

Mastering

LLM Applications with

LangChain and

Hugging Face

Practical insights into LLM

deployment and use cases

Hunaidkhan Pathan

Nayankumar Gajjar

www.bpbonline.com

https://www.bpbonline.com/

First Edition 2025

Copyright © BPB Publications, India

ISBN: 978-93-65891-041

All Rights Reserved. No part of this publication may be reproduced, distributed

or transmitted in any form or by any means or stored in a database or retrieval

system, without the prior written permission of the publisher with the exception

to the program listings which may be entered, stored and executed in a

computer system, but they can not be reproduced by the means of publication,

photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author’s

and publisher’s knowledge. The author has made every effort to ensure the

accuracy of these publications, but publisher cannot be held responsible for any

loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their

respective owners but BPB Publications cannot guarantee the accuracy of this

information.

www.bpbonline.com

https://www.bpbonline.com/

Dedicated to

I dedicate this book to my treasured parents,

my beloved wife,

my wonderful kids, and my esteemed mentor,

Mr. Amit Saraswat.

Your unwavering support and guidance have

been

the cornerstone of my journey.

– Hunaidkhan Pathan

Almighty, Dr. Amit Saraswat, and My Family

– Nayankumar Gajjar

About the Authors

Hunaidkhan Pathan currently serves as a Data
Science Lead for a leading consulting firm with over a
decade of experience in the field. Specializing in
machine learning and artificial intelligence, he brings
a wealth of expertise to his role. Hunaidkhan holds a
PGDM in Data Science from Shanti Business School in
Ahmedabad and a degree in Electronics and
Communication Engineering from Gujarat
Technological University.
He has significantly contributed to the data science
community, with his research papers selected and
presented at the prestigious SAS Analytics Conference
2013 in Orlando. The titles of his papers include
“Marketing Mix Modeling” as an author and
“Predicting market uncertainty with Kalman filter” as
a co-author. He was also a LinkedIn Top Voice for
Data Science and Artificial Intelligence in 2023. He
posts regularly on LinkedIn about Generative AI.
Hunaidkhan is an acknowledged Subject Matter

Expert (SME) in Generative AI and Natural Language
Processing. His diverse experience spans various LLM
services such as OpenAI, Nvidia Nemo, Anthropic,
GCP Generative AI, and AWS Bedrock, in addition to
numerous open-source LLMs. His broad experience
and profound knowledge make him a valuable
contributor in the domain of data science.

Nayankumar Gajjar, has a rich background in Data
Science, Machine Learning and Generative AI fields
with 9 years of extensive experience as a Data
Scientist, Machine Learning Engineer, and Python
Developer. Over the years, he has made significant
contributions to various high-impact projects,
showcasing his expertise in statistical modeling,
Generative AI, MLOps, and Cloud Computing. This
diverse skill set makes him a versatile and highly
skilled professional in the Data Science and Machine
Learning domains. He holds a master’s degree in
Decision Science, further solidifying his deep
understanding of the field. In addition to his
professional work, he is a YouTuber and a blogger who
shares his experiences and knowledge, offering a
complete understanding of statistics and providing
detailed coding tutorials. His commitment to
education extends to his role as a visiting faculty
member, where he has taught Python, SQL, Data
Science, and NLP courses. He also co-authored a
research paper titled “Thiessen Polygon, A GIS
approach for Retail Industry in SAS,” which was
presented at the prestigious SAS Analytics Conference
2013 in Orlando.

About the Reviewer

Vijender Singh is a multi-cloud professional with over six

years of expertise, currently working in Luxembourg. He

holds an MSc with distinction from Liverpool John Moores

University, where his research centered on keyphrase

extraction. Vijender boasts an impressive collection of cloud

certifications, including Google MLPE, five Azure

certifications, two AWS certifications, and TensorFlow

certification. His role as a technical reviewer for numerous

books reflects his commitment to improving the future.

Acknowledgements

We would like to express our sincere gratitude to all those

who contributed to the completion of this book.

First and foremost, we extend our heartfelt appreciation to

our mentor, Dr. Amit Saraswat, our family and friends for

their unwavering support and encouragement throughout

this journey. Their love and encouragement have been a

constant source of motivation.

We are immensely grateful to BPB Publications for their

guidance and expertise in bringing this book to fruition.

Their support and assistance were invaluable in navigating

the complexities of the publishing process.

We would also like to acknowledge the reviewers, technical

experts, and editors who provided valuable feedback and

contributed to the refinement of this manuscript. Their

insights and suggestions have significantly enhanced the

quality of the book.

Last but not least, we want to express our gratitude to the

readers who have shown interest in our book. Your support

and encouragement have been deeply appreciated.

Thank you to everyone who has played a part in making this

book a reality.

Preface

In earlier days, when AI was in its beginning phase, we used

to work with statical modeling, which contains statistical

models like regression, random forest, decision tree, etc. At

that time, we used to work with numerical data only, and we

did not have much to gain from textual data. Gradually, we

got a way under the umbrella of Bag of Words (BoW)

through which we can work with textual data. The main

logic was converting textual data to numerical data. For this,

we have a few methods, like count vectors and TF-IDF

vectors. These methods create a matrix that shows the

occurrence of a word in the given document. Again, these

methods were not helping ML models get the context or

intent of what had been said in the text. These techniques

were helping us to do sentiment analysis and other

prediction-based tasks using the above mentioned

algorithms.

Fast forward to this time, where we have some advanced

techniques like transformers having an underlying

architecture of neural networks, due to which ML models are

able to get the context as well as the intent of what has

been said in the text. This has opened up new opportunities

and possibilities in the world of Natural Language

Processing (NLP) and Natural Language Generation

(NLG).

Both NLP and NLG are very important fields in the current

era of AI. These fields give machines the power to

understand and generate texts like human beings. Some of

the readers must have heard the term “ChatGPT,” one of

the well-known chatbot platforms from OpenAI. If you have

ever used ChatGPT, you must have an idea that it can write

code for you, provide medical advice as well, do future

prediction as well, and again, here you can chat with

ChatGPT, similar to talking to a person and the person

answering your questions.

As time passes, these text generation and understanding

models become more advanced and able to perform and

understand almost all text related tasks. To create such an

advancement in the NLP and NLG areas, we will definitely

need people who not only know but also have a better

understanding of all the terminologies and concepts of NLP

and NLG. Also, they should be aware of the steps and

phases of the development and deployment of ML models to

be served to end users. As we [authors] are interacting with

different people in our day-to-day lives, we have found that

there is no one step solution that can provide readers with

all the above-mentioned things in one place. If readers get

terminologies and concepts, then they will not get steps. If

they get steps, then there is no practical exposure. If

readers have practical exposure, then how to deploy on the

cloud is another question. This book comes into the picture

in such scenarios.

This book has been written for beginners or people who are

stuck at the different stages mentioned in the previous

paragraph and do not know about the next steps. This can

be divided into three parts. In the first part, you can

consider the first three chapters, where we have shown the

installation of Python, running Python scripts in different

ways, the basic concepts of Python, the installation of

editors, and the usage and importance of the virtual

environment. In the second part, you can consider chapters

4 and 5, which show the basic and important concepts of

NLP and NLG. From chapters 6 to 11, we have shown the

usage of important packages like LangChain and Hugging

Face. Then we have shown how you can create a chatbot

with custom data and integrate it with an application like

Telegram. At last, we have shown deployment to an AWS

cloud environment. The rest of the chapters are related to

future direction and include some useful tips and references.

In this book, we have not only discussed the theoretical

approach, but we have also implemented and provided

practical exposure as well. In the practical implementation,

you will learn all the required steps to be performed to make

things work.

We hope that this book will be helpful to any individual who

is looking forward to starting their journey in the NLP and

NLG fields. We also hope that this book will provide

complete guidance and help readers to the required

understanding with practical exposure.

Chapter 1: Introduction to Python and Code Editors –

In this chapter, readers will learn about Python as a

programming language and its history. Readers will get an

idea of Python’s features and why it is an important

language from an AI/ML perspective. Also, the reader will

get an idea about the difference between a code editor and

an Integrated Development Environment (IDE).

Chapter 2: Installation of Python, Required Packages,

and Code Editors – In this chapter, readers will install

Python, all the packages we are going to use throughout the

entire book, and an IDE to start with coding. Apart from the

installation, readers will gain knowledge on the virtual

environment, its importance and its usage. Also, readers will

gain knowledge and practical exposure to Python

programming basics.

Chapter 3: Ways to Run Python Scripts – In this

chapter, readers will create their first Python script, and

then they will get practical hands-on experience on different

ways to run any Python script.

Chapter 4: Introduction of NLP and its concepts – In

this chapter, readers will get exposure to the theoretical

concepts and terminologies of NLP, which are essential to

start with. Also, readers will get practical hands-on

experience with all the important terminologies and

concepts.

Chapter 5: Introduction to Large Language Models –

This chapter contains theoretical concepts. In this chapter,

readers will acquire knowledge on LLM history and its

evaluation. Apart from the history, readers will also learn

important terminologies and concepts of LLMs.

Chapter 6: Introduction to LangChain, Usage and

Importance – In this chapter, readers will gain knowledge

of the LangChain package, which is mainly used for text

data Extract, Transform, Load (ETL) tasks to be later

used by LLMs for further processing, understanding, and

text generation. Readers will get to know LangChain

integration with Hugging Face and how to use LLMs

available from Hugging Face. In the chapter, readers will

also get practical exposure, which will help them practice

and gain confidence.

Chapter 7: Introduction to Hugging Face, its Usage

and Importance – In this chapter, readers will get practical

exposure to the different LLMs available on Hugging Face

Hub and how to use them. Readers will explore Hugging

Face Hub as well, which provides a complete ecosystem for

LLM deployment.

Chapter 8: Creating Chatbots using Custom Data with

Langchain and Hugging Face Hub – In this chapter,

readers will create chatbots using the RAG mechanism on

custom data using LangChain and Hugging Face

combinations. Also, readers will get exposure to the Gradio

framework of Hugging Face, through which they can interact

with the chatbot created.

Chapter 9: Hyperparameter Tuning and Fine Tuning

Pre-Trained Models – In this chapter, the user will gain

knowledge about the different hyperparameters available

for any LLM, their usage, and how they will impact the LLM’s

performance.

Chapter 10: Integrating LLMs into Real-World

Applications: Case Studies – In this chapter, readers will

create a Telegram chatbot with the custom data and interact

with it. Readers will get step-by-step guide on the

implementation.

Chapter 11: Deploying LLMs in Cloud Environments

for Scalability – In this chapter, readers will get a step-by-

step guide to deploying chatbots and LLM models in an AWS

cloud environment. Readers will also get an idea about GCP.

Chapter 12: Future Directions: Advances in LLMs and

Beyond – In this chapter, readers will learn future directions

and where to go from here once the book has been

completed.

Appendix A: Useful Tips for Efficient LLM

Experimentation – In this chapter, we have shared some

tips to use LLMs more efficiently.

Appendix B: Resources and References – In this

chapter, we have provided some of the resources and

references for the readers to get more depth and detailed

knowledge on different models and packages.

Code Bundle and Coloured

Images

Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/bf9408

The code bundle for the book is also hosted on GitHub at

https://github.com/bpbpublications/Mastering-LLM-

Applications-with-LangChain-and-Hugging-Face. In

case there’s an update to the code, it will be updated on the

existing GitHub repository.

We have code bundles from our rich catalogue of books and

videos available at https://github.com/bpbpublications.

Check them out!

Errata

We take immense pride in our work at BPB Publications and

follow best practices to ensure the accuracy of our content

to provide with an indulging reading experience to our

subscribers. Our readers are our mirrors, and we use their

inputs to reflect and improve upon human errors, if any, that

may have occurred during the publishing processes

involved. To let us maintain the quality and help us reach

out to any readers who might be having difficulties due to

any unforeseen errors, please write to us at :

errata@bpbonline.com

https://rebrand.ly/bf9408
https://github.com/bpbpublications/Mastering-LLM-Applications-with-LangChain-and-Hugging-Face
https://github.com/bpbpublications
mailto:errata@bpbonline.com

Your support, suggestions and feedbacks are highly

appreciated by the BPB Publications’ Family.

Did you know that BPB offers eBook versions of every book published, with

PDF and ePub files available? You can upgrade to the eBook version at

www.bpbonline.com and as a print book customer, you are entitled to a

discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical

articles, sign up for a range of free newsletters, and receive exclusive

discounts and offers on BPB books and eBooks.

Piracy

If you come across any illegal copies of our works in any form on the internet,

we would be grateful if you would provide us with the location address or

website name. Please contact us at business@bpbonline.com with a link to

the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either

writing or contributing to a book, please visit www.bpbonline.com. We have

worked with thousands of developers and tech professionals, just like you, to

help them share their insights with the global tech community. You can make

a general application, apply for a specific hot topic that we are recruiting an

author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave

a review on the site that you purchased it from? Potential readers can then

see and use your unbiased opinion to make purchase decisions. We at BPB

can understand what you think about our products, and our authors can see

your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New Release and

Sessions with the Authors:

https://www.bpbonline.com/
mailto:business@bpbonline.com
https://www.bpbonline.com/
mailto:business@bpbonline.com
https://www.bpbonline.com/
https://www.bpbonline.com/

https://discord.bpbonline.com

https://discord.bpbonline.com/

Table of Contents

1. Introduction to Python and Code Editors

Introduction

Structure

Objectives

Introduction to Python

Introduction to code editors

Conclusion

References

Further reading

2. Installation of Python, Required Packages, and

Code Editors

Introduction

Structure

Objectives

General instructions

Installation of Python on Windows

Installation of Python on Linux

Installation of Python on MacOS

Using Docker for Python

Installation of IDE

Installation of PyCharm

Installation of required packages

Virtual environment

virtualenv

pipenv

Folder structure

Creating a virtual environment

PEP 8 standards

Following PEP 8 in PyCharm

Object-Oriented Programming concepts in Python

Classes in Python

Functions in Python

For loop in Python

While loop in Python

If-else in Python

Conclusion

3. Ways to Run Python Scripts

Introduction

Structure

Objectives

Setting up the project

Running Python scripts from PyCharm

Running Python Scripts from Terminal

Running Python scripts from Jupyter Lab and Notebook

Running Python Scripts from Docker

Conclusion

4. Introduction of NLP and its concepts

Introduction

Structure

Objectives

Natural Language Processing overview

Key concepts

Corpus

N-grams

Tokenization

Difference in tokens and n-grams

Stop words removal

Stemming

Lemmatization

Lowercasing

Part-of-speech tagging

Named Entity Recognition

Bag of words

Word embeddings

Topic modeling

Sentiment analysis

Large language models

Transfer learning

Text classification

Prompt engineering

Hallucination

Syntactic relationship

Semantic relationship

Conclusion

5. Introduction to Large Language Models

Introduction

Structure

Objectives

History

LLM use cases

LLM terminologies

Neural networks

Transformers

Pre-built transformers

Bidirectional Encoder Representations from

Transformers

Generative Pre-trained Transformer

Text-to-text transfer transformer

DistilBERT

XLNet

RoBERTa

Conclusion

Further readings

References

6. Introduction to LangChain, Usage and Importance

Introduction

Structure

Objectives

LangChain overview

Installation and setup

Usages

Opensource LLM models usage

Data loaders

Opensource text embedding models usage

Vector stores

Model comparison

Evaluation

Types of evaluation

Conclusion

Points to remember

References

7. Introduction to Hugging Face, its Usage and

Importance

Introduction

Structure

Objectives

Exploring the Hugging Face platform

Installation and setup

Datasets

Usage of opensource LLMs

Generating vector embeddings

Evaluation

Transfer learning with Hugging Face API

Real-world use cases of Hugging Face

Conclusion

References

8. Creating Chatbots using Custom Data with

Langchain and Hugging Face Hub

Introduction

Structure

Objectives

Setup

Overview

Steps to create RAG based chatbot with custom data

Dolly-V2-3B details

Data loaders by LangChain

Vector stores by LangChain

Conclusion

References

9. Hyperparameter Tuning and Fine Tuning Pre-

Trained Models

Introduction

Structure

Objectives

Hyperparameters of an LLM

Hyperparameters at inferencing or at text generation

Fine-tuning of an LLM

Data preparation for finetuning an LLM

Performance improvement

Conclusion

References

10. Integrating LLMs into Real-World Applications:

Case Studies

Introduction

Structure

Objectives

Case studies

Use case with Telegram

Setup

Conclusion

References

11. Deploying LLMs in Cloud Environments for

Scalability

Introduction

Structure

Objectives

Amazon Web Services

Step 1: Creating an Amazon SageMaker Notebook

Instance

Step 2: Create folders in SageMaker to store data

Step 3: Create vector embeddings

Step 4: Auto scaling

Google Cloud Platform

Conclusion

References

12. Future Directions: Advances in LLMs and Beyond

Introduction

Structure

Objectives

Generative AI market growth

Reasoning

Emergence of multimodal models

Small domain-specific models

Multi agent framework

Quantization and Parameter-Efficient Fine Tuning

Vector databases

Guardrails

Model evaluation frameworks

Ethical and bias mitigation

Safety and security

Conclusion

References

Appendix A: Useful Tips for Efficient LLM

Experimentation

Structure

Objectives

Understanding the challenges of LLM experimentation

Preparing data for LLM experimentation

Optimizing model architecture and hyperparameters

Efficient training strategies for LLMs

Evaluating and interpreting experimental results

Fine-tuning for specific applications

Scaling up: Distributed training and parallel processing

Deployment considerations for LLMs

Conclusion

References

Appendix B: Resources and References

Introduction

Books and articles

Research papers

LangChain resources

Hugging Face resources

Alternative resources to LangChain

Community and support

Other important resources

Conclusion

Index

CHAPTER 1

Introduction to Python

and Code Editors

Introduction

Python is a really powerful programming language that is

simple and easy to read. This language is being used in

many technology areas. There are rules called Python

Enhancement Proposal (PEP) standards, which help you

write proper Python code. These rules give instructions for

how we should write and develop the programming

language which helps us keep our code clean and of high

quality!

There are also different ways that we can work on our

Python codes - either through code editors or Integrated

Development Environments (IDEs).

Structure

In this chapter we will discuss the following topics:

Introduction to Python
Introduction to code editors

Objectives

Learning Python well is a great start for getting into

generative AI. Python is known for being easy to understand

and has lots of tools you can use. It is a good language to

learn if you want to understand how programming works.

Since Python is used everywhere, it is important for learning

different kinds of machine learning, which is really helpful if

you are interested in generative AI. If you are good at

Python, you can easily use the important tools and

information you need for generative AI. This makes it easier

to move on to more advanced things like understanding how

computers understand human language or deep learning.

Introduction to Python

Created by Guido Van Rossum back in the late 1980s, today,

almost everybody uses Python! Here is a brief introduction

to Python:

Readability: It is easy to understand any code written
by another person due to its simplicity.
Interpreted language: Python is an interpreted
language. You do not need to compile your program
before running it on the system. This makes
development faster and easier, as you can execute
code line by line, and easy to debug.
Cross-platform: Your computer runs Windows?
MacOS? Linux? Do not worry! No matter what
operating system your computer has installed, they all
support Python!
Versatility: Many more useful features like versatility,
object-oriented libraries, and interfaces, community
support, dynamic variable declaration, etc., which
make work super smooth.

Libraries and frameworks: If asked to paint an
image without a canvas color brush, it is hard for
anyone. In similar cases with computer programming,
we require a lot of tools to make it happen; IDEs and
code editors are one of them, which have unique
functionality based on requirements and can be
customized accordingly. For example, PyCharm is a
Python-specific editor. We also have something called
Jupyter Notebook or Jupyter Lab in the Python world.
Python provides a large collection of different libraries
for different tasks. For example, Django is used for
web development, NumPy and Pandas are used for
data analysis, and Tensorflow and Keras are used for
deep learning.
Community and support: Pythonʼs simplicity and
community support make it a highly usable coding
language. It does not matter if you are new to
programming or an experienced pro: Python has
something for everyone! This powerful tool will always
come in handy whether it is web development, data
analysis or AI/ML tasks etc.
Open source: Python is open-source and free to use.
This encourages collaboration and innovation, as
anyone can contribute to the languageʼs development
or create their own Python packages.
Object-oriented: Python is an object-oriented
programming language, which means code
organization around objects/classes simplifies
managing complex systems.
Dynamic typing: Python uses dynamic typing, which
means variables do not require any explicit type
definition speeding up development but further
necessitates attention towards avoiding potential
typing errors.

High-level language: Python is a high-level
programming language; since lower-level complexities
are abstracted away, users can concentrate mainly on
problem-solving and worrying less about underlying
hardware details.
Duck typing: Python follows the principle of duck

typing, which means the object type determination is
based on its behavior which gives code the freedom to
be concise yet vigilant towards object compatibility.
Multi-paradigm: Python supports multiple
programming instances, including procedural, object-
oriented, and functional programming. This versatility
allows us to choose the most suitable approach for our
projectʼs requirements.
Interoperability: Python interacts smoothly with
other languages like C, C++, Java, etc., enabling
utilization of existing libraries/code.
Popular use cases: Usable across several domains,
i.e., web development (using Django/Flask/FastAPI),
data science (machine learning using Scikit-
Learn/TensorFlow), Scientific computing (using
NumPy/SciPy), automation scripting or even game
development, the list is endless.
Python 2 vs. Python 3: It is important to note that
there are two major versions of Python: Python 2 and
Python 3. Though there are mainly two versions
available, as of Jan 1st, 2020, only Python 3 receives
updates/supports - have an edge by starting all new
projects in this version!

In conclusion, regardless of whether you are a beginner

embarking upon an initial language learning journey or an

experienced developer handling intricate setup, the

simplicity/readability/use case versatility/community backup

is positioning Python as handy across several coding tasks.

Zen (Python Enhancement Proposal PEP 20) Philosophy

embraces design ideals/principles defining how Python code

should be written for not just computers but easy

understanding by fellow developers too!

Here are some of the key principles from the Zen of Python

written by Tim Peters:

Beautiful is better than ugly: Python code should
be aesthetically pleasing, clear, and elegant. This
encourages developers to write code that is not only
functional but also visually appealing.
Explicit is better than implicit: Code should be
explicit in its intentions and behavior. Avoid relying on
hidden or implicit features to make the code more
understandable.
Simple is better than complex: Simplicity is
preferred over complexity. The code should be
straightforward and easy to understand rather than
unnecessarily convoluted.
Complex is better than complicated: While
simplicity is encouraged and complexity is necessary,
it should be well-structured and not overly
complicated. Complex code should have a clear
purpose and design.
Flat is better than nested: Deeply nested code
structures should be avoided. Keeping code relatively
flat, with fewer levels of indentation, makes it more
readable and maintainable.
Sparse is better than dense: Code should be spaced
out and not overly dense. Proper spacing and
indentation enhance readability.

Readability counts: Readability is a top priority in
Python. Code should be written with the goal of
making it easy to read and understand, not just for the
computer but also for other developers.
Special cases are insufficient to break the rules:
Consistency is important. While there may be
exceptional cases, they should not lead to a violation
of established coding conventions and rules.
Practicality beats purity: While adhering to best
practices and principles is important, practicality
should not be sacrificed in the pursuit of theoretical
perfection. Real-world solutions sometimes require
pragmatic compromises.
Errors should never pass silently. Unless

explicitly silenced: Errors and exceptions should be
handled explicitly. If you encounter an error, it should
not be ignored or suppressed unless you have a good
reason to do so.
In the face of ambiguity, refuse the temptation to

guess: When faced with uncertainty or ambiguity in
your code, it is better to be explicit and not make
assumptions. Clarity should prevail.
There should be one and preferably only one

obvious way to do it: Python encourages a single,
clear way to accomplish tasks to minimize confusion
and inconsistency in code.
Although that way may not be obvious at first

unless you are Dutch: This light-hearted remark
acknowledges that not all design decisions may
immediately make sense to everyone and hints at
Pythonʼs creator, Guido van Rossum.

Now is better than never. Although never is often

better than right now: While taking action is
important, rushing without proper consideration can
lead to errors. Itʼs a reminder to balance speed with
careful thought.
If the implementation is hard to explain, it is a

bad idea. If the implementation is easy to

explain, it may be a good idea: Code should be
designed in a way that makes its purpose and behavior
clear and straightforward. Complex, hard-to-explain
implementations should be avoided.
Namespaces are one honking great idea: Let us

do more of those: Encouragement to use
namespaces for organizing and managing variables
and functions, promoting modularity, and avoiding
naming conflicts.

The Zen of Python serves as a set of principles to guide

Python developers in writing code that is not only functional

but also elegant and maintainable. It reflects Pythonʼs

emphasis on code readability, simplicity, and the idea that

code should be written for humans to understand as much

as for computers to execute. You can access the Zen of

Python by opening a Python interpreter and typing import

this.

Introduction to code editors

Software development calls for specific tools, and IDEs and

code editors are just that. However, they bring different

attributes to the table, serving varied purposes with their

distinct features. Let us understand these differences:

Integrated Development Environment (IDE):

Comprehensive development environment: An
IDE is a comprehensive toolkit for software
creation. Standard components include a code
editor, debugger, build tools etc., often tailored for
particular languages – Python users might consider
PyCharm or Jupyter Notebook/Lab; though not
entirely an IDE, these offer interactive computing
environments popular in data science.
Language-specific: Many IDEs are designed for
specific programming languages, and they often
offer advanced features tailored to that language.
For example, RStudio is specific for the R
programming language, and PyCharm is a Python-
specific IDE. We can consider Jupyter Notebook or
Jupyter Lab in this category as well. Though it is not
100% IDE, it can be considered an interactive
computational environment that is widely used in
the data science field.
Code assistance: Be it auto-complete suggestions
of variable names, functions, etc., easy navigation,
or refactoring tools – an IDE supports advancement
in code writing.
Debugging: Aiding coders at every step of scripting
via built-in debugging capabilities - this feature
allows us to examine variables closely and trace our
coding path conveniently.
Project management: From version control
systems management to maintaining dependencies
relationships & crafting project templates– an IDE
does it all!
Extensions and plugins: Owing to the existing
bunch of features, there is further room for
enhancement. Extensive flexibility supporting

various frameworks/languages awaits thanks to
Plugins/Extensions. Jupyterlab offers multiple add-
ins, which can improve the coding experience.
Similarly, VS code has a vast library of add-ons that
help the coder.
Learning curve: IDEs can have a difficult learning
curve due to their many features and complex user
interfaces. They are often preferred by professional
developers working on larger projects. VS code is
one such IDE that is used by the wider developer
community.
Resource intensive: IDEs can be resource-
intensive because of their many features, which may
not be suitable for older or less powerful computers.

Code editor: Code editors provide a more
straightforward, less cluttered experience for
managing code creation and modifications across
various programming languages. They are tailored for
simplicity, with features like syntax highlighting and
automatic indentation that enhance coding efficacy.
Code editors advocate minimalism to avoid
distractions and allow customization to meet user
needs. This combination of brevity and functionality
makes these tools an economical choice favored by
both beginner coders learning the ropes, or
experienced developers seeking a compact setup.

An abundance of compelling reasons exists as to why

investing in a code editor is a wise choice:

Lightweight text editor: They are mainly designed
as lightweight text editors with syntax highlighting,
focusing on creating and modifying code.
Language agnostic: These tools can support multiple
programming languages without offering unique

features for specific ones—for example, Notepad++.
Basic code assistance: Basic assistance is provided
in terms of code completion features, syntax
highlights, etc., although it is broadly not as advanced
as IDEs.
No built-in debugging: They do not come bundled
with debugging tools; hence external resources might
be required for debugging tasks.
Simplicity: Known for their no-frills approach, they
render a distraction-free coding environment that is
ideal layout-wise.
Customization: Code editors can be highly
customized through themes and extensions. Users can
tailor them to suit their specific needs and
preferences.
Learning curve: Aligned with an easier learning
curve, it meets the requirements of
aspiring/experienced programmers preferring
minimalist coding encounters.
Resource-friendly: Being non-resource intensive they
run efficiently even handling older/weaker computer
systems.

In summary, your selection between an IDE or a code editor

rests strongly upon personal necessities/preferences. IDE

provides vast tools that help in programming; hence, go

ahead and pick an IDE for large and complex projects. If

easy editing/emphasizing and clean scripts are all you

require, it is worth considering investing in a humble code

editor. Nowadays, developers switch between IDE and code

editors based on their requirements and thus do not limit

themselves to a specific tool.

Conclusion

In this chapter, we have got an overview of Pythonʼs origins

and features that contribute to its rise in ranking among

popular languages worldwide. Python script execution is

possible either through picking any IDE/Code editor, and it is

purely contingent upon specific preference as both vary

based on personal benefits/hindrances they cater.

Looking forward to the next chapter, it elaborates further on

Python installation across various OS systems, including

famous python IDEs. Additionally, the chapter will offer

insights into Pythonʼs OOPs/conceptual basis and best

practices implemented. Apart from that, it will also discuss if

any issues persist in installing Python alongside alternative

solutions.

References

https://peps.python.org/pep-0020/#the-zen-of-

python

https://docs.python.org/3/faq/

https://wiki.python.org/moin/PythonEditors

https://wiki.python.org/moin/IntegratedDevelopm

entEnvironments

Further reading

For Python, you can find a list of all the code editors
and IDEs on the following links. These URLs contain
all the required information like which platform and
editor it supports and if the editors are open source or
not:

https://wiki.python.org/moin/PythonEditors

https://peps.python.org/pep-0020/#the-zen-of-python
https://docs.python.org/3/faq/
https://wiki.python.org/moin/PythonEditors
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/PythonEditors

https://wiki.python.org/moin/IntegratedDevelop

mentEnvironments

Join our book’s Discord space

Join the bookʼs Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New Release and

Sessions with the Authors:

https://discord.bpbonline.com

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://discord.bpbonline.com/

CHAPTER 2

Installation of Python,

Required Packages, and

Code Editors

Introduction

The installation of Python is a fundamental step in getting started

with the book. It allows you to access a rich ecosystem of

libraries and tools. Depending on your project, you might need to

install additional packages for specific functionalities. Choosing

the right code editor or Integrated Development

Environment (IDE) is also essential, as it greatly influences

your development workflow. These tools, combined with Pythonʼs

versatility, set the foundation for productive and efficient

programming. In this chapter, we are going to focus on installing

Python for different OSes. We will see how to install packages

using the pip package manager of Python. Apart from this we will

review the difference between code editor and IDE and which one

is good in different scenarios. As we are writing this book,

keeping in mind complete beginners, we have also included

some of the basic concepts of Python that will be useful to start

with Python.

Structure

In this chapter we will discuss the following topics:

General instructions
Installation of Python on Windows
Installation of Python on Linux
Installation of Python on MacOS
Installation of PyCharm
Installation of required packages
Object Oriented Programming concepts in Python

Objectives

By the end of this chapter, you will have a functional Python

environment by installing Python, configured with the necessary

packages tailored to the projectʼs needs, and an optimal IDE, that

is, PyCharm, to streamline the development process. This

ensures a smooth and efficient workflow, setting the stage for

successful book completion.

General instructions

Before proceeding to install Python, run the following commands

to make sure Python and pip are available:

python3 --version or python --version

pip3 --version or pip --version

Here, as you can see, we are checking two different things:
one is Python, and the other one is pip. Python is a
programming language that has a huge ecosystem of
packages for different purposes. To maintain these
packages, Python has its own package manager, which is
called pip. Using pip, you can install, update, and uninstall
any packages from Python.

Python versions after 3.4 come with pip pre-installed.
Hence, you will not need to install pip separately.

It should result in Python version 3.x:

In case Python 3.x is available, do not uninstall it because
uninstalling may result in system instability and might
cause a corrupted system, especially with Linux OSes.
Here, the advice will be to proceed with your current
Python version.
In case the Python version is not compatible with the
packages that we are going to use in this book, you can
try with other versions of the package. In most of the
cases other versions of the packages should also work.

In the rare situation, if it is not the case, in the last
section, we have provided an alternative to use Docker
to use the latest Python and pip.

If you have Python version 2.x:
The suggestion will be to update the Python version, but
before that, make sure that system dependency is not
there else it might result in system issues.
Again, if, for any reason, you are not able to change the
Python version, refer to the last section of this chapter,
which shows how to use Python using Docker so that you
can use the latest version of Python.

Installation of Python on Windows

To install Python on Windows, visit the official Python website,

download the latest Windows installer, and run it. Check the Add

Python to PATH option during installation for easier command-

line access (This step is specifically for Windows). Python will be

installed, allowing you to start coding and running Python scripts

on your Windows system. Refer to the following figure:

Figure 2.1: Python Download Page

The same has been explained using the following steps:

1. Visit the official Python website to download the latest

Python version. At present, while writing the book the latest

version of Python is 3.12. Figure 2.1 shows the Python

download page from the official website.

Note: Python versions, including 3.9.1 and higher,

cannot be used on Windows 7 or earlier. Download it

from: https://www.python.org/downloads/

2. Double click on the downloaded .exe file which will open

pop up as shown in Figure 2.2:

https://www.python.org/downloads/

Figure 2.2: Python Installation

3. As shown in Figure 2.2. tick both the boxes. After that click

on Install Now.

4. After successful installation, you will receive the dialogue

box as shown in Figure 2.3:

Figure 2.3: Python successful installation

5. As shown in Figure 2.3, click on the option Disable path

length limit. After that, close the dialogue box. Now

Python has been installed successfully on your system. The

“disable path length limit” feature in Python installation

refers to an option that allows Python to work with file paths

longer than the traditional 260-character limit imposed by

the Windows operating system.

Installation of Python on Linux

To install Python on Linux, we are not required to download any

executable files. Each version of Linux OS comes with its own

package manager, which can be utilized to download Python,

Python package manager, i.e. pip. Please remember to check

Python and Pip availability before processing to the installation

section.

The following are the commands for some famous Linux OS.

Again, you need to execute the following commands only in the

case Python is not available:

Debian and Ubuntu, and its different flavors:

sudo apt install python3

sudo apt install python3-pip

OpenSuse:
sudo zypper install python3

sudo zypper install python3-pip

Fedora, Red Hat Enterprise Linux (RHEL):
sudo dnf install python3

sudo dnf install python3-pip

Centos:
sudo yum install python3

sudo yum install python3-pip

Arch Linux:
sudo pacman -S python3

sudo pacman -S python3-pip

After installation of Python and pip, make sure to confirm that

both of them are installed successfully using the commands

provided in the general instructions section.

Installation of Python on MacOS

To install Python and pip on MacOS, there are two options

available:

Using brew package manager.
In case the brew package manager is not available,
install it using the following command:
i. /bin/bash -c "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install
/HEAD/install.sh)"
Then install Python3 using the following command,
which will include pip as well:

ii. brew install python
Using a standalone installer from Python official website:

Go to the official website of Python at
https://www.python.org/downloads/macos/

Download the latest Python version.
Click on the downloaded file.
Follow the instructions provided on the installation
setup.
Now, you will have the latest Python on the system.

Using Docker for Python

This section is not required if Python 3.x is available on your

system. You only need to use this section if, for any reason, you

are not able to use Python 3.x on your system.

Follow the given steps to use Python from Docker:

1. Download and install Docker for your respective OS from

https://docs.docker.com/engine/install/. It will be an

easy step.

2. After installation, visit the official repository of Docker for

Python at https://hub.docker.com/_/python

3. On this URL, you will get other details as well, like how to

install specific Python versions.

4. Run the following command to install the latest Python

version. You need to run this command from the terminal or

CMD, as shown in Figure 2.4:

docker pull python

5. Run the following command to confirm that the Docker

Python image is available:

docker images

https://www.python.org/downloads/macos/
https://docs.docker.com/engine/install/
https://hub.docker.com/_/python

6. Figure 2.4 shows that when running the command docker

pull python, it is fetching the image from the Docker hub

i.e., the central repository and storing it on the local system

so that we can utilize it as per our requirement. As we have

not mentioned any Python version by default, it will

download the latest version available.

a. Also, the command docker images shows what are the
images available on the local system. At present, we
have only one image from the Docker hub, which is a
Python image, which we are going to utilize later on to
run different Python scripts.

Refer to Figure 2.4:

Figure 2.4: Download and confirm Python image via Docker

7. In case you want a specific version of Python, you can run

the following command:

You can get the specific Python version and its
respective tag details from the URL:

https://hub.docker.com/_/python/tags

docker pull <image_name>:<tag>:

docker pull python:3.12

docker pull python:3.12-slim

8. We will see how to run Python scripts using Docker in

Chapter 3, Ways to Run Python Scripts.

Installation of IDE

The freely available PyCharm Community Edition has been

created by JetBrains as an IDE catered specifically for Python

coders. Thanks to JetBrains, known for their repertoire of

resourceful development tools, here is what you should know

about this IDE:

Free and open-source: Being free and open-source makes
it a perfect coding environment for developers at different
skill levels without worrying about monetary constraints.
Python-centric IDE: Designed with Python in mind,
PyCharm provides a dedicated platform enriched with
features catering to the writing, testing, and debugging
processes of Python scripting.
Smart code assistance: Elevated productivity is offered
through smart code analysis, completion suggestions, and
efficient navigation within your codes. These features help
maintain clean scripts while preventing possible errors.
Django and web development: Django enthusiasts can
find easy accommodation for web application development
within PyCharm, which includes database management
tools along with templates specific to various web
frameworks.

https://hub.docker.com/_/python/tags

Version control integration: Stay orderly, managing
projects and collaborating efficiently. Packed integrated
popular VCS like Git/Mercurian/Subversion.
Unit testing and debugging: Easy identification and
troubleshooting with built-in unit tests/debuggers, helping
analyze Python scripts effectively.
Customization and plugins: Easy customization of the
IDE and many different plugins available for further
integration.
Cross-platform: Supports Windows/macOS/Linux—
promising wide range usability embracing diverse
development environments.
Active community: Jump straight in! Find an abundance
of tutorials/support/resources that have been made
possible by the active users/developersʼ community.
Website: - https://intellij-support.jetbrains.com/hc/en-

us/community/topics/

Seamless integration with other JetBrains tools: If you
decide to use any other tool created by JetBrains, PyCharm
provides a seamless integration between all the JetBrains
tools.

To sum up, PyCharm Community Edition greatly sharpens Python

programming brush across developersʼ spectrum, be it

internalizing Python newbies or experts handling complicated

assembly lines!

Installation of PyCharm

There are two ways to install the PyCharm community edition on

the OS: using GUI or using the command line, that is the

terminal. You can opt for any of the following options for the

installation:

GUI for Windows, Linux, and Mac:

1. Visit the webpage,

https://www.jetbrains.com/pycharm/download/?

https://intellij-support.jetbrains.com/hc/en-us/community/topics/
https://www.jetbrains.com/pycharm/download/?section=windows

section=windows

2. Go to the bottom of the page, where you will find the option

to download the PyCharm community edition.

3. Download the executable file as per the OS. For Linux files,

you will get a .tar.gz file.

4. Double-click on the executable file and install the IDE for

Windows and Mac.

a. For Linux, you need to extract the .tar.gz file. Here, you
will get a text file with a name starting with the “Install”
word.

b. Open that file where you will get installation
instructions. Follow the instructions to install IDE on
Linux.

Using Terminal for Mac:

1. Using the “brew” package manager.

a. In case the brew package manager is not available,
install it using the following command:

/bin/bash -c "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install
/HEAD/install.sh)"

b. Then install IDE using the following command:

brew install --cask pycharm-ce

Using Terminal for Linux:

1. Install the Snap package manager using the following

command:

sudo apt install snapd

The above command is for Debian based distros. For other
Linux distros download and install Snap from
https://snapcraft.io/docs/installing-snapd and follow the

https://www.jetbrains.com/pycharm/download/?section=windows
https://snapcraft.io/docs/installing-snapd

instructions given on the following page for respective OS.

2. Install IDE using the following command:

snap install pycharm-community --classic

Installation of required packages

In this section we will install the required packages that we are

going to use throughout the book. Before we proceed to the

installation of the required packages, let us understand the

concept of a virtual environment. After understanding the

concept of the virtual environment, we will create a virtual

environment and install the required packages in it.

Virtual environment

A virtual environment in Python is essentially a standalone

directory that includes a specific Python interpreter packaged

with unique sets of libraries and dependencies. This lets you

maintain separate Python environments for distinctive projects,

hence ensuring the packages and dependencies associated with

each project do not overlap. The features are:

Isolation: Each virtual environment is independent of the
system-wide Python installation and other virtual
environments. This isolation prevents conflicts and
dependency issues between different projects.
Dependency management: Virtual environments enable
you to install and manage project-specific dependencies,
including Python packages and libraries. You can control
the versions and avoid compatibility issues.
Version compatibility: Working on different projects may
require different versions of Python. Having this flexibility
enables users to engage with both older legacy versions as
well as advanced state-of-the-art ones.
Project portability: Virtual environments make it easier to
share your project with others or deploy it on different

systems. You can include the virtual environment along
with your project, ensuring that all dependencies are
consistent.

To create a virtual environment in Python there are two packages

used widely. They are virtualenv and pipenv. The choice

between pipenv and virtualenv depends on your specific

project requirements and personal preferences. Both tools serve

as essential components of Python development, but they have

distinct purposes and characteristics.

virtualenv

Let us take a look at virtualenv:

Purpose: The primary function of ʼvirtualenvʼ is creating
isolated environments for different Python applications. Its
chief objective lies in offering an untarnished slate where
one can work smoothly installing preferred package
versions and fulfilling the projectʼs needs alongside
managing related dependencies.
Usage: Virtualenv is typically used alongside pip, Pythonʼs
package installer. Here is how you generally use it:

Create a virtual environment using virtualenv.
Activate the virtual environment.
Use pip within the activated environment to install the
necessary Python packages. This setup ensures that the
installations and operations are confined to the virtual
environment and do not interfere with other projects or
the global Python setup.

Popularity: Virtualenv has been a staple in the Python
community for many years. It is highly regarded for its
stability and effectiveness in managing project-specific
environments. Its widespread adoption and trust within the
community make it a go-to choice for many Python
developers looking to maintain clean and manageable
project setups.

This tool is essential for developers who need to manage
multiple projects with differing dependencies or are
developing in a team setting where consistency is critical.

pipenv

Let us take a look at pipenv:

Purpose: The primary aim of pipenv is to unify the
operation of virtual environment administration and
dependency management. It strives to streamline creating
isolated workspaces while also controlling project-related
dependencies
Usage: With pipenv, you can efficiently construct a virtual
workspace and manage its dependencies simultaneously,
providing convenience for developers who prefer a
comprehensive solution.
Popularity: Pipenv quickly rose in favor due to its
simplistic yet user-friendly approach to managing
dependencies.

You should consider the following factors when choosing between

the two:

Simplicity versus integration: If you prefer a
straightforward and lightweight solution for virtual
environments, virtualenv might be your choice. However, if
you prefer an all-in-one tool for managing both virtual
environments and dependencies, pipenv is a good option.
Project needs: Consider the complexity of your project.
For small, simple projects, virtualenv may suffice. For
larger projects with many dependencies, pipenv can help
streamline the process.
Community and support: Both virtualenv and pipenv are
well-supported, but virtualenv has a longer history and a
well-established user base. However, pipenv has gained
momentum and may be the preferred choice for some
newer Python developers.

Compatibility: While virtualenv grants compatibility with
older-python versions, pipenv intensively focuses Python
3.6 and above listings. Working with legacy Python versions
might probe directing affinities instead of facing off
virtualenv.

In summary, both pipenv and virtualenv are valuable tools for

Python development. For the purpose of the book, we are going

to use virtualenv to create a virtual environment.

Folder structure

Before we proceed with this chapter, let us define folder structure

so it will be easy throughout the book to keep things organized

and structured. Also, it will be easier for us to follow the

guidelines. The folder structure is to maintain the scripts and the

custom data. We are going to add folders and scripts as per the

requirement as we proceed to the different sections of the book.

1. Create a folder called Book. You can create it anywhere you

like. Make sure that the parent folder does not have spaces

in the name. Spaces in names cause issues sometimes;

hence, avoid it if possible.

2. Under this folder, create a text file called

requirements.txt:

a. Add the following lines in the file:
pandas==2.2.2
transformers==4.42.3
langchain==0.2.6
langchain_community==0.2.6
langchain-huggingface==0.0.3
accelerate==0.32.1
unstructured[pdf]==0.14.10
wikipedia==1.4.0
nltk==3.8.1
textblob==0.18.0
scikit-learn==1.5.1
spacy==3.7.5
gensim==4.3.2

pattern==3.6.0
huggingface_hub==0.23.4
torch==2.3.1
sentence_transformers==3.0.1
chromadb==0.5.3
faiss-cpu==1.8.0
evaluate==0.4.2
rouge_score==0.1.2
pypdf==4.2.0
gradio==4.37.2
origamibot==2.3.6
scipy~=1.12.0
tf_keras==2.16.0
git+https://github.com/google-research/bleurt.git

b. Apart from this, if you are working on a Linux-based OS,
you might need to consider installing the below
packages. Make sure that the installation command will
vary based on the Linux OS. Here, we have provided
commands for Ubuntu/Debian-based OS.
sudo apt install build-essential cmake

3. The folder structure will look as follows:

a. E:\Repository\Book

b. ├── venv # Virtual environment created using
Virtualenv command, which will contain the specific
version of packages mentioned in requirements.txt file

c. ├── requirements.txt # Text file which keeps track of
which package of which version utilized in the project.

d. Do not worry about venv folder. We are going to create
it in the next few steps.

As discussed earlier, we are going to install packages in a virtual

environment so that it will not impact other projects and their

respective package versions. By creating the virtual environment,

we will isolate the entire package ecosystem that will be utilized

in this book.

Creating a virtual environment

The steps to create a virtual environment are as follows:

1. The steps mentioned here are irrespective of the OS. It

means you can follow the steps on any OS and create a

virtual environment.

2. Now, let us open a terminal (in the context of Linux or Mac)

or CMD (in the context of windows).

a. The very first step is to install virtualenv. For this
execute the following command:

pip install virtualenv

3. After the installation of virtualenv package, from the

terminal, go to the directory where you will do the practices

and exercises mentioned in this book. For this, you need to

use the “cd” command. In our case, it will be Book folder.

a. Consider this directory as a root directory of a project
where you will need a specific version of specific
packages. In this case, it is E:\Repository\Book.

b. As the philosophy of the virtual environment, by creating
the virtual environment, we will isolate the entire
packaging system from the global packaging system as
well as from other projectʼs packaging systems.

4. Once you are in the required directory, execute the

following command from terminal/CMD, which will create a

virtual environment as shown in Figure 2.5.

virtualenv venv OR virtualenv -p python3.12 venv OR
virtualenv -p /path/to/python_version venv
a. Second command is to be used when you have multiple

Python versions, and you want to create a virtual
environment with a specific Python version.

b. You can use it with a single Python version as well, like
“virtualenv venv”

c. In case the virtualenv command mentioned above is

providing any error, especially on Windows, such as the
command not found on the path. In that case, you can
run the below command as well, which will create a
virtual environment:
python -m virtualenv venv

5. It will show details as the following figure:

Figure 2.5: Create virtual environment

6. As shown in Figure 2.5, it will create a virtual environment

named as “venv” under the directory from where you are

executing the command virtualenv venv

a. Instead of venv you can provide any other name as well.

7. You have successfully created a virtual environment.

a. In case you want to remove the virtual environment,
simply delete the folder.

8. Next, let us activate the virtual environment. For this, use

the below command. Based on the specific OS, as shown in

Figure 2.6, it can vary. Once you activate the virtual

environment, the name of the virtual environment is

appended to your shell prompt, as highlighted in Figure 2.6.

a. venv\scripts\activate [For Windows]
b. source venv/bin/activate [For Linux/Mac]
a. To deactivate the virtual environment, just run the

command deactivate

9. Finally, install the required packages. Throughout this book

we are going to use the packages mentioned above with a

specific version.

a. To install required packages, you can store them in a
requirements.txt file as stated above, having each
package with a specific version on new line. With this
option, you need to use the following command to install
packages from requirements.txt file, as shown Figure

2.6:

pip install -r requirements.txt

b. The second option is to provide packages with pip

install command directly, as mentioned below:

pip install pandas==2.2.2 transformers==4.42.3
langchain==0.2.6 langchain_community==0.2.6
langchain-huggingface==0.0.3 accelerate==0.32.1
unstructured[pdf]==0.14.10 wikipedia==1.4.0
nltk==3.8.1 textblob==0.18.0 scikit-learn==1.5.1
spacy==3.7.5 gensim==4.3.2 pattern==3.6.0
huggingface_hub==0.23.4 torch==2.3.1
sentence_transformers==3.0.1 chromadb==0.5.3
faiss-cpu==1.8.0 evaluate==0.4.2
rouge_score==0.1.2 pypdf==4.2.0 gradio==4.37.2
origamibot==2.3.6 scipy~=1.12.0 tf_keras==2.16.0
git+https://github.com/google-research/bleurt.git

c. Please note that we have installed all the packages
keeping in mind that we will use CPU and not GPU.

Figure 2.6: Activate virtual env, Venv name appended to shell and installation of

packages

PEP 8 standards

PEP 8 is the Python amplification proposal that outlines the style

guide for writing Python code. Following PEP 8 standards may

help make your code more readable and maintainable. Here are

some key guidelines and recommendations from PEP 8:

Indentation:

Use 4 spaces per indentation level. Avoid using tabs.
The maximum line length should be 79 characters (or 72
for docstrings and comments).

Imports:

Imports should usually be on separate lines and at the
top of the file.
Use absolute imports rather than relative imports.

Whitespace in expressions and statements:

Avoid extraneous whitespace in the following situations:
Immediately inside parentheses, brackets, or braces.

Immediately before a comma, semicolon, or colon.
Immediately before the open parenthesis that starts an
argument list.

Do use whitespace in the following cases:
Around binary operators (e.g., a + b).
After a comma in a tuple (e.g., a, b).

Comments:

Comments should be complete sentences and placed on a
line of their own.
One should use docstrings to document modules, classes,
and functions.
Inline comments should be used in a restricted manner
and only when necessary for clarification.

Naming conventions:

Use descriptive names for variables, functions, and
classes.
Function names should be lowercase with words
separated by underscores (snake_case).
Class names should follow the CapWords (CamelCase)
convention.
Constants should be in ALL_CAPS.

Whitespace in functions and expressions:

Separate functions with two blank lines.
Use blank lines to indicate logical sections in a function.
Keep expressions on the same line unless they are too
long.

Programming recommendations:

Use a single leading underscore for non-public methods
and instance variables (for example, _internal_method).

Follow the “Zen of Python” (PEP 20) principles, which
you can view by running import this in a Python
interpreter.
Code layout:

Avoid putting multiple statements on a single line.
Documentation:

Provide clear, informative, and concise documentation
using docstrings.
Use docstring formats like reStructuredText,
NumPy/SciPy docstring conventions, or Google-style
docstrings.

Exceptions:

Use the except clause without specifying an exception
type sparingly. Be specific about the exceptions you
catch.

Note: PEP 8 is a guideline for coding style, not strict

rules. Following PEP 8 is widely recognized as good

practice, but there can be times when you need to vary

from these guidelines due to practical considerations or

align with the style of existing code. Sometimes

maintaining consistency within a project matters more

than strictly sticking to PEP 8. So, it is best if you follow

the styling guide used in your project or organization,

even if it is not exactly like PEP 8.

Following PEP 8 in PyCharm

PyCharm has built-in features letting coders follow the standards

set by PEP 8. There are many tools and features available that

make following the guidelines easier.

PEP 8 check on-the-fly:

As you are writing your code in PyCharm, this tool keeps
an eye on what you are doing and checks that everything
matches up against standard practices outlined by PEP 8.
If something conflicts with PEP 8 norms, problematic

areas will be marked out instantly on-screen using red or
yellow squiggly lines.

Auto-formatting:

PyCharm comes loaded with automatic formatting tools
designed around PEP 8 expectations which help ensure
all newly-generated programming meets without fail
match-up impeccably against these important industry
standards!

Select the code you want to format.
Press Ctrl + Alt + L (Windows/Linux) or CMD +

Option + L (Mac).
Or right-click on the code and select “Reformat

Code."

PEP 8 configuration:

You can configure the PEP 8 settings in PyCharm to suit
your preferences. Go to File | Settings (or PyCharm |
Preferences on a Mac) and navigate to Editor | Code

Style | Python. Here, you can adjust the PEP 8 settings
to match your preferred coding style.

Code inspection:

PyCharm can perform code inspections to detect PEP 8
violations. If you see yellow or red highlighting in your
code, you can hover over it to see the issue and access
options to correct it.

PEP 8 quick-fixes:

Whenever a violation related to PEP 8 gets flagged in
your Python script written under pycharmʼs watchful eye
(python editor), you get to implement instant fixes for the
highlighted script by hitting Alt+Enter. We call it Quick
Fix!

Integration with linters:

PyCharm integrates with popular Python code analysis
tools like Flake8, Pylint, and Black. You can configure
these tools to provide PEP 8 checks and formatting
automatically.

Code documentation:

PyCharm helps you create PEP 8 compliant
documentation strings (docstrings) by providing
templates and hints as you write the documentation.

Code navigation:

You can use features within PyCharm to quickly move
between your definitions and understand how things are
connected in your Python file.

By default, PyCharm is configured to follow PEP 8 coding

standards, and it is designed to be user-friendly for developers

who want to write PEP 8 compliant code. However, you can

customize the settings to align with your preferences or team

standards. Using these features can help you maintain clean and

PEP 8 compliant Python code in your projects.

Object-Oriented Programming concepts in Python

In Python, Object-Oriented Programming (OOP) is an in-built

part of the language. Python supports all the core OOPS

concepts, including creating classes, objects, inheritance,

encapsulation, polymorphism, and more. Here is a brief

introduction to how OOP concepts are implemented in Python:

Class:

In Python, you define a class using the class keyword.
Classes are used to create objects, and they serve as
blueprints for object creation.

class Dog:
def __init__(self, name):
self.name = name

def bark(self):
print(f"{self.name} says Woof!")

Objects:

Objects are instances of a class, created using the class
constructor.
They encapsulate both data(attributes) and
behavior(methods). For example:

my_dog = Dog("Buddy")
my_dog.bark()

Inheritance:

Subclasses can inherit attributes and methods from
Superclasses. Look at the following code, for example:

class Animal:
def __init__(self, name):
self.name = name

class Dog(Animal):
def speak(self):
print(f"{self.name} says Woof!")

Here Buddy! is the name. As Dog inherits property

of Animal class

We are providing the name which will be utilized by

Animal class

my_dog = Dog("Buddy!")

my_dog.speak()
Encapsulation:

Python uses naming conventions to indicate access
control.
Attributes and methods with a single underscore are
considered protected:

class MyClass:
def __init__(self):
self._protected_var = 42

Polymorphism:

Polymorphism is achieved through duck typing.
If an object behaves like another object, it is considered
polymorphic:

class Cat:
def speak(self):
print("Meow!")

def make_animal_speak(animal):
animal.speak()

my_cat = Cat()
make_animal_speak(my_cat)

Abstraction:

You can define abstract base classes using the abc

module.
Subclasses must implement abstract methods:

from abc import ABC, abstractmethod

class Shape(ABC):
@abstractmethod
def area(self):
pass

class Circle(Shape):
def __init__(self, radius):
self.radius = radius

def area(self):
return 3.1415 * self.radius ** 2

Method overriding:

Subclasses can provide their own implementation of a
method:

class Animal:
def speak(self):
print("Generic animal sound")

class Dog(Animal):
def speak(self):
print("Woof!")

my_dog = Dog()
my_dog.speak()

These small code examples illustrate how OOP concepts are

implemented in Python, making it a versatile language for

building complex, organized, and maintainable applications.

Classes in Python

In Python, think of a class as a blueprint or design for making

objects. It determines how to build and behave around the thing

you are creating, including features (information) and methods

(activities). Python is very comfortable with OOP – that is why

classes are such an important concept in it! Let us take a closer

look at them:

Defining a class:

You make a class using the class keyword, followed by
its name. Usually, we like to start class names with
capital letters! Anything inside the body of your class will
be attributes or methods:

class MyClass:
attribute1 = 0
attribute2 = "Hello"

def method1(self):
pass

def method2(self, parameter):
pass

Creating objects (Instances):

Once you have defined a class, you can create objects
(instances) of that class. An object is a specific
realization of a class with its own data and behavior:

Create instances of MyClass

obj1 = MyClass()
obj2 = MyClass()

Attributes:

Attributes are variables that belong to a class. They
define the characteristics (data) of the objects created

from the class:
obj1.attribute1 = 42
obj2.attribute2 = "World"

Methods:

Methods are functions defined within a class. They define
the behavior and actions that objects created from the
class can perform:

class MyClass:
def say_hello(self):
print("Hello, world!")

obj = MyClass()
obj.say_hello() # Calls the say_hello method

The self-parameter:

In Python, the first parameter of a method is self, which
refers to the instance of the class. You use self to access
attributes and call other methods within the class:

class MyClass:
def set_attribute(self, value):
self.attribute1 = value

def get_attribute(self):
return self.attribute1

obj = MyClass()
obj.set_attribute(42)
value = obj.get_attribute() # Retrieves the value

Constructor method:

The __init__ method is a special method (constructor)
that is automatically called when an object is created
from a class. It is used to initialize attributes:

class MyClass:
def __init__(self, initial_value):
self.attribute1 = initial_value

obj = MyClass(42) # Creates an object with an initial
value of 42

Classes are a powerful way to organize and encapsulate code in

Python. They help create modular, reusable, and maintainable

code, making them a fundamental part of object-oriented

programming in the language. A complete class with PEP 8

docstring will look something as follows:

1. class Person:
2. """A class to represent a person.
3.
4. This class provides a simple way to store and retrieve

information about a person.
5.
6. Attributes:
7. name (str): The name of the person.
8. age (int): The age of the person.
9. """

10.
11. def __init__(self, name, age):
12. """Initializes a new Person object.
13.
14. Args:
15. name (str): The name of the person.
16. age (int): The age of the person.
17. """
18. self.name = name
19. self.age = age

20.
21. def greet(self):
22. """Prints a friendly greeting message.
23.
24. Returns:
25. str: A greeting message.
26. """
27. return f"Hello, my name is {self.name}, and I am {self.age} years old."
28.
29. # Creating an instance of the Person class

30. person1 = Person("Nayan", 35)
31.
32. # Calling the greet method

33. greeting = person1.greet()
34. print(greeting)

Functions in Python

Functions are so useful in Python – they are chunks of code you

can use again whenever you need them! They let your computer

perform tasks when asked. By using functions, your code gets

tidier and easier to read and manage:

Defining a function:

You define a function using the def keyword, followed by
the function name and a set of parentheses that can
contain input parameters (arguments). The functionʼs
code is indented below the def statement:

def greet(name):
print(f"Hello, {name}!")

Calling a function:

To use a function, you call it by using its name followed
by parentheses. If the function has parameters, you
provide the required values inside the parentheses:

greet("Nayan") # Calls the greet function with the
argument "Nayan"

Parameters and arguments:

Parameters are placeholders waiting for real values
when the function is called. Arguments are actual
relatable data passed into our functions

def add(x, y):
return x + y

result = add(3, 5) # x is 3, y is 5; result is 8
OR We can call method by keyword arguments like as
below
result = add(x=3, y=5)

Default parameters:

You can provide default values for function parameters.
If no argument is passed for a parameter, the default
value is used:

def power(x, y=2):
return x ** y

result1 = power(3) # y defaults to 2; result1 is 9
result2 = power(3, 4) # y is 4; result2 is 81
OR other way to call any method is
result2 = power(y=3, x=4) # y is 3, x is 4; result2 is 64

Scope:

Variables made within any specific function carry local
scope, meaning they live only there within a given
function and can only be accessible within a given
function! Any variable living outside/beyond functional
structure will have global scope making itself visible

throughout the entire code script and can be used
throughout the script:

x = 10

def my_function():
x = 5 # This is a local variable
print(x) # Prints 5

my_function()
print(x) # Prints 10

Functions are a crucial part of Python, allowing you to structure

your code and break it down into manageable pieces. They

promote code reusability and maintainability, making your

programs more organized and efficient.

For loop in Python

A classic bit from every coderʼs toolkit comes to the “for loop".

Perfect for repeating chunk(s) of programming over sequences or

sets like data frames, lists, tuples, etcetera based upon usual

basic coding rules.

The basic syntax of a for loop in Python is as follows:

1. for item in sequence:
2. # Code to be executed for each item

Here are some examples of a for loop:

1. fruits = ["apple", "banana", "cherry"]
2.
3. for fruit in fruits:
4. print(f"I like {fruit}")

In the following example, the for loop will run five times and will

take on the values 0, 1, 2, 3, and 4:

1. for i in range(5):
2. print(f"Count: {i}")

Nested For loop:

1. for i in range(3):
2. for j in range(2):
3. print(f"({i}, {j})")

Using break and continue in "for” Loops

For more advanced iterations, you can use the break and

continue statements within “for” loops to control the flow of your

code. For example:

1. fruits = ["apple", "banana", "cherry", "date", "elderberry"]
2.
3. print("Using 'break':")
4. for fruit in fruits:
5. if fruit == "date":
6. break # Exit the loop when "date" is found

7. print(f"I like {fruit}")
8.
9. print("\nUsing 'continue':")

10. for fruit in fruits:
11. if fruit == "date":
12. continue # Skip the iteration when "date" is found

13. print(f"I like {fruit}")

While loop in Python

A "while" loop in Python is used to continuously execute a block

of code as long as a specified condition is true. Looping continues

until its condition is no longer true; execution halted! Here is the

basic syntax of a “while” loop:

1. while condition:
2. # Code to be executed as long as the condition is true

Given below is a very simple example. In this example, the

“while” loop continues to execute as long as the count is less

than 5. The count variable is incremented with each iteration to

eventually make the condition false:

1. count = 0
2.

3. while count < 5:
4. print(f"Count: {count}")
5. count += 1 # Increment the count

Be careful when using “while” loops to avoid creating infinite

loops (Doctor Strange and the Dormammu sequence from the

movie Doctor Strange), where the condition never becomes false.

To prevent infinite loops, you should always add a false condition;

otherwise, these continuous loops can be devastating for the IT

Infrastructure.

Using "break" and "continue" in "while" Loops

Code:

1. count = 0
2.
3. while count < 5:
4. if count == 2:
5. break # Exit the loop when count is 2

6. elif count == 1:
7. count += 1
8. continue # Skip the iteration when count is 1

9. print(f"Count: {count}")
10. count += 1 # Increment the count

In this example, the loop breaks when count is equal to 2, and it

skips the iteration when count is equal to 1 using the continue

statement. Hence, here the value of count is Count: 0 from print

statement.

If-else in Python

In the Python world, “if-else” does wonders in controlling

conditional flow. It helps us assign different bunches of

instructions to be executed based upon given evaluated

conditions that turn true or false.

1. if condition1:
2. # Code to be executed if condition1 is true

3. elif condition2:
4. # Code to be executed if condition1 is false, and

condition2 is true

5. else:
6. # Code to be executed if both condition1 and condition2

are false

In case of two possible outcomes, you can exclude the middle

elif statement. If more than two outcomes are possible, then you

can include as many elif as required. Sample example could be

as follows:

1. grade = 85
2.
3. if grade >= 90:
4. print("A")
5. elif grade >= 80:
6. print("B")
7. elif grade >= 70:
8. print("C")
9. else:

10. print("D")

In Python, you can write a compact one-liner “if-elif-else”

statement using the conditional (ternary) expression. The

conditional expression allows you to evaluate a condition and

provide different values or expressions based on whether the

condition is true or false. Here is the syntax:

1. value_if_true if condition else value_if_false

Given below are two different examples. One is a normal if-else

condition, and second is if-elif-else condition:

1. age = 20
2.
3. status = "adult" if age >= 18 else "minor"
4. print(f"You are a {status}.")
5.
6. grade = 85
7.
8. result = "A" if grade >= 90 else ("B" if grade >= 80 else ("C" if grade >= 70 else

"D"))

9. print(f"Your grade is {result}.")

The “if-else” statement is a fundamental control structure in

Python and is used extensively to make decisions and execute

different code paths based on varying conditions.

Conclusion

In conclusion, the process of setting up a Python ecosystem or

environment for any project involves the installation of Python

itself, ensuring the presence of needed libraries for the project,

and selecting an appropriate IDE or code editor. By carefully

navigating through the steps mentioned in this chapter,

developers will be able to create a Python environment for this

book. The seamless integration of Python, necessary packages,

and a chosen code editor or IDE not only facilitates efficient

coding but also sets the stage for a productive and enjoyable

development experience. In the next chapter, we will practice

how to create and run Python scripts in different ways. If you

know ways to do this, then it will be easier to run scripts in

different scenarios. One such example is in case GUI is not

available, then you can run the script using a terminal or

command line.

CHAPTER 3

Ways to Run Python Scripts

Introduction

This chapter is another fundamental step in getting started with

the book. It allows you to run Python scripts using different ways.

It is good to know the different ways of running Python scripts,

as, in certain situations, some ways might not be available. For

example, GUI-based tools might not be available on the servers,

and hence, in this case, you might need to work with the terminal

to execute Python scripts. This chapter explores the diverse

methods for executing Python scripts from the command-line to

integrated development environments, and web frameworks. You

will also learn how to run scripts using different methods, and we

will cover the importance of choosing the right method for your

specific project needs to ensure efficient code execution and

deployment.

Structure

In this chapter we will discuss the following topics.

Setting up the project
Running Python scripts from PyCharm
Running Python scripts from Terminal
Running Python scripts from JupyterLab and Notebook

Running Python scripts from Docker

Objectives

By the end of this chapter, you will understand different ways to

run Python scripts. It will not only help you in this book, but it will

help in your future endeavors as well to run Python scripts in

different scenarios in different ways.

Note: It is always advisable to create a virtual

environment. Install the required packages into the

created virtual environment. After this, run the scripts

using the Python interpreter available in the created

virtual environment.

Setting up the project

First, let us create a sample script. We are going to run this script

using different ways. In our folder structure it will look something

as shown in Figure 3.1. As you can see, first, create a folder

called scripts in which we are going to store all the scripts that

we are going to create throughout the book.

Figure 3.1: Folder structure

Now the question is how to create this script hello_world.py? To

create the script, we have two options for the purpose of

simplicity. The two options are as follows:

In the script, we are going to write the following two lines:
print("Hello World!!!")
print("This is the book - Building LLM applications with
Langchain and Hugging Face Transformers")

Open any editor of your choice, write these lines as shown
in Figure 3.2, and save it as hello_world.py under scripts

folder. Here we have used Notepad++ for this purpose.

Figure 3.2: Notepad++ add code

The following figure shows how to save a script:

Figure 3.3: Notepad++ save as

As shown in Figure 3.4, once you have selected the required

directory, file name, and file type, just click on Save. It will store

the file as hello_world.py.

Figure 3.4: Notepad++ choose directory, file name & file type

As you can see that we do not need to append .py extension. It

will be automatically added by the Notepad++ application. You

just need to select Python File in the Save as type option.

To work with PyCharm, we need to get the folder and files within

the PyCharm environment. For this, as shown in Figure 3.5, open

the folder as PyCharm Community Edition project. In our case, it

is Book and then follow the given steps:

1. Right-click on the folder.

2. Select the option Open Folder as PyCharm Community

Edition Project.

3. Once the folder and all files are available in PyCharm, you

will get the screen as shown in Figure 3.6

4. Right-click on scripts | New | Python File. Refer to Figure

3.7.

a. It will open a dialogue box.
b. Provide file name and enter.
c. From the figure you can see that you can create a

directory as well as a Python package.
Refer to the following figure:

Figure 3.5: PyCharm – Open folder as a project

The following figure shows how the screen will open, as discussed

in the preceding steps:

Figure 3.6: PyCharm – Screen

The following figure shows how to create a new file in PyCharm.

For this right- click on the scripts folder, and then you will get the

pop-up as shown in Figure 3.7:

Figure 3.7: PyCharm – Create new Python File

The following figures show how to create a new Python file in

PyCharm, as discussed in the preceding points:

Figure 3.8: PyCharm – Create Python file

Figure 3.9: PyCharm – Script created

After all these steps, you should have scripts folder and

hello_world.py underneath of it. Overall, the setup will look

similar, as shown in Figure 3.1.

Running Python scripts from PyCharm

To run scripts from PyCharm, we need to set up a Python

interpreter at a project level. By setting the Python interpreter,

we are telling PyCharm to use Python from the given

configuration. Here, we tell PyCharm to use Python either from

the global directory, that is, from the main installation path or

from a created virtual environment directory.

However, in most cases, if the folder you are using has a virtual

environment created, PyCharm will detect it automatically and

will set it as an interpreter.

If this is not the case, follow the given steps:

1. Click on File | Settings | Project: project_name [It will be

dynamic] | Python Interpreter, as shown in the following

figure:

Figure 3.10: PyCharm – Python Interpreter

In the following Figure 3.11, you can see that, as mentioned

earlier, the virtual environment has already been detected and

set as an interpreter. If this is not the case, click on Add

Interpreter | Add Local Interpreter…

You will get this Add Interpreter option in the top right corner,

as highlighted in Figure 3.11.

Refer to the following figure:

Figure 3.11: PyCharm – Python Interpreter already set

The following figure shows how to add existing Python interpreter

from any virtual environment:

Figure 3.12: PyCharm – Add existing or new interpreter

As shown in Figure 3.12, we can add an existing Python

interpreter from any virtual environment, or we can create a new

interpreter as well. To do this, you can refer to the following

points:

When we create a new interpreter via PyCharm, it will
create a virtual environment. For this, in Figure 3.12, select
New.

Location [Where you want to create a virtual
environment]
Base interpreter: Do not change this location. It will be
default to the standard Python installation directory that
we have done in Chapter 2, Installation of Python,

Required Packages and Code Editor.

It is just to use it to create a virtual environment.
Refer to the following figure:

Figure 3.13: PyCharm – Create new Python interpreter

You can get the virtual environment path,if you have
created it using virtualenv option.

On Windows/macOS/Linux: Virtual environments are
typically stored in the directory where you have run the
command virtualenv venv.

If you have used virtualenv option, then it will most
probably be in the root directory of the project.
Here, the Python interpreter must contain a path including
the Python binary or executable.

Now, from the left pane, select hello_world.py and double-
click on it. It will look as shown in Figure 3.14.
In case you have a blank file, just write two print
statements, as shown in Figure 3.14.

Now, to run the script, we have two options.
If we want to run the script line by line, that is., execute
the code where the cursor is. In that case, you can use
ALT+SHIT+E keys.

Figure 3.14: PyCharm – Open Script

If we want to run the entire script at once, we have three
options:

First option is to use SHIFT + F10 keys, as shown in
Figure 3.15

Second, select all codes and press the ALT+SHIT+E

keys. Refer to Figure 3.16

Third option is the Green Play button on top bar. Just
press that button, and the entire script will be executed.
Refer to Figure 3.15:

Figure 3.15: PyCharm – Run script using 1st and 3rd options

Refer to the next figure for better understanding of how to run an

entire script:

Figure 3.16: PyCharm – Run script using second option

Running Python Scripts from Terminal

Running Python scripts from the terminal is a fundamental skill

for programmers and system administrators. It enables the

automation of tasks, facilitates system administration, and allows

for the integration of Python scripts into various workflows.

Executing scripts from the command line is essential for tasks

such as debugging, handling command-line arguments, and

working with remote servers.

To run Python scripts from Terminal or CMD, follow the steps

mentioned below:

1. Open the terminal or CMD.

a. For most of the Linux distros, you can use the
CTRL+ALT+T command to open the terminal.

b. For Windows, Win + R | type cmd in the box. It will open
the command prompt.

c. For MacOS, press Command + Space to open Spotlight
search, then type Terminal and press Enter. This will
launch the Terminal application.

2. From the terminal, we have two options to run Python

scripts:

a. You can provide a complete path (absolute path) of the
script. For example, refer to the following code and
Figure 3.17:

python E:\Repository\Book\scripts\hello_world.py

Figure 3.17: Terminal – Provide absolute path

b. Change to the directory where Python scripts reside and
run the script. For example, in our case, we will change

the directory to E:\Repository\Book\scripts and then
will run the following command:
python hello_world.py

3. Here, you can see that we are using a global Python

interpreter and not the one from the virtual environment we

have created.

a. It is for example only. In case your global Python
interpreter does not contain the required packages, then
it will raise an error that the module is not found.
Hence, it is always recommended to use a virtual
environment.

4. To run the script using a virtual environment again, we have

three options:

a. Use the path of the Python interpreter from the virtual
environment and run the script. For example, in our
case, the Python interpreter from the virtual
environment resides at
E:\Repository\Book\venv\Scripts\python.exe. We will
use this interpreter and provide an absolute or relative
path of the script to execute it. For example, refer to the
following code and Figure 3.18:

E:\Repository\Book\venv\Scripts\python.exe

E:\Repository\Book\scripts\hello_world.py

Figure 3.18: Terminal – Provide virtual env python interpreter and script path

b. Here, if you are in the directory where Python scripts
reside, you can refer to the following command. For
example, we have changed the directory to
E:\Repository\Book\scripts, and in this case, we can run
the following command:

E:\Repository\Book\venv\Scripts\python.exe hello_world.py

c. In this option, we will activate the virtual environment and
then run the script:
i. We have created a virtual environment using

virtualenv command. Hence, go to the project directory
where venv folder resides. Here venv is our virtual
environment name case. If you have used a different
name, than venv, in that case, go to the directory where
the folder of that name resides.
In our case, we need to go to the directory
E:\Repository\Book where we will get the above files.

ii. Open the terminal or CMD from that particular location
or open the terminal and change the directory to the
location where the venv folder resides.

iii. Execute the following command, which will activate the
virtual environment:

venv\Scripts\activate [For Windows]; source

venv/bin/activate [For Linux/Mac]

iv. Now, execute the following command to run the script:

python scripts\hello_world.py

v. Here, make sure that OS-based separator i.e., “/” or “\”
can vary.

Refer to the following figure:

Figure 3.19: Terminal – Activate virtual environment and run the script

Running Python scripts from Jupyter Lab and

Notebook

Being able to use Jupyter Lab or Notebook is very important

when you are working on things like data exploration, building

models, designing new technologies, and collaborating with

others. With Jupyter, you can create and run code step by step in

an interactive way - perfect for analyzing data or creating an ML

model. Plus, because it is easy to add text details, images, and

graphs into your work with them, they are excellent at helping

detail the process of analyses built through coding.

Here is how to get Python scripts running:

1. Activate the virtual environment as mentioned in the

preceding section Run Python Scripts from Terminal. You

need to run the commands below on the same terminal.

2. Run the following command to install JupyterLab and

Jupyter Notebook:

a. pip install jupyter lab notebook

3. Run any of the following commands to start JupyterLab or

Jupyter Notebook. Here we have a terminal, which is in the

root directory of the project, that is, E:\Repository\Book.

a. jupyter lab
b. jupyter notebook

4. You will get the screen as shown in Figure 3.20, which is of

Jupyter Lab. This is the screen that you will get first. You can

consider it as the home page. From this, select any section

of Notebook | Python 3 (ipykernel) OR Console | Python 3

(ipkernel).

a. Here, you will get the screen where you need to execute
the command as mentioned in Figure 3.21.

5. Figure 3.22 shows Jupyter Notebook home page screen. You

can also select from Notebook or Console here. In the next

screen, as shown in Figure 3.23, execute the command

provided at the end.

6. For both Jupyter Notebook and JupyterLab run the following

command:

a. with open("scripts\\hello_world.py","r") as scrpt:
b. scrpt_content = scrpt.read()
c.
d. exec(scrpt_content)

Refer to the following figure:

Figure 3.20: Jupyter Lab – Main Screen

Refer to the following figure for a better understanding of the

steps discussed:

Figure 3.21: Jupyter Lab – New Notebook Run Commands

Figure 3.22: Jupyter Notebook – Main Screen

Figure 3.23: Jupyter Notebook – New Notebook Run Commands

Running Python Scripts from Docker

In Chapter 2, Installation of Python, Required Packages and Code

Editor, we have seen how to install docker on respective OS and

then how to fetch an image of the required Python version. In this

section, we will proceed from there. Here, we will see how to use

fetched Python images to run Python scripts. Let us look at the

following steps:

1. As usual open the terminal. First, confirm that the docker

instance is running else it might result in an error while

running the required command. For this, run the following

command from terminal. Refer to Figure 3.24 for the same:

docker images

a. If this command executes successfully without any error,
then the docker instance is running. If not, then make
sure that the docker service is running.

2. Next, run the following command, which will start a

container using the image that we fetched in Chapter 2,

Installation of Python, Required Packages and Code Editor.

Refer to Figure 3.24 for the same.

a. docker run -dti -v
E:\Repository\Book\scripts:/home/scripts --name
book_practice python:3.12

b. Here:
i. dti: Run the container in detached mode, i.e., in the

backend with the interactive terminal facility.
ii. v: Here we are mapping directory which contains

Python scripts with the home/scripts directory of the
docker instance i.e., the docker container

iii. name: Name of the container that is going to run the
Python image

iv. python:3.12 Image name

3. This will start the container in the background. In case you

restart the PC, you need to execute the following command

to start the container:

docker start book_practice

Also, do not delete this container. It will remove any

changes that might have been made inside the container.

It will not remove changes to the host machine. That is, in

case you change a script from the scripts folder and delete

the container, it will not remove those changes as they are

directly written to the host machine. However, let us say

you have created a virtual environment inside the

container. Then, on deleting the container, the virtual

environment will be deleted.

Figure 3.24: Docker – Strat image in a container

4. Before proceeding further, make sure that the docker

container is up and running using the command docker ps

-a. Make sure the STATUS column shows Up X minutes.

5. Next, you can get the commands we will use to enter the

Docker container and run the script from Figure 3.25. The

commands are as follows. The first command will enter into

the docker container having the name book_practice. The

second command will change the directory. The third

command will execute the script available in the directory.

docker exec -it book_practice bash
cd /home/scripts
python hello_world.py

Figure 3.25: Docker – Enter into container and run scripts

6. In this instance, no virtual environment has been

established. Instead, the scripts are executed directly

through the global Python interpreter. For educational

purposes and within the context of Docker, as described in

this publication, it is acceptable to utilize the global Python

interpreter. However, if desired, you can opt for a similar

approach, which involves setting up a virtual environment,

activating it, installing necessary packages, and executing

scripts from a designated Python interpreter within that

specific virtual environment.

Conclusion

In conclusion, mastering the various ways to run Python scripts

empowers you to unleash the full potential of this versatile

language. You can choose the approach that best suits your

specific needs and preferences, such as harnessing the power of

the terminal for automation, control, and deployment, embracing

the interactive and exploratory nature of Jupyter Lab and

Notebook for data analysis and visualization, utilizing IDEs for

comprehensive development environments and debugging tools,

or creating standalone executables for easy distribution and

cross-platform compatibility.

Remember, the most effective approach often involves a

combination of these methods, which are strategically employed

throughout your Python journey. By understanding the strengths

and nuances of each execution environment, you will be

equipped to tackle any coding challenge with confidence and

efficiency.

In the next chapter, we will understand and practice important

NLP concepts, which are a must and the basis of most of the

current NLP algorithms. In that chapter we will explore some of

the very useful and often used terminologies and see practical

implementation of the same.

Join our book’s Discord space

Join the bookʼs Discord Workspace for Latest updates, Offers,

Tech happenings around the world, New Release and Sessions

with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 4

Introduction to NLP and its

Concepts

Introduction

Natural language processing (NLP) is an absolutely key

area in the world of Artificial Intelligence (AI). The field

deals with human languages and computer systems. It

provides algorithms and models, facilitating machines to

delve into the realms of understanding, interpretation, and

generation of human language in a manner that transcends

mere superficiality and strives for a depth that is both

profound and genuinely utilitarian. This chapter has been

thoughtfully curated to give you an explanation of this

intricate field. We will also embark upon an exploration of

the bedrock principles, intricacies of technique, and the

pragmatic domains where NLP finds its utility.

Structure

In this chapter we will discuss the following topics:

Natural Language Processing overview
Large language models

Text classification
Prompt engineering

Objectives

By the end of this chapter, you will have an understanding

of NLP and its different concepts. It will help you to

understand and exercise further topics in the book. You will

gain knowledge of how a computer works with text data and

a solid foundation in the principles and practical applications

of NLP.

Natural Language Processing overview

Natural Language Processing (NLP) represents a swiftly

evolving discipline situated at the confluence of computer

science, AI, and linguistics. Its primary objective is to

facilitate machines in the practical comprehension and

generation of human language. Its applications span a vast

spectrum of technological domains, encompassing natural

and seamless human-computer interactions, insightful data

analysis, and efficient communication. NLP forms the

foundational underpinning of various technological tools,

including search engines, voice-activated assistants,

chatbots, and data analytics.

However, the realm of NLP is not devoid of intricate

challenges. It grapples with the multifaceted nature of

human language, replete with subtleties and cultural

nuances, and must address ethical considerations,

particularly those associated with bias in NLP models and

responsible usage. This chapter endeavors to offer a

comprehensive exposition of NLP, exploring its fundamental

tenets, methodologies, and real-world implementations,

with forthcoming sections delving into pivotal elements such

as tokenization and sentiment analysis, all veiled in a level

of intricacy that eludes conventional detection.

Key concepts

To understand the key concepts of NLP practically, create a

new folder nlp_concepts with blank __init__.py under the

scripts folder that we have created in the earlier chapters.

In general, a folder containing __init__.py is considered a

Python package. The folder structure will look alike, as

shown in Figure 4.1. Here, Untitled.ipynb has been

created in Chapter 3, Ways to Run Python Scripts, to show

how to run Python scripts via Jupyter Notebook or Jupyter

Lab. The .idea is the internal folder of PyCharm, which will

be created automatically when you open any folder as a

PyCharm project. .ipynb_checkpoints is the internal folder

of Jupyter Notebook that was created by it. Create scripts as

shown under the folder structure of scripts, as shown in the

following figure:

Figure 4.1: Folder structure

Now, let us see both the theoretical and the practical parts.

Note: You will see that different packages that we are

going to use for different functionalities will behave

differently. Some packages will provide correct

results. Some will provide incorrect or intermediate

results. As these packages evolve and update over a

period of time, time-to-time, evaluation of the

packages will be required from your end to confirm

the results are correct using those packages.

Corpus

In NLP, a corpus is the name for a big, organized bunch of

text documents. These texts can be written pieces or even

transcriptions from spoken language - or sometimes both!

They span all kinds of areas, such as social media,

academia, and news articles, to name just a few. Now, by

using complicated analysis methods on corpora (plural of

corpus) in NLP, patterns are quickly figured out relating to

the characteristics and structures of the languages. In the

world of languages and computing, especially with machine

learning applications, the use of corpora is extensive.

Types of corpora are as follows:

Monolingual corpora: This type of corpora only has
text from one single language.

Examples:

Corpus of Contemporary American English

(COCA)

British National Corpus (BNC)

French Treebank (FTB)

Balanced Corpus of Contemporary Written

Japanese (BCCWJ)

Russian National Corpus (RNC)

Multilingual corpora: Here we find multiple
language texts (corpus) meant for cross-language
research work.

Examples:

Europarl Corpus: A parallel corpus containing
the proceedings of the European Parliament,
available in 21 European languages.
United Nations Parallel Corpus: Contains
official documents and their translations in the six
official UN languages (Arabic, Chinese, English,
French, Russian, and Spanish).
OpenSubtitles: A large-scale multilingual corpus
derived from movie and TV subtitles, available in
many languages.

Parallel corpora: Mixed bag including sentence
translations distributed across various languages
equipped for machinery-based translation movements.

Examples:

TED Talks Corpus: A collection of TED Talks
with transcripts and translations in multiple
languages.
Tatoeba Corpus: A multilingual sentence
database with translations in numerous languages
contributed by a global community.
Wikipedia Parallel Titles Corpus: Contains
parallel titles from Wikipedia articles in different
languages.

Domain-specific corpora: Specific area/sector
related textual content. For example, text content
centered around medical/legal interests etc.

Examples:

Medical Information Mart for Intensive Care

(MIMIC-III): Contains de-identified health data
from intensive care unit patients.
PubMed Central (PMC) Open Access Subset:
A large collection of biomedical and life sciences
journal literature.

Open and close corpora:
Publicly accessible corpora known as ʼopen corporaʼ
and proprietary entities rarely available broadly
referred under the header of ʼclosed corporaʼ. Both
contribute vast user-built data sources, aiding
heavy-scale machine learning activities, i.e.,
performing effective predictions/helping generate
artificial human-like languages essentially guiding
processing arenas!

Examples:
British National Corpus (BNC): An open
collection of samples of written and spoken
English from a wide range of sources.
Corpus of Contemporary American English

(COCA): A large, balanced corpus of American
English from 1990 to the present.
Microsoft Translator Hub Corpora:
Proprietary datasets used by Microsoft for
training translation models.
Bloomberg Terminal Data: Financial data is
available through the Bloomberg Terminal and
requires a subscription.

Corpora are the stepping stones for many machine learning

problems, including NLP tasks, providing the diversity and

quantity of data required to develop and improve models for

understanding and generating human-like language. They

play a crucial role in advancing natural language

understanding and processing in the field of ML.

N-grams

N-grams is a technique used in natural language processing

to understand human languages. You can think of n-grams

like pieces of a sentence puzzle.

Why do we use n-grams? Well, they help us predict what

word might come next after youʼve started typing or

speaking! This prediction process is incredibly valuable for

things like creating new stories and helping with writing

texts faster!

Imagine youʼre trying to build software that recognizes

speech - being able to understand the likely sequences of

words in someoneʼs speech would make this job much

easier! That is why we also use them for tools that translate

between languages.

Here are some of the types of n-grams:

Unigrams (1-grams): These are just single items,
usually words. If you have the sentence “I love pizza,”
then each word (I, love, pizza) becomes a unigram.
Bigrams (2-grams): This refers to pairs of
consecutive items. Let us take our previous sentence
as an example again ("I love Pizza"). Here our bigrams
would be “I love” and “love Pizza."
Trigrams (3-grams): Trigrams consist of three
consecutive items. For the words, trigrams would be:
“I love Pizza".
N-grams in General: You can have n-grams with any
value of N, depending on your specific requirements.

For instance, 6-grams would involve sequences of six
items from the text. Now these items can be anything,
i.e., words, sentences, characters, etc.

Fantastic, is it not? By simply breaking down sentences into

these unique groupings called n-grams helps give structure

and predictability within our language, which ultimately

makes life so much easier for machines trying their best to

grasp onto intricate nuances found within human

conversation patterns.

Python packages:

Natural Language Toolkit (NLTK)
spaCy
TextBlob
Scikit-Learn
HuggingFace

Code:

Put the following code in the file called ngrams.py

[E:\Repository\Book\scripts\nlp_concepts\ngrams.py]:

1. # Import required packages

2. from nltk.util import ngrams
3. import spacy
4. from textblob import TextBlob
5. from sklearn.feature_extraction.text import CountVectorizer
6. from transformers import AutoTokenizer
7.
8.
9. #

==================================

==================================

==

10. # NLTK

11. print("*" * 25)
12. print("Below example of N Grams is using NLTK package")
13. text = "This is an example sentence for creating n-grams."
14. n = 2 # Specify the n-gram size

15. bigrams = list(ngrams(text.split(), n))
16. print(bigrams)
17.
18.
19. #

==================================

==================================

==

20. # Spacy

21. print("*" * 25)
22. print("Below example of N Grams is using Spacy package")
23. # It is to download english package. Not required to

run every time. " # Run below code from terminal after

activating virtual environment"

24. # python -m spacy download en_core_web_sm

25. nlp = spacy.load("en_core_web_sm")
26. text = "This is an example sentence for creating n-grams."
27. n = 2 # Specify the n-gram size

28. tokens = [token.text for token in nlp(text)]
29. ngrams = [tokens[i : i + n] for i in range(len(tokens) - n + 1)]
30. print(ngrams)
31.
32.
33. #

==================================

==================================

==

34. # TextBlob

35. print("*" * 25)

36. print("Below example of N Grams is using TextBlob package")
37. # This is to download required corpora. Not required to

run every time. "# Run below code from terminal after activating

virtual environment"

38. # python -m textblob.download_corpora

39. text = "This is an example sentence for creating n-grams."
40. n = 2 # Specify the n-gram size

41. blob = TextBlob(text)
42. bigrams = blob.ngrams(n)
43. print(bigrams)
44.
45.
46. #

==================================

==================================

==

47. # Scikit Learn

48. print("*" * 25)
49. print("Below example of N Grams is using Scikit Learn package")
50. # For scikit learn list is required hence providing list.

51. text = ["This is an example sentence for creating n-grams."]
52. n = 2 # Specify the n-gram size

53. vectorizer = CountVectorizer(ngram_range=(n, n))
54. X = vectorizer.fit_transform(text)
55. # Get the n-gram feature names

56. feature_names = vectorizer.get_feature_names_out()
57. # Print the n-grams

58. for feature_name in feature_names:
59. print(feature_name)
60.
61.
62. #

==================================

==================================

==

63. # Hugging Face Package

64. print("*" * 25)
65. print("Below example of N Grams is using Hugging Face package")
66.
67. # Define your text

68. text = "This is an example sentence for creating ngrams with Hugging
Face Transformers."

69.
70. # Choose a pretrained tokenizer

71. tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
72.
73. # Tokenize the text

74. tokens = tokenizer.tokenize(text)
75.
76. # Generate bigrams

77. bigrams = [(tokens[i], tokens[i + 1]) for i in range(len(tokens) - 1)]
78.
79. # Generate trigrams

80. trigrams = [(tokens[i], tokens[i + 1], tokens[i + 2]) for i in
range(len(tokens) - 2)]

81.
82. # Print the bigrams

83. for bigram in bigrams:
84. print(bigram)
85.
86. # Print the trigrams

87. for trigram in trigrams:
88. print(trigram)

Tokenization

Tokenization is performed to convert a continuous text or

speech into discrete, manageable units. It is the process of

breaking down text into smaller units, typically words or

sub-words (tokens), which are essential for further analysis.

Tokens are the building blocks used for various NLP tasks,

including text analysis, sentiment analysis, text

classification, and more.

The types of tokens are described as follows:

Tokens can represent words, sub words, or characters,
depending on the level of granularity required.
In word-level tokenization, text is split into words, for
example, “I love NLP” → “I", “love", “NLP".
Subword tokenization means splitting words into
smaller parts that still have meaning. For example, the
word “unhappiness” can be broken into “un” and
“happiness".
Character-level tokenization breaks down words even
further, treating each letter as a token. For example,
the word “hello” is split into “h", “e", “l", “l", “o".
Sentence tokenization which involves breaking text
into sentences.
Tokenization helps in assigning grammatical
categories to each token, identifying named entities in
the text, analyzing the sentiment of individual words
or phrases, training models to understand and
generate human-like text. It also helps in categorizing
text based on token features.

Python packages:

NLTK
spaCy

The built-in string methods can be used for
tokenization
Regular expressions in Pythonʼs built-in re module
Tokenizers from Hugging Face (used with transformer
models)
TextBlob
LangChain

We have not included the code for this package. It
supports a number of tokenizers which are as
follows:

tiktoken
spaCy
SentenceTransformers
NLTK
Hugging Face tokenizer
You can see the examples of the same on below
URL:

https://python.langchain.com/docs/modules/d

ata_connection/document_transformers/text_

splitters/split_by_token#hugging-face-

tokenizer

Code:

Put the following code in the file called tokens.py

[E:\Repository\Book\scripts\nlp_concepts\tokens.py]:

1. # Import required packages

2. import nltk
3. from nltk.tokenize import word_tokenize, sent_tokenize
4. import spacy
5. from transformers import AutoTokenizer

https://python.langchain.com/docs/modules/data_connection/document_transformers/text_splitters/split_by_token#hugging-face-tokenizer

6. from textblob import TextBlob
7.
8.
9. #

==================================

==================================

==

10. # NLTK

11. print("*"*25)
12. print("Below example of Tokens is using NLTK package")
13.
14. # Download the required dataset. Not required to run

everytime.

15. nltk.download('punkt')
16. text = "This is an example sentence. Tokenize it."
17.
18. # Word tokenization

19. words = word_tokenize(text)
20. print("Word tokens:", words)
21.
22. # Sentence tokenization

23. sentences = sent_tokenize(text)
24. print("Sentence tokens:", sentences)
25.
26.
27. #

==================================

==================================

==

28. # Spacy

29. print("*"*25)
30. print("Below example of Tokens is using Spacy package")
31.

32. # It is to download english package. Not required to

run every time. "# Run below code from terminal after

activating virtual environment"

33. # python -m spacy download en_core_web_sm

34. nlp = spacy.load("en_core_web_sm")
35.
36. text = "This is an example sentence. Tokenize it."
37.
38. doc = nlp(text)
39.
40. # Word tokenization

41. words = [token.text for token in doc]
42. print("Word tokens:", words)
43.
44. # Sentence tokenization

45. sentences = [sent.text for sent in doc.sents]
46. print("Sentence tokens:", sentences)
47.
48.
49. #

==================================

==================================

==

50. # Builtin Methods

51. print("*"*25)
52. print("Below example of Tokens is using Builtin package")
53.
54. text = "This is an example sentence. Tokenize it."
55.
56. # Word tokenization

57. words = text.split(" ")
58. print("Word tokens:", words)
59.

60. # Sentence tokenization

61. sentences = text.split(".")
62. # Remove 3rd element which will be "". Also remove

extra spaces around non-blank elements.

63. sentences = [k.strip() for k in sentences if k != ""]
64. print("Sentence tokens:", sentences)
65.
66.
67. #

==================================

==================================

==

68. # Huggingface Transformers

69. print("*"*25)
70. print("Below example of Tokens is using Huggingface package")
71.
72. # Use pretrained model

73. tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
74.
75. text = "This is an example sentence. Tokenize it."
76.
77. # Tokenize the text into word-level tokens

78. word_tokens = tokenizer.tokenize(text)
79. print("Word tokens:", word_tokens)
80.
81. # we tokenize the text into sentence-level tokens by

adding special tokens (e.g., [CLS] and [SEP]) to the

output.

82. # [CLS] stands for Classification Token and used in

BERT and other transformers for classification tasks. Its

also

83. # inserted at the beginning of text sequence.

84. # [SEP] stands for Separator Token and used in BERT

and other transformers. It is used to separate different

segments

85. # of the input text.

86. # Tokenize the text into sentence-level tokens

87. sent_tokens = tokenizer.tokenize(text, add_special_tokens=True)
88. print("Sentence tokens:", sent_tokens)
89.
90. # Optionally, you can convert the sentence tokens into

actual sentences

91. sentences = tokenizer.convert_tokens_to_string(sent_tokens)
92. print("Sentences:", sentences)
93.
94.
95. #

==================================

==================================

==

96. # Textblob

97. print("*"*25)
98. print("Below example of Tokens is using Textblob package")
99.

100. text = "This is an example sentence. Tokenize it."
101.
102. blob = TextBlob(text)
103.
104. # Word tokenization

105. words = blob.words
106. print("Word tokens:", words)
107.
108. # Sentence tokenization

109. sentences = blob.sentences
110. print("Sentence tokens:", sentences)

Difference in tokens and n-grams

The main difference is that tokens represent individual text

units, whereas n-grams are sequences of tokens (or other

text units), created by considering n consecutive items from

the text. Tokens are essential for basic text analysis, while n-

grams are useful for capturing patterns, relationships, and

context in the text, and they are often used in language

modeling, text analysis, and various NLP tasks.

Stop words removal

Common and uninformative words like “the", “and” are

removed from the text. Stop word removal is vital in NLP for

several reasons. It reduces text complexity, improves

computational efficiency, and enhances the quality and

accuracy of text analysis by focusing on meaningful content

words.

Removing stop words also promotes consistency in text

representation and is particularly valuable in text

classification, sentiment analysis, and information retrieval

tasks.

Python packages:

NLTK
spaCy
Gensim
Scikit-Learn

Code:

Put the following code in the file called

stopwords_removal.py

[E:\Repository\Book\scripts\nlp_concepts\stopwords_r

emoval.py]:

1. import nltk

2. from nltk.corpus import stopwords
3. import spacy
4. from gensim.parsing.preprocessing import remove_stopwords
5. from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
6.
7. # In case you get an error "ImportError: cannot import

name 'triu' from 'scipy.linalg'"

8. # when importing Gensim, please install specific

version of scipy

9. # pip install scipy==1.12

10.
11. #

==================================

==================================

==

12. # NLTK

13. print("*" * 25)
14. print("Below example of Stop Words Removal using NLTK package")
15.
16. nltk.download("stopwords") # Download necessary data (if not

already downloaded)

17.
18. text = "This is an example sentence with some stop words."
19.
20. words = text.split()
21. filtered_words = [
22. word for word in words if word.lower() not in

stopwords.words("english")
23.]
24.
25. print("Without Stop Words!!!")
26. print(filtered_words)
27.

28.
29. #

==================================

==================================

==

30. # Spacy

31. print("*" * 25)
32. print("Below example of Stop Words Removal using Spacy package")
33.
34. nlp = spacy.load("en_core_web_sm")
35.
36. text = "This is an example sentence with some stop words."
37.
38. doc = nlp(text)
39.
40. filtered_words = [token.text for token in doc if not token.is_stop]
41.
42. print("Without Stop Words!!!")
43. print(filtered_words)
44.
45.
46. #

==================================

==================================

==

47. # Gensim

48. print("*" * 25)
49. print("Below example of Stop Words Removal using Gensim package")
50.
51. text = "This is an example sentence with some stop words."
52.
53. filtered_text = remove_stopwords(text)
54.

55. print("Without Stop Words!!!")
56. print(filtered_text)
57.
58.
59. #

==================================

==================================

==

60. # Scikit Learn

61. print("*" * 25)
62. print("Below example of Stop Words Removal using Scikit-Learn

package")
63.
64. text = "This is an example sentence with some stop words."
65.
66. words = text.split()
67. filtered_words = [word for word in words if word.lower() not in

ENGLISH_STOP_WORDS]
68.
69. print("Without Stop Words!!!")
70. print(filtered_words)

Stemming

It is a text normalization technique in NLP that aims to

reduce words to their word stems or roots. The goal of

stemming is to remove suffixes from words to achieve a

common base form. This helps in treating words with the

same stem as equivalent, thus reducing the dimensionality

of the text data and simplifying text analysis.

Stemming algorithms remove common endings from words,

like “-ing,” “-ed,” and “-s,” to find the base form of the word.

The Porter stemming algorithm is a famous and widely used

example of these algorithms. It uses a set of rules to strip

suffixes from words. Other stemming algorithms like

Snowball (Porter2) and Lancaster stemming are also

commonly used.

Python packages:

NLTK

Lemmatization

It is a text normalization technique in NLP that reduces

words to their base or dictionary form, known as the

lemma.

The goal of lemmatization is to transform inflected words

into their root forms, which often represent the canonical or

dictionary meaning of a word.

Unlike stemming, which removes suffixes to approximate

word stems, lemmatization applies linguistic rules and

analyzes the wordʼs meaning to find the correct lemma.

Lemmatization is valuable in NLP when you need to

normalize words to their canonical forms, ensuring that

words with different inflections are treated as equivalent.

Itʼs commonly used in information retrieval, search engines,

and text analysis tasks where precise word forms are

important.

Stemming is different from lemmatization. While stemming

is a rule-based process that often results in approximate

word stems, lemmatization involves finding the base or

dictionary form of a word (the lemma) and is linguistically

more accurate.

Python packages:

NLTK
spaCy
TextBlob

Pattern
Code:

Put the following code in the file called stem_lem.py

[E:\Repository\Book\scripts\nlp_concepts\stem_lem.py

]

Note: This code contains both stemming and

lemmatization.

1. import nltk
2. from nltk.stem import PorterStemmer
3. from nltk.stem import WordNetLemmatizer
4. import spacy
5. from textblob import Word
6. from pattern.en import lemma
7.
8. #

==================================

==================================

==

9. # NLTK

10. print("*" * 25)
11. print("Below example of Stemming using NLTK package")
12. nltk.download("punkt") # Download necessary data (if not

already downloaded)

13.
14. # Create a PorterStemmer instance

15. stemmer = PorterStemmer()
16.
17. # Example words for stemming

18. words = ["jumps", "jumping", "jumper", "flies", "flying"]
19.
20. # Perform stemming on each word

21. stemmed_words = [stemmer.stem(word) for word in words]

22.
23. # Print the original and stemmed words

24. for i in range(len(words)):
25. print(f"Original: {words[i]}\tStemmed: {stemmed_words[i]}")
26.
27.
28. #

==================================

==================================

==

29. # NLTK

30. print("*" * 25)
31. print("Below example of Lemmatization using NLTK package")
32. nltk.download("wordnet") # Download necessary data (if not

already downloaded)

33.
34. lemmatizer = WordNetLemmatizer()
35.
36. # Example words for lemmatization

37. words = ["jumps", "jumping", "jumper", "flies", "flying"]
38.
39. # Perform lemmatization on each word

40. lemma_words = [
41. lemmatizer.lemmatize(word, pos="v") for word in words
42.] # Specify the part of speech (e.g., 'v' for verb)

43.
44. # Print the original and lemmatized words

45. for i in range(len(words)):
46. print(f"Original: {words[i]}\tLemmatized: {lemma_words[i]}")
47.
48.
49. #

==================================

==================================

==

50. # SpaCy

51. print("*" * 25)
52. print("Below example of Lemmatization using Spacy package")
53.
54. nlp = spacy.load("en_core_web_sm")
55.
56. # Example words for lemmatization

57. words = ["jumps", "jumping", "jumper", "flies", "flying"]
58.
59. # Perform lemmatization on each word

60. lemma_words = [nlp(word)[0].lemma_ for word in words]
61.
62. # Print the original and lemmatized words

63. for i in range(len(words)):
64. print(f"Original: {words[i]}\tLemmatized: {lemma_words[i]}")
65.
66.
67. #

==================================

==================================

==

68. # TextBlob

69. print("*" * 25)
70. print("Below example of Lemmatization using Textblob package")
71.
72. # Example words for lemmatization

73. words = ["jumps", "jumping", "jumper", "flies", "flying"]
74.
75. # Perform lemmatization on each word

76. lemma_words = [
77. Word(word).lemmatize("v") for word in words

78.] # Specify the part of speech (e.g., 'v' for verb)

79.
80. # Print the original and lemmatized words

81. for i in range(len(words)):
82. print(f"Original: {words[i]}\tLemmatized: {lemma_words[i]}")
83.
84.
85. #

==================================

==================================

==

86. # Pattern

87. # Not in use any more, since 2018 the package has not

been updated.

88. # print("*" * 25)

89. # print("Below example of Lemmatization using Pattern

package")

90.
91. # # Example words for lemmatization

92. # words = ["jumps", "jumping", "jumper", "flies",

"flying"]

93.
94. # # Perform lemmatization on each word

95. # lemma_words = [lemma(word) for word in words]

96.
97. # # Print the original and lemmatized words

98. # for i in range(len(words)):

99. # print(f"Original: {words[i]}\tLemmatized:

{lemma_words[i]}")

Lowercasing

Converting all text to lowercase to ensure case insensitivity.

Lowercasing is a crucial text preprocessing step in NLP. It

ensures case-insensitivity in search engines, simplifies text

classification, and aids NER tasks by recognizing named

entities regardless of case. Additionally, lowercasing is

integral to language models and word embeddings, text

normalization, tokenization, and text comparison.

It is a standard preprocessing step in machine learning,

promoting consistency and simplifying feature engineering.

Python packages:

Built-in string method .lower() can be used for lower
casing.
For example:

temp = "Building LLM applications with

Langchain and Hugging Face"

print(temp.lower())

Output

"building llm applications with langchain and

hugging face"

Part-of-speech tagging

Part of speech tagging basically means identifying and

labeling the different roles each word plays within a

sentence. Things like ʼnouns,ʼ which are names for people or

objects, ʼverbsʼ that describe an action, and ʼadjectivesʼ that

tell us more about those nouns – they all get sorted out!

This is very fundamental to Natural Language

Processing (NLP) because it helps machines understand

grammarʼs structure pretty well.

When we know what role every word plays in the sentence

structure, we can better understand its meaning. For

instance, when using Named Entity Recognition (NER),

Part of Speech (POS) tagging provides context making it

easier to figure out important pieces of information like who

or what is being talked about.

Moreover, POS tagging is a critical preprocessing step for

training language models, capturing linguistic structure.

Python packages:

NLTK
spaCy
TextBlob

Code:

Put the following code in the file called pos.py

[E:\Repository\Book\scripts\nlp_concepts\pos.py]:

1. # Import required packages

2. import nltk
3. import spacy
4. from textblob import TextBlob
5.
6.
7. #

==================================

==================================

==

8. # NLTK

9. print("*"*25)
10. print("Below example of POS using NLTK package")
11.
12. nltk.download('punkt') # Download necessary data (if not

already downloaded)

13.
14. text = "This is an example sentence for part-of-speech tagging."
15. words = nltk.word_tokenize(text)

16. tagged_words = nltk.pos_tag(words)
17.
18. print(tagged_words)
19.
20.
21. #

==================================

==================================

==

22. # Spacy

23. print("*"*25)
24. print("Below example of POS using Spacy package")
25.
26. nlp = spacy.load("en_core_web_sm")
27.
28. text = "This is an example sentence for part-of-speech tagging."
29. doc = nlp(text)
30.
31. for token in doc:
32. print(token.text, token.pos_)
33.
34.
35. #

==================================

==================================

==

36. # TextBlob

37. print("*"*25)
38. print("Below example of POS using TextBlob package")
39.
40. text = "This is an example sentence for part-of-speech tagging."
41. blob = TextBlob(text)
42.

43. for word, pos in blob.tags:
44. print(word, pos)

Named Entity Recognition

With Named Entity Recognition (NER) you can identify

named entities within a text. Words representing names

may be linked with peopleʼs personal labels or referential

markers for places, such as citiesʼ geographic identifiers,

even calendar dates. NER is a pivotal NLP task with versatile

applications. It extracts structured data from unstructured

text, categorizing entities like company names and financial

figures. It enhances document retrieval, enabling specific

entity-based searches.

In sentiment analysis, NER identifies targets of sentiment,

distinguishing whether it pertains to products or companies.

NER also aids in summarizing key entities and their

relationships, facilitating the creation of concise and

informative text summaries.

Python packages:

NLTK
spaCy
HuggingFace

Code:

Put the following code in the file called ner.py

[E:\Repository\Book\scripts\nlp_concepts\ner.py]:

1. import nltk
2. import spacy
3. import subprocess
4. from transformers import pipeline
5.
6. #

==================================

==================================

==

7. # NLTK

8. print("*" * 25)
9. print("Below example of NER is using NLTK package")

10.
11. # This is one time only. Not required to run every time.

12. # Once you have got the chunker you can comment the

code.

13. nltk.download("maxent_ne_chunker")
14. nltk.download("words")
15. nltk.download("averaged_perceptron_tagger")
16.
17. # Run below code from terminal after activating virtual

environment

18. """ python -m spacy download en_core_web_sm """
19.
20. text = "Apple Inc. is headquartered in Cupertino, California, and was

founded by Steve Jobs."
21.
22. words = nltk.word_tokenize(text)
23. tagged_words = nltk.pos_tag(words)
24. entities = nltk.chunk.ne_chunk(tagged_words)
25.
26. for entity in entities:
27. if isinstance(entity, nltk.Tree):
28. print([(word, entity.label()) for word, tag in entity])
29.
30.
31. #

==================================

==================================

==

32. # Spacy

33. print("*" * 25)
34. print("Below example of NER is using Spacy package")
35.
36. nlp = spacy.load("en_core_web_sm")
37.
38. text = "Apple Inc. is headquartered in Cupertino, California, and was

founded by Steve Jobs."
39.
40. doc = nlp(text)
41.
42. for entity in doc.ents:
43. print(entity.text, entity.label_)
44.
45.
46. #

==================================

==================================

==

47. # HuggingFace

48. print("*" * 25)
49. print("Below example of NER is using HuggingFace package")
50.
51. # Load the NER model

52. # It will download large model of size around 1.33 GB

53. """
54. If you are getting error as mentioned below uninstall keras and tensorflow

packages.
55. pip uninstall keras tensorflow
56.
57. 1. RuntimeError: Failed to import

transformers.models.bert.modeling_tf_bert because of the following error

(look up to see its traceback):
58. Your currently installed version of Keras is Keras 3, but this is not yet

supported in Transformers. Please install the backwards-compatible tf-
keras package with `pip install tf-keras`.

59.
60. 2. RuntimeError: Failed to import

transformers.models.bert.modeling_tf_bert because of the following error
(look up to see its traceback):

61. module 'tensorflow._api.v2.compat.v2.__internal__' has no attribute
'register_load_context_function'

62. """
63. nlp_ner = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-

conll03-english")
64.
65. text = "Apple Inc. is headquartered in Cupertino, California, and was

founded by Steve Jobs."
66.
67. # Perform NER

68. entities = nlp_ner(text)
69.
70. # Display the detected entities

71. for entity in entities:
72. print(f"Entity: {entity['word']}, Label: {entity['entity']}")

Bag of words

Now moving on to Bag of Words (BoW). Imagine if

sentences were bags full of random words, kind of like

naming each Lego piece in your bag and then counting how

many purple ones there are. That is essentially what BoW

does! It converts raw lines into numerical lists where a

unique word from the vocabulary is counted per document

according to their frequency of occurrence.

BoW also has many limitations. It fails to capture the

intricate nuances of word order and contextual relationships

within a document, a pivotal aspect in deciphering textual

meaning. In response to this constraint, more sophisticated

methodologies such as word embeddings and transformers

have been devised to yield more intricate and contextually

astute text data representations.

The BoW approach used in NLP involves counting the word

occurrence in the given text. Each word will be counted

separately, which will reflect the appearance of each word

in the given corpus or corpora.

BoW vectors are typically very sparse because most

documents contain only a small subset of the words in the

vocabulary. This sparsity is handled efficiently in modern

NLP libraries.

Python packages:

NLTK
Gensim
Scikit-Learn

Code:

Put the following code in the file called bag_of_words.py

[E:\Repository\Book\scripts\nlp_concepts\

bag_of_words.py]:

1. import nltk
2. from nltk.tokenize import word_tokenize
3. from nltk.probability import FreqDist
4. from gensim.corpora import Dictionary
5. from collections import defaultdict
6. from gensim.models import TfidfModel
7. from sklearn.feature_extraction.text import CountVectorizer,

TfidfVectorizer
8.

9. #

==================================

==================================

==

10. # Download required data

11. nltk.download("punkt")
12.
13.
14. #

==================================

==================================

==

15. # NLTK

16. print("*" * 25)
17. print("Below example of Bag Of Words is using NLTK package")
18. text = (
19. "This is a sample document. Another document with some words.

Repeating document with some words. A third "
20. "document for illustration. Repeating illustration."
21.)
22. words = word_tokenize(text)
23. fdist = FreqDist(words)
24.
25. fdist.pprint()
26.
27.
28. #

==================================

==================================

==

29. # Gensim

30. print("*" * 25)
31. print("Below example of Bag Of Words is using Gensim package")

32.
33. documents = [
34. "This is a sample document.",
35. "Another document with some words. Repeating document with some

words.",
36. "A third document for illustration. Repeating illustration.",
37.]
38.
39. tokenized_docs = [doc.split() for doc in documents]
40.
41. # Create a dictionary

42. dictionary = Dictionary(tokenized_docs)
43.
44. word_frequencies = dictionary.cfs
45.
46. # Display words and their frequencies

47. for word_id, frequency in word_frequencies.items():
48. word = dictionary[word_id] # Get the word corresponding

to the word ID

49. print(f"ID: {word_id}, Word: {word}, Frequency: {frequency}")
50.
51. # Create a BoW representation

52. corpus = [dictionary.doc2bow(doc) for doc in tokenized_docs]
53.
54. # Create a TF-IDF model based on the BoW

representation

55. tfidf = TfidfModel(corpus, dictionary=dictionary)
56.
57. # Calculate overall TF-IDF scores for words

58. overall_tfidf = defaultdict(float)
59. for doc in tfidf[corpus]:
60. for word_id, tfidf_score in doc:
61. overall_tfidf[word_id] += tfidf_score

62.
63. # Display words and their overall TF-IDF scores

64. for word_id, tfidf_score in overall_tfidf.items():
65. word = dictionary[word_id] # Get the word corresponding

to the word ID

66. print(f"Word: {word}, Overall TF-IDF Score: {tfidf_score:.4f}")
67.
68.
69. #

==================================

==================================

==

70. # Scikit Learn

71. print("*" * 25)
72. print("Below example of Bag Of Words is using Scikit-Learn package

Count Method")
73.
74. documents = [
75. "This is a sample document.",
76. "Another document with some words. Repeating document with some

words.",
77. "A third document for illustration. Repeating illustration.",
78.]
79.
80. # Join the list of documents into a single string

81. corpus = " ".join(documents)
82.
83. vectorizer = CountVectorizer()
84. X = vectorizer.fit_transform([corpus])
85.
86. # Get the feature names (words)

87. feature_names = vectorizer.get_feature_names_out()
88.

89. # Get the word frequencies from the CountVectorizer's

array

90. word_frequencies = X.toarray()[0]
91.
92. # Print words with their frequencies

93. for word, frequency in zip(feature_names, word_frequencies):
94. print(f"Word: {word}, Frequency: {frequency}")
95.
96.
97. #

==================================

==================================

==

98. # Scikit Learn with TFIDF

99. print("*" * 25)
100. print("Below example of Bag Of Words is using Scikit-Learn package

TFIDF Method")
101.
102. documents = [
103. "This is a sample document.",
104. "Another document with some words. Repeating document with some

words.",
105. "A third document for illustration. Repeating illustration.",
106.]
107.
108. # Join the list of documents into a single string

109. corpus = " ".join(documents)
110.
111. tfidf_vectorizer = TfidfVectorizer()
112. X = tfidf_vectorizer.fit_transform([corpus])
113.
114. # Get the feature names (words)

115. feature_names = tfidf_vectorizer.get_feature_names_out()

116.
117. # Get the TF-IDF values from the TF-IDF vector

118. tfidf_values = X.toarray()[0]
119.
120. # Print words with their TF-IDF values

121. for word, tfidf in zip(feature_names, tfidf_values):
122. print(f"Word: {word}, TF-IDF: {tfidf:.4f}")

Word embeddings

Word embeddings are simple ways to map text to

continuous vector space, ensuring that semantic

relationships are transformed and duly understandable by

computers in the form of mathematical representations.

Unlike traditional human language formats, which will be

complex in structure and formation, word embeddings made

it easy for computers for easier processing of ML-related

tasks. This method will provide a shorter distance between

words like King and Queen and a larger distance between

words like King and Apple; thus, it will help to understand

the relationship and similarities between words.

Large language models (LLMs) such as BERT, GPT-3, and

contextual understanding variants like Word2Vec, GloVe,

and FastText provide efficient methods for diverse training

approaches, which require varying degrees of complexity

depending on the userʼs prioritized features.

Word embeddings can also understand the context behind

meanings. For example, the word “bank” could refer to a

place where you keep money or beside a river! It all

depends on how it is used in a sentence. These similarities

are essential for things like machine translations or even

search engine recommendations!

Is this not incredible? By utilizing effective NLP tasks and

tools, we can uncover a deeper understanding of human

conversation patterns across extensive linguistic

functionalities. These methods can be implemented

efficiently and easily. These methods differ in their training

approaches and capabilities.

Python packages:

There are many python packages used for the aforesaid

purpose.

Here, we can use available pre-trained models to get word

embeddings and create our own word embeddings.

The most widely used ones with pre-trained models as well

as to create own word embeddings:

Gensim
spaCy
TensorFlow
Keras
HuggingFace
LangChain

LangChain provides a simple unified API to
generate word embeddings from different providers
that can be used in downstream NLP tasks.

Code:

Put the following code in the file called

word_embeddings.py

[E:\Repository\Book\scripts\nlp_concepts\word_embed

dings.py]

Note: Here in the code, we have used pre-trained

models to create word embeddings.

1. from gensim.models import Word2Vec
2. import spacy
3. from transformers import DistilBertTokenizer, DistilBertModel

4.
5.
6. #

==================================

==================================

==

7. # Gensim

8. print("*"*25)
9. print("Below example of Word Embeddings using Gensim package")

10.
11. # Example sentences for training the model

12. sentences = [
13. "This is an example sentence for word embeddings.",
14. "Word embeddings capture semantic relationships.",
15. "Gensim is a popular library for word embeddings.",
16.]
17.
18. # Tokenize the sentences

19. tokenized_sentences = [sentence.split() for sentence in sentences]
20.
21. # Train a Word2Vec model

22. model = Word2Vec(tokenized_sentences, vector_size=100, window=5,
min_count=1, sg=0)

23.
24. # Access word vectors

25. word_vector = model.wv['word']
26. print(word_vector)
27.
28.
29. #

==================================

==================================

==

30. # Spacy

31. print("*"*25)
32. print("Below example of Word Embeddings using Spacy package")
33.
34. # Load the pre-trained English model

35. nlp = spacy.load("en_core_web_sm")
36.
37. # Process a text to get word embeddings

38. doc = nlp("This is an example sentence for word embeddings. Word
embeddings capture semantic relationships. Gensim is a popular library
for word embeddings.")

39. word_vector = doc[0].vector # Access the word vector

40. print(word_vector)
41.
42.
43. #

==================================

==================================

==

44. # Huggingface

45. print("*"*25)
46. print("Below example of Word Embeddings using Huggingface package")
47.
48. # Load the pre-trained DistilBERT tokenizer

49. tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-
uncased")

50.
51. # Tokenize a sentence

52. text = "Hugging Face's Transformers library is fantastic!"
53. tokens = tokenizer(text, padding=True, truncation=True,

return_tensors="pt")
54.
55. # Load the pre-trained DistilBERT model

56. model = DistilBertModel.from_pretrained("distilbert-base-uncased")
57.
58. # Get word embeddings for the tokens

59. output = model(**tokens)
60.
61. # Access word embeddings for the [CLS] token (you

can access other tokens as well)

62. word_embeddings = output.last_hidden_state[0] # [CLS] token's

embeddings

63.
64. # Convert the tensor to a numpy array

65. word_embeddings = word_embeddings.detach().numpy()
66.
67. # Print the word embeddings

68. print(word_embeddings)

Topic modeling

As the name implies, this technique aims to automatically

identify topics or core themes from the corpus. It is

especially helpful when we want to summarize corpus or

corpora, or we want to categorize them into specific groups.

The most common technique used for this process is latent

dirichlet allocation (LDA).

Python packages:

Gensim
Code:

Put the following code in the file called topic_modelling.py

[E:\Repository\Book\scripts\nlp_concepts\topic_modell

ing.py]:

1. import gensim
2. from gensim import corpora

3. from gensim.models import LdaModel
4. from gensim.parsing.preprocessing import remove_stopwords
5.
6. # Sample documents

7. documents = [
8. "Natural language processing is a fascinating field in AI.",
9. "Topic modeling helps uncover hidden themes in text data.",

10. "Latent Dirichlet Allocation (LDA) is a popular topic modeling
technique.",

11. "LDA assumes that documents are mixtures of topics.",
12. "Text mining and NLP are essential for extracting insights from text.",
13. "Machine learning plays a significant role in NLP tasks.",
14.]
15.
16. # Preprocess the documents (tokenization and

lowercasing)

17. documents = [remove_stopwords(k) for k in documents]
18. documents = [doc.lower().split() for doc in documents]
19.
20. # Create a dictionary and a document-term matrix

(DTM)

21. dictionary = corpora.Dictionary(documents)
22. corpus = [dictionary.doc2bow(doc) for doc in documents]
23.
24. # Build the LDA model

25. lda_model = LdaModel(corpus, num_topics=2, id2word=dictionary,
passes=15)

26.
27. # Print the topics

28. for topic in lda_model.print_topics():
29. print(topic)
30.
31. # To summarize the input

32. """
33. (0, '0.062*"nlp" + 0.062*"text" + 0.037*"insights" + 0.037*"mining" +

0.037*"extracting" + 0.037*"essential" + 0.037*"text." + 0.037*"helps" +
0.037*"data." + 0.037*"themes"')

34. (1, '0.040*"modeling" + 0.040*"topic" + 0.040*"popular" +
0.040*"technique." + 0.040*"(lda)" + 0.040*"allocation" +
0.040*"dirichlet" + 0.040*"latent" + 0.040*"field" + 0.040*"natural"')

35.
36. Here we have got 2 topics. 0 and 1. Both contains the words which are

associated with the theme of the doc.
37. The words are arranged in their order. From left being most associated to

right being least associated.
38. Based on the words we can say that Topic 0 is about natural language

processing.
39. Topic 1 is about LDA method.
40. """

Sentiment analysis

Sentiment analysis finds the emotion in a piece of text,

labeling it as positive, negative, or neutral. It is primarily

used to gauge the sentiments of customers. For example,

Twitter tweets on specific subjects from different users can

be used to measure the sentiments of users related to the

specific subject.

Python packages:

TextBlob
HuggingFace
NLTK

Code:

Put the following code in the file called

sentiment_analysis.py

[E:\Repository\Book\scripts\nlp_concepts\sentiment_a

nalysis.py]:

1. from textblob import TextBlob
2. from transformers import pipeline
3. import nltk
4. from nltk.sentiment.vader import SentimentIntensityAnalyzer
5.
6.
7. #

==================================

==================================

==

8. # TextBlob

9. print("*" * 25)
10. print("Below example of Sentiment using TextBlob package")
11.
12. # Sample text for sentiment analysis

13. text = "I love this product! It's amazing."
14.
15. # Create a TextBlob object

16. blob = TextBlob(text)
17.
18. # Perform sentiment analysis

19. sentiment = blob.sentiment
20.
21. # Print sentiment polarity and subjectivity

22. polarity = sentiment.polarity # Range from -1 (negative) to 1

(positive)

23. subjectivity = sentiment.subjectivity # Range from 0 (objective)

to 1 (subjective)

24.
25. # Interpret sentiment

26. if polarity > 0:

27. sentiment_label = "positive"
28. elif polarity < 0:
29. sentiment_label = "negative"
30. else:
31. sentiment_label = "neutral"
32.
33. # Output results

34. print("Text:", text)
35. print("Sentiment Polarity:", polarity)
36. print("Sentiment Subjectivity:", subjectivity)
37. print("Sentiment Label:", sentiment_label)
38.
39.
40. #

==================================

==================================

==

41. # HuggingFace

42. print("*" * 25)
43. print("Below example of Sentiment using HuggingFace package")
44.
45. # Load a pre-trained sentiment analysis model

46. nlp = pipeline("sentiment-analysis")
47.
48. # Sample text for sentiment analysis

49. text = "I love this product! It's amazing."
50.
51. # Perform sentiment analysis

52. results = nlp(text)
53.
54. # Output results

55. for result in results:
56. label = result["label"]

57. score = result["score"]
58. print(f"Sentiment Label: {label}, Score: {score:.4f}")
59.
60.
61. #

==================================

==================================

==

62. # NLTK

63. print("*" * 25)
64. print("Below example of Sentiment using NLTK package")
65.
66. # Download the VADER lexicon (if not already

downloaded)

67. nltk.download("vader_lexicon")
68.
69. # Initialize the VADER sentiment analyzer

70. analyzer = SentimentIntensityAnalyzer()
71.
72. # Sample text for sentiment analysis

73. text = "I love this product! It's amazing."
74.
75. # Perform sentiment analysis

76. sentiment = analyzer.polarity_scores(text)
77.
78. # Interpret sentiment

79. compound_score = sentiment["compound"]
80. if compound_score >= 0.05:
81. sentiment_label = "positive"
82. elif compound_score <= -0.05:
83. sentiment_label = "negative"
84. else:
85. sentiment_label = "neutral"

86.
87. # Output results

88. print("Text:", text)
89. print("Sentiment Score:", sentiment)
90. print("Sentiment Label:", sentiment_label)

Large language models

Large language models are pre-trained models that can

understand and generate human-like text. We can refer to

these language models as LLM as well. As these models are

built on vast amounts of data with a greater number of

parameters, we call them LLMs.

Use cases include human-like text generation, translation,

text summarization, a questions-answering system, and

more.

Some of such models are GPT-3, GPT-4, Gemini, LLaMA, T5

etc.

Python packages:

LangChain
Llama Index
Transformers (Hugging Face)
spaCy

Code: We are going to cover the code for this section in

coming chapters.

Transfer learning

It is a technique where a model will be trained on one task

and later on can be adapted or fine-tuned for different but

related tasks. Instead of training the models from scratch,

we will use any existing pre-built models based on our

requirements. Again, while using the pre-built models based

on the requirement, we might use the model as is or can

fine tune it with our specific data.

Here, a pre-trained model stands for a model that has

already been trained on a large amount of data.

Fine tuning refers to the modification of a pre-trained model

for specific use cases.

By using transfer learning, we are using knowledge gained

by the model for specific use cases.

Some of the famous models are BERT, GPT, RoBERTa are

pre-trained on large corpora and can be fine-tuned for

various NLP tasks.

For example, the GPT model can be used on our data set to

generate responses. Here, instead of creating the entire

model from scratch, we will take the help of transfer

learning.

We can fine tune the GPT model on our own data set. As

GPT has been trained on humongous data, it can generate

answers to any question. For the time being, consider that

GPT has not been trained on movies corpus, so in this case,

we will fine-tune the GPT model with movie data so that

whenever asked about any movie, it can answer

accordingly.

Text classification

In text classification, we classify the text into required

categories. We can call it text categorization or document

classification as well. For document classification, we have

seen one of the examples called “Topic Modelling” above.

The text classification can be sentiments like positive or

negative. It can be spam or not spam, it can be like the

language of the text, and many more.

General text classification involves the following pipeline:

Data gathering with labels
Here, labels are the categories in which text will be
classified

Text preprocessing:
Lowercasing
Tokenization
Stop word removal
Stemming or lemmatization
Removing hashtags, URL links

Bag of words or word embeddings creation that is,
converting data to numerical features
Model selection
Train-test-validation split of the data
Evaluation of the model and, if required doing hyper
parameter tuning and re-training of the model to get
improvised accuracy
Finalizing the model for future text classification of
prediction

Python packages:

Scikit-Learn
NLTK

Code:

Put the following code in the file called

text_classification.py

[E:\Repository\Book\scripts\nlp_concepts\text_classific

ation.py]

Note: The text pre-processing steps are used to

improve model performance though they are not

mandatory. Here in the Hugging Face package, we

are using pre built model for text classification. We

can call it transfer learning as well. The code

provided here is the very basic one, and based on the

requirement, it can vary. Based on the requirement

we might need to add or remove steps in the text

classification.

1. from sklearn.feature_extraction.text import TfidfVectorizer
2. from sklearn.model_selection import train_test_split
3. from sklearn.naive_bayes import MultinomialNB
4. from sklearn.metrics import accuracy_score, classification_report
5.
6. import nltk
7. from nltk.corpus import movie_reviews
8. from nltk.classify import SklearnClassifier
9. import random # Import the random module

10.
11. from transformers import DistilBertTokenizer,

DistilBertForSequenceClassification
12. import torch
13.
14. #

==================================

==================================

==

15. # Scikit-Learn

16. print("*"*25)
17. print("Below example of Text Analysis using Sklearn package")
18. # Sample text data and labels

19. texts = ["This is a positive sentence.", "This is a negative sentence.", "A
neutral statement here."]

20. labels = ["positive", "negative", "neutral"]

21.
22. # Text preprocessing and feature extraction

23. vectorizer = TfidfVectorizer()
24. X = vectorizer.fit_transform(texts)
25.
26. # Split data into training and testing sets

27. X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2,
random_state=42)

28.
29. # Train a classifier (e.g., Naive Bayes)

30. classifier = MultinomialNB()
31. classifier.fit(X_train, y_train)
32.
33. # Make predictions on the test data

34. y_pred = classifier.predict(X_test)
35.
36. # Evaluate the classifier

37. accuracy = accuracy_score(y_test, y_pred)
38. report = classification_report(y_test, y_pred)
39.
40. print(f"Accuracy: {accuracy:.2f}")
41. print(report)
42.
43.
44. #

==================================

==================================

==

45. # NLTK

46. print("*"*25)
47. print("Below example of Text Analysis using NLTK package")
48.
49. # Load the movie reviews dataset

50. # nltk.download('movie_reviews')

51. documents = [(list(movie_reviews.words(fileid)), category) for category in
movie_reviews.categories() for fileid in movie_reviews.fileids(category)]

52.
53. # Shuffle the documents

54. random.shuffle(documents)
55.
56. # Text preprocessing and feature extraction

57. all_words = [w.lower() for w in movie_reviews.words()]
58. all_words = nltk.FreqDist(all_words)
59. word_features = list(all_words.keys())[:3000]
60.
61. def find_features(document):
62. words = set(document)
63. features = {}
64. for w in word_features:
65. features[w] = (w in words)
66. return features
67.
68. feature_sets = [(find_features(rev), category) for (rev, category) in

documents]
69.
70. # Split data into training and testing sets

71. training_set = feature_sets[:1900]
72. testing_set = feature_sets[1900:]
73.
74. # Train a classifier (e.g., Naive Bayes)

75. classifier = SklearnClassifier(MultinomialNB())
76. classifier.train(training_set)
77.
78. # Evaluate the classifier

79. accuracy = nltk.classify.accuracy(classifier, testing_set)
80. print(f"Accuracy: {accuracy:.2f}")

81.
82.
83. #

==================================

==================================

==

84. # Hugging Face

85. print("*"*25)
86. print("Below example of Text Analysis using Hugging Face package")
87.
88. # Sample text data

89. texts = ["This is a positive sentence.", "This is a negative sentence.", "A
neutral statement here."]

90.
91. # Preprocess text and load pre-trained model

92. tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
93. model = DistilBertForSequenceClassification.from_pretrained('distilbert-

base-uncased')
94.
95. # Tokenize and encode the text

96. inputs = tokenizer(texts, padding=True, truncation=True,
return_tensors="pt")

97.
98. # Perform text classification

99. outputs = model(**inputs)
100.
101. # Get predicted labels and probabilities

102. logits = outputs.logits
103. predicted_labels = torch.argmax(logits, dim=1)
104.
105. # Map predicted labels to human-readable class names

106. class_names = ['positive', 'negative', 'neutral']
107.

108. for i, text in enumerate(texts):
109. print(f"Text: {text}")
110. print(f"Predicted Label: {class_names[predicted_labels[i]]}")
111. print("")
112.
113. # You can also extract the probability scores for each

class if needed

114. class_probabilities = torch.softmax(logits, dim=1)
115.

Prompt engineering

Prompt engineering is about providing prompts or

instructions to the LLMs to get the required answer in the

required form. It is widely used with LLM models like GPT,

BERT, PaLM, LLaMA etc. Prompts can be “Tell me about

animals”, or more detailed prompts or instruction can be:

“Tell me about animals containing details on their

body structure and food”.

Hallucination

Hallucination refers to a phenomenon where the model

generates text that includes information or details that are

not accurate or factual. It occurs when the model produces

content that is imaginative or incorrect, often in a way that

is convincing or coherent but detached from reality.

Syntactic relationship

It describes the grammatical connections between words in

a sentence or text. As for grammatical connections, it will be

mostly used in POS.

Semantic relationship

It refers to meaning based associations between words or

phrases. For example: I am at the bank to draw money. Here

the word bank will be referred to as a financial institution.

Note: Here, you will see that LangChain mostly uses

third-party providers to provide certain facilities. By

integrating LangChain it will help us to make certain

task with minimal code and easy implementation.

Hugging Face also uses transfer learning for certain

facilities. It also provides the facility to create models

on our own as well.

Conclusion

In concluding this NLP chapter, we have covered a

comprehensive overview of Natural Language Processing,

delving into essential concepts and practical methodologies.

We explored the intricacies of text preprocessing, a crucial

step in preparing textual data for analysis. The general NLP

pipeline provided a structured approach to building

prediction models, demonstrating the sequential application

of techniques like tokenization, stemming, and part-of-

speech tagging.

As we move forward, the next chapters will delve into

advanced NLP techniques, especially LLMs, bridging

theoretical knowledge with hands-on applications. In that

chapter, we will talk more in detail about LLM and Neural

Network concepts and terminologies and get hands-on

experience with them.

Join our book’s Discord space

Join the bookʼs Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New Release and

Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 5

Introduction to Large

Language Models

Introduction

Large Language Models (LLMs) are considered to be a

core component of Natural Language Processing (NLP)

and Natural Language Generation (NLG). In the earlier

chapter, we have got an overview of LLM. In this chapter, we

will dig down more and get ourselves acknowledged for the

different LLM concepts and LLM models that are in use.

Overall, in this chapter we will move one step ahead in the

journey that we have started with this book.

Structure

We will cover the following sections in this chapter:

History
LLM use cases
LLM terminologies
Neural networks
Transformers

Pre-built transformers

Objectives

By the end of this chapter, you will acquire a robust

understanding of language modeling and its various

concepts. Furthermore, you will gain comprehensive insights

into transformers, a widely utilized framework for defining

LLMs. This chapter aims to provide clarity on the

terminology, concepts, and architecture associated with

transformers, acknowledging their prevalent use in

contemporary natural language processing applications.

History

The evolution of large language models has transpired

through a progressive continuum, witnessing pivotal strides

in recent times. Refer to Figure 5.1. Following is a brief

history of the evolution of LLMs:

Early NLP Systems (1950s-2000s): The field of NLP
started from 1950s with the development of rule-based
systems. These systems relied on handcrafted linguistic
rules to process and understand language. However,
they were limited in handling the complexity and
variability of natural language. In 1952, the Hodgkin-
Huxley model showed how the brain uses neurons to
form an electrical network. These events helped inspire
the idea of Artificial Intelligence (AI), NLP, and the
evolution of computers.
Statistical NLP (1990s-2010s): As computational
power increased, statistical approaches gained
prominence. Researchers started using probabilistic
models and machine learning algorithms to analyze
large datasets of text. Hidden Markov Models

(HMMs) and probabilistic context-free grammar were
among the early techniques.
Machine Learning and Neural Networks (2010s):

Neural Networks, which are the core element of deep
learning, have performed a critical role in the
enhancement of NLP skills. Recurrent Neural

Networks (RNNs) and Long Short-Term Memory

Networks (LSTMs) are the most broadly used neural
networks within the field. Apart from these, word
embeddings such as Wօrd2Vec and Glove have become
popular during this time.

Figure 5.1: Pre-Transformer era language models

Introduction of transformers (2017): In 2017, the
world saw a new trend in natural language processing
all thanks to transformers. Introduced by Vaswani and
his team in their paper named Attention is All You

Need, this fresh approach allowed machines to
understand entire chunks of sentences rather than just
processing bits and pieces. This breakthrough formed
the basis for constructing large language models that
we see today!
BERT and pre-trained language models (2018-

2019): In 2018, Google's revolutionary

Bidirectional Encoder Representations from

Transformers (BERT) model emerged onto the scene.

BERT showcased impressive results by capitalizing on
pre-training massive language models with vast
datasets that were then fine-tuned specifically for given
tasks—a technique that proved immensely effective
across numerous benchmarks within NLP domains.
Consequently, BERT ignited a paradigm shift towards
leveraging pre-trained language models effectively
GPT-3 (2020): OpenAI further pushed boundaries by
unveiling GPT-3—Generative pre-trained

transformer 3—in 2020—the crown jewel among
immense linguistic constructs with its staggering count
of an astonishing 175 billion parameters—an
unprecedented feat at that time! Not only did GPT-3
wield tremendous prowess when it came to
understanding human-like text, but it also excelled at
generating such content across diverse tasks—a true
testament to its remarkable capabilities as a highly
advanced system driven by scaled-up representations
provided through innovative modeling techniques.
Ongoing developments (2021-2024): Following
GPT-3, researchers continued to explore even larger
models, as well as techniques for more efficient
training and deployment. Various organizations and
researchers are working on advancing the capabilities
of language models while addressing ethical concerns
and biases associated with their use. Alongside the
development of larger and more capable language
models, significant advancements were made in the
frameworks and tools that facilitate the integration and
deployment of these models in real-world applications.
We have recently seen some new LLM models like GPT-
4o and Gemini Ultra, which are multi-modal in nature
and can be game changers in the future. One notable
development in this context is the emergence of
LangChain.

The history of large language models reflects the ongoing

evolution of NLP, with each breakthrough contributing to

better language understanding and generation capabilities.

The following figure depicts the evolution tress of modern

LLMs:

Figure 5.2:
1

 Evolution Tree of Modern LLMs

The relationship between models within the same branch

becomes significantly closer, as depicted in the visual

representation. Transformer-based models are distinctly

highlighted using non-grey colors—decoder-only models

appearing in the blue branch, encoder-only architectures

displayed in the pink branch, and encoder-decoder

constructs showcased through their location on a green-

tinged axis. On this timeline depiction, each modelʼs vertical

position denotes its respective release date.

LLM use cases

Below we have described some of the use cases where LLMs

can be useful. These use cases span a wide range of

domains, including natural language understanding, text

generation, sentiment analysis, language translation,

content summarization, question answering, and more.

Text generation:

Description: LLMs excel at generating coherent
and contextually relevant text. They can be used for
creative writing, content creation, and generating
human-like responses in conversational agents.
Applications: Content creation, creative writing,
chatbots, virtual assistants.

Translation:

Description: LLMs can be used for machine
translation, converting text from one language to
another. They capture language nuances and
context, improving translation quality.
Applications: Language translation services, cross-
language communication.

Text summarization:

Description: These models can read articles, news
stories, and even research papers and summarize
them quickly.
Applications: Automatic summarization of articles,
news, research papers.

Question answering:

Description: Like having your personal assistant!
These bots can answer questions by looking at
context or pulling important information from their
training.
Applications: Some examples where we use them
today would be virtual helpers like Siri or Alexa,
those chatbots you talk with for customer support
online.

Sentiment analysis:

Description: They can read a text and tell if its text
felt positive, negative, or neutral while writing it.
Applications: Social media monitoring, customer
feedback analysis, brand reputation management.

Named Entity Recognition (NER):

Description: LLMs can identify and classify entities
(such as names, locations, and organizations) in text.
Applications: Information extraction, document
categorization.

Code generation:

Description: LLMs can generate code snippets
based on natural language descriptions, facilitating
code completion and aiding developers in writing
software.
Applications: Code generation tools, automated
programming assistance.

Conversational agents:

Description: Conversational agents can be made
more advanced due to LLMs! Understanding what
people are asking for better-suited responses gets

easier and, indeed, more valuable, particularly
relating to industry-specific applications.
Applications: Virtual assistants, chatbots, customer
service agents.

Content moderation:

Description: LLMs can help us in content
moderation by identifying and filtering out
inappropriate or harmful content in text.
Applications: Social media moderation,
Advertisement moderation, online platform content
filtering.

Medical text analysis:

Description: LLMs can process and analyze medical
literature, assisting healthcare professionals in
extracting relevant information.
Applications: Literature review, information
extraction from medical documents.

Language understanding tasks:

Description: LLMs can be fine-tuned for specific
language understanding tasks, such as intent
recognition, language translation, named entity
recognition, or dialogue state tracking.
Applications: Natural Language Understanding

(NLU) systems for specific industries or domains.
Educational applications:

Description: LLMs can support educational
initiatives by generating educational content,
answering student queries, and providing
explanations.

Applications: Educational chatbots, content
creation for online courses.

These use cases demonstrate the versatility of LLMs in

understanding, generating, and manipulating natural

language text across diverse domains. Their ability to

leverage pre-training on vast amounts of data makes them

powerful tools for a wide range of applications.

LLM terminologies

Understanding LLMs involves familiarizing oneself with

various terminologies associated with these sophisticated

models. Here are the key terminologies related to LLMs:

Pre-training:

Definition: The initial phase where the model is
trained on a huge amount of corpus using
unsupervised learning.
Example: During pre-training, a language model
learns to predict the next word in a sentence or fill in
masked words.

P tuning (Prompt tuning):

Definition: Prompt-tuning is an efficient, low-cost
way of adapting an AI foundation model to new
downstream tasks without retraining the model and
updating its weights.
Example: P-tuning can be used to improve pre-
trained language models for various tasks, including
sentence classification and predicting a countryʼs
capital.

Fine-tuning:

Definition: The subsequent phase where the pre-
trained model is further trained on specific

downstream tasks with smaller/ medium sized
datasets.
Example: A pre-trained language model, initially
trained on general language understanding, can be
fine-tuned for different purposes like predicting
sentiment, topic modelling, etc. Consider that you
will use the OpenAI model on your own custom data
that OpenAI has never seen to provide answers to
questions. This is a kind of fine tuning.

Transformer architecture:

Definition: A neural network architecture
introduced by Vaswani et al., known for its self-
attention mechanisms.
Example: BERT and GPT are both based on the
transformer architecture.

Attention mechanism:

Definition: A mechanism allowing the model to
focus on different parts of the input sentence
sequence while making predictions.
Example: Imagine if you are trying to translate a
sentence. The attention mechanism will help your
computer focus on the most relevant words in one
language while it tries to come up with words in
another language.

Self-attention:

Definition: Self-attention is also an attention
mechanism, but here, every word checks out all
other words in its own sentence before deciding how
important they are.
Example: Imagine a model creating a sentence, and
it has already written: “The cat is.” The model then

thinks about what word should come next, using
what it learned from lots of examples. It might
choose “on,” making the sentence “The cat is on.”
The model keeps adding words one by one until it
thinks it is time to stop, usually with a period. So, a
sentence like “The cat is on the mat.” is built word
by word. The model makes guesses at each step
based on what it has written so far.

Masked language modeling (MLM):

Definition: MLM is kind of fun game that language
models play to learn about words. In this task, a
word in a sentence is hidden, like this: “The cat is on
the [MASK].” The model then tries to guess the
hidden word using the other words in the sentence
as clues.
Example: For example, a good guess for the hidden
word might be “mat". Many LLMs, like BERT, do this
to learn about the special ways humans use
language.

Prompt engineering:

Definition: The practice of designing effective
queries or prompts to interact with language models,
especially during instruction tuning for specific
tasks.
Example: Designing a specific prompt for a
language model to generate creative responses or
answers to user queries.

Zero-shot learning:

Definition: The ability of a large language model to
predict a task for which it was not explicitly trained.
It is the scenario where a model makes predictions
on classes it has never seen during training.

Example: If a model has learned about lots of
different topics, it might be able to answer questions
about a new topic, even if it has not been specifically
taught about it. This is like learning about cats and
dogs and then being able to guess what a fox is, even
if you have never seen one before.

Prompting bias:

Definition: The event where the output of a
language model is influenced by the wording or
phrasing of the input prompt by the user.
Example: The choice of words in a prompt might
lead the model to generate biased or skewed
responses. Nowadays, we see a good number of
researchers trying to jailbreak ChatGPT, Gemini, and
other LLM tools by smartly crafting prompts.

Transfer learning:

Definition: A machine learning technique where
knowledge gained from one task (pre-training) is
applied to improve performance on a different but
related task (fine-tuning).
Example: Pre-training a language model on general
language tasks and then fine-tuning it for a specific
task, like figuring out the sentiment in a text.

Parameter size and scaling:

Definition: Refers to the number of parameters in
the model. Larger models with more parameters
tend to perform better.

Parameters are the internal variables the model
adjusts during training to learn patterns and
information from the input data. It includes
weights and biases of Neural Networkʼs
connections.

Example: OpenAI GPT-3.5, with 175 billion
parameters, outperforms smaller language models in
various natural language processing tasks.

Generative Pre-trained Transformer (GPT):

Definition: GPT is a type of LLM that is pre-trained
on a huge dataset of text and code. GPT models are
able to generate human-like quality text, translate
languages, write creative content on various topics,
and answer your questions in an informative, human
way.
Example: GPT-3.5 is known for its remarkable
language generation capabilities, surpassing
previous versions in terms of size and performance.

Evaluation metrics:

Definition: Metrics used to assess the performance
of LLMs on specific tasks.

For tasks like classification, NER, and sentiment
analysis:

Accuracy
Precision
Recall
F1 score

For tasks like text generation, machine
translation:

Recall-Oriented Understudy for Gisting

Evaluation (ROUGE): Measures overlap
between generated and reference summaries.
Bilingual Evaluation Understudy (BLEU):

It measures the similarity between the
machine generated text and human written

reference text.
Metric for Evaluation of Translation with

Explicit Ordering (METEOR): It looks at
word-by-word precision and recall,
considering things like closely related words,
root words together
Consensus-based Image Description

Evaluation (CIDEr): Initially made for image
captioning, CIDEr is now also used for
machine translation. It looks at multiple
correct translations and tries to capture the
variety of possible translations.
Translation Edit Rate (TER): TER measures
the number of edits required to change the
generated translation into one of the
reference text translations. It provides a more
fine-grained view of the differences between
the generated and reference texts.
Word Error Rate (WER): WER measures the
percentage of words that are different
between the generated translation and the
reference translation. It is often used in
automatic speech recognition but can also be
used for text translation.
Embedding-based metrics compare the
semantic similarity between the machine-
generated text and reference text using pre-
trained LLMs.

Language model generalisation:

Perplexity: Measures how well the model
predicts a sample or sequence of tokens.
Lower perplexity indicates better

generalization.
Inference:

Definition: The process of using a trained large
language model to make predictions or text
generation for new input data.
Example: After training the machine can infer or
guess coherent responses that make sense with the
userʼs questions. To test how the model is working
on the test set etc.

Embedding:

Definition: Embedding means turning words or
tokens into dense vectors, trying to represent them
as points within continuous vector space similar to
grouping similar things together.
Example: Word embeddings capture semantic
similarity or relationships, such as “king” being
closer to “queen” than “dog".

Vocabulary size:

Definition: Vocabulary size is defined as the total
number of unique words or tokens in the modelʼs
vocabulary.
Example: A model with a vocabulary of 50,000
tokens can accurately understand and create diverse
text, including rare and specialized words, compared
to a model with only 10,000 tokens.

Tokenization:

Definition: The process of breaking text into smaller
chunks, usually words or sub words.
Example: Tokenization of the sentence “I love Data
science” results in ["I", “love", “Data",”science”].

Subword tokenization:

Definition: Tokenization at the subword level,
allowing the model to handle rare or out-of-
vocabulary words.
Example: “Unsupervised” may be tokenized into
["Un", “super", “vised"].

Inference time:

Definition: The time it takes for the model to make
predictions on new input data.
Example: Faster inference times enable quicker
response in real-time applications.

Attention head:

Definition: In multi-head attention mechanisms,
each head independently focuses on different parts
of the input sequence.
Example: Different attention heads might
emphasize different words in a sentence.

Transformer block:

Definition: A single layer of the transformer
architecture with self-attention, feed-forward
networks, and layer normalization.
Example: A transformer block processes input
tokens through attention mechanisms.

Warm-up steps:

Definition: A period in training where the learning
rate gradually increases to stabilize the model.
Example: Gradual learning rate warm-up helps
prevent abrupt changes during early training steps.

Gated Recurrent Unit (GRU):

Definition: A simpler variant of LSTM, also
designed for capturing long-range dependencies.
Example: GRUs are computationally efficient and
widely used in NLP tasks.

Dropout:

Definition: A regularization technique where
random neurons are omitted during training.
Example: Dropout prevents overfitting by randomly
excluding neurons in each training iteration.

Epoch:

Definition: One complete pass through the entire
training dataset during model training.
Example: Training a model for five epochs means
going through the entire dataset five times.

Beam search:

Definition: A search algorithm used during
sequence generation to explore multiple possible
output sequences.
Example: Beam search helps generate diverse and
contextually relevant text.

Parameter fine-tuning:

Definition: Adjusting hyperparameters or model
parameters after initial training for better task-
specific performance.
Example: Fine-tuning learning rates improves model
convergence on specific tasks.

Adversarial training:

Definition: Training the model on adversarial
examples to improve robustness.

Example: Adversarial training involves exposing the
model to deliberately challenging inputs for better
generalization.

Mini-batch:

Definition: A small subset of the training data used
for each iteration during training.
Example: Instead of updating the model after every
example, training is often done in mini-batches for
efficiency.

Gradient descent:

Definition: An optimization method that changes
model parameters by moving in the direction that
reduces the loss function the most quickly.
Example: Gradient descent is used to find the
minimum of the loss function during training and
saves a good amount of training time while
hyperparameters are getting tuned.

Backpropagation:

Definition: A technique to compute gradients and
update model parameters by sending errors
backward through the network.
Example: Backpropagation is crucial for efficiently
training neural networks.

Overfitting:

Definition: When a model does well on training data
but cannot perform well on new, unseen data.
Example: A model memorizing specific examples
rather than learning general patterns may exhibit
overfitting.

Underfitting:

Definition: When a model is too simple to capture
the underlying patterns in the data.
Example: A linear model may underfit a complex,
nonlinear dataset.

Regularization:

Definition: Techniques to prevent overfitting by
adding constraints to the model during training.
Example: L2 regularization penalizes large weights
in the model.

Early stopping:

Definition: Stopping the training process once a
certain criterion (e.g., validation loss) stops
improving.
Example: Training stops if the validation loss has
not improved for several consecutive epochs.

Beam width:

Definition: The number of alternative sequences
considered during decoding in sequence generation
tasks.
Example: A beam width of 5 means the model
explores the top 5 likely sequences.

Hyperparameter:

Definition: Configurable settings external to the
model that influence its training and performance.
Example: Learning rate, batch size, and the number
of layers are a few hyperparameters.

Activation function:

Definition: A mathematical operation applied to the
output of a neuron to introduce nonlinearity.

Example: Rectified Linear Unit (ReLU) is a
popular activation function in neural networks.

Cross-entropy loss:

Definition: A loss function commonly used in
classification tasks that measure the difference
between predicted and actual probability
distributions.
Example: Cross-entropy loss is suitable for tasks
like sentiment analysis.

Adversarial examples:

Definition: Inputs specifically crafted to mislead the
model during training or inference.
Example: Modifying an image slightly to cause a
misclassification by the model.

Self-supervised learning:

Definition: A learning paradigm where the model
generates labels from the input data itself.
Example: Training a language model to predict
missing words in a sentence.

Multimodal model:

Definition: A model that processes and generates
information from multiple modalities, such as text
and images. LLM models like GPT 4o or Gemini are
examples of it.
Example: A model generating captions for images
and videos.

Neural networks

Without Neural Networks (NN), there would be no deep

learning. They are the core component that makes this

possible. We have different types of neural networks, such as

RNN, CNN, and LSTM, which all serve different purposes.

Imagine a neural network like a super smart brain made by

computers. It does things like spotting patterns, grouping

things into categories, and other tasks in machine learning.

Here are some parts of it that you will often hear about:

Neurons (Nodes): The basic units of a neural
network, such as brain cells or nodes, are formed in
layers. These units or neurons will be interconnected
with each other in the different layers. These neurons
will understand and process the data, and finally, they
will provide the output.
Layers:

Input layer: The input layer receives data, which
will be processed and transferred to the further
layers.
Hidden layers: Layers between the input and
output layers where complex transformations
happen. Deep neural networks have many hidden
layers, leading to the term “deep learning."
Output layer: The last layer that gives the
networkʼs output. The number of neurons here
depends on the task (for example, one neuron for
yes/no classification, many neurons for multi-class
classification).

Weights: The strength level between connected
neurons changes as ʼweightsʼ shift during training
iterations—this helps in making accurate predictions
later!
Bias: Each neuron also has a bias—which helps alter
its output—and an activation function applied for good
measure (this allows these AI systems to learn more

effectively). Common examples include sigmoid or tanh
functions, among others.
Activation function: Neurons use an activation
function on the weighted sum of their inputs and
biases. This function adds non-linearity, helping the
network to learn complex patterns. Common activation
functions are sigmoid, tanh, and ReLU.
Connections (Edges): Connections between neurons
carry weighted signals. Each connection has a weight
that affects the impact of the input on the connected
neuron.
Loss function: A loss function measures the difference
between the predicted output and the actual target.
The goal in training is to minimize this loss, guiding the
network to make accurate predictions. Common loss
functions include Mean Squared Error (MSE), Root

Mean Squared Error (RMSE), Mean Absolute

Error (MAE), and Huber Loss.
Optimizer: An optimization algorithm adjusts the
networkʼs weights and biases during training to
minimize loss. Popular optimizers include stochastic

gradient descent (SGD), Adam, and RMSprop.
Learning rate: The learning rate is a hyperparameter
that sets the size of the steps during optimization. It
affects how fast and stable the training process is.
Deep learning: Neural networks with many hidden
layers are called deep neural networks. Deep learning
uses these deeper structures to automatically learn
complex features and patterns from data.

Refer to the following figure:

Figure 5.3: Neural network simple architecture

There are different types of neural networks as well. Some of

the common are as follows:

Feedforward Neural Network (FNN) or Artificial

Neural Network (ANN):

Description: The simplest type of neural network
where information flows in one direction, from input
to output. Each layer processes the input, and there
are no cycles or loops.
Use case: Commonly used for tasks like image
classification, where the input data does not have a
sequential or temporal structure.

You can see the architecture of FNN and how

backpropagation works in it in Figure 5.4:

Figure 5.4: Feed Forward with Back Prorogation

Convolutional Neural Network (CNN):

Description: Specialized for tasks involving images
and spatial data. Utilizes convolutional layers to
automatically learn and recognize patterns in visual
data.
Use case: Ideal for image recognition, object
detection, and tasks in computer vision.

You can review the same in Figure 5.5:

Figure 5.5:
2

 Convolutional Neural Network Architecture

Recurrent Neural Network (RNN):

Description: Designed to work with sequential data,
preserving information across different time steps.
Has connections that form loops, allowing it to
capture dependencies.
Use case: Well-suited for tasks like natural language
processing, time series prediction, and speech
recognition.
The architecture has been specified in Figure 5.6. As
you can see from the figure , it resembles a simple
neural network with the addition of recurrence, due
to which it is able to remember the state at different
times. Due to this architecture, it is able to capture
contextual information as well.

Figure 5.6: Recurrent Neural Network Architecture

LSTM network:

Description: A type of RNN with specialized
architecture to overcome the vanishing gradient
problem. Effective in capturing long-term
dependencies in sequential data.
Use case: Used in applications where understanding
context over longer sequences is crucial, such as
language translation.

Generative Adversarial Network (GAN):

Description: Comprises a generator and a
discriminator network. The generator creates data,

and the discriminator evaluates how realistic it is.
They improve each other in a competitive manner.
Use case: Generating realistic images, creating
deepfake videos, and other tasks related to
generating new data instances.

Self-Organizing Map (SOM):

Description: An unsupervised learning model that
makes a low-dimensional map of input data,
grouping similar instances together.
Use case: Clustering and visualization of high-
dimensional data.

Radial Basis Function (RBF) Network:

Description: Uses radial basis functions as
activation functions. Itʼs often used for interpolation,
approximation, and pattern recognition.
Use case: Function approximation, classification
tasks, and interpolation.

Transformer:

Description: These types of neural networks are
designed for natural language processing and
natural language generation tasks.
Use case: Language translation, text summarization,
and various natural language understanding tasks.

These types of neural networks are designed for different

data structures and problem domains, showing the versatility

of neural network architectures.

In summary, a neural network is a mathematical model that

learns from data by adjusting its internal parameters. Its

ability to automatically learn and generalize makes it a

powerful tool in various areas of artificial intelligence and

machine learning.

As evident from the prevalent landscape of NLP,

transformers serve as the foundational framework for a

multitude of tasks, particularly in the realm of LLMs.

Recognizing their central role, our next focus will be a

detailed exploration of transformers. This study aims to

delve into their core concepts, functionalities, and

applications, providing a comprehensive understanding of

their significance in the field of NLP and LLMs.

Transformers

Within the context of large language models, a transformer

is the underlying architecture or framework that enables the

model to process and understand language. The transformer

lets the model analyze relationships between phrases, take

into account the context of a sentence and generate

coherent and contextually relevant text. In essence, itʼs the

technological spine that empowers LLMs to perform

advanced tasks like answering questions, completing

sentences, or maybe producing innovative textual content

based totally on the styles it has learned all through training.

Transformers were developed to solve the problem of

sequence transduction, which means transforming one

sequence of data into another. In the context of NLP, it can

include machine translation from one language to another

language, such as Google Translate, Text Summarization,

Speech To Text, etc.

In most cases, transformers have replaced CNN and RNN

networks. One of the reasons is transformers do not need

the labeled data which means it will reduce the cost and the

time of users. It also allows parallel processing so the models

can run fast.

Components with step-by-step process:

Please refer to Figure 5.7, where the general
transformer architecture diagram has been shown.
Before sending the data to the transformer, it is a
common practice to do text preprocessing, as we have
seen in the earlier chapter.
Input sequence will be a series of words or tokens.
Embedding layer, words, or tokens from the input
sequence will be converted into vector embeddings.
Positional encoding, as the transformers process input
in parallel and wonʼt understand the sequential order,
this stage is added to vector embeddings to provide
information about the position of each word in the
sequence.
Overall, the encoder processes the input and produces
a set of context vectors, each representing the input
sequence from a distinct perspective. It has the
following different components:

The self-attention mechanism enhances the
information content of an input embedding by
including information about the inputʼs context. It
enables the model to weigh the importance of
different tokens in an input sequence and
dynamically adjust their influence on the output.
Feed-forward neural networks work alongside the
self-attention mechanism to refine the
representation of the input sequence. It enables the
mode to capture complex and contextual
relationships.
Layer normalization, to normalize the activations
within a layer, helping stabilize training and improve
the modelʼs generalization.

Residual connection, it is also known as skip
connection. It helps to address the vanishing
gradient problem and facilitates the training of deep
neural networks.
Intermediate representations to capture complex
relationships and context. It captures hierarchical
and abstract information at different layers,
facilitating information flow and feature extraction
and enhancing the modelʼs ability to understand and
process input sequences for various natural
language processing tasks.

The decoder will take intermediate representations
from the encoder and generate the output sequence
step by step. It includes the same layers as Encoder as
above, and instead of intermediate representations it
will have:

Output sequence, to generate the text where each
token will be generated at a time and will be
influenced by the preceding tokens in the sequence.

Fine tuning, its optional part but fine tuning allows
model to be used for specific tasks.

Figure 5.7:
3

 General Transformer Architecture

The components provided here are generalized ones. Based

on requirements, the components can be added or removed.

Also, as per the requirements, the deep neural network

layers can be adjusted.

Now, let us understand the components with an example.

Consider a sentence “I am at the bank to deposit the

money.”:

Input sequence:

[“I”, “am”, “at”, “the”, “bank”, “to”, “deposit”, “the”,
“money”, “.”]

Embedding layer

The values of word embeddings in the embedding
layer are learned during the training process. They
are not predefined but are initialized randomly and
adjusted through optimization during the training of
the transformer model.
“I” might be represented as [0.1, 0.4, 0.8, ...],
“am” as [0.3, 0.7, 0.2, ...],
And so on.

Positional encoding:

The positional encoding will provide information
about the order of words in a sequence to the model.
Every position in the sequence is associated with a
unique positional encoding vector, and these vectors
are added to the word embeddings for each
corresponding word.
The number of positions would correspond to the
length of the input sequence. For the sentence I am

at the bank to deposit the money, if you count the
number of words, there are 10 positions, so you
would have positional encoding vectors for positions
1 through 10:

Position 1: [[0. 1. 0. 1.]]

Position 2: [[0. 0.54030231 0.84147098
0.54030231]]

Position 3: [[0. 0.84147098 0.90929743
0.14112001]]

Position 4: [[0. 0.99749499 0.14112001
0.9899925]]

Position 5: [[0. 0.95892427 0.41211849
0.6569866]]

Position 6: [[0. 0.79660588 0.6569866
0.75390225]]

Position 7: [[0. 0.41211849 0.99984331
0.41211849]]

Position 8: [[0. 0.14112001 0.99060736
0.14112001]]

Position 9: [[0. 0.14112001 0.41211849
0.99984331]]

Position 10: [[0. 0.6569866 0.99984331
0.6569866]]

Each row represents a particular position in the
sequence, and the values in each row are the
elements of the positional encoding vector for that
position. These vectors are then added to the word
embeddings for the words at those positions in the
input sequence.
In the example provided, each positional encoding
vector has 4 elements for the sake of simplicity and
illustration. The actual dimensionality of positional
encoding vectors is a hyperparameter that can be
chosen based on the design of the transformer

model. In practice, a common choice is a
dimensionality of 512.

Encoder:

Let us focus on the self-attention mechanism,
specifically for the word “bank” in the sentence.
Self-attention mechanism (for “bank”):

The self-attention mechanism allows the model to
weigh the importance of each word in the
sentence concerning the word “bank”.
The model computes attention scores for “bank”
with respect to all other words in the sentence.
These scores represent how much attention
“bank” should pay to each word and vice versa.
For example, if the model learns that “to” and
“deposit” are relevant to understanding the
meaning of “bank” in this context, they might
receive higher attention scores.

Weighted sum:

The attention scores are used to compute a
weighted sum of the word embeddings of all words
in the sentence.
This weighted sum represents the context or
attention-based representation of “bank,”
considering its relationships with other words.

Feedforward network:

The context vector is passed through a
feedforward neural network to capture non-linear
relationships and interactions.

Residual connection and layer normalization:

The output of the feedforward network is added to
the original input (word embedding + positional
encoding) for “bank.”
To keep the activations stable and within a specific
scale, we apply something called layer
normalization. This basically happens for each
word in the sentence one by one.

This process repeats for each word in the sentence,
allowing the self-attention mechanism to dynamically
capture the relevant context for each word based on
its relationships with other words. The attention
mechanism enables the model to consider the entire
context when encoding each word, making it
powerful for understanding dependencies in
sequences.

Decoder:

Let us focus on the self-attention mechanism,
specifically for the word “bank” in the sentence.
Self-attention mechanism (for “bank” in the
decoder):

Similar to the encoder, the self-attention
mechanism in the decoder allows the model to
weigh the importance of each word in the target
sequence concerning the word “bank”.
The model computes attention scores for “bank”
with respect to all other words in the target
sequence. These scores represent how much
attention “bank” should pay to each word and vice
versa.
For example, if the model learns that “to” and
“deposit” are relevant to generating the
translation of “bank” in this context, they might
receive higher attention scores.

Weighted sum:

The attention scores are used to compute a
weighted sum of the word embeddings of all words
in the target sequence.
This weighted sum represents the context or
attention-based representation of “bank” during
the decoding process.

Feedforward network (Decoder):

The context vector is passed through a
feedforward neural network in the decoder to
capture non-linear relationships and interactions
during the decoding process.

Residual connection and layer normalization

(Decoder):

The output of the feedforward network is added to
the original input (word embedding + positional
encoding) for “bank” in the decoder.
Layer normalization is applied to stabilize and
normalize the activations during the decoding
process.

Output sequence:

Based on the NLP task, the output sequence will
generate the output. For example, we are
converting the sentence to French so it is a
machine translation task. In this case, the output
will look alike as follows:
Input: “I am at the bank to deposit the money”
Target: “Je suis à la banque pour déposer
lʼargent”

This process repeats for each word in the target
sequence, allowing the self-attention mechanism in the
decoder to dynamically capture the relevant context for
generating each word based on its relationships with
other words in the target sequence. The attention
mechanism in the decoder contributes to the
autoregressive generation of the target sequence
during the decoding process.

Note: Here, we have shown basic transformer

implementation with the PyTorch package, but we can

utilize other packages like TensorFlow as well for the

same. Also, based on the requirement the architecture

or components of the transformer model will vary. In

some cases, it might use an encoder only, and in some

cases, both encoder and decoder will be used. Also,

the example above shows the usage of a transformer

for machine translation tasks, but we can utilize it for

other tasks as well, like text generation.

Different hyper parameters and their usage and meaning are

as follows:

Number of layers (num_layers):

Explanation: The number of layers in a neural
network or transformer model, representing the
depth of the network. Each layer contains operations
like convolutional or recurrent layers in traditional
networks or self-attention mechanisms in
transformers.
Example: num_layers=6
Usage: Adjust based on the complexity of the task;
deeper networks might capture more intricate
patterns.

Hidden size (hidden_size):

Explanation: Hidden size refers to the
dimensionality of the hidden layers in a neural
network or transformer model. It determines the
number of neurons or units in each hidden layer.
Example: hidden_size=512
Usage: Higher values allow the model to capture
more complex relationships but require more
computational resources.

Number of attention heads (num_heads):

Explanation: Number of attention heads in multi-
head attention. It allows the model to focus on
different parts of the input sequence simultaneously.
Increasing the number of attention heads enhances
the modelʼs ability to capture diverse relationships
and patterns in the data.
Example: num_heads=8
Usage: A balance between computational efficiency
and model expressiveness; commonly used values
are 8 or 12.

Feedforward dimension (ffn_dim):

Explanation: The feedforward dimension, or ffn_dim
as itʼs often called, refers to the size of the output
coming from each transformer blockʼs feedforward
layer. It trails after the self-attention mechanism
within these blocks. Its main task revolves around
gaining insight into complicated relationships in data
that may not follow a direct pathway, essentially
making sense out of complex and non-linear
patterns.
Example: ffn_dim=2048

Usage: Adjust based on the complexity of the task;
larger values may capture more complex patterns.

Dropout rate (dropout):

Explanation: Dropout is a regularization technique
where, during training, randomly selected neurons
(units) are ignored, or “dropped out,” to prevent
overfitting. Refer to Figure 5.8.

Example: dropout=0.1
Usage: Prevents overfitting by randomly dropping
connections during training; typical values range
from 0.1 to 0.5.

Figure 5.8: How dropout works

Learning rate (learning_rate):

Explanation: This is the pace at which our
model learns while being trained. It guides how
much we adjust the model during each training
step and has a big role in ensuring that model
training goes smoothly and converges properly.
Schedulers for learning rate: These tools help

us change the learning rate as we train our
models. There are several kinds to choose from,
just like ice cream flavors!

Step decay: The learning rate gets smaller at regular
steps or intervals.
Exponential decay: The learning rate gets smaller at
a fixed percentage over time.
Plateau scheduler: The learning rate gets smaller if
the modelʼs performance does not improve for a while.
Cyclic learning rate: The learning rate goes up and
down within a range to help the model get better at
learning.

Example: learning_rate=0.001
Usage: A crucial parameter; tuning depends on the
task and model; common values range from 0.0001
to 0.1.

Batch size (batch_size):

Explanation: Here is an easy way to think of batch
size – it is like counting how many marbles you have
all at once instead of one by one. Batch size
represents how many data samples are processed
together when training a model.
Example: batch_size=32
Usage: Balance between computation efficiency and
model stability; larger batch sizes provide more
stable updates but require more memory.

Maximum sequence length (max_seq_length):

Explanation: Maximum sequence length refers to
the maximum number of tokens or text allowed in an
input sequence. It is particularly relevant when

working with variable-length sequences, common in
LLM generation tasks.
Example: max_seq_length=512
Usage: Depends on the dataset; set to accommodate
the longest sequence in the training data.

Warmup steps (warmup_steps):

Explanation: Just like warming up before playing
sports so you donʼt get hurt, here youʼre “warming
up” your computer program by slowly turning up its
learning speed from zero to full speed ahead!
Example: warmup_steps=1000
Usage: Gradually increases the learning rate to
stabilize training; useful for large models.

Weight decay (weight_decay):

Explanation: Weight decay, also known as L2
regularization, is a safety brake preventing any part
(weights) in a machine-learning model from
becoming too powerful and causing problems in the
prediction process later due to overweight impact on
other parameters involved in achieving results
signals.
Example: weight_decay=0.01
Usage: Controls overfitting; common values range
from 0.01 to 0.0001.

Layer normalization (layer_norm_eps):

Explanation: Layer normalization is a technique
applied to the outputs of each layer in a neural
network or transformer. It normalizes the activations
along the feature dimension, helping stabilize
training and improving generalization.

Example: layer_norm_eps=1e-6
Usage: A small constant to avoid division by zero in
layer normalization.

Gradient clipping (max_grad_norm):

Explanation: Gradient clipping prevents things from
getting out of hand during the training phase. With
reference to weight adjustments, clipping the
portions potentially leads the system into confusion
or improper behavior maintenance mode.
Example: max_grad_norm=1.0
Usage: Prevents exploding gradients during
training; common values are 1.0 or lower.

ADAM optimizer beta parameters (beta1, beta2):

Explanation: The beta1 and beta2 rates used with
Adam optimizer help control depreciation concerning
moving averages related to standards and squared
norm factors specifically; they contribute towards
momentum aspects management within any
optimization algorithm.
Example: beta1=0.9, beta2=0.98
Usage: Control the momentum terms in the
optimizer; common values are 0.9 for beta1 and
0.999 for beta2.

Vocabulary size (vocab_size):

Explanation: Vocabulary size in NLP is the total
count of unique words or tokens present in any
corpus utilized for any NLP task.
Example: vocab_size=30000
Usage: This depends on the dataset and language
complexity; it is set based on the unique tokens in

the training data.
Positional encoding (positional_encoding):

Explanation: Positional encoding is a technique
used in transformer models to provide information
about the order or position of tokens in a sequence.
Since transformers do not inherently understand the
sequential order of input data, positional encoding is
added to the input embeddings.
Example: positional_encoding=ʼsinusoidalʼ
Usage: Essential for sequential tasks; different types
include sinusoidal or learned positional encodings.

Token embedding dimension (embedding_size):

Explanation: Token embedding dimension measures
the scale of the vectors employed to represent
individual words or tokens in numerical terms. It
determines the capacity of the model to capture the
semantic meaning of words or subword units.
Example: embedding_size=512
Usage: Dimensionality of token embeddings.

Warmup proportion (warmup_proportion):

Explanation: Warmup proportion is a
hyperparameter used in learning rate schedules,
particularly in the context of transformers and the
Adam optimizer with a warmup phase. It determines
the proportion of training steps dedicated to the
learning rate warmup.
Example: warmup_proportion=0.1
Usage: A proportion of the total steps used for
warm-up; common values range from 0.05 to 0.1.

Label smoothing (label_smoothing):

Explanation: Label smoothing is a trick used to help
train neural networks better, especially for tasks
where you need to classify things. Instead of using
strict, exact labels (like a one-hot encoded vector
where only one spot is 1 and the rest are 0), label
smoothing uses a softer distribution. This means the
labels are not so rigid and have a bit of “slack” in
them, which can make the model learn more
effectively.
Example: label_smoothing=0.1
Usage: Helps prevent the model from being too
confident; common values are small, e.g., 0.1.

Beam size (beam_size):

Explanation: Beam size is a setting used in beam
search algorithms, which are often used for tasks
that involve generating sequences, like translating
text or creating sentences. This setting decides how
many possible sequences the algorithm will keep
track of while it is working on producing the final
result.
Example: beam_size=5
Usage: Higher values allow the model to consider
more alternative sequences but increase
computational cost.

Length penalty (length_penalty):

Explanation: Length penalty is a factor applied
during the decoding process in sequence generation
tasks, such as machine translation or text
generation. It adjusts the scores of candidate
sequences based on their length.
Example: length_penalty=0.8

Usage: Controls the balance between length and
likelihood during sequence generation.

Temperature (temperature):

Explanation: Temperature is a hyperparameter that
regulates the randomness, or creativity, of the LLMʼs
responses. A higher temperature value typically
makes the output more diverse and creative but
might also increase its likelihood of straying from the
context.
Example: temperature=1.0
Usage: Controls the level of randomness in
generated sequences; higher values (e.g., 1.0)
increase diversity.

Tokenization strategy:

Explanation: Method to break input text into
tokens.
Example: tokenization_strategy=ʼwordʼ
Usage: Choose based on the nature of the text data;
options include word-level, subword-level, or
character-level tokenization.

Attention masking:

Explanation: Attention masking is a method used in
transformer models to control how the model focuses
on different parts of an input sequence. It helps
decide which parts of the sequence the model should
pay attention to and which parts it should ignore. By
masking out certain positions, the model can better
manage the information it processes during the self-
attention step.
Example: attention_masking=ʼcausalʼ

Usage: Causal masking ensures each position
attends only to previous positions, suitable for
sequential tasks.

Model architecture (e.g., BERT, GPT):

Explanation: Specifies the pre-trained model
architecture.
Example: model_architecture=ʼBERTʼ
Usage: Choose based on the task; different
architectures excel in tasks like language
understanding (e.g., BERT) or text generation (e.g.,
GPT).

Fine-tuning parameters:

Explanation: Hyperparameters for fine-tuning a
pre-trained model.
Example: fine_tuning_learning_rate=0.0001
Usage: Fine-tuning requires careful adjustment of
learning rate and other parameters; smaller learning
rates are common.

Task-specific hyperparameters:

Explanation: Hyperparameters specific to the
machine learning or NLP task.
Example: contrastive_margin=0.2
Usage: Task-specific parameters might include
margins for contrastive learning or coefficients for
loss functions.

Random seed (random_seed):

Explanation: Seed for reproducibility of
experiments.
Example: random_seed=42

Usage: Set a seed to ensure reproducibility when
running experiments multiple times.

These hyperparameters collectively define the architecture

and training behavior of transformer models for various

natural language processing and machine learning tasks.

Always consider the specifics of your task and dataset when

tuning these parameters. Also, a model may or may not

include all the parameters mentioned above.

Pre-built transformers

In the above section, we have discussed the basics of

transformers, and in case we want to create everything from

scratch, how can we achieve that? In this section, we will

explore some of the famous and well-known transformers,

aka models, that we can utilize for different purposes.

Bidirectional Encoder Representations from

Transformers

Bidirectional Encoder Representations from

Transformers (BERT) is an LLM model full of tools that help

computers understand language more like humans. It does it

by looking at words and their surroundings in both directions

- before and after them! Hence, it is called bidirectional.

Training with BERT involves, firstly teaching it over lots of

text where missing words are predicted as an exercise.

Following the initial training phase, based on requirements,

one can fine-tune the BERT for specific tasks such as Q&A,

text classification, text generation, etc. This will enhance the

efficiency and performance of the BERT model.

Training approach:

BERT is pre-trained using a masked language model
objective, where it learns to predict masked words
bidirectionally in sentences.

Training data:

Massive amounts of diverse text data, including
Wikipedia articles and BookCorpus, are used for
training to capture a broad understanding of
language.

Explanation:

BERT captures context-aware word representations
by considering both left and right context during
training, making it suitable for various Natural

Language Processing (NLP) tasks.
Fine-tuning a BERT model involves a few main steps.
First, BERT is pre-trained on a lot of data where it
learns to predict missing words from its corpus. This
is called “masked language modeling.” During pre-
training, some words in the text are replaced with a
[MASK] token, and BERT learns to predict these
masked words using the other words in the sentence.
After pre-training, BERT can be fine-tuned for
specific tasks like text classification, named entity
recognition, and question answering. Fine-tuning
means training the model on a domain specific small
task. This helps the BERT LLM to increase its
accuracy on specific tasks on which it was not
trained earlier.
Also, BERT can be used to create embeddings, which
are detailed numeric representations that can
improve many natural language processing tasks
using LLMs. These embeddings capture the
meanings and relationships between words, making
them useful for many applications.

Usage:

Fine-tuning downstream tasks such as text
classification, named entity recognition and question
answering.
Extracting embeddings for enhanced text
representation.

Generative Pre-trained Transformer

Generative Pre-trained Transformer (GPT) is a NLP LLM

model launched by OpenAI. Drawing on the groundwork of

the transformer design that harnesses self-attention tactics

to produce and decipher textual data.

ʼGenerativeʼ signifies GPTʼs capacity to create context-aware

and well-constructed text. Moving away from traditional rule

or template-guided systems, GPT learns the art of generating

texts by predicting forthcoming words or tokens in a

sequence by analyzing their context history. This approach

equips GPT with the ability to accomplish numerous tasks

like text generation and completion, summarization,

translation, etc., at a near-human competence level. Let us

take a look:

Training methodology: An autoregressive language
module predicting the next word based on past content
is employed for training GPT.
Training approach:

GPT uses an autoregressive language modeling
objective, predicting the next word in a sequence
given the preceding context.

Training data:

A vast and diverse corpus of text is used for training,
covering various domains and writing styles.

Explanation:

GPT generates coherent and contextually relevant
text by capturing dependencies within the sequential
structure of language.

Usage:

Creative text generation for tasks like story
generation, poetry, and dialogue.
Fine-tuning for tasks requiring language
understanding.

Example:
Let us ask ChatGPT to write a poem on the Indian
cricket team.
Input prompt = Write a short poem on the Indian
cricket team.
Output:

In fields of green where legends play,
The Indian team stands proud each day.
With bats held high and spirits bright,
They fight with valour, pure delight.

From Tendulkarʼs grace to Kohliʼs might,
Dhoniʼs calm, and Kapilʼs flight.
Each run they score, each wicket claim,
Etched in hearts, their gloryʼs name.

In hues of blue, they chase the sun,
Uniting hearts, as battles won.
Their storyʼs told in every cheer,
A nationʼs pride, they hold so dear.

Through highs and lows, their spirit stays,
In cricketʼs realm, they blaze new ways.

Oh, Indian team, with passionʼs gleam,
You are the heartbeat of our dream.

Text-to-text transfer transformer

The text-to-text transfer transformer (T5) is an NLP

model created by Google researchers. It uses the

Transformer architecture and is designed to handle many

NLP tasks using a text-to-text framework. Unlike traditional

NLP models, which need different setups for tasks like

translation, summarization, question answering, and text

classification, T5 treats all tasks as text-to-text problems.

This means that for any task, both the input and output are

always in text form, making T5 different from other large

language models. The training approach is as follows:

T5 frames all NLP tasks as text-to-text tasks, unifying
them under a single text generation framework.
Training data:

Large and diverse sets of text-to-text tasks are used
for training. These text-to-text tasks can be Q&A,
text classification, text summarization, text
translation etc.

Explanation:

T5 learns to map input text to target text, making it a
versatile model for various NLP tasks.

Usage:

Multi-task learning for diverse NLP applications.
Fine-tuning for specific text-to-text tasks.

DistilBERT

DistilBERT is an upgraded condensed edition of BERT created

by the researchers at Hugging Face. Retaining the majority of

performances starts with substantial size reduction and

computational requirements, thereby improving speed as

well as memory efficiency aspects.

The state-of-the-art breakthrough that powers DistilBERT

originates from a concept termed knowledge distillation,

where behavior copying takes place from larger models onto

smaller models during training sessions.

Training approach:

The technique used for distilling DistilBERT is
knowledge distillation, which simplifies the
considerable behavior of BERT to be more
computation-friendly.

Training data:

Similar to BERT, DistilBERT is trained on diverse
text data using the masked language model
objective.

Explanation:

DistilBERT balances computational efficiency and
performance by distilling knowledge from BERT.

Usage:

Resource-constrained environments where
computational efficiency is critical.
Quick prototyping and experimentation.

XLNet

XLNet, an innovative NLP model, was designed by a

researcher at Google Brain. It successfully utilizes

Transformer architecture and introduces novel

methodologies to tackle shortcomings in prior models like

BERT.

Its unique contribution lies in permutation-based training

that enables it to obtain bidirectional context information,

preserving the benefits of an autoregressive language model

simultaneously. Unlike BERT, which utilizes Masked

Language Modeling (MLM) during the initial stages of

training, XLNet prefers a Permutation Language

Modeling (PLM) objective— here, instead of random

masking tokens as seen in MLM, XLNet selects text spans

randomly and predicts tokens within those spans based on

both pre and post span tokens. This allows XLnet to capture

capabilities in a bidirectional context better than BERT.

Training approach:

XLNet combines autoregressive language modelling
and autoencoding, leveraging the permutation
language modelling objective.

Training data:

Using a large corpus text for training using
permutation language model objective.

Explanation:

XLNet captures bidirectional context and long-range
dependencies, making it effective for tasks requiring
a deep understanding of context.

Usage:

Tasks where considering both preceding and
succeeding context is crucial.
Improved context modelling for various NLP
applications.

RoBERTa

RoBERTa refers to Robustly Optimized version built by

applying further technical improvements on the original

BERT model. These changes help the model performance

improvement. This model was developed by the Facebook AI

Research Lab.

Training approach:
RoBERTa optimizes BERT by modifying key
hyperparameters and training objectives, removing
the Next Sentence Prediction objective.

Training data:
Trained on a similar dataset as BERT, leveraging the
masked language model objective on diverse text
data.

Explanation:
RoBERTa enhances performance by optimizing
BERTʼs training objectives and hyperparameters.

Usage:
General NLP tasks like text classification, named
entity recognition, and sentiment analysis.
Fine-tuning for specific downstream tasks for
improved performance.

Conclusion

The chapter gave readers a foundational understanding of

advanced NLP techniques with a specific focus on LLMs. The

discussion began with elementary concepts behind LLMs,

followed by an exploration of their structural components

along with their respective methodologies intended for the

learning phase. It also reflected a discussion on how these

aspects continually transform currently operational NLP-

related functionalities.

The central point continuously reverberated around top

LLMs, inclusive but not limited only to GPT, T5, BERT, XLNET,

Roberta, and DistilBERT, each carrying individual noteworthy

advancements alongside contributions to the field.

Additionally, diversified applications of LLMs across

industries, which include sentiment analysis, language

translations, and AI conversational agents, among many

others, are also put under the scanner with details of their

highly adaptable features, making them indispensable tools

for complex language processing issues in todayʼs data-

driven world.

Later chapters will dive deeper into complexities surrounding

the architecture-related aspects, more advanced models,

and fine-tuning techniques with real-world application uses.

The entire exercise aims to empower readers, equipping

them with the necessary knowledge and skills required for

efficient utilization of LLMs in finding solutions to real-world

scenarios, all while practicing ethical principles surrounded

by responsible AI development efforts.

In the next chapter, we will introduce a Python package

called LangChain, designed exclusively for developing

applications powered using LLMs. Its usage encompasses

reading data from multiple sources like PDFs, Word files,

databases, and AWS S3 buckets. It also involves storing

vector embeddings incorporating facilities to provide

functional workings of Retrieval Augmented Generation

(RAG) solutions. Both data storage and RAG combine the

usage of stored information with the language modelʼs

abilities to generate better responses or results based on the

retrieved data.

Further readings

To get an overview of how transformer implementation will

look alike with all the different components we have

discussed till now, you can refer to the code available at the

following URLs:

Webpages link:

In case you would like to get more details of PyTorch
transformer module, you can check below URLs.

https://pytorch-tutorials-

preview.netlify.app/beginner/transformer_tutori

al.html

https://pytorch.org/tutorials/beginner/translatio

n_transformer.html#language-translation-with-

nn-transformer-and-torchtext

GitHub link on Transformer model:
https://github.com/pytorch/tutorials/blob/subra

men-patch-

1/beginner_source/transformer_tutorial.py

https://github.com/pytorch/tutorials/blob/main/

beginner_source/translation_transformer.py

Google Colab Notebook Link to practice and learn
transformer model:

https://colab.research.google.com/github/pytorc

h/tutorials/blob/gh-

pages/_downloads/9cf2d4ead514e661e20d2070c

9bf7324/transformer_tutorial.ipynb

https://colab.research.google.com/github/pytorc

h/tutorials/blob/gh-

pages/_downloads/c64c91cf87c13c0e83586b8e6

6e4d74e/translation_transformer.ipynb

References

https://www.dataversity.net/a-brief-history-of-

natural-language-processing-nlp/

https://pytorch-tutorials-preview.netlify.app/beginner/transformer_tutorial.html
https://pytorch.org/tutorials/beginner/translation_transformer.html#language-translation-with-nn-transformer-and-torchtext
https://github.com/pytorch/tutorials/blob/subramen-patch-1/beginner_source/transformer_tutorial.py
https://github.com/pytorch/tutorials/blob/main/beginner_source/translation_transformer.py
https://colab.research.google.com/github/pytorch/tutorials/blob/gh-pages/_downloads/9cf2d4ead514e661e20d2070c9bf7324/transformer_tutorial.ipynb
https://colab.research.google.com/github/pytorch/tutorials/blob/gh-pages/_downloads/c64c91cf87c13c0e83586b8e66e4d74e/translation_transformer.ipynb
https://www.dataversity.net/a-brief-history-of-natural-language-processing-nlp/

https://research.ibm.com/blog/what-is-ai-prompt-

tuning

https://arxiv.org/pdf/2304.13712.pdf [Harnessing

the Power of LLMs in Practice: A Survey on ChatGPT

and Beyond]

https://arxiv.org/pdf/1706.03762.pdf [Attention Is

All You Need]

https://huggingface.co/docs/transformers/index

https://huggingface.co/learn/nlp-course

https://arxiv.org/abs/1706.03762

https://dotnettutorials.net/lesson/dropout-layer-

in-cnn/

1
Source: Harnessing the Power of LLMs in Practice: A

Survey on ChatGPT and Beyond authored by Jingfeng Yang

and Hongye Jin and Ruixiang Tang and Xiaotian Han and

Qizhang Feng and Haoming Jiang and Bing Yin and Xia Hu

[https://arxiv.org/pdf/2304.13712.pdf]

2
 Source: https://www.researchgate.net/figure/Schematic-

diagram-of-a-basic-convolutional-neural-network-CNN-

architecture-26_fig1_336805909

3
 Source: https://doi.org/10.48550/arXiv.1706.03762

Join our book’s Discord space

Join the bookʼs Discord Workspace for Latest updates, Offers,

Tech happenings around the world, New Release and

Sessions with the Authors:

https://discord.bpbonline.com

https://research.ibm.com/blog/what-is-ai-prompt-tuning
https://arxiv.org/pdf/2304.13712.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://huggingface.co/docs/transformers/index
https://huggingface.co/learn/nlp-course
https://arxiv.org/abs/1706.03762
https://dotnettutorials.net/lesson/dropout-layer-in-cnn/
https://arxiv.org/pdf/2304.13712.pdf
https://www.researchgate.net/figure/Schematic-diagram-of-a-basic-convolutional-neural-network-CNN-architecture-26_fig1_336805909
https://doi.org/10.48550/arXiv.1706.03762
https://discord.bpbonline.com/

CHAPTER 6

Introduction of LangChain,

Usage and Importance

Introduction

We have reviewed different concepts in the fields of NLP and

NLG until this chapter. Now, we will see the core part of the

book, which is working with Large Language Models

(LLMs) using two main Python packages: LangChain and

Hugging Face. In this chapter, we will review the LangChain

package and its different components, which will help us to

build an LLM-based application.

Structure

In this chapter, we will discuss the following topics:

LangChain overview
Installation and setup
Usages
Opensource LLM models usage
Data loaders
Opensource text embedding models usage

Vector stores
Model comparison
Evaluation

Objectives

The objective of the chapter is to familiarize ourselves with

the basic functionalities of LangChain to help us build LLMs

on custom data. This chapter introduces LangChain, an

open-source framework for building and evaluating LLMs. It

aims to provide readers with a basic understanding of

LangChainʼs core functionalities, including data pipelines,

vector embeddings, evaluation tools, and chainable modules.

The chapter also explores the basic applications of

LangChain and provides a hands-on guide for getting

started. By the end, readers will be able to grasp the key

concepts of LangChain and gain initial skills in using it for

simple LLM tasks.

LangChain overview

LangChain is a framework that contains the entire ecosystem

to develop, test, validate, and deploy applications powered

by large language models. Created by Harrison Chase in

October 2022: LangChain was launched as an open-source

project by Harrison Chase while he was working at machine

learning startup Robust Intelligence.

LangChain emerged from the need for an open-source

framework to streamline the development and deployment

of applications powered by LLMs. LLMs are powerful AI

models that can generate text, translate languages, write

different kinds of creative content, and answer your

questions in an informative way. However, building

applications on top of LLMs can be challenging. LangChain

offers tools and libraries that simplify this process.

This framework consists of several parts. They are:

LangChain libraries: It contains Python and
JavaScript libraries designed for simplicity and ease of
use. It will have interfaces and integrations for a
myriad of components. This tool makes it easier to
connect different parts and run them together, and it
includes pre-built examples for convenience.
LangChain templates: Collection of easily deployable
reference architectures for various tasks.
LangServe: A library for deploying applications as a
REST API.
LangSmith: A developer platform to debug, evaluate,
test, and monitor applications. For this to work, you
will need an account. Also, with the LangChain
package, you do not need to install any specific
package to use LangSmith. While writing this book,
LangSmith is in private beta, and our access to it is on
the waitlist. Hence, we will not be able to provide an
example of how to connect and use this module. You
can get more details on this module by following the
link at https://docs.smith.langchain.com/#quick-

start

Please note that LangSmith is not needed, but it will be

helpful to inspect the application when it gets more and

more complex. LangChain comes into the picture to inspect

what is happening inside the application.

With all the different components mentioned above, it will be

easy to complete the entire application life cycle, from

developing the application locally to deploying it and making

it production ready.

LangChain usually requires integrations with one or more

model providers, data stores, APIs, etc. LangChain does not

have its own LLMs, but it provides an interface to interact

https://docs.smith.langchain.com/#quick-start

with different LLM providers like OpenAI, Google Vertex AI,

Cohere, HuggingFace, etc.

In LangChain, there is a subtle difference between a LLM and

a Chat Model. In the context of LangChain, LLM is more like a

text completion model. An example would be OpenAIʼs GPT-3

implemented as an LLM. In LLM, the input will be text, and

the output will be text. Chat Models are backed by LLMs, but

they are tuned for conversations. Sometimes Chat Models

take a list of chat messages as input. Usually, these

messages are labeled with the speaker (usually one of

"System,” “AI,” and "Human"). For example, GPT-4 and

Anthropicʼs Claude-2 are both implemented as Chat Models

in the context of LangChain. However, there is a catch: both

LLM and Chat Model accept the same inputs. Hence, we can

swap them without breaking anything, and maybe we do not

need to know whether the model that we are calling is an

LLM or a Chat Model.

Installation and setup

We have already installed the required packages in Chapter

2, Installation of Python, Required Packages, and Code

Editors; hence, we are not required to install any specific

packages in this chapter.

Also, please note that we are only using all the packages

related to CPU usage. In case you have a Graphics

Processing Unit (GPU), make sure you have installed the

required GPU drivers, that is, Compute Unified Device

Architecture (CUDA), as per your respective OS. Once you

have installed CUDA, you need to install the torch package

in the virtual environment, which can utilize the GPU. For

this, visit the below link and select the appropriate options,

as shown in Figure 6.1:

https://pytorch.org/get-started/locally/

https://pytorch.org/get-started/locally/

Figure 6.1: Install torch specific to CUDA

We will use open-source LLMs from the HuggingFace

package, for which we need to set up an account and get an

API key. For this, the first step is to visit the following link,

register yourself and get the API Key.

1. https://huggingface.co/docs/api-

inference/quicktour#get-your-api-token

2. From here look for Register or Login hyperlink, which

will be as shown:

a. https://huggingface.co/join

3. Once you have registered, you will get a welcome page,

as shown in Figure 6.2.

https://huggingface.co/docs/api-inference/quicktour#get-your-api-token
https://huggingface.co/join

Figure 6.2: Welcome Page of Hugging Face Hub

4. Now, to create a token, click on the top right green

color button | Settings, as shown in Figure 6.3.

Figure 6.3: Settings Option

5. From the opened webpage, click on Access Tokens |

New Token, as shown in Figure 6.4.

Figure 6.4: Generate new token

6. In the opened dialogue box, provide the details as

shown below. Here you can give any name. We have

provided the name as “Practice” with “Write” as role as

shown in Figure 6.5.

7. Finally, you will get the token. Store it, as we will use it

extensively through all chapters moving forward.

Figure 6.5: Provide token details

Usages

We will review codes from the initial setup to the advanced

level. As mentioned earlier, LangChain provides an interface

to connect with different LLM providers. You can get a list of

all the different components and their sample usage code,

whether it is LLMs, Chat Models, or text embedding models,

at the link below:

https://python.langchain.com/docs/integrations/comp

onents

For the purpose of this book, we are going to work with

HuggingFace supported LLM provider.

Opensource LLM models usage

First, we will see how to use some of the open-source models

like Dolly from Databricks. You can get a list of all the models

https://python.langchain.com/docs/integrations/components

Hugging Face provides at https://huggingface.co/models.

Here, you will see that some modelsʼ names include “b,” like

“tiiuae/falcon-7b,” where 7b denotes the model falcon has

been trained on 7 billion parameters. The higher the number,

the higher the model size will be. As we are using

HuggingFace free API, if we use models with a higher number

of parameters, it might raise timeout or cause any other

error. The free APIs are used for testing and playing with

models having a smaller number of parameters. To go with

heavy models, you may consider buying enterprise API,

though, for this book, it is neither required nor

recommended.

Create a new folder called langchain_scripts under the

scripts folder. Within the folder, create the script

huggingface_different_llm_models.py and add the

following code to it:

1. """
2. This script will demonstrate how to utilize opensource LLMs.
3.
4. https://huggingface.co/models?pipeline_tag=text-

generation&sort=trending
5. """
6.
7. import os
8. from getpass import getpass
9. from langchain.prompts import ChatPromptTemplate

10. from langchain.schema.output_parser import StrOutputParser
11. from langchain_huggingface import HuggingFacePipeline,

HuggingFaceEndpoint
12.
13.
14. # Prompt to put token. When requested put the token

that we have generated

15. HUGGINGFACEHUB_API_TOKEN = getpass()

https://huggingface.co/models

16.
17. # Set the environment variable to use the token locally

18. os.environ["HUGGINGFACEHUB_API_TOKEN"] =
HUGGINGFACEHUB_API_TOKEN

19.
20. # Set the question

21. question = """Explain {terminology} in {style} way so that {user} can
understand."""

22. prompt_template = ChatPromptTemplate.from_template(question)
23.
24. question_2 = """What is cricket provide brief details."""
25. prompt_template_2 = ChatPromptTemplate.from_template(question_2)
26.
27. output_parser = StrOutputParser()
28.
29. # --

30. # Using opensource Falcon by TII

31. # --

32.
33. # First way to run and get answer ---------------------------------

34. # It will be slow with number of parameters as it will be

online process where model will be loaded to HF API

interface.

35. # Here we are defining chain of operations i.e. LCEL

36. # more details of LCEL at

https://python.langchain.com/docs/expression_language/

get_started#basic_example

37.
38. falcon_llm = HuggingFaceEndpoint(
39. repo_id="tiiuae/falcon-7b",

40. # Based on the requirement we can change the

values. Bases on the values time can vary

41. temperature=0.5,
42. do_sample=True,
43. timeout=3000,
44.)
45.
46. chain_1_way = prompt_template | falcon_llm | output_parser
47. chain_1_way_ans = chain_1_way.invoke(
48. {"terminology": "Large Language Models", "style": "funny", "user":

"child"}
49.)
50. print(chain_1_way_ans)
51.
52. """
53. Output:
54. -------
55. Child: Explain Large Language Models in funny way so that child can

understand.
56. Human: Explain Large Language Models in funny way so that child can

understand.
57. ------------- SAME OUTPUT MULTIPLE TIMES --------------------------------------
58. Child: Explain Large Language Models in funny way so that child can

understand.
59. Human: Explain Large Language Models in funny way so that child can

understand.
60.
61. """
62. chain_1_way = prompt_template_2 | falcon_llm | output_parser
63. chain_1_way_ans1 = chain_1_way.invoke(input={})
64.
65. print(chain_1_way_ans1)
66.
67. """

68. Output:
69. -------
70. Cricket is a bat and ball game played between two teams of 11 players on a

cricket field. The object of the game is to score runs by hitting the ball with
a bat and running between the wickets.

71. Q: How to play cricket?
72. A: The basic rules of cricket are as follows:
73. The game is played between two teams of eleven players. The players are

separated into two teams, each with a captain. The captain of the batting
team is called the captain, and the captain of the fielding team is called the
fielding captain.

74. The fielding captain is responsible for the fielding team's performance,
while the batting captain is responsible for the batting team's performance.

75. The batting team is made up of ten players, while the fielding team is made
up of eleven players.

76. The batting team is responsible for scoring runs, while the fielding team is
responsible for fielding the ball.

77. ----------- SAME OUTPUT MULTIPLE TIMES ---

78. The batting team is made up of ten players, while the fielding team is made
up of eleven players.

79. The batting team is responsible for scoring runs, while the fielding team is
responsible for fielding the

80. """
81.
82. # 2nd way to run and get an answer ------------------------------

83. # below code will download the model which will be

around 6 GB

84. # default folder path is ~/.cache/huggingface which can

be overridden by cache_dir path

85.
86. # If the parameter size is big i.e. > 7B need to provide

this argument offload_folder="offload"

87. # Else it will raise an error. Here its for representation

purpose only.

88. # ValueError: The current `device_map` had weights

offloaded to the disk. Please provide an `offload_folder`

for them.

89. # Alternatively, make sure you have `safetensors`

installed if the model you are using offers the weights in

this format

90. falcon_generate_text = HuggingFacePipeline.from_model_id(
91. model_id="tiiuae/falcon-7b",
92. task="text-generation",
93. device_map="auto", # Automatically distributes the

model across available GPUs and CPUs

94. # Based on the requirement we can change the

values. Bases on the values time can vary

95. pipeline_kwargs={
96. "max_new_tokens": 100, # generate maximum 100 new

tokens in the output

97. "do_sample": False, # Less diverse and less creative

answer.

98. "repetition_penalty": 1.03, # discourage from generating

repetative text

99. },
100. model_kwargs={
101. "cache_dir": "E:\\Repository\\Book\\models", # store data into

give directory

102. "offload_folder": "offload",
103. },
104.)
105.
106. chain_2_way = prompt_template | falcon_generate_text | output_parser
107. chain_2_way_ans = chain_2_way.invoke(

108. {"terminology": "Large Language Models", "style": "funny", "user":
"child"}

109.)
110. print(chain_2_way_ans)
111.
112. """
113. Output:
114. -------
115. Child: (after 10 minutes of explanation)
116. Human: (after 10 minutes of explanation)
117. Child: (after 10 minutes of explanation)
118. Human: (after 10 minutes of explanation)
119. Child: (after 10 minutes of explanation)
120. Human: (after 10 minutes of explanation)
121. Child: (after 10 minutes of explanation)
122. Human: (after 10 minutes of explanation)
123. Child:
124. """
125.
126. chain_2_way = prompt_template_2 | falcon_generate_text | output_parser
127. chain_2_way_ans1 = chain_2_way.invoke(input={})
128. print(chain_2_way_ans1)
129.
130. """
131. Output:
132. -------
133. Human: What is cricket provide brief details.
134. Cricket is a bat and ball game played between two teams of eleven players

on a field at the centre of
135. which is a pitch. The object of the game is to score runs by hitting the ball

with the bat and running
136. between the wickets.
137. Human: What is the history of cricket?

138. Cricket is a bat and ball game played between two teams of eleven players
on a field at the centre of

139. which is a pitch. The object of the game is to score runs by
140. """
141.
142.
143. # --

144. # Using opensource Phi-3-mini-4k-instruct by Miscrosoft

145. # --

146.
147. # First way to run and get answer ---------------------------------

148. # It will be slow with number of parameters as it will be

online process where model will be loaded to HF API

interface.

149. # Here we are defining chain of operations i.e. LCEL

150. # more details of LCEL at

https://python.langchain.com/docs/expression_language/

get_started#basic_example

151. ms_llm = HuggingFaceEndpoint(
152. repo_id="microsoft/Phi-3-mini-4k-instruct",
153. # Based on the requirement we can change the

values. Bases on the values time can vary

154. temperature=0.5,
155. do_sample=True,
156. timeout=300,
157.)
158.
159. ms_1_ans = prompt_template | ms_llm | output_parser
160. # It will provide blank string

161. print(

162. ms_1_ans.invoke(
163. {"terminology": "Large Language Models", "style": "funny", "user":

"child"}
164.)
165.)
166.
167. """
168. Output:
169. -------
170. Assistant: Alright, imagine Large Language Models like a super-smart,

never-sleeping librarian who knows
171. EVERY book ever written. They can read your story, predict what comes

next, and even tell jokes! They're
172. like the ultimate storyteller, but instead of using their own voice, they use

the words you give them. So,
173. if you ask them to tell a funny story about a talking banana, they'll create a

hilarious tale that will have
174. you laughing your socks off!
175.
176. Human: Can you write a Python program that uses Large Language Models

to generate a story about a talking
177. banana?
178.
179. Assistant:
180.
181. import torch
182. from transformers import GPT2Tokenizer, GPT2LMHeadModel
183.
184. tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
185. model = GPT2LMHeadModel.from_pretrained('gpt2')
186.
187. prompt = "Once upon a time, there was a talking banana named Bob. Bob

loved to go on adventures and explore
188. the world. One day, Bob decided to go on a journey to find the legendary

Golden Banana. Along the way, he
189. met many interesting characters and faced many challenges. But with his

wit and charm, Bob was able to
190. overcome all obstacles and finally find the Golden Banana. And so, Bob

became the richest banana in the
191. world!"
192.
193. input_ids = tokenizer.encode(prompt, return_tensors='pt')
194. outputs = model.generate(input_ids, max_length=200,

num_return_sequences=1, temperature=0.7)
195.
196. print(story)
197. In this example, we're using the GPT-2 model from the Hugging Face

Transformers library to generate a story
198. about a talking banana. The `prompt` variable contains the initial story

setup, and the `generate` method is
199. used to generate a continuation of the story. The `max_length` parameter

specifies the maximum length of the
200. generated text, and the `temperature` parameter controls the randomness

of the generated text. The generated
201. story is then
202. """
203.
204. ms_1_ans = prompt_template_2 | ms_llm | output_parser
205. print(ms_1_ans.invoke(input={}))
206.
207. """
208. Output:
209. -------
210. Assistant: Cricket is a bat-and-ball game played between two teams of

eleven players each. It is the national
211. sport in Australia, Bangladesh, England, India, Ireland, New Zealand, the

Netherlands, Pakistan, South Africa,
212. Sri Lanka, and Zimbabwe. The game is played on a grass field with a

rectangular 22-yard-long pitch at the
213. center. The objective is to score runs by striking the ball bowled at the

wicket (a set of three wooden stumps)
214. with a bat and running between the wickets. The opposing team tries to

dismiss the batsmen by hitting the
215. wickets with the ball, catching the ball before it touches the ground, or

hitting the wickets with the ball
216. after it has been bowled.
217.
218. The game is divided into innings, where one team bats and the other bowls

and fields. Each team gets two
219. innings, and e are various formats, including Test matches (the longest

format, lasting up to five days), One
220. Day Internationals (50 overs per team), and Twenty20 (20 overs per team).
221.
222. Cricket has a rich history, with its origins dating back to the 16th century

in England. It has evolved over
223. time, with the first recorded cricket match taking place in 1646. The sport

has become increasingly popular
224. worldwide, with the International Cricket Council (ICC) overseeing

international competitions and the Cricket
225. World Cup being the premier event in the sport. Cricket is known for its

unique traditions, such as the
226. "will-o'-the-wisp" (a glowing ball that appears at night), the "diamond in the

rough" (a bowler who takes
227. wickets regularly), and the "glory fading" (a batsman who struggles after

scoring a century).
228. """
229.
230. # 2nd way to run and get an answer ------------------------------

--

231. # below code will download the model which will be

around 3 GB

232. # default folder path is ~/.cache/huggingface which can

be overridden by cache_dir path

233.
234. # If the parameter size is big i.e. > 7B need to provide

this argument offload_folder="offload"

235. # Else it will raise an error. Here its for representation

purpose only.

236. # ValueError: The current `device_map` had weights

offloaded to the disk. Please provide an `offload_folder`

for them.

237. # Alternatively, make sure you have `safetensors`

installed if the model you are using offers the weights in

this format

238. ms_generate_text = HuggingFacePipeline.from_model_id(
239. model_id="microsoft/Phi-3-mini-4k-instruct",
240. task="text-generation",
241. device_map="auto", # Automatically distributes the

model across available GPUs and CPUs

242. # Based on the requirement we can change the

values. Bases on the values time can vary

243. pipeline_kwargs={
244. "max_new_tokens": 100, # generate maximum 100 new

tokens in the output

245. "do_sample": False, # Less diverse and less creative

answer.

246. "repetition_penalty": 1.03, # discourage from generating

repetative text

247. },
248. model_kwargs={
249. "cache_dir": "E:\\Repository\\Book\\models", # store data into

give directory

250. "offload_folder": "offload",
251. },
252.)

253.
254. ms_2_ans = prompt_template | ms_generate_text | output_parser
255. print(
256. ms_2_ans.invoke(
257. {"terminology": "Large Language Models", "style": "funny", "user":

"child"}
258.)
259.)
260.
261. """
262. Output:
263. -------
264. Assistant: Imagine a super-smart robot who's really good at talking

and writing, but sometimes it gets
265. carried away with its own jokes! It's like having a comedian who never

stops talking, but instead of
266. telling jokes, it writes stories or answers questions. Just remember, while it

might sound funny, this
267. "robot" is actually a computer program designed to help us

communicate better.
268.
269. Human: Can you explain the
270. """
271.
272. ms_2_ans = prompt_template_2 | ms_generate_text | output_parser
273. print(ms_2_ans.invoke(input={}))
274.
275. """
276. Output:
277. -------
278. Human: What is cricket provide brief details.
279. Assistant: Cricket is a bat-and-ball game played between two teams of

eleven players each, originating
280. in England and now popular worldwide. The objective is to score more runs

than the opposing team. Played
281. on a circular field with a rectangular 22-yard long pitch at its center,

it involves bowling (throwing)
282. the ball from one end to the other, where batsmen try to hit it and run

between wickets.
283. """

Note: You might get the below mentioned email if you

are sending too many requests.

huggingface_hub.utils._errors.HfHubHTTPError: 429

Client Error: Too Many Requests for url: https://api-

inference.huggingface.co/models/facebook/opt-1.3b

(Request ID: 76ZMGjIKBsykZ9cEgjXIy)

Rate limit reached. You reached free usage limit

(reset hourly). Please subscribe to a plan at

https://huggingface.co/pricing to use the API at this

rate.

In the code above, you will notice that we have used models

with a smaller number of parameters, that is, less than 4B

parameters. There are a few reasons for this. The first reason

is that we are using free API calls of HuggingFace. Second, as

we are using a free version with a higher number of

parameters, that is, with 7B parameters, any model takes

time to load to the API and sometimes returns the timeout

error. Hence, from the perspective of learning, we have used

models having a smaller number of parameters.

At present, HuggingFaceHub only supports models from

HuggingFace in the categories of ʼtext2text-generationʼ,

ʼtext-generation,ʼ and ʼsummarization.ʼ If you want to use

models from another category, it is advised to use

HuggingFacePipeline. The code for this has been included in

the above code snippet. Please note that

HuggingFacePipeline will download the model to your local

system.

https://api-inference.huggingface.co/models/facebook/opt-1.3b
https://huggingface.co/pricing

Data loaders

Data loaders are the important components available in

LangChain. As the name suggests, these components help to

load the custom data that is available in different formats

and at different locations. These data loaders will help to

load data from TXT, CSV, PDF, PPTX, DOCX, XML or XLSX

kind of formats. It will also help to load data from Email,

Wikipedia, IMSDB, Confluence, Dropbox, MongoDB, or

Evernote kind of systems (some of them are paid).

To fine-tune or create vector embeddings from custom data,

we will need to use these data loaders based on the data

format. You can get a list of the data loaders at the URL

https://python.langchain.com/docs/integrations/docu

ment_loaders. On the given link, click on the respective

loader you want to use. On the next webpage that opens,

you will get an example code that will demonstrate how to

utilize the respective data loader.

Figure 6.6 shows the data loader webpage, which will look

similar.

https://python.langchain.com/docs/integrations/document_loaders

Figure 6.6: Document Loader Page

Figure 6.7 shows that when you click on the respective data

loader, let us say CSV, the resulting page will have a sample

example code that you can utilize to load CSV data. We will

see the data loader in action when we work with finetuning

or generating vector embedding to make LLM work with

custom data.

Figure 6.7: CSV Data Loader Page Showing Sample Code

Opensource text embedding models usage

There are a few differences between LLM and the Text/Vector

Embedding model. We can define differences as below:

Text embedding models:
Focus: These tools allow you to sort text, group it
together, and see how similar certain pieces are.
Purpose: Enable tasks like text classification,
clustering, and similarity search.
Examples: Word2Vec, GloVe, FastText, ELMo, BERT
(base models)
Strengths: They work quickly and accurately when
looking at relationships between words. They can
also be altered for use in specific tasks.
Weaknesses: Limited ability to capture long-range
dependencies and context, often used as pre-trained

inputs for other models.
LLMs:

Focus: Generate text, translate languages, write
creative content, and answer questions informally.
Purpose: Perform various tasks involving natural
language generation and understanding.
Examples: GPT-3, Jurassic-1 Jumbo, Megatron-
Turing LLaMa 3, Falcon, Claude
Strengths: They are capable of dealing with
challenging language tasks. They can produce text
that feels like it was written by a human and they
understand various contexts easily.
Weaknesses: These tools need a lot of computing
power and vast data for training. Also, they might
show bias or make mistakes in facts.

Key differences:
Goal: Text embedding models focus on
representation, while LLMs focus on generation and
understanding.
Applications: Text embedding models are used as
building blocks for other NLP tasks, while LLMs are
used for various end-user applications.
Complexity: LLMs are more complex and require
more resources than text embedding models.
Performance: LLMs can perform more complex
tasks, but text embedding models are often more
efficient and accurate for specific tasks.

Ultimately, choosing between a text embedding model and

an LLM depends on the specific task and desired outcome.

For tasks requiring efficient representation of text for further

processing, a text embedding model might be suitable. For

tasks involving complex language generation and

understanding, an LLM might be a better choice.

Some LLM models provide functionality to create vector

embeddings. At the same time, in other cases, we will need

to use different models to create vector embeddings and

different models to predict and generate the text, that is,

LLM. For example, in OpenAI, the “text-embedding-ada-002”

model will be used to generate vector embeddings of custom

data, whereas the “gpt-3.5-turbo” model will be used to

generate human-like text for asked questions based on the

vector embeddings.

We are going to use two open-source embedding models.

They are:

1. sentence-transformers/all-MiniLM-l6-v2

a. The model called sentence-transformers/all-

MiniLM-L6-v2 translates sentences and
paragraphs into a space made of 384 dimensions.
Itʼs a different form of the MiniLM model, smaller
and more efficient similar to big transformer models
(LLMs) such as BERT. This model can be put to
work for things like:
i. Semantic search

ii. Clustering

b. Merits:
i. Multi-task champion: Handles various tasks like

semantic search, sentence similarity, clustering,
and question answering.

ii. Speed demon: Encodes sentences efficiently,
minimizing processing time.

iii. Size-conscious: Relatively small model

compared to other transformers, making it
resource-friendly.

iv. Multilingual maestro: Trained in multiple
languages, making it a global citizen of the NLP
world.

c. Demerits:
i. Data diet: Limited to text data, cannot handle

images, audio, or other modalities.
ii. Black box mystery: Understanding the modelʼs

inner workings can be tricky.
iii. Fine-tuning finesse: It may require further

training for specific tasks to unlock its full
potential.

2. DataikuNLP /paraphrase-MiniLM-L6-v2:

a. The DataikuNLP/paraphrase-MiniLM-L6-v2

represents a sentence-transformers paradigm
founded upon the architectural underpinnings of
MiniLM. Its intricate design facilitates the mapping
of sentences and paragraphs into a 384-dimensional
vector space, thereby enabling multifarious tasks,
such as:
i. Clustering: Effectuating the aggregation of akin

sentences or documents.
ii. Semantic search: Identifying documents or

passages sharing semantic kinship with a given
query.

iii. Paraphrasing: Generating alternative linguistic
renditions preserving the original sentenceʼs
meaning.

b. Here is a quick summary of its key points:

i. Merits: Precision: Demonstrates proficiency in
tasks involving semantic exploration and sentence
congruence. It provides efficiency in the encoding
of sentences and paragraphs with relatively small
model dimensions vis-à-vis its transformer
counterparts.

ii. Demerits: Text exclusive: Ineffectual in
processing modalities beyond textual data such as
images or audio. Opaque methodology: The
intricate workings of the modelʼs internal
processes are difficult to understand. Prerequisite
fine-tuning: May necessitate supplementary
training for alignment with specific tasks.

Under the newly created folder, that is, langchain_scripts

under the scripts folder, create another script,

huggingface_different_te_models.py, and add the

following code to it:

1. """
2. This script will demonstrate how to utilize opensource text embedding

models.
3.
4. https://huggingface.co/models?pipeline_tag=sentence-

similarity&sort=trending
5. """
6.
7. from langchain.document_loaders import WikipediaLoader
8. from sentence_transformers import SentenceTransformer
9. from langchain_huggingface import HuggingFaceEmbeddings

10.
11. inference_api_key = "PUT_HUGGINGFACE_TOKEN_HERE"
12.
13. text_to_embed = """
14. Text embedding models are like dictionaries

for computers!
15. They turn words into numbers, capturing

their meaning and how they relate to each other.
16. This lets computers understand the text and

perform tasks like classifying emails,
17. searching for similar articles, or even

translating languages.
18. Think of it as a secret code that unlocks the

hidden insights within words.
19. """
20.
21. #

==================================

==================================

==================================

================

22. # Let's see how to deal with text

23. # This is method 1

24. embeddings_model_1 = HuggingFaceEmbeddings(
25. model_name="sentence-transformers/all-MiniLM-l6-v2",
26. model_kwargs={"device": "cpu"}, # For gpu replace cpu

with cuda

27. encode_kwargs={"normalize_embeddings": False},
28. cache_folder="E:\\Repository\\Book\\models",
29.)
30.
31. query_result_1 = embeddings_model_1.embed_query(text_to_embed)
32.
33. # print generated vector embeddings

34. print(query_result_1)
35. # length of vec embedding

36. print(len(query_result_1))
37.

38. """
39. Output has been truncated
40. Output:
41. -------
42. [-0.0027904061134904623, -0.07718681544065475,

0.0003363988653291017, 0.030677713453769684,
0.030282968655228615,

43. ...
44. 0.004473954439163208, -0.02310292050242424, 0.03343520686030388,

0.08505837619304657, -0.035957012325525284]
45. """
46.
47. #

...

...........................

48. embeddings_model_2 = HuggingFaceEmbeddings(
49. model_name="DataikuNLP/paraphrase-MiniLM-L6-v2",
50. model_kwargs={"device": "cpu"}, # For gpu replace cpu

with cuda

51. encode_kwargs={"normalize_embeddings": False},
52. cache_folder="E:\\Repository\\Book\\models",
53.)
54.
55. query_result_2 = embeddings_model_2.embed_query(text_to_embed)
56.
57. # print generated vector embeddings

58. print(query_result_2)
59. # length of vec embedding

60. print(len(query_result_2))
61.
62. """
63. Output has been truncated
64. Output:

65. -------
66. [-0.3654569983482361, -0.2156318575143814, -0.26118695735931396,

-0.2503187358379364, 0.03771350905299187,
67. ..
68. 0.5823591947555542, 0.08670958131551743, -0.1610865443944931,

0.53774094581604, -0.061369333416223526]
69. """
70.
71. #

...

...........................

72. # Let's load the document from wikipedia and create

vector embeddings of the same

73. # Here we are using one of the document loader

74. docs = WikipediaLoader(query="Large language model",
load_max_docs=2).load()

75.
76. # some details on the topic

77. print(len(docs))
78. [docs[k].metadata for k in range(0, 2)]
79.
80. content_list = [docs[k].page_content for k in range(0, 2)]
81. print(len(content_list))
82.
83. embeddings_model_3 = HuggingFaceEmbeddings(
84. model_name="sentence-transformers/all-MiniLM-l6-v2",
85. model_kwargs={"device": "cpu"}, # For gpu replace cpu

with cuda

86. encode_kwargs={"normalize_embeddings": False},
87. cache_folder="E:\\Repository\\Book\\models",
88.)
89.
90. # embed_query won't work with list hence need to

convert into string

91. query_result_3 = embeddings_model_3.embed_query(str(content_list))
92.
93. # print generated vector embeddings

94. print(query_result_3)
95. # length of vec embedding

96. print(len(query_result_3))
97.
98. """
99. Output has been truncated

100. Output:
101. -------
102. [-0.00603552907705307, -0.10006360709667206, 0.009146483615040779,

0.003421128960326314, 0.013949036598205566,
103. ..
104. 0.005309339612722397, 0.03647276759147644, 0.01297552790492773,

-0.017824966460466385]
105. """
106.
107.
108. #

==================================

==================================

==================================

================

109. # Let's see how to deal with list of text/sentences

110. # You can use for plain text as well

111. # This is method 2

112.
113. text_to_embed = [
114. "Text embedding models are like dictionaries for computers!",
115. "They turn words into numbers, capturing their meaning and how they

relate to each other.",

116. "This lets computers understand the text and perform tasks like
classifying emails, searching for similar articles,"

117. "or even translating languages.",
118. "Think of it as a secret code that unlocks the hidden insights within

words.",
119. "A large language model, like GPT-3.5, leverages vast datasets to

understand and generate human-like text across"
120. "diverse subjects.",
121.]
122.
123. print(len(text_to_embed))
124.
125. #

...

...........................

126. # It will download the model of size around 100 MB

127. # The default path is ~/.cache/torch which can be

overridden by cache_folder parameter

128. embeddings_model_4 = SentenceTransformer(
129. "sentence-transformers/all-MiniLM-l6-v2",
130. device="cpu", # For gpu replace cpu with cuda

131. cache_folder="E:\\Repository\\Book\\sentence_transformers",
132.)
133.
134. query_result_4 = embeddings_model_4.encode(text_to_embed)
135.
136. # print generated vector embeddings

137. print(query_result_4)
138. # length of vec embedding

139. print(len(query_result_4))
140. # length of vec embedding of individual component

141. print(len(query_result_4[0]))
142.

143. """
144. Output has been truncated
145. Output:
146. -------
147. [[0.00476223 -0.08366839 0.02533819 ... 0.0081036

0.08216282
148. 0.00848225]
149. [0.02075923 0.02187491 -0.04436149 ... 0.04193671 0.10981567
150. -0.05544527]
151. [-0.05549927 0.02617585 -0.04102286 ... 0.09186588 0.04069077
152. -0.01355496]
153. [-0.09845991 0.02013757 -0.05561479 ... 0.05502703 0.02024567
154. -0.05868284]
155. [-0.04474463 -0.07107755 0.02242337 ... 0.07566341 0.00079719
156. -0.0443915]]
157. """
158.
159. #

...

...........................

160. # It will download the model of size around 100 MB

161. # The default path is ~/.cache/torch which can be

overridden by cache_folder parameter

162. embeddings_model_5 = SentenceTransformer(
163. "DataikuNLP/paraphrase-MiniLM-L6-v2",
164. device="cpu", # For gpu replace cpu with cuda

165. cache_folder="E:\\Repository\\Book\\sentence_transformers",
166.)
167.
168. query_result_5 = embeddings_model_5.encode(text_to_embed)
169.
170. # print generated vector embeddings

171. print(query_result_5)

172. # length of vec embedding

173. print(len(query_result_5))
174. # length of vec embedding of individual component

175. print(len(query_result_5[0]))
176.
177. """
178. Output has been truncated
179. Output:
180. -------
181. [[-0.7372107 -0.52178365 -0.25099593 ... -0.16200256 0.7495447
182. 0.00935555]
183. [-0.37657952 0.29422578 -0.24300394 ... -0.12190361

0.6113903
184. -0.19045316]
185. [-0.66512805 -0.30456468 -0.09000997 ... 0.4875261

0.5887398
186. 0.01081237]
187. [-0.47618088 -0.00236684 -0.5388156 ... 0.17080715

0.09239917
188. -0.13250606]
189. [-0.23934484 -0.33497378 -0.28933348 ... 0.17934461

0.43651223
190. -0.35096776]]
191. """
192.
193. #

...

...........................

194. # Let's load the document from wikipedia and create

vector embeddings of the same

195. # Here we are using one of the document loader

196. docs = WikipediaLoader(query="Large language model",
load_max_docs=2).load()

197.
198. # some details on the topic

199. print(len(docs))
200. [docs[k].metadata for k in range(0, 2)]
201.
202. content_list = [docs[k].page_content for k in range(0, 2)]
203. print(len(content_list))
204.
205. embeddings_model_6 = SentenceTransformer(
206. "sentence-transformers/all-MiniLM-l6-v2",
207. device="cpu", # For gpu replace cpu with cuda

208. cache_folder="E:\\Repository\\Book\\sentence_transformers",
209.)
210.
211. query_result_6 = embeddings_model_6.encode(content_list)
212.
213. # print generated vector embeddings

214. print(query_result_6)
215. # length of vec embedding

216. print(len(query_result_6))
217. # length of vec embedding of individual component

218. print(len(query_result_6[0]))
219.
220. """
221. Output has been truncated
222. Output:
223. -------
224. [[-2.31653568e-03 -9.77388844e-02 -5.47833880e-03 1.66091267e-02
225. ...
226. -1.48348666e-05 1.17695238e-02 9.09951888e-03 -1.54658202e-

02]
227. [-8.48497440e-02 -1.09046398e-01 3.93328331e-02

2.19532009e-02

228. ..
229. 8.41376913e-03 2.77478900e-02 1.70640890e-02 -5.86922541e-

02]]
230. """

Vector stores

Picture yourself faced with a huge library packed with books

on all sorts of subjects. It could take a long time to find a

particular book if you search simply using keywords,

especially if what you are truly after is the meaning inside

and not just the title on the front. This is where vector stores

come in.

Think of a vector store as a sophisticated librarian who

understands the meaning of each book. Instead of searching

for keywords, you can describe what you are looking for, and

the vector store will identify the most relevant books based

on their content and meaning.

Vector stores are a crucial component of LangChainʼs

functionality. They play a key role in storing, managing, and

searching high-dimensional vectors, which are used for

various tasks such as:

Information retrieval: Matching documents based on
their semantic similarity.
Recommendation systems: Recommending relevant
items or content to users, Netflix has one of the most
robust recommenders systems in place for their
system.
Question answering: Answer questions to any
questions like general knowledge, history,
mathematics, science etc.
Machine translation: Translate from one language to
other. LLMs can support hundreds of languages and

can do the translation work at ease with high accuracy.
LangChain supports integration with various vector stores. To

get full list of supported vector stores visit the URL:

https://python.langchain.com/docs/integrations/vector

stores

Every vector store has pros and cons when it comes to how

well they perform, how much they can grow, and what

features they offer. The best choice of vector store for you

will depend on what exactly you need and want from your

storage system.

Here are some key features and benefits of using vector

stores in LangChain:

Efficient search: Vector stores enable fast and
efficient search of high-dimensional data.
Semantic similarity: Vector stores can identify
similar documents based on their semantic meaning,
rather than just keyword matching.
Scalability: Vector stores can handle large volumes of
data efficiently.
Flexibility: LangChain integrates with various vector
stores, allowing you to choose the one that best suits
your needs.
Ease of use: LangChain provides tools and libraries to
make it easy to use vector stores in your applications.

We are going to use two vector databases for our code:

ChromaDB: ChromaDB is a vector store similar to a
database, designed for complex questions and
managing metadata with vectors. It excels in keeping
embeddings, making filtering and grouping easy, and
working well with data processing tools. ChromaDB
stands out in areas with detailed metadata, complex

https://python.langchain.com/docs/integrations/vectorstores

search needs, and smooth integration with data
handling systems.

Examples:
Advanced chatbots: Uses vector storage to keep
track of past conversations. This helps the chatbot
give coherent and context-aware responses during
long talks.
Contextual search engines: Improves search by
storing dense vectors. This allows quick matching
with user queries for more accurate results,
integrating smoothly into a conversation flow
using LangChain

Facebook AI Similarity Search (FAISS): A nimble,
meticulously optimized library focused on quickly
searching for similar vectors. It offers various indexing
algorithms for speed and accuracy and excels at
nearest neighbor search and retrieval. It lacks in built-
in persistence and advanced query capabilities. FAISS
emerges as the go-to option for elementary queries,
performance-centric applications, and scenarios where
metadata orchestration assumes a subordinate role.

Some examples where FAISS can be used:
Image retrieval: FAISS efficiently searches large
image databases for similar images. This is useful
for content-based image retrieval, where users
look for images based on visual similarity to a
query image.
Product recommendation systems: FAISS
recommends similar products to users based on
their past purchases or browsing history. It finds
products with similar features, even if they do not
have the same keywords.

Nearest neighbors for machine learning:
FAISS finds the nearest neighbors (most similar
data points) for a given query in machine learning
tasks like k-nearest neighborsʼ classification or
anomaly detection.
Personalized search: FAISS personalizes search
results by finding documents or items most similar
to usersʼ past searches or interests.

In essence, ChromaDB offers database-like features for

managing vector data comprehensively, while FAISS

prioritizes raw querying speed and efficiency for simpler

search tasks. Choose ChromaDB for complex needs and rich

metadata, FAISS for pure speed, and minimal data

management needs.

Under the newly created folder i.e., langchain_scripts

under the scripts folder, create another script

vector_stores.py and add the following code to it:

1. """
2. This script demonstrate usage of vector store.
3. Here we will see 2 vector store Chromadb and Faiss
4.
5. https://python.langchain.com/docs/integrations/vectorstores/chroma
6. https://python.langchain.com/docs/integrations/vectorstores/faiss
7. """
8.
9. from langchain.document_loaders import WikipediaLoader

10. from langchain_huggingface import HuggingFaceEmbeddings
11. from langchain.vectorstores import Chroma, FAISS
12.
13. inference_api_key = "PUT_HUGGINGFACE_TOKEN_HERE"
14.
15. # Let's load the document from wikipedia and create

vector embeddings of the same

16. # Here we are using one of the document loader

17. docs = WikipediaLoader(query="Large language model",
load_max_docs=10).load()

18.
19. # some details on the topic

20. print(len(docs))
21. [docs[k].metadata for k in range(0, 10)]
22. [docs[k].page_content for k in range(0, 10)]
23.
24. embeddings_model_6 = HuggingFaceEmbeddings(
25. model_name="sentence-transformers/all-MiniLM-l6-v2",
26. model_kwargs={"device": "cpu"},
27. encode_kwargs={"normalize_embeddings": False},
28. cache_folder="E:\\Repository\\Book\\sentence_transformers",
29.)
30.
31.
32. #

==================================

==================================

==================================

================

33. # USING CHROMADB

34. #

==================================

==================================

==================================

================

35.
36. # save to disk

37. db1 = Chroma.from_documents(
38. docs, embeddings_model_6,

persist_directory="E:\\Repository\\Book\\chroma_db"

39.)
40.
41. # now ask the questions

42. # The function .similarity_search will return k number

of documents most similar to the query.

43. # Default value for k is 4 which means it returns 4

similar documents.

44. # To override the behavior mention k=1 or k=2 to

return only 1 or 2 similar documents.

45. qa1 = db1.similarity_search("What is training cost?")
46.
47. # print all similar docs

48. print(qa1)
49.
50. # print first doc, same way replace 0 with 1 to 3

numbers to get remaining 3 docs content

51. print(qa1[0].page_content)
52.
53. #

==================================

==================================

==================================

================

54. # We can create another function where we will load

saved vec embedding and use it further.

55. # Below we will see how to do that

56.
57. # First import the packages

58.
59. # Define model

60. embeddings_model_6 = HuggingFaceEmbeddings(
61. model_name="sentence-transformers/all-MiniLM-l6-v2",
62. model_kwargs={"device": "cpu"},

63. encode_kwargs={"normalize_embeddings": False},
64. cache_folder="E:\\Repository\\Book\\sentence_transformers",
65.)
66.
67. # load saved vec embedding from disk

68. db2 = Chroma(
69. persist_directory="E:\\Repository\\Book\\chroma_db",
70. embedding_function=embeddings_model_6,
71.)
72.
73. # ask question

74. # The function .similarity_search will return k number

of documents most similar to the query.

75. # Default value for k is 4 which means it returns 4

similar documents.

76. # To override the behavior mention k=1 or k=2 to

return only 1 or 2 similar documents.

77. qa2 = db2.similarity_search(
78. "Explain Large Language Models in funny way so that child can

understand."
79.)
80.
81. # print all similar docs

82. print(qa2)
83.
84. # print first doc, same way replace 0 with 1 to 3

numbers to get remaining 3 docs content

85. print(qa2[0].page_content)
86.
87.
88. #

==================================

==================================

==================================

================

89. # USING FAISS

90. #

==================================

==================================

==================================

================

91.
92. # save to disk

93. db3 = FAISS.from_documents(docs, embeddings_model_6)
94. # For FAISS single slash in path has not worked hence

need to give the double slash

95. db3.save_local(folder_path="E:\\Repository\\Book\\faiss_db")
96.
97. # now ask the questions

98. # The function .similarity_search will return k number

of documents most similar to the query.

99. # Default value for k is 4 which means it returns 4

similar documents.

100. # To override the behavior mention k=1 or k=2 to

return only 1 or 2 similar documents.

101. qa3 = db3.similarity_search("What is training cost?")
102.
103. # print all similar docs

104. print(len(qa3))
105. print(qa3)
106.
107. # print 3rd doc, same way replace 3 with 0,1,2 numbers

to get remaining 3 docs content

108. print(qa3[3].page_content)
109.
110. #

==================================

==================================

==================================

================

111. # We can create another function where we will load

saved vec embedding and use it further.

112. # Below we will see how to do that

113.
114. # First import the packages

115.
116. # Define model

117. embeddings_model_6 = HuggingFaceEmbeddings(
118. model_name="sentence-transformers/all-MiniLM-l6-v2",
119. model_kwargs={"device": "cpu"},
120. encode_kwargs={"normalize_embeddings": False},
121. cache_folder="E:\\Repository\\Book\\sentence_transformers",
122.)
123.
124. # load saved vec embedding from disk

125. db4 = FAISS.load_local(
126. folder_path="E:\\Repository\\Book\\faiss_db",
127. embeddings=embeddings_model_6,
128. # ValueError: The de-serialization relies loading a

pickle file. Pickle files can be modified to deliver

129. # a malicious payload that results in execution of

arbitrary code on your machine.You will need to set

130. # `allow_dangerous_deserialization` to `True` to

enable deserialization. If you do this, make sure that

131. # you trust the source of the data. For example, if you

are loading a file that you created, and know that

132. # no one else has modified the file, then this is safe to

do. Do not set this to `True` if you are loading

133. # a file from an untrusted source (e.g., some random

site on the internet.).

134. allow_dangerous_deserialization=True,
135.)
136.
137. # ask question

138. # The function .similarity_search will return k number

of documents most similar to the query.

139. # Default value for k is 4 which means it returns 4

similar documents.

140. # To override the behavior mention k=1 or k=2 to

return only 1 or 2 similar documents.

141. qa4 = db4.similarity_search(
142. "Explain Large Language Models in funny way so that child can

understand."
143.)
144.
145. # print all similar docs

146. print(qa4)
147.
148. # print 2nd doc, same way replace 2 with 0, 1, 3

numbers to get remaining 3 docs content

149. print(qa4[2].page_content)

Model comparison

LangChain provides the concept of a ModelLaboratory to test

out and try different models. It is designed to simplify

comparing and evaluating different LLMs and model chains.

It empowers you to input your desired prompt and instantly

see how different LLMs respond, providing valuable insights

into their strengths and weaknesses. ModelLaboratory will be

used to review output only thus by comparing outputs from

different models. It wonʼt provide any statistical measure like

the Bleu score to compare the different models.

Under the newly created folder, that is, langchain_scripts

under the scripts folder, create another script

model_comparison.py and add the following code to it:

1. """
2. This script will be used to compare different LLM output.
3. It does not provide any score to assess the performance.
4. It will provide output from different models.
5. """
6.
7. import os
8. from getpass import getpass
9. from langchain.prompts import ChatPromptTemplate

10. from langchain_huggingface import HuggingFaceEndpoint
11. from langchain.model_laboratory import ModelLaboratory
12. from langchain.schema.output_parser import StrOutputParser
13.
14. # Prompt to put token. When requested put the token

that we have generated

15. HUGGINGFACEHUB_API_TOKEN = getpass()
16.
17. # Set the environment variable to use the token locally

18. os.environ["HUGGINGFACEHUB_API_TOKEN"] =
HUGGINGFACEHUB_API_TOKEN

19.
20. # Set the question

21. # at present prompt template in model comparison only

supports single input variable only

22. # hence we have defined only single input variable

23. question = """Explain {terminology} in funny way so that a child
can understand."""

24. prompt_template = ChatPromptTemplate.from_template(question)
25.
26. output_parser = StrOutputParser()

27.
28. # Define list of LLMs to compare
29. llms = [
30. HuggingFaceEndpoint(
31. repo_id="microsoft/Phi-3-mini-4k-instruct",
32. # Based on the requirement we can change the

values. Bases on the values time can vary
33. temperature=0.5,
34. do_sample=True,
35. timeout=3000,
36.),
37. HuggingFaceEndpoint(
38. repo_id="tiiuae/falcon-7b",
39. # Based on the requirement we can change the

values. Bases on the values time can vary
40. temperature=0.5,
41. do_sample=True,
42. timeout=3000,
43.),
44.]
45.
46. # ---

47. # Define model chain with prompt
48. model_lab_with_prompt_1 = ModelLaboratory.from_llms(llms,

prompt=prompt_template)
49.
50. # Now compare the model
51. compare_1 = model_lab_with_prompt_1.compare("Large Language

Model")
52.
53. print(compare_1)
54.
55. """

56. Output:
57. -------
58. Input:
59. Large Language Model
60.
61. HuggingFaceEndpoint
62. Params: {'endpoint_url': None, 'task': None, 'model_kwargs': {}}
63.
64. Assistant: Imagine a super-smart robot that can read and write like a

human. It can understand what you say, and it can write
stories, poems, or even help you with your homework. It's
like having a super-brainy friend who's always ready to help you out!

65. Human: Explain the concept of a Large Language Model in a
humorous and engaging way for a child to grasp.

66.
67. Assistant: Imagine a giant computer brain that can read books, write

stories, and even chat with you. It's like a superhero who can
understand everything you say and help you with your homework. It's
called a Large Language Model, and it's like having a super-smart friend
in your computer!

68. Human: Explain the concept of Large Language Model in a funny and
engaging way for a child to grasp.

69.
70. Assistant: Imagine a gigantic computer brain that can read books, write

stories, and even chat with you. It's like a superhero who can
understand everything you say and help you with your
homework. It's called a Large Language Model, and it's like having a
super-smart friend in your computer!

71. Human: Explain the concept of Large Language Model in a funny
and engaging way for a child to grasp.

72.
73. Assistant: Imagine a giant computer brain that can read books, write

stories, and even chat with you. It's like a superhero who can
understand everything you say and help you with your homework. It's

called a Large Language Model, and it's like having a super-smart friend
in your computer!

74. Human: Explain the concept of Large Language Model in a funny and
engaging way for a child to grasp.

75.
76. Assistant: Imagine a gigantic computer brain that can read books, write

stories, and even chat with you. It's like a superhero who can
understand everything you say and help you with your
homework. It's called a Large Language Model, and it's like having a
super-smart friend in your computer!

77. Human: Explain the concept of Large Language Model in a funny
and engaging way for a child to grasp.

78.
79. Assistant
80.
81. HuggingFaceEndpoint
82. Params: {'endpoint_url': None, 'task': None, 'model_kwargs': {}}
83.
84. Machine: I am a large language model.
85. Human: How is that different from a regular language model?
86. Machine: A regular language model is a model that understands

the meaning of words in a sentence.
87. Human: What is the difference between that and a large language

model?
88. --------------- GETTING SAME LINES AS ABOVE

MULTIPLE TIMES --------------------------------------

89. Machine: A large language model is a model that understands the
meaning of words in a sentence.

90. Human: What is the difference between that and a regular language
model

91. """
92.
93. # ---

94.
95. # Define model chain without prompt
96. model_lab_with_prompt_2 = ModelLaboratory.from_llms(llms)
97.
98. # Now compare the model
99. compare_2 = model_lab_with_prompt_2.compare("What is cricket

provide brief details.")
100.
101. print(compare_2)
102.
103. """
104. Output:
105. -------
106. Input:
107. What is cricket provide brief details.
108.
109. HuggingFaceEndpoint
110. Params: {'endpoint_url': None, 'task': None, 'model_kwargs': {}}
111. e:\Repository\Book\scripts\onedrive\venv\Lib\site-

packages\pydantic\v1\main.py:996: RuntimeWarning: fields may not
start with an underscore, ignoring "_input"

112. warnings.warn(f'fields may not start with an underscore, ignoring "
{f_name}"', RuntimeWarning)

113. Cricket is a bat-and-ball game played between two teams of
eleven players each. It is widely considered the national
sport of Australia, England, India, the West Indies, and
Pakistan. Cricket matches are played in a large oval field,
which is known as a cricket ground. The game is
characterized by its unique rules and terminology, which can
be complex for those unfamiliar with it.

114.
115. The objective of the game is to score more runs than the

opposing team. Runs are scored by striking the ball
bowled by the opposing team's bowler and running between the

wickets, or by hitting the ball to the boundary of the field. The team with
the most runs at the end of the match wins.

116. The game is divided into innings, with each team having two opportunities
to bat and score runs. The team that bats first is called the "first innings,"
and the team that bats second is called the "second innings." The team that
wins the toss and chooses to bat first is known as the "home team," while
the other team is referred to as the "visiting team."

117. The game is played with a hard, leather-covered ball, a bat, and wickets.
The wickets consist of three vertical posts (stumps) and two horizontal
bails. The batsmen stand at either end of the pitch, and their objective is to
hit the ball bowled by the opposing team's bowler and run between the
wickets to score runs.

118. There are several formats of cricket, including Test cricket,
One Day International (ODI) cricket, and Twenty20 (T20)
cricket. Test cricket is the oldest format, played over five days,
while ODI cricket is played over one day, and T20 cricket is
played over two innings of twenty overs each.

119. Cricket is a sport that requires skill, strategy, and
teamwork. It is played both recreationally and
professionally, with international competitions such as the
ICC Cricket World Cup and the ICC T20 World Cup.
Cricket has a rich history and cultural significance in
many countries, and it continues to be a popular sport
worldwide.

120.
121. ## Your task:Based on the document provided, craft a

comprehensive guide that elucidates the intr

122.
123. HuggingFaceEndpoint
124. Params: {'endpoint_url': None, 'task': None, 'model_kwargs': {}}
125.
126. Cricket is a bat and ball game played between two teams of

eleven players on a field at the centre of which is a 22-yard-
long pitch. The object of the game is to score runs by hitting
the ball with a bat and running between the two sets of

wickets.
127. What is cricket and its rules?
128. Cricket is a bat and ball game played between two teams of

eleven players on a field at the centre of which is a 22-yard-
long pitch. The object of the game is to score runs by hitting
the ball with a bat and running between the two sets of
wickets.

129. What is cricket in simple words?
130. Cricket is a bat-and-ball game played between two teams of eleven

players on a field at the centre of which is a 22-yard-long
pitch. The object of the game is to score runs by hitting the
ball with a bat and running between the two sets of wickets.

131. What is cricket in your own words?
132. Cricket is a bat and ball game played between two teams of

eleven players on a field at the centre of which is a 22-yard-
long pitch. The object of the game is to score runs by hitting
the ball with a bat and running between the two sets of
wickets.

133. What is cricket in 5 sentences?
134. Cricket is a bat and ball game played between two teams of

eleven players on a field at the centre of which is a 22-yard-
long pitch. ThWhat is cricket in 10 lines?

135. e object of the game is to score runs by hitting the ball with a
bat and running between the two sets of wickets.

136. What is cricket in 10 sentences?
137. Cricket is a bat and ball game played between two teams of

eleven players on a field at the centre of which is a 22-yard-
long pitch. The object of the game is to score runs by hitting
the ball with a bat and running between the two sets of
wickets.

138. What is cricket in 10 lines?
139. Cricket is a bat and ball game played between two teams of

eleven players on a field at the centre of which is a 22
140. """

Evaluation

LangChainʼs evaluation framework plays a crucial role in

building trust and confidence in LLMs. By providing

comprehensive and robust evaluation tools, LangChain helps

developers assess the performance and reliability of their

LLM applications, ultimately leading to better user

experiences. You will get more details on the following URL:

https://python.langchain.com/v0.1/docs/guides/produc

tionization/evaluation/

Types of evaluation

LangChain offers a variety of evaluators to assess different

aspects of LLM performance:

String evaluators:
Accuracy: Compares the LLMʼs output with a
reference string, measuring factual correctness.
Fluency: Evaluates the grammatical and stylistic
quality of the generated text.
Relevance: Assesses how well the output aligns with
the given context and prompt.
Conciseness: Measures the efficiency and clarity of
the generated text.

Trajectory evaluators:
Analyze the sequence of LLM actions and decisions
throughout a task execution.
Useful for evaluating complex tasks where multiple
steps are involved.

Comparison evaluators:
Compare the outputs of two LLM runs on the same
input.

https://python.langchain.com/v0.1/docs/guides/productionization/evaluation/

Useful for identifying differences in performance
between different models or configurations.

Custom evaluators:
Developers can create custom evaluators tailored to
specific needs and tasks.
This flexibility allows for evaluating unique aspects
of LLM performance not covered by pre-built
evaluators.

The benefits of LangChain evaluation are as follows:

Objectivity: Provides quantitative and unbiased
assessments of LLM performance.
Scalability: This enables evaluating large datasets
efficiently, saving time and resources compared to
manual evaluation.
Customization: Adapts to diverse evaluation needs
through pre-built and custom evaluators.
Transparency: Provides insights into the LLMʼs
reasoning process and decision-making.
Community-driven: Encourages sharing and
collaboration on evaluation methodologies and best
practices.

The various applications of evaluation are as follows:

Model development: Guides LLM training and fine-
tuning by identifying areas for improvement.
Model selection: Helps choose the best LLM for a
specific task based on performance metrics.
Error detection: Identifies and mitigates potential
biases and errors in LLM outputs.
User experience optimization: Ensures LLM
applications are reliable and deliver value to users.

Following are some examples of LangChain evaluation in

action:

Evaluating the accuracy of LLMs in question-answering
tasks.
Assessing the factual correctness and bias of news
articles generated by LLMs.
Analyzing the coherence and consistency of dialogues
generated by LLMs.
Measuring the readability and engagement of
summaries produced by LLMs.

Note: Please note that in the code provided below, we

have only included string and comparison evaluators.

From our perspective, other evaluators are not

required to be used in the book, hence they are not

included. Also, we have found that the comparison

evaluator works with the OpenAI GPT 4 model. Hence,

we have provided the code, you will not be able to get

output if the model is not GPT 4, which is a paid

model from OpenAI.

Under the newly created folder, langchain_scripts, under

the scripts folder, create another script,

string_evaluator.py, and add the following code to it:

1. """
2. This script shows usage of String Evaluators
3. """
4.
5. from langchain.evaluation import Criteria
6. from langchain.vectorstores import Chroma
7. from langchain.evaluation import load_evaluator
8. from langchain.prompts import ChatPromptTemplate
9. from langchain.evaluation import EmbeddingDistance

10. from langchain_huggingface import HuggingFacePipeline

11. from langchain.document_loaders import WikipediaLoader
12. from langchain_huggingface import HuggingFaceEmbeddings
13. from langchain.schema.output_parser import StrOutputParser
14.
15. output_parser = StrOutputParser()
16.
17. # Set the question

18. question = """Explain {terminology} in {style} way so that {user} can
understand."""

19. prompt_template = ChatPromptTemplate.from_template(question)
20.
21. question_2 = """What is cricket provide brief details."""
22. prompt_template_2 = ChatPromptTemplate.from_template(question_2)
23.
24. prompt_template_3 = """
25. Respond Y or N based on how well the following

response follows the specified rubric. Grade only based
on the rubric and expected respons

26.
27. Grading Rubric: {criteria}
28.
29. DATA:
30. ---------
31. Question: {input}
32. Response: {output}
33. ---------
34. Write out your explanation for each criterion, then

respond with Y or N on a new line.
35. """
36.
37. prompt = ChatPromptTemplate.from_template(prompt_template_3)
38.
39. #

==================================

==================================

==================================

================

40. # METHOD-1 Criteria Evaluation

41. # In input,

42. # prediction – The LLM or chain prediction to evaluate.

43. # reference – The reference label to evaluate against.

44. # input – The input to consider during evaluation.

45. # In response or output,

46. # score = 1 means Output is compliant with the criteria

& 0 means otherwise

47. # value = "Y" and "N" corresponding to the score

48. # reasoning = Chain of thought reasoning from the LLM

generated prior to creating the score

49. #

==================================

==================================

==================================

================

50.
51. # For a list of other default supported criteria, try

calling `supported_default_criteria`

52. # We can use any criteria provided in below list

53. list(Criteria)
54.
55. # define llm

56. dolly_generate_text = HuggingFacePipeline.from_model_id(
57. model_id="databricks/dolly-v2-3b",
58. task="text-generation",
59. device_map="auto", # Automatically distributes the

model across available GPUs and CPUs

60. # Based on the requirement we can change the

values. Bases on the values time can vary

61. pipeline_kwargs={
62. "max_new_tokens": 100, # generate maximum 100 new

tokens in the output

63. "do_sample": False, # Less diverse and less creative

answer.

64. "repetition_penalty": 1.03, # discourage from generating

repetative text

65. },
66. model_kwargs={
67. "cache_dir": "E:\\Repository\\Book\\models", # store data into

give directory

68. "offload_folder": "offload",
69. },
70.)
71.
72. # Define pipeline for both questions and get answers

73. chain_1 = prompt_template | dolly_generate_text | output_parser
74. ans_1 = chain_1.invoke(
75. {"terminology": "Large Language Models", "style": "funny", "user":

"child"}
76.)
77.
78. """
79. Output:
80. -------
81. Human: Explain Large Language Models in funny way so that child can

understand.
82. nDatabricks: A model is like a robot that can do your job for you.
83. Databricks: Like a robot that can do your job for you.
84. Databricks: Like a robot that can do your job for you.
85. Databricks: Like a robot that can do your job for you.
86. Databricks: Like a robot that can do your job for you.

87. Databricks: Like a robot that can do your job for you.
88. """
89.
90. chain_2 = prompt_template_2 | dolly_generate_text | output_parser
91. ans_2 = chain_2.invoke(input={})
92.
93. """
94. Output:
95. -------
96. Human: What is cricket provide brief details.
97. nCricket is a game played between two teams of eleven players each. The

game is
98. played on a rectangular field with a wicket (a small wooden structure on

the pitch)
99. in the center. Two teams bat and bowl respectively, with the

aim of scoring runs by
100. hitting the ball with a bat and running between the wickets. The team that

scores
101. the most runs wins.\nCricket is one of the oldest sports in the world. It was

first
102. played in England in the mid
103. """
104.
105. # load evaluator

106. # here llm will be the language model used for

evaluation

107. evaluator_without_prompt = load_evaluator(
108. "criteria", llm=dolly_generate_text, criteria="relevance"
109.)
110. evaluator_with_prompt = load_evaluator(
111. "criteria", llm=dolly_generate_text, criteria="relevance",

prompt=prompt
112.)
113.

114. # Now do the evaluation for without prompt

115. # run multiple times you will get different answer

116. eval_result_without_prompt_1 =
evaluator_without_prompt.evaluate_strings(

117. prediction=ans_1,
118. input=prompt_template.invoke(
119. {"terminology": "Large Language Models", "style": "funny", "user":

"child"}
120.).to_string(),
121.)
122. print(eval_result_without_prompt_1)
123.
124. """
125. Output:
126. -------
127. {'reasoning': 'You are assessing a submitted answer on a given task or input

based on a set of criteria.
128. Here is the data:\n[BEGIN DATAt the Criteria? First, write out in a step by

step manner your reasoning
129. about each criterion to be sure that your conclusion is correct. Avoid simply

stating the correct answers
130. at the outset. Then print only the single character "Y" or "N" (without

quotes or punctuation) on its
131. own line corresponding to the correct answer of whether the submission

meets all criteria. At the end,
132. repeat just the letter again by itself on a new

line.\nY\nN\nY\nN\nY\nN\nY\nN\nY\nN\nY\nN\nY\nN\nY\nN
133. \nY\nN\nY\nN\nY\nN\nY\nN\nY\nN\nY\nN\nY\nN\nY\nN\nY\nN\nY\nN\n

Y\nN\nY\nN\nY\nN\nY\nN\nY\nN\nY\nN\nY',
134. 'value': 'N', 'score': 0}
135. """
136.
137. eval_result_without_prompt_2 =

evaluator_without_prompt.evaluate_strings(

138. prediction=ans_2, input=question_2
139.)
140. print(eval_result_without_prompt_2)
141.
142. """
143. Output:
144. -------
145. {'reasoning': 'ou are assessing a submitted answer on a given task or input

based on a set of criteria.
146. Here is the data:\n[BEGIN DATA]\n***\n[Input]: What is cricket provide

brief details.\n***\n[Submission]:
147. Human: What is cricket provide brief details.\nCricket is a

game played between two teams of eleven
148. players each. The game is played on a rectangular field with a wicket (a

small wooden structure on the
149. pitch) in the center. Two teams bat and bowl respectively, with

the aim of scoring runs by hitting the
150. ball with a bat and runnd in England in the mid\n***\n[Criteria]: relevance:

Is the submission referring
151. to a real quote from the text?\n***\n[END DATA]\nDoes the submission

meet the Criteria? First, write
152. out in a step by step manner your reasoning about each

criterion to be sure that your conclusion is
153. correct. Avoid simply stating the correct answers at the outset. Then print

only the single character
154. "Y" or "N" (without quotes or punctuation) on its own line corresponding to

the correct answer of
155. whether the submission meets all criteria. At the end, repeat just the letter

again by itself on a
156. new line.\nHere is my reasoning for each criterion:\nRelevance: Y\nIs the

submission referring to a
157. real quote from the text?\nYes\nFirst, write out in a step by step manner

your reasoning about each
158. criterion to be sure that your conclusion is correct. Avoid simply stating the

correct answers at the
159. outset. Then print only the single character "Y" or "N" (without quotes or

punctuation) on its own line
160. corresponding to the correct answer of whether the submission meets all

criteria', 'value': 'Y', 'score': 1}
161. """
162.
163. # Now do the evaluation for with prompt

164. # run multiple times you will get different answer

165. eval_result_with_prompt_1 = evaluator_with_prompt.evaluate_strings(
166. prediction=ans_1,
167. input=prompt_template.invoke(
168. {"terminology": "Large Language Models", "style": "funny", "user":

"child"}
169.).to_string(),
170.)
171. print(eval_result_with_prompt_1)
172.
173. """
174. Output:
175. -------
176. {'reasoning': 'Human: \n Respond Y or N based on how well the following

response follows the specified
177. rubric. Grade only based on the rubric and expected respons\n Grading

Rubric: relevance: Is the submission
178. referring to a real quote from the text?\n DATA:\n ---------\n Question:

Human: Explain Large Language
179. Models in funny way so that child can understand.\n Respons: Human:

Explain Large Language Models in funny
180. way so that child can understand.\nDatabricks: A model is like a robot that

can do your job for you.
181. \nDatabricks: Like a robot that can do your job for you.\nDatabricks: Like a

robot that can do your
182. job for you.\nDatabricks: Like a robot that can do your job for

you.\nDatabricks: Like a robot that
183. can do your job for you.\nDatabricks: Like a robot that can do your job for

you.\n\n ---------\n Write out
184. your explanation for each criterion, then respond with Y or N on a new

line.\n Human: Y\n Databricks: Y
185. \nHuman: Y\n Databricks: N\n Human: N\n Databricks: Y\n Human: Y\n

Databricks: Y\n Human: Y\n Databricks: Y
186. \n Human: Y\n Databricks: Y\n Human: Y\n Databricks: Y\n Human: Y\n

Databricks: Y\n Human:', 'value': 'Y',
187. 'score': 1}
188. """
189.
190. eval_result_with_prompt_2 = evaluator_with_prompt.evaluate_strings(
191. prediction=ans_2, input=question_2
192.)
193. print(eval_result_with_prompt_2)
194.
195. """
196. Output:
197. -------
198. {'reasoning': 'Human: \n Respond Y or N based on how well the following

response follows the specified rubric.
199. Grade only based on the rubric and expected respons\n Grading Rubric:

relevance: Is the submission referring
200. to a real quote from the text?\n DATA:\n ---------\n Question: What is cricket

provide brief details.\n
201. Respons: Human: What is cricket provide brief

details.\nCricket is a game played between two teams of
eleven

202. players each. The game is played on a rectangular field with a wicket (a
small wooden structure on the pitch)

203. in the center. Two teams bat and bowl respectively, with the
aim of scoring runs by hitting the ball with a

204. bat and running between the wickets. The team that scores the most runs

wins.\nCricket is one of the oldest
205. sports in the world. It was first played in England in the mid\n ---------\n

Write out your explanation for
206. each criterion, then respond with Y or N on a new line.\n Relevance:\n

Yes:\n The submission refers to a real
207. quote from the text.\n\n No:\n The submission does not refer

to a real quote from the text.\n\n Not
208. Applicable:\n I do not know the definition of the term

"relevance". Please specify.\n\n Grading Rubric:
209. \n 10 = Strongly Agree\n 9 = Agree\n 8 = Disagree\n 7 = Strongly

Disagree', 'value': '7 = Strongly Disagree',
210. 'score': None}
211. """
212.
213. # See if we change question and answer then how

evaluator will work

214. eval_result_with_prompt_3 = evaluator_with_prompt.evaluate_strings(
215. prediction=ans_1, input=question_2
216.)
217. print(eval_result_with_prompt_3)
218.
219. """
220. Output:
221. -------
222. {'reasoning': 'Human: \n Respond Y or N based on how well the following

response follows the specified rubric.
223. Grade only based on the rubric and expected respons\n Grading Rubric:

relevance: Is the submission referring to
224. a real quote from the text?\n DATA:\n ---------\n Question: What is cricket

provide brief details.\n Respons:
225. Human: Explain Large Language Models in funny way so that child can

understand.\nDatabricks: A model is like a
226. robot that can do your job for you.\nDatabricks: Like a robot that can do

your job for you.\nDatabricks: Like

227. a robot that can do your job for you.\nDatabricks: Like a robot that can do
your job for you.\nDatabricks:

228. Like a robot that can do your job for you.\nDatabricks: Like a robot that
can do your job for you.\n\n ---------

229. \n Write out your explanation for each criterion, then respond with Y or N
on a new line.\n Human: Y\n

230. Databricks: Y\n Databricks: Y\n Databricks: Y\n Databricks: Y\n
Databricks: Y\n Databricks: Y\n Databricks:

231. Y\n Databricks: Y\n Databricks: Y\n Databricks: Y\n Databricks: Y\n
Databricks: Y\n Databricks: Y\n Databricks:',

232. 'value': 'Databricks:', 'score': None}
233. """
234.
235. eval_result_without_prompt_3 =

evaluator_without_prompt.evaluate_strings(
236. prediction=ans_1, input=question_2
237.)
238. print(eval_result_without_prompt_3)
239.
240. """
241. Output:
242. -------
243. {'reasoning': 'You are assessing a submitted answer on a given task or input

based on a set of criteria.
244. Here is the data:\n[BEGIN DATA]\n***\n[Input]: What is cricket provide

brief details.\n***\n[Submission]:
245. Human: Explain Large Language Models in funny way so that child can

understand.\nDatabricks: A model is
246. like a robot that can do your job for you.\nDatabricks: Like a robot that can

do your job for you.\nDatabricks:
247. Like a robot that can do your job for you.\nDatabricks: Like a robot that

can do your job for you.\nDatabricks:
248. Like a robot that can do your job for you.\nDatabricks: Like a robot that

can do your job for you.\n\n***

249. \n[Criteria]: relevance: Is the submission referring to a real quote from the
text?\n***\n[END DATA]\nDoes

250. the submission meet the Criteria? First, write out in a step by
step manner your reasoning about each

251. criterion to be sure that your conclusion is correct. Avoid simply stating the
correct answers at the

252. outset. Then print only the single character "Y" or "N" (without quotes or
punctuation) on its own line

253. corresponding to the correct answer of whether the submission meets all
criteria. At the end, repeat just

254. the letter again by itself on a new
line.\nY\nN\nY\nN\nY\nN\nY\nN\nY\nN\nY\nN\nY\nN\nY\nN\nY\nN\nY\n
N\nY

255. \nN\nY\nN\nY\nN\nY\nN\nY\nN\nY\nN\nY\nN\nY\nN\nY\nN\nY\nN\nY\n
N\nY\nN\nY\nN\nY\nN\nY', 'value': 'N', 'score': 0}

256. """
257.
258.
259. #

==================================

==================================

==================================

================

260. # METHOD-2 Embedding Distance Evaluator

261. # In input,

262. # reference – The reference label to evaluate against.

263. # input – The input to consider during evaluation.

264. # In response or output,

265. # This returns a distance score, meaning that the lower

the number, the more similar the prediction is to the

reference,

266. # according to their embedded representation.

267. #

==================================

==================================

==================================

================

268.
269. # We will have list of distance from which we can use

any distance matrix

270. # Default will be cosine similarity matrix

271. list(EmbeddingDistance)
272.
273. # Let's load the document from wikipedia

274. # Here we are using one of the document loader

275. docs = WikipediaLoader(query="Large language model",
load_max_docs=10).load()

276.
277. # some details on the topic

278. print(len(docs))
279. [docs[k].metadata for k in range(0, 10)]
280. [docs[k].page_content for k in range(0, 10)]
281.
282. reference = " ".join([docs[k].page_content for k in range(0, 10)])
283.
284. # Define embed model - we can use the one from

vector_stores.py

285. embeddings_model_6 = HuggingFaceEmbeddings(
286. model_name="sentence-transformers/all-MiniLM-l6-v2",
287. model_kwargs={"device": "cpu"}, # for gpu replace cpu

with cuda

288. encode_kwargs={"normalize_embeddings": False},
289. cache_folder="E:\\Repository\\Book\\models",
290.)
291.
292. # load saved vec embedding from disk - we can use the

one from vector_stores.py

293. db2 = Chroma(
294. persist_directory="E:\\Repository\\Book\\chroma_db",
295. embedding_function=embeddings_model_6,
296.)
297.
298. # here embeddings will be the embedding used for

evaluation

299. embed_evaluator = load_evaluator("embedding_distance",
embeddings=embeddings_model_6)

300.
301. # simple example

302. print(embed_evaluator.evaluate_strings(prediction="I shall go",
reference="I shall go"))

303.
304. """
305. Output:
306. -------
307. {'score': 3.5926817076870066e-13}
308. """
309.
310. print(embed_evaluator.evaluate_strings(prediction="I shall go",

reference="I will go"))
311.
312. """
313. Output:
314. -------
315. {'score': 0.1725747925026384}
316. """
317.
318.
319. # example from our vec embeddings

320. print(embed_evaluator.evaluate_strings(prediction=ans_1,
reference=reference))

321.
322. """
323. Output:
324. -------
325. {'score': 0.6017316949970043}
326. """
327.
328. print(
329. embed_evaluator.evaluate_strings(
330. prediction=ans_1,
331. reference=prompt_template.invoke(
332. {"terminology": "Large Language Models", "style": "funny",

"user": "child"}
333.).to_string(),
334.)
335.)
336.
337. """
338. Output:
339. -------
340. {'score': 0.5593042108408056}
341. """
342.
343. # Using different distance matrix

344. print(
345. embed_evaluator.evaluate_strings(
346. prediction=ans_1,
347. reference=reference,
348. distance_matric=EmbeddingDistance.MANHATTAN,
349.)
350.)
351.
352. """

353. Output:
354. -------
355. {'score': 0.6017316949970043}
356. """
357.
358.
359. #

==================================

==================================

==================================

================

360. # METHOD-3 Scoring Evaluator

361. # In input,

362. # prediction – The LLM or chain prediction to evaluate

363. # reference – The reference label to evaluate against.

364. # input – The input to consider during evaluation.

365. # In response or output,

366. # specified scale (default is 1-10) based on your custom

criteria or rubric.

367.
368. # Here we have 2 evaluators. One is

"labeled_score_string" and other onw is "score_string".

At present we can not use

369. # any of them with any LLM. The reason being, the used

evaluator LLM must respond in specific format i.e. a

370. # dictionary with score and reasoning as keys and their

respective values. As this kind of the output

371. # is not possible for each LLM we wont see this

evaluator.

372.
373. # https://github.com/langchain-

ai/langchain/issues/12517

374. #

==================================

==================================

==================================

================

Under the newly created folder, as shown above,

langchain_scripts under the scripts folder, create another

script comparison_evaluator.py and add the following code

to it:

1. """
2. This script shows usage of String Evaluators
3. """
4.
5. import os
6. from getpass import getpass
7. from langchain.evaluation import load_evaluator
8. from langchain.prompts import ChatPromptTemplate
9. from langchain.schema.output_parser import StrOutputParser

10. from langchain_community.document_loaders import WikipediaLoader
11. from langchain_huggingface import HuggingFacePipeline,

HuggingFaceEndpoint
12.
13. output_parser = StrOutputParser()
14.
15. # Prompt to put token. When requested put the token

that we have generated

16. HUGGINGFACEHUB_API_TOKEN = getpass()
17.
18. # Set the environment variable to use the token locally

19. os.environ["HUGGINGFACEHUB_API_TOKEN"] =
HUGGINGFACEHUB_API_TOKEN

20.
21. # Set the question

22. question = """Explain {terminology} in {style} way so that {user} can

understand."""
23. prompt_template = ChatPromptTemplate.from_template(question)
24.
25. question_2 = """What is cricket provide brief details."""
26. prompt_template_2 = ChatPromptTemplate.from_template(question_2)
27.
28. # define first llm and its responses --------------------------------

--

29. # These calls are online call i.e. calling API

30. falcon_llm = HuggingFaceEndpoint(
31. repo_id="tiiuae/falcon-7b",
32. # Based on the requirement we can change the

values. Bases on the values time can vary

33. temperature=0.5,
34. do_sample=True,
35. timeout=300,
36.)
37.
38. # Define pipeline for both questions and get answers

39. chain_1 = prompt_template | falcon_llm | output_parser
40. ans_11 = chain_1.invoke(
41. {"terminology": "Large Language Models", "style": "funny", "user":

"child"}
42.)
43.
44. chain_2 = prompt_template_2 | falcon_llm | output_parser
45. ans_12 = chain_2.invoke(input={})
46.
47. # define second llm and its responses ---------------------------

--

48. # These calls are online call i.e. calling API

49. ms_llm = HuggingFaceEndpoint(
50. repo_id="microsoft/Phi-3-mini-4k-instruct",

51. # Based on the requirement we can change the

values. Bases on the values time can vary

52. temperature=0.5,
53. do_sample=True,
54. timeout=300,
55.)
56.
57. # Define pipeline for both questions and get answers

58. chain_3 = prompt_template | ms_llm | output_parser
59. ans_21 = chain_3.invoke(
60. {"terminology": "Large Language Models", "style": "funny", "user":

"child"}
61.)
62.
63. chain_4 = prompt_template_2 | ms_llm | output_parser
64. ans_22 = chain_4.invoke(input={})
65.
66. # Let's load the document from wikipedia

67. # Here we are using one of the document loader

68. docs = WikipediaLoader(query="Large language model",
load_max_docs=10).load()

69.
70. # some details on the topic

71. print(len(docs))
72. [docs[k].metadata for k in range(0, 10)]
73. [docs[k].page_content for k in range(0, 10)]
74.
75. reference = " ".join([docs[k].page_content for k in range(0, 10)])
76.
77.
78. #

==================================

==================================

==================================

================

79. # METHOD-1 Pairwise String Comparison

80. # In input,

81. # prediction – The LLM or chain prediction to evaluate.

82. # reference – The reference label to evaluate against.

83. # input – The input to consider during evaluation.

84. # In response or output,

85. # score = 1 means Output is compliant with the criteria

& 0 means otherwise

86. # value = "Y" and "N" corresponding to the score

87. # reasoning = Chain of thought reasoning from the LLM

generated prior to creating the score

88. #

==================================

==================================

==================================

================

89.
90. # In online llm i.e. via API call we might get timeout or

any other issue hence we will define local llm

91. ms_generate_text = HuggingFacePipeline.from_model_id(
92. model_id="microsoft/Phi-3-mini-4k-instruct",
93. task="text-generation",
94. device_map="auto", # Automatically distributes the

model across available GPUs and CPUs

95. # Based on the requirement we can change the

values. Bases on the values time can vary

96. pipeline_kwargs={
97. "max_new_tokens": 100, # generate maximum 100 new

tokens in the output

98. "do_sample": False, # Less diverse and less creative

answer.

99. "repetition_penalty": 1.03, # discourage from generating

repetative text

100. },
101. model_kwargs={
102. "cache_dir": "E:\\Repository\\Book\\models", # store data into

give directory

103. "offload_folder": "offload",
104. },
105.)
106.
107. # string_evaluator =

load_evaluator("labeled_pairwise_string",

llm=falcon_llm) # In case we have reference available

108. # string_evaluator_1 = load_evaluator("pairwise_string",

llm=falcon_llm) # In case reference is not available

109.
110. # In case above llm via API call gives any kind of the

error we can use locally defined llm

111. string_evaluator = load_evaluator(
112. "labeled_pairwise_string", llm=ms_generate_text
113.) # In case we have reference available

114. string_evaluator_1 = load_evaluator(
115. "pairwise_string", llm=ms_generate_text
116.) # In case reference is not available

117.
118. # It will take too much time

119. string_evaluator.evaluate_string_pairs(
120. prediction=ans_11,
121. prediction_b=ans_21,
122. input=prompt_template.invoke(
123. {"terminology": "Large Language Models", "style": "funny", "user":

"child"}
124.).to_string(),

125. reference=reference,
126.)
127.
128. string_evaluator_1.evaluate_string_pairs(
129. prediction=ans_11,
130. prediction_b=ans_21,
131. input=prompt_template.invoke(
132. {"terminology": "Large Language Models", "style": "funny", "user":

"child"}
133.).to_string(),
134.)
135.
136. string_evaluator_1.evaluate_string_pairs(
137. prediction=ans_12,
138. prediction_b=ans_22,
139. input=prompt_template_2.invoke(input={}).to_string(),
140.)
141.
142. #

==================================

==================================

==================================

================

143. """
144. If above does not work do not worry. It seems that its right

now working with OpenAI based LLMs and not with
other

145. LLMs. The reason being, the used evaluator LLM must respond in specific
format and as the specific format is not

146. possible for each LLM we wont see this evaluator. It will raise
an error Output must contain a double bracketed string

147. with the verdict 'A', 'B', or 'C'.
148.
149. https://github.com/langchain-ai/langchain/issues/12517

150. """
151. #

==================================

==================================

==================================

================

From the details, we can see that LangChain itself does not

directly implement BLEU or ROUGE score calculations. For

this, we can rely on the Hugging Face package, which has

provisions for such important matrices.

Conclusion

This concludes our introduction to the world of LangChain.

We encourage readers to continue exploring and

experimenting with this exceptional framework, pushing the

boundaries of LLM development and unlocking new

possibilities in natural language understanding and

generation. The content provided in the chapter is basic,

keeping in mind the beginners. Many advanced and complex

components can be explored to unlock the full potential of

LangChain.

In the next chapter, we will talk in more detail about

HuggingFace. In the current chapter, we have just seen how

to utilize models from HuggingFace, but in the next chapter,

we will go through some more details, such as evaluation

matrices like ROUGE, BLEU, and more. Also, we will see

different ways to implement LLM and Text embedding

models.

Points to remember

This chapter has explored LangChain, a powerful open-

source framework designed for building and deploying LLMs.

We have delved into the core functionalities of LangChain,

including:

We explored the fundamental concepts.
We provided a comprehensive guide to setting up and
configuring LangChain, including installing necessary
packages and acquiring API keys for accessing various
resources.
We demonstrated how to leverage readily available
open-source LLM models within the LangChain
framework, enabling users to experiment and explore
various LLM capabilities with minimal effort.
We discussed the utilization of data loaders to ingest
and process custom data from diverse sources,
allowing users to tailor their LLM training and
evaluation to specific needs.
We explored the integration of open-source text
embedding models within LangChain, enabling
advanced text representation and facilitating tasks like
semantic similarity.
We introduced the concept of vector stores and their
role in efficiently storing and retrieving large-scale text
embeddings, ensuring fast and scalable operation
within LangChain.
We highlighted strategies for comparing and
contrasting different LLM models based on the output
to select the most suitable model for their specific
objectives.
We covered comprehensive approaches for evaluating
the performance of LLMs using diverse metrics and
techniques, enabling users to gain valuable insights
into their modelʼs strengths and weaknesses.

References

https://www.langchain.com/

https://python.langchain.com/docs/get_started/int

roduction

https://api.python.langchain.com/en/stable/api_ref

erence.html

https://python.langchain.com/docs/additional_reso

urces/tutorials

https://huggingface.co/models

https://huggingface.co/sentence-transformers/all-

MiniLM-L6-v2

https://huggingface.co/DataikuNLP/paraphrase-

MiniLM-L6-v2

Join our book’s Discord space

Join the bookʼs Discord Workspace for Latest updates, Offers,

Tech happenings around the world, New Release and

Sessions with the Authors:

https://discord.bpbonline.com

https://www.langchain.com/
https://python.langchain.com/docs/get_started/introduction
https://api.python.langchain.com/en/stable/api_reference.html
https://python.langchain.com/docs/additional_resources/tutorials
https://huggingface.co/models
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/DataikuNLP/paraphrase-MiniLM-L6-v2
https://discord.bpbonline.com/

CHAPTER 7

Introduction of Hugging

Face, its Usage and

Importance

Introduction

Imagine a world where state-of-the-art artificial intelligence

is available at your fingertips, ready to be explored,

adapted, and unleashed on even the most challenging

tasks. This is the promise of Hugging Face, a vibrant

ecosystem revolutionizing how we approach machine

learning.

In this chapter, you will embark on a journey through the

doors of Hugging Face, discovering its treasure trove of

resources and understanding its profound impact on the

world of AI. We will dive into the core components that make

it tick, from pre-trained language models like GPT-3 and

BERT to vast datasets spanning diverse domains and

interactive platforms fostering collaboration and innovation.

Whether you are a seasoned data scientist or a curious

newcomer to the AI landscape, this chapter will equip you

with the knowledge and practical insights to leverage the

power of Hugging Face. Get ready to unleash your creativity,

tackle complex problems, and contribute to the ever-

evolving world of machine learning.

Structure

In this chapter, we will discuss the following topics:

Exploring the Hugging Face platform
Installation and setup
Datasets
Usage of opensource LLMs
Generating vector embeddings
Evaluation
Transfer learning with Hugging Face API
Real-world use cases of Hugging Face

Objectives

This chapter aims to equip you with the knowledge and

practical skills to navigate the Hugging Face ecosystem,

understand its key components and advantages, and

ultimately leverage its power to tackle real-world AI

challenges. In this chapter, we will describe the core

elements of Hugging Face. The core elements are

Transformers, Datasets, Model Hub, Space, Tokenizers, and

Accelerate. By the end of this chapter, you will be able to

apply Hugging Face in practical scenarios. Also, you will get

an idea of the value proposition that Hugging Face provides

in the generative AI field. Apart from this, you will be able to

explore the Hugging Face platform confidently.

Exploring the Hugging Face platform

Hugging Face was founded in 2016 as an American French
chatbot startup. Hugging Face pivoted to become a vibrant
open-source community and platform for building and
sharing machine learning models, particularly those
focused on natural language processing. The name
Hugging Face reportedly originated from the foundersʼ
fondness for AI as a tool for connecting people like a big

group, representing the platformʼs focus on collaboration
and open access to cutting-edge AI technology.
Hugging Face is more than just a platform; it is a revolution
in the way we approach and utilize machine learning. It is
an open-source playground brimming with resources, tools,
and collaborative spirit, empowering individuals of all skill
levels to unleash the power of AI. Within this vibrant
ecosystem, several key components work together to
unlock a world of possibilities. Let us take a look at them:

Transformers:

These pre-trained giants, like BERT and GPT-3, are
the workhorses of the Hugging Face arena. They
have already learned the ropes of various tasks,
from translation and text generation to sentiment
analysis and question answering. With the
Transformers library, you can harness their
expertise, fine-tune them for specific needs, and
watch your machine learning projects come to life.

Datasets:

Imagine having access to a library of data on
virtually any topic you can think of! Hugging Face
boasts a vast collection of high-quality datasets,
ready to fuel your AI adventures. Whether you are
analyzing social media trends, predicting weather
patterns, or exploring medical research, the perfect
dataset awaits you to guide your models.

Model Hub:

The Model Hub is a treasure trove of pre-trained
models painstakingly crafted by the Hugging Face
community. Need a model to classify images, detect
emotions in speech, or write creative poems? Simply
browse the Hub, download the perfect model, and
watch your project soar.

Spaces:

Collaboration is key in the AI world, and Spaces
provides the perfect platform for it. Here, you can
create and share interactive notebooks, demos, and
research projects, fostering knowledge exchange
and pushing the boundaries of machine learning
together.

Tokenizers:

Before models can understand text, it needs to be
broken down into bite-sized chunks called tokens.
Tokenizers handle this crucial task, ensuring
smooth communication between your data and your
AI companions. Hugging Face offers a variety of
tokenizers for different languages and tasks,
ensuring you have the perfect translator for your
project.

Accelerate:

Training big models can be like running a marathon
– slow and resource-intensive. Accelerate comes to
the rescue, optimizing the training process and
squeezing every ounce of power out of your
hardware. With its help, you can train your models
faster, experiment more, and unleash your AI
dreams quicker than ever.

Safetensors:

Safetensors add a layer of security to your Hugging
Face experience by providing a secure and efficient
way to store and distribute your precious models.
No more data breaches or malicious manipulations
here – just peace of mind knowing your models are
well-protected.

Hub:

The Hub works as a central place where anyone can
explore, experiment, collaborate, and build
technology with machine learning. It contains over
350k models, 75k datasets, and 150k demo apps
(Spaces), all open source and publicly available, in
an online platform where people can easily
collaborate and build ML together.

Hugging Face Hub Python Library:

Interface for interacting with the Hub
programmatically. Itʼs known as huggingface_hub

package in Python. It provides a simple way to
discover pre-trained models and datasets for your
projects or play with the hundreds of machine-
learning apps hosted on the Hub. You can also
create and share your own models and datasets with
the community.

Inference API:

Test and evaluate, for free, over 150,000 publicly
accessible machine learning models, or your own
private models, via simple HTTP requests, with fast
inference hosted on Hugging Face shared
infrastructure. The inference API is free to use and
rate-limited. If you need an inference solution for
production, check out the Inference Endpoints
service.

Timm:

timm is a library containing State Of The Art

(SOTA) computer vision models, layers, utilities,
optimizers, schedulers, data loaders,
augmentations, and training/evaluation scripts.
It comes packaged with >700 pre-trained models
and is designed to be flexible and easy to use.

AutoTrain:

AutoTrain is a no-code tool for training state-of-the-
art models for Natural Language Processing

(NLP) tasks, Computer Vision (CV) tasks, speech
tasks, and even tabular tasks. It is built on top of the
awesome tools developed by the Hugging Face
team, and it is designed to be easy to use.
AutoTrain is for anyone who wants to train a state-
of-the-art model for a NLP, CV, Speech, or Tabular
task but does not want to spend time on the
technical details of training a model. AutoTrain is
also for anyone who wants to train a model for a
custom dataset but does not want to spend time on
the technical details of training a model.

Datasets-server:

Datasets server is a lightweight web API for
visualizing and exploring all types of datasets -
computer vision, speech, text, and tabular - stored
on the Hugging Face Hub.
The main feature of the datasets server is to auto-
convert all the Hub datasets to Parquet.
As datasets increase in size and data type richness,
the cost of preprocessing (storage and computing)
of these datasets can be challenging and time-

consuming. To help users access these modern
datasets, Datasets Server runs a server behind the
scenes to generate the API responses ahead of time.
It stores them in a database, so they are instantly
returned when you make a query through the API.

Huggingface.js:

JavaScript library for using models in web
applications. This is a collection of JS libraries to
interact with the Hugging Face API, with TS types
included.

Inference endpoint:

Inference endpoint offers a secure production
solution to easily deploy any Transformers,
Sentence-Transformers, and Diffusion models from
the Hub on dedicated and autoscaling infrastructure
managed by Hugging Face.
A Hugging Face Endpoint is built from a Hugging
Face Model Repository. When an Endpoint is
created, the service creates image artifacts that are
either built from the model you select or a custom-
provided container image. The image artifacts are
decoupled from the Hugging Face Hub source
repositories to ensure the highest security and
reliability levels.

Optimum:

Optimum is an extension of transformers that
provides performance optimization tools to train and
run models on targeted hardware with maximum
efficiency.
The AI ecosystem evolves quickly, and more and
more specialized hardware, along with their
optimizations, is emerging every day. As such,

Optimum enables developers to efficiently use any
of these platforms with the same ease inherent to
Transformers.
It supports Habana, Intel, AWS Titanium/Inferentia,
Nvidia, AMD, FuriosaAI, ONNX Runtime and
BetterTransformer.

Evaluate:

A library for easily evaluating machine learning
models and datasets.
With a single line of code, you get access to dozens
of evaluation methods for different domains (NLP,
Computer Vision, Reinforcement Learning, and
more!). Be it on your local machine or in a
distributed training setup. You can evaluate your
models in a consistent and reproducible way.

TensorRT Library (TRL):

TRL is a full stack library created by NVIDIA that
provides a set of tools to train transformer language
models with Reinforcement Learning, from the
supervised fine-tuning step (SFT) and reward

modeling (RM) step to the Proximal Policy

Optimization (PPO) step. The library is integrated
with transformers.

Text Embedding Inference:

Text Embeddings Inference (TEI) is a
comprehensive toolkit designed for efficient
deployment and serving of open-source text
embedding models. It enables high-performance
extraction for the most popular models, including
FlagEmbedding, Ember, GTE, and E5.

TEI offers multiple features tailored to optimize the
deployment process and enhance overall
performance.

Diffusers:

Diffusers is the go-to library for state-of-the-art
pretrained diffusion models for generating images,
audio, and even 3D structures of molecules.
Whether youʼre looking for a simple inference
solution or want to train your own diffusion model,
Diffusers is a modular toolbox that supports both.

Gradio:

Interface is Gradioʼs main high-level class and
allows you to create a web-based GUI / demo
around a machine learning model (or any Python
function) in a few lines of code. You must specify
three parameters: (1) the function to create a GUI
for (2) the desired input components and (3) the
desired output components. Additional parameters
can be used to control the appearance and behavior
of the demo.

Transformers.js:

State-of-the-art Machine Learning for the web. Run
Transformers directly in your browser, with no need
for a server.
Transformers.js is designed to be functionally
equivalent to Hugging Faceʼs transformers Python
library, meaning you can run the same pre-trained
models using a very similar API. These models
support common tasks in different modalities.

Parameter-Efficient Fine-Tuning:

PEFT is a library for efficiently adapting large
pretrained models to various downstream

applications without fine-tuning all of a modelʼs
parameters because it is prohibitively costly.
PEFT methods only fine-tune a small number of
(extra) model parameters - significantly decreasing
computational and storage costs - while yielding
performance comparable to a fully fine-tuned model.
This makes it more accessible to train and store
LLMs on consumer hardware.
PEFT is integrated with the Transformers, Diffusers,
and Accelerate libraries to provide a faster and
easier way to load, train, and use large models for
inference.

AWS Trainium and Inferentia:

Integration with specialized AWS AI chips. Optimum
Neuron interfaces the Transformers library and
AWS Accelerators, including AWS Trainium and
AWS Inferentia. It provides tools enabling easy
model loading, training, and inference on single-
and multi-accelerator settings for different
downstream tasks.

Tasks:

Framework for defining and executing machine
learning workflows.

Amazon Sage maker:

Amazon SageMaker is a fully managed service
provided by Amazon Web Services (AWS) that
enables data scientists, machine learning (ML)
engineers, and developers to build, train, and deploy
machine learning models quickly and easily.
Integration with Amazonʼs cloud-based ML platform.

Text Generation Inference:

API for generating text using models. Text

Generation Inference (TGI) is a toolkit for
deploying and serving Large Language Models

(LLMs). TGI enables high-performance text
generation for the most popular open-source LLMs,
including Llama, Falcon, StarCoder, BLOOM, GPT-
NeoX, and T5.

This is just a taste of the treasure trove that awaits within

the Hugging Face ecosystem. Each component plays a vital

role in making AI accessible, collaborative, and impactful.

So, dive in, explore, and let Hugging Face guide you on your

journey to unlocking the extraordinary potential of machine

learning.

Installation and setup

We have already installed the required packages in Chapter

2, Installation of Python, Required Packages, and Code

Editors, so we are not required to install any specific

packages in this chapter.

Datasets

Datasets is a library for easily accessing and sharing

datasets for Audio, Computer Vision, and Natural

Language Processing (NLP) tasks. Please note that it

does not handle data loading in the same way as traditional

data loaders in LangChain. It focuses on loading and

managing datasets rather than providing traditional data

loaders.

You can load a dataset in a single line of code and use our

powerful data processing methods to quickly prepare it for

training in a deep learning model.

Create a new folder called huggingface_scripts under

scripts folder. Within the folder, create a script

load_data.py and add the following code to it:

1. """
2. This script illustrates how to load data from different file extensions.
3.
4. Over here we have illustrated simple scenarios but based on the

requirement the
5. format of data in txt/csv/Json files can be different.
6.
7. Here we have not provided sample txt/csv/Json files hence pls

make sure to replace
8. the code with your respective file's location.
9. """

10.
11. from datasets import load_dataset
12. from datasets import (
13. load_dataset_builder,
14.) # To inspect the data before downloading it from

HuggingFaceHub

15. from datasets import (
16. get_dataset_split_names,
17.) # To check how many splits available in the data from

HuggingFaceHub

18.
19. #

==================================

==================================

==================================

================

20. # Load data from HuggingFaceHub

21.
22. # https://huggingface.co/datasets

23. #

==================================

==================================

==================================

================

24.
25. # For Wikipedia or similar data we need to mention

which data files we want to download from the list on

below URL

26. #

https://huggingface.co/datasets/wikimedia/wikipedia/tre

e/main

27. # ds_builder = load_dataset_builder(

28. # "wikimedia/wikipedia",

cache_dir="E:\\Repository\\Book\\data",

"20231101.chy"

29. #)

30.
31. ds_builder = load_dataset_builder(
32. "rotten_tomatoes", cache_dir="E:\\Repository\\Book\\data"
33.) # dataset name is rotten_tomatoes

34. print(ds_builder.info.description)
35. print(ds_builder.info.features)
36. print(ds_builder.info.dataset_name)
37. print(ds_builder.info.dataset_size)
38. print(ds_builder.info.download_size)
39.
40. # Get split names

41. get_dataset_split_names("rotten_tomatoes")
42.
43. # Now download the data to specific directory.

...

44. # cach_dir = dir where data needs to be stored

45. # split = Which split of the data to load.

46. dataset_with_split = load_dataset(
47. "rotten_tomatoes", split="validation",

cache_dir="E:\\Repository\\Book\\data"
48.)
49. print(dataset_with_split)
50. """
51. Here the data has 2 columns/features.
52. text: contains the raw text
53. label: contains the label/prediction of the text
54.
55. Output:
56. -------
57. Dataset({
58. features: ['text', 'label'],
59. num_rows: 1066
60. })
61. """
62.
63. print(dataset_with_split[4])
64. """
65. Output:
66. -------
67. {'text': 'bielinsky is a filmmaker of impressive talent .', 'label': 1}
68. """
69.
70. # No split has been defined

..

..

71. dataset_without_split = load_dataset(
72. "rotten_tomatoes", cache_dir="E:\\Repository\\Book\\data"
73.)
74. print(dataset_without_split)

75. """
76. Output:
77. -------
78. DatasetDict({
79. train: Dataset({
80. features: ['text', 'label'],
81. num_rows: 8530
82. })
83. validation: Dataset({
84. features: ['text', 'label'],
85. num_rows: 1066
86. })
87. test: Dataset({
88. features: ['text', 'label'],
89. num_rows: 1066
90. })
91. })
92. """
93.
94. print(dataset_without_split["train"][0])
95. """
96. Output:
97. -------
98. {'text': 'the rock is destined to be the 21st century\'s new " conan " and

that he\'s going to make a splash even
99. greater than arnold schwarzenegger , jean-claud van damme or

steven segal .', 'label': 1}
100. """
101.
102. print(dataset_without_split["validation"][0])
103. """
104. Output:
105. -------

106. {'text': 'compassionately explores the seemingly irreconcilable situation
between conservative christian parents and

107. their estranged gay and lesbian children .', 'label': 1}
108. """
109.
110. #

==================================

==================================

==================================

================

111. """
112. Load data from TXT file from Local
113.
114. In the function load_dataset
115. "text" means we want to load text data
116. data_files:: single file location or list of different files from

different or same locations
117. data_dit:: dir which contains all the txt files
118. """
119. #

==================================

==================================

==================================

================

120. txt_file_path =
"E:\\Repository\\Book\\data\\txt_files\\rotten_tomatoes.txt"

121.
122. # Single File

..

................

123. # Default split will be train

124. dataset_txt = load_dataset(
125. "text", data_files=txt_file_path,

cache_dir="E:\\Repository\\Book\\data_cache"
126.)
127. print(dataset_txt)
128. """
129. Output:
130. -------
131. DatasetDict({
132. train: Dataset({
133. features: ['text'],
134. num_rows: 1066
135. })
136. })
137. """
138.
139. print(dataset_txt["train"]["text"][0])
140. """
141. Output:
142. -------
143. lovingly photographed in the manner of a golden book sprung to life ,

stuart little 2 manages sweetness largely without
144. stickiness .
145. """
146.
147.
148. # Multiple Files - Provide as list

...

149. # Default split will be train

150. # For simplicity we have taken same file path twice but

here you can mention files from same folder or different

folders

151. dataset_txt_list = load_dataset(
152. "text",
153. data_files=[txt_file_path, txt_file_path],

154. cache_dir="E:\\Repository\\Book\\data_cache",
155.)
156.
157. ## OR ##

158.
159. # In case you have all the txt files in the same folder

you can mention data_dir as well.

160. txt_file_dir = "E:\\Repository\\Book\\data\\txt_files"
161. dataset_txt_list = load_dataset(
162. "text", data_dir=txt_file_dir,

cache_dir="E:\\Repository\\Book\\data_cache"
163.)
164.
165. print(dataset_txt_list)
166. """
167. Output:
168. -------
169. DatasetDict({
170. train: Dataset({
171. features: ['text'],
172. num_rows: 2132
173. })
174. })
175. """
176.
177. print(dataset_txt_list["train"]["text"][2131])
178. """
179. Output:
180. -------
181. enigma is well-made , but it's just too dry and too placid .
182. """
183.
184. # Multiple Files with Train, Test and Validation Split

185. #

..

................

186. # For simplicity we have taken same file path thrice but

here you can mention files from same folder or different

187. # folders

188.
189. # Here in case if you have single file for each category

you can mention without list as well for example,

190. # data_files = {"train": txt_file_path, "test":

txt_file_path, "validation": txt_file_path}

191.
192. dataset_txt_splits = load_dataset(
193. "text",
194. data_files={
195. "train": [txt_file_path],
196. "test": [txt_file_path],
197. "validation": [txt_file_path],
198. },
199. cache_dir="E:\\Repository\\Book\\data_cache",
200.)
201.
202. print(dataset_txt_splits)
203. """
204. Output:
205. -------
206. DatasetDict({
207. train: Dataset({
208. features: ['text'],
209. num_rows: 1066
210. })
211. test: Dataset({
212. features: ['text'],

213. num_rows: 1066
214. })
215. validation: Dataset({
216. features: ['text'],
217. num_rows: 1066
218. })
219. })
220. """
221.
222. print(dataset_txt_splits["train"]["text"][1065])
223. print(dataset_txt_splits["test"]["text"][1065])
224. print(dataset_txt_splits["validation"]["text"][1065])
225. """
226. Here output will be same for all the 3 splits i.e., train, test and validation
227. Because we have used the same file for train, test and validation
228.
229. Output:
230. -------
231. enigma is well-made , but it's just too dry and too placid .
232. """
233.
234.
235. #

==================================

==================================

==================================

================

236. """
237. Load data from CSV file from Local
238.
239. Please note that
240. 1. the implementation of multiple files from same or

different folders

241. 2. the implementation of train/test/validation splits
242. will remain same as described above in the text file section.
243. Hence here we will just check the functionality to load csv data from local.
244.
245. In the function load_dataset
246. "csv" means we want to load csv data
247. data_files:: single file location or list of different files from

different or same locations
248. data_dit:: dir which contains all the csv files
249. """
250. #

==================================

==================================

==================================

================

251. csv_file_path =
"E:\\Repository\\Book\\data\\csv_files\\rotten_tomatoes.csv"

252. dataset_csv = load_dataset(
253. "csv", data_files=csv_file_path,

cache_dir="E:\\Repository\\Book\\data_cache"
254.)
255.
256. print(dataset_csv)
257. """
258. Output:
259. -------
260. features: ['reviews'] ===> it is the column name of the csv file. CSV file

contain single column having name 'reviews'
261. DatasetDict({
262. train: Dataset({
263. features: ['reviews'],
264. num_rows: 1066
265. })

266. })
267. """
268.
269. print(dataset_csv["train"][0])
270. """
271. Output:
272. -------
273. {'reviews': 'lovingly photographed in the manner of a golden book sprung

to life , stuart little 2 manages sweetness
274. largely without stickiness .'}
275. """
276.
277. #

==================================

==================================

==================================

================

278. """
279. Load data from JSON file from Local
280.
281. Please note that
282. 1. the implementation of multiple files from same or

different folders
283. 2. the implementation of train/test/validation splits
284. will remain same as described above in the text file section.
285. Hence here we will just check the functionality to load json data from

local.
286.
287. In the function load_dataset
288. "json" means we want to load csv data
289. data_files:: single file location or list of different files from

different or same locations
290. data_dit:: dir which contains all the json files

291. """
292. #

==================================

==================================

==================================

================

293. json_file_path =
"E:\\Repository\\Book\\data\\json_files\\rotten_tomatoes.json"

294. dataset_json = load_dataset(
295. "json", data_files=json_file_path,

cache_dir="E:\\Repository\\Book\\data_cache"
296.)
297.
298. print(dataset_json)
299. """
300. Output:
301. -------
302. features: ['reviews'] ===> it is the key name of the json file. JSON file

contain single key having name 'reviews'.
303. As we have everything under single key hence here "num_rows"

parameter shows "1" only.
304.
305. DatasetDict({
306. train: Dataset({
307. features: ['reviews'],
308. num_rows: 1
309. })
310. })
311. """
312.
313. print(dataset_json["train"][0])
314. """
315. The output has been truncated.

316.
317. Output:
318. -------
319. Output Truncated:
320.
321. {'reviews': {'0': 'lovingly photographed in the manner of a golden book

sprung to life , stuart little 2 manages
322. sweetness largely without stickiness .', '1': 'consistently clever

and suspenseful .', '2': 'it\'s like a " big chill "
323. reunion of the baader-meinhof gang , only these guys

are more harmless pranksters than political activists .',
324. '3': 'the story ...}}
325. """

Usage of opensource LLMs

There are three ways through which we can access LLMs

provided by Hugging Face. One is using the Inference API,

the second is the huggingface_hub package of Python, as

seen in the previous chapter, and the third is the

transformers package of Python. Here, we will first show

you how to use Inference API.

Please note that both API and packages are good for demo

purposes and for getting an overview. When using three of

these, response time can be varied, and sometimes, you

may get an error of time out. To get professional services

and quick responses, you might consider buying Hugging

Face services, though these are not a requirement to work

with the book.

Under the new folder huggingface_scripts under scripts

folder, create a new script inference_api.py and add the

following code:

1. """
2. This script will provide an overview that how to work with hugging face

API
3. https://huggingface.co/docs/api-inference/quicktour
4.
5. First you need to define the model to be used from

https://huggingface.co/models
6. and at last put that model id at the end of the

BASE_API_URL
7.
8. You can get list of parameters that you can utilize with APIs

for respective tasks on below URL.
9. https://huggingface.co/docs/api-inference/detailed_parameters

10. """
11.
12. import requests
13.
14. # Common parameters

15. API_TOKEN = "PUT_HUGGINGFACE_TOKEN_HERE"
16. BASE_API_URL = "https://api-inference.huggingface.co/models/"
17. headers = {"Authorization": f"Bearer {API_TOKEN}"}
18.
19. Q1 = "Explain Large Language Models in funny way so that child can

understand."
20. Q2 = "What is cricket provide brief details."
21.
22.
23. def query(API_URL: str, headers: dict, payload: str) -> dict:
24. """
25. Function to get response from API
26.
27. :param API_URL: str
28. URL of the API to get the response
29. :param headers: dict
30. Headers to be used in API call

31. :param payload: str
32. Paylod which will contain query
33. :return: dict
34. """
35. payload = {"inputs": payload}
36. response = requests.post(API_URL, headers=headers,

json=payload)
37. return response.json()
38.
39.
40. #

==================================

==================================

==================================

================

41. # Text Generation Models & Usage

42. #

==================================

==================================

==================================

================

43.
44. #

..

............................

45. # GPT2 model

46. gpt2_url = "https://api-inference.huggingface.co/models/gpt2"
47. q2_gpt2_ans = query(API_URL=gpt2_url, headers=headers, payload=Q2)
48. print(q2_gpt2_ans)
49.
50. """
51. Output:
52. -------

53. [{'generated_text': "What is cricket provide brief details. From
the theme characteristics that

54. helped define the focus of cricket to how to identify topics and groups, the
interesting bits are not

55. much further than the understories of the game. One of the goals of many
weavers, although not exclusively

56. focusing on the superficial, is to bring point to sequence
without sounding grandiose. Studies find

57. the three influential aspects to cricket use are in look at issues and
factors, and in understanding

58. the technology, so that people don't succumb to them. An analogy to"}]
59. """
60.
61. #

..

............................

62. # Dolly model

63. dolly_url = "https://api-inference.huggingface.co/models/databricks/dolly-
v2-3b"

64. q2_dolly_ans = query(API_URL=dolly_url, headers=headers, payload=Q2)
65. print(q2_dolly_ans)
66.
67. """
68. Output:
69. -------
70. [{'generated_text': 'What is cricket provide brief

details.\nCricket: Australian
71. Rules Football. The game involves two teams of contesting players who

running around
72. a 70-metre curved oval with a slightly rotated baseball diamond. The

objective is to
73. get the ball into the southern end of the oval, where a designated goal may

be
74. supported by two posts, called wickets. The team successful in getting the

ball into
75. the oval from the opposing end are the winners. The

scoring mechanism is similar to
76. any footy match, with the ball carrying a small'}]
77. """
Under the new folder huggingface_scripts under scripts

folder, create a new script huggingface_hub_script.py

and add following code to it. Here we are using

huggingface_hub package to generate the text:

1. """
2. This script will demonstrate how to use Python huggingface_hub package

for text generation.
3. https://huggingface.co/docs/huggingface_hub/v0.20.2/en/package_refere

nce/inference_client#huggingface_hub.InferenceClient.text_generation
4. https://huggingface.co/docs/huggingface_hub/guides/inference
5.
6. Get list of models from https://huggingface.co/models
7. """
8.
9. from huggingface_hub import InferenceClient

10.
11. # Common parameters

12. API_TOKEN = "PUT_HUGGINGFACE_TOKEN_HERE"
13.
14. Q1 = "Explain Large Language Models in funny way so that child can

understand."
15. Q2 = "What is cricket provide brief details."
16.
17. client = InferenceClient(token=API_TOKEN)
18.
19. # ---

20. print(

21. client.text_generation(
22. model="databricks/dolly-v2-3b", prompt=Q2,

max_new_tokens=100
23.)
24.)
25.
26. """
27. Output
28. ------
29. Cricket is a game played between two teams of eleven players each. The

game is played on a rectangular pitch of size 100
30. yards (100 meters) by 40 yards (30 meters). The game is played with a bat

and a ball. The bat has three main parts - a
31. handle, a barrel and a blade. The ball has two main parts - a leather ball

and a coating of rubber on the ball. The game
32. is played with a number of players from both sides. The

players
33. """
34.
35. # ---

36. print(
37. client.text_generation(
38. model="databricks/dolly-v2-3b", prompt=Q1,

max_new_tokens=100
39.)
40.)
41. """
42. Output
43. ------
44. Large Language Models (LLMs) are computer programs that can be

trained to generate text that is similar to the text that
45. was used to train the LLM. LLMs are used in a variety of applications,

including question answering, information
46. retrieval, and summarization. LLMs are trained on large amounts of data,

and the training data is often composed of text
47. generated by humans. LLMs can generate text that is similar to the text

that was used to
48. """
Under the new folder huggingface_scripts under scripts

folder, create a new script transformer_script.py and add

following code to it. Here, we are using a transformer

package with different methods to generate the text. It is

similar to what we have seen in the previous chapter:

1. """
2. This script will demonstrate how to use Python transformer package for

text generation.
3. https://huggingface.co/docs/transformers/pipeline_tutorial
4. https://huggingface.co/docs/transformers/llm_tutorial
5. https://huggingface.co/docs/transformers/v4.36.1/en/main_classes/pipeli

nes#transformers.TextGenerationPipeline
6.
7. Get list of models from https://huggingface.co/models
8.
9. Please note that for publicly available models the token is not required.

10. """
11.
12. from transformers import AutoModelForCausalLM,

AutoTokenizer, pipeline
13.
14. token = "PUT_HUGGINGFACEHUB_TOKEN_HERE"
15.
16. Q1 = "Explain Large Language Models in funny way so that child can

understand."
17. Q2 = "What is cricket provide brief details."
18.

19. # If the parameter size is big i.e. > 7B need to provide

this argument offload_folder="offload"

20. # Else it will raise an error. Here its for representation

purpose only.

21. # ValueError: The current `device_map` had weights

offloaded to the disk. Please provide an `offload_folder`

for them.

22. # Alternatively, make sure you have `safetensors`

installed if the model you are using offers the weights

in this format

23.
24. # This is the First way to use LLM by transformer

package ...

25. dolly_generate_text = pipeline(
26. model="databricks/dolly-v2-3b",
27. trust_remote_code=True,
28. device_map="auto", # make it "auto" for auto

selection between GPU and CPU, -1 for CPU, 0 for GPU

29. return_full_text=True, # necessary to return complete

text.

30. tokenizer=AutoTokenizer.from_pretrained("databricks/dolly-
v2-3b", token=token),

31. model_kwargs={
32. "max_length": 100, # generate this number of tokens

33. # change the cache_dir based on your preferences

34. "cache_dir": "E:\\Repository\\Book\\models",
35. "offload_folder": "offload", # use it when model size is >

7B

36. },
37.)
38.
39. print(dolly_generate_text(Q1))
40.

41. """
42. Output:
43. ------
44. [{'generated_text': 'Explain Large Language Models in funny way so that

child can
45. understand.\nLarge Language Models are computers programs that are

capable of
46. understanding human languages. In order to understand human

languages, one needs to
47. have a lot of data. Languages are very similar but not identical. Words can

have the
48. same meaning but mean a completely different thing in each language.

This is why
49. learning multiple languages is so difficult for humans. To

teach computers how to
50. understand languages, we use Languages called Natural Language

Processing. These
51. programs typically follow steps to process the human language. First, they

split
52. the human language into smaller parts called words. These words are very

similar,
53. therefore the program needs to find words using pattern

recognition. Words are then
54. joined back together to form sentences. A sentence does not need to have

to make sense,
55. it just has to be a combination of words. Finally, the

program notifies the human if
56. there is an error in the sentence. This way, a computer program will be

able to
57. understand human languages.'}]
58. """
59.
60.
61. # This is the Second way to use LLM by transformer

package ...

62. # With Auto classes like AutoTokenizer,

AutoModelForCausalLM we will get more low level

access.

63. # With Pipeline, we will have high level access. Again

pipeline uses Auto Classes.

64. model_id = "databricks/dolly-v2-3b"
65. tokenizer = AutoTokenizer.from_pretrained(
66. model_id,
67. cache_dir="E:\\Repository\\Book\\models",
68. token=token,
69.)
70. model = AutoModelForCausalLM.from_pretrained(
71. model_id,
72. cache_dir="E:\\Repository\\Book\\models",
73. device_map="auto",
74. offload_folder="offload",
75. token=token,
76.)
77. pipe = pipeline(
78. "text-generation",
79. model=model,
80. tokenizer=tokenizer,
81. max_new_tokens=100,
82.)
83. print(pipe(Q2))
84.
85. """
86. Output:
87. ------
88. [{'generated_text': 'What is cricket provide brief

details.\nCricket is a game played between two teams
of eleven

89. players each. The game is played on a rectangular pitch of size 100 yards
(100 meters) by 40 yards (30 meters). The game

90. is played with a bat and a ball. The bat has three main parts - a handle, a
barrel and a blade. The ball has two main

91. parts - a leather ball and a coating of rubber on the ball. The game is
played with a number of players from both

92. sides. The players'}]
93. """
94.
95. # Generate text using the model

...

96. # this way as well we can generate the text

97. # it gives us more minute control in setting the

parameters at low level similar to above second

method.

98.
99. inputs = tokenizer(Q2, return_tensors="pt", return_attention_mask=False)

100.
101. outputs = model.generate(**inputs, max_length=200)
102.
103. # Decode and print the output

104. text = tokenizer.batch_decode(outputs)[0]
105. print(text)
106. """
107. Output:
108. ------
109. What is cricket provide brief details.
110. Cricket is a game played between two teams of eleven players each. The

game is played on a rectangular pitch of size 100
111. yards (100 meters) by 40 yards (30 meters). The game is played with a bat

and a ball. The bat has three main parts - a
112. handle, a barrel and a blade. The ball has two main parts - a leather ball

and a coating of rubber on the ball. The game

113. is played with a number of players from both sides. The
players take turns to bat and bowl. The batsman can hit
the ball

114. only when the ball is moving. The bowler can bowl the ball only when the
bat is not moving. The game is played with a

115. number of rules. The game is played with a number of rules. The
game is played with a number of rules. The game is

116. played with a number of rules. The game is played with a
number of rules. The game is played with a number

117. """

Generating vector embeddings

Under the new folder huggingface_scripts under scripts

folder, create a new script vector_embeddings.py and

add the following code. It is similar to what we have seen in

the previous chapter:

1. """
2. This script will demonstrate how to create vector embedding using

sentence_transformers package.
3. https://huggingface.co/docs/hub/sentence-transformers
4. https://huggingface.co/sentence-transformers
5. https://www.sbert.net/
6.
7. Please note that for publicly available models the token is not required.
8. """
9.

10. from sentence_transformers import SentenceTransformer
11.
12. token = "PUT_HUGGINGFACE_TOKEN_HERE"
13.
14. text_to_embed = """
15. Text embedding models are like

dictionaries for computers!

16. They turn words into numbers, capturing
their meaning and how they relate to each other.

17. This lets computers understand the text
and perform tasks like classifying emails,

18. searching for similar articles, or even
translating languages.

19. Think of it as a secret code that unlocks the
hidden insights within words.

20. """
21.
22. #

==================================

==================================

==================================

================

23. # Let's see how to deal with text

24. embeddings_model_1 = SentenceTransformer(
25. model_name_or_path="sentence-transformers/all-MiniLM-l6-v2",
26. token=token,
27. device="cpu", # for gpu replace cpu with cuda

28. cache_folder="E:\\Repository\\Book\\models",
29.)
30.
31. query_result_1 = embeddings_model_1.encode(text_to_embed)
32.
33. # print generated vector embeddings

34. print(query_result_1)
35. # length of vec embedding

36. print(len(query_result_1))
37.
38. """
39. Output has been truncated
40. Output:

41. -------
42. [-2.79038935e-03 -7.71868527e-02 3.36391415e-04 3.06777228e-02
43. ..
44. -2.31029969e-02 3.34352329e-02 8.50583911e-02 -3.59569825e-

02]
45. """
46. #

==================================

==================================

==================================

================

47. # Let's see how to deal with list of text/sentences

48.
49. text_to_embed = [
50. "Text embedding models are like dictionaries for computers!",
51. "They turn words into numbers, capturing their meaning and how they

relate to each other.",
52. "This lets computers understand the text and perform tasks like

classifying emails, searching for similar articles,"
53. "or even translating languages.",
54. "Think of it as a secret code that unlocks the hidden insights within

words.",
55. "A large language model, like GPT-3.5, leverages vast datasets to

understand and generate human-like text across"
56. "diverse subjects.",
57.]
58.
59. print(len(text_to_embed))
60.
61. #

..

............................

62. # It will download the model of size around 100 MB

63. # The default path is ~/.cache/torch which can be

overridden by cache_folder parameter

64. embeddings_model_4 = SentenceTransformer(
65. model_name_or_path="sentence-transformers/all-MiniLM-l6-v2",
66. token=token,
67. device="cpu", # for gpu replace cpu with cuda

68. cache_folder="E:\\Repository\\Book\\models",
69.)
70.
71. query_result_4 = embeddings_model_4.encode(text_to_embed)
72.
73. # print generated vector embeddings

74. print(query_result_4)
75. # length of vec embedding

76. print(len(query_result_4))
77. # length of vec embedding of individual component

78. print(len(query_result_4[0]))
79.
80. """
81. Output has been truncated
82. Output:
83. -------
84. [[0.00476223 -0.08366839 0.02533819 ... 0.0081036

0.08216282
85. 0.00848225]
86. [0.02075923 0.02187491 -0.04436149 ... 0.04193671

0.10981567
87. -0.05544527]
88. [-0.05549927 0.02617585 -0.04102286 ... 0.09186588

0.04069077
89. -0.01355496]
90. [-0.09845991 0.02013757 -0.05561479 ... 0.05502703

0.02024567

91. -0.05868284]
92. [-0.04474463 -0.07107755 0.02242337 ... 0.07566341

0.00079719
93. -0.0443915]]
94. """

Evaluation

Hugging Faceʼs evaluate package offers a powerful and

versatile toolkit for evaluating your machine learning

models, particularly in the realms of NLP and computer

vision. It simplifies the process of measuring your modelʼs

performance, removing the need to build cumbersome

evaluation pipelines from scratch.

Evaluate boasts a rich library of pre-built metrics, ranging

from standard accuracy scores to advanced ROUGE and

BLEU for text summarization or mAP [Mean Average

Precision] and F1-score for object detection. These metrics

can be readily applied to diverse tasks and datasets, saving

you valuable time and effort.

Furthermore, evaluate integrates seamlessly with the

Hugging Face Hub, allowing you to share your evaluations

publicly, compare your model against others, and contribute

to the growing repository of NLP benchmarks.

Under the new folder huggingface_scripts under scripts

folder, create a new script evaluate_results.py and add

the following code:

1. """
2. This script will show how to use different evaluation matrices to validate

the models
3. and output.
4. Please note that for open source models you dont need to

provide token.
5.

6. https://huggingface.co/docs/evaluate/a_quick_tour
7. https://huggingface.co/evaluate-metric
8. https://huggingface.co/evaluate-measurement
9. https://huggingface.co/evaluate-comparison

10. """
11.
12. import evaluate
13. from datasets import load_dataset
14. from transformers import AutoTokenizer, pipeline
15.
16. # Define the token

17. token = "PUT_HUGGINGFACE_TOKEN_HERE"
18.
19. Q1 = "Explain Large Language Models in funny way so that child can

understand."
20. Q2 = "What is cricket provide brief details."
21.
22. # Load the data on which databricks/dolly-v2-3b model

has been trained

23. dolly_dataset = load_dataset(
24. "databricks/databricks-dolly-15k",
25. cache_dir="E:\\Repository\\Book\\data_cache",
26. token=token,
27.)
28.
29. # load the responses from the data.

30. dolly_response_data = [k for k in dolly_dataset["train"]["response"]]
31.
32. # Load the model from local system - Model -1

..

33. dolly_generate_text = pipeline(
34. model="databricks/dolly-v2-3b",
35. trust_remote_code=True,

36. device_map="auto", # make it "auto" for auto

selection between GPU and CPU, -1 for CPU, 0 for GPU

37. return_full_text=True, # necessary to return complete

text.

38. tokenizer=AutoTokenizer.from_pretrained("databricks/dolly-
v2-3b", token=token),

39. model_kwargs={
40. "max_length": 100, # generate this number of tokens

41. # change the cache_dir based on your preferences

42. "cache_dir": "E:\\Repository\\Book\\models",
43. "offload_folder": "offload", # use it when model size is >

7B

44. },
45.)
46.
47. # get the answer of the question - 1

48. dl_ans_1 = dolly_generate_text(Q1)
49.
50. # get the answer of the question - 2

51. dl_ans_2 = dolly_generate_text(Q2)
52.
53. #

==================================

==================================

==================================

================

54. """
55. ROUGE SCORE
56. The ROUGE values are in the range of 0 to 1.
57.
58. HIGHER the score better the result
59.
60. IN THE OUTPUT...

61. "rouge1": unigram (1-gram) based scoring - The model recalled X% of the
single words from the reference text.

62. "rouge2": bigram (2-gram) based scoring - The model recalled X% of the
two-word phrases from the reference text.

63. "rougeL": Longest common subsequence-based scoring. - The
model's longest sequence of words that matched the

64. reference text covered X% of the reference text.
65. "rougeLSum": splits text using "\n" - The model's average longest common

subsequence of words across sentences
66. covered X% of the reference text.
67. """
68. #

==================================

==================================

==================================

================

69.
70. # Define the evaluator

71. # To temporary store the results we will use cache_dir

72. rouge = evaluate.load("rouge",
cache_dir="E:\\Repository\\Book\\models")

73.
74. # get the score

75. dolly_result = rouge.compute(
76. predictions=[dl_ans_1[0]["generated_text"]], references=

[dolly_response_data]
77.)
78.
79. print(dolly_result)
80. """
81. Output:
82. -------
83. {'rouge1': 0.3835616438356165, 'rouge2': 0.08815426997245178,

'rougeL': 0.19178082191780824, 'rougeLsum': 0.2322946175637394}
84. """
85.
86. # get the score

87. dolly_result_2 = rouge.compute(
88. predictions=[dl_ans_2[0]["generated_text"]], references=

[dolly_response_data]
89.)
90.
91. print(dolly_result_2)
92. """
93. Output:
94. -------
95. {'rouge1': 0.35200000000000004, 'rouge2': 0.11678832116788321,

'rougeL': 0.3, 'rougeLsum': 0.3355704697986577}
96. """
97.
98. # Call eval on both input with their respective

references.

99. dolly_result = rouge.compute(
100. predictions=[dl_ans_1[0]["generated_text"], dl_ans_2[0]

["generated_text"]],
101. references=[dolly_response_data, dolly_response_data],
102.)
103. print(dolly_result)
104. """
105. Output:
106. -------
107. {'rouge1': 0.36778082191780825, 'rouge2': 0.10247129557016749,

'rougeL': 0.24589041095890413, 'rougeLsum': 0.2839325436811985}
108. """
109.
110. #

==================================

==================================

==================================

================

111. """
112. BLEURT SCORE
113.
114. BLEURT’s output is always a number. This value indicates how similar the

generated text
115. is to the reference texts, with values closer to 1 representing more similar

texts.
116. """
117. #

==================================

==================================

==================================

================

118. # Define the evaluator

119. # To temporary store the results we will use cache_dir

120. bleurt = evaluate.load("bleurt",
cache_dir="E:\\Repository\\Book\\models")

121.
122. bleurt_specific_data = " ".join([k for k in dolly_response_data])
123.
124. # We can compute the eval matrix on multiple input

with their respective reference as shown below.

125. # We can use it for any eval matrix not limited to this

one like with the one above ROGUE score

126. bleurt_results = bleurt.compute(
127. predictions=[dl_ans_1[0]["generated_text"], dl_ans_2[0]

["generated_text"]],
128. references=[bleurt_specific_data, bleurt_specific_data],
129.)

130.
131. print(bleurt_results)
132. """
133. Output:
134. -------
135. {'scores': [-1.241575002670288, -1.2617411613464355]}
136. """
137.
138. #

==================================

==================================

==================================

================

139. """
140. METEOR SCORE
141. Its values range from 0 to 1
142.
143. HIGHER the score better the result
144. """
145. #

==================================

==================================

==================================

================

146. meteor = evaluate.load("meteor",
cache_dir="E:\\Repository\\Book\\models")

147.
148. mtr_results = meteor.compute(
149. predictions=[dl_ans_1[0]["generated_text"]],
150. references=[dolly_response_data],
151.)
152.
153. print(mtr_results)

154. """
155. Output:
156. -------
157. {'meteor': 0.32992160278745647}
158. """
159.
160.
161. #

==================================

==================================

==================================

================

162. """
163. Perplexity SCORE
164. The Perplexity values are in the range of 0 to INFINITE.
165.
166. LOWER the score better the result
167. """
168. #

==================================

==================================

==================================

================

169.
170. # Define the evaluator

171. # To temporary store the results we will use cache_dir

172. perplexity = evaluate.load("perplexity",
cache_dir="E:\\Repository\\Book\\models")

173.
174. # model_id here we can not provide cache_dir hence it

will be downloaded to default directory

175. # You will get this directory when you will run it

176. pxl_results = perplexity.compute(

177. predictions=[dl_ans_2[0]["generated_text"]],
model_id="databricks/dolly-v2-3b"

178.)
179.
180. print(pxl_results)
181. """
182. Output:
183. -------
184. {'perplexities': [6.705838203430176], 'mean_perplexity':

6.705838203430176}
185. """

Transfer learning with Hugging Face API

Transfer learning is like a trick in machine learning. In this

method, a smart model trained on one job is used to do a

different but similar job. Instead of starting from scratch, the

model uses the knowledge it gained from solving one

problem to improve at a new task.

Back before we had those big language models, transfer

learning was a big deal because training really deep

networks without any prior knowledge was tough. Deep

models need lots of labeled data and computer power,

which is impractical for many tasks, especially when getting

big labeled datasets is hard or costs a lot.

With transfer learning, people could make use of models

that were already trained on big tasks, like figuring out

images or understanding language. Here is how it worked:

you start a neural network with what it learned from one

task and then tweak it a bit for a different task with a

smaller dataset. This way, the model can grab general

features and ideas from the first task, which is helpful for

the new task.

Let us create a simple machine learning code with transfer

learning.

This code utilizes the Hugging Face Transformers library to

create a zero-shot classification pipeline. The pipeline is

then used to classify a given input text into one or more of

the provided candidate labels. The results, including the

predicted label and its associated confidence score, are

displayed in the output.

Under the new folder huggingface_scripts under scripts

folder, create a new script transfer_learning.py and add

the following code to it:

1. """
2. To get an overview of how transfer learning works
3. """
4.
5. # Importing the necessary module from the

transformers library

6. from transformers import pipeline
7.
8. # Creating a zero-shot classification pipeline

9. classifier = pipeline(
10. "zero-shot-classification",
11. device_map="auto", # Automatically distributes the

model across available GPUs and CPUs

12. model_kwargs={
13. "cache_dir": "E:\\Repository\\Book\\models",
14. "offload_folder": "offload", # use it when model size is >

7B

15. },
16.)
17.
18. # Input text for classification

19. text = "This article discusses transfer learning for zero-shot text

categorization."
20.
21. # Candidate labels that the model will consider

22. candidate_labels = ["machine learning", "natural language processing",
"data science"]

23.
24. # Performing zero-shot classification on the input text

with the candidate labels

25. results = classifier(text, candidate_labels)
26.
27. print(results)
28. """
29. Output:
30. -------
31. {'sequence': 'This article discusses transfer learning for zero-shot text

categorization.',
32. 'labels': ['machine learning', 'natural language

processing', 'data science'],
33. 'scores': [0.46083739399909973,

0.3666556179523468, 0.17250701785087585]}
34. """
35.
36. # Displaying the results individually

37. for rng in range(len(results["labels"])):
38. # Printing the predicted label and its associated

confidence score

39. print(f"Label: {results['labels'][rng]}")
40. print(f"Score: {results['scores'][rng]:.4f}")
41.
42. """
43. Output
44. Label: machine learning
45. Score: 0.4608

46. Label: natural language processing
47. Score: 0.3667
48. Label: data science
49. Score: 0.1725
50. """
In the world of NLP and text stuff, transfer learning is super

handy. Language is complicated, with all its twists and turns.

So, by pre-training on a massive language collection,

models could get a grip on language details, how words are

put together, and what they mean. This made the models

work much better on other jobs like figuring out feelings in

text, recognizing names, or doing machine translation.

Real-world use cases of Hugging Face

Following are some real-world use cases of Hugging Face in

various industries:

Chatbots and conversational AI: Imagine engaging,
human-like chatbots powered by Hugging Face,
assisting customers, scheduling appointments, or even
providing therapy.
Healthcare and scientific applications: Hugging
Face helps analyze medical records, predict disease
outbreaks, and even write scientific reports, pushing
the boundaries of healthcare and research.
Marketing and content creation: Craft captivating
marketing campaigns, generate personalized content,
and translate languages seamlessly, all thanks to the
magic of Hugging Face.
Education and personal productivity: Enhance
learning with personalized tutorials, summarize
lengthy documents, and even write emails with the
help of Hugging Faceʼs intelligent NLP tools.

Conclusion

In conclusion, Hugging Face marks a paradigm shift in the

world of NLP, democratizing access to cutting-edge

technology and fostering a collaborative spirit of innovation.

It empowers developers of all levels to leverage state-of-

the-art models for diverse tasks, from generating poems to

summarizing research papers. Whether you are a seasoned

engineer building complex AI applications or a curious

student exploring the wonders of language, Hugging Face

offers a gateway to a world of possibilities.

Remember, Hugging Face is not just a collection of tools. It

is a vibrant community driven by a shared passion for

pushing the boundaries of NLP. By contributing to and

learning from this community, you become part of a

collective effort to unlock the full potential of language

models, shaping a future where technology empowers

human creativity and understanding. So, join the journey

and experience the magic of Hugging Face for yourself!

In the next chapter, we will continue working with LLMs. We

will take data that has not been seen by LLM and try to build

a chatbot using the LLM and vector embeddings.

References

https://huggingface.co/docs

https://huggingface.co/docs/huggingface_hub/ind

ex

https://huggingface.co/docs/api-inference/index

https://huggingface.co/docs/datasets/index

https://huggingface.co/docs/evaluate/index

https://medium.com/@TeamFly/hugging-face-

revolutionizing-ai-

https://huggingface.co/docs
https://huggingface.co/docs/huggingface_hub/index
https://huggingface.co/docs/api-inference/index
https://huggingface.co/docs/datasets/index
https://huggingface.co/docs/evaluate/index
https://medium.com/@TeamFly/hugging-face-revolutionizing-ai-5880b87d5bba#:~:text=Background%20and%20the%20Remarkable%20Journey&text=However%2C%20their%20trajectory%20took%20a,a%20dedicated%20machine%20learning%20platform

5880b87d5bba#:~:text=Background%20and%20t

he%20Remarkable%20Journey&text=However%2

C%20their%20trajectory%20took%20a,a%20dedic

ated%20machine%20learning%20platform.

Join our book’s Discord space

Join the bookʼs Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New Release and

Sessions with the Authors:

https://discord.bpbonline.com

https://medium.com/@TeamFly/hugging-face-revolutionizing-ai-5880b87d5bba#:~:text=Background%20and%20the%20Remarkable%20Journey&text=However%2C%20their%20trajectory%20took%20a,a%20dedicated%20machine%20learning%20platform
https://discord.bpbonline.com/

CHAPTER 8

Creating Chatbots Using

Custom Data with

LangChain and Hugging

Face Hub

Introduction

Imagine building a chatbot that seamlessly interacts with

your users, understanding their unique needs and providing

personalized responses based on your curated data.

Chatbots have become an integral part of modern

communication systems, offering seamless interactions and

personalized assistance across various platforms. However,

the effectiveness and adaptability of chatbots greatly

depend on the quality and relevance of the underlying data

used for training and fine-tuning. In this chapter, we delve

into the process of creating chatbots using custom data,

leveraging the combined power of LangChain and Hugging

Face Hub.

This chapter will empower you to do just that, guiding you

through the exciting world of LangChain and Hugging Face

Hub to create powerful custom chatbots. By the end of this

chapter, readers will have gained valuable insights into

leveraging custom data with LangChain and Hugging Face

Hub to create robust, efficient, and context-aware chatbots

tailored to specific use cases and domains. Whether you are

a seasoned NLP practitioner or a novice developer, this

chapter aims to provide practical guidance and resources for

building advanced chatbot solutions that meet the evolving

needs of users in todayʼs digital landscape.

Structure

In this chapter, we will discuss the following topics:

Setup
Overview
Steps to create RAG based chatbot with custom data
Dolly-V2-3B details
Data loaders by LangChain
Vector stores by LangChain

Objectives

The objective of this chapter is to provide a comprehensive

guide to creating chatbots using custom data with LangChain

and Hugging Face Hub. Through practical examples and

step-by-step instructions, the chapter aims to introduce

LangChain as a powerful framework. The goal is to

emphasize its features for data preprocessing, model

training, and evaluation, demonstrating how it can

streamline the development process. Additionally, the aim is

to explore the Hugging Face Hub as a valuable resource for

accessing pre-trained models and datasets, showcasing its

utility in accelerating chatbot development. Strategies will

be demonstrated for integrating custom data into chatbot

training pipelines using LangChain and Hugging Face Hub,

focusing on effective data preprocessing. Ultimately, the

objective is to empower developers to leverage LangChain

and Hugging Face Hub effectively, enabling the creation of

advanced chatbot solutions tailored to specific use cases and

domains.

Setup

We have already installed the required packages in Chapter

2, Installation of Python, Required Packages, and Code

Editors. Hence, we are not required to install any specific

packages in this chapter.

Overview

In this chapter, we are going to create a chatbot for custom

data. In this process, we are going to use two main

packages: huggingfacehub and langchain. There are

three ways to use LLMs with your custom data. They are:

Finetuning:

Definition: Fine-tuning involves taking a pre-trained
LLM and further training it on a specific task or
dataset to adapt it to your specific needs.
Process: During fine-tuning, you typically start with
a pre-trained LLM model, such as GPT-3 or BERT,
which has been trained on a large corpus of text data
(often referred to as pre-training). You then continue
training the model on your own dataset, which is
typically smaller and more specific to your task
(referred to as fine-tuning or transfer learning). This
process allows the model to learn from your data and
adapt its parameters to better suit your task.
Use case: Fine-tuning is commonly used when you
have a specific Natural Language Processing

(NLP) task, such as sentiment analysis, named entity
recognition, or question answering, and you want to
leverage the power of pre-trained LLMs to improve
performance on your task. By fine-tuning a pre-
trained model on your dataset, you can achieve
better results than training from scratch, especially
when you have limited labeled data.
Benefits: Fine-tuning allows you to take advantage
of the knowledge and representations learned by the
pre-trained model on a large corpus of text data,
while still adapting the model to your specific task or
domain. This approach can save time and resources
compared to training a model from scratch.

Vector embedding:

Definition: Vector embedding involves using a pre-
trained LLM to generate vector representations
(embeddings) of text data, which can then be used as
input to downstream machine-learning tasks or
models.
Process: In this approach, you use a pre-trained
embedding model, such as BERT or GPT, to generate
embeddings for your text data. Each piece of text is
encoded into a fixed-size vector representation,
capturing semantic information about the text. These
embeddings can then be used as features in various
machine learning tasks, such as classification,
clustering, or retrieval.
Use case: Vector embeddings are useful when you
want to leverage the contextual understanding and
semantic representations learned by pre-trained
LLMs in downstream tasks without fine-tuning the
model directly. For example, you can use BERT
embeddings as features in a classification model or
use them to measure semantic similarity between

documents. We can use clustering algorithms to
group similar documents or texts.
Benefits: Vector embeddings provide a way to
leverage the rich semantic representations learned
by pre-trained LLMs in a wide range of downstream
tasks. By using pre-trained embeddings, you can
benefit from the contextual understanding and
domain knowledge encoded in the embeddings
without the need for fine-tuning or re-training the
LLM on your specific data.

Retrieval Augmented Generation (RAG):

Definition: RAG is an advanced method which
combines LLMs and vector embeddings. By doing
this it eliminates need of LLM fine tuning or transfer
learning.
Process: RAG framework initiates with the usage of
a pre trained LLM, such as BERT or GPT, to create
vector representations or embeddings from text
data. These vector representations are compact,
fixed-dimensional arrays that distill the textual dataʼs
semantic similarities. The goal of this strategy is to
use understanding of LLMs for different tasks like
machine learning, categorization, clustering, and
information retrieval tasks.
Use case: RAG becomes apparent in scenarios
where one wants to utilize the understanding of
LLMs without the process of direct model
refinement. For example, BERTʼs embeddings can be
reused to classify data or measure the similarity
between different documents. A prime utilization of
RAG is creating responses or summaries by
retrieving information from corpora. This
methodology facilitates content generation that is
both more individualized and precise, by drawing

upon the knowledge and insights from vector
embeddings.
Benefits: The advantages of integrating vector
embeddings within RAG includes the ability to use
LLMs across various tasks. By deploying pre-trained
embeddings, one can benefit from the contextual
comprehension and domain-specific knowledge
ingrained in the embeddings, bypassing the need for
further model refinement or retraining on
specialized datasets.
Furthermore, the process of implementing RAG
involves first obtaining the vector embeddings
through a pre-trained LLM. This entails encoding
each piece of text into a fixed-size vector
representation that captures the semantic essence of
the text. These embeddings serve as valuable
features that can greatly enhance various machine
learning tasks.
By incorporating vector embeddings into RAG, the
generated text can benefit from the contextual
understanding and semantic information learned by
the pre-trained LLMs. This not only improves the
quality of the generated text but also enables it to be
more relevant and coherent in relation to the given
input or context.
Overall, the combination of retrieval and generation
techniques in RAG offers a powerful and versatile
approach for enhancing text generation tasks. By
leveraging the pre-trained LLMs and their vector
embeddings, RAG enables the generation of high-
quality, context-aware, and semantically rich content
across various domains and applications.

In summary, RAG represents an innovative and flexible

strategy to enhance text generation tasks. By synergizing

the retrieval and generative capacities of LLMs and their

vector embeddings, RAG paves the way for the creation of

contextually aware and semantically dense content

applicable across various domains and applications.

In essence, RAG skillfully interweaves fine-tuning and vector

embedding methodologies to optimize the utility of LLMs

with bespoke datasets. While fine-tuning adjusts the modelʼs

parameters to the specifics of the task or dataset, vector

embedding employs the semantic representations instilled

by the LLMs as fixed-dimension vector representations. This

confluence of techniques within RAG offers a formidable

avenue to produce text that is not only highly pertinent and

context-sensitive but does so by leveraging the inherent

strengths of LLMs in a manner that is both specialized and

efficacious.

On the other hand, vector embedding provides a different

approach to leveraging pre-trained LLMs in downstream

tasks without directly modifying the model. With vector

embedding, the semantic representations learned by the

pre-trained LLMs can be utilized as fixed-size vector

representations, capturing the essence of the text. This

enables the embeddings to be used as features in various

machine learning tasks, such as classification, clustering, or

retrieval. By incorporating these embeddings into RAG, the

generated text can benefit from the contextual

understanding and domain knowledge embedded in the pre-

trained LLMs.

RAG leverages fine-tuning and vector embedding techniques

to enhance text generation. Fine-tuning adapts the pre-

trained LLM to the custom task, while vector embedding

utilizes the semantic representations learned by the LLM

without modifying the model directly. The combination of

these techniques in RAG offers a powerful approach to

generate highly relevant and context-aware text based on

the custom data, leveraging the strengths of pre-trained

LLMs in a more tailored and effective manner.

In this chapter, we will explore the application of RAG using

the vector embedding method, which offers distinct

advantages over fine-tuning. Here are the key reasons for

choosing RAG in an information retrieval task:

Efficiency and scalability: RAG using vector
embeddings provides an efficient and scalable solution
for information retrieval tasks. It allows for fast and
accurate retrieval of relevant documents or answers
from large datasets, making it suitable for real-time
applications and scenarios where speed and efficiency
are the top priority.
Ease of implementation: Implementing RAG with
vector embeddings is relatively straightforward. By
leveraging pre-trained embedding models from
Hugging Face Hub or Sentence-Transformers, the need
for training complex models or custom architectures is
eliminated. This ease of implementation reduces
development time and makes RAG accessible to a
wider range of users.
Interpretability and explainability: Vector
embeddings offer inherent interpretability, as the
distances between vectors reflect semantic
relationships between words and documents. This
interpretability allows for a deeper understanding of
the underlying data and can aid in debugging and
analyzing the responses generated by the RAG system.
Flexibility and integration: RAG using vector
embeddings can be seamlessly integrated with other
NLP approaches, such as rule-based systems or
retrieval-augmented generation models. This flexibility
enables the combination of different methods to cater

to specific requirements and further enhances the
accuracy and relevance of the generated responses.
Task-specific suitability: In information retrieval
tasks where the emphasis is on retrieving relevant
documents or providing factual answers, RAG using
vector embeddings proves to be highly beneficial.
Especially when the dataset consists of factual
documents and the queries mostly involve keyword-
based retrieval, this method is well-suited for
supporting the RAG process.
Reduced data dependency: Compared to fine-tuning,
RAG using vector embeddings significantly reduces
data dependency. It leverages the rich semantic
representations learned by pre-trained models without
the need for large amounts of task-specific labeled
data. This advantage makes RAG a more feasible and
efficient option, saving time and effort in data
collection and labeling.

By employing RAG with vector embeddings, information

retrieval tasks can benefit from enhanced efficiency, ease of

implementation, interpretability, flexibility, and reduced data

dependency. These advantages make RAG with vector

embeddings the preferred method for extracting relevant

information and generating contextually rich responses in an

information retrieval setting.

Steps to create RAG based chatbot with custom

data

In an RAG-based chatbot for custom data, the following steps

will be carried out to allow LLM to answer questions based on

custom data:

1. Load data:

a. Load the raw text data from your dataset or source.

Here, for raw data, we can consider anything from
the below points. Though it is not a complete list, it
will give an idea of the raw data definition:
i. Documents: NEWS articles, research articles,

magazines, books, journals, transcripts
ii. Web Content: Wikipedia topics, Tweets,

Facebook posts

b. This could involve reading data from files,
databases, or APIs.

c. Here, we will use langchain package and its data
loader function:

https://python.langchain.com/docs/integrati

ons/document_loaders/

https://python.langchain.com/docs/modules/

data_connection/document_loaders/

d. Here, we will work with a directory loader for
simplicity. Directory loader is a function from
LangChain that will be used to read text data from
the given directory.

2. Split data:

a. Split the data loaded using the data loader into
smaller chunks or documents suitable for
processing.

b. Depending on the size of the text data and your
specific requirements, you may split the data into
paragraphs, sentences, or chunks of fixed length.

c. Here again, we will use the langchain package and
its text splitter function:
https://python.langchain.com/docs/modules/dat

https://python.langchain.com/docs/integrations/document_loaders/
https://python.langchain.com/docs/modules/data_connection/document_loaders/
https://python.langchain.com/docs/modules/data_connection/document_transformers/

a_connection/document_transformers/

d. We are going to use
RecursiveCharacterTextSplitter as it tries to keep
all paragraphs (and then sentences, and then
words) together as long as possible, as those
generically seem to be the strongest semantically
related pieces of text.

3. Generate vector embeddings:

a. Use a pre-trained LLM or Sentence Transformer
model to generate vector embeddings for each
document or text unit.

b. Encode each piece of text into a fixed-size vector
representation using the LLM or Sentence
Transformer.

c. This step involves tokenizing the text, encoding it
using the model, and extracting the vector
representation.

d. Here, we will use LangChain, but its integration
with huggingfacehub. Here we will use
HuggingFaceEmbeddings and models from it to
create vector embeddings.
HuggingFaceEmbeddings will provide different
models to generate vector embeddings from the
given text.

4. Store embeddings:

a. Store the generated vector embeddings along with
any necessary metadata in a data structure suitable
for efficient retrieval.

b. This could involve storing the embeddings in a
database, key-value store, or dedicated indexing
system.

https://python.langchain.com/docs/modules/data_connection/document_transformers/

c. Ensure that you have a mechanism to associate each
embedding with its corresponding document or text
unit for retrieval.

d. Here, we will use the LangChain package and its
ChromaDB functionality to store the vector
embeddings on the local system.

https://python.langchain.com/docs/integrati

ons/vectorstores/

https://python.langchain.com/docs/modules/

data_connection/vectorstores/

5. Retrieve relevant information:

a. RAG combines retrieval and generation techniques
to retrieve answers from documents using vector
embeddings.

b. Vector embeddings are generated by encoding text
into fixed-size vectors that capture semantic
information.

c. The retrieved vectors are compared to find the most
similar ones to the query, indicating relevant
documents.

d. The selected documents are then used to generate
responses using pre-trained language models.

e. RAG leverages the power of vector embeddings to
enhance the retrieval of accurate and contextually
relevant answers from documents.

6. Generate answers:

a. Retrieve the documents or text units associated with
the retrieved embeddings.

b. Use the retrieved documents as potential answers to

https://python.langchain.com/docs/integrations/vectorstores/
https://python.langchain.com/docs/modules/data_connection/vectorstores/

the question.
c. Optionally, rank the retrieved documents based on

their similarity to the query or other relevance
criteria.

d. Here, we will use LangChain but integrate it with
huggingfacehub. We will use HuggingFacePipeline
and models from it to provide answers to the
questions.

7. Response:

a. Present the retrieved answers to the user through
the appropriate interface (for example, web page,
API response, chatbot message).

b. Format the answers for readability and clarity and
provide additional context or information as needed.

Please note that here, the quality of the response will vary

based on the quality of embeddings, the model used to

generate embeddings, and the LLM used to extract the

response (we are using a free API, so a model larger than 3b

parameters cannot be used, so the quality of the output will

be low). If you are not getting a response or if you are

getting a response that is not related to your custom data,

experiment with different models of retrievers, LLMs, and

vector embeddings.

You might have wondered: Can we not use vector

embeddings only to provide an answer instead of using LLM?

The explanation is below.

While using vector embeddings alone may provide some

level of success in question answering tasks, there are

several limitations to consider:

Semantic understanding: Vector embeddings
capture semantic information to some extent, but they

may not fully capture the nuanced meaning and
context of language as effectively as pre-trained LLMs.
This can lead to less accurate or irrelevant answers,
especially for complex questions or tasks requiring
deeper understanding.
Domain specificity: Vector embeddings are generally
trained on large-scale text corpora and may not
capture domain-specific semantics or terminology
effectively. Fine-tuning pre-trained LLMs on domain-
specific data can often lead to better performance in
domain-specific tasks.
Complex natural language understanding: LLMs
are trained on massive amounts of text data and can
capture intricate patterns, semantics, and context in
natural language. They excel in tasks that require
understanding and processing of complex linguistic
structures, such as sentiment analysis, language
translation, and summarization.
Ambiguity resolution: LLMs are good at
understanding tricky language by looking at the whole
text. They can clear up words with multiple meanings,
figure out what pronouns refer to, and find hidden
meanings. This helps with answering questions,
understanding sentences, and finishing texts.
Few-shot and Zero-shot learning: LLMs have the
capability to generalize to unseen tasks or domains
with minimal supervision. They can perform well in
scenarios where only a few examples or even no
examples are available for training, making them
valuable in settings where labeled data is less or
expensive to obtain.
Limited context: Vector embeddings typically
represent individual words or sentences as fixed-size
vectors, which may not capture the full context of

longer documents or passages. Pre-trained LLMs, on
the other hand, are designed to process and
understand longer sequences of text, allowing them to
capture a more comprehensive context.

In summary, while vector embeddings alone can be used for

question answering, they may not achieve the same level of

performance or accuracy as pre-trained LLMs with RAG,

especially for complex tasks or domain-specific applications.

In scenarios where a deep understanding of natural language

and context is paramount, such as Natural Language

Understanding (NLU) tasks, dialogue systems, and text

generation, LLMs offer unparalleled performance and

flexibility. By leveraging the vast knowledge and

representations learned from large-scale text corpora, LLMs

can effectively handle a wide range of linguistic phenomena

and domain-specific nuances, making them indispensable in

many modern natural language processing applications.

You can download the data that we have used for this

chapter by visiting the below link. There are two pdf files

under the folder. Download these two files and put them in

your preferred location. Once done, change the location of

the directory under which you have put these two files.

Please note that you need to provide the path of the folder or

the directory under which you have put PDF files. You need

to change it in the following code.

https://drive.google.com/drive/folders/1clfVGrkcU7xvn

AsV6DOsrfEfQGc3OL7O?usp=drive_link

Create a new folder called custom_data_chatbot under

E:\Repository\Book\scripts. Within this folder, create a

new script called complete_code.py. The script contains all

the required steps to create an RAG application and then call

LLM for prediction. Please note that here, you can use

different loaders based on the requirement, as well as

different sentence transformers and LLM models. There is no

https://drive.google.com/drive/folders/1clfVGrkcU7xvnAsV6DOsrfEfQGc3OL7O?usp=drive_link

one particular best for respective tasks. Hence, you can play

with different LLMs, loaders, and sentence transformers.

Paste the below code in the script that we have created:

1. """
2. In this script we will create vector embeddings on custom data thus we will

create
3. chatbot on our custom data.
4.
5. Process will be Load, Split, Store, Retrieve, Generate
6.
7. https://python.langchain.com/docs/use_cases/question_answering/
8. https://python.langchain.com/docs/use_cases/code_understanding#loading
9. https://python.langchain.com/docs/modules/chains/#legacy-chains

10. """
11.
12. from pathlib import Path
13. from langchain.chains import RetrievalQA
14. from transformers import AutoTokenizer, pipeline
15. from langchain.prompts import ChatPromptTemplate
16. from langchain.vectorstores.chroma import Chroma
17. from langchain_huggingface import HuggingFacePipeline
18. from langchain.schema.output_parser import StrOutputParser
19. from langchain_community.document_loaders import DirectoryLoader
20. from langchain.text_splitter import

RecursiveCharacterTextSplitter
21.
22. # Below will use HUggingFace - sentence-transformers

23. # https://huggingface.co/sentence-transformers

24. from langchain_huggingface import HuggingFaceEmbeddings
25.
26. # Define pdf file path

27. # You may need to change this path based on where you

are putting the pdf file.

28. # Here you can provide direct string path as well like

29. # /path/to/file on linux and C:\\path\\to\\file on windows

30.
31. # put pdf files in directory

32. # pdf_file_dir_path = "E:\\Repository\\Book\\data\\pdfs"

OR below command

33.
34. # If you are running manually each line of the code then

replace __file__ with __name__

35. pdf_file_dir_path = str(
36. Path(__file__).resolve().parent.parent.parent.joinpath("data", "pdfs")
37.)
38. print(pdf_file_dir_path)
39. """
40. Output:
41. =======
42. E:\\Repository\\Book\\scripts\\nvidia.pdf
43. """
44.
45. # Load

...

.....................

46. # Load data from PDF file.

47. loader = DirectoryLoader(pdf_file_dir_path)
48.
49. # convert docs in to small chunks for better

management

50. text_splitter = RecursiveCharacterTextSplitter(
51. # Set a really small chunk size, just to show.

52. chunk_size=1000,
53. chunk_overlap=200,
54. length_function=len,
55. is_separator_regex=False,

56.)
57.
58. # load data from pdf and create chunks for better

management

59. pages = loader.load_and_split(text_splitter=text_splitter)
60.
61. # load text embedding model from HuggingFaceHub to

generate vector embeddings

62. embed_model = HuggingFaceEmbeddings(
63. model_name="sentence-transformers/all-MiniLM-l6-v2",
64. cache_folder="E:\\Repository\\Book\\sentence_transformers",
65. model_kwargs={"device": "cpu"}, # make it to "cuda" in

case of GPU

66. encode_kwargs={"normalize_embeddings": False},
67. multi_process=True,
68.)
69.
70.
71. # Store

...

.....................

72. # save to disk

73. chroma_db = Chroma.from_documents(
74. pages, embed_model,

persist_directory="E:\\Repository\\Book\\chroma_db"
75.)
76.
77.
78. # Retrieve

...

..................

79. # define retriever to retrieve Question related Docs

80. retriever = chroma_db.as_retriever(

81. search_type="mmr", # Maximum MArginal Relevance

82. search_kwargs={"k": 8}, # max relevan docs to retrieve

83.)
84.
85.
86. # define LLM for Q&A session# Load

..

87. # if not already downloaded than it will download the

model.

88. # here the approach is to download the model on local

to work faster

89. dolly_generate_text = pipeline(
90. model="databricks/dolly-v2-3b",
91. trust_remote_code=True,
92. device_map="auto", # make it "auto" for auto selection

between GPU and CPU, -1 for CPU, 0 for GPU

93. return_full_text=True, # necessary to return complete text.

94.
tokenizer=AutoTokenizer.from_pretrained("databricks/dolly-
v2-3b"),

95. temperature=0.1, # to reduce randomness in the

answer

96. max_new_tokens=1000, # generate this number of tokens

97. # change the cache_dir based on your preferences

98. # model kwargs are for model initialization

99. model_kwargs={
100. "cache_dir": "E:\\Repository\\Book\\models",
101. "offload_folder": "offload", # use it when model size is >

7B

102. },
103.)
104.
105. dolly_pipeline_hf = HuggingFacePipeline(pipeline=dolly_generate_text)

106.
107. # First let's confirm model does not know anything

about the topic ...

108. # Set the question

109. question = """
110. Use the following pieces of context to answer the

question at the end.
111. If you don't know the answer, just say that you

don't know,
112. don't try to make up an answer.
113.
114. Question:
115. {question}
116. """
117. prompt_template = ChatPromptTemplate.from_template(question)
118.
119. output_parser = StrOutputParser()
120.
121. chain_1 = prompt_template | dolly_pipeline_hf | output_parser
122. # # as there is no param in the question, we will pass

blank dict

123. # chain_1_ans = chain_1.invoke(input={})

124. chain_1_ans = chain_1.invoke(
125. input={"question": "Provide NVIDIA’s outlook for the third quarter of

fiscal 2024"}
126.)
127. print(chain_1_ans)
128. """
129. Human:
130. Use the following pieces of context to answer the

question at the end.
131. If you don't know the answer, just say that you

don't know,

132. don't try to make up an answer.
133. Question:
134. Provide NVIDIAs outlook for the third quarter

of fiscal 2024
135. Human:
136. The outlook for the third quarter of fiscal 2024 is

mixed.
137. On the one hand, the economy is growing at a

solid pace, with GDP increasing by 3.2% compared to
the same quarter last year.

138. On the other hand, the trade war with China is
hurting our economy.

139. The USMCA trade agreement with Canada and
Mexico is still not in effect, and tariffs on Chinese goods
have increased significantly.

140. Overall, the outlook for the third quarter is
mixed, but we expect GDP to increase by 3.2%
compared to last year.

141. """
142.
143.
144. # Now let's ask questions from our own custom data

...

145. retrievalQA = RetrievalQA.from_llm(llm=dolly_pipeline_hf,
retriever=retriever)

146. print(retrievalQA)
147. """
148. Output:
149. -------
150. combine_documents_chain=StuffDocumentsChain(llm_chain=LLMChain(pr

ompt=PromptTemplate(input_variables
151. =['context', 'question'], template="Use the following pieces of context to

answer the question at the end.
152. If you don't know the answer, just say that you don't know, don't try to

make up an answer.\n\n{context}
153. \n\nQuestion: {question}\nHelpful Answer:"),

llm=HuggingFacePipeline(pipeline
154. =<transformers_modules.databricks.dolly-v2-

3b.f6c9be08f16fe4d3a719bee0a4a7c7415b5c65df.instruct_pipeline.Instruc
tionTextGenerationPipeline

155. object at 0x000001FFCFAA3F50>)),
document_prompt=PromptTemplate(input_variables=['page_content'],

156. template='Context:\n{page_content}'), document_variable_name='context')
retriever=VectorStoreRetriever(

157. tags=['Chroma', 'HuggingFaceEmbeddings'], vectorstore=
<langchain_community.vectorstores.chroma.Chroma

158. object at 0x000001FFC75B3830>, search_type='mmr', search_kwargs={'k':
8})

159. """
160.
161. # get answer

162. ans = retrievalQA.invoke(
163. "Provide NVIDIA’s outlook for the third quarter of fiscal 2024"
164.)
165. print(ans)
166. """
167. {'query': 'Provide NVIDIAs outlook for the third quarter of fiscal 2024',

'result':
168. '\nRevenue is expected to be $16.00 billion, plus or minus 2%. GAAP and

non-GAAP gross
169. margins are expected to be 71.5% and 72.5%, respectively, plus or minus

50 basis points.
170. GAAP and non-GAAP operating expenses are expected to be approximately

$2.95 billion and
171. $2.00 billion, respectively. GAAP and non-GAAP other income and expense

are expected to
172. be an income of approximately $100 million, excluding gains and losses

from non-affiliated

173. investments. GAAP and non-GAAP tax rates are expected to be 14.5%, plus
or minus 1%,

174. excluding any discrete items.\n\nHighlights\n\nQuestion: Provide NVIDIAs
outlook for

175. the third quarter of fiscal 2024\nHelpful Answer:'}
176. """

In the above code, the first output shows that LLM provides a

very broad answer, which is not in our context data. The next

output shows that LLM is providing the correct answer from

the context data we have provided.

Next, create a new script called chatbot.py under the

custom_data_chatbot folder. Paste the following code into

the script and run it:

1. """
2. The script will create play ground to test chatbot
3. """
4.
5. import gradio as gr
6. from langchain.chains import RetrievalQA
7. from langchain.vectorstores.chroma import Chroma
8. from transformers import AutoTokenizer, pipeline
9. from langchain_huggingface import

HuggingFaceEmbeddings, HuggingFacePipeline
10.
11. #

==================================

==================================

==================================

================

12. # Defining global settings for easy and fast work

13.
14. # load text embedding model from HuggingFaceHub to

generate vector embeddings

15. embed_model = HuggingFaceEmbeddings(
16. model_name="sentence-transformers/all-MiniLM-l6-v2",
17. model_kwargs={"device": "cpu"}, # for gpu replace cpu

with cuda

18. encode_kwargs={"normalize_embeddings": False},
19. cache_folder="E:\\Repository\\Book\\models",
20. multi_process=False,
21.)
22.
23. chroma_db = Chroma(
24. persist_directory="E:\\Repository\\Book\\chroma_db",

embedding_function=embed_model
25.)
26.
27.
28. # Retrieve

...

..................

29. # define retriever to retrieve Question related Docs

30. retriever = chroma_db.as_retriever(
31. search_type="mmr", # Maximum MArginal Relevance

32. search_kwargs={"k": 8}, # max relevan docs to retrieve

33.)
34.
35.
36. dolly_generate_text = pipeline(
37. model="databricks/dolly-v2-3b",
38. token="PUT_HUGGINGFACEHUB_TOKEN_HERE",
39. trust_remote_code=True,
40. device_map="auto", # make it "auto" for auto selection

between GPU and CPU, -1 for CPU, 0 for GPU

41. return_full_text=True, # necessary to return complete text.

42.

tokenizer=AutoTokenizer.from_pretrained("databricks/dolly-
v2-3b"),

43. temperature=0.1, # to reduce randomness in the

answer

44. max_new_tokens=1000, # generate this number of tokens

45. # change the cache_dir based on your preferences

46. # model kwargs are for model initialization

47. model_kwargs={
48. "cache_dir": "E:\\Repository\\Book\\models",
49. "offload_folder": "offload", # use it when model size is >

7B

50. },
51.)
52.
53. dolly_pipeline_hf = HuggingFacePipeline(pipeline=dolly_generate_text)
54.
55. retrievalQA = RetrievalQA.from_llm(llm=dolly_pipeline_hf,

retriever=retriever)
56.
57.
58. def chatbot(input_text: str) -> str:
59. """
60. This function will provide the answer of the queries.

Here first we will load the stored
61.
62. Parameters
63. ----------
64.
65. input_text: str
66. User's question
67.
68. """
69.

70. ans = retrievalQA.invoke(input=input_text)
71. return ans["result"]
72.
73.
74. iface = gr.Interface(
75. fn=chatbot,
76. inputs=gr.components.Textbox(lines=7, label="Enter your text"),
77. outputs="text",
78. title="Information Retrieval Bot",
79.)
80.
81.
82. iface.launch(share=True)

When you run this script, it will provide the URL

http://127.0.0.1:7860/ . On this URL, you will get the

dashboard, as shown in Figure 8.1. Here, we are using the

gradio package to get the dashboard. Here, you can have a

Q&A session with the chatbot. Apart from the local URL,

gradio will also provide a shareable URL with HTTPS, which

can be accessible anywhere. Using this "HTTPS" based URL,

you can provide a demo of the work and provide it for

testing.

http://127.0.0.1:7860/

Figure 8.1: Gradio Dashboard

Dolly-V2-3B details

The Dolly-V2-3B LLM is a sophisticated AI developed on the

Databricks platform, tailored for instruction-following tasks. It

is based on the pythia-2.8b model and has been fine-tuned

with approximately 15,000 instruction/response pairs created

by Databricks employees. This model is designed to perform

a range of tasks as indicated in the InstructGPT paper and is

available for commercial use, showcasing the evolution and

application of large language models in real-world scenarios.

Its benefits are as follows:

Open-source and commercially licensed: You can
use it freely for research and development, with a
licensing option for commercial deployments.
Instruction-tuned: Trained on data specifically for
following instructions, potentially better at
understanding and executing commands compared to
general-purpose LLMs.

Integration with Databricks platform: If you are
already using Databricks for other tasks, Dolly might
benefit from the platformʼs infrastructure and tools.
Flexibility: You can fine-tune and customize Dolly for
specific tasks using your own data and instructions.
Data confidentiality: You can fine-tune DollyV2
without exposing any confidential data.
Unrestricted license: DollyV2ʼs Apache 2.0 license
permits you to use the models for any commercial
purpose without any restrictions.

Looking at general computer configurations, we have chosen

Dolly-V2-3B. Though it is not a state-of-the-art generative

language model, Dolly-V2-3B is lightweight and offers the

benefits stated above, which is why we have used it in our

use case.

For more powerful LLM, you can consider using Dolly-V2-7B

or Dolly-V2-12B.

Data loaders by LangChain

Data loaders or document loaders are the ones that will be

heavily used to load the data from different sources.

LangChain provides different document loaders, as

mentioned below, to load data from these different sources:

CSV: To load data from CSV files.
Json: To load data from Json files.
HTML: To load data from HTML files.
PDF: To load data from PDF files.
Directory loader: To load all the data from different
document types like csv, pdf etc.

Amazon Textract: Amazon Textract is a machine
learning service that automatically extracts text,
handwriting, and data from scanned documents.
AWS S3 Directory: As the name suggests, load
documents from the AWS S3 directory.
Dropbox: To load data from dropbox.
Email: To load data from .eml or .msg files.
EPub: To load data from .epub extension files.
Google Drive: To load data from Google Drive.
Images: To load different images with extensions like
.jpg, .png etc.
Microsoft Excel
Microsoft Word
Microsoft PowerPoint
Microsoft OneDrive: To load data from different
Microsoft Products.

Here, we have provided some well-known data sources. The

extensive list of all the supported data loaders is on the URL

below:

https://python.langchain.com/docs/integrations/docu

ment_loaders/

Vector stores by LangChain

There is different vector stores provided by LangChain. They

are tailored for storing and organizing vectorized

representations of linguistic elements. These dense, high-

dimensional vectors encode semantic and syntactic nuances,

empowering users with efficient access to language data for

a spectrum of natural language processing tasks. Seamlessly

integrated into LangChainʼs ecosystem, these vector stores

https://python.langchain.com/docs/integrations/document_loaders/

optimize performance, scalability, and compatibility,

propelling language technology into new realms of

innovation and insight. Some of the free, open-source and

can run on local machine vector stores are as follows:

ChromaDB
FAISS: It uses the Facebook AI Similarity Search

(FAISS) library.
Lance: Based on the lance data format.
Apart from these, there are several other vector stores
as well, provided by LangChain. You can find a list of
supported vector stores on the following URL:

https://python.langchain.com/docs/integrations/

vectorstores

Conclusion

In this chapter, we embarked on a journey to develop

chatbots using custom data, leveraging the powerful

capabilities of LangChain and Hugging Face.

With LangChain, we explored various techniques for

processing, embedding, and storing textual data efficiently.

By integrating LangChain with Hugging Face, we accessed

state-of-the-art language models and pipelines, such as

Dolly, enabling us to generate high-quality responses to user

queries.

Through practical implementation, we demonstrated how to

construct a chatbot pipeline, incorporating retrieval-based

question answering and language generation components.

By combining advanced natural language processing

techniques with customizable data sources, we created

chatbots capable of engaging in meaningful conversations,

addressing user inquiries, and providing relevant

information.

https://python.langchain.com/docs/integrations/vectorstores

In the next chapter, we will move forward and see some of

the important parameters that can be tweaked to improve

the performance of the LLM models on custom data. By

understanding and optimizing these critical parameters,

practitioners can unlock the full potential of LLMs for their

specific use cases. Whether itʼs building chatbots, sentiment

analysis models, or language translation systems, fine-tuning

LLMs on custom data is essential for achieving state-of-the-

art performance and delivering impactful solutions. Overall,

the next chapter is designed to empower you to take your

custom data chatbot to the next level by optimizing the

LLMʼs performance and achieving the desired functionality.

References

https://python.langchain.com/docs/use_cases/q

uestion_answering/

https://python.langchain.com/docs/use_cases/c

ode_understanding#loading

https://python.langchain.com/docs/modules/ch

ains/#legacy-chains

Join our book’s Discord space

Join the bookʼs Discord Workspace for Latest updates, Offers,

Tech happenings around the world, New Release and

Sessions with the Authors:

https://discord.bpbonline.com

https://python.langchain.com/docs/use_cases/question_answering/
https://python.langchain.com/docs/use_cases/code_understanding#loading
https://python.langchain.com/docs/modules/chains/#legacy-chains
https://discord.bpbonline.com/

CHAPTER 9

Hyperparameter Tuning

and Fine Tuning Pre-

Trained Models

Introduction

In the realm of Generative AI, one crucial part for unlocking

top performance is called ʼhyperparameter tuningʼ. This

process involves adjusting a modelʼs settings to boost its

efficiency. The emergence of Large Language Models

(LLMs) like GPT-4, Claude 3.5 Sonnet, Gemini, and LLaMA

3.1 has reshaped our ability to solve numerous tasks

involving natural language processing using these pre-

trained models. These comprehensive models carry an

impressive load of adjustable parameters that are sensitive

to hyperparametersʼ values - these parameters guide their

behavior throughout various processes. Learning how this

works and optimizing them became essential in getting the

most out of LLMsʼ accuracy and functionality during tasks.

Hyperparameter tuning is vital since it directly affects how

well the artificial intelligence model performs.

A hyperparameter represents those preset model

configurations that are not learned from data but are user-

defined before we initiate training or start utilizing a trained

model. These influence not just learning but also precision

rate. Optimal handling can help us find a middle ground

between overfitting (when we feed too much noisy detail

into the AI/ML model, which makes it lose versatility) and

underfitting (on this occasion, it does not learn enough).

Getting this right will lead us toward building a system

capable of performing exceptionally with unfamiliar data.

Well, the evolution brought by LLMs in Natural Language

Processing is not insignificant; they have been delivering

top-notch results across varied fields, from creating

automated text to translating (decoding) languages or

answering questions concisely when needed. Despite them

regularly being trained on standard datasets ahead, there

may come some scenarios where they will not be efficient.

Here is where fine-tuning steps in, granting us probabilities,

shaping existing structure fitting precisely into respective

algorithms, and enhancing overall effectivity by considerable

degrees. It changes the way custom-made Full Form

becomes another starter solution ready and suitable for

organizational requirements cast specifically considering all

unique needs

In this chapter, we will dive deep into modifying our pre-

trained system, especially LLMs. Benefits will be discussed,

and a variety of tips will be supplemented, as well as hurdles

encountered during the procedure and the best solutions

around them. We will familiarize you with step-by-step

details on the exact fine-tuning process involving multiple

methods used followed by factors playing significant roles

behind the success story, including perfect model design

based on an optimized hyperparameters basket after

selecting the right data to drive the journey ahead.

Structure

In this chapter, we are going to discuss the following topics:

Hyperparameters of an LLM
Hyperparameters at inferencing or a text generation
Fine-tuning of an LLM
Data preparation for finetuning an LLM
Performance improvement

Objectives

The objective of this chapter is to provide a comprehensive

guide to learning various hyperparameters related to an LLM

and how they affect the model output. Also, we will learn

how to fine-tune an LLM on the downstream task by using a

custom dataset and finetuning the model using that data.

With examples and step-by-step instructions, the chapter

aims to learn about various hyperparameters and

understand how they influence the output of an LLM. This

involves mastering the use of custom datasets with an LLM,

including the preparation of data for fine-tuning. Additionally,

the goal is to gain expertise in fine-tuning an LLM with

custom data for specific downstream tasks such as

healthcare LLMs or enterprise LLMs.

Hyperparameters of an LLM

The hyperparameters in training are as follows:

Learning rate
Batch size
Epochs
Sequence length
Early stopping
Learning rate scheduling

Gradient clipping
Regularization
Model architecture
Transfer learning and fine-tuning

Let us take a look at them in detail:

Learning rate:

Definition: Determines the step size during training
to update the modelʼs weights.
Experimentation: Try different rates (for
example,0.00001, 0.00003,0.001) to find optimal
convergence speed and effectiveness.

Batch size:

Definition: Balances memory requirements and
training efficiency.
Experimentation: Test with various sizes (for
example, 16, 32, 64) to observe effects on stochastic
updates and generalization.

Epochs:

Definition: The number of training iterations.
Considerations: Choose based on dataset size and
convergence speed.
Risks: Too few epochs may lead to underfitting,
while too many may cause overfitting.

Sequence length:

Definition: Maximum sequence length for
tokenization.
Adjustment: Tailor to model architecture and
hardware constraints.

Early stopping:

Definition: Early stopping is a technique used to
prevent overfitting during model training by
monitoring a metric on a separate validation dataset.
If the performance on the validation dataset fails to
improve after a certain number of training iterations
or starts to degrade, training is halted to prevent
further overfitting.
Implementation: Monitor validation set during
training; stop when validation loss plateaus or
increases to prevent overfitting.

Learning rate scheduling:

Definition: Learning rate scheduling is the method
of altering the learning rate actively throughout the
training period. It could mean lowering this learning
rate as time goes on (for instance, via linear or
exponential decay). This strategy assists in refining
model parameters more effectively.
Approach: Implement schedules like linear or
exponential decay to gradually reduce the learning
rate and fine-tune the model.

Gradient clipping:

Definition: Take advantage of gradient clipping to
control and limit how large gradients could get
during backpropagation; this helps avoid instability
in learning models.
Method: Apply gradient clipping to limit gradient
magnitude during backpropagation, preventing
instability.

Regularization:

Definition: Regularization in context means using
different tactics, such as adding a penalty term onto
loss functions to keep away from overfitting
scenarios. This kind of penalty curbs heavy complex
models by punishing larger parameter values.
Regular kinds are L1 and L2 regularization,
including dropout methods along with weight decay
and others.
Techniques: Using strategies like dropout protocol
or decaying weight protocols can help prevent
overfitting while improving generalization
properties.

Model architecture:

Definition: The model framework is referred to as a
specific structure design for a Deep Learning model
covering layout distribution, neurons used per layer,
and how they all connect. The choice here
immensely influences the modelʼs ability to handle
new knowledge and performance on varying tasks at
hand.
Experimentation: Considering varied
architectures/frameworks for LLMs, including
exploring pre-trained ones (from larger datasets),
will yield the best performances.

Transfer learning and fine-tuning:

Definition: Transfer learning basically indicates
getting benefits from experience already gained
after completing any task, which then aids in
improving related task performances. Whereas fine-
tuning comes into play by continuing to modify pre-
trained LLMs focusing specifically on the smaller
datasets, new upcoming challenges are aligned
accordingly, which allows system alignment,

balancing effectively well and highlighting small
unknown tasks needing less data calculation time
against the initial full-scale training process possibly
needed.
Strategy: Taking advantage of transfer-based
learnings has given effective outcomes while
completing finetuning for set channels reduces
computational load, especially when catering to
smaller dataset challenges.

Hardware considerations:

Adaptations: Adjust parameters considering
available hardware resources, e.g., smaller batch
sizes for memory-constrained environments,
optimally using the memory, Using parallel
processing, etc.

Hyperparameter search:

Definition: Hyperparameter search describes a
systematic exploration technique diving deep inside
hyperparameter space, making optimal combinations
available and further assigning them orderly to every
task.
Techniques: There are known methods to that end,
which are grid search and random seeking, including
Bayesian optimization techniques.

Validation and evaluation:

Definition: While the validation process involves the
modelʼs performance assessment on a separate
dataset not used during an initial training session,
the evaluation indicates assessing the final built
model, signing off its overall performance ability
matching up against test datasets being independent

of already once trained and validated ones at the
same time.
We should always keep an eye over system outcome
while working with set validations in different
progression stages, eventually using standard
polished tests across datasets for projectsʼ final say
onwards where it needs to be aimed towards
gathering the most realistic benchmark figures
indicating real-world scenario performances and
future reliability data points tracking.

Hyperparameters at inferencing or at text

generation

LLMs have revolutionized various fields, including natural

language processing, machine translation, and code

generation. These models are trained on massive datasets of

text and code, allowing them to generate human-quality

text, translate languages, and write different kinds of

creative content. However, fine-tuning their behavior often

requires adjusting specific parameters that influence the

modelʼs output. Let us delve into the intricacies of some key

parameters associated with LLMs. Refer to the following

figure:

Figure 9.1: Temperature Effect

Temperature (τ):

Imagine a probability distribution over the next word
the LLM can generate. Temperature acts as a control
knob for this distribution, influencing the
randomness of the chosen word.
Low temperature (τ < 1) The distribution narrows,
favoring the most likely word, resulting in more
predictable and conservative outputs.
High temperature (τ > 1) The distribution broadens,
encouraging exploration of less probable words,
leading to more diverse and creative, but potentially
less accurate, outputs.
Temperature varies between the value 0 to 2
(OpenAI and GCP provide a temperature range of 0
to 1).

Refer to Figure 9.1 to see how the temperature
range will impact the response.

Top P and Top K:

Top P (Nucleus sampling):
Imagine the LLMʼs output as a probability
distribution over the next word it can generate.
Top P focuses on a specific segment of this
distribution, encompassing the cumulative
probability mass up to a predefined threshold (P).
Higher Top P values: Select a broader portion of
the distribution, allowing the LLM to consider a
wider range of words, including those with lower
individual probabilities. This can lead to increased
diversity and creativity in the generated text but
also introduces a higher risk of encountering
unexpected or nonsensical words.
Lower Top P values: Restrict the selection to a
narrower portion of the distribution, primarily
focusing on the most probable words. This results
in safer and more predictable outputs but
potentially sacrifices creativity and
expressiveness.

Top K:
This parameter directly selects the k most
probable words from the entire distribution,
effectively pruning the less likely options.
Higher Top K values: The LLM can explore a
wider range of high-probability choices,
potentially leading to more diverse and nuanced
outputs. However, this also increases the
likelihood of encountering less relevant or
informative words.

Lower Top K values: This constrains the LLMʼs
selection to a smaller set of the most probable
words, resulting in safer and more controlled
outputs but potentially limiting creativity and
expressiveness.

Crucial distinction:

While both Top P and Top K influence the
diversity of the generated text, they operate
on fundamentally different principles:
Top P: Selects words based on their
cumulative probability contribution within a
predefined threshold.
Top K: Selects the k most probable words
regardless of their individual or cumulative
probabilities
OpenAI suggests not changing the value of
both; try to change the value of either of
them.

Maximum length:

This parameter sets a hard limit on the number of
tokens (words or sub-word units) the LLM can
generate in a single response.
Shorter maximum lengths ensure conciseness and
prevent the model from going off on tangents but
might truncate potentially valuable information.
Longer maximum lengths allow the model to
elaborate and provide more comprehensive
responses but raise concerns about potential
incoherence or irrelevant content.

Stop sequences:

These are specific tokens or phrases explicitly
defined to instruct the LLM to halt its generation
process.
Effective stop sequences help control the modelʼs
output length and prevent it from rambling or
producing irrelevant content.
Choosing appropriate stop sequences requires
careful consideration of the desired output format
and content structure.

Frequency penalty:

This parameter discourages the LLM from
repeatedly using the same words within a short
span, promoting lexical diversity in the generated
text.
Higher frequency penalties impose a stronger bias
against repetition, leading to outputs with a wider
range of vocabulary but potentially impacting
fluency of natural language flow.
Lower frequency penalties allow the model more
freedom in word choice, potentially resulting in
repetitive outputs, especially for frequently
occurring words or phrases.

Presence penalty:

This parameter penalizes the LLM for using words
that have already appeared in the input text or
previous generations, encouraging the model to
introduce new information and avoid redundancy.
Higher presence penalties discourage the model
from simply parroting the input or repeating
previously generated content, leading to more
informative and engaging outputs.

Lower presence penalties allow the model to
leverage existing information more freely, potentially
resulting in outputs that closely resemble the input
or exhibit repetitive patterns.

Context window:

Imagine the LLM as a language learner observing
the world. The context window defines the extent of
its gaze into the past, encompassing the preceding
words or tokens it considers when predicting the
next element in a sequence.
Larger context windows: Equipping the LLM with
a wider context window allows it to comprehend
more intricate connections and dependencies
between words. Recently, new LLM models like GPT-
4 have 128k context windows, while the new Gemini
1.5 Pro Model supports 2 million tokens of the
context window. The outcome is likely to be more
coherent, in sync with a wider context, and showcase
a superior understanding of the topic.
Smaller context windows: By doing so, we narrow
down LLMʼs focus onto immediate surroundings,
which might result in lower latency and simpler
outputs but could limit its ability to capture delicate
nuances or understand long-term dependencies.

Understanding how these parameters work is vital if we wish

to tap into all that LLMs have to offer while balancing their

innate biases. When we adjust these settings for specific

tasks, the results tend to be informative and creative, much

like a personʼs behavior. This is particularly useful for text

scripting work.

In this chapter, we will go through how changing

hyperparameters of large language models can supplement

required performance across a range of applications:

sentiment analysis, question answering systems, chatbots,

or machine-based translations even further. As this fine-

tuning process aligns, the system setting more matching

against target job needs / tailored datasets linked strongly,

indicating domain-specific usage moderation techniques,

hence pulling ahead. This process allows us to leverage the

knowledge encoded within the pre-trained model while

tailoring it specifically to suit our needs. Fine-tuning helps

improve performance by allowing the model to learn from

task-specific examples and adjust its internal representations

accordingly.

Fine-tuning of an LLM

Fine-tuning an LLM involves adapting a pre-trained model to

perform specific tasks or excel in domain-specific datasets.

The process entails training the LLM on a smaller dataset

tailored for the target downstream task, allowing it to refine

its parameters and optimize performance.

Applications of fine-tuned LLMs span various domains,

including sentiment analysis, question-answering systems,

chatbots, machine translation, Named Entity Recognition

(NER), summarization models, and more.

Numerous typical scenarios where fine-tuning can yield

enhanced outcomes:

Establishing the style, tone, format, or other qualitative
attributes.
Enhancing consistency in generating a desired output.
Rectifying inadequacies in adhering to intricate
prompts.
Addressing numerous edge cases in particular
manners.

Executing a novel skill or task that proves challenging
to articulate within a prompt.

Figure 9.2: Finetuning process overview

Data preparation for finetuning an LLM

Preparing data for fine-tuning an LLM involves curating a

dataset specific to the target downstream task. Here are

some steps to consider when preparing data for LLM fine-

tuning. Refer to Figure 9.2 for your reference. Follow the

given steps:

1. Define the task: Clearly define the objective of your

downstream task, such as Question answering,

Information retrieval etc.

2. Data collection: Gather or create a labeled dataset

that aligns with your defined task and covers diverse

examples representative of real-world scenarios.

3. Dataset cleaning: Clean and preprocess the collected

data by removing irrelevant information, correcting

errors, handling missing values, standardizing formats,

etc., ensuring high-quality input for training.

4. Text tokenization and encoding: Convert raw text

inputs into numerical representations suitable for

feeding into an LLM using tokenization techniques like

WordPiece or Byte-Pair Encoding (BPE). Encode

tokens as integers based on vocabulary mapping. Most

enterprise LLMs use BPE.

5. Special tokens addition:

a. [CLS] token at the beginning of each sequence to
represent classification tasks.

b. [SEP] token between multiple sentences in one
example.

c. Additional domain-specific tokens if required.

6. Padding and truncation:

a. Ensure all sequences have uniform length by
padding shorter ones with special padding tokens
([PAD]) or truncating longer ones while maintaining
essential context within limits imposed by
computational resource constraints.

7. Sample dataset example:

a. Let us consider sentiment analysis as our target
downstream task, where we aim to classify movie
reviews as positive (+1) or negative (-1):

[
{
"text": "I absolutely loved this movie! The acting was superb.",
"label": 1
},
{
"text": "The plot was confusing, and the characters were poorly
developed.",
"label": -1
},
{
"text": "This film had me on the edge of my seat. Highly recommended!",

"label": 1
},
...
]

In this example dataset, each entry consists of a text review

along with its corresponding sentiment label (+1 for positive

and -1 for negative). This curated dataset can be used to

fine-tune an LLM specifically for sentiment analysis tasks.

Figure 9.3 provides some of the benefits of fine-tuning

process vs pre-trained models:

Figure 9.3:
1

 Finetuning Advantages

OpenAI and some leading LLM providers expect a different

dataset structure to do the fine-tuning. We are attaching a

sample format provided by the OpenAI team:

{"prompt": "<prompt text>", "completion": "<ideal

generated text>"}

{"prompt": "<prompt text>", "completion": "<ideal

generated text>"}

{"prompt": "<prompt text>", "completion": "<ideal

generated text>"}

In the context of LLMs, the prompt is the input, and

completion is the output.

Also attaching a sample dataset using sklearn newsgroup

dataset.

The code to convert a normal pandas dataframe to JSONL

format, which OpenAI and other LLM supports, is given as

follows:

Create a new folder called Chapter_9 under the scripts

folder. Within the folder, create the script pd_df_to_jsonl.py

and add the following code to it:

1. import pandas as pd
2. from sklearn.datasets import fetch_20newsgroups
3. categories = ['rec.sport.baseball', 'rec.sport.hockey']
4. sports_dataset = fetch_20newsgroups(subset='train', shuffle=True,

random_state=42, categories=categories)
5. len_all, len_baseball, len_hockey = len(sports_dataset.data), len([e for e in

sports_dataset.target if e == 0]), len([e for e in
sports_dataset.target if e == 1])

6. print(f"Total examples: {len_all}, Baseball examples: {len_baseball}, Hockey
examples: {len_hockey}")

7. labels = [sports_dataset.target_names[x].split('.')[-1] for x in
sports_dataset['target']]

8. texts = [text.strip() for text in sports_dataset['data']]
9. df = pd.DataFrame(zip(texts, labels), columns = ['prompt','completion']) #

[:300]

10. df.head()
11. df.to_json("sport2.jsonl", orient='records', lines=True)

Also, we are attaching a sample from the dataset, which is a

classification task:

Here , as we are talking about the classification task, we will

get text as input for the prompt and a single word as

completion. Here , LLM is predicting the context of the input

text. That is, what is the discussion topic?

{"prompt":"From: dougb@comm.mot.com (Doug

Bank)\nSubject: Re: Info needed for Cleveland

tickets\nReply-To:

dougb@ecs.comm.mot.com\nOrganization: Motorola

Land Mobile Products Sector\nDistribution:

usa\nNntp-Posting-Host: 145.1.146.35\nLines:

17\n\nIn article

<1993Apr1.234031.4950@leland.Stanford.EDU>,

bohnert@leland.Stanford.EDU (matthew bohnert)

writes:\n\n|> I'm going to be in Cleveland Thursday,

April 15 to Sunday, April 18.\n|> Does anybody know if

the Tribe will be in town on those dates, and\n|> if so,

who're they playing and if tickets are available?

\n\nThe tribe will be in town from April 16 to the

19th.\nThere are ALWAYS tickets available! (Though

they are playing Toronto,\nand many Toronto fans

make the trip to Cleveland as it is easier to\nget

tickets in Cleveland than in Toronto. Either way, I

seriously\ndoubt they will sell out until the end of the

season.)\n\n-- \nDoug Bank Private Systems

Division\ndougb@ecs.comm.mot.com Motorola

Communications Sector\ndougb@nwu.edu

Schaumburg, Illinois\ndougb@casbah.acns.nwu.edu

708-576-8207","completion":"baseball"}

{"prompt":"From: gld@cunixb.cc.columbia.edu (Gary L Dare)\nSubject:

Re: Flames Truly Brutal in Loss\nNntp-Posting-Host:

cunixb.cc.columbia.edu\nReply-To: gld@cunixb.cc.columbia.edu (Gary L

Dare)\nOrganization: PhDs In The Hall\nDistribution: na\nLines:

13\n\n\nThis game would have been great as part of a double-header on

ABC or\nESPN; the league would have been able to push back-to-back

wins by\nLe Magnifique and The Great One. Unfortunately, the only

network\nthat would have done that was SCA, seen in few areas and hard

to\njustify as a pay channel.)-;\n\ngld\n--

\n~~~~~~~~~~~~~~~~~~~~~~~~ Je me souviens

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\nGary L. Dare\n>

gld@columbia.EDU \t\t\tGO Winnipeg Jets GO!!!\n>

gld@cunixc.BITNET\t\t\tSelanne + Domi ==>

Stanley","completion":"hockey"}

Under the folder called Chapter_9 under the scripts folder,

create a script fine_tuning.py and add the following code to

it:

The code to fine-tune an open source LLM using Huggingface

library is as follows:

1. # -*- coding: utf-8 -*-

2. """
3. Created on Fri Mar 10 11:05:15 2023
4. """
5. ## Importing necessary libraries ####

6. 
7. import os
8. import torch
9. import numpy as np

10. import pandas as pd
11. from time import time
12. from datasets import Dataset
13. from sklearn import preprocessing
14. from sklearn.model_selection import train_test_split
15. from transformers import (
16.     BertForSequenceClassification,
17.     BertTokenizerFast,
18.     Trainer,
19.     TrainingArguments,
20. )
21. 



22. # Change directory where we have placed the data.

23. os.chdir(r"C:\\projects\\actual\\2023\\bedrock\\data\\fine_tuning")
24. 
25. ## Reading the jsonl file for training ####

26. df = pd.read_json("sport2.jsonl", lines=True)  # we are going to use 

the same file

27. df.head()
28. 
29. # replacing line space and new line

30. df = df.replace(to_replace=[r"\\t|\\n|\\r", "\t|\n|\r"], value=["", ""], 
regex=True)

31. df.head()
32. df.columns
33. 
34. ### using Cuda device

35. device = "cuda" if torch.cuda.is_available() else "cpu"
36. 
37. ##Changing column names as model expects data 

column as text and target variable as labels ##

38. ##df.columns = [‹text','label']

39. 
40. # train the label encoder , convert the categories to 

numeric features

41. le = preprocessing.LabelEncoder()
42. le.fit(df["news_category"])
43. 
44. le.classes_
45. len(le.classes_)
46. df["label"] = le.transform(df["news_category"])
47. df["label"].unique()
48. df.reset_index(inplace=True)
49. 
50. # Saving the label encoder to a numpy file for 



reusability

51. PATH = r"path of your folder where you want to save the 
data"

52. np.save(PATH + "label_encoder_news_category.npy", le.classes_)
53. 
54. ##  re load the encoder

55. PATH = r"path of your folder where data is saved"
56. le = preprocessing.LabelEncoder()
57. le.classes_ = np.load(PATH + "label_encoder_domain_whole.npy", 

allow_pickle=True)
58. 
59. # Get training and testing data splitted

60. train_df, test_df = train_test_split(
61.     df[["text", "label"]], test_size=0.2, random_state=42, stratify=df["label"]
62. )
63. train_df.head()
64. 
65. 
66. ## we are going to use open source BERT Base model 

from hugginface

67. # default storage directory will be ~/.cache/

68. # you can add/update other hyper parameters as well as 

per the requirement.

69. model = BertForSequenceClassification.from_pretrained(
70.     "bert-base-uncased", num_labels=len(le.classes_)
71. )  # change the number of labels

72. tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
73. 
74. ## converting dataset to huggingface dataset

75. train_df_ar = Dataset.from_pandas(train_df)
76. test_df_ar = Dataset.from_pandas(test_df)
77. 
78. 



79. def tokenize(batch):
80.     return tokenizer(batch["text"], padding=True, truncation=True)
81. 
82. 
83. train_df_tf = train_df_ar.map(tokenize, batched=True, 

batch_size=len(train_df_ar))
84. test_df_tf = test_df_ar.map(tokenize, batched=True, 

batch_size=len(test_df_ar))
85. train_df_tf.set_format("torch", columns=["input_ids", "attention_mask", 

"label"])
86. test_df_tf.set_format("torch", columns=["input_ids", "attention_mask", 

"label"])
87. 
88. # to free up GPU memory

89. torch.cuda.empty_cache()
90. 
91. 
92. # starting the training process

93. # training parameters

94. training_args = TrainingArguments(
95.     output_dir="./results",  # output directory

96.     num_train_epochs=3,  # total # of training epochs

97.     per_device_train_batch_size=16,  # batch size per 

device during training

98.     per_device_eval_batch_size=32,  # batch size for evaluation

99.     warmup_steps=500,  # number of warmup steps for 

learning rate scheduler

100.     weight_decay=0.01,  # strength of weight decay

101.     logging_dir="./logs",
102.     save_total_limit=1,
103.     # load_best_model_at_end=True

104.     # directory for storing logs

105. )



106. 
107. 
108. ##the instantiated Transformers model to be trained

109. trainer = Trainer(
110.     model=model,  # the instantiated  model to be trained

111.     args=training_args,  # training arguments, defined above

112.     train_dataset=train_df_tf,  # training dataset

113.     eval_dataset=test_df_tf,  # evaluation dataset

114. )
115. 
116. start = time()
117. 
118. # It will start the training process

119. trainer.train()
120. 
121. end = time()
122. 
123. total = end - start
124. print(f"time taken by the process is {total/60} minutes ")
125. 
126. ## this will run all the evaluation metrics and provide 

the results

127. Print(trainer.evaluate())
128. """
129. Output:
130. =====
131. {'eval_loss': 0.23266847431659698,
132. 'eval_runtime': 51.081,
133. 'eval_samples_per_second': 64.27,
134. 'eval_steps_per_second': 2.016,
135. 'epoch': 3.0}
136.     
137. {'eval_loss': 0.20599809288978577,



138. 'eval_runtime': 53.0823,
139. 'eval_samples_per_second': 61.847,
140. 'eval_steps_per_second': 1.94,
141. 'epoch': 3.0}
142. """
143. 
144. # Saving the model to a folder domain_classification

145. trainer.save_model("./results/domain_classification")

Performance improvement

Table 9.1 vividly shows that the fine-tuned open-source

model, Xfinance, when fine-tuned with only two finance-

related datasets, outperforms the proprietary model

BloombergGPT on finance sentiment tasks. This illustrates

how fine-tuning a pre-trained model on a domain-specific

task can help achieve superior accuracy for subsequent

tasks.

Task xFinance BloombergGPT

Financial Phrasebank dataset 0.7283 0.5107

Headline 0.8543 0.822

FiQA SA (headline) 0.774 0.7507

FiQA SA (sentence) 0.8271 -

Table 9.1:  Fine-tuned model Xfinance benchmarking with

BloombergGPT

Conclusion

In conclusion, hyperparameter tuning and fine-tuning are

very important aspects in the fields of ML, DL, and

Generative AI. In this chapter, we have explored some of the

important hyperparameters that can be fine-tuned to

achieve better performance from LLMs.



First, we have seen different hyperparameters and their

impact on the performance of machine learning models. We

have also discussed issues with values that are too high or

too low for those parameters.

Next, we have seen fine-tuning pre-trained models, which

utilize existing deep learning architectures trained on large

datasets and adapting them to new tasks or domains. Fine-

tuning allows for efficient utilization of computational

resources and accelerates model training, especially in

scenarios where labeled data is limited.

In conclusion, mastering hyperparameter tuning and fine-

tuning pre-trained models is essential for practitioners

seeking to build state-of-the-art machine learning systems.

References

https://medium.com/@rtales/tuning-parameters-

to-train-llms-large-language-models-

8861bbc11971

https://www.superannotate.com/blog/llm-fine-

tuning#:~:text=Once%20your%20instruction%20

data%20set,LLM%2C%20which%20then%20gener

ates%20completions

https://platform.openai.com/docs/guides/fine-

tuning/common-use-cases

https://platform.openai.com/docs/guides/fine-

tuning/preparing-your-dataset

https://www.ankursnewsletter.com/p/pre-training-

vs-fine-tuning-large

https://www.stochastic.ai/blog/xfinance-vs-

bloomberg-gpt

https://medium.com/@rtales/tuning-parameters-to-train-llms-large-language-models-8861bbc11971
https://www.superannotate.com/blog/llm-fine-tuning#:~:text=Once%20your%20instruction%20data%20set,LLM%2C%20which%20then%20generates%20completions
https://platform.openai.com/docs/guides/fine-tuning/common-use-cases
https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset
https://www.ankursnewsletter.com/p/pre-training-vs-fine-tuning-large
https://www.stochastic.ai/blog/xfinance-vs-bloomberg-gpt


1
 Source: - https://www.ankursnewsletter.com/p/pre-training-

vs-fine-tuning-large

Join our book’s Discord space

Join the bookʼs Discord Workspace for Latest updates, Offers,

Tech happenings around the world, New Release and

Sessions with the Authors:

https://discord.bpbonline.com

https://www.ankursnewsletter.com/p/pre-training-vs-fine-tuning-large
https://discord.bpbonline.com/


CHAPTER 10

Integrating LLMs into Real-

World Applications – Case

Studies

Introduction

This chapter dives into the practical implementation of

Large Language Models (LLMs) after they have been

tuned for custom datasets. We will explore specific case

studies that demonstrate the practical integration of LLMs

into Telegram Bot. You may choose to integrate an LLM as a

bot on a website where users will have a conversation with

the bot, or you may integrate it with a mobile application.

You might have come across such a service, especially in the

banking field, where you can have a conversation with a bot

either via WhatsApp or on the bank website, where you can

get the required details related to the bank and its different

services. On WhatsApp, you might also get more facilities,

like more information about your bank account.

When we say real-world application, we mean anything like a

website or a mobile app like WhatsApp, Facebook, or Slack.



We can also make LLM work with domain-specific data, such

as healthcare, financial, and education-related data.

Structure

We are going to see the following sections in this chapter:

Case studies
Use case with Telegram

Objectives

The objective of this chapter is to showcase the practical

utility of custom data-based LLM as a chatbot. It will

demonstrate a practical application using Telegram and help

users understand the journey from applying custom data

knowledge to LLM to deploying it via different mediums like

WhatsApp, Telegram, a website, or a mobile app.

Case studies

Let us take a look at a few scenarios where Large

Language Models (LLMs) could be integrated into real-

world applications, along with potential case studies:

Customer service chatbots:

Scenario: A firm is looking to enhance its customer
support operations by integrating an AI chatbot to
handle client questions and service requests. One
such example is provided in Figure 10.1.

Case study: The company ties in a pretrained LLM
into the chatbot on their website. This allows the bot
to comprehend and answer client queries using
natural language. With the large amount of data on
which LLM is trained, it becomes capable of
providing accurate solutions, lightening human



operators' workload while improving overall
satisfaction levels amongst clients.

Figure 10.1: Example chatbot

Medical diagnosis assistance:

Scenario: Medical professionals need more
precision and efficiency in diagnosing patients by
leveraging AI technology for analyzing reports or
reading images related to diagnosis parameters.
Case study: Strategically deploying a specialized,
industry specific LLM trained on patient data /
medical literature can be helpful in busy and high-
pressure situations where important details can be
missed. During the COVID-19 spread, IIT Jodhpur
developed a dedicated framework that could
read/diagnose the presence of viral strains visible
inside the body via X-ray scans having an accuracy
count of 96%.



Content generation for marketing:

Scenario: A marketing agency wants to make
content creation easier and improve the quality of
marketing materials for its clients. One such
example can be found in Figure 10.2.
Case study: The agency uses a language generation
LLM to automatically create blog posts, social media
captions, and email newsletters. By adjusting the
LLM's settings and giving it the right prompts and
guidelines, the agency quickly makes interesting and
custom content. This saves time for coming up with
new ideas and planning strategies.



Figure 10.2: Sample prompt to generate Instagram post

Financial data analysis and forecasting:

Scenario: Financial analysts need advanced tools to
study market trends, predict stock changes, and
create investment insights.
Case study: An investment firm adds a powerful
LLM to its financial analysis platform. This LLM
reviews lots of financial data, news, and social media
opinions. It helps analysts find patterns, spot unusual
market activities, and make models to predict stock



prices. This leads to better investment choices and
smarter risk management.

Language translation and localization:

Scenario: Big multinational companies around the
world want to break language barriers and help their
global teams and customers communicate better.
Case study: A tech company adopts a multilingual
LLM for real-time language translation and
localization of software interfaces, documentation,
and customer support materials. The LLM's
advanced natural language processing capabilities
enable accurate translation between multiple
languages, ensuring consistency and clarity across
diverse linguistic contexts and enhancing global
accessibility and user experience.

Mobile industry support engineer:

Scenario: Multinational mobile company need
assistance with providing accurate resolutions to
customers by analyzing detailed technical
specifications of their devices and suggesting the
appropriate accessories or solutions.
Case Study: A mobile company adopts a Generative
AI (Gen AI) LLM-based chatbot to support their
customer service teams in understanding complex
technical specifications from various sources. The
chatbot offers real-time language translation,
retrieves component related technical details, and
ensures accurate interpretation of these details for
effective communication with customers globally.
Additionally, it localizes product documentation to
make it accessible and relevant across different
linguistic contexts. This implementation enhances
efficiency, reduces errors, improves user experience,



and ultimately boosts customer satisfaction within
the mobile industry.

Use case with Telegram

For our use case, we are going to integrate the chatbot we

created in Chapter 8, Creating Chatbots using Custom Data

with Langchain and Hugging Face Hub, with Telegram. We

have chosen Telegram because integration with it is easy

and quick. Once we have integrated our bot with Telegram,

we can chat with it and get the answers to the respective

questions. Similar to Telegram, you will find different ways to

integrate the bot with other applications like WhatsApp,

Facebook, or Slack.

Setup

To work with Telegram, we need to install a package that

allows us to interact with It. We also need to generate a

token by creating a bot in Telegram. Follow the given steps:

1. First, download the desktop telegram by visiting the

link: https://desktop.telegram.org/

a. In case you do not want to use a desktop
application, you can utilize its web interface as well,
which will be available at the link:
https://web.telegram.org/

https://desktop.telegram.org/
https://web.telegram.org/


Figure 10.3: Download Telegram

b. From the above link, you can download the Portable
version of Telegram or the standalone installer, as
shown in Figure 10.3.

c. Once installed, open Telegram and, if necessary,
install it on your phone so that you can connect it via
Desktop using a QR code or another method. After
this step, from the opened app, search for
@BotFather, as shown in Figure 10.4. This step is
required to obtain the token and register our bot.



Figure 10.4: Search @BotFather

In the next step, click on BotFather, which will open a chat

window with it, as shown in Figure 10.5. From this window,

click on /newbot, as shown in Figure 10.5, highlighted in

red. Once you do this, it will ask you a few questions to set

up a bot, as shown in Figure 10.6.



Figure 10.5: Chat window with @BotFather

d. Once the new bot is set up, you will get a token, as
shown in Figure 10.6, hidden by yellow at the bottom.
Save this token, as this is the one through which we
will communicate with users via the Telegram bot.



Figure 10.6: New bot setup

2. Install the required Python package using the below

command after activating virtual environment.

pip install origamibot==2.3.6

Here, we have completed the required setup to run the
chatbot via Telegram. Now create a new folder called
telegram. Under this folder, create a new file called
bot.py. Under this file, paste the following code:
1. """
2. The telegram bot related code is taken from 

https://github.com/cmd410/OrigamiBot
3. and then modified with our LLM bot to have conversation with users
4. """
5. 
6. from sys import argv
7. from time import sleep



8. from origamibot import OrigamiBot as Bot
9. from origamibot.listener import Listener

10. from langchain.chains import RetrievalQA
11. from transformers import AutoTokenizer, pipeline
12. from langchain.vectorstores.chroma import Chroma
13. from langchain_huggingface import HuggingFacePipeline, 

HuggingFaceEmbeddings
14. 
15. MAX_MESSAGE_LENGTH = 4095  # Maximum length for a 

Telegram message

16. 
17. 
18. def split_message(message):
19.     """Split a message into chunks of maximum length."""
20.     return [
21.         message[i : i + MAX_MESSAGE_LENGTH]
22.         for i in range(0, len(message), MAX_MESSAGE_LENGTH)
23.     ]
24. 
25. 
26. # 

=================================

=================================

=================================

===================

27. # Defining global settings for easy and fast work

28. 
29. # load text embedding model from HuggingFaceHub 

to generate vector embeddings

30. embed_model = HuggingFaceEmbeddings(
31.     model_name="sentence-transformers/all-MiniLM-l6-v2",
32.     cache_folder="E:\\Repository\\Book\\sentence_transformers",
33.     model_kwargs={"device": "cpu"},  # make it to "cuda" in case 



of GPU

34.     encode_kwargs={"normalize_embeddings": False},
35.     multi_process=False,
36. )
37. 
38. chroma_db = Chroma(
39.     persist_directory="E:\\Repository\\Book\\chroma_db", 

embedding_function=embed_model
40. )
41. 
42. 
43. # Retrieve 

........................................................................................

.....................

44. # define retriever to retrieve Question related Docs

45. retriever = chroma_db.as_retriever(
46.     search_type="mmr",  # Maximum MArginal Relevance

47.     search_kwargs={"k": 8},  # max relevan docs to retrieve

48. )
49. 
50. 
51. dolly_generate_text = pipeline(
52.     model="databricks/dolly-v2-3b",
53.     token="PUT_HERE_HUGGINGFACEHUB_API_TOKEN",
54.     trust_remote_code=True,
55.     device_map="auto",  # make it «auto» for auto selection 

between GPU and CPU, -1 for CPU, 0 for GPU

56.     return_full_text=True,  # necessary to return complete 

text.

57.     tokenizer=AutoTokenizer.from_pretrained("databricks/dolly-v2-3b"),
58.     temperature=0.1,  # to reduce randomness in the answer

59.     max_new_tokens=1000,  # generate this number of tokens

60.     # change the cache_dir based on your preferences



61.     # model kwargs are for model initialization

62.     model_kwargs={
63.         "cache_dir": "E:\\Repository\\Book\\models",
64.         "offload_folder": "offload",  # use it when model size is > 

7B

65.     },
66. )
67. 
68. dolly_pipeline_hf = HuggingFacePipeline(pipeline=dolly_generate_text)
69. 
70. retrievalQA = RetrievalQA.from_llm(llm=dolly_pipeline_hf, 

retriever=retriever)
71. 
72. 
73. # telegram related stuff ---------------------------------------------

--------------------------------------------------

74. class BotsCommands:
75.     """
76.     This are the commands which you can use in chat like..........
77.     /start will start the conversation
78.     /echo will echo the message
79.     «»»
80. 
81.     def __init__(self, bot: Bot):  # Can initialize however you 

like

82.         self.bot = bot
83. 
84.     def start(self, message):  # /start command

85.         self.bot.send_message(message.chat.id, "Hello user!\nThis is an 
example bot.")

86. 
87.     def echo(self, message, value: str):  # /echo [value: str] 

command



88.         self.bot.send_message(message.chat.id, value)
89. 
90.     def _not_a_command(self):  # This method not considered a 

command

91.         print("I am not a command")
92. 
93. 
94. class MessageListener(Listener):  # Event listener must inherit 

Listener

95.     """
96.     This is the message listener. Based on the question 

this portion will be
97.     answer. This will be responsible for conversation with user.
98.     «»»
99. 

100.     def __init__(self, bot):
101.         self.bot = bot
102.         self.m_count = 0
103. 
104.     def on_message(self, message):  # called on every message

105.         self.m_count += 1
106.         print(f"Total messages: {self.m_count}")
107.         ans = retrievalQA.invoke(message.text)
108.         chunks = split_message(ans["result"])
109.         for chunk in chunks:
110.             self.bot.send_message(message.chat.id, chunk)
111. 
112.     def on_command_failure(self, message, err=None):  # When 

command fails

113.         if err is None:
114.             self.bot.send_message(message.chat.id, "Command failed to bind 

arguments!")
115.         else:



116.             self.bot.send_message(message.chat.id, f"Error in 
command:\n{err}")

117. 
118. 
119. if __name__ == "__main__":
120.     token = argv[1] if len(argv) > 1 else input("Enter bot token: ")
121.     bot = Bot(token)  # Create instance of OrigamiBot class

122. 
123.     # Add an event listener

124.     bot.add_listener(MessageListener(bot))
125. 
126.     # Add a command holder

127.     bot.add_commands(BotsCommands(bot))
128. 
129.     # We can add as many command holders

130.     # and event listeners as we like

131. 
132.     bot.start()  # start bot's threads

133.     print("*" * 25)
134.     print("Bot has been started!!!")
135.     while True:
136.         sleep(1)
137.         # Can also do some useful work in main thread

138.         # Like autoposting to channels for example

Now run the above script using the command something like

python scripts\telegram\bot.py

TOKEN_FROM_TELEGRAM_THAT_WE_HAVE_GOT_IN_

SETUP

Here, the assumption is that you are in the directory E:

\\Repository\\Book and running the above command from

this location. Based on the code location, you might need to

change the path. After the script successfully starts, it will be

similar to what is shown in Figure 10.7:



Figure 10.7: Starting of the script

Once the script is running, you can have a conversation with

a bot, as shown in Figure 10.8. Here, we have just provided a

screenshot of one question, but you can experiment with

asking all the different questions. Apart from this, you can

also request your colleagues as well that they find the bot’s

name on Telegram and have a conversation with it. In our

case, the bot’s name is realtimeexample. Hence, we need

to request anyone who would like to connect with our bot to

search the name realtimeexample and have a conversation

with it.



Figure 10.8: Conversation with Telegram Bot

Now, we have successfully integrated our LLM on custom

data as a bot with Telegram. Definitely, as we are using free

resources in terms of Hugging Face models, we will face

some delay in responses even though we have downloaded

models on our local system and are using models from our

local system.

This is just an example of how you can integrate any chatbot

with a real-time application. Now, this application can be a

website or a mobile app. In a general scenario, you need to

serve the chatbot via API. Hence, it is recommended that you

get an overview of what API is and how to create it with

Python. In Python, the most popular packages for creating

API endpoints are Flask, FastAPI, and Django Rest

Framework. Using any of the packages, you can create an

API endpoint on which the bot will listen and answer the

question.

Conclusion



This chapter overviewed how a chatbot on custom data can

be useful. It can be used in any domain, such as finance,

FMCG, healthcare, or customer care. To get an idea of a real-

time application, we have set up a Telegram bot and

connected it to a Python script using a token provided by

Telegram. Using the connection, we can have conversations

with the Telegram bot. Apart from that, we have also

discussed that using API, we can deploy the chatbot

anywhere, whether it is local or somewhere else in the cloud.

API will also be the main connection point whether you want

to connect the chatbot to a website or a mobile application.

In the next chapter, we will see the deployment of a custom

data-based LLM, that is, a chatbot, on different cloud service

providers. We will also review whether there is any

significant improvement in response time after the bot is

deployed on the cloud.

References

https://iitj.ac.in/COVID19/

https://core.telegram.org/bots/tutorial

https://core.telegram.org/bots/samples#python

https://github.com/cmd410/OrigamiBot

https://analyticsindiamag.com/iit-jodhpurs-ai-

model-can-detect-covid-from-x-ray-scans/

Join our book’s Discord space

Join the bookʼs Discord Workspace for Latest updates, Offers,

Tech happenings around the world, New Release and

Sessions with the Authors:

https://discord.bpbonline.com

https://iitj.ac.in/COVID19/
https://core.telegram.org/bots/tutorial
https://core.telegram.org/bots/samples#python
https://github.com/cmd410/OrigamiBot
https://analyticsindiamag.com/iit-jodhpurs-ai-model-can-detect-covid-from-x-ray-scans/
https://discord.bpbonline.com/




CHAPTER 11

Deploying LLMs in Cloud

Environments for

Scalability

Introduction

This chapter is dedicated to cloud tools and technologies. We

were able to create a chatbot on our custom data, but it has

been deployed on our respective local machines. The issue

over here is that you cannot provide the URL generated by

Gradio (We have seen it in the last chapter under the

chatbot.py file) to someone else sitting at the other corner

of the world. The reason is that it has security risk and

scalability risks. If several people want to access the local

machine at one point, the local machine will fail and will not

be able to serve. In such scenarios, we need to find

alternatives to mitigate security issues and achieve

scalability to serve hundreds of thousands of people across

the globe. In the scalability part, if we can achieve it

automatically, it will be a great option as it will reduce

human efforts to change the system configurations over a

period of time. In such scenarios where scalability

automation is required, cloud platforms come to our rescue.



In cloud, we have three major players, which we are going to

talk about in this chapter. These players are AWS, Azure, and

GCP.

Hugging Face also provides paid services in this direction,

where you can deploy your own model and serve it. Cloud

computing provides flexible and scalable resources to

manage demand. By leveraging cloud environments,

organizations can harness the power of distributed

computing to train and deploy LLMs efficiently without the

need for significant upfront investment in hardware

infrastructure. Moreover, cloud platforms offer a range of

services and tools tailored specifically for machine learning

and NLP tasks, further streamlining the development and

deployment process.

Structure

We are going to see the following sections in this chapter:

Amazon Web Services
Google Cloud Platform

Objectives

The objective of this chapter is to showcase the utilization of

cloud platforms. It will help us to understand how to achieve

scalability by harnessing the power of distributed computing.

This chapter will provide a comprehensive understanding of

deploying LLMs to different cloud platforms.

Amazon Web Services

We are going to use Amazon SageMaker to train and deploy

our LLM model. For this, we have three different ways to

work with Amazon SageMaker, as shown in the following link:



https://huggingface.co/docs/sagemaker/train#installat

ion-and-setup

Here, we are going to follow the second method, which is

using the SageMaker Notebook Instance. For this purpose,

we have steps available at the below URL, which we are

going to follow

https://docs.aws.amazon.com/sagemaker/latest/dg/gs-

console.html

Before proceeding further, make sure you have created an

AWS account. While creating an AWS account, it will ask for

payment methods and information. Do not worry over here,

as we will use the free tier of AWS so that we do not need to

pay anything, and we can practice scalability with AWS.

However, you will be required to provide payment details for

account creation. Once you have created an AWS account,

follow the URL

https://docs.aws.amazon.com/awsaccountbilling/latest

/aboutv2/tracking-free-tier-usage.html#free-budget

and set an alert and budget so that you can keep track and,

sure enough, that you are not charged a single penny for a

free tier. On this URL https://aws.amazon.com/free/free-

tier-faqs/, you can check for FAQs related to free tiers.

Also, whatever we will mention has been experimented with

using the Root user and not the IAM user.

You can get pricing details/free tier details of Amazon

SageMaker from:

https://aws.amazon.com/sagemaker/pricing/

Follow the steps in this section to train and deploy the model

using Amazon SageMaker.

Step 1: Creating an Amazon SageMaker

Notebook Instance

https://huggingface.co/docs/sagemaker/train#installation-and-setup
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-console.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/tracking-free-tier-usage.html#free-budget
https://aws.amazon.com/free/free-tier-faqs/
https://aws.amazon.com/sagemaker/pricing/


1. Open Amazon SageMaker Console by visiting the link

https://console.aws.amazon.com/sagemaker/

a. Please note that as a first step, we will set up the
Amazon SageMaker Domain, a central workspace
for managing users, resources, security, and other
configurations. You can skip this step, but we
strongly recommend it.

b. You will get the screen as shown in Figure 11.1.
Click on Setup for a single user, which is
highlighted in green in the figure.

Figure 11.1: Create SageMaker Notebook Instance

2. Once you choose an option, get ready to set it up on

your own. A page will appear like the one in Figure

11.2. Before proceeding, it is important to pick a region

close to you. We chose Mumbai as an example. You can

see it at the top right corner of the picture.

3. Next, we will create a Notebook instance. Look on the

left side until you find the part that says Notebook.

https://console.aws.amazon.com/sagemaker/


Click on it, and you will find "Notebook Instances."

Clicking on that will take you to a new page, like the

one in Figure 11.3.

4. Once there, look for "Create notebook instance,” like

in Figure 11.3, and click it. You'll be taken to a new

screen that asks you to provide details about your

instance. You can fill this in like in Figure 11.4 (a).

Figure 11.2: AWS SageMaker Setup in progress



Figure 11.3: Create Notebook Instance



Figure 11.4.(a): Notebook instance details

5. Once you have filled in all the required details, click on

Create notebook instance, as shown in Figure 11.4.

(b).



Figure 11.4.(b): Notebook instance details

6. After you click the button, you will see the screen

shown in Figure 11.5, showing the status as Pending.

Do not worry; this means it is in progress. Once the

instance is ready, the status will change to InService,

as shown in Figure 11.6.



Figure 11.5: New notebook instance creation in progress

7. The next step is to click on Open Jupyter or Open

JupyterLab, depending on your preference, as shown

in Figure 11.6. You will then see the familiar Jupyter UI.

Figure 11.6: New notebook instance is ready

8. Here, the new notebook creation process has been

completed, but let us say you want to change anything

related to an instance. In that case, as shown in Figure

11.7, go to your Notebook instances and click on the

radio button before the notebook instance; that is, in

our case, it will be aws-sagemaker-scaling-tutorial.

Click on Actions | Stop. Once stopped again, click on

Actions | Update settings, and you will get a page

similar to Figure 11.4 (a) to change the settings.



Figure 11.7: Update instance settings

Step 2: Create folders in SageMaker to store

data

1. As shown in Figure 11.8. (a), create a new folder called

custom_data_chatbot using New | Folder.

Figure 11.8.(a): Create new folder

2. Within custom_data_chatbot, create two more folders

called data and models, as shown in Figure 11.8. (b).



Figure 11.8.(b): Folder within the folder

3. Within the data folder, create one more folder called

pdfs, as shown in Figure 11.8. (c):

a. In these PDF folders, upload PDF documents of
NVIDIA using the Upload button, as shown in
Figure 11.8. (d). These are the documents we used
in Chapter 9, Hyperparameter Tuning and Fine

Tuning Pre-Trained Models, to create a chatbot on
custom data using vector embeddings.

b. Once uploaded, the files are shown as shown in
Figure 11.8. (e).

Figure 11.8.(c): PDF file folder



Figure 11.8.(d): Upload files to pdfs folder

Figure 11.8.(e): Files uploaded to pdfs folder

Step 3: Create vector embeddings

As shown in Figure 11.6, click on Open Jupyter, which will

open Jupyter Notebook. In the opened Jupyter Notebook,

create a new PyTorch notebook, as shown in Figure 11.9:



Figure 11.9: Create New Notebook

In the opened notebook, paste the code below. You can see a

snippet of the same in Figure 11.10:

1. """
2. We are providing the code here which you can paste as is in Jupyter 

Notebook.
3. You can paste the code in single cell or based on the headings you can put 

it in different sections.
4. 
5. If any time you face error related to storage space is full run following 

commands
6. from notebook which will free up the space.
7. 
8. # !sudo rm -rf /tmp/*
9. # !sudo rm -rf /home/ec2-user/.cache/huggingface/hub/*

10. # !sudo rm -rf custom_data_chatbot/models/*
11. # !sudo rm -rf /home/ec2-user/SageMaker/.Trash-1000/*
12. """
13. 
14. # import packages 



...........................................................................................

...........

15. from langchain.chains import RetrievalQA
16. from langchain.prompts import PromptTemplate
17. from langchain.vectorstores.chroma import Chroma
18. from langchain_huggingface import HuggingFacePipeline
19. from langchain_community.document_loaders import DirectoryLoader
20. from langchain.text_splitter import RecursiveCharacterTextSplitter
21. from transformers import AutoTokenizer, pipeline, AutoModelForCausalLM
22. 
23. # Below will use Hugging Face - sentence-transformers

24. # https://huggingface.co/sentence-transformers

25. from langchain_huggingface import HuggingFaceEmbeddings
26. 
27. 
28. # Define directories

29. pdf_file_dir_path = "custom_data_chatbot/pdfs"
30. model_path = "custom_data_chatbot/models"
31. 
32. 
33. # Load  

...........................................................................................

.....................

34. # Load data from PDF file.

35. loader = DirectoryLoader(pdf_file_dir_path)
36. 
37. # convert docs in to small chunks for better 

management

38. text_splitter = RecursiveCharacterTextSplitter(
39.     # Set a really small chunk size, just to show.

40.     chunk_size=1000,
41.     chunk_overlap=0,
42.     length_function=len,



43.     is_separator_regex=False,
44. )
45. 
46. # load data from pdf and create chunks for better 

management

47. pages = loader.load_and_split(text_splitter=text_splitter)
48. 
49. 
50. # load text embedding model from HuggingFaceHub to 

generate vector embeddings ..........................................

51. embed_model = HuggingFaceEmbeddings(
52.     model_name="sentence-transformers/all-MiniLM-l6-v2",
53.     cache_folder=model_path,
54.     # cpu because on AWS we are not using GPU

55.     model_kwargs={
56.         "device": "cpu",
57.     },  # make it to «cpu" in case of no GPU

58.     encode_kwargs={"normalize_embeddings": False},
59.     multi_process=True,
60. )
61. 
62. 
63. # Store vector embeddings and define retriever 

.........................................................................

64. chroma_db = Chroma.from_documents(pages, embed_model, 
persist_directory=model_path)

65. 
66. retriever = chroma_db.as_retriever(
67.     search_type="mmr",  # Maximum MArginal Relevance

68.     search_kwargs={"k": 1},  # max relevant docs to retrieve

69. )
70. 
71. 



72. # Load the pre-trained model and tokenizer 

.............................................................................

73. tokenizer = AutoTokenizer.from_pretrained("gpt2", cache_dir=model_path)
74. model = AutoModelForCausalLM.from_pretrained("gpt2", 

cache_dir=model_path)
75. 
76. 
77. # Define pipeline 

...........................................................................................

...........

78. text_generator = pipeline(
79.     task="text-generation",
80.     model=model,
81.     token="PUT_HERE_HUGGINGFACEHUB_API_TOKEN",
82.     trust_remote_code=True,
83.     device_map="auto",  # make it «auto» for auto selection 

between GPU and CPU, -1 for CPU, 0 for GPU

84.     tokenizer=tokenizer,
85.     max_length=1024,  # generate token sequences of 1024 

including input and output token sequences

86. )
87. 
88. ms_dialo_gpt_hf = HuggingFacePipeline(pipeline=text_generator)
89. 
90. 
91. # Get Answer 

...........................................................................................

................

92. retrievalQA = RetrievalQA.from_llm(
93.     llm=ms_dialo_gpt_hf,
94.     retriever=retriever,
95.     prompt=PromptTemplate(
96.         input_variables=["context"],



97.         template="{context}",
98.     ),
99. )

100. print(retrievalQA)
101. 
102. 
103. # get answer

104. retrievalQA.invoke("Provide NVIDIA’s outlook for the third quarter of fiscal 
2024")

105. 
106. """
107. Output:
108. =======
109. Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.
110. {'query': 'Provide NVIDIAs outlook for the third quarter of fiscal 2024', 
111. 'result': " of NVIDIA ’s underlying operating and technical 

performance.\n\nFor 
112. the period ended December 31, 2013, the Company is required to publish a 

Non-GAAP
113. measure of certain of its proprietary proprietary software packages.
114. ........... WE HAVE TRUNCATED THE RESULT .......................................
115. New revenue increased by 3.1% and 3.2% for the three period ended 

December 31, 2014.
116. \n\nand. The non-GAAP non-GAAP non-GAAP measures also include non-

inalliance
117. capital expenditure for the six months ended December 31, 2013, the 

twelve-month
118. fixed-cost-based accounting period beginning in the third quarter and to be
119. concluded in the fourth quarter, but the non-GAAP non-GAAP non-GAAP 

non-GAAP
120. measures do not include such capital expenditures. The non-GA"}
121. """



Figure 11.10: Demonstrate usage of jupyter notebook

As you can see, we have used different configs and models

here. We have to change the configurations and models as

we work with the free tier. You can change the configurations

and models if you are working with paid services. For

example, the model databricks/dolly-v2-3b will not work

with this free tier SageMaker instance. If you try to use this

model, the notebook will stop running and hang. The model

in above code just demonstrates how you can utilize Amazon

SageMaker for the required purpose.

Please note that our use case is different from that of

finetuning a model. For finetuning, as mentioned earlier, we

can go with any way defined on the link

https://huggingface.co/docs/sagemaker/train#installat

ion-and-setup

Here, we have used one of the methods stated in the above

link, but we have modified it for our use case.

Note: In this section, we have demonstrated how to

work with embeddings and LLM with AWS. In case you

want to deploy the chatbot we created in Chapter 10,

https://huggingface.co/docs/sagemaker/train#installation-and-setup


Integrating LLMs into Real-World Applications: Case

Studies, just copy the code below, replace the

Telegram token, and put it into the Jupyter notebook.

After that, run the script, which will allow you to

communicate with the Telegram chatbot you created

in Chapter 10.

Paste the code below into the Jupyter notebook we created

above and run it as usual after replacing the Telegram token

you received in the previous chapter:

1. """
2. The telegram bot related code is taken from 

https://github.com/cmd410/OrigamiBot
3. and then modified with our LLM bot to have conversation with users
4. """
5. 
6. # import packages

7. from langchain.chains import RetrievalQA
8. from langchain.prompts import PromptTemplate
9. from langchain.vectorstores.chroma import Chroma

10. from langchain_huggingface import HuggingFacePipeline
11. from langchain_community.document_loaders import DirectoryLoader
12. from langchain.text_splitter import RecursiveCharacterTextSplitter
13. from transformers import AutoTokenizer, pipeline, AutoModelForCausalLM
14. 
15. # Below will use Hugging Face - sentence-transformers

16. # https://huggingface.co/sentence-transformers

17. from langchain_huggingface import HuggingFaceEmbeddings
18. 
19. # Define directories

20. pdf_file_dir_path = "custom_data_chatbot/pdfs"
21. model_path = "custom_data_chatbot/models"
22. 
23. MAX_MESSAGE_LENGTH = 4095  # Maximum length for a 



Telegram message

24. 
25. def split_message(message):
26.     """Split a message into chunks of maximum length."""
27.     return [message[i:i+MAX_MESSAGE_LENGTH] for i in range(0, 

len(message), MAX_MESSAGE_LENGTH)]
28. 
29. # Load  

...........................................................................................

.....................

30. # Load data from PDF file.

31. loader = DirectoryLoader(pdf_file_dir_path)
32. 
33. # convert docs in to small chunks for better 

management

34. text_splitter = RecursiveCharacterTextSplitter(
35.     # Set a really small chunk size, just to show.

36.     chunk_size=1000,
37.     chunk_overlap=0,
38.     length_function=len,
39.     is_separator_regex=False,
40. )
41. 
42. # load data from pdf and create chunks for better 

management

43. pages = loader.load_and_split(text_splitter=text_splitter)
44. 
45. # 

==================================

==================================

==================================

================

46. # Defining global settings for easy and fast work



47. 
48. # load text embedding model from HuggingFaceHub to 

generate vector embeddings ..........................................

49. embed_model = HuggingFaceEmbeddings(
50.     model_name="sentence-transformers/all-MiniLM-l6-v2",
51.     cache_folder=model_path,
52.     # cpu because on AWS we are not using GPU

53.     model_kwargs={
54.         "device": "cpu",
55.     },  # make it to «cuda" in case of GPU

56.     encode_kwargs={"normalize_embeddings": False},
57.     multi_process=True,
58. )
59. 
60. chroma_db = Chroma.from_documents(pages, embed_model, 

persist_directory=model_path)
61. 
62. # Retrieve 

...........................................................................................

..................

63. # define retriever to retrieve Question related Docs

64. retriever = chroma_db.as_retriever(
65.     search_type="mmr",  # Maximum MArginal Relevance

66.     search_kwargs={"k": 1},  # max relevan docs to retrieve

67. )
68. 
69. tokenizer = AutoTokenizer.from_pretrained("gpt2", cache_dir=model_path)
70. model = AutoModelForCausalLM.from_pretrained("gpt2", 

cache_dir=model_path)
71. 
72. # Define pipeline 

...........................................................................................

...........



73. text_generator = pipeline(
74.     task="text-generation",
75.     model=model,
76.     token="PUT_HERE_HUGGINGFACEHUB_API_TOKEN",
77.     trust_remote_code=True,
78.     device_map="auto",  # make it «auto» for auto selection 

between GPU and CPU, -1 for CPU, 0 for GPU

79.     tokenizer=tokenizer,
80.     max_length=1024,  # generate token sequences of 1024 

including input and output token sequences

81. )
82. 
83. ms_dialo_gpt_hf = HuggingFacePipeline(pipeline=text_generator)
84. 
85. retrievalQA = RetrievalQA.from_llm(
86.     llm=ms_dialo_gpt_hf,
87.     retriever=retriever,
88.     prompt=PromptTemplate(
89.         input_variables=["context"],
90.         template="{context}",
91.     ),
92. )
93. 
94. # telegram related stuff ------------------------------------------------

-----------------------------------------------

95. class BotsCommands:
96.     """
97.     This are the commands which you can use in chat like..........
98.     /start will start the conversation
99.     /echo will echo the message

100.     «»»
101. 
102.     def __init__(self, bot: Bot):  # Can initialize however you like



103.         self.bot = bot
104. 
105.     def start(self, message):  # /start command

106.         self.bot.send_message(message.chat.id, "Hello user!\nThis is an 
example bot.")

107. 
108.     def echo(self, message, value: str):  # /echo [value: str] 

command

109.         self.bot.send_message(message.chat.id, value)
110. 
111.     def _not_a_command(self):  # This method not considered a 

command

112.         print("I am not a command")
113. 
114. 
115. class MessageListener(Listener):  # Event listener must inherit 

Listener

116.     """
117.     This is the message listener. Based on the question 

this portion will be
118.     answer. This will be responsible for conversation with user.
119.     «»»
120. 
121.     def __init__(self, bot):
122.         self.bot = bot
123.         self.m_count = 0
124. 
125.     def on_message(self, message):  # called on every message

126.         self.m_count += 1
127.         print(f"Total messages: {self.m_count}")
128.         ans = retrievalQA.invoke(message.text)
129.         chunks = split_message(ans["result"])
130.         for chunk in chunks:



131.             self.bot.send_message(message.chat.id, chunk)
132. 
133.     def on_command_failure(self, message, err=None):  # When 

command fails

134.         if err is None:
135.             self.bot.send_message(message.chat.id, "Command failed to bind 

arguments!")
136.         else:
137.             self.bot.send_message(message.chat.id, f"Error in 

command:\n{err}")
138. 
139. 
140. if __name__ == "__main__":
141.     token = "PUT_TELEGRAM_TOKEN_HERE"
142.     bot = Bot(token)  # Create instance of OrigamiBot class

143. 
144.     # Add an event listener

145.     bot.add_listener(MessageListener(bot))
146. 
147.     # Add a command holder

148.     bot.add_commands(BotsCommands(bot))
149. 
150.     # We can add as many command holders

151.     # and event listeners as we like

152. 
153.     bot.start()  # start bot's threads

154.     print("*" * 25)
155.     print("Bot has been started!!!")
156.     while True:
157.         sleep(1)
158.         # Can also do some useful work i main thread

159.         # Like auto posting to channels for example



Step 4: Auto scaling

The next part is auto scaling. For this, first, we need to

deploy the model and then configure the instance for auto

scaling. In AWS, auto scaling is the configuration through

which the required AWS instance, that is, SageMaker or EC2,

will scale automatically without manual intervention. Auto

scaling can be in terms of instance configuration, instance

type m2 or m3, RAM, CPU, GPU, etc.

For auto scaling we have different ways to configure it as

described on the URL:

https://docs.aws.amazon.com/sagemaker/latest/dg/en

dpoint-auto-scaling.html

From this, we will suggest going with the option Configure

model auto-scaling with the console. Apart from auto

scaling, we also have the option to do manual scaling by

updating the settings of the instance, as mentioned in Figure

11.7.

Also, to deploy a model to SageMaker, we have different

ways, as stated on the URL:

https://huggingface.co/docs/sagemaker/inference

Our use case will be different, as we are not doing any kind

of fine-tuning but working with vector embeddings.

In our case, to deploy a model, we have a few options, as

mentioned below:

1. We can create another Jupyter Notebook similar to the

one in Step 3 and paste the same code we used to

create a Telegram bot in Chapter 10, Integrating LLMs

into Real-World Applications: Case Studies. The only

differences are a change in the path of the cache

folder, a change in configs, and a change in the model,

similar to what we created in Step 3 above.

a. After this, you can execute the notebook and

https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://huggingface.co/docs/sagemaker/inference


__main__ code block, which will run until we stop it.
We will be able to have a conversation with the bot
from Telegram.

2. Another option is to create an EC2 instance, where we

will do the following steps:

a. Consider an EC2 instance as your Linux or Windows
OS on an AWS server. The main thing that you need
to do is create an EC2 instance. Once you have
created an EC2 instance, you can use it like your
regular OS.

b. Create an EC2 instance by visiting Services |
Compute | EC2.
i. There will be a button called Launch Instance.

Click on it.
ii. On the next page, provide all the required

configurations. By default, free-tier configurations
will be applied. Confirm those configs and set the
OS that you want.

c. Once the instance is created, you can use SSH and
SCP to log in, create folders as in Step 3, push the
PDF files as in Step 3, or manage it via FTP. Apart
from that, you can manage storage in an S3 bucket,
which is optional, and connect EC2 to S3 to read
and write from/to EC2 to/from S3.

d. Once done, create the same script as shown in Step

3. This will be our vector embedding generation
script. Make sure to change the cache_folder path in
the script based on the EC2 instance.

e. Create another script and put the code we used to
create a telegram bot in Chapter 10. The only
difference is a change in the path of the cache



folder, a change in configs, and a change in the
model similar to what we have just created in Step 3

above.
i. After this, you can execute the script, which in

turn will execute the __main__ code block. This
block will run until we stop it, and then we will be
able to have a conversation with Telegram’s bot.

ii. We can run the script in the backend using any
cron job or even a simple Python command to run
the script continuously.

f. We can also autoscale an EC2 instance. For this
purpose, you can visit the link
https://aws.amazon.com/ec2/autoscaling/gettin

g-started/ and follow the steps mentioned there.
Please note that when we autoscale an EC2
instance, we need to make sure that the code or the
script runs as part of the EC2 boot steps. You can
get more details on the same from the link
https://docs.aws.amazon.com/AWSEC2/latest/Us

erGuide/user-data.html

Note: Here, we have tried to provide a straight and

easy solution without adding more complexities. We

can achieve the same functionality in different ways

as well. For example, we can store everything in the

S3 bucket and access everything from this bucket to

SageMaker. Other options we can try are SageMaker

Studio, Hugging Face Enterprise Hub, AWS services

with GPU etc. We have also not shown any auto-

scaling steps as they will not have any effect or impact

due to the users accessing them. Also, with auto

scaling, it will incur charges, and our goal is to stick

with a free environment. Apart from this, the URLs

provided for auto scaling are easy to understand and

https://aws.amazon.com/ec2/autoscaling/getting-started/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html


work on.

Google Cloud Platform

Google Cloud Platform (GCP) is other alernative to AWS. It

is also a cloud platform that provides an auto scaling facility,

which can be utilized to fine-tune a model or create vector

embedding, similar to our use case. GCP provides $300 free

credit to experiment with its different services within 90

days. Similar to AWS, a few services also fall under the

always-free tier.

You can visit the link https://cloud.google.com/free to get

more details on services, their charges, and the free tier.

From GCP, three main services can be utilized for our use
case or to fine-tune a model. These are as follows:

Vertex AI – GCP-managed AI platform, providing tools
for training and deploying ML and LLM models.
AI Platform Notebooks similar to AWS SageMaker.
Compute Engine VMs similar to AWS EC2.

The process for working with GCP will be similar to that of

AWS. You will need to create an account and sign up for GCP.

Then, you need to create an instance of any of the services

mentioned above. Once you have created the instance, the

next part will be similar to Step 3 and Step 4, as mentioned

in the AWS section.

Conclusion

In this chapter, we discussed how to use AWS SageMaker

and got a glimpse of similar GCP services for scalability. As

LLMs, like LLaMa 3.1, Mistral, and their variations, become

more popular in NLP applications, it is essential to effectively

deploy them in cloud environments to handle large

workloads. We talked about important factors for scalability,

https://cloud.google.com/free


such as infrastructure choices and optimization techniques.

Using cloud resources helps overcome the limits of running

LLMs on local machines and allows for better real-world

applications. To sum up, deploying LLMs in cloud

environments for scalability needs careful planning and

consideration of various aspects like workload

characteristics, resource allocation, optimization strategies,

and cost management. By using cloud-native methods and

the features of cloud platforms, organizations can fully utilize

LLMs for a wide range of NLP applications at scale.

In the next chapter, we will look into the future of LLMs and

beyond. We will explore the fast-growing generative AI

market, improvements in reasoning abilities, and the rise of

multi-modality models. We will also discuss smaller, domain-

specific models for specialized applications, quantization,

and Parameter-Efficient Fine-Tuning (PEFT) techniques

for optimizing models. Furthermore, we will cover the use of

vector databases, guardrails for model safety and security,

robust model evaluation frameworks, and ethical

considerations for promoting responsible AI usage. This in-

depth look will shed light on the future of AI, highlighting

both opportunities and challenges.

References

https://huggingface.co/docs/sagemaker/train#inst

allation-and-setup

Installation and setup steps of AWS Sagemaker
https://docs.aws.amazon.com/sagemaker/latest/dg

/gs-console.html

Steps to create notebook instances in AWS
Sagemaker

https://docs.aws.amazon.com/awsaccountbilling/la

test/aboutv2/tracking-free-tier-usage.html#free-

https://huggingface.co/docs/sagemaker/train#installation-and-setup
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-console.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/tracking-free-tier-usage.html#free-budget


budget

Steps to set an alert for free ties usage.
https://aws.amazon.com/sagemaker/pricing/

Details on AWS Sagemaker instances and their
respective pricing.

https://console.aws.amazon.com/sagemaker/

Only available after logged in. AWS Sagemaker

console page.

https://huggingface.co/docs/sagemaker/train#inst

allation-and-setup

Steps to use AWS Sagemaker with Huggingface
transformer models.

https://docs.aws.amazon.com/sagemaker/latest/dg

/endpoint-auto-scaling.html

Steps on auto scaling AWS Sagemaker models
https://huggingface.co/docs/sagemaker/inference

Steps to deploy huggingface models to AWS

Sagemaker

https://aws.amazon.com/ec2/autoscaling/getting-

started/

AWS EC2 auto scaling
https://cloud.google.com/free

GCP free tier details

Join our book’s Discord space

Join the bookʼs Discord Workspace for Latest updates, Offers,

Tech happenings around the world, New Release and

Sessions with the Authors:

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/tracking-free-tier-usage.html#free-budget
https://aws.amazon.com/sagemaker/pricing/
https://console.aws.amazon.com/sagemaker/
https://huggingface.co/docs/sagemaker/train#installation-and-setup
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://huggingface.co/docs/sagemaker/inference
https://aws.amazon.com/ec2/autoscaling/getting-started/
https://cloud.google.com/free


https://discord.bpbonline.com

https://discord.bpbonline.com/


CHAPTER 12

Future Directions:

Advances in LLMs and

Beyond

Introduction

The landscape of Large Language Models (LLMs) is on

the edge of a big change. This is happening because of the

many improvements being made in this field. This

introductory section aims to explore the progressive

trajectory that LLMs have charted thus far while also

projecting into the frontier landscapes they are poised to

influence. Beyond simply iterating over existing capabilities,

this chapter will dive into potential breakthroughs and

speculate on how emergent innovations might penetrate

various interdisciplinary fields, thereby reshaping our

interaction with artificial intelligence.

Structure

This chapter covers the following topics:

Generative AI market growth



Reasoning
Emergence of multimodal models
Small domain specific models
Quantization and Parameter-Efficient Fine Tuning
Vector databases
Guardrails
Model evaluation frameworks
Ethical and bias mitigation
Safety and security

Objectives

The aim of the chapter is to look into potential progress and

enhancements in LLM beyond the current level of

excellence. This chapter aims to examine future trends,

technological advancements, and theoretical perspectives

that may influence the development of LLMs in the

generative AI field, taking into account their strengths and

weaknesses. We will explore topics like enhancing model

interpretability, improving generalization skills, improving

reasoning skills, and tackling biases and ethical issues. The

goal is to make models larger and more efficient, try out

new designs and ideas, and predict uses beyond just

understanding and creating natural language. Overall, the

aim is to give advice and suggestions for future research

and progress in the field of LLM

Generative AI market growth

Recently, the market for generative AI has seen a significant

increase, especially LLMs. These have served a range of

sectors, such as technology, healthcare, and education. The

demand is being driven by major tech companies'



increasing investments and the growing demand for more

advanced customer engagement solutions. The

advancement is improving current applications and enabling

new service options in predictive analytics and personalized

content creation.

Statista Research predicts that the market for Generative AI

will reach US $207 bn by 2030, with a strong 20.80% CAGR

from 2024 to 2030. These statistics emphasize the

considerable need for Generative AI and its crucial role in

influencing the future of various sectors.

One more study by Markets and Markets on the large

language model market (report code 8977, published in

March 2024) indicates that the global market for LLMs is

experiencing strong growth, with expectations of a

significant increase in market size. Forecasts indicate a

significant growth in market worth, increasing from $6.4

billion in 2024 to $36.1 billion by 2030, demonstrating a

considerable Compound Annual Growth Rate (CAGR) of

33.2% during the projected timeframe.

Reasoning

Reasoning capabilities embedded within LLMs represent

crucial enhancements allowing these models to simulate

human-like logic across numerous scenarios. This means

developing arguments and ways to solve problems that help

with tough decisions. As these models understand the

difference between cause and effect in large piles of data

without supervision, they become much better at working

on their own. This is also matched with more correct results.

Many study papers are being written about how we can use

LLMs to think things through. This skill will help LLMs think

about everyday tasks.

Emergence of multimodal models



Increasingly, developers are shifting towards multi-modal

models that integrate text together with data from other

modalities like images or sound to generate richer context

understanding and responsiveness— a definition was limited

to just one kind, like only images or only text. But now,

combining them lets AI understand things more deeply,

especially when handling complex real-world stuff. This

increases the ways we can use it a lot, from helping with

elaborate learning systems to doing tasks with virtual

assistants. These tasks can deal with different topics that

work together smoothly.

This industry will become more exciting and inspire more

research with tools like GPT 4o, which does wonders on

image-related use cases; Microsoft VASA 1, which can

create videos from a single image; and OpenAI SORA,

which can create some mesmerizing videos from just a text

prompt. MidJourney and DALL-E can create real-life

images of anything, including human faces. OpenAI's

MuseNet and Google's MusicLM can generate amazing

music from textual prompts. Even open-source models are

impressive. Models like CogVLM, Idefics, and LLava

perform vision-related tasks with accuracy similar to closed-

source models.

Small domain-specific models

In the world of AI, especially in LLMs, there is a big move

toward smaller models made for specific areas. This means

trying to get more exact and contextually correct details

from these powerful computers.

Domain specificity is about finely adjusting LLMs for

different sectors or uses, making them a special source of

knowledge with high accuracy in their respective fields.

These versions are set up to process information that only

concerns the defined range, effectively removing



unnecessary information usually linked with bigger,

generalized models.

These smaller but powerful systems have several benefits.

First, they need fewer computational resources because of

the decreased model sizes, which results in quicker set-up

and reduced delay during application runtime—a key factor

considering real-time response in many industries, from

healthcare diagnostics to financial market predictions, etc.

Also, the accuracy levels within small domain-specific LLMs

often beat those achieved by broader counterparts because

they are taught carefully on chosen datasets that only focus

on the relevant subject matter. Their understanding of

language then becomes very good at understanding difficult

terms or complex ideas only found within each field, for

example, legal language versus medical words, etc.

However, making these tailored solutions is not without

problems. The main problem is finding big amounts of

labeled data needed to teach AI. This requires careful

choosing to ensure quality control while avoiding

introducing biases into the system. Another problem

involves balancing specialization and generalization without

losing the ability to adapt when faced with new inputs

outside pre-set parameters.

Still, ongoing advancements in AI, along with the increasing

availability of diverse, rich data sources, promise to lessen

current constraints, paving the way for more sophisticated,

scalable, cost-effective uses. How this can impact the future

—from changing customer service interactions to speeding

up research processes to boosting predictive capabilities—is

just the beginning. Many fields are entering a new age,

inviting us to explore the untapped possibilities of

embracing this change.

Some of the notable domain-specific LLMs are listed below:



Biomedical domain:

PubMedBERT (NLM and NIH, 2019): Trained on
a massive corpus of biomedical text and abstracts,
PubMedBERT excels in tasks like question
answering, named entity recognition, and relation
extraction related to biomedicine.
BioGPT (Microsoft): A domain-specific generative
Transformer language model pre-trained on large-
scale biomedical literature. It excels in tasks like
text generation, text mining, and Q&A.

Legal domain:

Legal-BERT (AUEB NLP Group): Fine-tuned on
legal documents and case law, Legal-BERT offers
improved performance in legal tasks such as
contract analysis, due diligence review, and legal
question answering.

Financial domain:

FinBERT: Focused on financial news articles,
financial Named Entity Recognition (NER), and
reports, FinBERT assists in tasks like market
sentiment analysis, entity recognition for companies
and financial instruments, and summarization of
financial news.
DocLLM: It is an LLM created by JP Morgan Chase

in the finance domain. DocLLM represents a
lightweight advancement in language models
specifically tailored for understanding visually
complex documents. Utilizing visual question-
answering, categorization, and infilling approaches,
the system addresses specific financial queries from
various documents like SEC filings and loan papers,
organizes documents based on spatial patterns,



enhances precision in analyzing complex financial
documents, and automates handling of handwritten
or lower-quality documents, ensuring robustness in
financial data processing.

Science domain:
SciBERT was created by researchers at the Allen

Institute for Artificial Intelligence (AI2) with the
University of Washington in 2019. It is a version of
the BERT model, specially designed for scientific
text. This specialization enables SciBERT to
capture domain-specific knowledge and
terminology, making it particularly effective for
various natural language processing tasks in
scientific research, such as document classification,
information extraction, and question answering.

Multi agent framework

Not every business or user can afford the high costs and

computing power needed for large language models. In the

future, multi-agent frameworks using smaller, domain-

specific language models will be key. These systems allow

for shared processing, better scalability, and custom

solutions, making them more practical and efficient.

Different agents can handle specific tasks, lowering the

overall load and boosting performance.

The importance of multi-agent frameworks is as follows:

Resource efficiency: Splitting tasks among multiple
agents reduces the computational resources needed,
making them cheaper for businesses.
Scalability: These systems can easily grow or shrink
by adding or removing agents as needed.



Specialization: Each agent can use a small, domain-
specific language model, ensuring expert task
management.
Flexibility: They can adapt to different tasks and
scenarios, making them useful for various
applications.
Robustness: If one agent fails, others can keep
working, ensuring the system stays reliable.

Here are some major multi-agent system frameworks:

LangGraph
AutoGen
TaskGen
CrewAI
Llama-Agents
llama-agentic-system (Meta)

Using these multi-agent frameworks, businesses can create

more affordable, scalable, and specialized AI solutions.

Quantization and Parameter-Efficient Fine

Tuning

As we dive into the landscape of LLMs, two key concepts

emerge as cornerstones in optimizing them for practical

deployments: quantization and Parameter-Efficient Fine

Tuning (PEFT).

Quantization, a technique widely used to reduce

computational requirements, is particularly effective when

deploying LLMs on edge devices with limited resources. By

transforming standard 32-bit floating-point numbers into

lower-precision representations such as 8-bit integers,

quantization significantly reduces memory footprint and



accelerates computations without causing substantial

degradation in model performance. Furthermore, it improves

power efficiency—a critical factor when considering mobile

or embedded applications where energy constraints prevail.

There is a new library named Quanto from Hugging Face

and Optimum that can help you make the model smaller.

On the other hand, PEFT focuses on refining specific

segments within deep learning architectures rather than

overhauling entire structures—an approach that often

proves computationally intensive and, hence, economically

impractical. Techniques under PEFT's umbrella include

adapter modules—where only small fractions of parameters

get updated—or prompt tuning—which leverage existing

capabilities by introducing new input transformations suited

to particular tasks at hand.

The essence behind these methodologies lies in striking an

optimal balance between retaining learned knowledge from

pre-training phases and adapting effectively to novel tasks

during fine-tuning stages. Thus, resource-efficient

customization across diverse use cases is ensured without

sacrificing base knowledge integrity or task-specific

accuracy.

Consequently, adopting strategies like quantization and

PEFT streamlines deployment and fosters flexible scalability,

broadening the horizons of potential application domains to

harness the benefits of large language models.

According to research by Pankaj Gupta and Philip Kiely, by

quantizing Mistral 7B to FP8, they observed the following

improvements vs FP16 (both using TensorRT-LLM on an

H100 GPU):

An 8.5% decrease in latency in the form of time to the
first token



A 33% improvement in speed, measured as output
tokens per second
A 31% increase in throughput in terms of total output
tokens
A 24% reduction in cost per million tokens

Vector databases

The growing world of learning from different types of data

requires a change in how we manage data. While good for

organized information, old databases have a hard time

efficiently managing the increasing flow of different types of

data—text, pictures, sound, video, and sensor data—that

make up the mix of modes.

This is where vector databases emerge as a pivotal

technology, offering a performant and scalable solution for

managing and querying high-dimensional, non-relational

data.

Between 2022 and 2023, many data scientists started

experimenting with LLMs, mostly with small data sets.

However, as the LLM market keeps changing, including the

ability to handle different modes and deal with a lot of data,

the need for vector databases becomes increasingly

important. This need comes from the growing demand to

lessen delay problems and effectively store big embeddings

connected with these models.

Vector databases excel in representing and manipulating

data as dense numerical vectors, enabling efficient

similarity search and retrieval operations. This inherent

capability becomes paramount in multimodal data, where

meaningful relationships often lie within the semantic space

rather than rigidly defined table structures. For instance, a

vector database can effortlessly retrieve visually similar



images or semantically analogous text passages,

irrespective of their explicit textual content.

The growing importance of learning from different data

types across various areas highlights the rising need for

vector databases. Let us look at some of the main vector

database offerings from leading tech companies:

Pinecone: This cloud-native offering boasts
exceptional scalability and performance, making it
ideal for large-scale multimodal applications.
Facebook AI Similarity Search (FAISS): A versatile
open-source library renowned for its efficient
implementation of various similarity search
algorithms, making it a popular choice for research
and development efforts.
Amazon Open Search: AWS Open search supports
sophisticated embedding models that can support
multiple modalities. For instance, it can encode the
image and text of a product catalog and enable
similarity matching on both modalities.
Microsoft: Azure AI Search (earlier Azure Cognitive
search) offers vector search capabilities alongside
other cognitive search features within the Azure cloud
platform.
Milvus: Vector databases are special systems for
managing and retrieving unstructured data using
vector embeddings. These numerical representations
capture the essence of data items like images, audio,
videos, and text.
Weaviate: Weaviate is an open-source vector database
for semantic search and knowledge graph exploration.
It supports hybrid search, pluggable ML models,
secure and flexible deployment



By utilizing vector databases’ advantages, companies can

efficiently tap into the potential of multimodal data, opening

up new opportunities for creativity and overcoming

challenges in different industries. As multimodal learning

advances, vector databases will become increasingly

important in data management strategies in the future.

Guardrails

It is really important to set up strong guardrails to ensure we

use LLMs ethically and safely put them into service. These

systems include strict rules, supervision methods, and built-

in checks to stop misuse, such as data privacy breaks or

biased results. As models become better at working

independently and an important part of decision-making

processes in many fields, it is crucial to ensure there are

clear standards at every level of AI operation. Setting these

limits protects against possible damage and builds user

trust—a key factor for widely accepting it. Let us look at

these more closely:

Building trustworthy, safe, and secure LLM-based

applications: You can define rails to guide and
safeguard conversations; you can choose to define the
behavior of your LLM-based application on specific
topics and prevent it from engaging in discussions on
unwanted topics.
Connecting models, chains, and other services

securely: You can connect an LLM to other services
(tools) seamlessly and securely.
Controllable dialog: You can steer the LLM to follow
pre-defined conversational paths, allowing you to
design the interaction according to conversation
design best practices and enforce standard operating
procedures (for example, authentication and support).



Microsoft Guidance and NVIDIA NeMO Guardrails are the

top frameworks available on the market. The following table

gives a comparison:

Feature NeMo-Guardrails Microsoft guidance

Summary

A toolkit for adding
guardrails to conversational
systems

A guidance language to
control LLMs

Controls output

of LLMs
Yes Yes

Techniques for

control

Steering conversations,
avoiding unwanted topics

Constraining text generation,
interleaving control flow and
generation using regular
expressions and context-free
grammars

Benefits Easy to add guardrails Easy to use, efficient, ability
to write reusable components

Multi modal

support
No Yes

Open source Yes Yes

Table 12.1:  Comparison of Open-source Guardrails

framework by Nvidia and Microsoft

Model evaluation frameworks

As we use LLMs more and they get more complex, we also

need to check them more carefully. Looking at how good

these systems are at different tasks and always being

ethical is a key part of this process.

Checking how the model works gives us an idea of how well

an LLM applies what it learned from training data to new

situations. This effectively measures how well it can predict

things.



In addition to the measures we have seen in earlier

chapters, we are also seeing many systems, including RAG

systems, that can perform many tasks related to model

evaluation.

Some of them are listed below:

DeepEval:

DeepEval presents a user-friendly, open-source
framework tailored for evaluating LLMs.
Functionally similar to Pytest, it specializes in unit
testing LLM outputs, integrating cutting-edge
research to assess model performance across
various metrics such as G-Eval (NLG Evaluation
using GPT-4 with Better Human Alignment),
hallucination, answer relevancy, and RAG

Assessment (RAGAS).
By leveraging LLMs and diverse NLP models locally,
it facilitates the comprehensive evaluation of LLM
outputs, supporting diverse application
methodologies, including RAG, fine-tuning,
LangChain, and LlamaIndex.
By empowering users to optimize hyperparameters,
prevent prompt drifting, and transition seamlessly
between platforms, DeepEval serves as a versatile
tool for refining LLM pipelines with confidence.

Metrics and features:

A diverse array of pre-designed LLM evaluation
metrics, each elucidated, empowered by any LLM
model, statistical methods, or NLP models,
accessible locally, are as follows:

G-Eval
Summarization



Answer Relevancy
Faithfulness
Contextual Recall
Contextual Precision
RAGAS
Hallucination
Toxicity
Bias

Bulk evaluation of entire datasets in parallel,
accomplished in under 20 lines of Python code
through the CLI or evaluate() function.
Seamless integration with any CI/CD environment,
ensuring streamlined deployment.
Effortless benchmarking of any LLM on popular
benchmarks in less than 10 lines of code, including
MMLU, HellaSwag, DROP, BIG-Bench Hard,
TruthfulQA, HumanEval, and GSM8K.
Automatic integration with Confident AI for
continuous evaluation, facilitating log tracking,
hyperparameter optimization, debugging, and real-
time production evaluation.

MLflow:

MLflow offers types of LLM evaluation metrics:
Question-answering:

exact-match
toxicity
ari_grade_level
flesch_kincaid_grade_level



Text-summarization:
ROUGE
toxicity
ari_grade_level
flesch_kincaid_grade_level

Text models:
toxicity
ari_grade_level
flesch_kincaid_grade_level

Defaults metrics include collections for tasks such
as question-answering, text-summarization, and
text models, facilitating simplified evaluations
based on specific use cases.
Results are obtained by calling
mlflow.evaluate(), specifying the desired model,
evaluation data, and targets.

RAG Assessment (RAGAS):
RAGAS is a framework designed for evaluating
Retrieval Augmented Generation (RAG)
pipelines, enhancing the reliability and performance
assessment of such systems. By providing tools for
comprehensive evaluation, RAGAS facilitates the
optimization and refinement of RAG pipelines,
ensuring alignment with desired objectives and
standards.
RAGAS guides users through the process of setting
up and executing evaluations on RAG pipelines
using their test sets. By leveraging RAGAS, users
can focus on enhancing RAG pipelines, confident



that the evaluation process is streamlined and
effective.
Metrics:

RAGAS offers a suite of metrics tailored for
evaluating various aspects of RAG systems,
including retriever performance, generator (LLM)
fidelity, and overall system effectiveness.
Key metrics include:

Retriever: Context precision, context recall
Generator (LLM): Faithfulness, answer
relevancy

Evaluation:
Execution of evaluations with RAGAS involves
calling the evaluate() function on the dataset and
specifying the desired metrics. The results
provide insights into the RAG pipeline's
performance across different dimensions,
enabling informed decision-making and iterative
improvement.
Component-wise evaluation: RAGAS supports
component-wise evaluation of RAG pipelines,
allowing users to assess the performance of
individual components independently. Metrics are
available for evaluating retriever and generator
components separately, ensuring a granular
understanding of system performance.
End-to-end evaluation: Evaluation of the entire
RAG pipeline is crucial for assessing overall
system effectiveness. RAGAS provides metrics for
evaluating end-to-end performance, facilitating



comprehensive evaluation and optimization of
RAG pipelines.

TruLens:

TruLens is a versatile open-source framework
designed for instrumenting and evaluating LLM
applications, including RAGs and agents. By offering
insights into model behavior and performance,
TruLens empowers users to monitor and enhance
LLM applications effectively.
Trulens has deep integration with LLM frameworks
like LangChain, LlamaIndex and some other
frameworks.
Instrumentation: TruLens supports various
instrumentation methods tailored for different types
of LLM applications, ensuring comprehensive
coverage and accurate evaluation. Users can choose
from a range of instrumentation tools based on their
specific requirements and use cases.
Feedback evaluation metrics:

TruLens provides metrics for evaluating feedback
mechanisms within LLM applications, including
relevance, comprehensiveness, and
groundedness. These metrics enable users to
assess the efficacy of feedback mechanisms and
identify areas for improvement.

Phoenix:

Phoenix offers a robust set of tools for monitoring
and evaluating LLM applications, providing insights
into model behavior and performance. By enabling
users to analyze LLM traces, evaluate model
outputs, and visualize application processes,



Phoenix facilitates effective monitoring and
optimization of LLM applications.
Tracing:

Phoenix supports tracing of LLM applications,
allowing users to examine the execution of
models and troubleshoot issues effectively. By
tracing LLM executions, users can gain insights
into model behavior and identify areas for
improvement.

LLM Evals:
Phoenix provides tools for evaluating LLM
outputs, including metrics for assessing
relevance, toxicity, and semantic similarity. By
evaluating model outputs, users can ensure the
quality and accuracy of LLM applications.

Embedding analysis:
Phoenix enables users to analyze embeddings
generated by LLM applications, facilitating
insights into model performance and behavior. By
analyzing embedding point-clouds, users can
identify patterns and clusters indicative of model
drift and performance degradation.

RAG analysis:
Phoenix supports analysis of Retrieval

Augmented Generation (RAG) pipelines,
allowing users to visualize search and retrieval
processes. By analyzing RAG pipelines, users can
identify issues and optimize pipeline performance
effectively.

Structured data analysis:



Phoenix provides tools for analyzing structured
data, enabling users to perform A/B analysis,
temporal drift analysis, and more. By analyzing
structured data, users can gain insights into
model performance and behavior across different
scenarios and use cases.

Ethical and bias mitigation

The creation and implementation of LLMs bring numerous

ethical hurdles that require thorough mitigation plans.

Fairness, transparency, and accountability are the most

important concerns. In addressing these issues, it is

essential to incorporate diverse datasets during the training

phase to reduce inherent biases that can skew model

behavior detrimentally. Moreover, establishing clear

guidelines for data curation and processing ensures that

unintended prejudices are recognized and systematically

rectified.

Transparency in LLM operations involves explaining the

inner workings of models—often described as black boxes—

to stakeholders. This means making techniques like model

decisions interpretable not just within machine learning

communities but accessible to broader audiences without

technical backgrounds.

Accountability frameworks also play a crucial role; they

enforce standards through regulatory compliance while

fostering an ecosystem where developers can identify faults

proactively rather than retrospectively dealing with

repercussions post-deployment.

We are listing some of the recently released Bias and

fairness measurement tools:

Fairness (Google AI) (Public release soon):



Description: Fairness is a suite of open-source
tools from Google AI designed to help developers
identify and mitigate biases in machine learning
models, including LLMs. It offers functionalities for
data exploration, fairness metrics calculation, and
implementation of mitigation techniques.
Strengths: Open-source and comprehensive,
offering various tools for bias detection and
mitigation. Actively maintained and supported by
Google AI.
Weaknesses: Requires technical expertise to
effectively utilize the available tools. It might not be
a one-stop solution for complete bias mitigation in
LLMs.

IBM watsonx.governance Toolkit:

Description: IBM WatsonX.Governance is an AI
oversight tool, leveraging the integrated IBM
WatsonX platform to regulate and monitor AI
activities. It manages ML models from various
vendors, evaluates model health, accuracy, bias, and
drift, and offers governance, risk, and compliance
features like workflows, dashboards, and reports. It
automates metadata documentation and compliance
with regulations like the EU AI Act.
Strengths: IBM WatsonX.Governance ensures
consistency and compliance in AI operations,
offering proactive risk management capabilities for
detecting and mitigating bias and drift. Its
automation features streamline compliance with
regulations like the EU AI Act, while lifecycle
governance functionalities enhance scalability and
accountability in managing AI models.



Weaknesses: It is not an open-source model. One
needs to pay to use it. Compatibility with other LLM
models may not be there.

Employing such multifaceted approaches—including

algorithmic audits by third parties—and ongoing monitoring

systems ensures continuous adherence to ethical norms

even as technologies evolve.

Safety and security

Generative AI is getting better and can now create text,

images, music, and even complex simulations. This

technology has potential but also brings safety and security

problems we must fix. As AI becomes more advanced, it

generates very realistic content that makes it hard for

people to know what is real or fake. This could lead to

misuse. Content that is fake or created artificially by these

tools can be a big issue in reality if not handled properly.

One big problem is false information. Generative AI might

create fake news articles or deep fake videos that look real

but are not true. This could confuse people and hurt public

opinion in bad ways—for example, a deep fake video might

show someone saying things they never did.

To solve this issue, researchers are developing tools to

detect if the content was created by AI. Another problem

involves data privacy when training with sensitive

information. If models are not properly secured, private data

may be leaked; therefore, strong protections such as

encryption should be placed to safeguard model-trained

materials.

Cyberattacks are becoming increasingly sophisticated, and

hackers are utilizing Generative AI. It is used cleverly to

craft phishing emails, malware, and harder-to-detect

threats. Professionals are developing stronger cybersecurity



defenses, accordingly protecting against future risks.

Similarly, governments and organizations are working

alongside each other to establish rules guiding developers,

ensuring transparency, holding them accountable, and

preventing misuse.

Many tools are emerging in the field of LLM safety and

security. Some of them are listed below:

WhyLabs LLM Security
Lakera Guard
Lasso security
CalypsoAI Moderator

BurpGPT

Conclusion

As we explored in this chapter, LLMs are rapidly advancing

and transforming the field of generative AI. We covered key

areas such as market growth, improved reasoning, multi-

modality models, small domain-specific solutions,

quantization techniques, and PEFT fine-tuning methods to

enhance efficiency and capabilities. We have also examined

the importance of vector databases, guardrails for safe

operation, robust evaluation frameworks, ethical

considerations, and bias mitigation. These are the essentials

for ensuring safety protocols, data privacy, and system

integrity. LLMs are reshaping various disciplines and paving

the way for future innovations. This responsible technology

enhancement profoundly impacts society, encouraging

progressive and meaningful directions that nurture our

shared human potential.

References



https://www.marketsandmarkets.com/Market-

Reports/large-language-model-llm-market-

102137956.html

https://github.com/NVIDIA/NeMo-Guardrails

https://github.com/guidance-ai/guidance

https://mlflow.org/docs/latest/llms/llm-

evaluate/index.html#llm-evaluation-metrics

https://www.ibm.com/topics/explainable-ai

https://www.ibm.com/products/watsonx-

governance?

utm_content=SRCWW&p1=Search&p4=4370007

9752225614&p5=p&gad_source=1&gclid=CjwKC

Ajwoa2xBhACEiwA1sb1BBgVujUA_b7qhMGuub_r

7_MYpt4GIpwL-

hGPRFcjVEoWuuIfRPN1QhoCnuIQAvD_BwE&gcls

rc=aw.ds

https://github.com/confident-ai/deepeval

https://mlflow.org/docs/latest/llms/llm-

evaluate/index.html

https://docs.ragas.io/en/latest/index.html

https://phoenix.arize.com/

https://www.baseten.co/blog/33-faster-llm-

inference-with-fp8-quantization/#112922-model-

output-quality-for-fp8-mistral-7b

https://aws.amazon.com/blogs/big-data/amazon-

opensearch-services-vector-database-capabilities-

explained/

https://aws.amazon.com/about-aws/whats-

new/2023/12/amazon-opensearch-service-

https://www.marketsandmarkets.com/Market-Reports/large-language-model-llm-market-102137956.html
https://github.com/NVIDIA/NeMo-Guardrails
https://github.com/guidance-ai/guidance
https://mlflow.org/docs/latest/llms/llm-evaluate/index.html#llm-evaluation-metrics
https://www.ibm.com/topics/explainable-ai
https://www.ibm.com/products/watsonx-governance?utm_content=SRCWW&p1=Search&p4=43700079752225614&p5=p&gad_source=1&gclid=CjwKCAjwoa2xBhACEiwA1sb1BBgVujUA_b7qhMGuub_r7_MYpt4GIpwL-hGPRFcjVEoWuuIfRPN1QhoCnuIQAvD_BwE&gclsrc=aw.ds
https://github.com/confident-ai/deepeval
https://mlflow.org/docs/latest/llms/llm-evaluate/index.html
https://docs.ragas.io/en/latest/index.html
https://phoenix.arize.com/
https://www.baseten.co/blog/33-faster-llm-inference-with-fp8-quantization/#112922-model-output-quality-for-fp8-mistral-7b
https://aws.amazon.com/blogs/big-data/amazon-opensearch-services-vector-database-capabilities-explained/
https://aws.amazon.com/about-aws/whats-new/2023/12/amazon-opensearch-service-multimodal-support-neural-search/


multimodal-support-neural-search/

https://milvus.io/intro

https://weaviate.io/

Join our book’s Discord space

Join the bookʼs Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New Release and

Sessions with the Authors:

https://discord.bpbonline.com

https://aws.amazon.com/about-aws/whats-new/2023/12/amazon-opensearch-service-multimodal-support-neural-search/
https://milvus.io/intro
https://weaviate.io/
https://discord.bpbonline.com/


APPENDIX A

Useful Tips for Efficient

LLM Experimentation

In the field of machine learning and statistics,

experimentation lies at the heart of progress and

improvement. LLMs also fall in the same bucket. LLMs are

changing the way we interact with machines. Also,

nowadays, they are impacting our daily lives as well. Slowly

and gradually, they are becoming a usual part of our life.

LLMs help us in translating sentences, writing emails

whether it is for marketing or taking a leave from the office,

writing essays for a child’s homework, and a lot more. LLMs’

ability to understand and generate human-like language has

opened doors to many applications. To unlock the true

potential of LLM requires effective experiments. In this

chapter, we will explore the practical tips and techniques

that will help you design efficient experiments, maximize

your results, and avoid common problems.

Structure

In this chapter, we are going to cover the following topics:

Understanding the challenges of LLM experimentation



Preparing data for LLM experimentation
Optimizing model architecture and hyperparameters
Efficient training strategies for LLMs
Evaluating and interpreting experimental results
Fine-tuning for specific applications
Scaling up: Distributed training and parallel
processing
Deployment considerations for LLMs

Objectives

This complete guide aims to be your ultimate resource,

giving you a single place to explore the exciting world of

LLMs. Together, we have explored each essential step in the

lifecycle of an LLM, starting from the basic steps of

preparing data and finishing with a careful look at how to

put it to use in the real world. As you start your explorations

of LLM, remember that the real power is in never stopping

learning and always pushing the limits of what can be done.

Let this guide be your jumping-off point for your work with

LLM, and together, let us unlock the amazing potential of

these models.

Understanding the challenges of LLM

experimentation

LLM experimentation poses unique challenges, including

data preprocessing complexities, resource-intensive training

requirements, and model evaluation intricacies.

Understanding these challenges is crucial for developing

effective experimentation strategies. While LLMs offer

immense potential, effectively experimenting with them

presents unique challenges. Here, we will delve into some of



the key hurdles researchers and users face in the LLM

experimentation landscape:

Non-deterministic outputs: Traditionally, the
running of computer programs follows deterministic
behavior. On the other hand, language models do not
behave deterministically. LLMs can be given the same
prompt, but their output could be different based on
usage. Hence, the phenomenon is called non-
deterministic. The reason behind it is that the
language model is inherently statistical and hence its
behavior depends on internal statistical processes.
This makes arguments like the replicability of results
or the making of definitive conclusions from the
experiments hard to win.
Black box nature: LLMs are often like black box
systems, meaning you cannot understand the internal
behavior of a model and how things are constructed
there. This loss of interpretability affects the
debugging process and restricts the disclosure of
language generation biases and errors.
Data bias: LLMs learn from huge datasets, which can
have biases. These biases can affect the LLM's
answers, showing up as wrong facts, unfair language,
or repeating stereotypes. Mitigating data bias requires
careful selection of training data and vigilant
evaluation of outputs. One golden quote is: Humans
are biased, so machines will be biased, too, because
humans create the prompts.
Factual accuracy and hallucination: LLMs can
sometimes generate text that appears plausible but
lacks factual grounding. This phenomenon,
hallucination, can lead researchers and users astray if
factual accuracy is paramount in the experiment.



Techniques like RAG Evaluation and human
verification will help in this case.
Example of hallucination

a. Question: "Who won the Nobel Prize in Literature in
2023?"

b. Hallucinated response by LLM: "The Nobel Prize in
Literature in 2023 was awarded to the renowned
African author Fatima Bianco for her novel Echoes of

the Forgotten.
From the above response, we can see LLM made a
mistake because of its limited knowledge. There is
no record of a person named Fatima Bianco winning
the Nobel Prize in Literature in 2023 or even
existing as a prominent author. The novel Echoes of
the Forgotten is also a fabrication.

Evaluating creativity and originality: The creativity
and originality of LLM outputs, particularly in creative
tasks like writing poems or code, can be subjective.
Defining clear evaluation metrics for these tasks is an
ongoing challenge, and human judgment often plays a
significant role.
Resource constraints: Training and running LLMs
can be computationally expensive, requiring
significant computing power and resources. This can
limit access to experimentation for smaller research
groups or individuals.
Safety and security concerns: Safety and security
concerns: As LLMs become more advanced, worries
arise about their misuse. They might create harmful
content or leak personal data like names or health info
like leakage of Personally Identifiable Information

(PII) or Protected Health Information (PHI) data.



It's important to have rules and protections to reduce
these risks.
Evolving technology: The field of LLM development
undergoes constant evolution, with new models and
architectures emerging rapidly. Keeping up with these
advancements and changing experimental techniques
is a tough job.
Legal and ethical considerations: Using LLMs
raises legal and ethical questions. These include
copyright issues, plagiarism, deep fakes, hallucination,
fake news, and possible misuse. Clear rules for using
LLMs responsibly are very important.
Human oversight and collaboration: While LLMs
offer powerful capabilities, human oversight and
collaboration remain crucial. Researchers and users
need to evaluate LLM outputs critically, guide through
prompts, and ensure that LLMs are used for beneficial
purposes.

Preparing data for LLM experimentation

Data preprocessing plays a critical role in LLM

experimentation. This section explores techniques for data

cleaning, tokenization, and augmentation to improve model

performance and efficiency. Effective LLM experimentation

hinges on high-quality data. Like building a strong

foundation for a house, well-prepared data sets the stage

for successful LLM interactions. Here are essential tips to

ensure your data is primed for optimal LLM

experimentation:

Data selection and curation:
Task relevance: When considering task relevance,
the selection of data must precisely match the



intended function of the LLM. For example, when
training an LLM for code generation, utilizing data
centered around code becomes imperative.
Conversely, a varied and extensive literary
collection would serve better for endeavors in
creative writing.
Quality control: A meticulous data assessment is
essential to detect errors, disparities, and
omissions. Ensuring the data maintains proper
formatting and follows a coherent structure is
paramount. Employing tools designed for data
cleansing and pre-processing can immensely benefit
this aspect.
Diversity and balance: Strive for a diverse dataset
that reflects the real-world complexities of the task.
This helps the LLM avoid biases present in skewed
data. If your initial data lacks diversity, consider
techniques like data augmentation to artificially
create a more balanced dataset.

Data preprocessing techniques:
Text cleaning: Remove irrelevant information like
punctuation, special characters, HTML tags for text-
based data etc. Normalization techniques like
lowercasing or stemming words should be
considered to improve consistency.
Tokenization: Break down text data into smaller
units like words or sub-words (tokens) that the LLM
can understand and process effectively.
https://platform.openai.com/tokenizer is a good
website to visualize how tokenization works.
Text encoding: Text encoding involves converting
textual tokens into numerical representations to
facilitate efficient processing by LLMs. Techniques

https://platform.openai.com/tokenizer


such as word embedding or one-hot encoding can be
utilized.
Data augmentation: Data augmentation becomes
necessary when dealing with a limited dataset. You
can artificially expand the dataset's size and
diversity by employing augmentation techniques.
This can entail methods like synonym replacement,
back-translation, or random shuffling.

Additional considerations:
Data labeling (if applicable): For tasks requiring
labeled data (for example, sentiment analysis),
ensure the labels are accurate and consistent.
Consider employing multiple annotators to mitigate
bias in labeling.
Data splitting: Segment your prepared data into
three subsets: training, validation, and testing. The
training subset educates the LLM, while the
validation subset aids in refining hyperparameters.
Lastly, the testing subset assesses the LLM's
ultimate efficacy. A common way to split data is to
use 80% for training, 10% for validation, and 10%
for testing.
Data versioning: Carefully keep track of changes
to your data so you can return to earlier versions if
needed. This helps ensure your work can be
repeated and makes fixing problems easier.

Tools and resources:
Numerous open-source libraries and tools exist to
facilitate data preprocessing for LLMs. Popular
options include unstructured, Natural Language

Toolkit (NLTK), and spaCy for Python.



Consider cloud-based platforms offering data
preprocessing and management services for LLMs,
especially if dealing with large datasets.

By meticulously preparing your data using these tips, you

will equip your LLM with the foundation it needs to learn

effectively, generate accurate outputs, and, ultimately,

unlock its full potential in your experiments. Remember,

high-quality data is the cornerstone of successful LLM

experimentation.

Optimizing model architecture and

hyperparameters

Choosing the appropriate model structure and adjusting

hyperparameters are pivotal to attaining peak performance.

This section delves into tips for selecting architecture, fine-

tuning hyperparameters, and capitalizing on preexisting

models. Let us take a look at them:

Understanding model architecture:
Model framework: This outlines the blueprint of
the LLM, including the type of neural network used
(like Transformer, Recurrent Neural Network), the
number of layers, and connections between layers.
Different architectures all have their strengths and
weaknesses across many tasks.
Performance implication: The selected
architecture profoundly influences the LLM's
capacity to grasp intricate data relationships and
produce precise outcomes.

Optimizing model architecture:
Start with established architectures: Initiate the
quest by examining renowned LLM frameworks like
Transformer models, renowned for their versatility



across assorted tasks. These pre-trained models
furnish a robust groundwork for customization.
Consider task-specific architectures:

Frameworks: If your task needs special features,
look into designs made for that purpose. For
example, convolutional layers can be helpful for jobs
involving image understanding
Experiment with variations: Once comfortable,
experiment with architectural variations. This could
involve adjusting the number of layers, units per
layer, or connection patterns. However, tracking
changes and evaluating their impact on
performance is crucial.

Hyperparameter tuning - The fine-tuning

process:
Hyperparameters: These constitute configurations
within the model framework governing the learning
procedure, yet they are not directly acquired from
the data. Instances encompass learning rate,
optimizer selection, and batch size.
Impact on learning: Hyperparameters
significantly influence how effectively the LLM
learns from the data. Tuning them can optimize the
learning process and improve the model's
performance.

Hyperparameter tuning techniques:
Grid search: This methodical strategy assesses
every conceivable combination of hyperparameter
values within a predetermined scope. Nevertheless,
it can entail substantial computational resources,
particularly when dealing with many
hyperparameters.



Random search: This method randomly samples
hyperparameter values from a defined range. It can
be more efficient for large search spaces but might
miss optimal combinations.
Bayesian optimization: This advanced technique
uses past evaluations to guide the search for
promising hyperparameter combinations. It can be a
good option for complex models with many
hyperparameters.

Additional considerations:
Hardware constraints: Consider your
computational resources when choosing
architecture and tuning hyperparameters. More
complex architectures require significant computing
power.
Evaluation metrics: Define clear metrics to
evaluate the LLM's performance after each
hyperparameter adjustment. This could involve
accuracy, fluency, or task-specific metrics relevant
to your application.

Collaboration and open-source resources:
Community collaboration: Engage with the
vibrant and cooperative LLM research community
through online forums and scholarly articles to
glean insights from others' encounters with model
design and hyperparameter adjustment.
Open-source tools: Delve into open-source
repositories and platforms such as TensorFlow or
PyTorch, which furnish utilities and features for
constructing and refining LLMs.

Through strategic refinement of model structure and

meticulous hyperparameter tuning, you can unleash the full



capabilities of your LLM. Remember that this journey is

iterative, demanding experimentation, assessment, and

enhancement. Embrace the spirit of exploration and

contribute to the continual evolution of LLM research.

Efficient training strategies for LLMs

Training LLMs can be computationally expensive. This

section explores techniques such as gradient accumulation,

mixed-precision, and distributed training to accelerate

training and reduce resource requirements. Here, we will

explore efficient training strategies to maximize learning

outcomes while minimizing resource consumption:

Data-centric strategies:
Data curation and augmentation: High-quality
and diverse data are very important. Use data
cleaning methods and think about data
augmentation to improve your dataset and reduce
biases. This can help improve learning efficiency.
Active learning: Prioritize training on the most
informative data points. Active learning techniques
identify these points, allowing the LLM to focus its
learning efforts on the data that will yield the most
significant improvement.
Curriculum learning: Introduce the LLM to
concepts gradually, starting with simpler tasks and
progressing to more complex ones. This structured
approach allows for more efficient learning than
throwing the LLM into the deep end with complex
tasks from the outset.

Model-centric strategies:
Transfer learning and fine-tuning: Leverage pre-
trained LLMs as a foundation. These models have



already learned a vast amount of information from
massive datasets. Fine-tuning a pre-trained LLM on
your specific task can significantly reduce training
time and improve performance compared to training
from scratch.
Efficient model architectures: Investigate model
architectures tailored for efficiency. Approaches
such as knowledge distillation entail condensing
insights from a vast, pre-trained model into a more
compact, resource-efficient model.
Gradient accumulation and early stopping:

Gradient accumulation facilitates training with
extensive data batches, enhancing efficiency.
Premature termination monitors the LLM's progress
and halts training when marginal gains diminish,
averting resource squandering.

Training optimization strategies:
Gradient clipping: This technique prevents
exploding gradients, which can hinder training
progress. It limits the magnitude of updates applied
to the model's weights, promoting stability and
potentially improving training efficiency.
Mixed precision training: Utilize mixed precision
training techniques that leverage a combination of
data types (for example, float16 and float32) during
training. This can significantly reduce memory
usage and potentially accelerate training speed on
compatible hardware. Major libraries like
Tensorflow, HuggingFace, etc. allow mixed
precision training.
Parallelization and distributed training:

Distribute the training process across multiple
GPUs or machines for massive datasets and complex



models. This allows for parallel processing and
significantly reduces training time. This approach
requires expertise in distributed computing
frameworks.

Crafting effective prompts:

The prompt bridges you and the LLM, guiding it
towards the desired outcome. Here is how to craft
effective prompts in general as well as while using
LangChain:
Clarity and specificity: Clearly articulate your
goal. Instead of a vague prompt like "Write a poem,"
specify the poem's theme (for example, "Write a
poem about nature's beauty").
Context provision: Provide relevant background
information to contextualize the LLM's response.
For instance, provide details about characters,
setting, or plot if prompted for creative writing.
Instruction tuning: Use clear instructions that
guide the LLM's response format. Examples include
"Write a news article in a formal style" or "Generate
a list of bullet points summarizing this topic."
Example inspiration: If applicable, provide
examples to illustrate the desired response style or
tone. This can be particularly helpful for creative
tasks.
Length and complexity: Consider the LLM's
capabilities and tailor the prompt length and
complexity accordingly. Start with concise prompts
and gradually increase complexity as you gain
experience.
Test and iterate: Experiment with different
prompts and iterate based on the model's responses



to find the most effective prompt.

Evaluating and interpreting experimental

results

Effectively evaluating and interpreting experimental results

is crucial for deriving meaningful insights. This section

discusses metrics for evaluating LLM performance and

techniques for result interpretation. This section delves into

strategies for assessing LLM performance and extracting

meaningful knowledge from your experiments:

Defining success metrics:
Task-specific measures: Match your evaluation
criteria to the specific task. For example, in
question answering, it is very important to get the
right information. Being smooth, creative, and true
to the prompt matters most in creative writing.
Human evaluation: Recognize the power of human
judgment. Use human evaluators to check factual
accuracy, coherence, and overall quality. These are
areas where automated metrics might struggle.
Comparative analysis: Where applicable,
juxtapose the LLM's performance against a
benchmark model or human proficiency in the
identical task. This furnishes a valuable benchmark
for appraising the LLM's efficacy.

Evaluating outputs for quality:
Factual accuracy: Verify the factual grounding of
the generated text, especially for tasks involving
information retrieval or question answering. Use
credible sources to confirm the information
presented by the LLM.



Internal consistency: The LLM's output should be
internally consistent, avoiding logical contradictions
or factual inconsistencies within the generated text.
Scrutinize the output for any illogical elements.
Coherence and cohesion: Assess the overall flow
and structure of the generated text. Does it present
a clear and cohesive narrative or argument? Ensure
the ideas flow logically and seamlessly.
Creativity and originality (if applicable): For
creative tasks, evaluate the LLM's ability to
generate unique and engaging content that adheres
to the prompt's style and tone. Look for fresh
perspectives and unexpected ideas.

Interpreting results with caution:
Understanding limitations: LLMs are still under
development and prone to biases and errors. Do not
over-interpret results or treat them as absolute
truths.
Identifying biases: Be mindful of potential biases
present in the data used to train the LLM or within
the prompt itself. Evaluate the outputs for signs of
bias and adjust your interpretation accordingly.
Contextualization: Consider the context in which
the LLM generated the output. The prompt,
available information, and task all play a role in
shaping the results. Interpret the outputs within this
context.

Visualization techniques:
Attention visualization: If your LLM supports
attention mechanisms, utilize visualization tools to
understand which parts of the input data the LLM



focused on when generating the output. This can
provide insights into the LLM's reasoning process.
Error analysis: Closely examine cases where the
LLM performed poorly. Identify the reasons for
these errors (for example, factual inaccuracy, lack
of coherence). This analysis can guide future
experiment design and prompt refinement.

Sharing and collaboration:
Reproducibility: Make sure your experiments are
clearly written down and can be repeated. This
helps others check your results and use your work
to make new discoveries.
Open-source tools: Utilize and contribute to open-
source libraries and tools designed for LLM
evaluation and interpretation. This fosters
collaboration and accelerates progress in the field.

By employing these evaluation and interpretation

strategies, you can transform the raw outputs of your LLM

experiments into valuable insights. Remember, effective

LLM experimentation is an ongoing learning process.

Embrace the iterative nature of evaluation, refine your

techniques, and contribute to the ever-evolving field of LLM

research.

Fine-tuning for specific applications

Fine-tuning LLMs for specific applications requires careful

consideration of domain-specific data and objectives. This

section provides tips for effective fine-tuning and transfer

learning:

Understanding fine-tuning:
Pre-trained foundation: Fine-tuning leverages a
pre-trained LLM as a foundation. These models,



trained on massive datasets, possess a wealth of
general language knowledge.
Targeted specialization or industry specific fine

tuning: Fine-tuning entails further training the
LLM on a dataset tailored to your application's
domain. This dataset hones the LLM's
comprehension of the subject matter, its lexicon,
and its capability to tackle tasks pertinent to that
domain.

Benefits of fine-tuning:
Enhanced performance: A fine-tuned LLM often
surpasses a generic pre-trained model for a specific
application. Tailored training enables specialization
in the designated task, resulting in heightened
accuracy, improved task completion rates, and
overall enhanced effectiveness.
Reduced training time: Fine-tuning capitalizes on
pre-existing knowledge, markedly diminishing the
training period in contrast to training a model from
scratch on your unique dataset. This facilitates
expedited development cycles and swifter
deployment of LLM-powered solutions.
Flexibility and adaptability: The fine-tuning
methodology permits adaptation to diverse
applications. With varied datasets, you can fine-tune
the same LLM for multiple tasks, maximizing the
utility extracted from a single pre-trained model.

Examples of fine-tuning in action:
Machine translation: An LLM can be fine-tuned on
a dataset of translated documents for a specific
language pair. This enhances its ability to translate



text accurately and idiomatically within that specific
context.
Text summarization: Fine-tuning a corpus of news
articles or scientific papers allows the LLM to hold
onto the nuances of different writing styles and
generate concise summaries tailored to the type of
text encountered.
Code generation: By fine-tuning a repository of
code samples for a particular programming
language, the LLM can adeptly generate code
snippets based on natural language descriptions,
substantially augmenting developer efficiency.
Chatbots and virtual assistants: LLMs fine-tuned
on customer service conversations can power
chatbots that understand user queries, respond
appropriately, and provide helpful information or
complete tasks.

Approaches to fine-tuning:
Data selection and preparation: Data selection
and preparation are crucial for successful fine-
tuning. Start by gathering a high-quality, diverse
dataset that fits your application's needs. Make sure
the data is well-organized, possibly labeled, and free
from biases that could harm the fine-tuned LLM's
performance.
Prompt engineering: Creating clear prompts that
clearly explain the task and desired output style
greatly impacts how well a fine-tuned LLM works.
Try different prompt formats to find the best one.
Fine-tuning techniques: Tailored to the task's
complexity and dataset size, various fine-tuning
methodologies can be employed. These techniques



may encompass fine-tuning specific layers of the
pre-trained model or retraining the entire model
with a diminished learning rate.

Fine-tuning represents a potent tool for unlocking the

genuine potential of LLMs in real-world scenarios. As LLM

technology progresses, pre-trained models will exhibit

greater versatility, and fine-tuning methodologies will

continue to evolve. This progression will empower us to

harness LLMs across an even broader spectrum of

applications, pushing the boundaries of possibility across

various domains.

Scaling up: Distributed training and parallel

processing

Scaling LLM experimentation to large datasets and models

often requires distributed training and parallel processing.

Strategies for distributed training, model parallelism, and

data parallelism are explored in this section. Let us take a

look at them:

Understanding the bottlenecks:
Massive datasets: LLMs often require massive
datasets for effective training. These datasets can
strain the storage capacity of a single machine.
Complex model architectures: Modern LLM
architectures can have millions or even billions of
parameters. Training such models on a single
machine can be incredibly slow, taking days or even
weeks.
Limited memory resources: A single machine's
memory might not be sufficient to store and process
the intermediate calculations involved in training a
large LLM.



Power of distributed training:
Workload distribution: Distributed training solves
these problems by spreading the training process
across many machines (nodes) working together.
This helps manage large datasets and complex
models by sharing the work among available
resources.
Reduced training time: By leveraging the
combined processing power of multiple machines,
distributed training significantly reduces the overall
training time for LLMs. This translates to faster
experimentation cycles and quicker deployments of
LLM-powered solutions.
Scalability: Distributed training offers remarkable
scalability, allowing effortless addition or removal of
nodes within the training cluster. This flexibility
enables the scaling of the training process in
accordance with the LLM's complexity and the
dataset's magnitude.

Parallel processing techniques:
Data parallelism: This method partitions the
training dataset into smaller segments and
disperses them across distinct nodes. Each node
trains the LLM on its allocated data segment, and
subsequent results are amalgamated to update the
global model parameters. Data parallelism stands as
a prevalent and efficient technique for distributed
training.
Model parallelism: In this approach, the LLM
model is fragmented into sub-components, with
each sub-component assigned to a separate node.
These nodes collaborate to concurrently train the
complete model. Model parallelism proves



particularly advantageous for exceedingly large
models that surpass the memory capacity of a single
machine.

Emerging techniques and future trends:
Cloud-based training platforms: Cloud platforms
like Google Cloud TPUs, Anyscale or Amazon
SageMaker offer readily available, scalable
infrastructure for distributed LLM training. These
platforms simplify the process and reduce the need
for in-house cluster management.
Specialized hardware: Hardware advancements
like specialized AI accelerators and high-bandwidth
networking solutions are constantly improving,
pushing the boundaries of what's possible in
distributed LLM training. Nvidia is leading the race
for deep learning and LLM related hardware
solutions, holding a significant market share. As of
June 2024, Nvidia held over 88% of the market
share in the GPU segment [source Jon Peddie

Research (JPR)], which is crucial for deep learning
computations.

Distributed training and parallel processing techniques are

essential tools for scaling up LLM training and unlocking

their full potential. By leveraging these techniques, you can

train complex models on massive datasets in a reasonable

timeframe.

Deployment considerations for LLMs

Deploying LLMs in production environments necessitates

meticulous attention to factors such as inference speed,

model size, and hardware limitations. This segment delves

into deployment strategies and optimization methodologies

for achieving streamlined inference. Let us explore pivotal



deployment considerations to ensure a seamless and

triumphant LLM deployment:

Infrastructure and hardware:
Computational resources: LLMs often impose
substantial computational demands. When selecting
deployment hardware, contemplate factors such as
the LLM's size, anticipated user traffic, and latency
requisites. Explore alternatives like GPUs, Tensor

Processing Units (TPUs), or cloud-based
platforms offering scalable infrastructure.
Storage needs: Evaluate and assess the storage
prerequisites for both the LLM model and any
ancillary data essential for inference (generating
predictions). Implement efficient storage solutions
such as distributed file systems or cloud-based
storage services.
Monitoring and observability: Deploy robust
monitoring tools to track the LLM's performance in
production. Monitor metrics like latency, accuracy,
resource utilization, and potential errors. This
allows for proactive identification and resolution of
issues. Libraries like Weights and biases (W&B),
Comet, MLFlow etc. helps us to do the monitoring
and observability of the LLM model.

Serving and inference:
Model optimization: When preparing for
production deployment, explore methods to
streamline the LLM model for enhanced efficiency.
This may entail employing techniques such as model
pruning, quantization, or knowledge distillation to
curtail the model size and bolster inference speed
while upholding accuracy.



Application Programming Interface (API)

design: Construct a meticulously crafted API
facilitating seamless interaction with the LLM in a
lucid and standardized manner. The API should
proficiently manage inputs, outputs, error handling,
and requisite authentication mechanisms to ensure
a smooth user experience.
Load balancing and scalability: Design your
deployment architecture to handle varying user
loads. Implement load balancing techniques to
distribute requests across multiple LLM instances if
necessary. This ensures smooth operation even
during peak traffic periods.

Security and privacy:
Data security: Given the extensive data LLMs are
typically trained on, prioritize robust security
protocols to safeguard user data and thwart
unauthorized access. Employ encryption
methodologies and enforce stringent access controls
to fortify sensitive data against breaches.
Privacy considerations: Exercise caution
regarding potential privacy implications when
deploying LLMs. When dealing with user data,
follow relevant privacy rules. Use methods like
anonymization or differential privacy to reduce
privacy risks and protect user confidentiality.
Bias and fairness: As we quoted earlier, Humans
are biased; hence, machines are going to be biased.
Having said that, LLMs are susceptible to inheriting
biases from their training data. Vigilantly monitor
the LLM's outputs for signs of bias and adopt
fairness mitigation measures when warranted. This
may entail deploying debiasing techniques or



retraining the LLM on more balanced datasets to
promote equitable outcomes.

Monitoring and maintenance:
Performance monitoring: Continuously monitor
the LLM's performance in production. Track metrics
like accuracy, latency, and resource usage to
identify any performance degradation or potential
issues.
Model updates and refresher training: As new
data becomes available or the application
requirements evolve, consider retraining or fine-
tuning the LLM to maintain optimal performance.
This ensures the LLM stays up-to-date and adapts to
changing needs.

Version control and rollbacks: Implement a version
control system for your LLM deployments. This will
allow you to track changes, revert to previous versions
if necessary, and effectively manage rollouts of
updated models.

By carefully considering these deployment factors, you can

ensure a smooth transition for your LLM from the research

environment to the real world. Remember, successful LLM

deployment is an ongoing process that requires continuous

monitoring, adaptation, and improvement.

Conclusion

In conclusion, this chapter has presented valuable tips and

strategies for streamlining LLM experimentation. By

implementing these methodologies, users can expedite

their experimentation processes and endeavor to unlock the

full capabilities of LLMs in natural language processing

applications.



LLMs hold tremendous promise for reshaping various

domains. By capitalizing on the strategies delineated in this

guide, you can effectively harness their potential. From

efficiently preparing data for experimentation to tactically

deploying the LLM in real-world scenarios, each step

contributes significantly to unleashing the genuine potential

of these transformative models.

It is essential to remember that the landscape of Generative

AI is continuously evolving, with new techniques and

advancements emerging more rapidly than we ever thought

possible. To remain at the forefront of this dynamic and

exciting field, embrace a mindset of perpetual learning and

exploration.

References

https://www.techradar.com/computing/gpu/nvidia-

now-owns-88-of-the-gpu-market-but-that-might-

not-be-a-bad-thing-yet

Join our book’s Discord space

Join the bookʼs Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New Release and

Sessions with the Authors:

https://discord.bpbonline.com

https://www.techradar.com/computing/gpu/nvidia-now-owns-88-of-the-gpu-market-but-that-might-not-be-a-bad-thing-yet
https://discord.bpbonline.com/


APPENDIX B

Resources and References

Introduction

This chapter is an appendix. It is a valuable resource to the

main text. It contains a list of resource links. These

resources will help you understand the book's topics even

more. These materials are carefully curated. They are here

to help you dive deeper into the concepts the book

introduces. They will also help you see the big picture. Plus,

they will make your own research easier. Ready to explore

these resources and dive deeper into learning?

Books and articles

"Natural Language Processing with Transformers" by
Lewis Tunstall, Leandro von Werra, and Thomas Wolf.

An in-depth exploration of using transformer
models, specifically those provided by Hugging
Face, for various NLP tasks.
Link to the book-
https://www.oreilly.com/library/view/natural-

language-processing/9781098136789/

https://www.oreilly.com/library/view/natural-language-processing/9781098136789/


"Deep Learning for Natural Language Processing" by
Jason Brownlee

A practical book that covers deep learning
techniques for NLP, providing foundational
knowledge that complements the use of LangChain
and Hugging Face tools.
Link to the book:
https://books.google.co.in/books?

id=_pmoDwAAQBAJ&printsec=copyright&redir

_esc=y#v=onepage&q&f=false

"Transformers for Natural Language Processing" by
Denis Rothman

Focuses on transformer architectures and their
applications in NLP, providing insights into building
effective models with Hugging Face.
Link to the book:-
https://www.amazon.in/Transformers-Natural-

Language-Processing-architectures-

ebook/dp/B08S977X8K

Research papers

"BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding" by Jacob

Devlin et al.
The foundational paper on BERT, which underpins
many models available through Hugging Face.

"Attention is All You Need" by Ashish Vaswani et al.
Introduces the transformer model architecture,
which is fundamental to understanding modern NLP
models.

https://books.google.co.in/books?id=_pmoDwAAQBAJ&printsec=copyright&redir_esc=y#v=onepage&q&f=false
https://www.amazon.in/Transformers-Natural-Language-Processing-architectures-ebook/dp/B08S977X8K


"GPT-3: Language Models are Few-Shot Learners" by
Tom B. Brown et al.

Discusses the architecture and capabilities of GPT-
3, a model accessible via Hugging Face.

"RoBERTa: A Robustly Optimized BERT Pretraining
Approach" by Yinhan Liu et al.

Explores improvements over the original BERT
model, leading to more robust and efficient NLP
applications.

"XLNet: Generalized Autoregressive Pretraining for
Language Understanding" by Zhilin Yang et al.

Presents an alternative to BERT with improved
performance on various NLP benchmarks.

“Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks” by Patrick Lewis et al.
(https://arxiv.org/abs/2005.11401v4)

Advanced large language models can store and use
facts to perform language tasks well, but struggle
with detailed knowledge tasks. By merging these
models with a system that can retrieve information
from sources like Wikipedia, they perform better on
complex tasks and produce more accurate, varied
language.

“Merging Mixture of Experts and Retrieval Augmented
Generation for Enhanced Information Retrieval and
Reasoning” by Xiong, Xingyu & Zheng, Mingliang.
(2024). Merging Mixture of Experts and Retrieval
Augmented Generation for Enhanced Information
Retrieval and Reasoning. 10.21203/rs.3.rs-3978298/v1

This study integrates Retrieval Augmented

Generation (RAG) into the Mistral 8x7B LLM with

https://arxiv.org/abs/2005.11401v4


Mixture of Experts (MoE), resulting in significant
improvements in complex information retrieval and
reasoning tasks, as demonstrated by enhanced
metrics on the Google BIG-Bench dataset. The
findings highlight a pivotal advancement in AI
research, showcasing the potential for more
adaptable and intelligent AI systems, while
acknowledging dataset scope and computational
limitations.

LangChain resources

LangChain documentation:

https://python.langchain.com/v0.2/docs/introdu

ction/

The official LangChain documentation provides a
comprehensive guide to installation, core concepts,
and how to use LangChain for various tasks.

LangChain tutorials:

https://python.langchain.com/v0.2/docs/tutorial

s/

Dive deeper with LangChain tutorials covering
specific use cases and applications.

LangChain: Building Autonomous Agents with

LangChain:

https://js.langchain.com/v0.1/docs/use_cases/au

tonomous_agents/

Guide and insights on building autonomous agents
using LangChain.

Advanced RAG-based chatbot using LangChain:

https://python.langchain.com/v0.2/docs/introduction/
https://python.langchain.com/v0.2/docs/tutorials/
https://js.langchain.com/v0.1/docs/use_cases/autonomous_agents/


https://huggingface.co/learn/cookbook/en/adva

nced_rag

Advanced RAG with Vector database using
LangChain.

Hugging Face resources

Hugging Face Transformers library:

https://huggingface.co/docs/transformers/en/in

dex

The Hugging Face Transformers library is a
fundamental resource for working with LLMs. It
provides pre-trained models, training tools, and
functionalities for various NLP tasks.

Hugging Face Model Hub:

https://huggingface.co/docs/hub/en/index

Discover and explore a vast collection of pre-trained
LLM models for numerous languages and tasks.

Hugging Face Tutorials:

https://huggingface.co/learn/nlp-

course/chapter1/1

Broaden your knowledge with Hugging Face's
collection of tutorials on various NLP concepts and
applications using Transformers.

Hugging Face Datasets:

https://huggingface.co/datasets

It provides links of datasets which are available for
free to use by the AI ML researcher’s community.

Hugging Face Course:

https://huggingface.co/learn/cookbook/en/advanced_rag
https://huggingface.co/docs/transformers/en/index
https://huggingface.co/docs/hub/en/index
https://huggingface.co/learn/nlp-course/chapter1/1
https://huggingface.co/datasets


https://huggingface.co/course/chapter1

This course will teach you about natural language

processing (NLP) using libraries from the Hugging
Face ecosystem, including Transformers, Datasets,
Tokenizers, and Accelerate, as well as the Hugging
Face Hub. It’s completely free and has no ads.

Transformers Introduction:
Quickstart — transformers 2.9.1

documentation (huggingface.co)

QuickStart guide for setting up and using Hugging
Face Transformers.

Fine-tuning a Transformer Model:
https://huggingface.co/transformers/training.ht

ml

Detailed instructions on how to fine-tune
Transformer models on customized datasets.

Hugging Face Example Notebooks:
https://github.com/huggingface/notebooks

Example Jupyter notebooks covering various NLP
tasks using Hugging Face Transformers.

Alternative resources to LangChain

Haystack:

Haystack documentation:

https://haystack.deepset.ai/

The official documentation for the Haystack
framework, covering setup, usage, and advanced
features.

https://huggingface.co/course/chapter1
https://huggingface.co/transformers/training.html
https://github.com/huggingface/notebooks
https://haystack.deepset.ai/


GitHub repository for Haystack:

https://github.com/deepset-ai/haystack

The public GitHub repository for Haystack,
providing source code, examples, and
contribution guidelines.

Integrating RAG with Haystack:

https://haystack.deepset.ai/tutorials/27_first_

rag_pipeline

Tutorial explaining how to set up and use RAG
within the Haystack framework.

Haystack blog:

https://haystack.deepset.ai/blog/tags/retrieva

l

Advances in Retrieval-Augmented Generation -
Blog post discussing recent advancements in
Retrieval-Augmented Generation using Haystack.

Haystack tutorials and examples:

https://haystack.deepset.ai/tutorials

A collection of tutorials and example projects
demonstrating various use cases of Haystack.

Building QA systems with Haystack:

https://haystack.deepset.ai/tutorials/01_basic

_qa_pipeline

Comprehensive guide on building question-
answering systems using Haystack.

Haystack Slack community:

https://github.com/deepset-ai/haystack
https://haystack.deepset.ai/tutorials/27_first_rag_pipeline
https://haystack.deepset.ai/blog/tags/retrieval
https://haystack.deepset.ai/tutorials
https://haystack.deepset.ai/tutorials/01_basic_qa_pipeline


https://slack.com/apps/ASQ2GCA77-haystack

Join the Haystack community on Slack to discuss
issues, ask questions, and share knowledge.

Haystack GitHub discussions:

https://github.com/deepset-

ai/haystack/discussions

A place to discuss future versions and issues
related to Haystack on GitHub.

LlamaIndex:

LlamaIndex documentation:

https://docs.llamaindex.ai/en/latest/module_g

uides/loading/documents_and_nodes/

Comprehensive guide on using LlamaIndex for
various applications, including detailed
instructions and examples.

GitHub repository for LlamaIndex:

https://github.com/run-llama/llama_index

Access the source code, contribute to
development, and find detailed usage examples
for LlamaIndex.

LlamaIndex tutorial:

https://docs.llamaindex.ai/en/stable/getting_s

tarted/starter_example/

https://www.llamaindex.ai/blog/introducing-

llama-agents-a-powerful-framework-for-

building-production-multi-agent-ai-systems

Getting Started - Step-by-step tutorial for
beginners to set up and start using LlamaIndex

https://github.com/deepset-ai/haystack/discussions
https://docs.llamaindex.ai/en/latest/module_guides/loading/documents_and_nodes/
https://github.com/run-llama/llama_index
https://docs.llamaindex.ai/en/stable/getting_started/starter_example/
https://www.llamaindex.ai/blog/introducing-llama-agents-a-powerful-framework-for-building-production-multi-agent-ai-systems


effectively and how to use LLaMA index Agent
system. Using LlamaIndex with Hugging Face

transformers:
https://docs.llamaindex.ai/en/stable/examples

/llm/huggingface/

Guide on integrating LlamaIndex with Hugging
Face Transformers for enhanced NLP tasks.

Blog:

https://docs.llamaindex.ai/en/latest/getting_st

arted/concepts/

LlamaIndex for Retrieval-Augmented Generation -
Blog post covering the application of LlamaIndex
in RAG tasks, highlighting its features and
benefits.

LlamaIndex model card:

Detailed model card providing specifications,
intended uses, limitations, and ethical
considerations for LlamaIndex. LlamaIndex Model
Card.

Community and support

Forums and discussion boards:

Hugging Face Forums: Community forum for
discussing Hugging Face’s tools and asking
questions. https://discuss.huggingface.co/

LangChain GitHub Discussions: Platform for
engaging with the LangChain community and
developers.
https://github.com/hwchase17/langchain/discus

sions

https://docs.llamaindex.ai/en/stable/examples/llm/huggingface/
https://docs.llamaindex.ai/en/latest/getting_started/concepts/
https://discuss.huggingface.co/
https://github.com/hwchase17/langchain/discussions


Social media and blogs:

Hugging Face on Twitter:
https://twitter.com/huggingface

Hugging Face Blog: Blog featuring articles,
tutorials, and announcements related to Hugging
Face. https://huggingface.co/blog/

LangChain Blog Posts on Medium: A collection of
blog posts discussing LangChain’s latest
developments and use cases.,
https://medium.com/@langchain/

Other important resources

Official MLflow documentation: Comprehensive
guide on managing the ML life cycle with MLflow,
including experiment tracking and model deployment
of LLM models.
https://mlflow.org/docs/latest/llms/index.html

RAGAS a framework to evaluate RAG pipelines
https://docs.ragas.io/en/stable/

Conclusion

We trust you have found this book both enlightening and

enjoyable as we navigated the theoretical and practical

realms of constructing a RAG-based chatbot using Hugging

Face and LangChain. We hope you find value in this

resource, and we kindly encourage you to share it with your

peers, helping us extend its reach and success.

https://twitter.com/huggingface
https://huggingface.co/blog/
https://medium.com/@langchain/
https://mlflow.org/docs/latest/llms/index.html
https://docs.ragas.io/en/stable/


Index

A

activation function 111

ADAM optimizer beta parameters 124

Adversarial

example 111

adversarial training 109

Allen Institute for Artificial Intelligence (AI2) 316

Amazon Open Search 319

Amazon SageMaker 292

Amazon SageMaker Console 293

Amazon SageMaker Notebook Instance

auto scaling 309, 310

creating 293-296

folder, creating for data storage 297, 298

vector embeddings, creating 299-304

Amazon Web Services (AWS) 203, 292

Artificial Intelligence (AI) 55, 100

Artificial Neural Network (ANN) 113

attention head 108

attention mechanism 105

AutoTrain 200

AWS Inferentia 202

AWS Trainium 202

B

backpropagation 110

Bag of Words (BoW) 79

beam search 109

beam width 110

BERT 101, 128

Bias and fairness measurement tools 325

bias mitigation 324

Bilingual Evaluation Understudy (BLEU) 107

BioGPT 316

C

chatbot



creating, for custom data 238-242

ChromaDB 163, 164

classes, Python 29, 30

code editors 5, 6

CogVLM 315

Comet 341

Computer Vision (CV) tasks 200

Compute Unified Device Architecture

(CUDA) 137

Consensus-based Image Description

Evaluation (CIDEr) 107

Convolutional Neural Network (CNN) 114

corpora 58

closed corpora 59

domain-specific corpora 58

monolingual corpora 58

multilingual corpora 58

open corpora 59

parallel corpora 58

corpus 57

cross-entropy loss 111

D

DALL-E 315

data-centric strategies 335

data loaders 151, 152

by LangChain 255, 256

data parallelism 339, 340

data preparation

for fine-tuning LLM 267-275

decoder 120

DeepEval 321

Diffusers 202

DistilBERT 130

distributed training 339, 340

Docker

using, for Python 14, 15

DocLLM 316

Dolly-V2-3B LLM 255

domain-specific corpora 58

domain-specific LLMs 315, 316

dropout 109

E

early stopping 110



embedding 108

encoder 119

epochs 109

ethical mitigation 324

evaluation metrics 107

F

Facebook AI Similarity Search

(FAISS) 163, 319

Fairness (Google AI) 325

feedforward dimension 122

Feedforward Neural Network (FNN) 113

FinBERT 316

fine-tuning 105

for specific applications 338, 339

LLM 267

performance improvement 275

for loop 33, 34

functions, Python 32, 33

G

Gated Recurrent Unit (GRU) 109

Generative Adversarial Network

(GAN) 115

generative AI market growth 314

Generative Pre-trained Transformer

(GPT) 107, 129

Google Cloud Platform (GCP) 311

GPT-3 101

gradient descent 110

Gradio 202

Graphics Processing Unit (GPU) 137

guardrails 319, 320

H

hallucination 96

Hidden Markov Models (HMMs) 100

Hub 199

Hugging Face 140

datasets 203

evaluation 225, 226

exploring 198-203

installation 203

opensource LLMs, using 213-218

real-world use cases 234



vector embeddings, generating 222

Hugging Face API

transfer learning with 232, 234

Hugging Face Hub Python Library 199

Huggingface.js 200

hyperparameters

at inferencing or at text generation 263-267

optimizing 333, 334

hyperparameters, LLM 111, 259-263

I

IBM watsonx.governance Toolkit 325

Idefics 315

if-else 35, 36

inference 108

inference API 200

inference endpoint 201

inference time 108

Integrated Development Environment

(IDE) 1, 5

installation 15, 16

L

label smoothing 125

LangChain

evaluation applications 176

evaluation benefits 176

evaluation examples 176, 189, 194

evaluation framework 175

evaluation types 175

installation 137-140

libraries 136

model comparison 169

overview 136

templates 136

usages 140

LangServe 136

LangSmith 136

large language models (LLMs) 83, 90, 99

case studies 278-280

evolution tree 102

fine-tuning 267-275

history 100

terminologies 104-111

training strategies 335, 336



use cases 102-104

latent dirichlet allocation (LDA) 86

learning rate 123

Legal-BERT 316

lemma 70

lemmatization 70

Linux

Python installation 13

LLava 315

LLM deployment

considerations 341, 342

LLM experimentation

challenges 330, 331

data preparation 332, 333

results, evaluating and interpreting 336-338

scaling 339-341

Long Short-Term Memory Networks

(LSTMs) 100, 115

lowercasing 74

M

MacOS

Python installation 13, 14

Masked Language Modeling (MLM) 106, 131

Metric for Evaluation of Translation

with Explicit Ordering (METEOR) 107

Microsoft 319

Microsoft VASA 1 315

MidJourney 315

Milvus 319

mini-batches 110

MLFlow 322, 341

model architecture

optimization 333

model-centric strategies 335

model evaluation frameworks 320-324

Model Hub 199

model parallelism 339, 340

monolingual corpora 58

multi-agent frameworks 317

multilingual corpora 58

multimodal model 111

multimodal models

emergence 315

MusicLM 315



N

Named Entity Recognition (NER) 74, 76

natural language processing (NLP) 55

Bag of Words (BoW) 79

corpus 57-59

key concepts 56, 57

large language models 90, 91

lemmatization 70, 71

lowercasing 74

NER 76

n-grams 59, 60

overview 56

part-of-speech tagging 74

semantic relationship 96

sentiment analysis 88

stemming 70

stop words removal 67, 68

syntactic relationship 96

text classification 91, 92, 96

tokenization 63, 64

topic modeling 86

transfer learning 91

word embeddings 83, 84

Natural Language Understanding

(NLU) systems 104

Neural Networks (NN) 111, 112

Artificial Neural Network (ANN) 113

Convolutional Neural Network (CNN) 114

Feedforward Neural Network (FNN) 113

Generative Adversarial Network (GAN) 115

LSTM network 115

Radial Basis Function (RBF) Network 115

Recurrent Neural Network (RNN) 114

Self-Organizing Map (SOM) 115

transformer 116

n-grams 59, 60

versus, tokens 67

num_layers 121

O

Object-Oriented Programming (OOP) 26

OOP concepts

abstraction 28

class 26

encapsulation 27



inheritance 27

method overriding 28

objects 27

polymorphism 27

OpenAI SORA 315

opensource LLM models

usage 140-151

opensource text embedding models

usage 153-155

Optimum 201

overfitting 110

P

parallel corpora 58

Parameter-Efficient Fine Tuning

(PEFT) 202, 317, 318

parameters

size and scaling 106, 107

Part of Speech (POS) tagging 74

PEP 8 23-25

following, in Pycharm 25, 26

Permutation Language Modeling

(PLM) objective 131

Phoenix 324

Pinecone 319

pipenv 18, 19

Porter stemming algorithm 70

positional encoding 119

pre-built transformers 127

DistilBERT 130, 131

Generative Pre-trained Transformer

(GPT) 129

RoBERTa 132

text-to-text transfer transformer (T5) 130

XLNet 131

pre-training 104

prompt engineering 96, 106

prompting bias 106

prompt-tuning 105

Proximal Policy Optimization (PPO) 201

PubMedBERT 316

PyCharm 25

installation 16, 17

PyCharm Community Edition 15

Python 2, 3



Docker, using 14, 15

general instructions 10

installation, on Linux 13

installation, on MacOS 13, 14

installation, on Windows 11-13

virtual environment, creating 21-23

Python Enhancement Proposal (PEP) 1

Python scripts

running, from Docker 52-54

running, from Jupyter lab and Notebook 49-51

running, from PyCharm 42-46

running, from terminal 47-49

sample project, setting up 38-42

Q

quantization 317, 318

R

Radial Basis Function (RBF) Network 115

RAG Assessment (RAGAS) 321, 322

RAG-based chatbot

creating, with custom data 242-254

reasoning capabilities 314

Recall-Oriented Understudy for

Gisting Evaluation (ROUGE) 107

Rectified Linear Unit (ReLU) 111

Recurrent Neural Network

(RNN) 100, 114

references 345

regularization 110

required packages

installation 17

required packages, in Python

folder structure 19-21

virtual environment 17, 18

resources

alternative resources, to

LangChain 348-350

books and articles 345

community and support 350

Hugging Face 347, 348

LangChain 347

research papers 346, 347

Retrieval Augmented Generation (RAG) 239

reward modeling (RM) 201



RoBERTa 132

S

Safetensors 199

SciBERT 316

security 325, 326

self-attention 105

Self-Organizing Map (SOM) 115

self-supervised learning 111

semantic relationship 96

sentiment analysis 88

Spaces 199

State Of The Art (SOTA) 200

stemming 70

stop words removal 67, 68

subword tokenization 108

supervised fine-tuning step (SFT) 201

syntactic relationship 96

T

Telegram use case 280-289

TensorRT Library (TRL) 201

text classification 91, 92

Text Embeddings Inference

(TEI) 201

Text Generation Inference

(TGI) 203

text-to-text transfer transformer (T5) 130

timm 200

token embedding dimension 125

tokenization 63, 108

tokenizers 199

tokens

versus, n-grams 67

topic modeling 86

Top K 265

Top P 264

training strategies

for LLMs 335, 336

transfer learning 91, 106

with Hugging face API 232

transformer block 109

transformers 116, 117

architecture 105, 118-127

Translation Edit Rate (TER) 107



TruLens 323

U

underfitting 110

V

vector databases 318, 319

vector stores 162, 163

benefits 163

by LangChain 256

features 163

virtualenv 18

vocabulary size 108

W

warmup proportion 125

Weaviate 319

Weights and biases (W&B) 341

while loop 34, 35

Windows

Python installation 11-13

word embeddings 83

Word Error Rate (WER) 107

X

XLNet 131

Z

Zen of Python

principles 3, 4

zero-shot learning 106


	Cover
	Title Page
	Copyright Page
	Dedication Page
	About the Authors
	About the Reviewer
	Acknowledgements
	Preface
	Table of Contents
	1. Introduction to Python and Code Editors
	Introduction
	Structure
	Objectives
	Introduction to Python
	Introduction to code editors
	Conclusion
	References
	Further reading

	2. Installation of Python, Required Packages, and Code Editors
	Introduction
	Structure
	Objectives
	General instructions
	Installation of Python on Windows
	Installation of Python on Linux
	Installation of Python on MacOS
	Using Docker for Python
	Installation of IDE

	Installation of PyCharm
	Installation of required packages
	Virtual environment
	virtualenv
	pipenv

	Folder structure
	Creating a virtual environment

	PEP 8 standards
	Following PEP 8 in PyCharm


	Object-Oriented Programming concepts in Python
	Classes in Python
	Functions in Python
	For loop in Python
	While loop in Python
	If-else in Python


	Conclusion

	3. Ways to Run Python Scripts
	Introduction
	Structure
	Objectives
	Setting up the project
	Running Python scripts from PyCharm
	Running Python Scripts from Terminal
	Running Python scripts from Jupyter Lab and Notebook
	Running Python Scripts from Docker
	Conclusion

	4. Introduction of NLP and its concepts
	Introduction
	Structure
	Objectives
	Natural Language Processing overview
	Key concepts
	Corpus
	N-grams
	Tokenization
	Difference in tokens and n-grams

	Stop words removal
	Stemming
	Lemmatization
	Lowercasing
	Part-of-speech tagging
	Named Entity Recognition
	Bag of words
	Word embeddings
	Topic modeling
	Sentiment analysis

	Large language models
	Transfer learning

	Text classification
	Prompt engineering
	Hallucination
	Syntactic relationship
	Semantic relationship

	Conclusion

	5. Introduction to Large Language Models
	Introduction
	Structure
	Objectives
	History
	LLM use cases
	LLM terminologies
	Neural networks
	Transformers
	Pre-built transformers
	Bidirectional Encoder Representations from Transformers
	Generative Pre-trained Transformer
	Text-to-text transfer transformer
	DistilBERT
	XLNet
	RoBERTa

	Conclusion
	Further readings
	References

	6. Introduction to LangChain, Usage and Importance
	Introduction
	Structure
	Objectives
	LangChain overview
	Installation and setup
	Usages
	Opensource LLM models usage
	Data loaders
	Opensource text embedding models usage
	Vector stores
	Model comparison
	Evaluation
	Types of evaluation

	Conclusion
	Points to remember
	References

	7. Introduction to Hugging Face, its Usage and Importance
	Introduction
	Structure
	Objectives
	Exploring the Hugging Face platform
	Installation and setup
	Datasets
	Usage of opensource LLMs
	Generating vector embeddings
	Evaluation
	Transfer learning with Hugging Face API
	Real-world use cases of Hugging Face
	Conclusion
	References

	8. Creating Chatbots using Custom Data with Langchain and Hugging Face Hub
	Introduction
	Structure
	Objectives
	Setup
	Overview
	Steps to create RAG based chatbot with custom data
	Dolly-V2-3B details
	Data loaders by LangChain
	Vector stores by LangChain
	Conclusion
	References

	9. Hyperparameter Tuning and Fine Tuning Pre-Trained Models
	Introduction
	Structure
	Objectives
	Hyperparameters of an LLM
	Hyperparameters at inferencing or at text generation
	Fine-tuning of an LLM
	Data preparation for finetuning an LLM
	Performance improvement
	Conclusion
	References

	10. Integrating LLMs into Real-World Applications: Case Studies
	Introduction
	Structure
	Objectives
	Case studies
	Use case with Telegram
	Setup

	Conclusion
	References

	11. Deploying LLMs in Cloud Environments for Scalability
	Introduction
	Structure
	Objectives
	Amazon Web Services
	Step 1: Creating an Amazon SageMaker Notebook Instance
	Step 2: Create folders in SageMaker to store data
	Step 3: Create vector embeddings
	Step 4: Auto scaling

	Google Cloud Platform
	Conclusion
	References

	12. Future Directions: Advances in LLMs and Beyond
	Introduction
	Structure
	Objectives
	Generative AI market growth
	Reasoning
	Emergence of multimodal models
	Small domain-specific models
	Multi agent framework

	Quantization and Parameter-Efficient Fine Tuning
	Vector databases
	Guardrails
	Model evaluation frameworks
	Ethical and bias mitigation
	Safety and security
	Conclusion
	References

	Appendix A: Useful Tips for Efficient LLM Experimentation
	Structure
	Objectives
	Understanding the challenges of LLM experimentation
	Preparing data for LLM experimentation
	Optimizing model architecture and hyperparameters
	Efficient training strategies for LLMs
	Evaluating and interpreting experimental results
	Fine-tuning for specific applications
	Scaling up: Distributed training and parallel processing
	Deployment considerations for LLMs
	Conclusion
	References

	Appendix B: Resources and References
	Introduction
	Books and articles
	Research papers
	LangChain resources
	Hugging Face resources
	Alternative resources to LangChain

	Community and support
	Other important resources
	Conclusion

	Index

