEvents, 88–89

cloud-init, 62–63, 67, 105–107, 202

ClusterIP service, 101

cluster/s, 97

access, 196–197, 248–249

asynchronous creation, 124

billable components, 99

control plane, 97–98, 102

creating, 110–111

Custom Create Cluster workflow, 113–117

Quick Create cluster workflow, 111–113

using the OCI command-line interface, 117–

119

data plane, 98–99

details, viewing, 165

JSON-formatted configuration, 119–120

multiple node pools, 124–125

namespace, 100

private

access, 244–248

security, 244

scaling

auto-, 176–183

manual, 175–176

security, 149–150

access control, 154, 160–161

component visibility, 150–152

encrypting Kubernetes secrets, 155–156

image signature verification, 154–155

NSG rules, 152–153

use compartments to control access, 154

upgrading, 167

by adding a node pool, 173–175

control plane nodes, 167–169

data plane nodes, 169–170

CNCF (Cloud Native Computing Foundation), 55

CNI (Container Network Interface), 127–128

Flannel, 130

OCI VCN-Native Pod Networking, 129–130

code

function, 307

infrastructure as, 357

MuShop, 384–386

repositories, 359–360

Terraform, 122–123

command/s

CLI

cluster create, 117–119

node-pool create, 117–119

docker manifest, 58

kubectl, 183, 185, 189, 196, 197,352

lspci, 229

commercial realm, 2

compartment/s, 4, 9

controlling access to resources, 154

horizontal model, 18

quota, 12

resource discovery, 36–37

vertical model, 17

compliance reporting, 283

compute instance, 62–63

creating, 120–121

metrics, 331

configuration, 20, 21–22. See also Terraform

context, 197

drift, 25

drift/drift detection, 22, 38–39

file, 15

JSON-formatted, 119–120

manifest, 66

multiregion and multicloud, 51–53

placement, 68

stacks, 31–33

Terraform, 122

consumer group, 81

container/s, 56, 94

creating from images, 61–62

engine, 61, 65–69

image

allowed registries, 264–266

index, 57

layers, 56

manifest, 56, 57

scanning, 60

signing, 59–60, 270

tampering, 59

instance, 63–65, 300

architecture, 300–301

graceful shutdown, 301–302

resource throttling, 304

restart policy, 301

using, 301–304

microservices, 95

reference, 57

runtime, 56, 61–62, 98

scanning, 268

best practice, 269–270

implementing on OKE, 268–269

security, 241, 242

sidecar, 70

context, 197, 309

control plane

Kubernetes, 66–67, 97–98, 102

upgrading, 167–169

controller, 372

CoreDNS, 199

customizing, 200–201

default settings, 199–200

NodeLocal DNS cache, 201–202

CRD (custom resource definition), 209, 212

creating

clusters

Custom Create Cluster workflow, 113–117

managed node pool, 118

Quick Create cluster workflow, 111–113

using the OCI command-line interface, 117–

119

compute instance, 120–121

CSI (Container Storage Interface) plug-in, 101–102, 131

custom cloud-init, 105–107

Custom Create Cluster workflow, 113–117

custom image, 104, 120–121

custom logs, 341

CVE (Common Vulnerabilities and Exposures) database,

60

D

dashboard/s

Cloud Advisor, 14

Cloud Guard, 10–11

Grafana, 207–208

data encryption, 250–251

data plane. See also worker node/s

Kubernetes, 98–99

upgrading, 169–170

data source, 29–31

defined tag, 110

Deploy button, 49–50

deployment, 100

canary, 368–372

MuShop, 400–402

pipeline, 366–367

virtual, 326–328

destroying, resources, 22

DevOps service, 358–359

artifacts, 364–366

build pipelines, 360–361

build_spec structure, 361–364

code repositories, 359

deployment pipeline, 366–367

deployment strategies, 367–368

environments, 366

external connection, 359

mirroring, 359–360

project, 358

setting up a canary deployment, 368–372

triggers, 360

dimensions, 334–336

DNS, 199

Docker, 15, 56

docker manifest command, 58

drift, 22, 25, 38–39, 122

DSL (domain-specific language), 19–20

dynamic group, 9–10

E

eBPF-based monitoring, Tetragon, 350–351

installing the Tetragon CLI, 354

prerequisites for Linux, 351–354

tracing policies, 354–355

edge policy, 260

editing, OS image, 121

encryption, 250–251

enhancements, 166

enum, 48

environments, 366

etcd, 98

event/s, 88

CloudEvents specification, 88–89

conditions, 89–90

external cloud provider, 101

external container scanning tools, 287

ExternalDNS, 202–203. See also CoreDNS

F

FaaS (Functions-as-a-Service), 305

Falco, 293

fault domain, 4

federation, 162

file system storage, 133–137

filter/ing

dimension, 335–336

syscalls, 279–280

Flannel CNI, 130

Fn Project, 72–73, 306

free-form tag, 110

FSS (File Storage Service), 133, 135–137. See also

storage

export, 133

mount target, 133, 135

function/s

code, 307

OCI, 306

adding an API gateway, 314–315

building, 308–313

logging, 315–316

tracing, 316–319

troubleshooting, 315

using, 306–308

put_messages, 83

serverless, 71–73, 305

G

gateway resource, 74. See also API

GitLab, 49–50, 359

GitOps, 376–377

graceful shutdown, 301–302

Grafana, 205, 207–208, 349. See also Prometheus and

Grafana

group cursor, 84–86

group resource, 6

H

harness, 87

HCL (HashiCorp Configuration Language), 19–20, 23

Helm chart, 35–36, 349, 364

Jenkins, 373–374

MuShop, 395–399

Tetragon, 351, 352

horizontal model, 18

I

IAM (identity and access management), 6, 161–162

federation, 162

MFA (multifactor authentication), 250

policy/ies, 6. See also policy/ies

statement, 6–10

RBAC, 248–249

ignore changes list, 37

image/s. See also container

allowed registries, 264–266

creating containers from, 61–62

custom, 104, 120–121

editing, 121

OKE, 103

platform, 104

scanning, 60

signing, 59–60, 154–155

worker node, 103–104

infrastructure. See also Terraform

automation, 394–395

cloud-based, 19

as code, 357

configuration, 21–22

drift detection, 38–39

“lift and shift”, 381

“pets versus cattle” approach, 66

scaling, 194

ingress gateway resource, 323–325

installation

kube-prometheus-stack, 206–207, 349

Multus, 232–233

OCI Terraform provider, 26–27

operators, 209–210

Tetragon CLI, 354

instance

compute, 62–63, 120–121

container, 63–65, 300

architecture, 300–301

graceful shutdown, 301–302

resource throttling, 304

restart policy, 301

using, 301–304

principals, 157–158

Instance Principal-based authentication, 29

integer, 48

J

Jenkins

scaling, 372–373

setting up on OKE, 373–376

JSON, 23, 119–120

K

Kafka, 81

KMS (Key Management Service), 250

kube-apiserver, 98

Kube-bench, 289–291

kubeconfig file, 197

kube-controller-manager, 98

kubectl command, 183, 185, 189, 196, 197, 352

kube-dns, 201–202. See also CoreDNS

kubelet, 98

kube-prometheus project, 205

kube-prometheus-stack

installing, 206–207, 349

kube-proxy, 98

Kubernetes, 95, 99. See also OKE (Oracle Container

Engine for Kubernetes)

access control, 241

cluster, 97

asynchronous creation, 124

billable components, 99

control plane, 97–98

data plane, 98–99

namespace, 100

Cluster Autoscaler, 176–183. See also scaling

best practice, 195–196

combining with HorizontalPadAutoscaler, 194

ClusterIP service, 101

container engine, 65–69

control plane, 96

deployment, 100

enhancements, 166

HorizontalPodAutoscaler, 185–188, 194. See also

scaling

labels, 101, 108–109

LoadBalancer, 100–101

Metrics Server, 183–184

N-2 support policy, 69

networking, 127–128

node. See also node

affinity, 125–126

components, 96

control plane, 66–67

managed, 67–69, 99, 102

pool, 67–69, 98, 102, 103

scheduling workloads, 125–127

selectors, 125, 147–149

taints, 126

taints and tolerations, 126

virtual, 67–69, 99, 102

worker, 67, 99, 102, 103–107

NodePort service, 101

pod, 67, 100

networking, 128

topology spread constraints, 126–127

project, 166

provider, 33–35

secrets, 155–156, 252–253

security, 4Cs, 242–243. See also security

selectors, 101

version support, 166–167

VPA (Vertical Pod Autoscaler), 176, 188–194. See

also scaling

kube-scheduler, 98

L

labels, 101, 108–109, 147–149

“lift and shift”, 381

Linux

container runtime, 61

requirements for running Tetragon, 351–354

Load Balancer service, 100–101, 137

exposing UDP applications and preserving IP

addresses, 142–143

externalTrafficPolicy parameter, 142

network, 142

specifying reserved public IP addresses, 144

SSL termination, 140–142

Log Analytics, 347–349

logging

audit, 343–344, 345–347

custom, 341

OCI, 338–339

service, 340

Tetragon, 353–354

M

MAC (mandatory access control), 272

manage verb, 7

managed node, 67–69, 99, 102, 105

manifest, 66, 139–140

message/messaging systems, 79, 81. See also

Streaming Service

consumer, 79

producer, 79

publish subscribe model, 79–80

queuing, 79

metadata

annotating, 137

stack, 42

variable, 45–49

metric/s. See also observability; Prometheus and

Grafana

compute instance, 331

definition, 331–332

queries, 332–336

Metrics Explorer, 333–336

MFA (multifactor authentication), 250

microservices, 69–70, 93–94, 95, 382

mirroring, 359–360

modules, Terraform, 21

monoliths, 93

mount target, 133, 135

MQL (Monitoring Query Language), 332–336. See also

query

multiregion and multicloud configuration, 51–53

Multus, 218, 232–233

MuShop, 381–382

architecture, 382–384

deploying, 400–402

Helm charts, 395–399

infrastructure automation, 394–395

services, 386

API, 387

Assets, 390

building, 391–394

Carts, 388

Catalogue, 387–388

DBTools, 390

Edge Router, 390

Events, 391

Fulfillment, 389–390

Load, 391

Newsletter Subscription, 391

Orders, 389

Payment, 390

Storefront, 386–387

User, 388

source code structure, 384–386

utilities and supporting components, 399

N

N-2 support policy, 69

namespace, 100

National Vulnerability Database, 296

Network Firewall, 262

network/ing

CNI (Container Network Interface), 127–128

Flannel, 130

OCI VCN-Native Pod Networking, 129–130

load balancer, 142

pod, 128

security, 241, 242

NIST (National Institute of Standards and Technology)

Kubernetes Benchmarks, 294–296

National Checklist Program, 296

National Vulnerability Database, 296

SP 800–190 Application Container Security Guide,

296

Node Doctor, 214–215

generating a support bundle, 217–218

getting a health report, 215–217

NodeLocal DNS cache, 201–202

NodePort service, 101

node/s. See also cluster

affinity, 125–126

bare metal, 218

control plane, 66–67, 167–169

custom OS image, 120–121

generating a support bundle, 217–218

getting a health report, 215–217

managed, 67–69, 99, 102

pool, 67–69, 98, 102

adding, 173–175

benefits of using multiple, 124–125

creating, 118

properties, 103

SSH keys, 109

upgrading, 170–172

scheduling workloads, 125–127

selectors, 125, 147–149

taints and tolerations, 126

virtual, 67–69, 99, 102

worker, 67, 99, 102

images, 103–104

limited access, 275

shapes, 104–106

updating, 273

upgrading, 169–170

NSG (network security group). See also security

benefits, 256–257

rules, 152–153

null key, 82

O

observability, 331

advanced, 347

alarms, 336–338

eBPF-based, 350

Log Analytics, 347–349

logs, 338–339

audit, 343–344

custom, 341

OKE audit, 345–347

service, 340

Tetragon, 353–354

metric/s

compute instance, 331

definition, 331–332

queries, 332–336

OCI (Open Container Initiative), 56

OCI (Oracle Cloud Infrastructure), 137

account types, 14

API Gateway service, 73

availability domain, 2, 4

CCM (Cloud Controller Manager), 101–102, 137

Cloud Adoption Framework, 18

Cloud Guard, 266–267

Cloud Shell, 245

CSI (Container Storage Interface) plug-in, 101–102

DevOps service. See DevOps service

Functions, 306, 315–316

adding an API gateway, 314–315

building, 308–313

logging, 315–316

tracing, 316–319

troubleshooting, 315

using, 306–308

IAM (identity and access management). See IAM

(identity and access management), 161–162

MFA, 250

RBAC, 248–249

JSON-formatted configuration, 119–120

KMS (Key Management Service), 250

Log Analytics, 347–349

logging, 338–339

audit, 343–344

custom, 341

service, 340

Marketplace, 49

Monitoring service

metric/s, 331–332

queries, 332–336

notification service, 336–338

object storage, 25–26

observability. See observability

realm/s, 2, 4

regions, 2

resource/s, 5–10

security zones, 255–256

Service Connector Hub, 86

Service Mesh, 69–70, 319–320

adding to an application, 321–330

using, 320–321

virtual service, 70–71

services, 1

Streaming Service, 80, 81

consumer, 83–84

consumer group, 81, 84–86

group cursor, 84–86

Kafka compatibility, 86–87

message key, 82, 83

partitions, 81

stream pools, 81

tagging, 110

Terraform provider, 26

authenticating using API keys, 28–29

FIPS-compatible version, 27

installing, 26–27

Instance Principal-based authentication, 29

token-based authentication, 29

version, 27–28

tooling, 15

Vault, 250–251

Vulnerability Scanning Service, 60

WAF (Web Application Firewall), 257, 259–260

access rules, 258

architecture, 260

edge policy, 260

threat detection and prevention, 258

OCID (Oracle Cloud Identifier), 5

OCIR (Oracle Cloud Infrastructure Registry), 57, 58

image reference, 57

image scanning, 60

image signing, 59–60

OKE (Oracle Infrastructure Container Engine for

Kubernetes), 36, 66–69,162

add-ons, 203

configuring, 203–204

disabling, 205

architecture, 97

ArgoCD, 377–380

audit logging, 345–347

cluster access, 196–197

container scanning, 268–269

control plane nodes, 66–67

CoreDNS, 199

customizing, 200–201

default settings, 199–200

creating clusters

Custom Create Cluster workflow, 113–117

Quick Create Cluster workflow, 111–113

using the OCI command-line interface, 117–

119

custom cloud-init, 105–107

on-demand node cycling feature, 172

Jenkins, 373–376

Kubernetes version support, 166–167

node pools, 67–69

operators, installing, 209–210

pod networking, 128

Prometheus and Grafana, 349

installing the kube-prometheus-stack, 349

monitoring stack components, 349

Quick Create cluster, 97

scaling a cluster

auto, 176–183

manual, 175–176

security, 243–244

SELinux, 272–273

ServiceNodeExclusion, 149

SR-IOV, 218

on bare metal nodes, 218–226

on virtual nodes, 226–238

Tetragon, 351

installing the Tetragon CLI, 354

prerequisites for Linux, 351–354

tracing policies, 354–355

upgrading a cluster, 167

by adding a node pool, 173–175

control plane nodes, 167–169

worker nodes, 169–170

upgrading an existing node pool, 190–191

VCN (virtual cloud network), 127

viewing cluster details, 165

worker nodes, 67

OLM (Operator Lifecycle Management), 209

OPA (Open Policy Agent), 264–266, 280

auditing and compliance reporting, 283

deploying on OKE, 281

dynamic policy updates and live configuration

changes, 283

integration with Kubernetes, 280–281

policy decision and enforcement, 283

Rego, 282–283

OPA Gatekeeper, 283

benefits, 284

deploying, 284

policy enforcement, 285

Open API Spec 3.0, 75–77

operators, 208, 209

installing, 209–210

Oracle Database Operator, 211–213

OSOK (OCI Service Operator for Kubernetes), 210–

211

WebLogic Kubernetes Operator, 213–214

Oracle Database Operator, 211–213

Oracle Functions, 72–73

OS (operating system), custom image, 120–121

OSOK (OCI Service Operator for Kubernetes), 71, 210–

211

output section, schema file, 44–45

overlay network, Flannel, 130

OWASP (Open Web Application Security Project), 285–

287. See also security

P

patching, worker nodes, 273–275

PATs (personal access tokens), 359

permissions, 9, 198

“pets versus cattle” approach, 66, 169

PF (physical function), 218

placement configuration, 68

plan, Terraform, 21–22

platform image, 104

plug-in/s

CNI (Container Network Interface), 127–128

Flannel, 130

OCI VCN-Native Pod Networking, 129–130

CoreDNS, 200

CSI (Container Storage Interface), 101–102, 131

CSI volume, 133–134

Grafana, 349

Jenkins. See Jenkins

pod/s, 67, 100

networking, 128

SR-IOV, 218

on bare metal nodes, 218–226

on virtual nodes, 226–238

topology spread constraints, 126–127

PodSpec, 34–35

policy/ies, 4, 6

access, 328

API, 74

edge, 260

horizontal model, 18

N-2 support, 69

OPA, 264–266, 280. See also OPA (Open Policy

Agent); OPA Gatekeeper

auditing and compliance reporting, 283

deploying on OKE, 281

dynamic policy updates and live

configuration changes, 283

integration with Kubernetes, 280–281

policy decision and enforcement, 283

Rego, 282–283

quota, 12

restart, 301

security, 127, 258

security zone, recipe, 10–11

skew, 169

statement

aggregate resource type, 8–9

conditions, 9

dynamic group, 9–10

group name, 6

permissions, 9

request variable, 9

resource type, 7–8

scope, 9

target variable, 9

verb, 6–7

tracing, 354–355

vertical model, 17

principle of least privilege, 249

private cluster

access, 244–248

security, 244

profiles, 15

Prometheus and Grafana, 205, 349

default values, 206

installing the kube-prometheus-stack, 206–207,

349

monitoring stack components, 349

using the plug-ins for Grafana, 349

properties, node pool, 103

provider

block, 24

external cloud, 101

Helm, 35–36

Kubernetes, 33–35

Kubernetes Secrets Store CSI Driver, 252–253

Terraform, 26, 122. See also Terraform

authenticating using API keys, 28–29

data source, 29–31

FIPS-compatible version, 27

installing, 26–27

Instance Principal-based authentication, 29

token-based authentication, 29

version, 27–28

publishing, stacks, 49–50

put_messages function, 83

PV (persistent volume), 130–131, 132, 135–136

PVC (persistent volume claim), 132–133, 134–135

Python, 82–83

Q

query

alarm, 336–338

metric, 332–336

Quick Create Cluster, 97

Quick Create cluster, 111–113

quota policy, 12

R

RBAC (role-based access control), 248–249

realm, 2, 4. See also regions

recipe, security zone, 10–11

regions, 2. See also availability domain

Rego policy, 282–283

removing, add-ons, 205

repository, 56

request variable, 9

Resource Manager Service, 31–33

drift detection, 38–39

resource discovery, 36–37

schema file, 38–42

output section, 44–45

stack metadata, 42

variable definitions, 45–49

variable groups, 43–44

resource/s, 5

aggregate, 8–9

API, 75, 78

block, 24

controlling access to, 5–10

destroying, 22

discovery, 36–37

environments, 366

gateway, 74

group, 6

ingress gateway, 323–325

stacks, 31–33

tags, 24–25, 110

type, 7–8

user, 6

restart policy, 301

route, 74

rules, NSG, 152–153

RWX (ReadWriteMany) access mode, 133

S

scaling

cluster

auto, 176–183

manual, 175–176

Jenkins, 372–373

monoliths, 93

workloads and infrastructure together, 194

schema file, 38–42

output section, 44–45

stack metadata, 42

variable definitions, 45–49

variable groups, 43–44

scope, IAM policy, 9

script

cloud-init, 202

custom cloud-init, 105–107

Terraform, 246–248

SDK (software development kit), 19

OCI, 336

Operator, 209

Python, 82–83

secrets, 155–156, 252–253

security. See also IAM (identity and access

management)

4Cs, 242–243

allowed registries, 264–266

audit logging, 253–255

CIS (Center for Internet Security) Kubernetes

Benchmark, 270–272

Cloud Guard, 266–267

cluster, 149–150

access control, 154, 160–161

component visibility, 150–152

encrypting Kubernetes secrets, 155–156

image signature verification, 154–155

NSG rules, 152–153

use compartments to control access, 154

container, 242

container image signing, 270

container scanning, 268

best practice, 269–270

implementing on OKE, 268–269

list, 143, 146–147

network, 242

Network Firewall, 262

policy, 127, 258

private cluster, 244–248

supply chain, 242

threat modeling, 242

tools

AppArmor, 291–292

CIS-CAT Pro Assessor, 287–289

external container scanning, 287

Falco, 293

Kube-bench, 289–291

NIST Kubernetes Benchmarks, 294–296

Tracee, 293

Trivy, 294

WAF (Web Application Firewall), 257–261

worker node

limited access, 275

patching, 273–275

zones, 10–11, 255–256

securityContext, 275–276

capabilities attribute, 278

privileged attribute, 278

readOnlyRootFilesystem option, 277–278

runAsGroup option, 277

runAsNonRoot option, 276–277

runAsUser option, 277

selector, 101, 147–149

SELinux, 272–273. See also Linux

serverless functions, 71–73, 299, 305

service/s, 100

account authentication, 197–199

Bastion, 244

ClusterIP, 101

DevOps. See DevOps service

event, 88–91

kube-dns, 201–202

limits, 11–12

LoadBalancer, 100–101, 137–140

exposing UDP applications and preserving IP

addresses, 142–143

externalTrafficPolicy parameter, 142

network, 142

specifying reserved public IP addresses, 144

SSL termination, 140–142

logs, 340

mesh, 69–70, 319–320

adding to an application, 321–330

proxies, 70

using, 320–321

virtual service, 70–71

MuShop, 386

API, 387

Assets, 390

building, 391–394

Carts, 388

Catalogue, 387–388

DBTools, 390

Edge Router, 390

Events, 391

Fulfillment, 389–390

Load, 391

Newsletter Subscription, 391

Orders, 389

Payment, 390

Storefront, 386–387

User, 388

NodePort, 101

OCI (Oracle Cloud Infrastructure), 1

OKE (Oracle Container Engine for Kubernetes), 36

Streaming, 80, 81

consumer, 83–84

consumer group, 81, 84–86

group cursor, 84–86

Kafka compatibility, 86–87

“at least once” delivery model, 85

message key, 82, 83

partitions, 81

stream pools, 81

tenancy explorer, 13–14

virtual, 325–326

shapes, worker node, 104–106

sidecar container, 70

signature, image, 59–60, 154–155

skew policy, 169

SLA (service-level agreement), 99

SLO (service-level objective), 99

software development, monoliths, 93

source code structure, MuShop, 384–386

source control management system, 23

SR-IOV interfaces, configuring, 218

on bare metal nodes, 218–226

on virtual nodes, 226–238

stack/s, 31–33

metadata, 42

publishing, 49–50

state tracking, Terraform, 25–26

storage. See also FSS (File Storage Service)

class, 131

definition, 134

updating, 131–133

file system, 133–137

object, 25–26

PV (persistent volume), 130–131, 135–136

Streaming Service, 80, 81

consumer, 83–84

consumer group, 81, 84–86

group cursor, 84–86

Kafka compatibility, 86–87

“at least once” delivery model, 85

message key, 82, 83

partitions, 81

stream pools, 81

syscall/s, 278

capabilities, 280

and container isolation, 279

filtering, 279–280

interception, 280

T

tagging, 110

taints and tolerations, 126

target variable, 9

tenancy

Administrators group, 14–15

compartment/s, 4, 9, 12

creating your account, 14

explorer, 13–14

horizontal model, 18

setting up users and groups, 14–15

vertical model, 17

Terraform, 15, 19–20, 23–24, 122. See also OCI (Oracle

Cloud Infrastructure), Terraform provider

arguments, 24–25

block, 23

provider, 24

resource, 24

variable, 24

code, 122–123

configuration, 20, 21–22, 122. See also

configuration

multicloud, 51–53

multiregion and multicloud, 51–53

publishing your stacks with deploy buttons,

49–50

stacks, 31–33

data source, 29–31

Helm provider, 35–36

ignore changes list, 37

infrastructure automation, 394–395

Kubernetes provider, 33–35

modules, 21

plan, 21–22

provider, 20

Registry, 20

remote state, 25–26

script, 246–248

state tracking, 25–26

workflow, 20–21

testing, 23

Tetragon, 350–351

running on OKE, 351

installing the Tetragon CLI, 354

prerequisites for Linux, 351–354

tracing policies, 354–355

.tfstate file, 25–26

threat modeling, 242

token-based authentication, 29

tools, security

AppArmor, 291–292

CIS-CAT Pro Assessor, 287–289

external container scanning, 287

Falco, 293

Kube-bench, 289–291

NIST Kubernetes Benchmarks, 294–296

Tracee, 293

Trivy, 294

Tracee, 293

tracing

OCI Functions, 316–319

policies, 354–355

triggers, 360

Trivy, 287, 294

troubleshooting. See also observability

nodes

generating a support bundle, 217–218

getting a health report, 215–217

OCI Functions, 315–319

U

union mounting, 56

updating

default storage class, 131–133

worker node, 273

upgrading

alternative host OS options, 175

cluster, 1, 167

control plane, 167–169

data plane, 169–170

node pool, 170–175

use verb, 6, 7

user resource, 6

user-space proxy, 280

V

variable

block, 24

Boolean, 48

definition, 45–49

enum, 48

groups, 43–44

integer, 48

policy statement, 9

request, 9

type, 46–49

Vault service, 59

VCN (virtual cloud network), 127

verb

manage, 7

use, 6, 7

version, updating, 273

vertical model, 17

VF (virtual function), 218

viewing, cluster details, 165

virtual deployment, 326–328

virtual node, 67–69, 99, 102, 105–106

virtual service, 70–71, 325–326

VM (virtual machine), 94

container instance, 64

SR-IOV, 226–238

VPA (Kubernetes Vertical Pod Autoscaler), 176, 188–194.

See also scaling

VPN, cluster access, 245

W

WAF (Web Application Firewall), 257, 259–260

access rules, 258

architecture, 260

edge policy, 260

threat detection and prevention, 258

WebLogic Kubernetes Operator, 213–214

worker node/s, 67, 99, 102

images, 103–104

limited access, 275

patching, 273–275

shapes, 104–106

upgrading, 169–170

workload/s

identity, 156–157, 158–160

isolation, 63–64

scaling, 194

scheduling on specific nodes, 125–127

X-Y-Z

YAML, 19–20, 361–364

Code Snippets

Many titles include programming code or configuration

examples. To optimize the presentation of these elements,

view the eBook in single-column, landscape mode and

adjust the font size to the smallest setting. In addition to

presenting code and configurations in the reflowable text

format, we have included images of the code that mimic the

presentation found in the print book; therefore, where the

reflowable format may compromise the presentation of the

code listing, you will see a “Click here to view code image”

link. Click the link to view the print-fidelity code image. To

return to the previous page viewed, click the Back button on

your device or app.

	Cover Page
	About This eBook
	Halftitle Page
	Title Page
	Copyright Page
	Pearson’s Commitment to Diversity, Equity, and Inclusion
	Figure Credits
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Dedications
	Acknowledgments
	Introduction
	Goals and Approach
	Who Should Read This Book?
	How This Book Is Organized
	Code Examples and Cloud Resources

	1. Introduction to Oracle Cloud Infrastructure
	Realms, Regions, and Availability Domains
	Tenancies and Compartments
	Controlling Access to Resources
	Cloud Guard and Security Zones
	Service Limits and Cost Management
	Getting Started with Your Tenancy
	Planning How Your Teams Will Use OCI
	Summary
	References

	2. Infrastructure Automation and Management
	One Set of APIs, Different Ways to Call Them
	A Quick Terraform Primer
	The OCI Terraform Provider
	Simplifying Infrastructure Management with the Resource Manager Service
	Managing Multiregion and Multicloud Configurations
	Summary
	References

	3. Cloud Native Services on Oracle Cloud Infrastructure
	Oracle Container Image Registry
	Working with OCIR
	Compute Instances
	Container Instances
	Container Engine for Kubernetes
	Service Mesh
	Serverless Functions
	API Gateways
	Messaging Systems
	Streaming
	OCI Events Service
	Summary
	References

	4. Understanding Container Engine for Kubernetes
	Monoliths and Microservices
	Containers
	Container Orchestration and Kubernetes
	Oracle Container Engine for Kubernetes
	OCI-Managed Components and Customer-Managed Components
	Billable Components
	Kubernetes Concepts
	Creating a Cluster
	Cluster Topology Considerations
	Kubernetes Networking
	Kubernetes Storage
	Kubernetes Load Balancer Support
	Security Considerations for Your Cluster
	Summary
	References

	5. Container Engine for Kubernetes in Practice
	Kubernetes Version Support
	Upgrading the Control Plane
	Upgrading the Data Plane
	Scaling a Cluster
	Cluster Access and Token Generation
	Service Account Authentication
	Configuring DNS
	Cluster Add-ons
	Observability: Prometheus and Grafana
	Operators and OCI Service Operator for Kubernetes
	Troubleshooting Nodes with Node Doctor
	Configuring SR-IOV Interfaces for Pods on OKE Using Multus
	Summary
	References

	6. Securing Your Workloads and Infrastructure
	Kubernetes Security Challenges
	Concepts of Kubernetes Security
	4Cs of Kubernetes Security
	Securing Oracle Cloud Infrastructure Container Engine for Kubernetes (OKE)
	Hardening Containers and OKE Worker Nodes
	Securing Your Workloads
	Supporting Tools
	National Institute of Standards and Technology (NIST) Kubernetes Benchmarks
	Summary
	References

	7. Serverless Platforms and Applications
	Container Instances
	Serverless Functions
	Service Mesh
	Summary
	References

	8. Observability
	OCI Monitoring
	Alarms
	OCI Logging
	Advanced Observability in OCI
	Prometheus and Grafana with OKE
	eBPF-Based Monitoring with Tetragon on OKE
	Summary
	References

	9. DevOps and Deployment Automation
	OCI DevOps Service
	Elastically Scaling Jenkins on Kubernetes
	GitOps with ArgoCD
	Summary
	References

	10. Bringing It Together: MuShop
	Architecture
	Source Code Structure
	Services
	Building the Services
	Infrastructure Automation
	Helm Charts
	Utilities and Supporting Components
	Deploying MuShop
	Summary
	References

	Index
	Code Snippets

