
M A N N I N G

Stefano Mostarda
Marco De Sanctis
Daniele Bochicchio

FOREWORD BY NOAM BEN-AMI

IN ACTION

Entity Framework 4 in Action

Entity Framework 4
in Action

STEFANO MOSTARDA
MARCO DE SANCTIS

DANIELE BOCHICCHIO

M A N N I N G
Shelter Island

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Sebastian Stirling
20 Baldwin Road Copyeditor: Andy Carroll
PO Box 261 Typesetter: Dottie Marsico
Shelter Island, NY 11964 Cover designer: Marija Tudor

ISBN 978-1-935182-18-4
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

www.manning.com

brief contents
PART 1 REDEFINING YOUR DATA-ACCESS STRATEGY1

1 ■ Data access reloaded: Entity Framework 3

2 ■ Getting started with Entity Framework 33

PART 2 GETTING STARTED WITH ENTITY FRAMEWORK61

3 ■ Querying the object model: the basics 63

4 ■ Querying with LINQ to Entities 80

5 ■ Domain model mapping 119

6 ■ Understanding the entity lifecycle 151

7 ■ Persisting objects into the database 176

8 ■ Handling concurrency and transactions 203

PART 3 MASTERING ENTITY FRAMEWORK...............................225

9 ■ An alternative way of querying: Entity SQL 227

10 ■ Working with stored procedures 253

11 ■ Working with functions and views 284

12 ■ Exploring EDM metadata 296

13 ■ Customizing code and the designer 322
v

BRIEF CONTENTSvi

PART 4 APPLIED ENTITY FRAMEWORK355

14 ■ Designing the application around Entity Framework 357

15 ■ Entity Framework and ASP.NET 378

16 ■ Entity Framework and n-tier development 396

17 ■ Entity Framework and Windows applications 423

18 ■ Testing Entity Framework 447

19 ■ Keeping an eye on performance 474

contents
foreword xvii
preface xxi
acknowledgments xxii
about this book xxiv
about the cover illustration xxix

PART 1 REDEFINING YOUR DATA-ACCESS STRATEGY1

1 Data access reloaded: Entity Framework 3
1.1 Getting started with data access 4
1.2 Developing applications using database-like structures 5

Using datasets and data readers as data containers 5
The strong coupling problem 8 ■ The loose typing problem 9
The performance problem 10

1.3 Using classes to organize data 10
Using classes to represent data 11 ■ From a single class to the
object model 13

1.4 Delving deep into object/relational differences 15
The datatype mismatch 15 ■ The association mismatch 16
The granularity mismatch 18 ■ The inheritance mismatch 20
The identity mismatch 21 ■ Handling the mismatches 22
vii

CONTENTSviii

1.5 Letting Entity Framework ease your life 23
What is O/RM? 23 ■ The benefits of using Entity Framework 24
When isn’t O/RM needed? 26

1.6 How Entity Framework performs data access 26
The Entity Data Model 27 ■ Object Services 29 ■ Entity Client
data provider 31 ■ LINQ to Entities 31 ■ Entity SQL 32

1.7 Summary 32

2 Getting started with Entity Framework 33
2.1 Introducing the OrderIT example 34
2.2 Designing the OrderIT model and database 35

Bottom-up vs. top-down design 36 ■ Customers and suppliers 37
Products 39 ■ Orders 41

2.3 Structuring the application 42
Creating the assemblies 42 ■ Designing entities using the database-
first approach 43 ■ Designing relationships 50 ■ Organizing
the generated code 52 ■ The model-first approach in the
designer 54

2.4 A sneak peek at the code 55
Querying the database 55 ■ Updating objects and reflecting
changes into storage 56

2.5 Summary 60

PART 2 GETTING STARTED WITH ENTITY FRAMEWORK61

3 Querying the object model: the basics 63
3.1 One engine, many querying methods 64
3.2 The query engine entry point: Object Services 64

Setting up the connection string 66 ■ Writing queries against
classes 70 ■ LINQ to Entities queries vs. standard LINQ
queries 70 ■ Retrieving data from the database 71
Understanding Identity Map in the context 72 ■ Understanding
interaction between Object Services and Entity Client 74
Capturing the generated SQL 75 ■ Understanding which entities
are returned by a query 76 ■ When is a query executed? 77
Managing the database from the context 79

3.3 Summary 79

CONTENTS ix

4 Querying with LINQ to Entities 80
4.1 Filtering data 81

Filtering data based on associations 82 ■ Paging results 86
Retrieving one entity 87 ■ Creating queries dynamically 89

4.2 Projecting results 90
Projecting with associations 92 ■ Projections and object
tracking 95

4.3 Grouping data 96
Filtering aggregated data 100

4.4 Sorting 100
Sorting with associations 101

4.5 Joining data 102
4.6 Querying with inheritance 105
4.7 Using functions 107

Canonical functions 108 ■ Database functions 109

4.8 Executing handmade queries 110
Working with parameters 111

4.9 Fetching 113
Eager loading 114 ■ Lazy loading 115 ■ Manual deferred
loading 116 ■ Choosing a loading approach 118

4.10 Summary 118

5 Domain model mapping 119
5.1 The Entity Data Model 120

The Entity Data Model and Visual Studio designer 120

5.2 Creating consumable entities 123
Writing the entities 124 ■ Describing entities in the conceptual
schema 127 ■ Describing the database in the storage schema 130
Creating the mapping file 133

5.3 Defining relationships in the model 136
One-to-one relationships 136 ■ One-to-many relationships 140
Many-to-many relationships 142 ■ Some tips about
relationships 143

5.4 Mapping inheritance 144
Table per hierarchy inheritance 144 ■ Table per type

inheritance 147

CONTENTSx

5.5 Extending the EDM with custom annotations 149
Customizing the EDM 149

5.6 Summary 150

6 Understanding the entity lifecycle 151
6.1 The entity lifecycle 152

Understanding entity state 152 ■ How entity state affects the
database 153 ■ State changes in the entity lifecycle 153

6.2 Managing entity state 155
The AddObject method 155 ■ The Attach method 157
The ApplyCurrentValues and ApplyOriginalValues methods 158
The DeleteObject method 159 ■ The AcceptAllChanges
method 160 ■ The ChangeState and ChangeObjectState
methods 161 ■ The Detach method 161

6.3 Managing change tracking with ObjectStateManager 162
The ObjectStateEntry class 163 ■ Retrieving entries 164
Modifying entity state from the entry 166 ■ Understanding object
tracking 167 ■ Understanding relationship tracking 170
Change tracking and MergeOption 174

6.4 Summary 175

7 Persisting objects into the database 176
7.1 Persisting entities with SaveChanges 177

Detecting dirty entities 177 ■ Starting database
transactions 178 ■ SQL code generation and execution 178
Database transaction commit or rollback 179 ■ Committing
entities 179 ■ Overriding SaveChanges 180

7.2 Persisting changed entities into the database 180
Persisting an entity as a new row 180 ■ Persisting modifications
made to an existing entity 182 ■ Persisting entity deletion 187

7.3 Persisting entities graphs 187
Persisting a graph of added entities 188 ■ Persisting modifications
made to a graph 192 ■ Persisting deletions made to a graph 196
Persisting many-to-many relationships 199

7.4 A few tricks about persistence 199
Handling persistence exceptions 199 ■ Executing custom SQL
commands 200
7.5 Summary 202

CONTENTS xi

8 Handling concurrency and transactions 203
8.1 Understanding the concurrency problem 204

The concurrent updates scenario 204 ■ A first solution: pessimistic
concurrency control 205 ■ A better solution: optimistic concurrency
control 206 ■ The halfway solution: pessimistic/optimistic
concurrency control 207

8.2 Handling concurrency in Entity Framework 208
Enabling optimistic concurrency checking 208 ■ Optimistic
concurrency in action 209 ■ Catching concurrency
exceptions 213 ■ Managing concurrency exceptions 214

8.3 Managing transactions 220
The transactional ObjectContext 222 ■ Transactions and
queries 223

8.4 Summary 224

PART 3 MASTERING ENTITY FRAMEWORK......................225

9 An alternative way of querying: Entity SQL 227
9.1 Query basics 228
9.2 Filtering data 230

Working with associations 230 ■ Paging results 232

9.3 Projecting results 232
Handling projection results 233 ■ Projecting with associations 235

9.4 Grouping data 237
9.5 Sorting data 239

Sorting data based on associations 239

9.6 Joining data 240
9.7 Querying for inheritance 240
9.8 Using query-builder methods 241

Chaining methods 242 ■ Query-builder methods vs. LINQ to
Entities methods 243 ■ Using parameters to prevent injection 244

9.9 Working with the Entity Client data provider 246
Connecting with EntityConnection 247 ■ Executing queries
with EntityCommand 248 ■ Processing query results with
EntityDataReader 248 ■ Going beyond querying with Entity
Client 250
9.10 Summary 251

CONTENTSxii

10 Working with stored procedures 253
10.1 Mapping stored procedures 254

Importing a stored procedure using the designer 254
Importing stored procedures manually 256

10.2 Returning data with stored procedures 258
Stored procedures whose results match an entity 258 ■ Stored
procedures whose results don’t match an entity 261 ■ Stored
procedures that return scalar values 266 ■ Stored procedures
that return an inheritance hierarchy 268 ■ Stored procedures
with output parameters 271

10.3 Embedding functions in the storage model 274
10.4 Updating data with stored procedures 275

Using stored procedures to persist an entity 276 ■ Using stored
procedures to update an entity with concurrency 279 ■ Persisting
an entity that’s in an inheritance hierarchy 280 ■ Upgrading and
downgrading an entity that’s in an inheritance hierarchy 282
Executing stored procedures not connected to an entity 282

10.5 Summary 283

11 Working with functions and views 284
11.1 Views in the storage model: defining queries 285

Creating a defining query 285 ■ Mapping stored procedures to
classes with complex properties 287

11.2 User-defined functions and scalar-valued functions 288
Scalar-valued functions 288 ■ User-defined functions 290
User-defined functions and collection results 294

11.3 Summary 295

12 Exploring EDM metadata 296
12.1 Metadata basics 297

Accessing metadata 297 ■ How metadata is internally organized 300
Understanding when metadata becomes available 301

12.2 Retrieving metadata 301
Understanding the metadata object model 302 ■ Extracting
metadata from the EDM 303

12.3 Building a metadata explorer 306
Populating entities and complex types 306 ■ Populating
functions 312 ■ Populating containers 313 ■ Populating

storage nodes 315

CONTENTS xiii

12.4 Writing generic code with metadata 316
Adding or attaching an object based on custom annotations 317
Building a generic GetById method 319

12.5 Summary 321

13 Customizing code and the designer 322
13.1 How Visual Studio generates classes 323

Understanding template tags 324 ■ Understanding
directives 325 ■ Writing code 326

13.2 Customizing class generation 328
Understanding the available POCO template 328 ■ Generating
user-defined and scalar-valued functions 329 ■ Generating data-
annotation attributes 333 ■ Extending classes through partial
classes 335

13.3 How Visual Studio generates database DDL 336
Choosing the workflow 337 ■ Generating SSDL, MSL, and
DDL 338

13.4 Customizing DDL generation 339
Understanding the conceptual-to-storage template 340
Understanding the conceptual-to-mapping template 342
Understanding the storage-to-database script template 343

13.5 Creating designer extensions 344
How the property-extension mechanism works 344 ■ Setting up the
project containing the extension 345 ■ Creating the property
class 346 ■ Creating the factory class 348 ■ Creating the
manifest extension file 351 ■ Installing, debugging, and
uninstalling the extension 352

13.6 Summary 353

PART 4 APPLIED ENTITY FRAMEWORK...........................355

14 Designing the application around Entity Framework 357
14.1 The application design process 358
14.2 A typical three-layer architecture 359

Filling the product list 359 ■ Calculating order totals and saving
them to the database 361 ■ Dealing with higher levels of
complexity 363

CONTENTSxiv

14.3 Principles of domain-driven design 363
Entities 364 ■ Value objects 365 ■ Handling associations
correctly: domain roots and aggregates 367 ■ Refining the
model 368

14.4 Retrieving references to a domain’s entities 371
Repositories at a glance 371 ■ Implementing a repository 372
Getting a reference to a brand new entity 376

14.5 Summary 377

15 Entity Framework and ASP.NET 378
15.1 EntityDataSource, a new approach to data binding 379

A practical guide to data source controls 379
The EntityDataSource control in depth 380

15.2 Using Dynamic Data controls with Entity Framework 384
Registering the model 384 ■ Working with data
annotations 386

15.3 The ObjectContext lifecycle in ASP.NET 388
The Context-per-Request pattern 389 ■ Wrapping the
context 390 ■ A module to handle the lifecycle 392
Using the repository in a page 393

15.4 Common scenarios involving ASP.NET and
Entity Framework 393

15.5 Summary 395

16 Entity Framework and n-tier development 396
16.1 n-Tier problems and solutions 397

Tracking changes made on the client 397 ■ Choosing data to be
exchanged between server and client 398 ■ The serialization
problem 399

16.2 Developing a service using entities as contracts 400
Persisting a complex graph 403 ■ Optimizing data exchanges
between client and server 404 ■ Dealing with serialization in
WCF 405

16.3 Developing a service using DTOs 409
Persisting a complex graph 411

16.4 Developing a service using STEs 413
Enabling STEs 414 ■ Inside an STE 415 ■ Inside the
context 417 ■ Using STEs 417 ■ STE pros and cons 421
16.5 Summary 422

CONTENTS xv

17 Entity Framework and Windows applications 423
17.1 An example application 424
17.2 Designing model classes for binding 425

Implementing INotifyPropertyChanged 425 ■ Implementing
IEditableObject 426 ■ Implementing IDataErrorInfo 429
Using a template to generate the binding code 431

17.3 Binding in Windows Forms applications 432
Showing orders 433 ■ Showing data for the selected
order 434 ■ Showing details of the selected order 436
Showing selected detail information 437 ■ Adding code to
persist modifications 438 ■ Taking advantage of binding
interfaces 440

17.4 Binding in WPF applications 441
Showing orders 441 ■ Showing data for the selected
order 442 ■ Showing selected order details 443 ■ Showing
selected detail information 443 ■ Adding code to persist
modifications 445

17.5 Summary 446

18 Testing Entity Framework 447
18.1 Unit tests at a glance 448
18.2 Writing a test suite in Visual Studio 2010 451

Testing a simple method 451 ■ Advanced features of Microsoft’s
Unit Testing Framework 453

18.3 Isolating dependencies 455
Refactoring for testability 456 ■ Using a mocking framework to
fake dependencies 458

18.4 Unit-testing the data access layer 461
A test infrastructure for a repository 462 ■ Testing LINQ to
Entities queries 466

18.5 Testing the persistence and retrieval of an entity 470
18.6 Summary 473

19 Keeping an eye on performance 474
19.1 Testing configuration and environment 475

The performance test visualizer 476 ■ Building the timer 476

19.2 Database-writing comparison 479

CONTENTSxvi

19.3 Query comparisons in the default environment 481
19.4 Optimizing performance 484

Pregenerating views 484 ■ Compiling LINQ to Entities
queries 487 ■ Enabling plan caching for Entity SQL 490
Disabling tracking when it’s not needed 491 ■ Optimizing stored
procedures 491

19.5 Summary 492

appendix A Understanding LINQ 494
appendix B Entity Framework tips and tricks 512

index 532

foreword

I spend a lot of my time here at Microsoft thinking about complexity—and asking
myself lots of questions. My guess is that you do the same.

 When we design code, we ask ourselves questions such as these: Can I make this
code more readable? Can I write this loop with fewer lines? Can I factor out behavior
into a separate class? Can I architect this system so that it is more cohesive?

 When we design user interfaces, we ask similar questions: Are we asking the user to
make too many decisions? Did we lay out this UI in the clearest possible way? Can we
make error states clearer and easier to avoid?

 When we design systems, we ask other questions: How many concepts must the
user learn? Do those concepts map to things the user knows and cares about? Does
everything hang together in a clear, sensible, consistent way?

 I think about these things a lot. But first I’d like to answer another question that I
often get asked: Just how complicated is the Entity Framework? The answer is, that it
depends on what you want to do with it.

 To see how simple the Entity Framework is, let’s spend five minutes making it jump
through a simple set of hoops. You’ll need Visual Studio 2010 (the Express editions
will work) and SQL Server (again, the Express editions will work just fine). In SQL
Server, create a database called “EntityFrameworkIsSimple.”

1 Launch Visual Studio 2010.
2 From the View menu, select Server Explorer.
3 In Server Explorer, add a new connection to your EntityFrameworkIsSimple
xvii

database.

FOREWORDxviii

4 Create a new Console Application project, and call it EntityFrameworkIsSimple.
5 Right-click the project and select Add > New Item. In the Add New Item dialog

box, select ADO.NET Entity Data Model.
6 Click Add.
7 In the Entity Data Model Wizard that comes up, select Empty Model and click

Finish.
8 The entity designer will appear. Right-click in it and select Add > Entity.
9 In the Add Entity dialog box, set the entity name to Person. This will automati-

cally make the entity set People. (The set is the name of the collection to which
you’ll add new instances of the Person class.)

10 Click OK.
11 A new entity will appear. Right-click on the Properties bar inside of it and select

Add > Scalar Property. (Or just click on the Insert key.)
12 Rename the new property to FirstName.
13 Do this again, creating a new property called LastName.
14 Add another entity and call it Book.
15 To this new entity, add a property called Title.
16 Right-click the “Person” text in the Person entity and select Add > Association.
17 In the Add Association dialog box, change the Multiplicity on the Person end to

* (Many), and change the Navigation Property value at right, from Person to
Authors.

18 Click OK.
19 At this point, your model should look like this:

20 Now, right-click on an empty area of the designer and select Generate Database
from Model.

21 In the Generate Database Wizard that comes up, provide a connection to
your database. Because we’ve added a connection to the database at the
beginning of this walkthrough, it should show up in the drop-down list of
available connections.

22 Click Next.
23 The DDL for a database to hold your model shows up. Click Finish.

FOREWORD xix

24 In the T-SQL editor that comes up, right-click and select Execute SQL. Provide
your local database information when asked to connect.

That’s it! We’ve got a model. We’ve got code. We’ve got a database. We’ve even got a
connection string in App.Config that the designer creates and maintains for you.

 Let’s take this model for a test drive. Let’s name the model:

1 In the designer, right-click in an empty area of the canvas and select Properties.
2 In the Properties window, find the property called Entity Container Name and

change its value to SimpleModel.
3 In Program.cs, enter the following code into the body of the Main function:

//Create and write our sample data
using (var context = new SimpleModel()) {
 var person1 = new Person() { FirstName = "Stefano", LastName="Mostarda" };
 var person2 = new Person() { FirstName = "Marco", LastName="De Sanctis" };
 var person3 = new Person() { FirstName = "Daniele", LastName="Bochicchio" };
 var book = new Book() { Title = "Microsoft Entity Framework In Action"};
 book.Authors.Add(person1);
 book.Authors.Add(person2);
 book.Authors.Add(person3);
 context.People.AddObject(person1);
 context.People.AddObject(person2);
 context.People.AddObject(person3);
 context.Books.AddObject(book);
 context.SaveChanges();
}
//Query our sample data
using (var context = new SimpleModel()) {
 var book = context.Books.Include("Authors").First();
 Console.Out.WriteLine("The authors '{0}' are:", book.Title);
 foreach(Person author in book.Authors) {
 Console.Out.WriteLine(" - {0} {1}", author.FirstName, author.LastName);
 }
}
Console.Read();

4 Compile and run this code. You should see the following output:

As you can see, we’ve created a system that issues queries and updates three different
tables. And not a single join statement in sight!

 Of course, in the real world, we have many other concerns: How do we bind these
types to UI elements? How do we send and update them across distributed applica-
tion tiers? How do we handle concurrency, dynamic querying, and stored proce-
dures? While the Entity Framework may be simple to get started with, the real world
is not simple, and the Entity Framework has a host of features for dealing with real-

world situations.

FOREWORDxx

 Including an example like this may not be standard for a foreword to a book, but I
did so to show how easy getting started with Entity Framework is and also to show you
where this book comes in. Entity Framework 4 in Action will take you from handling
transactions to understanding how to deal with performance problems and using
ESQL to writing dynamic queries. And it will answer all of your questions along the
way—even ones you did not know you had!

 I look forward to seeing what you will do with the Entity Framework and to hearing
what you want us to work on next. The authors are as excited as I am to show you what
is in store in the future!

 NOAM BEN-AMI

 PROGRAM MANAGER
ENTITY FRAMEWORK TEAM, MICROSOFT

preface

Yatta, we did it! We wrote a book about Entity Framework! It’s not our first book, but
it’s the first one written in English and distributed worldwide. It was a great challenge,
but having the opportunity to spread the word about Entity Framework made it worth
the effort. Entity Framework is a great tool that speeds up the development of data
access code and that can save you days and days of coding. We know coding is our job,
but wouldn’t you prefer to be more productive while writing less and better code?

 Entity Framework is a great O/RM tool that’s integrated into the .NET Framework,
meaning not only is it free, it’s also maintained and improved in each .NET Frame-
work release. The result is that it’s a great platform today, and tomorrow it will be an
outstanding one that will likely rule over all other O/RM platforms.

 When we started planning this book, we had a clear idea in mind: we didn’t want to
create a reference book; we wanted to create a practical one. We wanted you to read
about real-world problems and learn real-world solutions. That’s why we developed an
example and improved on it throughout the book, avoiding common pitfalls and solv-
ing problems that you’d face on the job.

 This is a book that we felt was missing among those that are available. You won’t find
a detailed description of all classes and properties here, but you’ll learn the best way to
use them and how to combine features to get the most out of Entity Framework. We’d
love to hear what you think about the book—you can reach us online at the various
addresses listed in the “About this book” section on page xxiv.

 It took a long time to write this book, but now that it’s in your hands we can stop
spending endless nights in front of our monitors and finally sit down and spend more
time with our families.

 Now it’s your turn. Enjoy the read, get your hands dirty, and have fun.
xxi

acknowledgments

We can’t begin to count all the individuals who contributed to this book, each one
helping to improve the final product. All of them deserve a warm thank-you. While we
can’t name everyone here, we would like to offer special thanks to the following indi-
viduals who were particularly helpful:

 Sebastian Stirling, our developmental editor at Manning—Sebastian worked with
us from the beginning and masterfully transformed a bunch of words and images into
an appealing book. Thank you.

 Elisa Flasko, Program Manager of the Entity Framework team at Microsoft—Elisa
provided valuable information and routed our questions to the right person when she
didn’t have the answers. Without her, this book wouldn’t be so thorough. Thank you.

 Noam Ben-Ami, Program Manager of the Entity Framework team at Microsoft—
Noam pointed us to the right solutions to many problems, and was especially helpful
when we were writing chapter 13. He also wrote the foreword to our book. Thank you.

 Alessandro Gallo, an ASP Insider, consultant, and lead author of Manning’s
ASP.NET Ajax in Action—Alessandro didn’t contribute to the content of this book, but
he was the spark that started everything. Thank you.

Many individuals at Manning worked hard to make this book possible. First of all,
special thanks to Michael Stephens and Marjan Bace for believing in us. Others who
contributed are Karen Tegtmeyer, Mary Piergies, Maureen Spencer, Andy Carroll,
Dottie Marsico, Tiffany Taylor, Susan Harkins, Janet Vail, and Cynthia Kane.

Our reviewers deserve special mention—their suggestions were invaluable. We
thank Jonas Bandi, David Barkol, Timothy Binkley-Jones, Margriet Bruggeman,
Nikander Bruggeman, Gustavo Cavalcanti, Dave Corun, Freedom Dumlao, Rob
xxii

Eisenberg, Marc Gravell, Berndt Hamboeck, Jason Jung, Lester Lobo, Darren Neimke,

http://twitter.com/crad77

ACKNOWLEDGMENTS xxiii

Braj Panda, Christian Siegers, Andrew Seimer, Alex Thissen, Dennis van der Stelt, and
Frank Wang. We’d also like to thank Deepak Vohra, our technical proofreader, for the
outstanding job he did reviewing the final manuscript during production.

 Last, but not least, thank you, dear reader, for your trust in our book. We hope that
it will help you in your everyday job and will encourage you to fall in love with the
world of O/RMs.

 In addition to the people we’ve already mentioned, there are others who are
important in our lives. Even if they didn’t contribute to the book, they contributed to
keeping us on track during the writing process. We acknowledge them below.

STEFANO MOSTARDA

I’d like to thank my wife Sara for her support and patience, as well as my family (yes,
the book is finally done!). Special thanks to my closest friends (in alphabetical order):
Federico, Gabriele, Gianni, and Riccardo. Of course, I can’t help mentioning Filippo,
who already bought a copy of the book. And a big thank-you to William and Annalisa
for their friendship and invaluable support.

 My last words are for Marco and Daniele: thank you, guys!

MARCO DE SANCTIS

My thanks to Stefano and Daniele. It was a privilege to work with such smart and
funny guys. And thanks to the whole ASPItalia.com team. I’m proud to be a part of it.

 Special thanks to my family, and to Barbara, for their support and their patience.
You have all my love.

DANIELE BOCHICCHIO

I would like to thank my wife Noemi for her support and patience, and for giving me
our beautiful sons, Alessio and Matteo. A big thank-you to my parents for letting me
play with computers when I was a kid, and to my family for supporting me.

 A special thank-you to Stefano for the opportunity to help with this book. And
thanks to both Stefano and Marco for sharing their passion for Entity Framework. You
guys rock!

about this book

Entity Framework is the Microsoft-recommended tool to read and persist data inside a
relational database. With this software, Microsoft has entered the O/RM market with a
reliable product that significantly eases data access development.

 This book will take you from the apprentice to the master level in the Entity
Framework technology. You can think of this book as a guided tour through Entity
Framework features and best practices. When you have finished reading Entity Frame-
work 4 in Action, you’ll be able to confidently design, develop, and deliver applications
that rely on Entity Framework to persist business data.

WHO SHOULD READ THIS BOOK?

This book was written for all Entity Framework developers, whether you develop small
home applications or the largest enterprise systems. Everything from home DVD
library applications to e-commerce solutions that interact with many heterogeneous
systems and store lots of information can benefit from Entity Framework, and this
book will show you how.

ROADMAP

This book will walk you through the creation of an application from scratch, and will
show you how to keep improving it with various Entity Framework features. This Entity
Framework tour will cover all of Framework’s features over the course of nineteen
chapters, grouped in four parts.

 In part 1 we introduce the basics of the O/RM pattern and show you the funda-
mentals of Entity Framework as we create the foundation for an application.

 Chapter 1 provides a high-level overview of the O/RM pattern and of the Entity
Framework components. By the end of this chapter, you’ll understand why O/RM
xxiv

tools are so useful and how Entity Framework accomplishes its tasks.

ABOUT THIS BOOK xxv

 Chapter 2 shows how you can create an application from scratch and how to persist
objects in the database. First, you’ll learn two ways of designing an application using
Entity Framework. Then, after the application is created, you’ll learn how to read,
manipulate, and persist data. By the end of this chapter, you’ll have a clear under-
standing of the advantages of adopting Entity Framework.

 In part 2 of the book, we discuss the main building blocks of Entity Framework in
detail: mapping, querying, and persistence.

 Chapter 3 covers the basics of querying. Here you’ll learn about the main compo-
nent that enables Entity Framework to work with objects. You’ll also discover how
Entity Framework enables you to write queries against your model that will success-
fully hit the database.

 Chapter 4 focuses on querying with LINQ to Entities. In this chapter, you’ll learn
how to filter, group, project, and join data using the main query language of Entity
Framework. By the end of this chapter, you’ll be able to perform any type of query.

 Chapter 5 discusses mapping between entities in the model and the database.
Here you’ll learn how to accomplish this visually with the designer, but you’ll also
learn how to manually modify the mapping file. By the end of this chapter, you’ll have
a full knowledge of the mapping mechanism in Entity Framework.

 Chapter 6 tours the entity lifecycle. You’ll learn how Entity Framework treats enti-
ties, what state an entity can be in, how to modify the state, and how state affects an
entity’s persistence. By the end of the chapter, you’ll be able to write code that pre-
pares your objects for persistence into the database.

 Chapter 7 discusses persisting objects into the database. In chapter 6 you learned
how to prepare entities for persistence; here you’ll learn how to actually save them.
This subject has many intricacies and pitfalls, especially where related entities are
involved. This chapter focuses on these potential problems so that you can under-
stand and avoid them. By the end of the chapter, you’ll be able to persist any entity in
any way you need.

 Chapter 8 covers Entity Framework’s concurrency and transaction features. In the
first part of the chapter, you’ll be introduced to the concept of concurrency and what
problems it solves when data is saved to the database. Then you’ll learn how Entity
Framework lets you easily manage concurrency. Finally, you’ll learn how Entity Frame-
work manages transactions to persist multiple entities, and how you can extend a
transaction’s lifetime to execute custom commands.

 Part 3 of the book will show you how to take advantage of Entity Framework’s most
advanced features.

 Chapter 9 introduces Entity SQL. Entity SQL is Entity Framework’s other query-
ing language, and it’s still the most powerful (although less appealing than LINQ to
Entities).

 In this chapter, we’ll take the LINQ to Entities examples from chapter 4 and rewrite
them in Entity SQL. You can see them side by side and choose the approach that is eas-
ier for you. By the end of this chapter, you’ll have a full knowledge of all the querying

techniques Entity Framework offers.

ABOUT THIS BOOKxxvi

 Chapter 10 covers stored procedures. Here you’ll learn how to have Entity Frame-
work call stored procedures to query and update entities instead of having it generate
SQL for you. By the end of this chapter, you’ll be able to create your own set of stored
procedures and have Entity Framework invoke them, so that your DBA is happy.

 Chapter 11 discusses views and functions embedded in mapping. You’ll see how to
create internal views that can be queried easily, and how to create functions that can
be reused when querying with both LINQ to Entities and Entity SQL. By the end of this
chapter, you’ll be able to write queries that are easy to maintain and reusable.

 Chapter 12 discusses how to retrieve mapping information. Chapter 5 explains
how to map your model classes to database tables and views; in this chapter you’ll
learn how to retrieve this mapping information. You’ll also see some real-world exam-
ples that will demonstrate why this technique is valuable. After finishing this chapter,
you’ll be able to write powerful generic code that takes data from mapping files.

 Chapter 13 covers code generation. Here you’ll discover how Entity Framework is
integrated with Visual Studio, and how this integration lets you create code and even
generate database scripts starting with mapping information. You’ll also discover how
to customize the Entity Framework designer inside Visual Studio. After you’ve fin-
ished this chapter, you’ll be able to fully customize the designer, adding behaviors that
simplify development.

 In part 4 of the book, we’ll show you how to best use Entity Framework with differ-
ent types of applications: Windows, web, and web services applications.

 Chapter 14 discusses application design. You’ll learn about the classic three-layer
pattern and then go on to the Domain Model pattern. Finally, you’ll read about the
famous Repository pattern, and learn why it’s a great choice for many applications. By
the end of this chapter, you’ll be able to create a well-designed and layered application.

 Chapter 15 explains how to integrate Entity Framework into ASP.NET applications.
In this chapter, you’ll read about ASP.NET controls and about best practices for han-
dling objects. This will enable you to create web applications using the correct patterns.

 Chapter 16 discusses how to create web service applications. Here you’ll learn
about specific features dedicated to the web service environment and how and when
to use them instead of resorting to other techniques. By the end of this chapter, you’ll
have a strong understanding of web services and Entity Framework integration.

 Chapter 17 explains how to integrate Entity Framework into Windows applica-
tions. Here you’ll discover how to let your model classes implement a specific inter-
face so that they are integrated with the data-binding capabilities of Windows Form
and WPF applications. By the end of this chapter, you’ll be able to face everyday prob-
lems involving these types of applications.

 Chapter 18 covers testing. Here you’ll learn how to test the code that accesses the
database and your repositories, and how to create batteries of tests to reveal if your
modifications have broken something.

 Chapter 19 discusses performance. You’ll learn how Entity Framework perfor-
mance compares to performance in the classic ADO.NET approach. You’ll also learn

ABOUT THIS BOOK xxvii

some tricks and tips to improve performance in various situations. By the end of the
chapter, you’ll be able to boost the performance of your data access code to the edge.

 Appendix A introduces LINQ. LINQ to Entities is the most popular querying lan-
guage for Entity Framework. It’s a dialect of LINQ, so to better understand it you
should have a good knowledge of LINQ. That’s what this appendix offers.

 Appendix B presents some good Entity Framework tips. You won’t learn about new
features here, but you’ll learn how to merge existing features to produce powerful
behaviors. This is your ultimate resource in understanding how much power Entity
Framework hands you.

CODE CONVENTIONS

All source code in listings or set off from the text is in a fixed-width font like this to
separate it from ordinary text. The .NET code is provided in both C# and Visual Basic
so that you should be comfortable with it, whatever your development language. For
longer lines of code that won’t fit on the page, a code-continuation character (➥) is
used to indicate lines that are broken on the page but shouldn’t be broken in the
code. Code annotations accompany many of the listings, highlighting important con-
cepts. In some cases, numbered bullets link to explanations that follow the listing.

SOURCE CODE DOWNLOADS

All the examples in this book can be downloaded from http://www.entityframe
workinaction.com/download.aspx or from the publisher’s website at www.manning
.com/EntityFramework4inAction. The code comes in both VB and C# versions.

 The code comes with a Visual Studio 2010 solution file so you only need Visual Stu-
dio 2010 to run the examples. We did not try to open the solution file with Visual Studio
Express 2010 (that is the free version), but it’s likely to work.

AUTHOR ONLINE

The purchase of Entity Framework 4 in Action includes free access to a private forum run
by Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the authors and other users. You can access and
subscribe to the forum at http://www.manning.com/EntityFramework4inAction. This
page provides information on how to get on the forum once you’re registered, what
kind of help is available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It isn’t a commitment to any specific amount of participation on the part of the
authors, whose contributions to the book’s forum remain voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!
The Author Online forum and the archives of previous discussions will be accessible
from the publisher’s website as long as the book is in print.

http://www.entityframeworkinaction.com/download.aspx
http://www.entityframeworkinaction.com/download.aspx
www.manning.com/EntityFramework4inAction
www.manning.com/EntityFramework4inAction
http://www.manning.com/EntityFramework4inAction

ABOUT THIS BOOKxxviii

 In addition to the Author Online forum available on Manning’s website, you may
also contact us about this book, or anything else, through one of the following avenues:

Stefano’s blog—http://blogs.5dlabs.it/author/mostarda.aspx
Daniele’s blog—http://blogs.5dlabs.it/author/bochicchio.aspx
Marco’s blog—http://blogs.aspitalia.com/cradle

All comments sent to these blogs are moderated. We post most of the comments, but
if you include your email address or phone number, we won’t post the comment out
of respect for your privacy.

ABOUT THE AUTHORS

STEFANO MOSTARDA is a Microsoft MVP in the Data Platform category. He’s a software
architect mainly focused on web applications, and is a cofounder of 5DLabs.it, a con-
sulting agency specializing in ASP.NET, Silverlight, Windows Phone 7, and the .NET
Framework. Stefano is a professional speaker at many Italian conferences on Micro-
soft technologies and he’s a well-known author. He has written many books for the
Italian market and is a coauthor of Manning’s ASP.NET 4.0 in Practice. He’s one of the
leaders of the ASPItalia.com Network and a content manager of the LINQNItalia.com
website dedicated to LINQ and Entity Framework. You can read his technical deliri-
ums both on his blog and on Twitter at http://twitter.com/sm15455/.

MARCO DE SANCTIS has been designing and developing enterprise applications in dis-
tributed scenarios for the last seven years. He started developing with ASP.NET as soon
as it came out, and since then has become an application architect. Through the years
he specialized in building distributed services, widening his knowledge to encompass
technologies like Workflow Foundation, Windows Communication Foundation, LINQ,
and ADO.NET Entity Framework. Today he works as a senior software engineer for
major Italian companies in the IT market. In his spare time, he’s a content manager at
ASPItalia.com and has recently been named a Microsoft Most Valuable Professional in
ASP.NET. You can read his thoughts on twitter at http://twitter.com/crad77.

DANIELE BOCHICCHIO is a cofounder of 5DLabs.it, a consulting agency specializing in
ASP.NET, Silverlight, Windows Phone 7, and the .NET Framework. He has worked on
a lot of cool projects with many different technologies. Daniele is a well-known profes-
sional speaker and author, and you can find him at developer-focused events world-
wide. He has written several books, both in Italian and English, including ASP.NET 4.0
in Practice, published by Manning. He is also the network manager of the ASPIta-
lia.com Network, the largest Italian .NET Framework community. Daniele’s personal
website is located at http://www.bochicchio.com/ and he shares his thoughts in 140
chars or less at http://twitter.com/dbochicchio/.

http://blogs.5dlabs.it/author/mostarda.aspx
http://blogs.5dlabs.it/author/bochicchio.aspx
http://blogs.aspitalia.com/cradle
http://twitter.com/sm15455/
http://twitter.com/crad77
http://www.bochicchio.com/
http://twitter.com/dbochicchio/

about the cover illustration

The figure on the cover of Entity Framework 4.0 in Action is captioned “Limonaro,” or a
vendor of lemons. The illustration is taken from a collection of Italian Fine Arts, Prints,
and Photographs that includes hand-colored drawings of Italian regional dress cos-
tumes from the nineteenth century. Wearing a white linen shirt, blue breeches, and a
wide-brimmed straw hat, and carrying a basket of lemons in one hand and a jug of
lemonade in the other, the itinerant limonaro was a welcome figure in the streets of
Italian towns and villages, especially in the hot summer weather.

 The diversity of the drawings in the collection speaks vividly of the uniqueness and
individuality of the world’s towns and provinces just 200 years ago. Isolated from each
other, people spoke different dialects and languages. In the streets or in the country-
side, it was easy to identify where they lived and what their trade or station in life was
just by what they were wearing.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional life of two cen-
turies ago brought back to life by the pictures from collections such as this one.
xxix

Part 1

Redefining your
data-access strategy

Welcome to Entity Framework 4 in Action. Entity Framework is the O/RM
tool that Microsoft introduced with .NET Framework 3.5 Service Pack 1 and has
now updated to version 4.0. This book will enable you to use Entity Framework
4.0 to quickly build data-centric applications in a robust and model-driven way. If
you’re an Entity Framework novice, you’ll learn how to create an application
from scratch and build it correctly. If you’re an experienced Entity Framework
developer, you’ll find lots of in-depth coverage that will improve your knowledge
of this powerful tool.

 The book is divided into four parts, and part 1 dives right into the fundamen-
tals of Entity Framework. In chapter 1, you’ll discover what an O/RM tool is, and
when and why it should be used. You’ll then learn about the modules that make
up the Entity Framework architecture and how they interact with each other and
with you.

 Chapter 2 will show you how to build an application from scratch using Entity
Framework. Here you’ll be introduced to the example application we’ll use
throughout the book, and you’ll learn how to create its model and automatically
generate code. In the last section, you’ll get an overview of how to read data
from and persist data to a database.

Data access reloaded:
Entity Framework
When you design an application, you have to decide how to access and represent
data. This decision is likely the most important one you’ll make in terms of applica-
tion performance and ease of development and maintainability. In every project
we’ve worked on, the persistence mechanism was a relational database. Despite
some attempts to introduce object databases, the relational database is still, and will
be for many years, the main persistence mechanism.

 Nowadays, relational databases offer all the features you need to persist and
retrieve data. You have tables to maintain data, views to logically organize them so
that they’re easier to consume, stored procedures to abstract the application from
the database structure and improve performance, foreign keys to relate records in

This chapter covers
 DataSet and classic ADO.NET approach

 Object model approach

 Object/relational mismatch

 Entity Framework as a solution
3

different tables, security checks to avoid unauthorized access to sensitive data, the

4 CHAPTER 1 Data access reloaded: Entity Framework

ability to transparently encrypt and decrypt data, and so on. There’s a lot more under
the surface, but these features are ones most useful to developers.

 When you must store data persistently, relational databases are your best option. On
the other hand, when you must temporarily represent data in an application, objects
are the best way to go. Features like inheritance, encapsulation, and method overrid-
ing allow a better coding style that simplifies development compared with the legacy
DataSet approach.

 Before we delve into the details of Entity Framework, we’ll take the first three sec-
tions of this chapter to discuss how moving from the DataSet approach to the object-
based approach eases development, and how this different way of working leads to the
adoption of an object/relational mapping (O/RM) tool like Entity Framework.

 When you opt for using objects, keep in mind that there are differences between
the relational and object-oriented paradigms, and the role of Entity Framework is to
deal with them. It lets the developer focus on the business problems and ignore, to a
certain extent, the persistence side. Such object/relational differences are hard to
overcome. In section 1.4, you’ll discover that there is a lot of work involved in accom-
modating them. Then, the last sections of the chapter will show how Entity Frame-
work comes to our aid in solving the mismatch between the paradigms and offering a
convenient way of accessing data.

 By the end of this chapter, you’ll have a good understanding of what an O/RM tool
is, what it’s used for, and why you should always think about using one when creating
an application that works with a database.

1.1 Getting started with data access
Data in tables is stored as a list of rows, and every row is made of columns. This effi-
cient tabular format has driven how developers represent data in applications for
many years. Classic ASP and VB6 developers use recordsets to retrieve data from data-
bases—the recordset is a generic container that organizes the data retrieved in the same
way it’s physically stored: in rows and columns. When .NET made its appearance,
developers had a brand new object to maintain in-memory data: the dataset. Although
this control is completely different from the recordset we used before the .NET age, it
has similar purposes and, more important, has data organized in the same manner: in
rows and columns.

 Although this representation is efficient in some scenarios, it lacks a lot of features
like type safety, performance, and manageability. We’ll discuss this in more detail
when we talk about datasets in the next section.

 In the Java world, a structure like the dataset has always existed, but its use is now
discouraged except for the simplest applications. In the .NET world, we’re facing the
beginning of this trend too. You may be wondering, “If I don’t use general-purpose
containers, what do I use to represent data?” The answer is easy: objects.

 Objects are superior to datasets in every situation because they don’t suffer from the
limitations that general-purpose structures do. They offer type safety, autocompletion

5Developing applications using database-like structures

in Visual Studio, compile-time checking, better performance, and more. We’ll talk
more about objects in section 1.2.

 The benefits you gain from using objects come at a cost, resulting from the differ-
ences between the object-oriented paradigm and the relational model used by data-
bases. There are three notable differences:

 Relationships—In a tabular structure, you use foreign keys on columns; with
classes, you use references to other classes.

 Equality —In a database, the data always distinguishes one row from another,
whereas in the object world you may have two objects of the same type with the
same data that are still different.

 Inheritance —The use of inheritance is common in object-oriented languages,
but in the database world it isn’t supported.

This just touches the surface of a problem known as the object/relational mismatch,
which will be covered in section 1.4.

 In this big picture, O/RM takes care of object persistence. The O/RM tool sits between
the application code and the database and takes care of retrieving data and transform-
ing it into objects efficiently, tracks objects’ changes, and reflects them to the data-
base. This ensures that you don’t have to write almost 80 percent of the data-access
code (that’s a rough estimate based on our experience).

1.2 Developing applications using database-like structures
Over the last decade, we have been developing applications using VB6, Classic ASP,
Delphi, and .NET, and all of these technologies use external components or objects to
access databases and maintain data internally. Both tasks are similar in each language,
but they’re especially similar for internal data representation: data is organized in
structures built on the concept of rows and columns. The result is that applications
manage data the same way it’s organized in the database.

 Why do different vendors offer developers the same programming model? The
answer is simple: developers are accustomed to tabular representation, and they don’t
need to learn anything else to be productive. Furthermore, these generic structures
can contain any data as long as it can be represented in rows and columns. Potentially,
even data coming from XML files, web services, or rest calls can be organized this way.

 As a result, vendors have developed a subset of objects that can represent any infor-
mation without us having to write a single line of code. These objects are called data
containers.

1.2.1 Using datasets and data readers as data containers

At the beginning of our .NET experience, many of us used datasets and data readers.
With a few lines of code, we had an object that could be bound to any data-driven con-
trol and that, in case of the data reader, provided impressive performance. By using a
data adapter in combination with a dataset, we had a fully featured framework for

reading and updating data. We had never been so productive. Visual Studio played its

6 CHAPTER 1 Data access reloaded: Entity Framework

role, too. Its wizards and tight integration with these objects gave us the feeling that
everything could be created by dragging and dropping and writing a few lines of code.

 Let’s look at an example. Suppose you have a database with Order and Order-
Detail tables (as shown in figure 1.1), and you have to create a simple web page where
all orders are shown.

Figure 1.1 The Order table
has a related OrderDetail
table that contains its details.

 The first step is creating a connection to the database. Then, you need to create an
adapter and finally execute the query, pouring data into a data table that you bind to a
list control. These steps are shown in the following listing.

C#
using (SqlConnection conn = new SqlConnection(connString))
{
 using (SqlDataAdapter da = new SqlDataAdapter("Select * from order",
 conn))
 {
 DataTable dt = new DataTable();
 da.Fill(dt);
 ListView1.DataSource = dt;
 ListView1.DataBind();
 }
}

VB
Using conn As New SqlConnection(connString)
 Using da As New SqlDataAdapter("Select * from order", conn)
 Dim dt As New DataTable()
 da.Fill(dt)
 ListView1.DataSource = dt
 ListView1.DataBind()
 End Using
End Using

By doing a bit of refactoring, you get the connection and the adapter in a single
method call, so the amount of code is further reduced. That’s all you need to do to
display the orders.

 After playing with the prototype, your customer changes the specifications and
wants to see the details under each order in the list. The solution becomes more chal-

Listing 1.1 Displaying a list of orders
lenging, because you can choose different approaches:

7Developing applications using database-like structures

 Retrieve data from the Order table and then query the details for each order. This
approach is by far the easiest to code. By intercepting when an order is bound
to the ListView, you can query its details and show them.

 Retrieve data joining the Order and OrderDetail tables. The result is a Cartesian prod-
uct of the join between the tables, and it contains as many rows as are in the
OrderDetail table. This means the resultset can’t be passed to a control as is,
but must be processed locally first.

 Retrieve all orders and all details in two distinct queries. This is by far the best
approach, because it performs only two queries against the database. You can
bind orders to a control, intercept when each order is bound, and filter the in-
memory details to show only those related to the current order.

Whichever path you choose, there is an important point to consider: you’re bound to
the database structure. Your code is determined by the database structure and the way
you retrieve data; each choice leads to different code, and changing tactics would be
painful.

 Let’s move on. Your customer now needs a page to display data about a single
order so it can be printed. The page must contain labels for the order data and a
ListView for the details. Supposing you retrieve the data in two distinct commands,
the code would look like this.

C#
using (SqlConnection conn = new SqlConnection(connString))
{
 using (SqlCommand cm = new SqlCommand("Select * from order
 ➥ where orderid = 1", conn))
 {
 conn.Open();
 using (SqlDataReader rd = cm.ExecuteReader())
 {
 rd.Read();
 date.Text = ((DateTime)rd["OrderDate"]).ToString();
 shippingAddress.Text = rd["ShippingAddress"].ToString();
 shippingCity.Text = rd["ShippingCity"].ToString();
 }
 using (SqlDataReader rd = cm.ExecuteReader())
 {
 details.DataSource = rd;
 details.DataBind();
 }
 }
}

VB
Using conn As New SqlConnection(connString)
 Using cm As New SqlCommand("Select * from order
➥ where orderid = 1", conn)
 conn.Open()

Listing 1.2 Displaying data for a single order
 Using rd As SqlDataReader = cm.ExecuteReader()

8 CHAPTER 1 Data access reloaded: Entity Framework

 rd.Read()
 [date].Text = DirectCast(rd("OrderDate"), DateTime).ToString()
 shippingAddress.Text = rd("ShippingAddress").ToString()
 shippingCity.Text = rd("ShippingCity").ToString()
 End Using
 Using rd As SqlDataReader = cm.ExecuteReader()
 details.DataSource = rd
 details.DataBind()
 End Using
 End Using
End Using

The way you access data is completely unsafe and generic. On the one hand, you have
great flexibility, because you can easily write generic code to implement functions that
are unaware of the table field names and rely on configuration. On the other hand,
you lose type safety. You identify a field specifying its name using a string; if the name
isn’t correct, you get an exception only at runtime.

 You lose control not only on field names, but even on datatypes. Data readers and
data tables (which are the items that contain data in a dataset) return column values
as Object types (the .NET base type), so you need to cast them to the correct type (or
invoke the ToString method as well). This is an example of the object/relational mis-
match we mentioned before.

 Now that you’ve seen the big picture of the generic data-container world, let’s
investigate its limitations and look at why this approach is gradually being discontin-
ued in enterprise applications.

1.2.2 The strong coupling problem

In the previous example, you were asked to determine the best way to display orders
and details in a grid. What you need is a list of orders, where every order has a list of
details associated with it.

 Data readers and data tables don’t allow you to transparently retrieve data without
affecting the user interface code. This means your application is strongly coupled to
the database structure, and any change to that structure requires your code to do some
heavy lifting. This is likely the most important reason why the use of these objects is dis-
couraged. Even if you have the same data in memory, how it’s retrieved affects how it’s
internally represented. This is clearly a fetching problem, and it’s something that
should be handled in the data-access code, and not in the user interface.

 In many projects we have worked on, the database serves just one application, so
the data is organized so the code can consume it easily. This isn’t always the case.
Sometimes applications are built on top of an existing database, and nothing can be
modified because other applications are using the database. In such situations, you’re
even more coupled to the database and its data organization, which might be
extremely different from how you would expect. For instance, orders might be stored
in one table and shipping addresses in another. The data access code could reduce
the impact, but the fetching problem would remain.

9Developing applications using database-like structures

 And what happens when the name of a column changes? This happens frequently
when an application is under development. The result is that interface code needs to
be adapted to reflect this change; your code is very fragile because a search and
replace is the only way to achieve this goal. You can mitigate the problem by modifying
the SQL and adding an alias to maintain the old name in the resultset, but this causes
more confusion and soon turns into a new problem.

1.2.3 The loose typing problem

To retrieve the value of a column stored in a data reader or a data table, you usually
refer to it using a constant string. Code that uses a data table typically looks something
like this:

C#
object shippingAddress = orders.Rows[0]["ShippingAddress"];

VB
Dim shippingAddress As Object = orders.Rows(0)("ShippingAddress")

The variable shippingAddress is of type System.Object, so it can contain potentially
any type of data. You may know it contains a string value, but to use it like a string, you
have to explicitly perform a casting or conversion operation:

C#
string shippingAddress = (string)orders.Rows[0]["ShippingAddress"];
string shippingAddress = orders.Rows[0]["ShippingAddress"].ToString();

VB
Dim shippingAddress As String = _
 DirectCast(orders.Rows(0)("ShippingAddress"), String)
Dim shippingAddress As String = _
 orders.Rows(0)("ShippingAddress").ToString()

Casting and converting cost, both in terms of performance and memory usage,
because casting from a value type to a reference type and vice versa causes boxing and
unboxing to occur. In some cases, conversion can require the use of the IConvertible
interface, which causes an internal cast.

 Data readers have an advantage over data tables. They offer typed methods to
access fields without needing explicit casts. Such methods accept an integer parame-
ter that stands for the index of the column in the row. Data readers also have a
method that returns the index of a column, given its name, but its use tends to clutter
the code and is subject to typing errors:

C#
string address = rd.GetString(rd.GetOrdinal("ShippingAddress"));
string address = rd.GetString(rd.GetOrdinal("ShipingAdres")); //exception

VB
Dim address As String = _
 rd.GetString(rd.GetOrdinal("ShippingAddress"))
Dim address As String = _

 rd.GetString(rd.GetOrdinal("ShipingAdres")) 'exception

10 CHAPTER 1 Data access reloaded: Entity Framework

The problem resulting from column name changes, discussed in the previous section,
involves even the loss of control at compile time. It’s not desirable to discover at run-
time that a column name has changed or that you have mistyped a column name.
Compilers can’t help avoid such problems because they have no knowledge of what
the name of the column is.

1.2.4 The performance problem

DataSet is likely one of the most complex structures in the .NET class library. It con-
tains one or more DataTable instances, and each of these has a list of DataRow objects
made of a set of DataColumnobjects. A DataTable can have a primary key consisting of
one or more columns and can declare that certain columns have a foreign key rela-
tionship with columns in another DataTable. Columns support versioning, meaning
that if you change the value, both the old and the new value are stored in the column
to perform concurrency checks. To send updates to the database, you have to use a
DbDataAdapter class (or, more precisely, one of its derived classes), which is yet
another object.

 Although these features are often completely useless and are ignored by develop-
ers, DataSet internally creates an empty collection of these objects. This might be a
negligible waste of resources for a standalone application, but in a multiuser environ-
ment with thousands of requests, like a web application, this becomes unacceptable.
It’s useless to optimize database performance, tweaking indexes, modifying SQL, add-
ing hints, and so on, if you waste resources creating structures you don’t need.

 In contrast, DataReader is built for different scenarios. A DataTable downloads all
data read from the database into memory, but often you don’t need all the data in
memory and could instead fetch it record by record from the database. Another situa-
tion is in data updates; you often need to read data but don’t need to update it. In such
cases, some features, like row versioning, are useless. DataReader is the best choice in
such situations, because it retrieves data in a read-only (faster) way. Although it boosts
performance, DataReader can still suffer from the casting and conversion problems of
DataSet, but this loss of time is less than the gain you get from its use.

 All of these problems may seem overwhelming, but many applications out there
benefit from the use of database-like structures. Even more will be developed in the
future using these objects without problems. Nonetheless, in enterprise-class projects,
where the code base is large and you need more control and flexibility, you can lever-
age the power of object-oriented programming and use classes to organize your data.

1.3 Using classes to organize data
We’re living in the object-oriented era. Procedural languages still exist, but they’re
restricted to particular environments. For instance, COBOL is still required for appli-
cations that run on mainframe architectures.

 Using classes is a natural choice for most applications today. Classes are the foun-
dation of object-oriented programming. They easily represent data, perform actions,

11Using classes to organize data

publish events, and so on. From a data organization point of view, classes express data
through methods and properties (which, in the end, are special methods).

 By using classes, you can choose your internal representation of data without wor-
rying about how it’s persisted—you need to know nothing about the storage mecha-
nism. It could be a database, a web service, an XML file, or something else.
Representing data without having any knowledge of the storage mechanism is
referred to as persistence ignorance, and the classes used in this scenario are called
POCOs (plain old CLR objects).

 The use of classes offers several benefits that are particularly important in enter-
prise applications:

 Strong typing —You no longer need to cast or convert every column in a row to
get its value in the correct type (or, at least, you don’t have to do it in the inter-
face code).

 Compile-time checking —Classes expose properties to access data; they don’t use a
generic method or indexer. If you incorrectly enter the name of a property, you
immediately get a compilation error. You no longer need to run the application
to find typos.

 Ease of development—Editors like Visual Studio offer IntelliSense to speed up
development. IntelliSense offers the developer hints about the properties,
events, and methods exposed by a class. But if you use DataSet, editors can’t
help you in any way, because columns are retrieved using strings, which aren’t
subject to IntelliSense.

 Storage-agnostic interface—You don’t have to shape classes to accommodate the
structure of the database, which gives you maximum flexibility. Classes have
their own structure, and although it’s often similar to that of the table they’re
related to, it doesn’t need to be. You no longer have to worry about database
organization and data retrieval, because you code against
classes. Data-retrieval details are delegated to a specific
part of the application, and the interface code always
remains the same.

To get a look at these concepts in practice, let’s refactor the
example from the previous section.

1.3.1 Using classes to represent data

Let’s start from scratch again. The customer wants to display
orders in a grid. The first step is to create an Order class to con-
tain order data, as shown in figure 1.2.

 The Order class has the same structure as the related database
table. The only obvious difference here is that you have .NET
types (String, Int32, DateTime) instead of database types (int,
varchar, date).

Figure 1.2
The Order class
contains data from

the Order table.

12 CHAPTER 1 Data access reloaded: Entity Framework

 The second step is to create a class with a method that reads data from the data-
base and transforms it into objects, as in the following listing. The container class is
often in a separate assembly, known as data layer.

C#
public List<Order> GetOrders()
{
 using (SqlConnection conn = new SqlConnection(connString))
 {
 using (SqlCommand comm = new SqlCommand("select * from orders", conn))
 {
 conn.Open();
 using(SqlDataReader r = comm.ExecuteReader())
 {
 List<Order> orders = new List<Order>();
 while (rd.Read())
 {
 orders.Add(
 new Order
 {
 CustomerCode = (string)rd["CustomerCode"],
 OrderDate = (DateTime)rd["OrderDate"],
 OrderCode = (string)rd["OrderCode"],
 ShippingAddress = (string)rd["ShippingAddress"],
 ShippingCity = (string)rd["ShippingCity"],
 ShippingZipCode = (string)rd["ShippingZipCode"],
 ShippingCountry = (string)rd["ShippingCountry"]
 }
);
 }
 return orders;
 }
 }
 }
}

...

ListView1.DataSource = new OrderManager().GetOrders();
ListView1.DataBind();

VB
Public Function GetOrders() As List(Of Order)
 Using conn As New SqlConnection(connString)
 Using comm As New SqlCommand("select * from orders", conn)
 conn.Open()
 Using r As SqlDataReader = comm.ExecuteReader()
 Dim orders As New List(Of Order)()
 While rd.Read()
 orders.Add(New Order() With {
 .CustomerCode = DirectCast(rd("CustomerCode"), String),
 .OrderDate = DirectCast(rd("OrderDate"), DateTime),

Listing 1.3 Creating a list of orders
 .OrderCode = DirectCast(rd("OrderCode"), String),

13Using classes to organize data

 .ShippingAddress = DirectCast(rd("ShippingAddress"), String),
 .ShippingCity = DirectCast(rd("ShippingCity"), String),
 .ShippingZipCode = DirectCast(rd("ShippingZipCode"), String),
 .ShippingCountry = DirectCast(rd("ShippingCountry"), String)
 })
 End While
 Return orders
 End Using
 End Using
 End Using
End Function

...

ListView1.DataSource = New OrderManager().GetOrders()
ListView1.DataBind()

“What a huge amount of code!” That’s often people’s first reaction to the code in list-
ing 1.3. And they’re right; that’s a lot of code, particularly if you compare it with listing
1.1, which uses a dataset. If your application has to show simple data like this, the data-
set approach is more desirable. But when things get complex, classes help a lot more.

 Let’s take a look at the next required feature: displaying a single order in a form.
After the order is retrieved, displaying its properties using classes is far more straight-
forward:

C#
shippingAddress.Text = order.ShippingAddress;
shippingCity.Text = order.ShippingCity;

VB
shippingAddress.Text = order.ShippingAddress
shippingCity.Text = order.ShippingCity

The final step is showing the orders and related details in a grid. Doing this requires
in-depth knowledge because it introduces the concept of models. You can’t represent
orders and details in a single class—you have to use two separate classes the same way
you do with tables. In the next section, we’ll discuss this technique.

1.3.2 From a single class to the object model

You have now seen how to develop a single standalone class and how to instantiate it
using data from a database, but the real power comes when you create more classes
and begin to link them to each other (for instance, when you create an OrderDetail
class that contains data from the OrderDetail table).

 In a database, the relationship between an order and its detail lines is described
using a foreign key constraint between the OrderId column in the Order table and
the OrderId column in the OrderDetail table. From a database design point of view,
this is the correct approach.

 In the object-oriented world, you have to follow another path. There’s no point in
creating an OrderDetail class and giving it an OrderId property. The best solution is

to take advantage of a peculiar feature of classes: they can have properties whose type

14 CHAPTER 1 Data access reloaded: Entity Framework

is a user-defined class. This means the Order class can hold a reference to a list of
OrderDetail objects, and the OrderDetail class can have a reference to Order.

 When you create these relationships, you’re beginning to create an object model. An
object model is a set of classes related to each other that describe the data consumed
by an application.

The Object Model and Domain Model patterns
The Object Model and Domain Model patterns are often considered to refer to the
same thing. They may initially look exactly the same, because both carry data
extracted from storage. But after digging a bit, you’ll find that they have differences:
the object model contains only the data, whereas the domain model contains data
and exposes behavior.

The Order class that we’ve been looking at is a perfect expression of an object
model. It has properties that hold data and nothing more. You could add a computed
property that reports the full address by combining the values of other properties, but
this would be a helper method. It wouldn’t add any behavior to the class.

If you want to move on from an object model to a domain model, you have to add
behavior to the class. To better understand the concept of behavior, suppose you
need to know if an order exceeds the allowed total amount. With an object model,
you have to build a method on another class. In this method, you call the database
to retrieve the maximum amount allowed, and then compare it with the amount of the
order. If you opt for a domain model, on the other hand, you can add an IsCorrect
method to the Order class and perform the check there. This way you’re adding
behavior and expressiveness to the Order class.

Creating and maintaining a domain model isn’t at all easy. It forces the software
architect to make choices about the design of the application. In particular, classes
must be responsible for their own validation and must always be in a valid state. (For
instance, an order must always have a related customer.) These checks may contrib-
ute to code bloating in the classes; so, to avoid confusion, you may have to create
other classes that are responsible for validation, and keep those classes in the
domain model.

The details of the Object Model and Domain Model patterns are beyond the scope of
this book and won’t be covered, but plenty of books focus on this subject and all its
implications. We recommend Domain Driven Design by Eric Evans (Addison-Wesley
Professional, 2004). We’ll discuss the Domain Model pattern and Entity Framework
in chapter 14.

 The real power of the object model emerges when you need to show orders and
their related details in a single grid. In section 1.2.1, there was a fetching problem
with a spectrum of solutions. Every one was different, but what’s worse is that every
one required a different coding style on the interface.

 Using classes, your interface code is completely isolated from fetching problems
because it no longer cares about the database. A specific part of the application will
fetch data and return objects. This is where the storage-agnostic interface feature of
using classes comes into play.

15Delving deep into object/relational differences

 The example we’ve looked at so far is oversimplified. You’ll have noticed that the
Order class has a CustomerId property and the OrderDetail class has a ProductId
property. In a complete design, you’d have Customer and Product classes too. Likely, a
customer has a list of applicable discounts based on some condition, and a product
belongs to one or more categories. Creating a strong object model requires a high
degree of knowledge, discipline, and a good amount of practice.

 At first sight, it may seem that a one-to-one mapping between classes and database
tables is enough. Going deeper, though, the object-oriented paradigm has much more
expressiveness and a different set of features compared with the database structure.
Inheritance, many-to-many-relationships, and logical groups of data are all features
that influence how you design a model. More importantly, such features create a mis-
match between the relational representation and the model; in literature, this prob-
lem is known as the object/relational mismatch, and it’s discussed in the next section.

1.4 Delving deep into object/relational differences
Understanding the differences between the object-oriented and relational worlds is
important, because they affect the way you design an object or domain model and the
database.

 The mismatch can be broken down into different parts relating to datatypes, asso-
ciations, granularity, inheritance, and identity, and in the following sections we’ll look
at them in turn. To better illustrate this mismatch, we’ll make use of the example
introduced in previous sections.

1.4.1 The datatype mismatch

The datatype mismatch refers to the different data representations and constraints that
are used in the object and relational worlds. When you add a column to a table in a
database, you have to decide what datatype to assign to it. Any modern database sup-
ports char, varchar, int, decimal, date, and so on. When it comes to classes, the situ-
ation is different. Database int and bigint types fit naturally into .NET Int32 and
Int64 types, but other database types don’t have an exact match in .NET.

 In the database, when you know that the value of a column has a maximum length,
you set this constraint into the column to enforce the business rule. This is particu-
larly desirable when the database serves several applications, and yours isn’t the only
one that updates data. In .NET, varchar doesn’t exist. The nearest type to varchar is
String, but it doesn’t support any declarative limitations on its length (it can contain
2 GB of data). If you want to check that the value of the String isn’t longer than
expected, you have to implement this check in the setter of the property, or call a
check method before sending the data back to the database.

 Another example of this mismatch involves binary data. Every database accepts
binary data, but the column that contains the data doesn’t know anything about what
the data represents. It might be a text or PDF file, an image, and so on. In .NET, you
could represent such a column using an Object, but it would be nonsense, because

16 CHAPTER 1 Data access reloaded: Entity Framework

you know perfectly well what kind of data you have stored in the binary column. If the
value is a file, you can use a Stream property, whereas the Image type is your best
choice for images.

 One last example of the datatype difference emerges when you use dates. Depend-
ing on the database vendor and version, you have lots of datatypes you can use to store
a date. For instance, until version 2005 of SQL Server, you had DateTime and Small-
DateTime. SQL Server 2008 has introduced two more datatypes: Date and Time. As you
can imagine, the first contains only a date and the second only a time. In .NET, you
have only a DateTime class that represents both date and time. Handling this mis-
match isn’t difficult, but it requires a bit of discipline when instantiating the object
from database data and vice versa.

 As you can see, the datatype mismatch is trivial and doesn’t cause developers to
lose sleep at night. But it does exist, and it’s something you must take care of.

 The second difference, which already emerged in section 1.2, is the association
between classes. Databases use foreign keys to represent relationships, whereas object-
oriented applications use references to other objects. In the next section, we’ll go
deeper into this subject.

1.4.2 The association mismatch

When talking about associations, the biggest mismatch between the relational and
object worlds is how relationships are maintained. Database tables are related using a
mechanism that is different from the one used by classes. Let’s examine how the cardi-
nality of relationships is handled in both worlds.

ONE-TO-ONE RELATIONSHIPS

The Order table contains all the data about orders. But suppose the application needs
to be improved, and an additional column has to be added to the Order table. This
may initially seem like a minor improvement, because adding a column isn’t too dan-
gerous. But it’s more serious than that. There may be lots of applications that rely on
that table, and you don’t want to risk introducing bugs. The alternative is to create a
new table that has OrderId as the primary key and contains the new columns.

 On the database side, that’s a reasonable tradeoff, but repeating such a design in
the object model would be nonsense. The best way to go is to add properties to the
Order class, as shown in figure 1.3.

Figure 1.3 The Order2 table
contains columns for the new data
and is related to the Order table. In
the object model, there’s no new
class—just a new property on the

Order class.

17Delving deep into object/relational differences

 The method that interacts with the database will handle the differences between
the two schemas. Such a method isn’t complicated at all; it performs a join between
the two tables and updates data in both to handle the mismatch:
Select a.*, b.* from Orders a join Order2 on (a.orderid = b.orderid)

 This association difference leads to the granularity mismatch, which will be dis-
cussed later in this section.

ONE-TO-MANY RELATIONSHIPS

You’ve already seen a one-to-many relationship when we linked details to an order. In
a database, the table that represent the “many” side of the relationship contains the
primary key of the master table. For example, the OrderDetail table contains an
OrderId column that links the detail to its order. In database jargon, this column is
called a foreign key.

 By nature, database associations are unique and bidirectional. By unique, we mean
that you have to define the relationship only on one side (the OrderDetail side); you
don’t need to define anything in the Order table. Bidirectional means that even if you
modify only one side, you have automatically related the master record to its details
and a detail to its master. This is possible because SQL allows you to perform joins
between tables to get the order related to a detail and all details related to an order.

 In the object-oriented world, such automatism doesn’t exist because everything
must be explicitly declared. The OrderDetail class contains a reference to the order
via its Order property, and this behavior is similar to the database. The real difference
is that you also need to modify the Order class, adding a property (OrderDetails) that
contains a list of OrderDetail objects that rep-
resent the details of the order. In figure 1.4,
you can see this relationship.

 So far, you have handled orders and their
details. Now, let’s move on to handle products
and their suppliers. A product can be bought
from more than one supplier, and a single sup-
plier can sell many products. This leads to a
many-to-many association.

MANY-TO-MANY RELATIONSHIPS

The many-to-many relationship represents an association where each of the endpoints
has a multiple relationship with the other. This means there’s no master-detail rela-
tionship between tables—both of them are at the same level.

 For example, if you have Product and Supplier tables, you can’t express the rela-
tionship between them simply by creating a foreign key in one of the tables. The only
way to link them is to not link them at all. Instead, you create a middle table, known as
a link table, that contains the primary key of both tables. The Product and Supplier
tables contain only their own data, whereas the link table contains the relationship
between them. This way, the two main tables aren’t directly connected, but rely on a

Figure 1.4 The relationship between
Order and OrderDetail in the object
model is expressed with properties.
third one that has foreign keys.

18 CHAPTER 1 Data access reloaded: Entity Framework

 In an object model, the concept of a link table doesn’t exist because the relation-
ship is represented as a list of references to the other class on both sides. Because you
have Product and Supplier tables in the database, you create Product and Supplier
classes in the model. In the Product class, you add a Suppliers property that contains
a list of Supplier objects representing those who sell the product. Similarly, in the
Supplier class you add a Products property that contains a list of Product objects that
represent the products sold by the supplier. Figure 1.5 shows such associations.

Figure 1.5 In the database, the Product
and Supplier tables are related via the
ProductSupplier table. In the model, the
Product and Supplier classes are
directly related using properties.

 Like one-to-one relationships, many-to-many relationships are one of the causes of
the granularity problem that appears in the object model. The other cause of the
granularity problem is covered in the next section.

1.4.3 The granularity mismatch

The granularity problem refers to the difference in the number of classes compared
with the number of tables in the database. You’ve already seen that depending on the
types of relationships, you might end up with fewer classes than tables. Now we’re
going to explore another cause for the granularity mismatch: value types.

 Let’s get back to our example. The Order table has a shipping address that’s split
into four columns: address, city, zip code, and country. Suppose you need to handle
another address, say the billing address, and you decide to
add four more columns to the Order table, so it looks like
the one shown in figure 1.6.

 The Order class already has four properties for the ship-
ping address, so adding further properties won’t be a prob-
lem. But although it works smoothly, these new properties
let the class grow, making it harder to understand. What’s
more, customers and suppliers have an address, the product
store has an address, and maybe other classes have addresses
too. Classes are reusable, so wouldn’t it be good to create an
AddressInfo class and reuse it across the entire model?

Figure 1.6 An excerpt of
the new Order table with
the new billing address field

19Delving deep into object/relational differences

 With a bit of refactoring, you can modify the Order class to remove the address-
related properties and add two more: ShippingAddress and BillingAddress. The
code after refactoring looks like this.

C#
public class AddressInfo
{
 public string Address { get; set; }
 public string City { get; set; }
 public string ZipCode { get; set; }
 public string Country { get; set; }
}

public class Order
{
 public Address ShippingAddress { get; set; }
 public Address BillingAddress { get; set; }
}

VB
Public Class AddressInfo
 Public Property Address() As String
 Public Property City() As String
 Public Property ZipCode() As String
 Public Property Country() As String
End Class

Public Class Order
 Public Property ShippingAddress() As Address
 Public Property BillingAddress() As Address
End Class

As you see, the code after the refactoring is easy to understand.

Avoiding overnormalization
We have seen solutions where the database has been overnormalized. The
addresses were moved into a different table with its own identity, and foreign keys
were used to link the customer table to the address. From a purist database designer
point of view, this approach might be correct, but in practice it doesn’t perform as
well as if the columns were stored in the customer table. It’s very likely that you’ll
need address information each time you retrieve an order, so every access will
require a join with the address table.

This design might or might not have optimized the overall database design, but from
a developer’s perspective it was a painful choice. This design affected the design of
the object model too. The AddressInfo class was originally a mere container of data,
but it was turned into an entity that has its own correspondence with a database table.
The consequences were a higher number of lines of code to maintain the new data-
base table, and slower performance because SQL commands increased (updating a
customer meant updating its personal data and address). Forewarned is forearmed.

Listing 1.4 The AddressInfo and Order classes

20 CHAPTER 1 Data access reloaded: Entity Framework

Another cause of the different levels of granularity is the inheritance feature of OOP.
In a model, it’s common to create a base class and let other classes inherit from it. In
relational databases, though, the concept of inheritance doesn’t exist, so you have to
use some workaround to handle such scenarios, as we’ll see next.

1.4.4 The inheritance mismatch

The inheritance mismatch refers to the impossibility of representing inheritance
graphs in a database. Let’s go back to the example to see why this difference repre-
sents a problem.

 Let’s refine the object model to add the Customer class, and we’ll let it and the
Supplier class inherit from Company. It’s highly likely that these entities share col-
umns, such as address, VAT number, name, and so on, so using inheritance is the most
natural way to design such classes. Figure 1.7 shows these classes.

Figure 1.7 The Supplier and
Customer classes inherit from
Company.

In a relational database, you can’t simply declare a Customer table and say that it inher-
its from another table. That isn’t how relational organization works. You can create a
single table that contains both customer and supplier data, or create one for each type.
Whatever your decision is, there will be a mismatch between database and model.

 In the model, you have a Product class. A store can sell different types of products
such as shoes, shirts, golf equipment, swimming equipment, and so on. All these prod-
ucts share some basic types of data, like price and color, and they’ll also have other
information that’s specific to each product.

 Even in this case, inheritance comes to your aid. To reflect this situation, you write
a Product class, and then you create a class for each specific product. The biggest
problem emerges when you design the OrderDetail class. In that class, you’ll need a
property indicating what product the detail refers to; this property is of type Product
even if at runtime the concrete instance of the object might be of type Shoes, Shirts,
or any type that inherits from Product. Figure 1.8 shows this inheritance hierarchy in
the model.

Figure 1.8 Shirt and Shoes
inherit from Product, which is

 This type of association is referred to as polymorphic, and it’s absolutely impossible
to natively represent in a database. Furthermore, to retrieve the product related to an
order detail, you need a polymorphic query, which isn’t supported in a database.

 Fortunately, after years of experience, developers have found a way to use a combi-
nation of database design, SQL statements, and code to simulate the effect of a poly-
morphic query. This means that you can write a query and get instances of objects of
referenced by OrderDetail.

21Delving deep into object/relational differences

the correct type based on the data in the OrderDetail table. Naturally, you don’t just
need polymorphic queries; you need polymorphic inserts, updates, and deletes too.
Indeed, the code that interacts with the database has to both retrieve and update data,
so you need to solve both sides of the mismatch.

 The last difference we’ll talk about is identity. Databases and objects have different
concepts of equality. Databases base identity on the primary key column, whereas
objects use a pointer comparison.

1.4.5 The identity mismatch

The identity mismatch refers to the different ways that objects and databases deter-
mine equality.

 The identity of a row in a table is represented by the value of its primary key col-
umns. As a result, you have to pay attention when choosing a primary key for a table.
Sometimes you may want to use a natural key, such as a product code, but this choice
can introduce troubles instead of simplifying things.

 For example, suppose you need to change a product code because you entered an
incorrect one. The product code is a foreign key column in the OrderDetail table, so
you have to update it too. The problem is that you can’t update the product code col-
umn in the OrderDetail table, because if you change it to a value that doesn’t yet exist
in the Product table, you’ll receive an error. On the other hand, you can’t change the
value in the Product table because it would violate the foreign key constraint. Lots of
steps are necessary to solve this problem; what seems to be a simple update turns out
to be a nightmare.

 That’s likely the most annoying problem, but there’s another reason to avoid the
use of natural keys. A product code might be a relatively long string, and almost all
databases are optimized for storing and searching integer values, so the most effective
primary key is a surrogate key that’s a meaningless value to the business. By using a sur-
rogate key, you leave the burden of creating it to the database, and you can concen-
trate on the data. The use of surrogate keys allows you to change data in any column
in the table without affecting any other table; you don’t have to perform a compli-
cated series of steps to change the product code.

NOTE We have opted for an integer key, but GUID keys are good too. In
many scenarios, GUIDs are a better choice than integers. There’s no abso-
lute rule about this; it must be considered on a case-by-case basis.

So far, we can state that an object is the object-oriented representation of a table row,
and that the primary key property is what links the object to the row. The problem is
that if you compare two different objects of the same type, they turn out to be differ-
ent even if they contain the same data.

 Why are objects with the same data different? Because, by default, two variables
that point to different objects representing the same row of a table are different. If the
two variables point to the same instance, then they are equal. This is called equality by

reference.

22 CHAPTER 1 Data access reloaded: Entity Framework

 An approach that changes this default behavior is certainly more desirable. If two
different objects contain the same data, their comparison should return true. In .NET,
such equality can be achieved by overriding the Equals and GetHashCode methods,
and stating the equality rules in these methods. The most natural way to represent
equality is to compare properties that represent the primary key on the table, but
there are complex cases where this approach can’t be followed.

1.4.6 Handling the mismatches

Now that you’ve seen all of the differences between the relational and object worlds,
you’ll have an idea of what writing code that accesses the database in object-model–
based applications involves. We haven’t talked about the techniques for handling the
mismatches, but you may easily guess that a flexible system requires a lot of lines of
code. Naturally, if you focus on solving the problems for an individual application, the
solution is simpler; but if you want to create something reusable, complexity increases.

 In our experience, one of the most difficult features to implement is polymorphic
queries. You need to accommodate the design of the database to create (sometimes
very complex) ad hoc SQL queries and to write a huge amount of code to correctly
transform the data extracted by the query into objects.

 Relationships come at a cost too. As stated before, it’s easy to write code that
retrieves the orders. If you need to retrieve orders and details, it requires a bit more
work, but nothing too difficult. Whichever path you choose, you’ll have to write a lot
of code to handle fetching features. Even if this code isn’t too complicated to write,
you still have to write it.

 Fortunately, the datatype and granularity mismatches are trivial to solve. Handling
the datatype differences just requires a bit of discipline to check that database con-
straints aren’t violated when data is sent back for updates. The granularity problem is
even simpler to handle and doesn’t need particular attention.

 Sometimes the way you shape classes can’t be represented in a database, or it
results in a poor database design. Even if databases and models represent the same
data, the way they’re organized can be so different that some compromise is required.

 In our experience, designing an application so it works as well as it can often
involves bending and twisting both database and object model (mainly the latter) so
that they might look tricky in places. Someone looking at them could say that the appli-
cation isn’t well designed. These are words often spoken by purists of one of the two
models who only consider their side. Always remember: the best design is the one that
accommodates both models without losing too much of their benefits.

 As you can see, an application that uses a model has many intricacies when dealing
with a database. The next question is who has to deal with this complexity. The answer
is that if you’re crazy, you can reinvent the wheel on your own. Otherwise, you can
adopt an O/RM tool. More precisely, you can use Entity Framework.

23Letting Entity Framework ease your life

1.5 Letting Entity Framework ease your life
The key to delivering an application that’s maintainable and easy to evolve is to sepa-
rate the concerns into different logical layers and sometimes into different physical
layers (tiers). You can gain many benefits from adopting such a technique.

 First of all, there is the separation of concerns. Each layer has its own responsibilities:
the interface layer is responsible for the GUI; the business layer maintains business
rules and coordinates the communication between the GUI and the data layer; and
the data layer is responsible for the interaction with the database.

 After the interface between the layers is defined, they can evolve independently,
allowing parallel development, which always speeds things up.

 Another great advantage of using different logical layers is the ease of maintaining
and deploying the application. If you need to change how you access the database, you
only have to modify the data layer. When deploying the new packages, you deploy only
the modified assemblies, leaving the others untouched.

 Obviously, the data layer is the one affected by the adoption of an O/RM tool. In a
well-designed application, the GUI and the business layer don’t need to know that an
O/RM tool is in use. It’s completely buried in the data-layer code.

 Let’s move on and look at what an O/RM tool can do for us.

1.5.1 What is O/RM?

O/RM is an acronym that stands for object/relational mapping. In a nutshell, an O/RM
framework is used to persist model objects in a relational database and retrieve them.
It uses metadata information to interface with the database. This way, your data-layer
code knows nothing about the database structure; the O/RM tool becomes middle-
ware that completely hides the complexity.

 The heart of O/RM is the mapping—the mapping technique is what binds the
object and relational worlds. By mapping, you express how a class and its properties are
related to one or more tables in the database. This information is used by the O/RM
tool’s engine to dynamically build SQL code that retrieves data and transforms it into
objects. Similarly, by tracking changes to objects’ properties, it can use mapping data to
send updates back to the database. The mapping information is generally expressed as
an XML file. As an alternative, some O/RM tools use attributes on the classes and their
properties to maintain mapping data.

 An O/RM tool is a complex piece of software that saves the developer from the bur-
den of managing the interaction with the database. It handles the collision between
object and relational worlds, it transforms query data into objects, it tracks updates to
objects to reflect changes in the database, and a lot more. The idea of coding these
features manually is absurd when you have a tool that does it for you.

 There are plenty of O/RM tools on the market, both free and commercial. So far,
NHibernate has been the most powerful and stable one. The stability was inherited
from its parent (NHibernate is the .NET port of Hibernate, which is an O/RM tool

written in Java, available since 2001), and the fact that it’s an open source project has

24 CHAPTER 1 Data access reloaded: Entity Framework

encouraged its adoption. Now, its leadership is being threatened by the new version of
Entity Framework.

 In the next section, we’ll look at why Entity Framework is a valid alternative.

1.5.2 The benefits of using Entity Framework

“Why should I adopt an O/RM tool, and more specifically Entity Framework? What
benefits will I gain from its use? Is it a stable technology? Why should I add another
complex framework to my application?”

 These are the most common questions we’re asked by people who approach this
technology for the first time. If you’ve read the whole chapter so far, you should be
convinced that O/RM technology is worth a chance (if you have a model in your
application). To get the complete answers to the preceding questions, you’ll have to
read at least the first two parts of this book. But here are some quick answers, in case
you can’t wait:

 Productivity—In our experience, persistence code that doesn’t rely on an O/RM
tool can take up to 35 percent of the entire application code. The use of an
O/RM tool can cut that percentage down to 5 percent in some edge cases, and to
15–20 percent in a normal situation. The API that Entity Framework introduces
make the developer’s life easier than ever. In spite of its limitations, the designer
integrated into Visual Studio dramatically simplifies the mapping process.

 Maintainability—The fewer lines of code you have, the fewer lines of code you
have to maintain. This is particularly true in the long run, when refactoring
comes into play and a smaller code base is easier to inspect. Furthermore, the
ability of an O/RM tool to bridge the gap between the object and relational
models opens interesting scenarios. You can refactor the database structure or
model definition without affecting the application code, and only changing the
mapping. If you think about the code needed to manually handle persistence
and to refactor a database or classes, you’ll immediately understand that main-
tainability increases if you adopt an O/RM tool.

 Performance—This is one of the most-discussed subjects relating to O/RM. The
complexity of O/RM introduces an obvious slowdown in performance. In most
cases, though, this is an acceptable trade-off because the slowdown is almost
irrelevant. We have seen only one edge case where the performance decrease
was unbearable.

The preceding features are shared by all O/RM tools available. Now let’s look at the
benefits that Entity Framework adds to your development phase.

 It’s included in the .NET Framework. Microsoft fully supports Entity Framework
and guarantees bug fixes, documentation, and improvements at a pace its com-
petitors can’t keep up with. Often, customers choose Entity Framework instead
of NHibernate because Entity Framework’s presence in the .NET Framework
reassures them about the overall quality of the project. What’s more, because

the .NET Framework is free, Entity Framework is free as well.

25Letting Entity Framework ease your life

 It’s integrated into Visual Studio. When you install Visual Studio 2010, you have
wizards and a designer to manage the mapping phase visually, without worrying
about the implementation details. As you’ll see throughout the rest of the book,
Visual Studio allows you to reverse-engineer existing databases to automatically
create object model classes and mapping files and keep them updated when the
database design changes. It allows even the reverse process: creating the object
model and then creating the database to persist it. Should you make any modi-
fications to the object model, you can immediately re-create the database.

 The current version solves most of the problems of the past. Microsoft has listened
attentively to community feedback. Since the release of Entity Framework v1.0,
Microsoft has engaged a board of experts, including Jimmy Nilsson, Eric Evans,
Martin Fowler, and others, to make Entity Framework a great competitor. The
first release of Entity Framework was struck by a vote of no confidence on the
web, but the current version solves all of the problems raised at that time.

Although its version number is 4.0, this is the second version of Entity Frame-
work. In the past, Microsoft has confused developers with version numbers. The
company shipped .NET Framework 3.0, which was not a new version but a set of
classes including WCF, WPF, and WF; but the CLR was still at version 2.0. When
.NET Framework 3.5 shipped, the CLR was again version 2.0. Old assemblies
remained in version 2.0, whereas those shipped in version 3.0 and the new ones
were upgraded to version 3.5. This versioning policy introduced so much confu-
sion that with .NET Framework 4.0, Microsoft realigned everything to version
4.0. This is why we have Entity Framework 4.0 instead of 2.0.

 It’s independent from the type of database you use. The persistence layer uses the
Entity Framework API to interact with the database. Entity Framework is respon-
sible for translating method calls to SQL statements that are understood by the
database. But even if all modern databases support standard SQL, lots of fea-
tures differ between vendors. Sometimes there are subtle differences even
between different versions of the same product. SQL Server 2005 introduced a
huge number of improvements, and a good O/RM tool has to generate opti-
mized SQL for both SQL Server 2005/2008 and SQL Server 7/2000 platforms.
Entity Framework guarantees that the correct SQL code is (almost) always gen-
erated, and it relieves the developer of checking which database is in use at
every command.

This helps a lot, but it doesn’t mean you can forget about SQL code—you
always have to check the SQL code produced by Entity Framework to be sure it
respects your performance prerequisites.

 It uses LINQ as a query language. You can express your queries using LINQ, and
Entity Framework will take care of translating your LINQ query into SQL code.
This means you can write queries with IntelliSense, strong typing, and compile-
time checking! At the moment, no other O/RM tool on the market (apart from

the ghost of the LINQ to SQL project) allows that.

26 CHAPTER 1 Data access reloaded: Entity Framework

 Entity Framework is recommended for data access by Microsoft. Microsoft clearly
states that the future of data access for the .NET platform is Entity Framework.
This is why the company is working so hard to make Entity Framework so pow-
erful. Microsoft is also working on other products to make them rely on Entity
Framework for accessing the database.

An O/RM tool is useful, but it isn’t going to save your life. There are many cases where
its use isn’t feasible. In the next section, we’ll delve into this subject.

1.5.3 When isn’t O/RM needed?

In the last couple of years, the thrust toward O/RM has dramatically increased. Now,
many developers think that an O/RM tool is the silver-bullet solution to all problems,
and they tend to use it in every project. Sometimes its use isn’t the right choice.

 Despite the huge improvement in productivity it offers, O/RM is just a framework.
It’s something you have to study and test in several situations, and it takes time to cor-
rectly use it. In projects with a limited budget or where the delivery date is relatively
soon, time is something you don’t have, and you’ll have to resort to hand-coding the
data access layer.

 The type of application you’re developing is another thing you have to take into
account when choosing whether to adopt an O/RM tool. If you’re developing a web
application that’s mainly focused on displaying data, an O/RM tool may be a waste,
because you get the best out of it when you have to both retrieve and persist objects.
Even if it gives great flexibility in retrieving data, you may not need it if you know
exactly what the fetching level is. For instance, applications that generate statistical
reports won’t get any benefit from O/RM. They probably wouldn’t benefit from a
model either.

 If your application must perform bulk inserts, O/RM isn’t what you need. Data-
bases have internal features that allow bulk inserts, so you’re better off relying on
those features.

 In short, you should always plan ahead before adopting an O/RM tool. This isn’t
news; in our field, everything must be planned for in advance.

 So far, you’ve seen that working with objects improves application stability and
makes them easier to maintain. You’ve also learned that there is a mismatch between
data organized in objects and data organized in relational databases, and that this mis-
match can easily be handled by O/RM tools like Entity Framework. In the next sec-
tion, we’ll look at the components Entity Framework is made up of, and how those
components interact with each other to solve data-access problems.

1.6 How Entity Framework performs data access
Entity Framework is a complex piece of software. Its overall architecture consists of
several components, each fulfilling a specific task. Figure 1.9 illustrates Entity Frame-
work’s key components and gives an idea of where each fits in.

Storage
model

Mapping

Conceptual
model

LINQ to En��es En�ty SQL

Object Services

Database

En�ty Client data provider

ADO.NET data provider

EDM

Figure 1.9 The overall architecture of Entity
Framework: The query languages lie on top of Object
Services, which relies on Entity Client to interact with
the database. Entity Client uses the standard ADO.NET
providers to physically communicate with the database.
The EDM is a layer that’s referenced by all the others
and is used by them to obtain metadata about classes.

27How Entity Framework performs data access

The Entity Data Model (EDM) is the layer where the mapping between the classes and
the database is expressed. This component consists of the three mapping files shown
in figure 1.9.

LINQ to Entities and Entity SQL are the languages used to write queries against the
object model. Entity SQL was the first language to be developed, because when Entity
Framework first appeared, LINQ was still in a prototype phase and a dedicated lan-
guage for querying was necessary. During development, LINQ reached stability, so the
team decided to include a LINQ dialect for Entity Framework. That’s why we now have
two query languages in Entity Framework.

 The Object Services layer is the gateway to accessing data from the database and
sending it back. As a result, this component is the most important for developers.
Object Services is responsible for materialization —the process of transforming the data
obtained from the Entity Client data provider, which has a tabular structure, into
objects. Another important part of this layer is the ObjectStateManager object, or
state manager, which tracks any changes made to the objects.

 The Entity Client data provider, which we’ll refer to as the Entity Client from now on,
is responsible for communication with the ADO.NET data providers, which in turn
communicate with the database. The main task of this layer is to convert Entity SQL
and LINQ to Entities queries into SQL statements that are understood by the underly-
ing database. Furthermore, it converts the results of queries from database tabular
structure into a model tabular structure that’s then passed to Object Services.

 Now that you have a general idea of what the parts of the software do, let’s discuss
them in greater detail, starting with the EDM.

1.6.1 The Entity Data Model

The EDM is the link between the model and the database. Here you describe the data-
base and the model structure and how to map them. The great thing about the EDM is
that it decouples your application from the underlying store. Database and model can
have completely different structures, but they’re always related by the EDM.

 The EDM consists of three XML files, each with a precise task. These files are sum-
marized in table 1.1.

 At runtime, these files are parsed and their data is stored in classes that can be que-
ried to obtain metadata about the classes, the database, and their mapping. The main

28 CHAPTER 1 Data access reloaded: Entity Framework

application that uses the data in these classes is Entity Framework itself. When it mate-
rializes objects from a query, it asks the EDM for metadata. We’ll discuss mapping in
detail in chapter 12.

NOTE One of the most despised features of Entity Framework is the
extreme verbosity of the EDM. Creating the classes and describing them
in the model is a useless duplication. The same objection is made against
the storage model, because the engine could analyze the database struc-
ture and retrieve the schema on its own. If it did, the only task the user
would need to do is create the mapping file, as is the case in other frame-
works. There are several reasons why the team included all the files in the
EDM; the main reasons are for performance and maximum decoupling
from the physical structures.

THE CONCEPTUAL MODEL

The conceptual model is where you describe the model classes. This file is split into
two main sections: the first is a container that lists all the entities and the relationships
that are managed by Entity Framework, and the second contains a detailed descrip-
tion of their structure.

 One important peculiarity of this file is that it can be separated into several files.
This may become helpful when your model gets too large and the performance of the
Visual Studio designer becomes unacceptable. We’ll return to this subject in chapter
19, which is dedicated to performance.

THE STORAGE MODEL

The storage model is the equivalent of the conceptual model, but it describes the
database organization. Not only is this file conceptually similar to the previous one,
but it also uses the same XML nodes. Unlike the conceptual model, it isn’t possible to
split this model into several physical files.

 The first section of this file lists all the tables, views, stored procedures, and foreign
keys that are affected. The second section describes the items listed in the first node.
Regarding tables and views, the columns and primary keys are described. When it
comes to stored procedures, input and output parameters are described. The descrip-
tion of a foreign key contains information about the table involved, the cardinality,

Table 1.1 The mapping files of the EDM

Filename Description Alternative name Extension

Conceptual model Describes the model classes and
their relationships

Conceptual schema, conceptual
side

CSDL

Storage model Describes the database tables,
views, and stored procedures, and
their keys and relationships

Storage schema, storage side SSDL

Mapping model Maps the conceptual and storage
models

Mapping schema, mapping side MSL
and the delete and update rules.

29How Entity Framework performs data access

THE MAPPING MODEL

The mapping file is completely different. Its job isn’t to describe something but to
compensate for the differences that exist between the two previous models. This is
where the real magic of mapping happens: you map a class to one or multiple tables,
map one table to one or multiple classes, define inheritance mapping, and map
stored procedures for both updates and object retrieval.

 There is only one important node in this file: it associates the class to a table and
can be repeated more than once to ensure that a class can be mapped against multi-
ple tables, and vice versa.

 Like the storage description file and unlike the conceptual file, the mapping file
can’t be split into multiple files.

THE VISUAL STUDIO MAPPING FILE

As you’ll see in the next section, Visual Studio has a wizard that automatically gener-
ates the mapping information from the database, and a designer that allows you to
modify the mappings visually, without worrying about the underlying files.

 To easily integrate the mapping requirements and the designer in Visual Studio,
there is a new file with the EDMX extension. The EDMX file merges the three EDM files
into one, adding designer-required information. The Entity Framework designer team
invented the EDMX file to allow visual modifications to be made to object model classes
and their mappings against the database, whereas the EDM is the real mapping layer. At
compile time, the EDMX file is split up, and the three mapping files are generated.

 In terms of the object/relational mismatch, the mapping layer is where all the
problems enumerated in section 1.4 are resolved. But mapping only provides meta-
data to solve the problem—the code lies in the Object Services and Entity Client lay-
ers. In the next section, we’ll discuss the former.

1.6.2 Object Services

Object Services is the layer responsible for managing objects in Entity Framework.
Entity Framework is mostly interested in handling the mismatch between database
and objects, so there are lots of tasks to be performed against objects.

 The first key feature of Object Services is that it exposes the API to generate the
objects that queries are written against. Fortunately, the Visual Studio wizard helps a
lot in generating the code necessary to write queries, so you only have to worry about
the query and not about the plumbing.

 When a query is executed, the Object Services layer translates it into a command
tree that’s then passed on to the underlying Entity Client. The process is slightly dif-
ferent depending on which query technology you use. If you use LINQ to Entities, the
LINQ provider generates an expression tree that’s then parsed and transformed in
the command tree. If the query was developed using Entity SQL, Object Services
parses the string and generates another command tree. This process is known as
query transformation.

30 CHAPTER 1 Data access reloaded: Entity Framework

When the query against the database has been executed and the underlying layer has
reorganized the data using the mapping, Object Services is responsible for creating
objects using the input structure. The input data is organized as rows and columns,
but in a conceptual-model way and not in a database manner. This means each row
represents an object, and if it has a property that references another class, the column
contains the overall row for the class. Figure 1.10 illustrates how the data is organized.

Figure 1.10 How data is received by the Object Services layer

 Due to this organization of data, the process of creating objects is fairly simple.
This process is object materialization.

 When the objects are ready to be consumed, the context comes into play. By context
we mean the lifetime of the communication between the application and Entity
Framework. It’s established using a well-known class (ObjectContext, or context), and
it’s active as long as the class is referenced in the code or it isn’t disposed of. The con-
text class is used from the beginning because this class creates the entry point for que-
rying the object model.

 After the objects are materialized, they’re automatically added to the context
memory, but this behavior can be overridden for performance reasons. During the
materialization process, if the object that’s going to be created already exists in the
context memory, it’s skipped by the engine, and a reference to the in-memory object
is returned to the code executing the query. This means the context acts as a sort of
local cache.

 The objects that are attached to the context are automatically tracked by the state
manager component. This mechanism ensures that any modifications made to objects
are correctly managed and recorded in the database. To do this, the state manager
stores the original data of every object that’s loaded so it can compare them and per-
form an optimized update. This component gives you many options to customize its
behavior.

 Finally, the Object Services layer coordinates the updates to the data store, query-
ing the state manager for modifications, and it controls the creation of the plumbing
code needed to execute the commands.

 Each of the preceding steps will be discussed in detail in chapters 4, 6, 7, and 8.
But now that you know how objects are handled, it’s time to investigate the layer that
interacts with the database.

31How Entity Framework performs data access

1.6.3 Entity Client data provider

The Entity Client is responsible for communicating with the database. To simplify its
architecture, this layer isn’t physically connected to the database, but relies on the
well-known ADO.NET data-provider infrastructure.

 Whereas Object Services manages objects using the conceptual model of the EDM,
the Entity Client uses all the EDM files. It needs the mapping and storage model files
to convert the command tree into SQL commands to execute against the database. It
then needs the conceptual model file to convert the tabular database results into con-
ceptual shaped data, as shown in figure 1.9, which is later moved into objects by
Object Services.

 At this point, you should have a clear understanding of how the system handles
queries, uses them to hit the database, and converts the resulting data to objects. In
particular situations, where maximum performance is required, you may query this
layer directly, ignoring Object Services. The great boost in performance is obtained
not only by jumping one layer in the chain, but also by avoiding the materialization
process, which is the slowest task of query execution. For obvious reasons, LINQ to
Entities can’t be used when you directly query Entity Client, because LINQ manipu-
lates objects, and this layer knows nothing about them. Entity SQL is the only language
you can use in such a scenario.

 Let’s now move on to the first querying option: LINQ to Entities.

1.6.4 LINQ to Entities

LINQ to Entities is the LINQ dialect that enables typed queries against the model.
Thanks to the LINQ syntax, you can write a typed query against the model and have an
object returned with compile-time checking.

 Even though LINQ to Entities operates on objects, it must still be translated into
the SQL that’s finally launched against the database. Many of the LINQ methods or
overloads can’t be represented in SQL. For instance, the ElementAt method isn’t sup-
ported but is still syntactically valid. A call to this method won’t cause a compile-time
error but will produce a NotSupportedException at runtime. Similarly, the overload
of the Where method that accepts an integer as the second parameter can’t be trans-
lated to SQL, so its use causes only a runtime exception. Apart from unsupported
methods, you’ll encounter other cases where the compile-time checking isn’t enough,
but they’re pretty rare and are well documented in MSDN.

NOTE It’s important to emphasize that LINQ to Entities isn’t Entity
Framework. Many developers tend to see LINQ to Entities as a technology
opposed to LINQ to SQL, but that’s a mistake. LINQ to SQL is a full-
featured O/RM tool that shipped with .NET Framework 3.5, whereas
LINQ to Entities is only a query language inside Entity Framework. LINQ
to Entities is the main querying language in Entity Framework, but Entity
SQL is still a great tool to have in your toolbox.

32 CHAPTER 1 Data access reloaded: Entity Framework

1.6.5 Entity SQL

Entity SQL is the second way of querying the object model. Like LINQ to Entities que-
ries, Entity SQL queries are always expressed against the model. The difference is that
Entity SQL is string-based, so it may be preferable in some scenarios.

 Entity SQL is one of the most complicated languages we have ever met. When the
Entity Framework team had to create a query language for Entity Framework (before
LINQ was available), they wanted to create a language that was easy for developers to
understand and opted for a SQL-like syntax (which is why it was called Entity SQL). As
Entity Framework evolved, and more and more features were added, the spectrum of
query capabilities widened, and new functions in the language were required. It cur-
rently includes over 150 functions and has maintained only a little compatibility with
the original SQL syntax.

 Although it’s complex, Entity SQL is ahead of LINQ to Entities in some situations.
First, it’s string-based, so it’s easier to create queries at runtime based on conditions.
Second, Entity SQL is the only language that can be used to retrieve data at low level,
directly using the Entity Client. Finally, there are functions that can’t be invoked using
LINQ to Entities but can using Entity SQL. You’ll learn more about that in chapter 9.

1.7 Summary
In this chapter, you’ve seen what O/RM is, what problems it solves, and how it fits into
application design.

 You’ve learned the basics of data access using ready-to-use structures like datasets
and data readers, and why they’re used in some environments and discouraged in oth-
ers. In scenarios where tabular structures aren’t applicable, an object/domain model
is the obvious replacement, because the use of classes lets you take advantage of the
power of object-oriented programming.

 Naturally, the introduction of a domain model carries a new set of problems with
it, due to the many differences that exist between object and relational representa-
tions of data. Handling such differences is sometimes easy for small to medium-sized
business applications, but it may result in overwhelming code as the applications grow.

 This is where O/RM tools like Entity Framework come into play. As you’ve seen,
O/RM tools make database-interaction code easier to develop and maintain.
Although O/RM tools aren’t the silver bullet for any application, a wide spectrum of
applications can benefit from the adoption of O/RM.

 Finally, you’ve learned about the core components of Entity Framework and how
they interact to solve the object/relational mismatches.

 You haven’t seen Entity Framework in action yet, but in the next chapter we’ll start
tackling its complexity and learning how to work with it.

Getting started
with Entity Framework
Now that you have a good idea of what Entity Framework is and why it might be use-
ful, it’s time to start digging into it. In this chapter, we won’t go deep into the tech-
nology; what we’re going to look at is how to create an application from scratch and
how to perform basic tasks, so you’ll get a feel for the power of Entity Framework.
The walkthrough in this chapter will also help you get started creating any kind of
application you’ll need to write on the job.

 This chapter has three main parts. First, we’ll look at the example that runs
through this book in terms of both the model and the database, and we’ll explain
why we took certain approaches. Then we’ll look at how to use the designer to cre-
ate the classes (the entities) and have it automatically generate the code. At the end
of the chapter, the code will finally make its appearance. You’ll learn how to create

This chapter covers
 Introducing the book’s example application

 Database-first and model-first design

 Introducing the Visual Studio Entity Framework designer

 An overview of Entity Framework’s capabilities
33

a basic application that reads data and updates it in the database.

34 CHAPTER 2 Getting started with Entity Framework

 By the end of this chapter, you’ll be able to create an application from the ground
up and perform basic operations on data. You’ll discover why in chapter 1 we said that
productivity is one of the winning points of Entity Framework.

2.1 Introducing the OrderIT example
Many books have a running example, and this one is no exception. We’ll use a classic
order application called OrderIT that manages products, orders, customers, and so on.
Here’s the list of the requirements:

 OrderIT must store data about customers. Each customer has a name, billing
address, and shipping address. The address isn’t plain text but consists of four
separate pieces of data: street, city, ZIP code, and country. What’s more, custom-
ers can access a web service to place or update orders, so they’ll need a user-
name and password to access the web service.

 OrderIT must store data about suppliers. Each supplier has a name, an International
Bank Account Number (IBAN), and payment terms (the number of days the
customer has to pay the invoice).

 OrderIT must store data about products. The system must be able to sell any prod-
uct, from shoes to T-shirts, from a computer mouse to a table-tennis paddle,
and so on. The application must be ready to accept new types of products with a
minimal effort and with no impact on the previous products and related orders.

 OrderIT must track the number of items currently in stock. Every time an item is sold
or bought, the inventory quantity must be updated. The user must also be able
to add new items to the current quantity.

 OrderIT must be able to store whatever products are sold by the suppliers. A single sup-
plier can sell many products, and a single product can be bought from many
suppliers.

 OrderIT must manage any incoming orders from customers. Every order must store
data about the customer who made it and give that customer the option to use a
shipping address different from the one held in the database. A customer can
buy many products at once, so an order can contain multiple details.

 OrderIT must calculate the applicable discount. The policy for discounts states that if
the customer buys more than five of the same product, there is a discount of 10
percent for each subsequent item. Should the discount be applicable, the order
must contain two details: the first contains data about the first five items with no
discount, and the other contains data about the additional items and the
related discount.

 OrderIT must allow the user to change the price of items easily and quickly. Sometimes
the user needs to change the price of one product, and other times prices need
to be updated based on some characteristic (such as the type of product or the
brand).

 OrderIT must allow the customer to retrieve and modify account details and orders.
OrderIT exposes a web service that customers can use to place, modify, or

delete orders. Customers can modify their own account details too.

35Designing the OrderIT model and database

Figure 2.1 illustrates the OrderIT use cases based on the preceding requirements.

Sells products

Customer

Supplier Administrator

Reorder
out-of-stock

products

Manages orders

Manages
customers and

suppliers

Manages products

OrderIT

Insert or update
order

Update
account details

Figure 2.1 OrderIT use cases

 OrderIT supports only a subset of the features that a real-world order-management
application should. But even providing only these features will require you to use most
of Entity Framework’s features. It’s important to note that some of the requirements
can be handled using an object/relational mapping (O/RM) tool, but you’ll have a bet-
ter experience, both in terms of simplicity of development and runtime performance,
if you hand-craft SQL and execute it against the database. As you build up the example,
we’ll explain when and why handmade SQL is better than using Entity Framework.

 Now that you know what to do, let’s explore how to do it. We’ll start with the design
of the model and the database, so that you’ll have a well-established context to work in.

2.2 Designing the OrderIT model and database
Lots of things have changed since we started developing applications in early 1990s.
For instance, languages have evolved, object-oriented environments have overcome
procedural ones, web services have appeared, and workflow frameworks have been
introduced. During this period, only one thing hasn’t changed: relational databases.

 Due to their stability, databases are familiar to most developers, and designing a
good one is relatively simple for them. Designing a good object model may be simple
too, but sometimes it requires strong discipline and lots of experience, especially
when you take a domain-driven design (DDD) approach to building your application.

 In small organizations, it’s likely that a small group of developers creates the archi-
tecture, designs the components, and creates the database and the object model. In
bigger firms, you likely have a DBA who takes care of the database and developers who
design the other components.

 In the smaller organizations, developers tend to design the object model consider-
ing its needs and ignoring the needs of the database. The business the object model
represents is the heart of the application, and it comes first. This is referred to as top-
down design.

 In larger organizations, DBAs tend to put data organization first. This means that
data could be stored in a different way from how it’s represented in the application.
This is referred to as bottom-up design.

36 CHAPTER 2 Getting started with Entity Framework

 Both bottom-up and top-down design have their pros and cons, so there isn’t a
firm rule to follow. Which you use depends on your knowledge and needs. Let’s look
at each technique in detail.

2.2.1 Bottom-up vs. top-down design

When you start designing an application, you have to decide what to create first: the
database or the object model.

 Putting the database first assumes that strong data organization is a central
requirement. Data is organized independently from the way the application model
may need it. Likely the application model will be bent to accommodate the design of
the database. This is the bottom-up technique, and it’s the most-used approach for
two reasons: first, data is the core of any application; and second, model-oriented
design is a relatively new technique in the Microsoft stack, so the idea of designing the
model before the database isn’t widespread yet. Also, as mentioned previously, DBAs
often have a great decisional power, especially in big companies where a huge amount
of data is persisted, and DBAs always consider the database first.

 Bottom-up design guarantees the best performance and storage optimization. If
the DBA works well, you’ll likely interact with the database only though stored proce-
dures, keeping the underlying database structure hidden. On the other hand, this
approach means that data is organized according to database needs, which means it
could be fragmented and difficult for the application to use. That’s why a new
approach has emerged over the years.

 Designing the model before the database places more importance on the business.
This is the top-down approach, where data is first organized in the model, and later
the database comes in. Even in this case, when it comes to accommodating differences
between the object model and the database, the object model is twisted more than the
database; but you lose little expressiveness compared to the bottom-up approach,
where the object model isn’t considered at all.

 The main advantage of the top-down approach is that the application can shape its
model almost independently from how the database persists the data. The con is that
sometimes this doesn’t produce the best database organization, and performance may
be hurt. This is why we suggest you always follow this rule: “Never forget completely
about the database.”

 The database is a vital part of the application—you can’t treat it like a mere storage
mechanism. That would be like creating a Ferrari with the engine of a Smart. The
model and database should be designed to work together seamlessly so you can make
the most out of them. Top-down design puts more emphasis on the model and the
business it represents than on data organization, but if it hurts database performance
too much, it must be abandoned in favor of a bottom-up approach.

 We think the top-down approach is the best one. The benefits you gain are enor-
mous and, with a bit of practice, the database performance screams too. Even though
the bottom-up approach is still more widespread, top-down design is increasing in

popularity because of the benefits it offers.

37Designing the OrderIT model and database

 The Entity Framework designer allows you to adopt both paths. You can visually
create model classes and then let the designer generate the mapping information and
the database script for you (a top-down, model-first approach), or you can import the
database and let the designer generate classes that map one-to-one with the tables (a
bottom-up, database-first approach). Later, in section 2.3, you’ll see how to use both
techniques to realize a model.

 The first two steps in creating an application are designing entities and tables. In the
next sections, we’ll look at creating them, starting with the customers and suppliers.

2.2.2 Customers and suppliers

OrderIT’s requirements state that customers and suppliers have only the name prop-
erty in common, but in a real-world scenario they might have contact information,
addresses, and so on. Creating a base class that holds common properties and a set of
specialized ones for each concrete entity is the best way to represent data. More pre-
cisely, you can create a base abstract class named Company, and then the Customer and
Supplier classes can inherit from Company.

 Customers have shipping and billing addresses. Orders have shipping addresses,
and in the future even suppliers might have an address. This makes the address a
good candidate being created as a complex type. You can create an AddressInfo com-
plex type and reuse it across entities.

NOTE Complex type is the Entity Framework term for what is known as a
value object elsewhere. Because they’re exactly the same thing and this
book is about Entity Framework, we’ll use the complex type term.

When it comes to designing the database, you have to find a way to persist inheritance
information. This is a typical feature of object-oriented programming, but it has no
counterpart in relational databases. There are three possible approaches:

 Table per concrete type (TPC)—Create two separated tables, one for customers and
one for suppliers.

This solution is appealing. Unfortunately, it complicates mapping, especially
when associations between entities come into play. What’s worse, although this
approach is supported in the EDM, it’s not supported by the designer. Although
TPC is a good solution, we generally disregard this option because of its limita-
tions and the lack of support in the designer.

 Table per type (TPT)—Create one Company table that contains all data shared by
customers and suppliers, and one table for each concrete entity: Supplier and
Customer. The additional tables contains only data specific for the entity. In the
end, there is a one-to-one correspondence between entities and the tables.

This solution is fine, but it’s overkill here. The most noticeable drawback is
that to retrieve a customer or a supplier, you need to perform a join. You opti-
mize storage, but performance could degrade. Nevertheless, this solution

would be ideal in other situations.

38 CHAPTER 2 Getting started with Entity Framework

 Table per hierarchy (TPH)—Create one table that contains all customer and sup-
plier information, with a flag column to identify what entity type the row
belongs to.

This is by far the best approach. It performs well, because you don’t need
joins to retrieve customers and suppliers, and the storage is only slightly com-
promised.

Unfortunately, because a row contains columns for both customer and sup-
plier data, you can’t enforce null constraints. For instance, in a row that holds a
customer, the IBAN column isn’t set, and the same happens for the shipping
address column in supplier rows. This means that both columns must accept
null values, although this isn’t allowed by the business rules. Another problem
arises with associations. An order must be related to a customer and not to a
supplier. There is no way to enforce such a business rule unless you resort to
database-specific features like triggers.

Entity Framework handles all these problems; but if other applications write
data to this table, you’re obliged to enforce constraints on the database too.

In this scenario, it’s best to use TPH. You can create a Company table, putting in it the
columns needed for customers and suppliers. Furthermore, you can add a Type col-
umn, which is the discriminator specifying whether the row belongs to a supplier or a
customer. The primary key column is CompanyId, and it’s an identity column, mean-
ing the database automatically generates its value using a sequential integer. Figure
2.2 shows the database table and the structure of the model classes.

Figure 2.2 On the
left is the Company
table; on the right is
the model with its

 Now that you’ve designed the first piece, it’s time to move on to the second
requirement: the products. Most of the considerations we made for the customer and
supplier are valid in this situation too. There are little differences, but you’ll find that
creating the model and mapping it in this scenario is quite easy, now that you have
learned the basics.
inheritance hierarchy.

39Designing the OrderIT model and database

2.2.3 Products

The big difference between the customers and suppliers compared with the products
is that there are a finite number of customers and suppliers, whereas the number of
products might potentially be infinite, and each one has its own information. You
could have a shirt, shoes, gloves, socks, and whatever else the human imagination can
create.

 From the model point of view, this isn’t a big problem because inheritance is born
to handle such circumstances. You can create a Product base class that contains data
shared among all entities (the price, the brand, and the number of items in stock).
Then, you can create a new class for each product you need to sell. These classes will
inherit from Product and add item-specific information.

 From the database perspective, placing data about each product in a single table,
as you did for the customer and supplier, will make it grow too much, potentially over-
coming modern database limitations on the number of columns. The optimal
approach is to create a single table that contains shared information, and a specialized
table for each product. The TPT approach is exactly what you need.

NOTE The drawback with TPT is that as products grow in number, so do
the tables in the database. Depending on your workload, this may be
unacceptable, and you might need to revert to a TPH strategy. Decide
cautiously whether to opt for TPH or TPT. There’s also a third completely
different approach: using metadata. Instead of using a column to main-
tain a single piece of data about a product, you can use it to store an XML
fragment containing all the product information. At runtime, you can re-
create the classes from this XML. This approach is fine, but for the pur-
poses of this book, following the TPT approach is equally good.

You can create a Product table that contains shared information about all products
(you can think of it as a base table) and then create a table for each product, contain-
ing only specific data about for that product. For this example, you can create Shirt
and Shoe tables.

 The primary key for all these tables will be the ProductId column. The one in the
Product table is an identity column, and the others aren’t. To correctly relate the
records, the primary key in the Product table must match the ones in the child tables.
For instance, if a shirt has a record in the Product table with ID 1, there must be a
record in the Shirt table with the same ID. The type of the product is detected by the
join between tables, so a discriminator column isn’t needed. Figure 2.3 shows the
structure of the table and model classes.

 One of the requirements for OrderIT states that you must keep track of the prod-
ucts sold by each supplier. Because a product can be bought by more than one sup-
plier, and a supplier sells multiple products, you have a many-to-many relationship.

 Modeling this kind of relationship is simple. You add a Suppliers property, of type
ICollection<Supplier>, to the Product class, and then add a Products property, of

type ICollection<Product>, to the Supplier class. That’s all there is to it.

Figure 2.3 Mapping
between the product
tables and entities. Each
class has its own mapped
table (TPT).

40 CHAPTER 2 Getting started with Entity Framework

Designing the database is slightly more difficult. You can’t add a foreign key to the
child table because there isn’t a child table. In fact, there aren’t any parent-child rela-
tionship here; the tables are at the same level.

 The only way to link them is to add a third table (a link table), say ProductSupplier,
which contains the IDs of both supplier and product, which together compose the pri-
mary key. This table resolves the problem of the many-to-many scenario, but it does
create a granularity problem, because there are now three database tables and two
model classes, as shown in figure 2.4. Don’t worry, Entity Framework will handle the
mismatch.

Figure 2.4
The relationship between
suppliers and products is
held in a link table in the
database; there’s a
direct relationship in
the model.

 The last requirement to analyze concerns orders and their details. From an entity
point of view, this is the simplest scenario. What makes it interesting is the high level
of relationships between the involved entities. An order must have a customer and at
least one detail, which in turn must be linked to a product. Let’s look at how you can
represent all of these associations.

41Designing the OrderIT model and database

2.2.4 Orders

The order and details example is likely the most abused in the world. This isn’t a limi-
tation but a strength, because its simplicity will help you understand the scenario bet-
ter. There’s only one reasonable way to handle such data, and it’s easy to apply.

 In the model, you generate a class named Order and another one named Order-
Detail. The first carries order information and the second its details. Because the
user can select a different shipping address from the one stored in customer account,
you have to add a ShippingAddress property to the order.

 Regarding relationships, navigating from an order to its details is a must, so you
need to add an OrderDetails navigation property to the Order class. The same way,
moving from a detail to its order can be useful, so you add an inverse navigation prop-
erty called Order to the OrderDetail class. An order must have a customer, so you
need a Customer navigation property for the Order class. We said before that navigat-
ing from a customer to its orders isn’t useful, so you leave the Customer class
untouched. Finally, each order detail carries a product, so a Product navigation prop-
erty is required in the OrderDetail class (the property type should be of type Product
because it can contain any product). On the opposite side, navigating from a product
to the order details is useless, so there should be no navigation property.

NOTE In Entity Framework terminology, properties that express an asso-
ciation are called navigation properties. Navigation properties point to
instances of other classes in the object model. They enable you to navi-
gate inside the model, moving from one class to another. For instance,
you can start from an order and navigate to its products, passing through
the details.

In the database, you can create a table for the orders and another one for the details.
The primary keys are identity columns, as in the Product and Company tables. The
Order table will contain information about the address, as the class does.

 When it comes to maintaining the relationships between tables, you’ll have to add
some foreign keys:

 CustomerId column in the Order table—To link the order and its customer
 OrderId column in the OrderDetail table—To link the order and its details
 ProductId column in the OrderDetail table—To link the order detail and its product

In a perfect world, such foreign keys shouldn’t be part of the object model. Consider
the customer-order relationship. The Order class references the Customer class via the
Customer property. The Customer class has the CompanyId property, which carries the
primary key, so it’s pointless having the CustomerId property in the Order class. But in
Entity Framework, it’s not always like that.

 One of the most painful characteristics of Entity Framework v1.0 is its extreme
complexity when dealing with relationships. In v4.0, the limitations are still there, but
using the new foreign-keys feature makes life much easier. In addition to adding the

42 CHAPTER 2 Getting started with Entity Framework

Customer navigation property to the Order
class, you need to add the CustomerId for-
eign key property to the Order class and
map it in a certain way, and you’re fin-
ished. This relationship is clearly visible in
figure 2.5.

 When you maintain relationships using
only the navigation property, you use
what’s called independent association. When
you add foreign-key properties, you use
foreign-key associations. This terminology has
been coined by the Entity Framework
team, so it’s standard.

 Foreign-key associations aren’t very use-
ful when retrieving entities. But when it
comes to updating data in a database, they
make things easy. In chapter 7, we’ll dig deeper into this subject, and you’ll discover
why using foreign-key associations is a good practice.

 The model is now coming to life. The entities and the related tables in the data-
base are designed; now you need to create them. You’ll see how to do that in the next
section.

2.3 Structuring the application
Before creating the entities, you must do something more important: create the appli-
cation structure inside Visual Studio. We’ll keep the overall design pretty simple
because we’re focusing on Entity Framework’s capabilities, not on how it suits a real-
world architecture. That subject is covered in chapter 14, which is dedicated to appli-
cation design and domain-driven design.

 The following sections will walk you through the steps involved in creating the
structure of the application, creating a new Entity Framework model, mapping it to
the database, and generating the code. We’ll start with the assemblies.

2.3.1 Creating the assemblies

The design is made of just one core assembly containing the model, the mapping
information, and the generated code. Later, you’ll create a set of client applications
that use it. The client can be an ASP.NET application, a console application, a Win-
dows Presentation Foundation (WPF) application, and so on. For this example, you’ll
use a Windows Form, but in later chapters we’ll show you how get the best out of
Entity Framework with other technologies.

 To create the core assemblies, follow these steps:

1 In Visual Studio, create an empty solution named OrderIT.

Figure 2.5 The Order and OrderDetail
classes have their corresponding tables.
2 Add a new Class Library project named OrderIT.Model.

43Structuring the application

3 Delete the Class1 file.
4 Add a new Windows Form application named

OrderIT.WinGUI.
5 Rename the Form1 file to Main.
6 In the OrderIT.WinGUI project, add a reference to

OrderIT.Model.

At the end of the process, the Solution Explorer will look like
figure 2.6.

 That’s it. Now that the plumbing is ready, you’ll introduce
Entity Framework into the application.

2.3.2 Designing entities using the database-first approach

The entity-creation process can be broken into two phases. Initially, you create entities
and complex types, and map them against the database. Then, you create the naviga-
tion properties in the entities and instruct Entity Framework about the foreign keys in
the related tables.

 Earlier, we said that you can create entities and complex types and then let the
designer generate mapping information and the database script. What we didn’t say is
that this process suffers from some limitations:

 The SQL script only generates tables, primary keys, and foreign keys. Every
optimization to improve storage or performance capabilities must be made
manually.

 Every time you modify classes and regenerate the script, it contains SQL state-
ments that drop all existing objects and re-create them from scratch. All hand-
crafted changes and data are lost.

 The designer creates a table for each class. At first this might seem fine, but
when you have an inheritance hierarchy, it’s persisted using TPT. Sometimes
that’s what you want, as in the product scenario, but other times you’ll need
TPH, as in the customer and supplier scenario.

The designer is fully extensible, meaning that you can create your own extensions to
overcome such limitations, but it’s not simple. Fortunately, the Entity Framework team
has created a toolkit that provides designer extensibility features. This is great for two
reasons:

 It solves the third problem in the previous list.
 It gives you great guidance for building your own extensions. If you download

and study its code, you’ll learn a lot about the part of the designer that enables
database-generation extensibility.

NOTE The toolkit isn’t in the RTM but it is available as a free separate
download. Look for the Entity Designer Database Generation Power Pack
in the Microsoft Visual Studio Gallery (http://visualstudiogallery

Figure 2.6 The design
of OrderIT
.msdn.microsoft.com/en-us/). We’ll introduce it in chapter 13.

http://visualstudiogallery.msdn.microsoft.com/en-us/
http://visualstudiogallery.msdn.microsoft.com/en-us/

44 CHAPTER 2 Getting started with Entity Framework

Getting back to entity creation, there are many ways to do this, but this is likely the
best method:

1 Create the database using your favorite tool. (This task isn’t related to Entity
Framework, but the following steps require a database.)

2 Import the database into the designer so that it automatically generates classes.
3 Delete, re-create from scratch, and map entities that are completely different

from the database (such as the Customer and Supplier classes).
4 Modify entities that have small differences from what the designer has gener-

ated (for instance, modify the Order class to refactor the shipping address prop-
erties into the AddressInfo complex type).

This approach offers the best tradeoff. The fact that you import the database into the
designer before creating the classes doesn’t mean you’re putting the database first—
it’s only a technical way to ease your use of the designer. Furthermore, because the
designer is aware of the database structure, you can map the entities as soon as you
create them, eliminating the need to regenerate the database each time the model is
modified.

NOTE It would be wonderful if we could design classes using our favorite
tools, generate their code, add them to Visual Studio, and then make the
designer aware of that code. Unfortunately, this isn’t currently possible.
As an alternative, the Entity Framework team is working on a new feature
called code first. With this feature, you can generate classes and then map
them against the database with code, which is a great alternative to map-
ping via the designer. This feature isn’t in the Entity Framework RTM, but
it’s in the Entity Framework Feature CTP, which means that as we write
this, it’s not ready yet.

Let’s walk through how you can enable Entity Framework in the project. As you saw in the
previous list, the first step is creating the database, but that’s not an Entity Framework–
related task. You can easily create the database using a tool like SQL Server Manage-
ment Studio. The subsequent steps are discussed in the following sections.

IMPORTING THE DATABASE

Follow these steps to import the database (the pages of the wizard used in these steps
are visible in figure 2.7):

1 In the OrderIT.Model assembly, add a new item; and from the wizard, select
ADO.NET Entity Data Model. In the Name box, type Model.edmx. Click Next.

2 On the Choose Model Contents page, select Generate from Database, and click
Next.

3 On the Choose Your Data Connection page, select the database from those
available or create a new one on the fly that points to OrderIT. Leave the con-
nection string name text box untouched, and click Next.

45Structuring the application

4 On the Choose Your Database Objects page, select all tables, and select the
Include Foreign Key Columns in the Model check box to propagate foreign
keys in the model. Leave the Pluralize or Singularize Generated Object Names
check box unchecked, and click Finish.

The check box you left unchecked in step 4 is extremely interesting. It allows you to
singularize the class name when a table has a plural name, and vice versa. This might
look like a silly detail, but when you have to import many tables, you can save lots of
time by letting the wizard generate the correct names. Microsoft implemented this
feature in response to user feedback.

 At this point, you have an entity for each table (the one exception being the
ProductSupplier table, which doesn’t require a counterpart in the object model).
What you need to do now is to modify entities to match the design from section 2.2.
To do that, you have to make small changes to entities that are similar enough to the
database tables that they were generated nearly correctly (such as the order- and
Figure 2.7 The wizard for importing the database

46 CHAPTER 2 Getting started with Entity Framework

product-related entities), and re-create entities from scratch where they differ a lot
from the database structure (such as the company-related entities).

 We’ll start with the last task—creating entities from scratch—because it will cover
many Entity Framework features. You’ll see how to create new entities from scratch
and map them against the database; you’ll discover how to handle inheritance in the
designer, and you’ll learn how to create complex types.

CREATING ENTITIES FROM SCRATCH

There’s a lot to do in creating entities from scratch. Follow these steps:

1 Delete the Company entity. A prompt asks if you want to delete database informa-
tion along with the entity. Click No, so that the entity is deleted but the database
information remains in the EDMX file.

2 Right-click in the designer, and select Add > Entity.
3 A new wizard opens, and it asks for the Entity Name, an optional Base Type, and

the Entity Set name, as shown in figure 2.8. In the Entity Name field, enter
Company; leave the Base Type combo box untouched. In the Entity Set field, plu-
ralize the name of the entity: Companies. In the second part of the form, set the
property that maps to the key of the table. Finally, click OK.

TIP The entity set is important, and for clarity we recommend that you
set it to the plural of the entity name. At the end of this chapter, you’ll
get a sneak peek at what the entity set is used for, and you’ll understand
why we suggest this.

Figure 2.8 The Add Entity wizard for
adding the Company entity

47Structuring the application

4 A box representing the Company entity is shown in the designer. Right-click it,
and select Properties. In the Properties window, set Abstract to true.

5 Right-click the entity, and select Add > Scalar Property.
6 A new text box is added to the properties section of the entity; type Name, and

press Enter. Doing so adds the Name property to the Company class.
7 Right-click the Name property you just added, and select Properties. In the Prop-

erties window, set Max Length to 50 (it must match the length of the mapped
column in the database).

That creates the Company entity.
 Before creating the Customer entity, let’s create AddressInfo so you can reuse it in

Customer:

1 Right-click in a blank section of the designer, and select Add > Complex Type.
2 The Model Browser window opens and the new complex type is highlighted.

Right-click the highlighted node, select Rename, and then change the name to
AddressInfo.

3 Right-click the complex type, and select Add >
Scalar Property > String.

4 The new property is added and highlighted.
Right-click it, select Rename, and change the
name to Address.

5 Right-click the property again, select Proper-
ties, and change Max Length to 30.

 Repeat steps 3 through 5 with the appropriate
types and values to add the City, Country, and
ZipCode properties (see figure 2.9).

Now that you have the Company and AddressInfo types, you’re ready to create the
Customer:

1 Right-click in a blank section of the designer, and select Add > Entity.
2 In the wizard, enter Customer in the Entity Name text box, and select Company

as the base type. The Entity Set field and Key Property section are disabled
because those settings are taken from Company. Click OK.

3 Right-click the entity, and select Add > Complex Property.
4 In the text box, type BillingAddress, and press Enter.
5 Right-click the BillingAddress property, and select Properties.
6 In the Properties window, set the Type property to AddressInfo.
7 Repeat steps 3 to 6 for the ShippingAddress property.

That creates the Customer entity. You can now repeat these steps to create the
Supplier entity.

 Now that the entities have been created, they must be mapped to the database.

Figure 2.9 The AddressInfo
complex type in the Model
Browser window
Let’s look at how this process works:

48 CHAPTER 2 Getting started with Entity Framework

1 Right-click the Company entity and select Table Mapping.
2 In the Mapping Details window (shown in figure 2.10), select the Company

table. The left column shows all the table columns, and the right column shows
the mapped properties. When a property name matches the column name, the
mapping is automatically performed. If the names don’t match, you have to
map them manually by clicking the right column and selecting the appropriate
property for that database column.

3 Right-click the Customer entity, and select Table Mapping.
4 In the Mapping Details window, select the Company table. In the right column

of the BillingAddress row, select the BillingAddress.Address property. This
way, you can map all the simple properties in a complex type.

5 Repeat step 4 for each column in the Customer entity.
6 Click the Add a Condition] row, and select the Type column from the drop-

down list.
7 On the right (for the value/property), enter the value C. This condition states

that when the Type column (the discriminator) has the value C, the row is for a
customer. The window looks like figure 2.11.

8 In the designer, right-click the Supplier entity, and select Table Mapping.

Figure 2.10 Mapping the Company entity

Figure 2.11 Mapping

the Customer entity

49Structuring the application

9 In the right column for the IBAN field, open the drop-down list and select the
IBAN property. Repeat this step for PaymentDays.

10 Click the Add a Condition row, and select the Type column from the drop-down
list.

11 On the right, enter the value S. This condition states that when the Type col-
umn (the discriminator) has the value S, the row is for a supplier.

That’s all. You now know how to create an entity, how to handle inheritance, and how
to map entities persisted using the TPH inheritance strategy. That’s a lot of stuff.

 The next step is modifying the Order and OrderDetail classes so they match the
design you created before. It turns out to be pretty easy.

MODIFYING ENTITIES THAT ARE SIMILAR TO DATABASE TABLES

The Order class doesn’t need much work. You have to delete the address-related prop-
erties, add a complex property of AddressInfo type, and map the inner properties to
the Order table. When it comes to the OrderDetail entity, it’s even easier: you have to
do absolutely nothing. The class is created exactly as you designed it. Easy as pie, isn’t it?

 The product-related classes are almost fine as they are. The problem is that the wiz-
ard that generates entities knows nothing about inheritance, so it maps Shoe and
Shirt as if they were related to Product, and that’s not what you need. The solution is
fairly simple:

1 Right-click the association between Product and Shirt, and select Delete. The
association is removed.

2 Repeat step 1 for the association between Product and Shoe.
3 Right-click the Product entity, and select Add > Inheritance.
4 The designer opens a dialog box where you can specify the base entity and the

derived entity. Set Product as the base entity (already set by the designer), and
set Shirt as the derived entity, as in figure 2.12.

5 Repeat steps 3 and 4 for the inheritance between Product and Shoe.
6 Delete the ProductId property from Shirt (it’s inherited from Product).
7 Select the Shirt entity, open the Mapping Details window, and map the

ProductId column to the ProductId inherited property.
8 Repeat steps 6 and 7 for the Shoe entity.

Figure 2.12 The dialog box
for creating inheritance

between existing entities

50 CHAPTER 2 Getting started with Entity Framework

By performing these simple steps, you’ve mapped a TPT hierarchy. It’s pretty easy.
 You must make a little tweak to the AvailableItems property. Its value must not be

handled by Entity Framework because it would create concurrency problems. In chap-
ter 6, we’ll discuss this subject in depth, and you’ll understand the reasons for this
choice.

 The best way to accomplish this task is to make the property effectively read-only
and set it using a stored procedure or custom SQL command. Unfortunately, changing
the setter visibility to protected won’t accomplish this, because Entity Framework will
still try to persist the property. The only way to make it really read-only is to set its
StoreGeneratedPattern property to Computed in both the conceptual schema and the
storage one.

 Making this change on the conceptual side is easy because it can be done in the
Properties window. Modifying the value in the storage schema requires you to manu-
ally modify the EDM. I won’t show you how to do it here—you’ll learn about it in chap-
ter 5, which is dedicated to mapping.

 At this point, you’re only missing the relationships between entities. Setting this up
involves several steps. Adding navigation properties and foreign keys (if needed) is
just part of the game; you also need to instruct Entity Framework what columns in the
database act as foreign keys so it can retrieve related data correctly.

2.3.3 Designing relationships

Creating a relationship is a two-step job. First you create the navigation properties,
and then you map the columns that establish the relationship in the database. For
instance, you create a Customer navigation property in the Order entity, and then you
map it to the CustomerId column in the Order table. This is what the SQL-generation
engine needs to create the correct SQL joins when performing data retrieval (for
instance, when you need to retrieve the customer for an order).

 Here’s how to create such relationships.

1 Right-click the Customer entity, and select Add > Association.
2 In the left End box of the dialog box, leave Customer selected in the Entity

drop-down list, select 1 (One) in the Multiplicity drop-down list, and uncheck
the Navigation Property check box. This ensures that the navigation property
from Customer to Order isn’t created (that is exactly what you want).

3 In the right End box in the dialog box, select Order in the Entity drop-down
list, and select * (Many) in the Multiplicity drop-down list. Leave the Navigation
Property check box selected, and leave Customer in the text box below. This
instructs the designer to create the Navigation Property Customer in Order.

4 Deselect the Add Foreign Key Properties to the ‘Order’ Entity check box,
because you already have the CustomerId column in the Order entity (it’s been
imported by the wizard). If you’re creating a relationship from scratch, you
should select this check box so the relationship is created and mapped at the

same time.

51Structuring the application

5 The completed dialog box is shown in figure 2.13. Click OK to add the associa-
tion and the navigation properties.

6 A line representing the link between the entities is added to the designer.
Double-click it.

7 In the Referential Constraint dialog box that’s displayed, select Customer
from the Principal drop-down list. This represents the master entity in the
relationship.

8 In the grid below, the designer shows the principal entity’s key properties
(CompanyId in this case). Select the CustomerId property of the Order entity as
the foreign key. This indicates that the other side of the relationship (Order) is
linked to the master primary key via the CustomerId property. Figure 2.14 shows
what the dialog box looks like at this point. Click OK to map the association.

9 Right-click the association link, and select Properties. Set the End1 on Delete
property to Cascade. This specifies that when a customer is deleted, the dele-
tion must propagate to its orders.

Figure 2.13 Creating the association
between Customer and Order

Figure 2.14 Mapping the
association between

Customer and Order

52 CHAPTER 2 Getting started with Entity Framework

This process applies only to one-to-* associations. In many-to-many scenarios, there is
no master-detail relationship, so foreign keys can’t be used in the model. This means
the relationship must use an independent association.

NOTE You can use foreign-key associations in many-to-many relation-
ships, but that implies creating an entity that maps to the link table in the
database. It’s the solution adopted by LINQ to SQL, but it’s a poor design,
and we strongly discourage this practice.

Let’s look at how you can map a many-to-many relationship:

1 Create an association between the Product and Supplier entities.
2 Right-click the link between the entities, and select Table Mapping.
3 In the Mapping Details window, map the association to the ProductSupplier

table.
4 ProductId is automatically mapped by its name. Select the SupplierId column

for the supplier side, as shown in figure 2.15.
This was the only way to map associations in v1.0, and it’s possible to map any associa-
tion using this mechanism. For instance, to map the association between a customer
and its orders, you’d select the Order table and then map the CustomerId column as
the foreign key.

NOTE An association can’t be mapped using both techniques. You must
choose between using foreign keys (recommended) and independent
associations.

The model is now designed, but there are still questions to be answered. Where is the
code for the designed classes? How can you customize the generated code? How can
you access the database? That’s all covered in the next section.

2.3.4 Organizing the generated code

By default, the designer generates a file and places all the code into it. The file is
named after the designer file with a .vb or .cs extension, depending on the language.
For instance, a model.edmx designer file creates a model.edmx.vb or model.edmx.cs
file. In the Solution Explorer window, this file is nested in the designer file.

 If you examine the code, you’ll see that it’s a mess. All the classes are in a single
file, and there are plenty of attributes on classes and properties, as well as lots of

Figure 2.15
Mapping the many-to-many
association between
Product and Supplier
partial methods. What’s worse, classes inherit from EntityObject, and relationships

53Structuring the application

between classes are expressed using properties of type EntityCollection<T> and
EntityReference<T>. This is how Entity Framework v1.0 code must be organized.

 Entity Framework v4.0 maintains this behavior only for compatibility purposes.
Sometimes, keeping code like this may be fine—many successful projects are based on
v1.0. But sometimes you’ll need more flexibility, and this can be achieved only by
using the plain old CLR object (POCO) approach, which frees you from any persis-
tence mechanism.

 Fortunately, the code-generation process is completely customizable. In Visual Stu-
dio 2008, Microsoft introduced a text-template processor, and the designer uses it to
create the classes’ code. In fact, the code that’s generated by default comes from a
template file.

NOTE If you want to look at the default file, it’s in a zip file named AdoNet-
EntityDataModelT4CodeGenCSharp.zip located in %ProgramFiles%\
Microsoft Visual Studio 10.0\Common7\IDE\ItemTemplatesCache\ CSharp\
Code\1033\.

You could create a custom template that solves the problem of generating messy code,
like the one required by v1.0. It could create useful methods for each class, split
classes into separate files, create POCO classes, and so on. But writing a template isn’t
always an easy task, as you’ll discover in chapter 13.

 Fortunately, the Entity Framework team has released a template that already solves
most of these problems. This template isn’t included in the RTM, but it’s available as a
separate download. You can download and automatically install it through the Exten-
sion Manager window in Visual Studio by following these steps:

1 Select Tools > Extension Manager.
2 In the Extension Manager window, select the Online Gallery tab on the left, and

then type POCO in the top-right text box. Press Enter. The window will look like
figure 2.16.

3 If the extension has already been installed, it has a green checkmark beside it in
the middle column of the window. Otherwise, the Download button is shown.
Click the Download button to automatically download and install the extension.

When it’s installed, the extension adds a new template item in the wizard. Here’s how
you can use it to better organize your code:

1 Right-click the designer, and select Add Code Generation Item.
2 Select the ADO.NET POCO Entity Generator item, type Entities.tt in the

Name text box, and click OK. Two new files are added to the project: Entities.tt
and Entities.Context.tt.

3 Right-click both files, and select Run Custom Tool. Doing so triggers the code
generation.

4 Click the model.edmx file, and in the Properties window set Code Generation

Strategy to None to disable default code generation.

54 CHAPTER 2 Getting started with Entity Framework

At this point, you have code and mapping information ready to be used. The code
generated by the Entities.Context.tt template even contains a class that uses the
Object Services features, enabling access to the database. All of this has been done by
using the designer, without writing a single line of code. That’s productivity.

 There’s more than that. By customizing the available templates, you can create an
n-layered or a domain-driven design application. This means that with small changes,
you can create both simple and robust applications.

 As we’ve mentioned, in Entity Framework terminology, the bottom-up approach is
called the database-first approach and the top-down approach is called model-first.
Database-first is the approach used in the past few sections; but for completeness, let’s
look at how to use the model-first approach, where you design the classes and then let
the designer generate the database script.

2.3.5 The model-first approach in the designer

When you opt for the model-first approach, you don’t have a database to map entities
against. This means you create the entities, and then the mapping is automatically
handled by the designer. How does it work?

 When you’ve finished designing the entities, right-click the designer and select
Generate Database Script from Model. A wizard appears, asking for the connection
string. After you enter it, the wizard returns the script. Just launch the SQL script on
the database, and you’re ready to go.

 What’s great about this technique is that while generating the database script, the
designer generates the mapping and storage information too. More precisely, the

Figure 2.16 The Extension Manager window shows downloadable POCO templates as well as
those that are already installed on the machine.
designer generates the Store Schema Definition Language (SSDL) and the Mapping

55A sneak peek at the code

Specification Language (MSL) sections of the EDMX and finally the database script
(using the generated SSDL).

 This behavior can be overridden so that you can modify the way the mapping is
generated and adapt the script to serve other databases than SQL Server. Accomplish-
ing this is hard because many steps are involved and, more important, a workflow
activity must be written. Don’t worry, we’ll talk about this in chapter 13.

 We consider the model-first approach to be useless as it is now. Until it’s modified
to update the database structure instead of re-creating it from scratch, we’ll keep
recommending the database-first approach. (OK, you could create a designer exten-
sion to accomplish the task of updating, instead of re-creating the database, but doing
so wouldn’t be simple.)

 Now that all the plumbing is ready, you can put everything into action. In the next
section, we’ll take a quick tour of the main features of Entity Framework. If you’re new
to O/RM, you’ll be surprised to see how little code is required for most operations,
and how simple it is. If you’re already accustomed to using an O/RM tool, you’ll be
pleased to see that querying with LINQ to Entities is far more effective than using any
other approach.

2.4 A sneak peek at the code
In this “Hello World” example, you’re going to learn how to accomplish the most
basic tasks, like querying the database and persisting modifications made to entities.
At the end of this section, you’ll understand how much data-access code Entity Frame-
work lets you eliminate.

 Perhaps the most interesting aspect of Entity Framework is its query capabilities,
because it engages the power of LINQ to simplify data retrieval. Let’s start with
querying.

2.4.1 Querying the database

Suppose you want to create a form that shows all orders in a grid. This is easy because
you only have to create an instance of the context class (more on this in the next chap-
ter), use its properties to access the orders, and bind them to the grid.

C#
using (OrderITEntities ctx = new OrderITEntities())
{
 grd.DataSource = ctx.Orders;
}

VB
Using ctx As New OrderITEntities()
 grd.DataSource = ctx.Orders
End Using

Listing 2.1 Displaying orders in a grid

56 CHAPTER 2 Getting started with Entity Framework

OrderITEntities is the class that lets you interact with the database. It’s the Object
Services layer’s main class (the context class). The Orders property is the entity set.
Roughly speaking, you can think of the entity set as the equivalent of a database table.
Naturally, records aren’t physically loaded into the entity set; it’s only used for query-
ing purposes.

 Now, let’s create a more complex query that shows only the orders placed in the
current month. If you’re familiar with the LINQ syntax, you’ll have no problem under-
standing the following listing. For brevity, only the query is shown here.

C#
from o in ctx.Orders
where o.OrderDate.Year == DateTime.Now.Year &&
 o.OrderDate.Month == DateTime.Now.Month
select o;

VB
From d In ctx.Orders
Where d.OrderDate.Year = DateTime.Now.Year AndAlso
 d.OrderDate.Month = DateTime.Now.Month
Select d

When users select an order, they need to see it in a detailed form. The form needs
only a single instance and not a list. This can be achieved by using the LINQ First
method. Here it’s used to retrieve the order with ID 1.

C#
Order order = (from o in ctx.Orders.Include("OrderDetails")
 where o.OrderId == 1
 select o).First();

VB
Dim order = (From o In ctx.Orders.Include("OrderDetails") _
 Where o.OrderId = 1 _
 Select o).First()

Notice the use of the Include method. It retrieves the details along with the order.
The string argument represents the navigation property that must be loaded.

 You’ve now seen the main data-retrieval features of Entity Framework. But in a
real-world application, it’s likely that the user will not only view data, but also update
it. We’ll look at that next.

2.4.2 Updating objects and reflecting changes into storage

Entity Framework gracefully manages any modifications made to objects so they’re
correctly reflected in the database. You can apply three types of modifications: inserts,
updates, and deletes. Let’s look at them one by one.

Listing 2.2 Displaying orders placed in the current month

Listing 2.3 Retrieving a single order

57A sneak peek at the code

INSERTS

Suppose you have to create a form where the user can insert, edit, delete, and display
an order. When the user inserts an order, you create an Order object and as many
OrderDetail instances as there are details. Next, you instantiate the context that man-
ages and coordinates the updates to the database. Finally, you invoke the AddObject
method to notify the Orders entity set that the order must be inserted into the data-
base. AddObject doesn’t communicate with the database; it only notifies the context
about the persistence operation. The real operation on the database is triggered when
the SaveChanges method is invoked.

 All these steps are put into action in the following listing.

C#
Order o = new Order { ... };
o.OrderDetail.Add(new OrderDetail { ... });
o.OrderDetail.Add(new OrderDetail { ... });
o.OrderDetail.Add(new OrderDetail { ... });
using (OrderITEntities ctx = new OrderITEntities())
{
 ctx.Orders.AddObject(o);

Adds order
to context

B

 ctx.SaveChanges();
}

VB
Dim o As New Order With { ... }
o.OrderDetails.Add(New OrderDetail With { ... })
o.OrderDetaila.Add(New OrderDetail With { ... })
o.OrderDetails.Add(New OrderDetail With { ... })
Using ctx As New OrderITEntities()
 ctx.Orders.AddObject(o)

Adds order
to context

B

 ctx.SaveChanges()
End Using

The process of creating the Order and OrderDetail entities is a common practice; the
real power shines in the last two lines of code. The code creates an order and three
details, but the context is notified only about the order B. When the SaveChanges
method is invoked, the context scans the Order object and all of its properties, includ-
ing those referencing other objects. Because the order is linked to a list of details, the
context recognizes that the entire object graph must be persisted. This feature is
called persistence by reachability.

 In this scenario, the persistence of the object graph requires four inserts in the
database. They must be executed in a transactional context to ensure that everything
works in an all-or-nothing way. In listing 2.4, there is no trace of a transaction, nor of
any other database-related code. The missing plumbing is boxed inside the
SaveChanges method, leaving you only the burden of invoking it.

 If you compare listing 2.4 with the code necessary to create this feature manually,
you’ll understand how much Entity Framework can help in reducing and simplifying

Listing 2.4 Inserting a new order
the data-access layer of your applications, making it more robust and less error prone.

58 CHAPTER 2 Getting started with Entity Framework

UPDATES

If you find that persisting new objects into the database is pretty simple, you’ll be sur-
prised to discover that propagating the modifications made to objects into the data
store is even easier. Suppose the page used for displaying an order is also used for
modifying existing orders. After the user has finished modifying the data, your code
must update the database.

 You have two possible ways to perform the updates:

 Re-create the objects and add them to the context, indicating that they must be
updated (the disconnected approach).

 Query the database again to retrieve the objects, and then modify them (the
connected approach).

The disconnected approach is used most in scenarios where the context in which you
retrieve data is different from the context you use to modify it (such as a web applica-
tion or a web service). The connected approach is used most in scenarios where the
context is a long-running concept (a Windows Form or Windows Presentation Foun-
dation based application). The following code uses the connected approach. Later, in
chapter 7, we’ll go deeper into both techniques.

C#
var order = (from o in ctx.Orders
 where o.OrderId == 1
 select o).First();
order.ShippingDate = DateTime.Now.Today;
order.OrderDetails.Add(new OrderDetail { ... });
ctx.SaveChanges();

VB
Dim order = (From o In ctx.Orders
 Where o.OrderId = 1
 Select o).First()
order.ShippingDate = DateTime.Now.Today
order.OrderDetails.Add(New OrderDetail With { ... })
ctx.SaveChanges()

The first query is necessary to load the order from the database into the context. The
properties of the order and its details are modified with user-entered data. After the
properties have been changed, there’s no need to notify the context about modifica-
tions because it keeps track of any modifications made to loaded objects and their ref-
erences. When the SaveChanges method is invoked, the context determines which
objects and properties have been modified and prepares the statements to be exe-
cuted against the database.

 Because the context knows what has been modified, the SQL generated for
updates is highly optimized—it contains only the changed columns. If you think
about how much code and time you would spend implementing such a feature, you’ll

Listing 2.5 Updating an existing order
understand that this process of updating data is extremely powerful.

59A sneak peek at the code

DELETES

Deleting an object is likely the simplest task. You need an object with its key properties
set to the ID of the record to be deleted, and then you notify the context that such an
object must be removed from the table in the database.

 You can choose freely between the disconnected and the connected methods.
Unless you’re worried about concurrency, we recommend using the disconnected
approach as your default choice. We’ll look at both options.

 In the disconnected case, you create an Order object and set the property corre-
sponding to the key of the table to the ID of the record you want to delete. Then,
you create the context, attach the order to it (with the Attach method), and use
DeleteObject to notify the context that the row in the table related to the order
must be deleted. Finally, the SaveChanges method issues the DELETE statement from
the database.

C#
Order order = new Order { OrderId = 1 };
ctx.Orders.Attach(order);
ctx.Orders.DeleteObject(order);
ctx.SaveChanges();

VB
Dim order = New Order With { .OrderId = 1 }
ctx.Orders.Attach(order)
ctx.Orders.DeleteObject(order)
ctx.SaveChanges()

In some situations, you’ll have the object, because you’ve already loaded it (from a
query, for instance). Re-creating a new instance is completely useless in this case. You
can pass the instance you already have directly to the DeleteObject method without
having to attach it to the context. This is the classic connected scenario.

C#
Order order = (from o in ctx.Order
 where o.OrderId == 1
 select o).First();
ctx.Orders.DeleteObject(order);
ctx.SaveChanges();

VB
Dim order = (From o In ctx.Order
 Where o.OrderId = 1
 Select o).First
ctx.Orders.DeleteObject(order)
ctx.SaveChanges()

Listing 2.6 Deleting an existing order in a disconnected way

Listing 2.7 Deleting an existing order in a connected way

60 CHAPTER 2 Getting started with Entity Framework

As you’d expect, the details are automatically deleted because of the database’s delete-
cascade constraint. To ensure that Entity Framework correctly checks the relation-
ships, the cascade constraint is enforced in the EDM too.

 You’ve now seen how little code you have to write to persist an object graph. It
doesn’t make any difference whether you have to insert, update, or delete data,
because the basic idea is always the same: build or retrieve the object, modify its prop-
erties, and send it back to Entity Framework to persist the modifications.

2.5 Summary
You’ve now seen all the basics needed to start up a new project. In this first part of the
book, you’ve learned what an O/RM tool is, you’ve seen where it stands in terms of appli-
cation design, and you’ve even taken a sneak peek at how it speeds up development.

 What you’ve seen so far isn’t just for demo purposes. The design of this chapter’s
application is surely oversimplified, but it’s still effective in many scenarios that have
little complexity. Furthermore, the choice of importing the database and later modify-
ing the classes isn’t taken from documentation: it’s the result of experience in devel-
oping several projects.

 At this point, you’re just beginning your discovery of Entity Framework. You have a
solid background of what necessities it covers, but you need to get your hands dirty
and explore all of its features. It’s time to go deeper into the three main building
blocks of Entity Framework: mapping databases and classes, querying databases, and
persisting modifications made to objects. By the end of the next part of the book,
you’ll be able to design and develop real-world applications using Entity Framework.

 The first subject we’ll face in the next chapter is querying. Get ready for the show.

Part 2

Getting started

Entity Framework is Microsoft’s answer to the O/RM needs in data-driven
applications. In part 1 of this book, you learned which scenarios Entity Frame-
work addresses and how it works internally to accomplish its tasks. In this part of
the book, you’ll use the components you’ve already seen to develop an applica-
tion that covers all possible requests.

 To fully cover data access, an application must be able to retrieve data, trans-
form the data into objects, track any data modification, and persist the data to
the database. All this must be done in a transactional and concurrency-safe way.

 Chapter 3 introduces the basics of querying, covering the components that
play a role in this function. Chapter 4 tours the LINQ to Entities dialect and dem-
onstrates how all the tasks you can accomplish in SQL can be carried out with
this new language. Chapter 5 shows how mapping works in Entity Framework.
You’ll learn how to use the designer to design classes and how designer actions
are reflected in the EDM.

 Chapter 6 discusses the entity lifecycle. Here you’ll learn how Entity Frame-
work manages the entities it retrieves from the database and the entities you
attach to the context. You’ll discover how an entity can change its state and how
that affects the way it’s persisted.

 Chapter 7 uses the features explained in chapter 6 and examines how modifi-
cations made to entities are persisted to the database. Here you’ll learn how to
persist simple entities as well as complex ones. Finally, chapter 8 explains how to
deal with transactions and how to avoid concurrency problems, which are a com-
mon concern in many applications.

Querying the object model:
the basics
In the first part of this book, you gained a strong understanding of where Entity
Framework stands and how it can be integrated into your application. Now it’s time
to start digging deep into the technology to understand the most important thing:
how you use it.

 In this chapter, you’ll learn about the most basic feature in Entity Framework:
querying. In particular, you’ll learn how the Object Services layer enables you to
query the database and which other components collaborate with it. What’s more,
you’ll learn how to inspect the SQL generated by Entity Framework so that you can
decide whether to use it or to handcraft a custom SQL command. By the end of this
chapter, you’ll understand how querying works under the covers and the theory

This chapter covers
 Entity Framework querying techniques

 Capturing the generated SQL

 Insights into the Entity Framework query engine

 Common query pitfalls
63

behind it.

64 CHAPTER 3 Querying the object model: the basics

3.1 One engine, many querying methods
In chapter 2, you saw a couple of LINQ to Entities queries, but those just scratched the
surface of the Entity Framework querying system. There is more than one method for
querying the model, and more than one structure that can be used to execute queries.

 These are the possible ways of querying with Entity Framework:

 LINQ to Entities through Object Services—You write LINQ to Entities queries, and the
Object Services layer is responsible for handling the returned entities’ lifecycles.

 Query builder methods and Entity SQL through Object Services—You use query builder
methods to create Entity SQL queries. The Object Services layer is then respon-
sible for handling the returned entities’ lifecycles.

 Entity SQL through Object Services—You write the full Entity SQL query on your
own, without resorting to query builder methods, and then submit it through
Object Services, which takes care of the entities’ lifecycles.

 Entity SQL through Entity Client—You bypass the Object Services layer and retrieve
the data not as objects, but as a conceptual shaped set of DbDataRecord
instances.

This chapter and the next focus on Object Services and LINQ to Entities, so we’ll only
cover the first option here. The other methods are covered in chapter 9, which is ded-
icated to Entity SQL and Entity Client.

3.2 The query engine entry point: Object Services
In chapter 1, you learned that the Object Services layer’s task is managing objects’ life-
cycles from retrieval to persistence. The main class of the Object Services layer is
ObjectContext. As you saw in chapter 2, it’s the most useful class for your code
because it provides the only entry point for executing LINQ to Entities queries.

 One of the features of the Visual Studio designer is that, along with generating
entities, it generates another class that inherits from ObjectContext and that has a
set property for each object model class (with some exceptions). This property repre-
sents the entity set. You can think about the entity set as a database table—it doesn’t
actually contain data, but the entity set is what you write queries against. Later, in sec-
tion 3.2.4, you’ll see how a query written against the entity set is turned into SQL and
returns the data. For the moment, though, let’s focus on entity sets.

 The property representing an entity set is of type ObjectSet<T>. The generic
parameter corresponds to the type of the class that the entity set exposes. In OrderIT,
the property that enables order retrieval is Orders; its type is ObjectSet<Order>, and
it has the following definition.

C#
public partial class OrderITEntities : ObjectContext
{

Listing 3.1 The Orders property definition in the context class
 public ObjectSet<Order> Orders

65The query engine entry point: Object Services

 {
 get
 {
 return _orders ??
 (_orders = CreateObjectSet<Order>("Orders"));
 }
 }
 private ObjectSet<Order> _orders;
}

VB
Public Partial Class OrderITEntities
 Inherits ObjectContext
 Public ReadOnly Property Orders() As ObjectSet(Of Order)
 Get
 If _orders Is Nothing Then
 _orders = CreateObjectSet(Of Order)("Orders")
 End If
 Return _orders
 End Get
 End Property
 Private _orders As ObjectSet(Of Order)
End Class

ObjectSet<T> inherits from ObjectQuery<T>, which was the class used in Entity
Framework v1.0. ObjectSet<T> adds some convenient methods while maintaining
compatibility with the past.

 The ObjectContext class isn’t abstract. The only reason the wizard generates a spe-
cialized class that inherits from ObjectContext is to automatically generate the entity-
set properties plus some helper methods. The generated class is perfect as is, and you
should always use it.

 If there is a case where you can’t use it, you can instantiate the ObjectContext class
directly and pass the connection string name (more about connection strings in sec-
tion 3.2.1). After that, you can use the CreateObjectSet<T> method, passing the
entity set name as a parameter (more about this in chapter 4), to create the Object-
Set<T> instance. You can see such code in the following snippet:

C#
using (ObjectContext ctx = new ObjectContext("name=ConnStringName"))
{
 var os = ctx.CreateObjectSet<Order>("Orders");
}

VB
Using ctx As new ObjectContext("name=ConnStringName")
 Dim os = ctx.CreateObjectSet(Of Order)("Orders")
End Using

As you can see, manually creating an ObjectSet<T> instance isn’t difficult at all. But
we still haven’t encountered a situation where this is necessary—the wizard-generated
file has always worked well for us.

66 CHAPTER 3 Querying the object model: the basics

NOTE ObjectContext implements the IDisposable interface. We
strongly recommend adopting the Using pattern to ensure that all
resources are correctly released. For brevity’s sake, we won’t show the
context-instantiation code in subsequent snippets; ctx will be the stan-
dard name of the variable representing it.

When you instantiate the designer-generated context class, you don’t need to pass the
connection string name to the constructor, whereas you have to pass it when working
directly with ObjectContext. The designer knows what the connection string name is
(you passed it in the designer wizard that created the object model and the context
class, as you saw in chapter 2); and when the template generates the context-class
code, it creates a constructor that invokes the base constructor, passing the connec-
tion string name. The context-class constructor is visible in the following snippet:

C#
public class OrderITEntities
{
 public OrderITEntities() : base("name=ConnStringName") { }
}

VB
Public Class OrderITEntities
 Public Sub New()
 MyBase.New("name=ConnStringName")
 End Sub
End Class

The template generates other constructors that accept the connection string, includ-
ing an EntityConnection object (the connection to the Entity Client). This way, you
can change the connection string programmatically when needed.

 Under the covers, Object Services takes care of lots of tasks:

 Manages connection strings
 Transforms LINQ to Entities queries into an internal representation understood

by Entity Client
 Transforms database query results into objects
 Ensures that only one object exists for each row in the database (no duplicates)
 Enables capturing the SQL code issued against the database
 Enables database script creation and the creation and dropping of databases

We’ll look at these features in the following subsections. Let’s start at ground level and
look at the connection string.

3.2.1 Setting up the connection string

As you’ve seen, the connection string name is mandatory for the ObjectContext class.
How you pass the connection string is slightly different in the Entity Framework com-
pared to how you do it with other ADO.NET frameworks. In Entity Framework, you
have to apply the (case-insensitive) prefix Name= to the connection string:
Name=ConnStringName

67The query engine entry point: Object Services

This isn’t the only difference from what you’re likely to be used to. The connection
string itself is quite odd. This is how the connection string for OrderIT appears in the
connectionString section of the configuration file.

<add
 name="ConnStringName"
 connectionString="
 metadata=res://*/Model.csdl| res://*/Model.ssdl|res://*/Model.msl;
 provider=System.Data.SqlClient;
 provider connection string='
 Data Source=.\sqlexpress;
 database=EFInactionOrders;
 Integrated Security=True;
 MultipleActiveResultSets=True
 '
 "
 providerName="System.Data.EntityClient"
/>

The structure is always the same, but the data is organized in an unusual way. The
attribute name represents the name of the connection string, and it’s the one used
when passing the connection string name to the context constructor. So far, so good.

 The connectionString attribute is very different from what you’re used to seeing,
and it probably looks a bit muddled. You must understand how it’s made, because
you’ll have to modify it when changing databases (when moving from development to
production servers, for instance). It’s split into three subsections:

 metadata—In this part, you specify where the three mapping files are located,
separating the locations with pipe (|) characters. If the files are stored as plain
text on the disk, you specify the path. If the files are stored as resources in the
assembly, the res://*/filename convention is used.

 provider—Here you specify the ADO.NET invariant provider name for the data-
base, as if you were populating the providerName attribute of the connection-
String node.

 provider connection string—This represents the real connection string to
the database. If you need to include a double-quote (") character, you must use
its escaped format (") to avoid collision with XML format.

Finally, the providerName attribute contains the System.Data.EntityClient string,
which is the invariant Entity Framework provider name.

 Setting up the connection is an important task. Fortunately, it’s handled by the
designer, so you only have to touch it when you change databases. If you need to build
it at runtime, you can use the EntityConnectionStringBuilder class.

Listing 3.2 A connection string example

68 CHAPTER 3 Querying the object model: the basics

CREATING CONNECTION STRINGS IN CODE

Usually the connection string can be put in the configuration file and read by the
application. In some scenarios, though, you may need to change the connection
string at runtime. We’ve encountered this situation a couple of times.

 In the first case, each attribute of the connection string was returned by a service.
This isn’t the world’s best architecture, but sometimes you have to live with it.

 In the second case, the application was built to deal with two different versions of
SQL Server (2005 and 2008). This meant having two different SSDL files, so the cor-
rect one had to be chosen at runtime based on the database version. There were two
solutions:

 Creating the connection string by manually concatenating strings
 Building the connection string at runtime using EntityConnectionString-

Builder

Needless to say, the second option was the better choice and is the one we’ll discuss
 The EntityConnectionStringBuilder class inherits from the ADO.NET base class

DbConnectionStringBuilder, and it’s responsible for building a connection string
starting from a set of parameters and for parsing a given connection string into single
parameters. Its properties are described in table 3.1.

In the first case we outlined, where the connection string was returned by a service, you
can use DbConnectionStringBuilder class’s ability to generate a connection string
from a single parameter. You can receive the Metadata, Provider, and Provider-
ConnectionString parameters from the web service and use them to set up the con-
nection string and pass it to the context constructor, as shown here.

C#
var connStringData = proxy.GetConnectionStringData();
var builder = new EntityConnectionStringBuilder();
builder.Provider = connStringData.Provider;

Table 3.1 Properties of the EntityConnectionStringBuilder class

Property Description

Metadata Corresponds to the metadata section in the connection string.

Provider Corresponds to the provider section in the connection string.

ProviderConnectionString Corresponds to the provider connection string section in the con-
nection string.

ConnectionString The connection string in Entity Framework format. When you set
it, the previous properties are automatically populated. When
you modify one of the preceding properties, the connection
string is automatically updated to reflect the changes.

Listing 3.3 Building a connection string
builder.Metadata = connStringData.Metadata;

69The query engine entry point: Object Services

builder.ProviderConnectionString = connStringData.ProviderConnectionString;
using (var ctx = new OrderITEntities(builder.ConnectionString))
{
 ...
}

VB
Dim connStringData = proxy.GetConnectionStringData()
Dim builder = new EntityConnectionStringBuilder()
builder.Provider = connStringData.Provider
builder.Metadata = connStringData.Metadata
builder.ProviderConnectionString = connStringData.ProviderConnectionString
Using ctx = New OrderITEntities(builder.ConnectionString)
 ...
End Using

The important thing is that the data must not contain the section name. For instance,
the provider parameter must contain the value System.Data.SqlClient, and not
Provider=System.Data.SqlClient. The Provider= string is automatically handled by
the EntityConnectionStringBuilder class.

 In the second case, where we built the connection string at runtime, we only
needed to change part of the connection string: the SSDL location. In this case, you
can put the connection string in the configuration file, putting a placeholder {0} in
the SSDL location. Once you know the database version, you can replace the place-
holder with the correct SSDL path. This could be done with a simple String.Format,
but the EntityConnectionStringBuilder has the ability to parse a connection string
and populate the related properties.

 The following solution first loads the connection string and then uses the
String.Format statement on the Metadata property only.

C#
var builder = new EntityConnectionStringBuilder();
builder.ConnectionString = connString;
builder.Metadata = String.Format(builder.Metadata, "res://*/Model.ssdl");
using (var ctx = new OrderITEntities(builder.ConnectionString))
{
 ...
}

VB
Dim builder = New EntityConnectionStringBuilder()
builder.ConnectionString = connString
builder.Metadata = String.Format(builder.Metadata, "res://*/Model.ssdl")
Using ctx = New OrderITEntities(builder.ConnectionString)
 ...
End Using

The connection string is only the first part of the game. We mentioned in chapter 1
that one of the key features of Entity Framework is that it lets you write queries against
the object model and not against the database. In the next section, we’ll focus on this

Listing 3.4 Modifying an existing connection string
and look at what happens under the covers.

70 CHAPTER 3 Querying the object model: the basics

3.2.2 Writing queries against classes

Because the database is completely abstracted by the EDM, you can write queries
against the classes, completely ignoring the underlying database organization. Entity
Framework uses mapping information to translate those queries into SQL. This work-
flow is explained in figure 3.1.

DBSQLEDMClasses
LINQ to
Entities
query

Figure 3.1 Queries written
against classes are
transformed into SQL.

 The abstraction between classes and the database isn’t too difficult to grasp. If a
property is named differently from the column of the table it’s mapped to, you still
use the property name in your query—this is obvious because you query against the
class. With LINQ to Entities, you probably won’t type the wrong name because Visual
Studio’s IntelliSense will give you hints about the correct name. What’s more, the
compiler will throw an error if you type the incorrect property name.

 Other situations can lead to differences between the database and the object
model. Customers and suppliers have their own classes, but there is only one table
containing their data. Once again, you write your queries against these entities, and
not against the Company table.

 Furthermore, we’ve grouped address information into a complex type. When writ-
ing queries, they’re accessed like a part of a type, whereas in the database they’re plain
columns.

 At first, these differences might deceive you, especially if you’re experienced with
the relational model. But after a bit of practice, you’ll see that writing queries this way
is more intuitive and productive than writing SQL. Classes represent your business sce-
nario more meaningfully than the relational model, with the result that writing a
query against classes is more business oriented (and more natural) than writing SQL.
What’s more, the intricacies of the relationships between classes are handled by Entity
Framework, so you don’t need to care how the data is physically related.

 Now that you understand how a query against the model is different from a query
against the database, we can touch on another important subject. How is a LINQ to
Entities query processed by the Object Services layer, and why does it become SQL
instead of triggering an in-memory search against the entity set?

3.2.3 LINQ to Entities queries vs. standard LINQ queries

LINQ is an open platform that can be customized to execute queries against any data
source (a plethora of providers on the web can retrieve data from web services and
databases like Oracle and MySQL, NHibernate, and so on). The important caveat is
that the entry point for querying is a list implementing the IEnumerable<T> interface.

ObjectSet<T> implements IEnumerable and another interface that’s required to
customize LINQ: IQueryable<T>. This interface holds a reference to an object that

implements the IQueryProvider interface, and that object overrides the base LINQ

71The query engine entry point: Object Services

implementation. Instead of triggering a local search, it analyzes the query and starts
the SQL-generation process.

 Now you know why queries written against ObjectSet<T> are evaluated differently
than queries against other data sources. But that just explains how the query transla-
tion process starts, and why a LINQ to Entities query becomes SQL. In the next section,
you’ll discover how a query gets translated into SQL, you’ll learn how it’s executed, and
you’ll see that data is returned as a set of objects.

3.2.4 Retrieving data from the database

When you execute a query, the LINQ provider hosted by the entity set parses the query
and creates a command tree. Because you’re writing the query against classes, the com-
mand tree represents the query conceptually.

 Object Services passes the command tree to the Entity Client, which, with the aid
of mapping and the storage files, transforms it into a native SQL command. After that,
the Entity Client uses the ADO.NET provider specified in the provider section of the
connectionString attribute to launch the SQL against the database and obtain the
result. The query result is then shaped in a tabular way that reflects the object model
structure, as you saw in section 1.6.

 Finally, the data is returned to the Object Services layer, which instantiates (or
materializes) the objects. Figure 3.2 illustrates this process.

Command
tree

SQL

Objects Conceptual
resultset

Storage
resultset

DB

ob
je

ct
 S

er
vi

ce
s

En
tit

y
Cl

ie
nt

A
D

O
.N

ET

LINQ to
Entities
query

Figure 3.2 How a LINQ
to Entities query passes
through different layers
and becomes a set of
objects

 After scalar, complex, and reference properties are filled in, and before collection
properties are dealt with, the context triggers the ObjectMaterialized event. This
event accepts the entity that’s being materialized and allows you to perform some
logic before the object is returned to the application. The following listing shows how
you can use this event.

C#
public OrderITEntities()
{
 ctx.ObjectMaterialized +=
 new ObjectMaterializedEventHandler(ctx_ObjectMaterialized);
}

void ctx_ObjectMaterialized(object sender, ObjectMaterializedEventArgs e)
{

Listing 3.5 Attaching a handler to the ObjectMaterialized event
 var o = entity as Order;

72 CHAPTER 3 Querying the object model: the basics

 //any logic
}

VB
Public Sub New()
 AddHandler ctx.ObjectMaterialized, AddressOf ctx_ObjectMaterialized
End Sub

Private Sub ctx_ObjectMaterialized(ByVal sender As Object,
 ByVal e As ObjectMaterializedEventArgs)
 Dim o = TryCast(entity, Order)
 'any logic
End Sub

As you can see, subscribing to the ObjectMaterialized event is like subscribing to any
other event in the .NET Framework class library.

 There’s an important caveat that you must keep in mind about the materialization
step: the context implements the Identity Map pattern.

3.2.5 Understanding Identity Map in the context

The context holds references for all the entities it reads from the database and identi-
fies them by their key properties. Before the context materializes a new entity, it
checks whether one with the same key and of the same type already exists. If it does
exist, the context returns the in-memory entity, discarding data from the database.

 This pattern is named Identity Map, and it’s vital for application consistency. With-
out the Identity Map, if you read an order, someone else updated it, and you read it
again, you’d have two instances with different data representing the same order.
Which one would be correct? Which one should you update? Should the OrderIT
user know about it? The answers would depend on the situation, so you should never
let this happen.

 Keeping references to entities and checking whether there’s already one in the
context during materialization are heavy burdens for the context. Fortunately, this
behavior isn’t needed by all applications. Consider a web page that displays orders in a
grid. After the orders are read from the context, they won’t be touched in any way, so
there’s no point in storing references to the objects. Skipping this step makes the con-
text lighter, because it doesn’t memorize objects, and faster, because the Identity Map
check doesn’t happen.

NOTE In chapter 19, you’ll see how tweaking applications in ways like
this can dramatically improve performance.

More broadly speaking, you can choose the way the context treats entities after each
query. This choice is made at the query level and not at the context level, meaning that
the same context can use objects in one way for some queries and in another way for
other queries.

 More specifically, the context has four ways of managing entities returned by a

query. You can set any of the following values for the MergeOption property:

73The query engine entry point: Object Services

 AppendOnly—If the entity is already in the context, it’s discarded, and the con-
text one is returned. If the entity isn’t in the context, it’s added. (This is the
default behavior.)

 NoTracking—The entity isn’t stored by the context.
 OverwriteChanges—If the entity is in the context, it’s overwritten with values

from the database and then is returned. If the entity isn’t in the context, it’s
added.

 PreserveChanges—If the entity is in the context, properties modified by the
user remain untouched, and the others are updated using database values. If
the entity isn’t in the context, it’s added.

In our experience, the AppendOnly and NoTracking options have covered all our
needs. We have never needed to use the other options. Nonetheless, never forget that
they exist—one day you could need them.

NOTE A context can’t hold more than one object of the same type with
the same key. For instance, it can’t hold two orders or customers with the
same key. In chapter 6, you’ll learn that such operations cause exceptions.
Also note that if a retrieved entity is tracked by a context, and a query
retrieves it again, the ObjectMaterialized event isn’t raised because the
context entity is returned—there’s no materialization process.

As mentioned in the previous list, AppendOnly is the default behavior, but you can
override it by setting the MergeOption property of the entity set. This property is an
enum of MergeOption type (defined in the System.Data.Objects namespace) whose
possible values are in the previous list. Here’s how you can set tracking behavior.

C#
var companies = ctx.Companies.ToList();
ctx.Orders.MergeOption = MergeOption.NoTracking;
var orders = ctx.Orders.ToList();

VB
Dim companies = ctx.Companies.ToList()
ctx.Orders.MergeOption = MergeOption.NoTracking
Dim orders = ctx.Orders.ToList()

Objects in the companies list are stored by the context because tracking is enabled by
default. Objects in the orders list aren’t tracked because the Orders entity set has
been configured for no tracking.

 So far, you’ve only had a brief description of the querying options. We’ll cover
more intricacies in chapter 6, which is dedicated to persistence.

 The entity-set properties hide a nasty trap when dealing with tracking. They expose
an ObjectSet<T> instance, but the way the instance is created affects the way you have
to set tracking.

Listing 3.6 Setting tracking options

74 CHAPTER 3 Querying the object model: the basics

CREATEOBJECTSET<T> AND TRACKING

The default code generator and the POCO generator create code that instantiates an
entity set lazily when it’s first accessed. After the instance is created, it’s reused for the
entire context lifecycle. The result is that when you configure the tracking option, it
remains the same for all queries issued against that entity set, unless you change it.

 We have seen projects where, instead of reusing the same instance, a new one is
created each time the entity set property is accessed. In this case, setting the tracking
option has no effect. The ObjectSet<T> instance on which you set the option is differ-
ent from the one returned when you later access the entity-set property. The result is
that the context follows the default behavior.

 To overcome this problem, you can assign the entity-set property to a local variable
and then work directly with it, as shown here:

C#
var set = ctx.Companies;
set.MergeOption = MergeOption.NoTracking;
var companies = set.ToList();

VB
Dim set = ctx.Companies
set.MergeOption = MergeOption.NoTracking
Dim companies = set.ToList()

Setting the MergeOption property of the entity set isn’t the only way to configure
tracking. You can also use the Execute method.

EXECUTE AND TRACKING

The Execute method allows you to perform a query and set tracking in a single call.
Keep in mind that, in this case, the value passed to the method overrides the entity set
configuration.

C#
ctx.Companies.MergeOption = MergeOption.NoTracking;
var companies = ctx.Companies.Execute(MergeOption.AppendOnly);

VB
ctx.Companies.MergeOption = MergeOption.NoTracking
Dim companies = ctx.Companies.Execute(MergeOption.AppendOnly)

Tracking is a key feature of Entity Framework. You’ll find other APIs in this O/RM tool
that are affected by tracking, and we’ll discuss them in chapters 6 and 10. Now it’s time
to move on and discover how the Object Services layer interacts with the Entity Client.

3.2.6 Understanding interaction between Object Services
and Entity Client

The ObjectContext class keeps an instance of the EntityConnection class. Just as the
context is your entry point to Object Services, the connection is the entry point to the

Listing 3.7 Setting tracking via the Execute method
Entity Client. This instance isn’t intended only for internal use—it’s publicly exposed

75The query engine entry point: Object Services

via the Connection property of the context. The context even has a constructor that
accepts a connection.

 The context handles this connection for you. It instantiates a new one if one has
not been generated yet, opening it before executing a query and closing it when the
query has been executed. When it persists objects, it opens the connection, starts the
transaction, and commits or rolls back the transaction depending on whether an
exception occurs.

 Because you can access the connection through the context, you can manipulate it
at will. Suppose that within the scope of a context, you must execute five queries.
Opening and closing the connection each time isn’t the best way to go. It isn’t particu-
larly expensive if the ADO.NET provider is configured for connection pooling (which
is the default for SQL Server), but it can surely be optimized.

 What you can do is manually handle the lifetime of the connection. When you
manually open the connection, the context stops handling it, leaving it open and
turning over to you the burden of physically closing it. This means you can open the
connection, execute the five queries, and then close the connection within a single
open-query-close cycle.

NOTE Even if you don’t close the connection, it will be disposed of auto-
matically when the context is disposed of. This is why we recommend the
Using pattern.

You can further customize the interaction between the context and the connection by
creating an instance of the connection and passing it to one of the context construc-
tors. This way, the context ignores the connection lifecycle, leaving you in charge of its
complete management.

 This holds true during context disposal too. If the connection isn’t generated by
the context, it isn’t disposed of. What’s bad about this is that if you forget to close or
dispose of the connection, it remains open until the garbage collector clears every-
thing. Don’t make this mistake.

 In chapter 9, we’ll go deeper inside the Entity Client and the EntityConnection
class. Right now, though, it’s time to take a look at the SQL generated by the Entity
Client.

3.2.7 Capturing the generated SQL

Even if Entity Framework generates the SQL code, you can’t assume the code is fine as
is. You must always make sure that the generated statements perform well and don’t
require too many database resources to execute. Sometimes the generated query will
be too heavy or complex, and you can get better performance by using a stored proce-
dure or handcrafting the SQL.

 The easiest way to inspect the SQL is to use the profiler tool that’s included among
the client-management tools that ship with most modern databases. With this tool,
you can monitor all the statements executed against the database and then analyze

the ones that need refinement or complete replacement.

76 CHAPTER 3 Querying the object model: the basics

 Usually, this monitoring requires high-level permissions on the database, and
sometimes you won’t have such power. Fortunately, the Object Services layer comes to
your aid with the ObjectSet<T> class’s ToTraceString method. Here’s how you can
use it:

C#
var result = ctx.Orders.Where(o => o.Date.Year == DateTime.Now.Year);
var SQL = (result as ObjectQuery).ToTraceString();

VB
Dim result = ctx.Orders.Where(Function(o) o.Date.Year = DateTime.Now.Year)
Dim SQL = TryCast(result, ObjectQuery).ToTraceString()

Notice that this code doesn’t cast to ObjectQuery<T> but to ObjectQuery. Object-
Query<T> inherits from ObjectQuery, which is where the ToTraceString method is
implemented.

 All the steps in query processing should now be clear to you. But there is still one
thing to know about the object creation done by the Object Services layer. We said
that Object Services materializes the entities using the conceptual resultset coming
from the Entity Client. What we didn’t say is that the materialized entities may not be
your model entities.

3.2.8 Understanding which entities are returned by a query

When you query for an order, you expect the returned entity to be of type
OrderIT.Model.Order. This is pretty normal. You ask for an order, and you get an
order. So you’ll be surprised that, by default, the returned entity is of type
OrderIT.Model.Order_XXX, where X is a number.

 If you’re accustomed to other O/RM tools, such as NHibernate, you’ll be aware of
what needs this technique satisfies. But if you’re new to O/RM, you’re probably trying
to figure out the reason for this. What is this class? Who defined it? Why are you get-
ting this class instead of the one you defined?

 The answers are simple. The new class is a runtime-generated proxy. A proxy is a
class that inherits from the one you expect and injects code in your properties to
transparently add behavior to your class. Because the proxy is generated at runtime,
nobody defined it. If you open the assembly with Reflector, you’ll see that there is no
definition of such a class.

NOTE Reflector is a tool that lets you browse a .NET assembly and dis-
cover its classes and their code. It’s free, and you can download it from
www.red-gate.com/products/reflector/.

Using reflection and runtime code emittance, Entity Framework generates a class that
inherits from your type, injects custom code into properties, and then instantiates the
class. The last question is probably the most interesting: Why?

 The reason for this process is to provide features like lazy loading, object tracking,

and others, without requiring you to write a single line of code. For instance, Entity

www.red-gate.com/products/reflector/

77The query engine entry point: Object Services

Framework 1.0 compliant classes had to
inherit from a base class or implement inter-
faces, and write custom code in each prop-
erty to interact with the object-tracking
system. Thanks to the proxy technique, such
plumbing is no longer required, because the
necessary code is created dynamically by the
proxy. Figure 3.3 shows a simplification of
the code inside a proxy.

 Making a POCO class extensible requires
that you not seal it. To enable object track-
ing by the proxy, all properties must be vir-
tual. If you need to enable lazy loading
(more on this in the next chapter), even
navigation properties must be virtual.

NOTE You can turn off proxy creation and let the Object Services layer
return the plain instance. Setting the ContextOptions.ProxyCreation-
Enabled property to false disables this feature. By default, its value is
true. A typical scenario where proxies are a problem is with web services,
because a method that returns a proxy might run into serialization issues.
Using a plain instance and not a proxy makes your class less powerful
from an Entity Framework perspective, but it’s still a fully functional class
and you can still use it without any problem.

3.2.9 When is a query executed?

Generally speaking, LINQ queries are executed when the application code processes
data (for instance, using a foreach or a for) or when certain methods are invoked
(ToList, ToArray, First, Single, and so on).

 Each time a LINQ to Entities query is executed, Entity Framework goes to the data-
base and retrieves data. When it transforms data from record to object, it scans the in-
memory objects to see if one is already there. If it is, the context returns the in-memory
object, discarding the record. If it isn’t, the context materializes the record into an
object, puts it in memory, and returns it.

 Let’s look at an example. Suppose you have to iterate over the result of a query
twice, as follows.

C#
var result = LINQToEntitiesQuery;
foreach(var o in result)
{
 ...

Listing 3.8 Iterating twice over query results, causing double query execution

public class Customer : Company
{
 public virtual DateTime ActualShippingDate { get; set; }
}

public class ProxyOrder: Order
{
 public override DateTime ActualShippingDate
 {
 get { return base.ActualShippingDate
 set
 {
 No�fyChangeTracker("ActualShippingDate",value);
 base.ActualShippingDate = value;
 }
 }
}

Figure 3.3 The proxy class (bottom)
inherits from the object model class (top)
and overrides properties.
}

78 CHAPTER 3 Querying the object model: the basics

foreach(var o in result)
{
 ...
}

VB
Dim result = LINQToEntitiesQuery
For Each o in result
 ...
Next

For Each o in result
 ...
Next

Each time the foreach (or For Each) statement is executed, a round trip to the data-
base is triggered. The context doesn’t care whether you have executed the same query
before.

 If the query is more complex than simply retrieving all orders, or if lots of data is
returned, the double execution represents a serious problem for performance. The
easy workaround is to force execution the first time and then download the objects in
memory. Later, the in-memory collection is looped, so no round trip to the database is
necessary. Here’s the code for this useful technique.

C#
var orders = LINQToEntitiesQuery.ToList();

Query
execution

foreach(var o in orders)

Collection
iteration

{
 ...
}

foreach(var o in orders)
{
 ...
}

VB
Dim orders = LINQToEntitiesQuery.ToList()

Query
execution

For Each o in orders

Collection
iteration

 ...
Next

For Each o in orders
 ...
Next

This approach must be followed not only for queries that return a list of objects, but
for queries that return a single object too. Entity Framework makes no distinction
between queries that return an object and queries that return a collection.

 You can override the Identity Map behavior of the context so it doesn’t keep
objects in memory, but that wouldn’t affect the double-execution problem.

 The last thing to point out about the context is that it can re-create the database

Listing 3.9 Iterating twice over query results, causing single query execution
starting from the EDM.

79Summary

3.2.10 Managing the database from the context

The ObjectContext class has four interesting methods that let you work with the data-
base structure:

 CreateDatabase—Creates the database using the connection string and the
information in the SSDL

 CreateDatabaseScript—Generates the database-creation script using the
information in the SSDL

 DatabaseExists—Verifies that the database specified in the connection string
exists

 DeleteDatabase—Deletes the database specified in the connection string

NOTE This may seem a subject outside the scope of this chapter, but you
can’t query a database if it doesn’t exist.

These methods are useful when you create an application and don’t create an installa-
tion package. When the application starts, you can use DatabaseExists and Create-
Database to create the database if it doesn’t exist.

 Apart from this situation, these methods aren’t particularly important. Nonethe-
less, they’re another string in your bow. Maybe one day you’ll need them.

3.3 Summary
In this chapter, you have learned the basics of querying. Although you haven’t seen
much code in action, everything you’ve read in this chapter will benefit you in the real
world.

 For instance, you’ll often have to modify the connection string, so having its struc-
ture clear in your mind is useful because it’s complex. Similarly, when you’re debug-
ging an application, being able to inspect the SQL that’s generated is important,
because Entity Framework doesn’t always generate friendly SQL.

 Last, but not least, you have learned that a query is always executed against the
database unless its result is downloaded in the client memory. This is an essential
point, because often it’s the cause of inadvertent query execution. We’ve often seen
projects where the developers were not aware of this caveat, and the performance of
their applications suffered.

 Now that we’ve covered the fundamentals, it’s time to write real queries.

Querying
with LINQ to Entities
One of the most important features of Entity Framework is the LINQ to Entities
query dialect. LINQ to Entities is a specialized version of LINQ that operates on Entity
Framework models. LINQ to Entities isn’t a LINQ to SQL competitor—it’s the Entity
Framework’s main query language, whereas LINQ to SQL is a full-featured O/RM
that shipped with the .NET Framework v3.5.

 In this chapter, we’ll begin by looking at how to filter data. Then we’ll cover pro-
jecting, grouping, sorting, joining, and querying within inheritance hierarchies.
With this approach, you’ll gradually learn how LINQ to Entities works and under-
stand how to obtain the same data you would get using native SQL queries. We’ll
assume that you’re already familiar with LINQ. If you haven’t seen it yet, you can

This chapter covers
 Filtering with LINQ to Entities

 Projecting with LINQ to Entities

 Sorting and grouping with LINQ to Entities

 Executing handcrafted SQL code

 Choosing the fetching strategy
80

read appendix A to learn the basics.

What is the future of LINQ to SQL?
It’s no secret that LINQ to SQL is included in the .NET Framework v4.0 for compati-
bility reasons. Microsoft has clearly stated that Entity Framework is the recom-
mended technology for data access. In the future, the Entity Framework will be
developed and tightly integrated with other technologies, whereas LINQ to SQL will
only be maintained and little evolved.

81Filtering data

After LINQ to Entities has been discussed, we’ll talk about other Object Services fea-
tures, such as how you can integrate functions in LINQ to Entities, execute SQL que-
ries, and choose a fetching strategy.

 From this point on, you’ll develop queries using LINQ query syntax. If you’re famil-
iar with LINQ, you’ll already know what query syntax is; if you’re not familiar with
LINQ, you can learn more in appendix A, and we strongly recommend that you read it
before continuing with this chapter. We’ll resort to combining extension methods and
lambda expressions when query syntax can’t be used. We’ll generally use query syntax
because it’s more intuitive, but that doesn’t mean that it’s recommended over its
counterpart. The compiler produces the same IL code for both techniques.

 In chapter 2, you created the OrderIT structure, and you’ll reuse that to create the
examples in this chapter.

4.1 Filtering data
Suppose you have a user who acts as the beta tester of OrderIT, and that user’s first
requirement is searching for orders by their shipping city. You can add the filtering
capability by using the LINQ Where method. Where has an exact match in query syntax:
where for C# and Where for VB. This clause is shown in action in the following code,
which retrieves all orders shipped to New York:

C#
from o in ctx.Orders
where o.ShippingAddress.City == "New York"
select o;

VB
From o In ctx.Orders
Where o.ShippingAddress.City = "New York"

Filtering based on a single value is trivial. But sometimes you might need to search all
orders placed in either New York or Seattle. That’s a simple matter of slightly modify-
ing the where clause to add the second city:

C#
o.ShippingAddress.City == "New York" || o.ShippingAddress.City == "Seattle"

VB
o.ShippingAddress.City = "New York" Or o.ShippingAddress.City = "Seattle"

82 CHAPTER 4 Querying with LINQ to Entities

 Suppose the beta-testing user now wants to be able to enter multiple arbitrary ship-
ping cities. Because you don’t know in advance how many cities the user is going to
search for, the filter becomes dynamic.

LINQ has the Contains method, which is perfect for this situation. Surprisingly,
LINQ to Entities didn’t support such a method in version 1.0. Fortunately, Entity
Framework 4.0 has added this feature.

 The first step in issuing a query that searches for multiple cities is creating a list of
the cities. Later, in the Where clause, you can use the Contains method on this list,
passing the field that must be searched. This is put into action in the following code,
which retrieves all orders shipped to a dynamic list of cities:

C#
var cities = new[] { "New York", "Seattle" };

from o in ctx.Orders
where cities.Contains(o.ShippingAddress.City)
select o;

VB
Dim cities as New Array("New York, "Seattle")

From o In ctx.Orders
Where cities.Contains(o.ShippingAddress.City)

It’s simple to filter data when the query involves only one entity (Order in this case),
but real-world queries are more complex than that. In our experience, 95% of the
queries in a project involve more than one entity. Fortunately, LINQ to Entities makes
querying across associations between entities easier than ever.

4.1.1 Filtering data based on associations

When a query involves more than one entity, you have to navigate your model using
navigation properties. In SQL, this conceptual navigation is represented using joins
between tables, and it isn’t always a simple task. Fortunately, because the mapping spec-
ifies the shapes of the model and the database and their associations, Entity Frame-
work has enough information to transform the conceptual navigation across entities in
SQL joins between the mapped tables without your having to specify anything.

 The association cardinality makes a difference in how you do the filtering. There
are two main situations. If your association refers to a single entity (one-to-one, such as
a detail to its order), you work with a single entity—that’s easy to do. If your associa-
tion refers to a list of entities (one-to-many or many-to-many, such as an order to its
details), the filter is based on an aggregation or subfilter applied to the associated list.
That’s a little more complicated.

 Let’s start with the simpler of the two situations.

FILTERING WITH A SINGLE ASSOCIATION

As we mentioned before, when you create a query that involves two entities with a one-
to-one association, filtering data is trivial. Because the main class has a property that

points to the associated class, you can easily perform a search on that property by

83Filtering data

navigating to it. The following code searches for orders placed by customers whose
billing city is New York:

C#
from order in ctx.Orders
where order.Customer.BillingAddress.City == "New York"
select order;

VB
From order In ctx.Orders _
Where order.Customer.BillingAddress.City = "New York"

In this query, the mismatch between the relational model and the OOP model shines.
First, even if two entities are involved (Order and Customer), only the Orders entity set
is used. Second, you don’t care how the relationship between Order and Customer is
maintained in the database; you simply navigate your model, leaving to Entity Frame-
work the burden of creating joins between tables while generating the SQL code.
Finally, the Order table contains a plain BillingCity column, but in the model it’s
refactored into the AddressInfo complex type, which is the type of the Billing-
Address property.

 Here you can see the SQL code generated by Entity Framework.

SELECT
[Extent1].[OrderId] AS [OrderId],
[Extent1].[OrderDate] AS [OrderDate],
[Extent1].[EstimatedShippingDate] AS [EstimatedShippingDate],
[Extent1].[ActualShippingDate] AS [ActualShippingDate],
[Extent1].[ShippingAddress] AS [ShippingAddress],
[Extent1].[ShippingCity] AS [ShippingCity],
[Extent1].[ShippingZipCode] AS [ShippingZipCode],
[Extent1].[ShippingCountry] AS [ShippingCountry],
[Extent1].[CustomerId] AS [CustomerId],
[Extent1].[Version] AS [Version]
FROM [dbo].[Order] AS [Extent1]
INNER JOIN [dbo].[Company] AS [Extent2]

Creates join
between tables

 ON ([Extent2].[Type] = 'C')
 AND ([Extent1].[CustomerId] = [Extent2].[CompanyId])
WHERE 'New York' = [Extent2].[BillingCity]

This SQL is close to what you would have written manually. The SQL Server team has
closely collaborated with the Entity Framework developers to make the generated SQL
as performant as possible. The SQL generated by Entity Framework isn’t always the
best, due to the generic nature of the SQL generator, but most of the time you can live
with it.

 Working with a single association is pretty straightforward, isn’t it? Collection asso-
ciations are harder to manage. Although LINQ to Entities generally simplifies the task
of querying, this type of association is a little tricky.

Listing 4.1 SQL generated by the previous query

84 CHAPTER 4 Querying with LINQ to Entities

FILTERING WITH COLLECTION ASSOCIATIONS

What’s complex in this type of association is that the filter must be expressed on an
aggregation of the associated list, and not directly on a property, as for single associa-
tions. But what seems difficult to understand using words turns out to be simple using
an example.

 Suppose the user wants to retrieve orders where a specific product is sold. You have
to aggregate the details of each order, returning a Boolean that indicates whether at
least one product is of the specified brand. This result is achieved using the Any
method. It’s a method that belongs to the set family, and it accepts a lambda stating
the condition that needs to be satisfied at least once.

 The following code puts this theory in action by retrieving all orders that included
products of brand MyBrand:

C#
from order in ctx.Orders
where order.OrderDetails.Any(d => d.Product.Brand == "MyBrand")
select order;

VB
From order In ctx.Orders
Where order.OrderDetails.Any(Function(d) d.Product.Brand = "MyBrand")

Now, suppose the user wants to retrieve orders where no item is discounted. LINQ to
Entities has another set method that deserves your attention: All. It allows you to
specify a condition and ensure that all the items in the queried collection satisfy it. In
this case, the condition is that the Discount property of each detail is 0:

C#
from order in ctx.Orders
where order.OrderDetails.All(d => d.Discount == 0)
select order;

VB
From order In ctx.Orders
Where order.OrderDetails.All(Function(d) d.Discount = 0)

Crafting the SQL code to perform this query isn’t easy, but LINQ to Entities makes it
simple and straightforward.

 Filters can be applied even on data calculated on associations. Suppose the user
wants to be able to search orders where the total discount exceeds a certain amount—
in this case, five dollars. By using Sum to perform the calculation, the query becomes
easy:

C#
from order in ctx.Orders
where order.OrderDetails.Sum(d => d.Discount * d.Quantity) > 5
select order;

VB
From order In ctx.Orders

Where order.OrderDetails.Sum(Function(d) d.Discount * d.Quantity) > 5

85Filtering data

Sum belongs to the family of aggregation methods. It sums the result returned by the
input lambda expression. The expression might be a simple field or an arithmetic
expression, as in the preceding code.

 You know you can chain LINQ methods—that’s what makes LINQ one of the most
powerful features of the entire .NET Framework. With a bit of method-chaining prac-
tice, you can write queries that involve set methods and aggregation methods to solve
particular problems. The following listing enables the user to search for orders where
more than one product has been sold.

C#
from order in ctx.Orders
where order.OrderDetails
 .Select(d => d.Product.ProductId)
 .Distinct()
 .Count() > 1
select order;

VB
From order In ctx.Orders _
Where order.OrderDetails.
 Select(Function(d) d.Product.ProductId).
 Distinct().
 Count() > 1

Let’s examine this query to understand what’s been done. The first method that’s
applied to the details list is Select. This is a projection method used to set the output of
a query (more on this subject later in this chapter). In this case, you’re extracting only
the ProductId property, so the method gives back a list of integers. Next, you use the
Distinct method to remove any duplicate ProductIds (remember that a product can
appear twice in an order due to the discount policy). Finally, you use the Count
method to count the occurrences and see if there is more than one. Figure 4.1 shows
the workflow of this process.

Select Dis�nct Count

2
Details 1 Produc�d 1
Details 2 Produc�d 2

Produc�d 1Produc�d 1
Produc�d 1

Figure 4.1 The chained
methods filter data and
count how many products

 You’d probably expect Entity Framework to generate GROUPBY and HAVING SQL
clauses to execute such a query, but that doesn’t happen because the SQL generator is
configured to nest queries instead of using the preceding SQL clauses. This isn’t
always the best approach, but it’s a good trade-off between SQL performance on the
database and simplicity of the SQL generation code.

NOTE Potentially, you can chain any method in your query. The draw-
back is that as chaining becomes more complex, so does the generated
SQL, and it consequently performs more poorly. Don’t make the capital
sin of ignoring the SQL. The risks are too high. (We have seen cases
where entire systems crash because of bad SQL queries.)

Listing 4.2 Retrieving all orders that have sold more than one product
Details 3 Produc�d 3
Produc�d 2

Produc�d 2 are sold.

86 CHAPTER 4 Querying with LINQ to Entities

Often, the filter you’ll have to apply isn’t based on what data you have to retrieve but
on how much data must be returned. A typical example is when a web application dis-
plays paged data in a grid. Let’s see how you can apply this type of filter.

4.1.2 Paging results

One of the easiest ways to filter data is to return only the first n occurrences. Each
database has its own syntax for performing this task. LINQ to Entities lets you declare
one method and leave to the SQL generator the burden of generating the correct
SQL. This is another wonderful example of the power of Entity Framework.

 The ability to extract only the first n occurrences is useful when the beta-testing
user asks for a little dashboard in the main form of the application. They want to see
the last 15 orders placed by their customers so they can quickly start handling them.

 The method that enables such a filter is Take. This method accepts an integer that
specifies the number of objects to be retrieved. VB supports this method in the query
syntax, but in C# you have to use the extension method:

C#
(from order in ctx.Orders
 orderby order.OrderDate
 select order).Take(15);

VB
From order In ctx.Orders
Order By order.OrderDate
Take(15)

The user’s business is growing. In spite of the filters already enabled, each time the
user searches for orders, they get so many records that it slows down the web page’s
performance and consequently its usability. Furthermore, dealing with hundreds of
orders on a single page isn’t user-friendly. The user needs the orders paged in a grid.

LINQ to Entities offers a method that, used in conjunction with Take, makes the
paging operations easier than ever: Skip. This method lets you ignore the first n
records. To enable paging, you use Skip to jump the first n records and then Take to
retrieve only the next n after the ones skipped. The following code snippet skips the
first 10 records and takes the next 10, which means it retrieves the second page of a
grid where each page contains 10 records. As it does for the Skip method, VB supports
Take in query syntax, whereas in C# you have to use the extension method:

C#
(from o in ctx.Orders
 orderby o.OrderId
 select o).Skip(10).Take(10);

VB
From o In ctx.Orders
Order By o.OrderId
Skip (10)
Take (10)

87Filtering data

It’s mandatory to invoke orderby for C#, or Order By for VB, before Take and Skip
because it decides the order of the data before paging. If you don’t do that, you’ll get
a runtime exception. You’ll learn more about sorting in section 4.4.

 So far, the queries we’ve looked at return a list of entities. But often you need only
a single entity. The next section shows how to accomplish such a task.

4.1.3 Retrieving one entity

After the user has selected an order, you need to display a form where the user can see
the details and even modify some of them. In the OrderIT model, you need to find
the order given its ID.

LINQ queries return an IEnumerable<T> even if only one object is retrieved. When
you know in advance that you’re going to get a single object, it’s more convenient to
return it directly instead of dealing with the list. The First and Single methods allow
you to do this.

C#
(from order in ctx.Orders
 where order.OrderId == 1
 select order).First();

(from order in ctx.Orders
 where order.OrderId == 1
 select order).Single();

VB
(From order In ctx.Orders
 Where order.OrderId = 1).First()

(From order In ctx.Orders
 Where order.OrderId = 1).Single()

The result of these queries is an Order object. The First method is translated into a
TOP 1 clause in SQL. (TOP is valid for SQL Server; providers for other databases will
generate the appropriate equivalent statement.)

 If the query doesn’t return a record, the First method generates an Invalid-
OperationException with the error message “Sequence contains no elements.” You
can include the query in a try-catch block, but handling exceptions is an expensive
task for the runtime. The best option is to use the FirstOrDefault method, which has
the same behavior as First with the noticeable difference that if no record is
returned, it returns the default value of the searched object. Because Order is a refer-
ence type, FirstOrDefault returns null if no object is retrieved by the query.

 You can achieve the same goal using Single. The subtle difference between First
and Single is that the latter enforces the rule that the database query must return
only one record. To ensure such a constraint, the Single method issues a TOP 2 SQL
clause. If two records are returned, it throws an exception. If zero records are

Listing 4.3 Retrieving an order given its ID using First

88 CHAPTER 4 Querying with LINQ to Entities

returned, it throws an exception unless you use SingleOrDefault, which has the same
behavior as FirstOrDefault.

 We recommend using First instead of Single for three reasons:

 When you know that you’re retrieving one object, it’s pointless to issue a Top 2
in the database.

 Single is slightly slower that First.
 Checking that only one record exists for the input parameters should be the

responsibility of the database’s update phase and not the querying phase.

NOTE Because the result of a query that uses First or Single isn’t an
IEnumerable<T> instance but the object you were searching, you can’t
cast it to ObjectQuery and retrieve the SQL code generated. In this case,
profiling the database is the only available path.

LINQ to Entities isn’t the only way to retrieve a single entity. You can also do it via the
ObjectContext class’s methods.

USING CONTEXT METHODS

The ObjectContext class allows you to retrieve a single entity with the GetObject-
ByKey and TryGetObjectByKey methods.

 The question you may be asking is: “Why do I need specific methods to get an
object by its key when I already have LINQ to Entities?” The answer is that these meth-
ods behave differently. Before going to the database, they check whether an object
with that given key is already in the context memory (recall the Identity Map pattern
we talked about in section 3.2.5). If the object does exist in the context memory, they
immediately return the in-memory object, skipping the database round trip. If not,
they go to the database and retrieve the object, following the same path as LINQ to
Entities queries.

GetObjectByKey gets an EntityKey object as an argument representing the key of
the entity to be retrieved, and it returns the instance of the entity. If the object isn’t
found either in memory or in the database, GetObjectByKey throws an exception.

TryGetObjectByKey gets an EntityKey object and an out parameter for C#, or
ByRef for VB, representing the entity that’s returned. If the entity is found, the
method returns true and the entity parameter contains the entity; otherwise, it
returns false and the entity parameter remains null. Here’s an example that uses
these methods.

C#
var key = new EntityKey("OrderITEntities.Orders", "OrderId", 1);
var entity = ctx.GetObjectByKey(key);

Object entity;
var found = ctx.TryGetObjectByKey(key, entity);

Listing 4.4 Retrieving an entity by its key using context methods

89Filtering data

VB
Dim key = new EntityKey("OrderITEntities.Orders", "OrderId", 1)
Dim entity = ctx.GetObjectByKey(key)

Dim entity As Object = Nothing
Dim found = ctx.TryGetObjectByKey(key, entity)

Unless you’re sure the object exists, use the TryGetObjectByKey method because it
avoids exceptions, increasing performance.

 So far, we’ve looked at creating static queries. Now the user needs to filter data by
more optional parameters. This means you have to create the query at runtime. Gen-
erating the SQL string at runtime is pretty straightforward, because you simply have to
concatenate strings. With LINQ to Entities, the situation is different.

4.1.4 Creating queries dynamically

Because the user wants to search orders by many parameters, you need to retrieve
whichever parameters are entered by the user and create the query dynamically. Once
again, LINQ to Entities keeps it simple, much as with plain SQL. First, you create an
instance of the ObjectQuery<T> class. Then, you iterate over the filters and determine
whether a filter needs to be applied. If a filter must be applied to the query, you con-
catenate a new LINQ method to the ObjectQuery<T> instance, reassigning the result
to the same instance. At the end of the process, you’ll have a dynamic query like this.

C#
var date = DateTime.Today;
string city = null;

var result = ctx.Orders.AsQueryable();

if (date != DateTime.MinValue)
 result = result.Where(o => o.OrderDate < date);

if (String.IsNullOrEmpty(city))
 result = result.Where(o => o.ShippingAddress.City == city);

VB
Dim searchDate = DateTime.Today
Dim city As String = Nothing

Dim result = ctx.Orders.AsQueryable()

If searchDate <> DateTime.MinValue Then
 result = result.Where(Function(o) o.OrderDate < searchDate)
End If

If String.IsNullOrEmpty(city) Then
 result = result.Where(Function(o) o.ShippingAddress.City = city)
End If

Because the query isn’t executed until data is requested, you can concatenate as many
methods as you need. Naturally, this technique applies to all LINQ to Entities meth-

Listing 4.5 Applying filters dynamically
ods, but it’s likely that you’ll use it only when applying filters.

90 CHAPTER 4 Querying with LINQ to Entities

 So far, all the queries you’ve created return full entities. If you think in database
terminology, it’s similar to writing a SELECT * FROM statement. In our experience, you
usually don’t need all the data exposed by an entity, but rather only a small subset. In
the next section, we’ll discuss how to retrieve only the desired data.

4.2 Projecting results
Our insatiable user is getting more demanding. So far, the user has been shown the
grid with all properties related to each order. That’s no longer acceptable, because
there’s too much data cluttering up the page. The user wants to see only order date
and shipping address information. Extracting all the data for each order is a waste of
resources, in this case, because you only need only some of the data. What you need is
a projection of the order.

Projecting is the process of shaping the output result so it’s different from the entity
that’s being queried. The object containing the order date and the shipping address
information is a projection of the Order entity. You already had a sneak peek at pro-
jecting in listing 4.2 with the Select method.

NOTE Projection isn’t an Entity Framework or LINQ to Entities term. It’s a
general concept for the shaping of a result. For instance, in SQL a query
like SELECT companyid, name FROM company is considered a projection.

A projection can contain properties coming from a single entity as well as entities ref-
erenced by navigation properties. Properties may be used to calculate new values that
later are projected in the final result. The only limit to the possibilities of projections
is your imagination (and business needs).

LINQ to Entities has one method for projecting: Select. Let’s start with a simple
query that returns the ID, the order date, and the shipping address of all orders:

C#
var result = from o in ctx.Orders
 select new { o.OrderId, o.OrderDate, o.ShippingAddress };

VB
Dim result = From o In ctx.Orders
 Select New With { o.OrderId, o.OrderDate, o.ShippingAddress }

The Select clause is where you specify the shape of the output objects. It accepts the
list of properties that represent the projected object to be created. Notice how anony-
mous types and type inferences shine in this query. The output result is a list of anon-
ymous objects because the output type is created only at compile time. What’s more,
you resort to the var keyword for C#, or Dim for VB, to declare the result variable.

 What you’re doing here is creating an anonymous object for each record retrieved
from the database and placing it in a collection. The names of the properties are auto-
matically inferred by the compiler, using the names of the original properties. In this
case, the object will have the properties OrderId, OrderDate, and ShippingAddress.

 Despite the fact that the result is a list of anonymous types, Visual Studio is still able
to offer autocompletion for the properties, and the compiler can still check that the

query is correct.

91Projecting results

 The user isn’t happy yet. Now they want to see the address information in a single
column of the grid, because they need to cut and paste it easily. Yes, this requirement
should be handled by the interface code, but for the sake of this demonstration, let’s
see how you can handle this requirement using LINQ to Entities.

 You can group several properties into a new property or even into a new nested
anonymous type. The first option is what we need in this situation.

C#
from o in ctx.Orders
select new {
 o.OrderId,
 o.OrderDate,
 ShippingAddress = String.Format("{0}-{1}-{2}-{3}",
 o.ShippingAddress.Address,
 o.ShippingAddress.City,
 o.ShippingAddress.ZipCode
 o.ShippingAddress.Country)
};

VB
From o In ctx.Orders
Select New With {
 o.OrderId,
 o.OrderDate,
 .ShippingAddress = String.Format("{0}-{1}-{2}-{3}",
 o.ShippingAddress.Address,
 o.ShippingAddress.City,
 o.ShippingAddress.ZipCode
 o.ShippingAddress.Country)
}

This listing is slightly different from the first query in this section because the name of
the property that combines all address-related properties (ShippingAddress) can’t be
inferred automatically by the compiler due to its composed nature. Putting the name
of the property before the expression allows you to assign an arbitrary name to the
property. All properties names can be modified this way.

 As we said previously, you can create an anonymous type inside another anony-
mous type. For instance, in the following listing you retrieve only the ID, the date, and
the address and city of both billing and shipping addresses.

C#
from o in ctx.Orders
select new { Anonymous type
 o.OrderId,
 o.OrderDate,
 Shipping = new

Nested
anonymous
type

 {
 o.ShippingAddress.City,
 o.ShippingAddress.Address
 }

Listing 4.6 Grouping the shipping address information into a single property

Listing 4.7 Nesting anonymous types to group properties
};

92 CHAPTER 4 Querying with LINQ to Entities

VB
From o In ctx.Orders
Select New With { Anonymous type
 o.OrderId,
 o.OrderDate,
 .Shipping = New With

Nested
anonymous
type

 {
 o.ShippingAddress.City,
 o.ShippingAddress.Address
 }
}

Like filtering, projections can involve more than one entity, because associated enti-
ties can participate in projections too. In the next section, we’ll look at how this fea-
ture works.

4.2.1 Projecting with associations

So far, you’ve learned that associations are important not only for model expressive-
ness, but even for Entity Framework, which uses them to simplify searches through
LINQ to Entities. It’s not surprising that associations can participate in the projection
mechanism too. There are almost no differences between projecting an association
collection or a single association. In both cases, the syntax is similar to what you have
seen already.

PROJECTING WITH A SINGLE ASSOCIATION

The user’s next requirement is to add customer information to the columns shown in
the grid. The power of the Select method makes this easy.

 Projecting with single associations is easy because of its one-to-one nature. The
associated class is an extension of the main class you’re querying, so creating a new
object with the necessary properties from both classes is natural. As you can see, the
following code retrieves projected orders and their customers:

C#
from o in ctx.Orders
select new { o.OrderId, o.OrderDate, o.ShippingAddress, o.Customer };

VB
From o In ctx.Orders
Select New With { o.OrderId, o.OrderDate, o.Customer }

Retrieving the full customer isn’t necessary, though, because all the user needs to see
is the name. The following solution flattens the objects with associations into a single
object with the necessary data.

C#
from o in ctx.Orders
select new
{
 o.OrderId,

Listing 4.8 Retrieving orders and customer information in a single object
 o.OrderDate,

93Projecting results

 o.ShippingAddress,
 o.Customer.Name
};

VB
From o In ctx.Orders
Select New With
{
 o.OrderId,
 o.OrderDate,
 o.Customer.CompanyId,
 o.ShippingAddress,
 o.Customer.Name
}

In the real world, working with anonymous types can be painful. They can’t be exposed
to the outer layers unless you expose them as an Object instance. In our experience,
this isn’t practical, so you have to find another way to make the data available.

 One option is to iterate over the returned objects and then instantiate the entities,
filling in only the properties extracted by the query; but this is a waste of code and
runtime performance.

 The most natural fix for this problem would be to use object initializers to create
an instance of a model entity, initializing only the properties you need. Unfortunately,
that’s not allowed by Entity Framework, because only full instances of the model enti-
ties can be created with LINQ to Entities (in section 4.2.2, we’ll discuss this caveat).

 The alternative that we strongly recommend is to create a data transfer object
(DTO) and fill it with the projected data directly in the query, as shown here.

C#
public class OrderDTO

Declares
DTO

{
 public int Id { get; set; }
 public DateTime OrderDate { get; set; }
 public AddressInfo ShippingAddress { get; set; }
 public string CustomerName { get; set; }
}

from o in ctx.Orders
select new OrderDTO
{
 Id = o.OrderId,

Sets DTO
properties

 OrderDate = o.OrderDate,
 ShippingAddress = o.ShippingAddress,
 CustomerName = o.Customer.Name
};

VB
Public Class OrderDTO

Declares
DTO

 Public Property Id() As Int32
 Public Property OrderDate() As DateTime
 Public Property ShippingAddress() As AddressInfo
 Public Property CustomerName() As String

Listing 4.9 Retrieving orders and customer information in a DTO
End Class

94 CHAPTER 4 Querying with LINQ to Entities

From o In ctx.Orders
Select New OrderDTO With
{
 .Id = o.OrderId,

Sets DTO
properties

 .OrderDate = o.OrderDate,
 .ShippingAddress = o.ShippingAddress,
 .CustomerName = o.Customer.Name
}

The code is pretty simple. You define a new DTO class and then fill it instead of creat-
ing an anonymous type.

 Now let’s take a look at how projecting with collection associations works.

PROJECTING WITH COLLECTION ASSOCIATIONS

The user again changes their specifications. Now the grid must also list the details for
each order.

 This is a new challenge. Now you aren’t working with a single related entity but
with a collection. Fortunately, the following snippet is all you need to fulfill the task:

C#
from o in ctx.Orders
select new { o.OrderId, o.OrderDate, o.ShippingAddress, o.OrderDetails };

VB
From o In ctx.Orders
Select New With { o.OrderId, o.ShippingAddress, o.OrderDetails }

The result is an anonymous type with a scalar property (OrderId), a complex property
(ShippingAddress), and a third property that contains order details.

 Naturally, the user doesn’t need the full order detail properties—only a subset of
them. This means you have to perform a nested projection to retrieve only the desired
properties from each detail. This may sound difficult, but it turns out to be pretty easy.

C#
from o in ctx.Orders
select new
{
 o.OrderId,
 o.OrderDate,
 o.ShippingAddress,
 Details = from d in o.OrderDetails
 select new
 {
 d.OrderDetailId, d.Product.ProductId, d.Quantity
 }
};

VB
From o In ctx.Orders
Select New With
{

Listing 4.10 Retrieving projected orders and their projected details
 o.OrderId,

95Projecting results

 o.OrderDate,
 o.ShippingAddress,
 .Details = From d In o.OrderDetails
 Select New With
 {
 d.OrderDetailId, d.Product.ProductId, d.Quantity
 }
}

On seeing the new version, the user decides that displaying all the details along with
the containing order makes the grid unreadable. Now the user wants to see only the
order total instead of all its details. This means the returned type can be a flat struc-
ture again, because you no longer have a collection property. Let’s look at how you
can retrieve a single column from the collection property.

C#
from o in ctx.Orders
select new
{
 o.OrderId,
 o.OrderDate,
 o.ShippingAddress,
 Total = o.OrderDetails.Sum(
 d => d.Quantity * (d.UnitPrice - d.Discount))
};

VB
From o In ctx.Orders
Select New With
{
 o.OrderId,
 o.ShippingAddress,
 .Total = o.OrderDetails.Sum(Function(d)
 d.Quantity * (d.UnitPrice - d.Discount))
}

As you can see, projecting with collection associations isn’t very challenging. With a bit
of practice, you can easily manage the methods you need. What’s even more interesting
is that the association can be queried too. In listing 4.11, you use the Sum method to cal-
culate the total amount of each order, but you could also filter the details or sort them.

4.2.2 Projections and object tracking

When working with projected objects, you have to keep a couple of points in mind
regarding the object-tracking mechanism you first saw in chapter 1 (and which we’ll
return to in chapter 6):

 Object Services doesn’t allow you to create model entities filling only some
properties. You can’t use object initializers in a projection to set the properties
of a model entity. Although it’s syntactically correct, the engine will throw a

Listing 4.11 Retrieving projected orders and their total
NotSupportedException at runtime with the message, “The entity or complex

96 CHAPTER 4 Querying with LINQ to Entities

type 'EntityType' cannot be constructed in a LINQ to Entities query.” This hap-
pens because object tracking only tracks objects whose type implements the
IEntityWithChangeTracker interface (automatically implemented by the
proxy). If they aren’t fully loaded, it can’t correctly monitor changes and send
them back to the database. That means this code is not valid:

C#
.Select(o => new Order { OrderId = o.OrderId });

VB
.Select(Function(o) New Order With { .OrderId = o.OrderId })

The alternative is to use DTOs.

 Object Services doesn’t track anonymous entities. Because the object tracker only
tracks objects whose type implements IEntityWithChangeTracker, anonymous
types are ignored.

You should now have a clear understanding of the two main query building blocks: fil-
tering and projecting. Another feature that’s often required is grouping. In the next
section, we’ll look at how you can use the power of LINQ to Entities to perform such
tasks.

4.3 Grouping data
LINQ to Entities allows you to group data and create even projections with shaped
data, as you’ve seen in previous examples. A model offers a first level of grouping for
free. You often have to group orders based on the customer who placed them, and the
domain model represents this grouping naturally, because every Customer object con-
tains a list of its orders. When we talk about grouping, we’re referring to a different
level, where you use a simple property as the key for a grouping.

LINQ to Entities allows you to group data by using either query syntax or query
methods. In VB, the syntax is Group By ... Into Group, where the ellipsis in the mid-
dle contains the name of the grouping property. In C#, the query syntax uses the
group ... by ... clause, where the first ellipsis is filled with the name of the variable
declared in the from clause, and the second is filled with the grouping property. For
example, suppose you had to return all orders grouped by shipping city. You could
write the following query:

C#
from c in ctx.Orders
group c by c.ShippingAddress.City;

VB
From c In ctx.Orders
Group By c.ShippingAddress.City Into Group

The result type is a bit complex, because it’s an object of type IEnumerable<IGrouping
<string, Order>>. IGrouping is a special class with a key property—the shipping

address value in this case—and a value property, which is an IEnumerable<T> holding

97Grouping data

all the objects that correspond to the key. For instance, if the key property value is
Miami, the value property contains the order shipped to that city. Figure 4.2 summa-
rizes the structure.

Figure 4.2 The structure returned by a grouping query

 Iterating over this result requires a loop of all the keys and a nested loop that iter-
ates over the values associated with the keys.

C#
foreach (var key in result)
{
 Console.WriteLine(key.Key);
 foreach (var item in key)
 Console.WriteLine(item.OrderId);
}

VB
For Each key In result
 Console.WriteLine(key.City)
 For Each item In key.Group
 Console.WriteLine(item.OrderId)
 Next
Next

By default, C# assigns the name Key to the key property, whereas VB uses the grouping
property name. You can’t override this behavior, but by giving a name to the group
and using projection, you can name the key and the value properties in any way you
prefer. Naming the group requires different coding styles across languages.

 In VB, there’s no need to use the Select clause, because everything can be man-
aged in the Group By clause. After this clause, you add the new name of the key prop-
erty, followed by the equals (=) symbol and the grouping property. After the Into
keyword, you put the name of the property that contains the entities that correspond

Listing 4.12 Iterating over the results of a grouping query
to the key, followed by the = Group string.

98 CHAPTER 4 Querying with LINQ to Entities

 In C#, you need to modify the group by clause, adding the keyword into after the
grouping key and stating the name of the group after that. Later, you have to add a
select clause where you create a new anonymous type. It must contain the property
for the key, with a different name if necessary, and the property that contains the enti-
ties that correspond to the key. This can be renamed if you want; otherwise it will take
the name of the group.

 Because the projection changes the way data is returned by the query, you have to
adapt the iteration code to reflect this change. Here’s how all this theory works in
practice.

C#
var result = from c in ctx.Orders
 group c by c.ShippingAddress.City into oGroup
 select new { CityName = oGroup.Key, Items = oGroup };

foreach (var key in result)
{
 Console.WriteLine(key.CityName);
 foreach (var item in key.Items)
 Console.WriteLine(item.OrderId);
}

VB
Dim result = From c In ctx.Orders
 Group By CityName = c.ShippingAddress.City Into Items = Group

For Each key In result
 Console.WriteLine(key.CityName)
 For Each item In key.Items
 Console.WriteLine(item.OrderId)
 Next
Next

We’ve mentioned the grouping key, but we didn’t explain what a key can be. So far,
you’ve used a single property, but that’s only one of the possibilities. Often, you’ll
need to group data by multiple properties. For instance, you might want to group
orders by shipping city and ZIP code, to better organize the shipments. Even in this
case, there are differences between languages. In VB, you can insert a city and ZIP
code separated by a comma, whereas in C# you have to use anonymous types to specify
an object as a key and put the city and ZIP code into it. This is shown in the following
listing.

C#
var result = from o in ctx.Orders
 group o by new
 {

Listing 4.13 Changing the names of grouped data

Listing 4.14 Using multiple properties for grouping
 o.ShippingAddress.City, o.ShippingAddress.ZipCode

99Grouping data

 };

foreach (var key in result)
{
 Console.WriteLine(key.Key.City + "-" + key.Key.ZipCode);
 foreach (var item in key)
 Console.WriteLine(item.OrderId);
}

VB
Dim result = From o In ctx.Orders
 Group By o.ShippingAddress.City, o.ShippingAddress.ZipCode
 Into Group

For Each key In result
 Console.WriteLine(key.City & "-" & key.ZipCode)
 For Each item In key.Group
 Console.WriteLine(item.OrderId)
 Next
Next

Just as the key can be customized to reflect your needs, the grouped data can be pro-
jected to save resources. You can invoke the Select method on the value list inside the
Select method on the grouping, like this.

C#
from o in ctx.Orders
group o by o.ShippingAddress.City into g
select new
{
 g.Key,
 Items = g.Select(og => new { og.OrderId, og.OrderDate })
};

VB
From o In ctx.Orders
Group By o.ShippingAddress.City Into g = Group
Select New With
{
 City,
 .items = g.Select(Function(og) New With { og.OrderId, og.OrderDate })
}

The power of projection allows the grouped data to contain information from associ-
ated entities, too. We won’t show you how to do this because it’s similar to what you
saw in the section 4.2.

LINQ to Entities allows you to filter data even after it’s been grouped. That’s our
next topic.

Listing 4.15 Projecting the grouped data

100 CHAPTER 4 Querying with LINQ to Entities

4.3.1 Filtering aggregated data

Filtering on aggregated data is the equivalent of using the HAVING clause in SQL. For
example, you may want to search for orders grouped by city, where the total number
of orders is higher than a given number. This can be achieved easily by using LINQ
methods belonging to the aggregate family.

C#
from o in ctx.Orders
group o by o.ShippingAddress.City into g
where g.Count() > 2
select g;

VB
From o In ctx.Orders
Group By o.ShippingAddress.City Into g = Group
Where g.Count() > 2

The where clause after the grouping affects only the grouped data. If you need to fil-
ter data before it’s grouped, you have to invoke the where before the grouping.
Depending on where you place the where clause, the variables in the query can go out
of scope. Let’s modify the example in listing 4.16. If you were to place the where
before the group by clause, the o variable would be in scope, but the g variable
wouldn’t be in scope because it’s not declared yet. In contrast, if you placed the where
clause after the group by clause, the variable o would be out of scope and couldn’t be
referenced, whereas g would be in scope and could be used.

 Now that you’re a master of filtering, projecting, and grouping, you’re ready to
into another feature of LINQ to Entities: sorting. It’s one of the easiest tasks enabled
by LINQ to Entities. The situation is a bit more complicated when associations are
involved, but you should be comfortable enough with them now.

4.4 Sorting
Our beta-testing user is back with requests for lots of new features. The first relates to
the order in which results are shown. The user wants data to be sorted by the shipping
city and ZIP code.

 You’ll be delighted to know that LINQ has an extension method that enables sort-
ing by one or multiple properties; and it’s no surprise that LINQ to Entities provides its
own implementation of this method, which translates into an ORDER BY SQL statement.

 Query syntax has the orderby clause in C# and Order By in VB. These clauses
accepts the (comma-separated) properties on which the sorting operation is based. By
default, the data is sorted in ascending order, but you can override this by adding the
keyword descending for C# or Descending for VB after the sorting property. If you
have multiple properties that need to be in descending order, you’ll have to add the
keyword after each of them. As in SQL, although the ascending sorting order happens
by default, you can still specify it using the keyword ascending for C# or Ascending for

Listing 4.16 Grouping orders only for cities that have more than two orders
VB. Here’s an example.

101Sorting

C#
from o in ctx.Orders
orderby o.ShippingAddress.City
select o;

from o in ctx.Orders
orderby o.ShippingAddress.City, o.ShippingAddress.ZipCode descending
select o;

VB
From o In ctx.Orders
Order By o.ShippingAddress.City

From o In ctx.Orders
Order By o.ShippingAddress.City, o.ShippingAddress.ZipCode Descending

There’s little to discuss about sorting in a single class. It gets more interesting when
you need to sort data by a property of an associated class.

4.4.1 Sorting with associations

The user now wants to show the most valuable orders at the top of the grid. In this
case, the sorting is based on an aggregated value instead of a simple field.

 Fortunately, this solution isn’t complicated. You already know all the basics.

C#
from o in ctx.Orders
orderby o.OrderDetails.Sum(
 d => d.Quantity * (d.UnitPrice - d.Discount))
select new
{
 o.OrderId,
 o.OrderDate,
 o.ShippingAddress,
 Total = o.OrderDetails.Sum(
 d => d.Quantity * (d.UnitPrice - d.Discount))
};

VB
From o In ctx.Orders
Order By o.OrderDetails.Sum(
 Function(d) d.Quantity * (d.UnitPrice - d.Discount)
)
Select New With
{
 o.OrderId,
 o.OrderDate,
 o.ShippingAddress,
 .Total = o.OrderDetails.Sum(Function(d)
 d.Quantity * (d.UnitPrice - d.Discount))

Listing 4.17 Sorting with single and multiple properties

Listing 4.18 Sorting by an aggregated value of association
}

102 CHAPTER 4 Querying with LINQ to Entities

The result of this query is an IOrderedQueryable<T> object. Because IOrdered-
Queryable<T> implements IEnumerable<T>, it can be iterated using a foreach state-
ment, a data-binding operation, or another enumeration mechanism.

 Associated data can be ordered too. The only way to perform such an operation is
to use projections and create a property in the anonymous type that holds sorted data.
For instance, you might want to retrieve orders and their details, sorted by quantity, to
bind them to a grid.

C#
from o in ctx.Orders
select new
{
 o.OrderId,
 o.ShippingAddress.City,
 Details = o.OrderDetails.OrderBy(d => d.Quantity)
};

VB
From o in ctx.Orders
Select New With
{
 o.OrderId,
 o.ShippingAddress.City,
 .Details = o.OrderDetails.OrderBy(Function(d) d.Quantity)
}

When it comes to single associations, the solution is even simpler, because no aggrega-
tion must be performed—you can use an external property as if it were a property of
the queried class. That’s what the next snippet shows, retrieving orders sorted by the
city of their customer:

C#
from o in ctx.Orders
orderby o.Customer.ShippingAddress.City
select o;

VB
From o in ctx.Orders
Order By o.Customer.ShippingAddress.City

We mentioned that the SQL generator uses mapping information to handle joins
between tables when associated entities are involved in a query. There are situations
when foreign keys aren’t enough to join tables, and other columns must be used. In
this situation, you have to handle joins manually, overriding the default behavior. In
the next section, we’ll cover this topic.

4.5 Joining data
When you write queries that span multiple associated tables, these joins are automati-

Listing 4.19 Retrieving projected orders and details ordered by quantity
cally handled by the SQL generator, and you don’t have to worry about them. But

103Joining data

there are situations where a relationship between properties exists, but it can’t be rep-
resented using foreign keys. In such cases, you can use the join clause.

 We have never found a situation where we had to resort to a join. The navigable
nature of the model and the query capabilities of LINQ to Entities make joins almost
useless.

NOTE In his blog, a program manager on the Entity SQL team affirmed
the following: “A well defined query against a well defined entity data
model doesn’t need JOIN. Navigation properties in combination with
nesting sub-queries should be used instead. These latter constructs repre-
sent task requirements much more closely than JOIN does. That makes it
easier to build and maintain correct Entity SQL queries.” This statement
was intended for Entity SQL, but it’s valid for LINQ to Entities as well. You
can find Zlatko Michailov’s original post, “Entity SQL Tip #1,” at http://
mng.bz/4k7j.

Let’s look at a practical example showing how unimportant manual joins are. Assume
you have to find orders where the shipping city is the same as the city set in the cus-
tomer profile. In the SQL world, you would join the Order and Company tables using
the CompanyId and ShippingCity columns. In the LINQ to Entities world, the
approach remains the same because when you’re manually joining objects, the SQL
generator ignores the relationships between classes. You can write queries like these.

C#
from o in ctx.Orders
join c in ctx.Companies

Join by single
property

B

 on o.ShippingAddress.City equals c.ShippingAddress.City
select o;

from o in ctx.Orders
join c in ctx.Companies.OfType<Customer>()

Join by multiple
properties

C

 on new { o.ShippingAddress.City, o.Customer.CompanyId }
 equals new { c.ShippingAddress.City, c.CompanyId }
select o;

VB
From o In ctx.Orders
Join c In ctx.Companies.OfType(Of Customer)

Join by single
property

B

 On o.ShippingAddress.City Equals c.ShippingAddress.City
Select o

From o In ctx.Orders
Join c In ctx.Companies.OfType(Of Customer)

Join by multiple
properties

C

 On New With { o.ShippingAddress.City, o.Customer.CompanyId }
 Equals New With { c. ShippingAddress.City, c.CompanyId }
Select o

In the preceding listing, you see that there’s little difference between joins that

Listing 4.20 Writing queries that use joins
involve a single property B and those that involve more C. In the first case, you put

http://mng.bz/4k7j
http://mng.bz/4k7j

104 CHAPTER 4 Querying with LINQ to Entities

property names where required, and in the second you have to create an anonymous
type and put all join properties into it.

NOTE The preceding code uses the OfType<T> method. It is a LINQ
method that in this example is required to ensure that the orders are
joined with customers only. You’ll learn more about this method in the
next section.

The queries in listing 4.20 work correctly, but the join can be easily avoided by using a
where clause. This requires you to write less code and consequently keeps it simple
and readable:

C#
from o in ctx.Orders
where o.Customer.ShippingAddress.City == o.ShippingAddress.City
select o;

VB
From o in ctx.Orders
Where o.Customer.ShippingAddress.City = o.ShippingAddress.City

We aren’t saying that joins must never be used, but a well-designed model only
requires them to be applied in particular cases that must always be evaluated.

 The example in listing 4.20 returns orders only if the customer data corresponds
to filters expressed in the join clause. In particular cases, though, you may need to
return orders even if the customer data doesn’t correspond to filters expressed in the
join clause. To achieve this result using SQL, you use an OUTER JOIN, but in LINQ to
Entities you have to resort to a group join like the one in the following listing.

C#
from o in ctx.Orders
join c in ctx.Companies.OfType<Customer>()
 on new { o.ShippingAddress.City, o.Customer.CompanyId }
 equals new { c.ShippingAddress.City, c.CompanyId }
 into g
from item in g.DefaultIfEmpty()
select o;

VB
From o In ctx.Orders
Group Join c In ctx.Companies.OfType(Of Customer)()
 On New With _
 {.City = o.ShippingAddress.City, .CustomerId = o.Customer.CompanyId} _
 Equals New With _
 {.City = c.ShippingAddress.City, .CustomerId = c.CompanyId} _
 Into g = Group
From item In g.DefaultIfEmpty()
Select o

Real-world models use inheritance, and OrderIT is no exception. The customer/sup-

Listing 4.21 Performing a group join to simulate SQL OUTER JOIN clause
plier and product scenarios rely heavily on this feature. Querying with inheritance is full

105Querying with inheritance

of intricacies, but once again LINQ to Entities comes to the rescue. It’s not always easy,
but when you have learned how to avoid the pitfalls, you’ll be ready to jump this hurdle.

4.6 Querying with inheritance
Inheritance introduces the concept of the polymorphic query. This type of query consid-
ers the inheritance hierarchy and returns objects that might be of different types but
that inherit from the same base class.

 Suppose you want to retrieve all products. What you receive from a polymorphic
query is a list of Product objects, but the concrete types are Shirt or Shoe because the
engine instantiates the correct type automatically. Not only do you get the correct type
automatically, but you can even apply filters based upon the type. For instance, you
can retrieve only shoes or only shirts.

 Our beloved beta-testing user is finally happy about the way OrderIT shows orders.
Now the user wants to concentrate on products. At first, they want to see all the prod-
ucts in a single page. This is trivial:

C#
from p in ctx.Products
select p;

VB
From p In ctx.Products

The result of this snippet is a list of Product objects, but the real types are one of its
concrete inherited classes. This is clearly visible in figure 4.3.

Figure 4.3 Seven products: five of type Shirt and two of type Shoe

Next, the user wants to apply a filter based on the type of product. LINQ offers two
ways of specifying a type: the type equality operator (is for C#; TypeOf for VB) and the
OfType<T> method. There is an important difference between these approaches. The
equality operator performs a filtering operation, whereas the OfType<T> method not
only filters, but also casts the result to the searched-for type. The following listing
makes it clear.

C#
IEnumerable<Product> products = from p in ctx.Products
 where p is Shoe

Listing 4.22 Filtering products by type
 select p;

106 CHAPTER 4 Querying with LINQ to Entities

IEnumerable<Shoe> shoes = from p in ctx.Products.OfType<Shoe>()
 select p;

VB
Dim products As IEnumerable(Of Product) = From p in ctx.Products
 Where TypeOf p is Shoe

Dim shoes As IEnumerable(Of Shoe) = From p in ctx.Products.
 OfType(Of Shoe)()

Due to this subtle difference, choosing between the methods isn’t a matter of personal
taste. Suppose you have several product types, and you need to find only shoes and
shirts.

 In this case, using OfType<T> is possible, but it’s complicated because you have to
merge two queries that retrieve different objects. Before merging the results, you have
to cast their inner objects to the Product base class. In contrast, the equality operator
doesn’t alter the final result, so you don’t need to do any extra work after the filter.

 In other scenarios, you may want to search only for products of a specific type. In
this case, using the OfType<T> method is the best way to go.

 Filtering on properties of the base class can be done the same way. The user now
wants to filter on data of an inherited type. For example, the user needs all shoes
whose Sport property contains Basket. This is another scenario where OfType<T>
works like a charm. Because OfType<T> casts the data, the where method (which is put
after the OfType<T> method in the query) already knows that the output type is Shoe,
so the search is pretty simple:

C#
from p in ctx.Products.OfType<Shoe>()
where p.Sport == "Basket" select p;

VB
From p In ctx.Products.OfType(Of Shoe)()
Where p.Sport = "Basket

But what if you want to find all “basket” shoes but have them returned as a list of
Product objects? In this case, the preceding code doesn’t work because it returns a list
of Shoe objects.

 You have two solutions: use the LINQ Cast<T> method, which casts the items
back to Product, or cast the object in the Where clause to the desired type and apply
the filter. With the second option, you can’t use explicit casting—that would cause a
runtime exception. You have to resort to a soft-casting operator like as for C# and
TryCast for VB.

C#
from p in ctx.Products Scans all

products
B

where (p as Shoe).Sport == "Basket"
select p;

Listing 4.23 Filtering products by type and data, and returning them as base types

107Using functions

(from p in ctx.Products.OfType<Shoe>() Scans only
shoes

C
 where p.Sport == "Basket" select p)
.Cast<Product>();

VB
From p In ctx.Products Scans all

products
B

Where TryCast(p, Shoe).Sport = "Basket"

(From p In ctx.Products.OfType(Of Shoe)() Scans only
shoes

C
 Where p.Sport = "Basket").
Cast(Of Product)

In the first option B, the desired type is Product, so all products are scanned and
only the “basket” shoes are returned. The same path is followed by the generated SQL:
it scans all Product, Shoe, and Shirt tables and uses a select case SQL clause to iden-
tify whether a row is about a shoe or a shirt, wasting lots of resources because you
don’t need to fetch data from the Shirt table. (The select case syntax is valid for SQL
only; other databases will use a different syntax.)

 In the second option C, because it’s immediately stated that the desired type is
Shoe, the generated SQL uses only the Product and Shoe tables, optimizing the per-
formance of the query. Unless you have a strong motivation to use the casting in the
where, always prefer the OfType<T> method.

 There is another performance caveat to keep in mind when querying hierarchies
persisted via table per type (TPT). Consider the following query:

C#
from p in ctx.Products
select p.Name;

VB
From p In ctx.Products
Select p.Name

The only column involved is Name, which is in the Product table. What you’d proba-
bly expect is that the generated SQL only queries that table. Well, it’s not like that. The
SQL performs an outer join with all tables involved in the hierarchy (Shirt and Shoe),
even if doing so is completely useless. This is the sort of case where a stored procedure
is the best way to go.

 So far, you’ve used standard LINQ methods. They’re powerful, but they don’t cover
all the querying possibilities. LINQ to Entities allows you to potentially apply any CLR
method, but the SQL translation engine doesn’t understand everything. What’s more,
you might have a database function or custom functions that would be useful in LINQ
to Entities queries, but there’s no way to use these functions. This is where the new
Entity Framework 4.0 functions feature comes into play.

4.7 Using functions
Functions are a convenient way to extend the capabilities of LINQ to Entities queries.
Four types of functions can be applied:

108 CHAPTER 4 Querying with LINQ to Entities

 Canonical functions —A set of predefined functions that expose functionalities
not natively available in LINQ to Entities

 Database functions —A set of predefined SQL Server–only functions
 Model defined functions —User-defined Entity SQL functions stored in the EDM

 Custom database functions —User-defined database functions that can be used in
queries

In this section, we’ll only cover the canonical and SQL database functions because
they can be used easily. The other two options deserve more explanation and require
a deeper knowledge of Entity Framework. They will be discussed in chapter 11.

4.7.1 Canonical functions

Canonical functions are utility methods that express an operation on the database. For
instance, there are functions that perform math algorithms, date comparisons, and so
on. In Entity Framework v1.0, canonical functions could only be executed in Entity
SQL queries, but now they’ve been wrapped in conveniently marked CLR methods
that can be invoked by LINQ to Entities. This change has widened LINQ to Entities’
capabilities by reusing existing features.

 Let’s look at an example. Our user has decided they want a list of orders that have
taken more than five days to ship. This is pretty easy using a LINQ query:

C#
from o in ctx.Orders
where o.OrderDate.AddDays(5) < o.ActualShippingDate
select o;

VB
From o In ctx.Orders
Where o.OrderDate.AddDays(5) < o.ActualShippingDate

The query compiles, but at runtime you get an exception because the translation
engine isn’t able to translate the AddDays method into the appropriate SQL.

 Canonical functions cover this hole by introducing the DiffDays method, which
accepts the two dates as arguments and returns the number of days difference
between them. This method, and all others that are part of the canonical function
family, is exposed via the EntityFunctions class in the namespace System.Data.
Objects, as shown here:

C#
from o in ctx.Orders
where EntityFunctions.DiffDays(o.OrderDate, o.ActualShippingDate) > 5
select o;

VB
From o In ctx.Orders
Where EntityFunctions.DiffDays(o.OrderDate, o.ActualShippingDate) > 5

Another example where canonical functions help is with mathematical functions.
Rounding off a number, rounding to the next upper or lower integer, and elevat-

ing a number to the nth power are all operations that can be performed using the

109Using functions

methods in the System.Math class. Like the DateTime methods, the Math methods
aren’t supported by the SQL translation engine, which raises an exception at run-
time. The alternative is using the methods Pow, Round, Ceiling, and Floor in the
EntityFunctions class.

 Such functions can obviously be invoked anywhere in a query, and not only in a
where clause. For instance, you can use the Abs function to extract the absolute value
of a number in the select clause.

 Canonical functions are Entity SQL database-agnostic functions. But in many cases,
tying your code to a specific database isn’t a problem, because you know you’ll never
change. Should this be the case, you can invoke database-specific functions to make
the best use of a platform.

4.7.2 Database functions

Each database has its own set of functions. Some of them are common across different
RDBMSs like ABS, LTrim, RTrim, and can be invoked via LINQ to Entities or entity
functions. Other functions are peculiar to each database or have different signatures.

 Fortunately, you can invoke these sorts of functions too. Entity Framework ships
with a bunch of SQL Server–specific functions exposed by the SqlFunctions class
under the namespace System.Data.Objects.SqlClient. Checksum, CharIndex, Cos,
GetDate, and Rand are examples of available functions.

 Apart from the fact that the canonical and database functions belong to different
classes, there’s no difference between using these two types of functions. They’re
invoked as static methods and can be invoked in all sections of a query. The following
code demonstrates this by using a database function to display orders that took more
than five days to ship:

C#
from o in ctx.Orders
where SqlFunctions.DateDiff("d", o.OrderDate, o.ActualShippingDate) > 5
select o;

VB
From o In ctx.Orders
Where SqlFunctions.DateDiff("d", o.OrderDate, o.ActualShippingDate) > 5

NOTE You can write your own custom functions and reuse them in que-
ries. This will be covered in chapter 11.

By using database functions, you tie your code to a specific database (SQL Server in
this example). That isn’t always a good idea, because if you ever have to change data-
bases, you’ll have to change your code. But if you know you won’t ever change the
database that the application uses, you can use database functions without any prob-
lems. Always consider carefully whether you should use these functions or not.

 Using database-specific functions is one of the two ways you can tie your code to a
database platform. The other option is embedding SQL queries in the code. Even if
SQL is a standard language, queries often rely on database specific features, so you

end up tying your code to a specific database.

110 CHAPTER 4 Querying with LINQ to Entities

4.8 Executing handmade queries
There are several reasons you could decide to manually write a query. Perhaps the
SQL generated by the Entity Framework is too slow, or it takes too many resources to
execute. Another case may be when you have to dynamically generate a query that is
so complex that creating the SQL code is easier than using LINQ to Entities.

 In such situations, you can create an SQL command on your own and use the
ObjectContext class’s ExecuteStoreQuery<T> method. It allows you to issue an arbi-
trary query and map the result to a class. Its usage is shown here:

C#
var details = ctx.ExecuteStoreQuery<OrderDetail>
 ("Select * from OrderDetail");

VB
Dim details = ctx.ExecuteStoreQuery(Of OrderDetail)
 ("Select * from OrderDetail")

It’s that easy. The query is executed and col-
umns are automatically mapped to the
entity. The mapping phase has a subtle
caveat: it bypasses the EDM and uses another
mechanism based on a property-column
name match. This behavior is expressed in
figure 4.4.

 The extreme simplicity of this mapping
solution has some limitations:

 If a property is named differently from the corresponding column, the map-
ping isn’t performed and an exception is thrown. You can easily solve this prob-
lem by renaming the column in a query with the AS SQL clause.

 You can’t map entities with complex properties because there’s no way to match
the name of a column with the name of a property inside a complex property.

Naturally, you can map the returning data to any type of class, and not only to those
defined in the EDM. Suppose you created a class with the Quantity, UnitPrice, and
Discount properties and called it OrderDetailProjection. You could write a query
that extracts Quantity, UnitPrice, and Discount columns from the OrderDetail table
and maps the result to OrderDetailProjection. In the end, it’s a handmade projec-
tion, as this listing clearly shows.

C#
public class OrderDetailProjection
{
 public int Quantity { get; set; }
 public decimal UnitPrice { get; set; }
 public decimal Discount { get; set; }

Listing 4.24 Projecting the OrderDetail

OrderDetailld
OrderId
ProductID
Quan�ty
UnitPrice
Discount

OrderDetailResultset

OrderDetailld
OrderId
ProductID
Quan�ty
Unit Price
Discount

Figure 4.4 ExecuteStoreQuery performs
a mapping based on the column name.
}

111Executing handmade queries

var details = ctx.ExecuteStoreQuery<OrderDetailProjection>
 ("Select quantity, unitprice, discount from OrderDetail");

VB
Public Class OrderDetailProjection
 Public Property Quantity As Integer
 Public Property UnitPrice As Decimal
 Public Property Discount As Decimal
End Class

Dim details = ctx.ExecuteStoreQuery(Of OrderDetailProjection)(
 "Select quantity, unitprice, discount from OrderDetail")

Always keep in mind the projection option. It turns out to be useful sometimes.

NOTE Through ExecuteStoreQuery<T>, you can launch a stored proce-
dure too. We recommend not using this option, because Entity Frame-
work natively supports stored procedures, and it offers a few more
options regarding mapping than ExecuteStoreQuery<T> offers.

If the query takes some parameters (and what query doesn’t?), you can use the over-
load of the ExecuteStoreQuery<T> method, which accepts a list of parameters. This
can be tricky, so let’s take a closer look.

4.8.1 Working with parameters

When the Entity Framework team designed how parameters would be passed, there
were plenty of options. The team narrowed the options, and the result is that now you
have two ways of working with parameters:

 Using a numbered list, as in the String.Format method
 Using ADO.NET syntax

Let’s investigate both options in detail.

USING NUMBERED LISTS

This is the easiest method. In the SQL query, you surround a number with curly brack-
ets where the parameter should be. After that, you pass the parameters in the second
argument of the method. The parameters can be either simple values or instances of
the DbParameter class. Here are some recommendations to keep in mind:

 If you use a DbParameter instance, you have to use the concrete type dedicated
to the database provider. For instance, you must use SqlParameter for SQL
Server and OleDbParameter for OLE DB. If you use another instance, you’ll get
an InvalidCastException at runtime.

 If you have multiple parameters, you can’t mix DbParameter instances and plain
values. You have to choose one or the other; otherwise, you’ll get an Invalid-
OperationException at runtime.

 If you use simple values as parameters, they must be passed in the same order as
they appear in the query.

112 CHAPTER 4 Querying with LINQ to Entities

This listing demonstrates all these methods.

C#
var names =
 ctx.ExecuteStoreQuery<string>

Pass parameters
as simple values

 ("SELECT name FROM company

➥ WHERE shippingcity = {0} and billingcity = {1}",
 "New York", "Seattle");

var p0 = new SqlParameter("p0", DbType.String)

Pass parameters
using SqlParameter

 { Value = "New York" };
var p1 = new SqlParameter("p1", DbType.String)
 { Value = "Seattle" };
var names = ctx.ExecuteStoreQuery<string>
 ("SELECT name FROM company

➥ WHERE shippingcity = {0}

➥ and billingcity = {1}", p0, p1);

VB
Dim names = ctx.ExecuteStoreQuery(Of String)(

Pass parameters
as simple values

 "SELECT name FROM company

➥ WHERE shippingcity = {0} and billingcity = {1}",
 "New York", "Seattle")

Dim p0 = New SqlParameter("p0", DbType.String) _

Pass parameters
using SqlParameter

 With {.Value = "New York"}
Dim p1 = New SqlParameter("p1", DbType.String) _
 With {.Value = "Seattle"}
Dim names = ctx.ExecuteStoreQuery(Of String)(
 "SELECT name FROM company

➥ WHERE shippingcity = {0}

➥ and billingcity = {1}", p0, p1)

As you can see, there’s nothing particularly difficult here. Just pay attention to the pit-
falls we mentioned.

NOTE Even if this syntax may lead you to think that you can be affected
by a SQL injection attack, that’s absolutely not the case. Parameters are
always passed to the database as safe.

Now, let’s move on and talk about using classic parameters.

USING CLASSIC PARAMETERS

When you write queries through classic ADO.NET, you’re used to writing something
like this to express parameters:

SELECT * FROM table WHERE id = @id

That syntax is valid for the SQL Server provider. If you’re using the OLE DB provider,
you use a question mark (?) character instead of the @paramname.

 This approach is still perfectly valid using the ExecuteStoreQuery<T> method.

Listing 4.25 Passing query parameters using a numbered list
Instead of the number surrounded by curly brackets, you put the parameter. All the

113Fetching

rest remains exactly the same. The values of the parameters can still be passed as sim-
ple values or as parameters, and they have the same restrictions you saw in the previ-
ous section.

 This listing shows all the possibilities.

C#
var names = ctx.ExecuteStoreQuery<string>

Pass parameters
as simple values

 ("SELECT name FROM company

➥ WHERE shippingcity = @p0 and billingcity = @p1",
 "New York", "Seattle");

var p0 = new SqlParameter("p0", DbType.String)

Pass parameters
using SqlParameter

 { Value = "New York" };
var p1 = new SqlParameter("p1", DbType.String)
 { Value = "Seattle" };
var names = ctx.ExecuteStoreQuery<string>
 ("SELECT name FROM company

➥ WHERE shippingcity = @p0

➥ and billingcity = @p1", p0, p1);

VB
Dim names = ctx.ExecuteStoreQuery(Of String)(

Pass parameters
as simple values

 "SELECT name FROM company

➥ WHERE shippingcity = @p0 and billingcity = @p1",
 "New York", "Seattle")

Dim p0 = New SqlParameter("p0", DbType.String) _

Pass parameters
using SqlParameter

 With {.Value = "New York"}
Dim p1 = New SqlParameter("p1", DbType.String) _
 With {.Value = "Seattle"}
Dim names = ctx.ExecuteStoreQuery(Of String)(
 "SELECT name FROM company

➥ WHERE shippingcity = @p0

➥ and billingcity = @p1", p0, p1)

If you compare this code with that in listing 4.25, you’ll see that only the parameter
declaration in SQL code changes. The rest remains identical, meaning that there’s
nothing more to learn.

 So far, we’ve covered how to write powerful queries. Now let’s see things from
another perspective: how many related entities do you have to query? Should you
retrieve related entities immediately, or only when needed by the code? This is clearly
a fetching problem, and it’s almost independent of whatever queries you write.

4.9 Fetching
We’ve already discussed the fetching mechanism in chapter 1, and you saw it in action
in chapter 2. To make the terminology clear, eager loading refers to loading entities and
their associated data in a single query, whereas lazy loading refers to the automatic
loading of associated entities when they’re used in the code.

Listing 4.26 Passing query parameters using a numbered list

114 CHAPTER 4 Querying with LINQ to Entities

NOTE Fetching isn’t a LINQ to Entities–related task, but it fits in natu-
rally when talking about querying.

Eager loading is often the most performant method for retrieving data. Although it
retrieves lots of data from the database, it hits the database only once, avoiding the
chatty communications that are a prerogative of lazy loading.

4.9.1 Eager loading

Eager loading is enabled via a special method of the ObjectQuery class: Include. This
method accepts a string representing the navigation properties to be loaded. This
string is referred to as the navigation path because it allows you to load an entire graph
of related objects, and not only the properties associated with the one you’re querying.

 Let’s start with the simplest example: an order with its details:

C#
from o in ctx.Orders.Include("OrderDetails")
select o;

VB
From o In ctx.Orders.Include("OrderDetails")

OrderDetails is a property of the Order class that’s being queried here. As we said,
the string parameter of Include is a path by which you can load an entire graph of
properties. This turns out to be useful when you want to retrieve orders plus data
about the details and even the products related to each of them. You simply build a
path, separating the properties with a dot (.):

Include("OrderDetail.Product")

The Include method returns an ObjectQuery<T> instance, meaning that it can be
chained with other calls to the Include method and LINQ to Entities methods.

 The next snippet loads the orders and their details and chains another Include to
load the customer too:

C#
from o in ctx.Orders.Include("OrderDetails.Product").Include("Customer")
select o;

VB
From o In ctx.Orders.Include("OrderDetails.Product").Include("Customer")

This query requires a noticeable amount of time to execute, and it returns to the
application a huge amount of repeated data (because of the JOIN it generates in SQL
code). There’s no need to show the SQL here to make you understand how complex
it is. Naturally, the more related entities you prefetch, and the more complex the
query becomes, the more time it takes to execute and the more data is moved across
the network.

NOTE You saw that the Include method can be chained with any method

you have seen so far. We strongly recommend that you place Include at

115Fetching

the beginning of the query for two main reasons. The first is that placing
the fetching strategy at the beginning makes queries more intuitive. The
second one is more technical: Include belongs to the ObjectQuery<T>
class, whereas LINQ extension methods return IEnumerable<T>. This
means that after you’ve applied a LINQ method, you can no longer use
Include unless you cast the IEnumerable<T> back to ObjectQuery<T>.

What data is loaded for a one-to-many association, and how is this data shaped? The
first answer is that all the associated data is retrieved. If you eager-load the details of an
order, you have no way of filtering them. LINQ to Entities allows you to apply condi-
tions on eager-loaded data, but they’re ignored. As for the how, data can’t be either
sorted or projected. If you need to apply any modification to the associated data, you
have to resort to projecting the entire query, as we discussed in section 4.2.

NOTE Include is translated to a SQL OUTER JOIN clause. Suppose you
need orders and details. If an order doesn’t have any details, you’ll always
get that order. This is correct behavior, because what you’re looking for
are orders.

When retrieving the data in a single round trip is too heavy, you can try obtaining
them only when the code effectively uses them. This is what lazy loading does.

4.9.2 Lazy loading

To lazy-load an associated entity or list of entities, you don’t have to learn anything
new. You can obtain the related entities by accessing the navigation properties.

 Suppose you’ve retrieved all the orders and need to cycle between the details. If
you haven’t prefetched them, you can access them by iterating over the OrderDetails
property. The situation is the same when you’re accessing navigation properties that
refer to a single entity. For instance, if you want to retrieve the customer information,
you can access the Customer property, and magically you have your data, as shown
here.

C#
foreach(var order in ctx.Orders)
{
 Console.WriteLine(order.Id + " " + order.Customer.Name);
 foreach(var detail in order.OrderDetails)
 {
 Console.WriteLine(detail.Id + " " + detail.Quantity);
 }
}

VB
For Each order in ctx.Orders
 Console.WriteLine(order.Id & " " & order.Customer.Name)

Listing 4.27 Customer and details retrieved on demand
 For Each detail in order.OrderDetails

116 CHAPTER 4 Querying with LINQ to Entities

 Console.WriteLine(detail.Id & " " & detail.Quantity)
 Next
Next

NOTE Lazy loading is enabled by default. You can switch it off by setting
the ContextOptions.LazyLoadingEnabled context property to true.
More important, the entity must be attached to a context when the lazy
loading is performed. If you access an entity’s navigation property and
the entity is outside the scope of the context that generated the entity,
you’ll get an InvalidOperationException.

How can a simple access of a property getter trigger a query? If you watch the code of
the property, there’s no trace of such a feature, so how does it happen? Do you remem-
ber the discussion of proxies in section 3.2.7? That’s the answer to these questions.

 When the context creates the proxy class, it detects all properties that navigate to
another entity. For each of them, if they’re marked as virtual for C# or Overridable
for VB, the context overrides the getter, injecting the code necessary to perform a
query to the database to retrieve data. If the property can’t be overridden, the proxy
can’t inject the code, and lazy loading isn’t active. Naturally, if you turn off proxy gen-
eration, the plain class is returned, and there’s no proxy ... no lazy loading ... no party.

 Figure 4.5 shows a simplification of the code for lazy loading inside a proxy.

public class Order
{
 public virtual ICollec�on<OrderDetail> OrderDetails { get; }
}

public class ProxyOrder : Order {
 public override ICollec�on<OrderDetail> OrderDetails {
 get {
 RetrieveFromDatabase();
 return base.ActualShippingDate;
 }
}

Figure 4.5 How the proxy
overrides the code of a property
that navigates to another entity

 Lazy loading is useful, but there are cases where you can’t rely on it because you
may have either disabled proxy generation or you may be outside of the context.
Don’t despair. Entity Framework can still help.

4.9.3 Manual deferred loading

Manual deferred loading is a way to dynamically retrieve a property without using lazy
loading. This feature is enabled by the LoadProperty method of the object context,
and it comes with two flavors: generic and nongeneric.

 The generic version accepts the entity type whose property must be retrieved on
the database as a generic argument, and then the object plus a lambda expression that
states what property must be loaded:

117Fetching

C#
void LoadProperty<T>(T entity, Expression<Func<T, object>> selector);

VB
Sub LoadProperty(Of T)(ByVal entity As T,
 ByVal selector As Expression(Of Func(Of T, Object)))

The nongeneric version accepts two arguments. The first one is the entity, and the sec-
ond is the property to be loaded:

C#
void LoadProperty(object entity, string navigationProperty)

VB
Sub LoadProperty(ByVal entity As Object,
 ByVal navigationProperty As String)

The following listing manually loads the details for each order.

C#
//Generic retrieval
ctx.LoadProperty<Order>(order, o => o.OrderDetails);

//Non generic retrieval
ctx.LoadProperty(order, "OrderDetails")

VB
'Generic retrieval
ctx.LoadProperty(Of Order)(order, o => o.OrderDetails)

'Non generic retrieval
ctx.LoadProperty(order, "OrderDetails")

In order for LoadProperty to work, the main entity must be attached to the context. If
you’re outside of a context, you can create a new one, attach the entity, and then load
the property.

 In a layered architecture, you can place such a method in the infrastructure so that
data access remains encapsulated. Here’s an example.

C#
public void LoadProperty<T>(T entity, Expression<Func<T, object>> selector)
 where T : class
{
 using (var ctx = new OrderITEntities())
 {
 ctx.CreateObjectSet<T>().Attach(entity);
 ctx.LoadProperty<T>(entity, selector);
 }
}

Listing 4.28 Manually retrieving the customer and details

Listing 4.29 Generic method that manually retrieves a property of an entity

118 CHAPTER 4 Querying with LINQ to Entities

VB
Public Sub LoadProperty(Of T As Class)(ByVal entity As T,
 ByVal selector As Expression(Of Func(Of T, Object)))
 Using ctx = New OrderITEntities()
 ctx.CreateObjectSet(Of T)().Attach(entity)
 ctx.LoadProperty(Of T)(entity, selector)
 End Using
End Sub

That’s all you need to know about fetching with Entity Framework.

4.9.4 Choosing a loading approach

Choosing the correct loading strategy makes a great difference in an application.
Often, applications are developed without keeping this in mind, and you end up gen-
erating enormous queries to prefetch all data or plenty of little queries to retrieve
associated data at runtime.

 The second case is the most dangerous. We’ve seen applications where only the
main entity was retrieved, and all associations were loaded at runtime. Everything
worked because of the transparent lazy loading, but performance was at least poor, if
not disastrous.

 Generally speaking, eager loading is better. But you may find situations where you
have to load associated entities only in certain circumstances. For instance, you may
want to load the details only for orders of the last seven days. In this case, loading the
details on demand may be a good choice. What’s worse, SQL generated by eager load-
ing doesn’t always perform well. In some cases, the Entity Framework–generated SQL
contains useless OUTER JOIN commands or retrieves more columns than required.

 Determining the correct fetching strategy is a matter of testing and case-by-case
analysis. There isn’t a simple bulletproof technique.

4.10 Summary
In this chapter, you’ve learned all about the query capabilities of Entity Framework
using LINQ to Entities. This LINQ dialect brings the expressiveness and power of the
object-oriented world to the database querying mechanism in a very transparent way.

 You have learned how to use LINQ to Entities to perform all of the important oper-
ations that you would usually perform in SQL. Projecting, filtering, sorting, grouping,
and joining are all features that LINQ to Entities simplifies as no other framework has
done in the past. What’s more, you have seen how to combine these features to create
complex queries that in SQL would require many, many lines of code and a heavy test-
ing phase.

 We also looked at fetching, which is an important feature. You have seen in prac-
tice how to prefetch and how to fetch on demand data from an associated entity. This
is vital when tweaking performance.

 You have now learned how to create a model, map it against a database, and query
it. What you haven’t seen yet is the EDM structure. You know it contains mapping

information, but that’s all. In the next chapter, we’ll examine it in depth.

Domain model mapping
So far, you’ve learned how to create an application from scratch, defining a model,
mapping it to the database, and performing queries on it. We also looked at creat-
ing and mapping classes using the Visual Studio designer, which hides a lot of com-
plexity, making your life easier. But a strong knowledge of the Entity Data Model
and the code in the model classes is fundamental to mastering Entity Framework.
In this chapter, we’ll dig deep into both subjects so that you’ll be able to completely
understand this aspect of Entity Framework. This chapter covers the mapping of
tables or views to entities. Other features, like stored procedures and function map-
pings, will be discussed in later chapters.

 We’ll first look at the Entity Data Model, its concepts, and Microsoft’s vision
about its future. After that, we’ll discuss how to create entities and map them. You’ll

This chapter covers
 Introducing the Entity Data Model

 Creating Entity Framework domain model classes

 Describing classes

 Describing database

 Mapping classes to database
119

learn how to write an entity from scratch and create the three mapping files that

120 CHAPTER 5 Domain model mapping

allow you to map it to the database. You’ll see how Entity Framework 4.0 supports
POCO (plain old CLR objects) entities and how this positively affects classes.

 Once classes and their mapping are clear to you, we’ll create the association
between them and describe everything in the Entity Data Model. You’ll finally learn
how to create an inheritance hierarchy and how to reflect it into the Entity Data Model.

 By the end of this chapter, you’ll have the knowledge to manually modify the map-
ping files where needed (because the designer isn’t all-powerful). When we talk about
designer customization later, in chapter 13, this knowledge will help you a lot.

 Let’s start by discussing what the Entity Data Model is and how it’s made.

5.1 The Entity Data Model
The Entity Data Model (EDM) is the heart of the Entity Framework. Essentially, Entity
Framework is a tool that decouples the object model from the database by creating an
abstraction layer between them. You develop an application that works with Entity
Framework, which in turn works with the database. This means the application works
only with the object model classes, ignoring the database. It’s the EDM that makes this
decoupling possible.

 You already know that the EDM is split into three sections:

 Conceptual schema (CSDL)—Describes the object model. Classes and their rela-
tionships have their counterparts in this section.

 Storage schema (SSDL)—Describes the database structure. Tables, views, and even
stored procedures and functions are put into this section.

 Mapping schema (MSL)—Maps the CSDL and SSDL. Each class is mapped to one
or more tables, and each property has a corresponding column.

The object model is the reflection of the CSDL, and they must be in sync. (Well,
that’s not completely true. You can create properties in your object model class and
avoid mapping them. They will be ignored by Entity Framework and won’t cause any
problem.)

 Now, you’re probably wondering at least two things:

 Where is the EDM?
 Is there any relationship between the EDM and the EDMX file used by the Visual

Studio designer?

These questions will both be answered in the next section.

5.1.1 The Entity Data Model and Visual Studio designer

When you double-click the EDMX file in the Solution Explorer, Visual Studio opens
the designer, showing entities. But to discover the relationship between the EDM and
EDMX files, let’s follow another path. Right-click the EDMX file and select the Open
With option, as shown in figure 5.1.

 The designer opens the dialog box shown in figure 5.2. Select the XML (Text) Edi-

tor option, and click OK.

Figure 5.1 The context menu displayed when you right-click the EDMX file

Figure 5.2 The Open With dialog box lets you open the EDMX file as an XML file

121The Entity Data Model

Visual Studio will open a new window displaying an XML file that looks a lot like the
EDM. (Note that if the designer is already open, you’ll be prompted about that. Click
Yes to close the designer and open the new window.) The EDMX file contains the
three EDM files plus other information used by the designer, like the positions of the
objects on the canvas, the zoom, the scroll position, and so on.
instead of showing the designer.

122 CHAPTER 5 Domain model mapping

NOTE The fact that EDM and designer data are mixed causes problems
when working in teams. If one person works on the Customer and
Supplier classes, he probably optimizes his view of the designer to see
those entities. Someone else who works on the products will optimize her
view for those classes. Each time the EDMX is checked in, it overrides the
previous view. This problem will be solved in the future, using separate
files: one for the EDM, shared by everyone; and one for the designer data,
which can be kept out of source control.

You can see the collapsed EDMX file in figure 5.3.

Figure 5.3 A collapsed view
of the EDMX file. The
Runtime section contains
the EDM, and the Designer
section contains the designer-
related information.

 The EDM is under the edmx:Edmx/edmx:Runtime path. Inside it, you can see the
storage, conceptual, and mapping schemas. The designer-related information is
stored in the edmx:Edmx/edmx:Designer path. For our discussion, the designer info
isn’t important, so we’ll ignore it.

 The EDMX file is an artifact —it’s necessary to create the designer in Visual Studio.
Entity Framework isn’t interested at all in the EDMX file—it can’t even parse it. Entity
Framework only understands mapping files when they’re split into three: one for the
conceptual schema (*.csdl), one for the storage schema (*.ssdl), and one for the map-
ping schema (*.msl).

 If you look at the metadata attribute of the connection string, you’ll see a refer-
ence to the three mapping files:

metadata=res://*/OrderIT.csdl|res://*/OrderIT.ssdl|res://*/OrderIT.msl
metadata=c:\OrderIT.csdl|c:\OrderIT.ssdl|c:\OrderIT.msl

The EDMX file contains the EDM, but Entity Framework doesn’t understand it. The
connection string references three mapping files that are nowhere in the project: how
does this work? The answer is that at compile time, the designer extracts the sections
from the EDMX file and creates a separate file for each one.

123Creating consumable entities

 These files are either embedded into the assembly or copied into the output direc-
tory. You can specify which by opening the designer properties and setting the
Metadata Artifact Processing property to either Embed in Output Assembly or to
Copy to Output Directory. The setting names are self-explanatory.

 Now that you know the basics of the EDM and how it integrates with Visual Studio,
you’re ready to create and map models. The first thing you need to do when creating
a model is design the entities. Designing a class is the same as writing, or creating, it.

5.2 Creating consumable entities
When the designer generates code to create entities, it performs the following steps:

1 Create the entity’s code.
2 Create the conceptual schema.
3 Create the storage schema.
4 Create the mapping schema.

In the next sections, you’ll manually perform these steps to reproduce the tables and
entities involved in OrderIT’s ordering process and see how mapping works under the
covers.

NOTE By default, the designer emits Entity Framework–aware non-POCO
code—a choice that was made to maintain compatibility with the previ-
ous release. With Entity Framework 4.0, it’s pointless using non-POCO
code. We strongly recommend always using the POCO template that we
introduced in chapter 2.

Let’s start with the first step.

Why POCO is so important
POCO (plain old CLR object) classes lead to persistence ignorance (PI). PI allows the
user to write code that only cares about the business problem without any infrastruc-
ture intrusion. The Order and OrderDetail classes know nothing about Entity
Framework. The persistence engine could be a handwritten data layer, Entity Frame-
work, NHibernate, or something else. What’s more, a clean separation between the
object model classes and the persistence engine allows you to put the classes in the
model assembly (the object model or domain model, depending on your architecture),
leaving to the infrastructure or the data layer (again, depending on the architecture)
the burden of persistence. More separation leads to more maintainability; more main-
tainability leads to better reactions to application changes and bugs; better reactions
lead to happier customers and lower costs; and all of this leads to a great success.

Nonetheless, don’t be deceived by PI. It’s not always needed. We have shipped many
projects using Entity Framework 1.0 without worrying about PI. Those projects were
well designed and efficient, and the customer is happy with them. PI is important and
sometimes would have saved hundreds of lines of code, but it’s not the only key to
a winning project.

http://val
http://val

124 CHAPTER 5 Domain model mapping

5.2.1 Writing the entities

The ordering process in OrderIT includes the Order and OrderDetail entities plus
the AddressInfo complex type. Thanks to the POCO support, you can create such
classes without worrying about persistence (as you’ll notice in listing 5.1). For now,
let’s forget about associations. We’ll discuss them later.

C#
public class AddressInfo
{
 public virtual string Address { get; set; }
 Public virtual string ZipCode { get; set; }
 Public virtual string City { get; set; }
 Public virtual string Country { get; set; }
}

public class Order
{
 public virtual int OrderId { get; set; }
 public virtual DateTime OrderDate { get; set; }
 public virtual AddressInfo ShippingAddress { get; set; }
 public virtual DateTime EstimatedShippingDate { get; set; }
 public virtual DateTime ActualShippingDate { get; set; }
}

public class OrderDetail
{
 public virtual int OrderDetailId { get; set; }
 public virtual int Quantity { get; set; }
 public virtual decimal Price { get; set; }
 public virtual decimal Discount { get; set; }
}

VB
Public Class AddressInfo
 Public Overridable Property Address as String
 Public Overridable Property ZipCode as String
 Public Overridable Property City as String
 Public Overridable Property Country as String
End Class

Public Class Order
 Public Overridable Property OrderId as Int32
 Public Overridable Property OrderDate as DateTime
 Public Overridable Property ShippingAddress as AddressInfo
 Public Overridable Property EstimatedShippingDate as DateTime
 Public Overridable Property ActualShippingDate as DateTime
End Class

Public Class OrderDetail
 Public Overridable Property OrderDetailId as Int32
 Public Overridable Property Quantity as Int32
 Public Overridable Property Price as Decimal
 Public Overridable Property Discount as Decimal

Listing 5.1 Creating the order scenario model
End Class

125Creating consumable entities

That’s all you need to create the entities. Isn’t it great? It’s 19 lines of code, and you’re
done. In Entity Framework 1.0, it would have taken about 70 lines. That’s a huge step
ahead.

 Complex properties deserve more attention. When you instantiate Order, the
address is null because it isn’t created anywhere. This means that you should create
the address every time you create an order, and that’s repetitive and error-prone code.

 You have two options for solving this problem: instantiate the address in the order
constructor, or instantiate it lazily when it’s accessed for the first time. Both options
are shown in listing 5.2.

C#
public Order() Constructor instantiation
{
 ShippingAddress = new AddressInfo();
}

private AddressInfo _ShippingAddress; Lazy instantiation
public virtual AddressInfo ShippingAddress
{
 get
 {
 _ShippingAddress = _ShippingAddress ?? new AddressInfo();
 return _ShippingAddress;
 }
 set
 {
 _ShippingAddress = value;
 }
}

VB
Public Sub New()
 ShippingAddress = New AddressInfo() Constructor instantiation
End Sub

Private _ShippingAddress As AddressInfo
Public Overridable Property ShippingAddress() As AddressInfo
 Get
 _ShippingAddress =
 If(_ShippingAddress, New AddressInfo()) Lazy instantiation
 Return _ShippingAddress
 End Get
 Set(ByVal value As AddressInfo)
 _ShippingAddress = value
 End Set
End Property

The constructor solution requires less code, so it’s our favorite, but we have nothing
against lazy instantiation. The result is the same, and the choice is up to you.

 There is another step we skipped: the overriding of Equals and GetHashCode.

Listing 5.2 Two ways of instantiating complex properties
When you create a model, implementing them for each class is important. There’s lots

126 CHAPTER 5 Domain model mapping

of literature out there about how to best implement these methods, so we won’t
explain it here. Our suggestion is to write them as follows.

C#
public class Order
{
 ...
 public override bool Equals(object obj)
 {
 Order order = obj as Order;
 if (order == null) return false
 return order.OrderId == this.OrderId;
 }

 public override int GetHashCode()
 {
 return OrderId.GetHashCode();
 }
}

VB
Public Class Order
 ...
 Public Overloads Overrides Function Equals(ByVal obj As Object)
 As Boolean
 Dim order As Order = TryCast(obj, Order)
 If order Is Nothing Then
 Return False
 End If
 Return order.OrderId = Me.OrderId
 End Function

 Public Overloads Overrides Function GetHashCode() As Integer
 Return OrderId.GetHashCode()
 End Function
End Class

This code says that two orders are equal if their OrderId property has the same value.
 In chapters 2 and 3, you were introduced to the runtime proxy subject. You learned

that in order to be runtime extensible, a class must be open to inheritance and all
properties must be virtual/Overridable. You can avoid these rules, but the obtained
objects wouldn’t provide features like object tracking and lazy loading. Because they’re
important in many scenarios, we always suggest making properties virtual.

NOTE It’s important that you understand how to create classes. You may
need to customize entity code generation to accommodate particular
needs (as we’ll do in chapter 13). This means that an understanding of
classes is at least desirable.

The classes created in this section aren’t consumable by Entity Framework yet. You
must put the necessary information into the EDM. The starting point for doing this is

Listing 5.3 Implementing Equals and GetHashCode in the Order entity
the conceptual file.

127Creating consumable entities

5.2.2 Describing entities in the conceptual schema

The conceptual schema contains the description of the entities. Creating this schema
isn’t difficult at all, but because many XML tags are involved, you might find it confus-
ing at first. Fortunately, these tags are reused in the storage schema, significantly sim-
plifying the entire EDM.

 In the EDMX file for OrderIT, the conceptual schema is at the path edmx:Edmx/
edmx:Runtime/edmx:ConceptualModels. If you create the conceptual file manually,
you can name it OrderIT.csdl and reference it in the database connection string. In
the CSDL file, you must ignore the preceding XML path because it’s part of the EDMX
artifact. This applies also to the storage and the mapping files.

 The basic structure of the CSDL is pretty simple. It has a main element named
Schema, inside which there is an EntityContainer element plus an EntityType for
each entity and a ComplexType for each complex type. Figure 5.4 shows the file
structure.

Figure 5.4 The structure of the
CSDL file. Schema is the main
element, and EntityContainer,
ComplexType, and EntityType
are its children.

 Having a broad understanding of the structure is good, but knowing each node is
essential to mastering mapping. Let’s analyze them one by one, starting from the out-
ermost: Schema.

SCHEMA

Schema is a pretty simple element. It contains the attributes Namespace and Alias to
specify the namespace and an alias for it. Furthermore, it declares the base namespace
via xmlns and an additional namespace with the store prefix:

<Schema xmlns="http://schemas.microsoft.com/ado/2008/09/edm"
xmlns:store="http://schemas.microsoft.com/ado/2007/12/edm/

➥ EntityStoreSchemaGenerator" Namespace="OrderITModel" Alias="Self">
 ...
</Schema>

Because Schema is a mere container, there is nothing special about its attributes. What
we’re more interested in is its inner content.

ENTITYCONTAINER

The EntityContainer element declares the entity sets and the relationship sets in the
EDM; the entity sets declared here are used to generate the code of the context class.
The element has only a Name attribute, which the designer sets to the name of the con-
nection string you enter in the EDMX wizard. If you create the file manually, we suggest
setting the attribute value to the name of the application, plus the suffix Entities.

 If you look at the context-generated code, you’ll see that all base constructors take
a ContainerName argument. That argument is the container name as inserted in the
EDM, so the context is linked with its description in the EDM.

128 CHAPTER 5 Domain model mapping

NOTE You can have many EntityContainer tags, which means you can
have many contexts. This may be useful when you want to logically sepa-
rate different parts of your application. It’s not supported by the
designer, but you can do it if you want to edit files manually.

As you may expect, the EntityContainer is a mere wrapper. Inside it is one Entity-
Set element for each entity set. You learned in chapter 2 that there’s an entity set for
each class that doesn’t inherit from another one in the model. For instance, Order has
an entity set, and Company has an entity set, but Supplier and Customer don’t because
they inherit from Company.

EntitySet has two attributes:

 Name declares the entity set’s unique name. (In chapter 2, you set the entity set
name for each entity in the designer—that value was put into the Name attribute.)

 EntityType contains the fully qualified name (FQN) of the entity it exposes.

In the end, the entity container looks like the following listing.

<EntityContainer Name="OrderITEntities">
 <EntitySet Name="Orders" EntityType="OrderIT.DomainModel.Order" />
 <EntitySet Name="OrderDetails"
 EntityType="OrderITModel.OrderDetail" />
</EntityContainer>

Multiple entity sets per type (MEST)
You can define multiple entity sets for a single type. This feature is named multiple
entity sets per type (MEST), and it may be extremely useful in some scenarios. Sup-
pose you’re developing a site that handles articles, blog posts, and forum posts.
These items share the same structure: a posted date, a published date, text, a sub-
ject, and so on. They may be stored in different tables, but a single class represents
them.

MEST allows you to reuse one class across different entity sets. Unfortunately, this
approach has limitations when dealing with associations, and, what’s worse, it isn’t
supported by the designer, so you have to create the class’s code and mapping man-
ually. In the end, MEST slows down productivity, so unless you have a strong reason
to use it, don’t.

Now that you understand the EntityContainer, we can move on to the model classes.
The element that describes an entity is EntityType, whereas a complex type is repre-
sented by ComplexType.

COMPLEXTYPE AND ENTITYTYPE

ComplexType has only the Name attribute, which is set to the class FQN. Inside it is one
Property node for each property of the complex type. Property has several attri-

Listing 5.4 Defining the entity sets in EntityContainer
butes, which are described in table 5.1.

129Creating consumable entities

When the complex type is ready, you can start creating entities that use it. EntityType
is where you do this. It has a mandatory Name attribute, where the name of the class is
specified. After that, there are two optional attributes:

 Abstract—Specifies whether the class is abstract
 BaseType—Specifies a base class

Abstract and BaseType become important when inheritance comes into play. (We’ll
get to inheritance in section 5.4.)

 Inside EntityType is a Property element for each scalar and complex property in
the class, and a Key element to specify which properties are in the entity’s primary key.
If the property is a complex property, you set its type to the full name of the complex
type it represents through the Type attribute. The Key element has no attributes; it has
only one PropertyRef node for each property that participates in the primary key.

Table 5.1 Attributes of Property node in the conceptual schema

Attribute Description Required

Name Specifies the name of the property. Yes

Type Specifies the CLR type of the property. If the prop-
erty is a complex type, this should be set to the
FQN of the complex type.

Yes

Nullable Indicates whether the property can be null. The
default value is true.

No

FixedLength Indicates whether the property must have a fixed
length.

No

MaxLength Specifies the maximum length of the value. No

Scale Specifies how many numbers are allowed after a
comma in a decimal type.

No

Precision Specifies how many numbers are allowed in a deci-
mal type.

No

store:StoreGeneratedPattern Indicates how the column is set by the database
during inserts and updates. It has three possible
values:
 None—The value from the application is used

(default).
 Identity—The value is calculated by the

database during inserts, and the value from
the application is used for updates.

 Computed—The value is calculated by the
database during inserts and updates.

No

ConcurrencyMode Indicates whether the property participates in the
concurrency check. To enable the check, set the
value to Fixed.

No
PropertyRef has only the Name attribute, which contains the name of the property.

130 CHAPTER 5 Domain model mapping

 Putting everything in action, the mapping fragment looks like this.

<ComplexType Name="AddressInfo">
 <Property Type="String" Name="Address" Nullable="false" MaxLength="50" />
 <Property Type="String" Name="City" Nullable="false" MaxLength="50" />
 <Property Type="String" Name="ZipCode" Nullable="false" MaxLength="15" />
 <Property Type="String" Name="Country" Nullable="false" MaxLength="30" />
</ComplexType>
<EntityType Name="Order">
 <Key>
 <PropertyRef Name="OrderId" />
 </Key>
 <Property Type="Int32" Name="OrderId" Nullable="false"
 store:StoreGeneratedPattern="Identity" />
 <Property Name="ShippingAddress" Type="OrderITModel.AddressInfo"
 Nullable="false" />
 <Property Type="DateTime" Name="EstimatedShippingDate" Nullable="false"
 Precision="29" />
 <Property Type="DateTime" Name="ActualShippingDate" Nullable="false"
 Precision="29" />
</EntityType>
<EntityType Name="OrderDetail">
 <Key>
 <PropertyRef Name=" OrderDetail Id" />
 </Key>
 <Property Type="Int32" Name="OrderDetailId" Nullable="false"
 store:StoreGeneratedPattern="Identity" />
 <Property Type="Int16" Name="Quantity" Nullable="false" />
 <Property Type="Decimal" Name="UnitPrice" Nullable="false" Precision="29"
 Scale="29" />
 <Property Type="Decimal" Name="Discount" Nullable="false" Precision="29"
 Scale="29" />
</EntityType>

That’s all you need to know about the conceptual schema, but that’s only the first part
of the EDM. You still have to create the storage schema to describe the tables that will
persist orders and their details. Later, you’ll bridge the two models in the mapping file.

5.2.3 Describing the database in the storage schema

The storage-description file contains detailed information about the database struc-
ture. You can map several database objects here: tables, views, stored procedures, and
functions. In this chapter, we’ll focus on the first two objects only; the others will be
discussed in chapter 10, which is dedicated to the use of stored procedures.

 In the EDMX file for the OrderIT example, the storage schema is under the
edmx:Edmx/edmx:Runtime/edmx:StorageModels path; but if you want to create the
file manually, you can name it OrderIT.ssdl and reference it in the connection string.

 We already mentioned that conceptual schema elements are reused in the storage
schema. This is true, but some nodes have more attributes in the storage schema to

Listing 5.5 Describing complex types and entities
accommodate specific database options. Let’s start by looking at the Schema node.

131Creating consumable entities

SCHEMA

Schema is the root element of the storage schema. It has the same attributes as its
counterpart on the conceptual side, plus two needed for database communication:

 Provider—Specifies the ADO.NET provider
 ProviderManifestToken—Specifies the version number of the database (for

instance, SQL Server uses 2000, 2005, and 2008)

The following snippet contains an example of the Schema element:

<Schema Namespace="OrderITModel.Store" Alias="Self"
 Provider="System.Data.SqlClient" ProviderManifestToken="2008"
 xmlns:store="http://schemas.microsoft.com/ado/2007/12/edm/
➥ EntityStoreSchemaGenerator"
 xmlns="http://schemas.microsoft.com/ado/2009/02/edm/ssdl">
 ...
</Schema>

As in the conceptual file, Schema has both a container section and a detail section.
You’ll be happy to know that the container section is named the same way it is in the
conceptual file.

ENTITYCONTAINER

EntityContainer declares all database objects described later in the file. Its only attri-
bute is Name, which represents the name of the container. The designer sets its value to
the namespace name plus the suffix StoreContainer. Although you can have multiple
EntityContainer elements in the conceptual schema, that’s nonsense in the storage
schema, because the objects belong to a single database.

 Inside EntityContainer, you create an EntitySet element for each table or view.
EntitySet in the storage schema has more attributes than its counterpart on the con-
ceptual side:

 Name—Specifies the logical name of the object. The designer uses the name of
the table, but it’s not mandatory.

 EntityType—Represents the FQN of the object and is set using the
{namespace}.{name} pattern.

 Schema—Represents the owner of the table.
 Table—Represents the physical name of the table. Table isn’t mandatory; when

it’s omitted, Name is used.
 store:Type—Identifies whether the object is a table (Tables) or a view

(Views).

The result is the fragment shown here.

<EntityContainer Name="OrderITModelStoreContainer">
 <EntitySet Name="Order" EntityType="OrderITModel.Store.Order"

 store:Type="Tables" Schema="dbo" />

Listing 5.6 Defining database tables and views
 <EntitySet Name="OrderDetail"

132 CHAPTER 5 Domain model mapping

 EntityType="OrderITModel.Store.OrderDetail"
 store:Type="Tables" Schema="dbo" />
</EntityContainer>

We’ve introduced a bunch of new attributes, and you’ve reused all the previous ele-
ments and declared the database objects. This is a successful case of code reuse. Now
you need to describe the table structure.

ENTITYTYPE

Objects are described using the EntityType element, much as in the conceptual file.
You must create one element for each EntitySet element that’s put inside Entity-
Container. In the conceptual file, classes that are part of an inheritance hierarchy
have only one EntitySet but many EntityType elements. Databases don’t support
inheritance natively, so it isn’t possible to have one entity set and more tables or views
in the storage file.

 Every EntityType node has a Name attribute whose value must match the Name attri-
bute of the EntitySet in the entity container.

 Inside the EntityType element, you have to include the elements that describe the
database object. Again, you use Property to declare the columns and Key and
PropertyRef to specify which ones compose the key.

Property has the same attributes as its counterpart in the CSDL, plus some addi-
tional ones to accommodate database needs:

 Collation—Specifies the collation of the column
 DefaultValue—Specifies the default value of the column
 Unicode—Specifies whether the value is Unicode

The result is the mapping fragment shown in the following listing.

<EntityType Name="Order">
 <Key>
 <PropertyRef Name="OrderId" />
 </Key>
 <Property Name="OrderId" Type="int" StoreGeneratedPattern="Identity"
 Nullable="false" />
 <Property Name="ShippingAddress" Type="nvarchar" Nullable="false"
 MaxLength="50" />
 <Property Name="ShippingCity" Type="nvarchar" Nullable="false"
 MaxLength="50" />
 <Property Name="ShippingZipCode" Type="nvarchar" Nullable="false"
 MaxLength="15" />
 <Property Name="ShippingCountry" Type="nvarchar" Nullable="false"
 MaxLength="30" />
 <Property Name="EstimatedShippingDate" Type="datetime" Nullable="false"/>
 <Property Name="ActualShippingDate" Type="datetime" Nullable="false" />
 <Property Name="CustomerId" Type="int" Nullable="false" />
</EntityType>

Listing 5.7 Describing the Order and OrderDetail database tables
<EntityType Name="OrderDetail">

133Creating consumable entities

 <Key>
 <PropertyRef Name="OrderDetailId" />
 </Key>
 <Property Name="OrderDetailId" Type="int"
 StoreGeneratedPattern="Identity" Nullable="false" />
 <Property Name="Quantity" Type="smallint" Nullable="false" />
 <Property Name="UnitPrice" Type="decimal" Nullable="false" Precision="29"
 Scale="29" />
 <Property Name="Discount" Type="decimal" Nullable="false" Precision="29"
 Scale="29" />
 <Property Name="OrderId" Type="int" Nullable="false" />
 <Property Name="ProductId" Type="int" Nullable="false" />
</EntityType>

The storage file is now ready. You’re only missing the link between the conceptual and
storage schemas. You already know that this bridge is created using the third file of the
EDM: the mapping schema.

5.2.4 Creating the mapping file

The mapping file has the hard duty of bridging the gap between database and classes.
When the model has one class for each table, the mapping is pretty simple; but as
soon as things get more complicated, the mapping becomes complex.

 In the EDMX file for the OrderIT example, edmx:Edmx/edmx:Runtime/
edmx:Mappings is the path of the mapping section. If you want to create the file on
your own, you can create OrderIT.msl and reference it in the connection string.

 The mapping file doesn’t describe entities or tables—it maps them. As a result,
this file’s structure is completely different from the other two files. Unfortunately, this
means you have to learn a bunch of new XML tags and attributes, as you can see in
figure 5.5.

Figure 5.5 The main structure of the mapping file

 Differences emerge immediately at the root level. Although Schema is the root ele-
ment for the conceptual and storage files, here you use Mapping.

134 CHAPTER 5 Domain model mapping

MAPPING AND ENTITYCONTAINERMAPPING

The declaration of the Mapping node is fixed, and you can’t put any custom informa-
tion in it. The only inner element it allows is EntityContainerMapping, where you
specify the name of the containers whose entities must be mapped. (You have to spec-
ify the containers because you map entities and complex types used by the entity sets.)
The StorageEntityContainer attribute identifies the storage schema container, and
the CdmEntityContainer attribute is used for the conceptual schema container, as you
can see in listing 5.8.

<Mapping Space="C-S"
 xmlns="http://schemas.microsoft.com/ado/2008/09/mapping/cs">
 <EntityContainerMapping CdmEntityContainer="OrderITEntities"
 StorageEntityContainer="OrderITModelStoreContainer">
 ...
 </EntityContainerMapping>
</Mapping>

After the entity containers are linked, the next step is to map tables and views against
classes. This is accomplished by nesting an EntitySetMapping element inside the
EntityContainerMapping element for each entity set.

ENTITYSETMAPPING, ENTITYTYPEMAPPING, AND MAPPINGFRAGMENT

Mapping an entity to a table is a four-step job. You start by defining the entity set and
the entity inside it. Within the entity, you specify the table to which the entity is
mapped, and finally you specify the column/property association between the two.
Figure 5.5 shows the elements that must be used in the process.

EntitySetMapping is the node that lets you state what entity set you’re going to
map (remember that you can have multiple classes per entity set). The only attribute
here is Name, and it’s used to specify the entity set name.

 Inside EntitySetMapping, you nest an EntityTypeMapping element for each entity
that’s part of the entity set. The type of the entity is set through the TypeName attribute
and must follow the pattern IsTypeOf(EntityName), where EntityName is the FQN of
the entity.

 Now we come to the mapped tables. Because a class can be mapped to one or
more tables (Order maps to the Order table, but Shirt maps to both the Product and
Shirt tables), inside the EntityTypeMapping element you specify a MappingFragment
element for each table involved. It has only the StoreEntitySet attribute, and it must
match the Name attribute of the entity set in the storage schema. The next listing shows
this first part of the mapping.

<EntitySetMapping Name="Orders">
 <EntityTypeMapping TypeName="IsTypeOf(OrderITModel.Order)">
 <MappingFragment StoreEntitySet="Order">

Listing 5.8 Defining the containers in the mapping

Listing 5.9 Defining the entity set, the class, and the mapped table
 ...

135Creating consumable entities

 </MappingFragment>
 </EntityTypeMapping>
</EntitySetMapping>
<EntitySetMapping Name="OrderDetails">
 <EntityTypeMapping TypeName="IsTypeOf(OrderITModel.OrderDetail)">
 <MappingFragment StoreEntitySet="OrderDetail">
 ...
 </MappingFragment>
 </EntityTypeMapping>
</EntitySetMapping>

Now you have the entity set, the class, and the table (or tables). That’s all you need to
start the property-to-column mapping process. In the next section, you’ll see how this
delicate part works.

SCALARPROPERTY AND COMPLEXPROPERTY

The ScalarProperty element maps a scalar property of the class to a column of the
table or view. It has only two attributes:

 Name—Represents the property name
 ColumnName—Represents the mapped column

Easy as pie.
ComplexProperty is used to map a complex type. This node has two attributes too:

 Name—Specifies the name of the property in the class
 TypeName—Contains the FQN of the complex type

ComplexProperty on its own is useless. You have to map its properties to the columns,
and this is done by nesting ScalarProperty elements.

NOTE Because complex types can be nested, you can put a Complex-
Property inside another ComplexProperty.

Putting it all together, the following listing shows the overall mapping schema for
Order and OrderDetail.

<EntitySetMapping Name="Orders">
 <EntityTypeMapping TypeName="IsTypeOf(OrderITModel.Order)">
 <MappingFragment StoreEntitySet="Order">
 <ScalarProperty Name="Id" ColumnName="Id" />
 <ComplexProperty Name="ShippingAddress"
 TypeName="OrderITModel.AddressInfo">
 <ScalarProperty Name="Address" ColumnName="ShippingAddress" />
 <ScalarProperty Name="City" ColumnName="ShippingCity" />
 <ScalarProperty Name="ZipCode" ColumnName="ShippingZipCode" />
 <ScalarProperty Name="Country" ColumnName="ShippingCountry" />
 </ComplexProperty>
 <ScalarProperty Name="EstimatedShippingDate"
 ColumnName="EstimatedShippingDate" />
 <ScalarProperty Name="ActualShippingDate"

Listing 5.10 Defining the mapping between properties and columns
 ColumnName="ActualShippingDate" />

136 CHAPTER 5 Domain model mapping

 </MappingFragment>
 </EntityTypeMapping>
</EntitySetMapping>
<EntitySetMapping Name="OrderDetails">
 <EntityTypeMapping TypeName="IsTypeOf(OrderITModel.OrderDetail)">
 <MappingFragment StoreEntitySet="OrderDetail">
 <ScalarProperty Name="Id" ColumnName="Id" />
 <ScalarProperty Name="Quantity" ColumnName="Quantity" />
 <ScalarProperty Name="UnitPrice" ColumnName="UnitPrice" />
 <ScalarProperty Name="Discount" ColumnName="Discount" />
 </MappingFragment>
 </EntityTypeMapping>
</EntitySetMapping>

So far, we have covered entities and ignored the associations between them, but associ-
ations between entities are the real essence of a model. Mapping them isn’t too com-
plicated, but you still have to touch all three EDM schemas. Fortunately, you know
something about the schemas, so it should be simpler.

5.3 Defining relationships in the model
Implementing associations is one of the most challenging tasks in any O/RM, but the
Entity Framework makes it quite easy. Naturally, you’ll have to write some code and
modify the mapping, but you’ll understand it at first sight.

 In the OrderIT model, there are three types of associations: one-to-one, one-to-
many, and many-to-many. Let’s look at them in turn.

5.3.1 One-to-one relationships

A typical example of a one-to-one relationship is that between the order detail and its
order. Creating this type of association isn’t difficult, but it involves several steps:

1 Modify the OrderDetail class by adding the navigation property. If you opt for
foreign-key associations (as we did), you’ll have to add the foreign-key property
too.

2 Modify the CSDL to add properties to the class description and introduce the
relationship.

3 Modify the storage schema to introduce the foreign key between the tables (if it
exists).

4 Modify the mapping schema to map the relationship (only for independent
associations).

Now, let’s look at each step.

MODIFYING THE CLASS

To create a reference to the order from the order detail, you need to create an Order
property in the OrderDetail class. Because you’re using foreign keys, you have to add
a foreign key property, as shown in the next listing.

137Defining relationships in the model

C#
public class OrderDetail
{
 ...
 public virtual Order Order { get; set; }
 public virtual int OrderId { get; set; }
}

VB
Public Class OrderDetail
 ...
 Public Overridable Property Order() As Order
 Public Overridable Property OrderId() As Integer
End Class

That’s all you need to do to create the relationship in the code. All the plumbing that
was necessary to create associations in the classes in v1.0 is gone. Lovely!

 Now that the code is fine, let’s get back to the EDM and look at the conceptual
schema.

MODIFYING THE CONCEPTUAL SCHEMA

Because the conceptual schema describes the model, this is where you must add infor-
mation about the new properties and the relationship. You need to add the new navi-
gation and foreign-key properties to the OrderDetail entity description.

 The navigation property is added to the EntityType node related to OrderDetail
by using the NavigationProperty element. The Name attribute maps the element to
the property in the object, Relationship requires the full name of the relationship,
FromRole identifies its starting point, and ToRole identifies the ending point. In this
way, you can move from OrderDetail to Order.

 The foreign-key property is added as a simple scalar property. Both properties are
shown here.

<EntityType Name="OrderDetail">
 ...
 <NavigationProperty Name="Order"
 Relationship="OrderIT.Domain.OrderOrderDetail" FromRole="OrderDetail"
 ToRole="Order" />
 <ScalarProperty Name="OrderId" ColumnName="OrderId" />
</EntityType>

That’s all you need to do for the entity description. Now, let’s move on to the relation-
ship description. In Entity Framework, associations are first-class citizens, like entities,
so they must be treated equally in the EDM.

 In the EntityContainer element, you need to declare an AssociationSet for
each association. It has two attributes:

Listing 5.11 Creating properties that reference the order from the order detail

Listing 5.12 Adding navigation and foreign-key properties to the entity in the CSDL

138 CHAPTER 5 Domain model mapping

 Name—Represents the name of the relationship set (a sort of entity set for
associations)

 Association—Specifies the type

Inside AssociationSet, you insert two End nodes (one for each entity involved), plac-
ing the name of the class in the Role attribute and the name of its entity set in
EntitySet.

NOTE When you use the designer, the Name attribute is set with the name
you assign to the relationship in the Association wizard.

Outside EntityContainer, you need to describe the relationship using the
Association element. Its Name attribute links the description to the AssociationSet
in the container, whereas the nested End elements describe the types involved in the
relationship and their cardinality. What’s important in the End element is the
Multiplicity attribute, which can have one of the following values:

 1—One side of the cardinality
 0..1—Zero or one side of the cardinality
 *—Multiple side of the cardinality

End allows you to specify the delete cascade behavior. This has nothing to do with the
database; it states that when the parent entity is marked as deleted, children are
marked too. Its definition in the mapping is shown in the following listing.

<EntityContainer ...>
 <AssociationSet Name="OrderOrderDetail"
 Association="OrderITModel.OrderOrderDetail">
 <End Role="Order" EntitySet="Orders">
 <OnDelete Action="Cascade" />
 </End>
 <End Role="OrderDetail" EntitySet="OrderDetails" />
 </AssociationSet>
</EntityContainer>

<Association Name="OrderOrderDetail">
 <End Role="Order" Type="OrderITModel.Order" Multiplicity="1" />
 <End Role="OrderDetail" Type="OrderITModel.OrderDetail"
 Multiplicity="*" />
</Association>

Order is the one side, and OrderDetail is the multiple side in this example. That
means you’re mapping a one-to-many relationship! A one-to-many relationship
implicitly declares the one-to-one relationship too. The order can have multiple
details, but a detail can have only one order. It would be useless repeating this rela-
tionship twice in the EDM, so you declare it only once.

 An independent association is mapped in the MSL, but a foreign-key association is

Listing 5.13 Declaring and defining associations
mapped in the CSDL. Because we’ve opted to use a foreign-key relationship in this

139Defining relationships in the model

example, you have to add mapping information to the association definition. This
information is put in the ReferentialConstraint node inside the Association ele-
ment, and it comes after the End nodes, as shown in the next listing.

<Association Name="OrderOrderDetail">
 ...
 <ReferentialConstraint>
 <Principal Role="Order">
 <PropertyRef Name="OrderId" />
 </Principal>
 <Dependent Role="OrderDetail">
 <PropertyRef Name="OrderId" />
 </Dependent>
 </ReferentialConstraint>
</Association>

ReferentialConstraint is only the container element. The real mapping happens in
the Principal and Dependent nodes, where you specify the primary key of the master
class and the foreign-key property in the child class (through the PropertyRef ele-
ment). It’s much like defining a foreign key in a database.

 The conceptual schema is now ready; the third step is modifying the storage. But
wait a second; what if the database knows nothing about the relationship between the
order and its details? The foreign-key constraint might not exist for performance or
other reasons. It turns out that this means absolutely nothing for mapping. You can
still enforce the relationship on the conceptual side without worrying about the data-
base. Nevertheless, in the OrderIT example, you have a relationship in the database,
so let’s see how it’s described.

MODIFYING THE STORAGE SCHEMA

Describing relationships in the storage schema is similar to describing them in the
conceptual schema. You declare the relationships in the entity container, and then
you describe them outside it.

 To declare the foreign-key constraint, you use the AssociationSet with its chil-
dren inside EntityContainer exactly the same way as before. To specify which col-
umns compose the foreign key, you use the Association node outside
EntityContainer, as in the following listing.

<EntityContainer ...>
 <AssociationSet Name="FK_OrderDetail_Order"
 Association=" OrderITModel.Store.FK_OrderDetail_Order">
 <End Role="Order" EntitySet="Order" />
 <End Role="OrderDetail" EntitySet="OrderDetail" />
 </AssociationSet>
</EntityContainer>

Listing 5.14 Defining a foreign-key association

Listing 5.15 Defining a database foreign key in the storage schema
<Association Name="FK_OrderDetail_Order">

140 CHAPTER 5 Domain model mapping

 <End Role="Order" Type="OrderITModel.Store.Order" Multiplicity="1">
 <OnDelete Action="Cascade" />
 </End>
 <End Role="OrderDetail" Type="OrderITModel.Store.OrderDetail"
 Multiplicity="*"/>
 <ReferentialConstraint>
 <Principal Role="Order">
 <PropertyRef Name="OrderId" />
 </Principal>
 <Dependent Role="OrderDetail">
 <PropertyRef Name="OrderId" />
 </Dependent>
 </ReferentialConstraint>
</Association>

Hey, this declaration is identical to the one in the conceptual schema! Notice that this
time the cascade constraint between the order and order details describes the one in
the database.

NOTE When we talk about foreign keys here, we mean the database
foreign keys. This has nothing to do with the conceptual model for-
eign keys.

You’re almost done. You only need to put mapping information in the MSL.

MODIFYING THE MAPPING SCHEMA

The mapping schema knows nothing about foreign-key associations. It only needs to
know how a foreign-key property is mapped to the foreign key in the database table.

 In this example, you have to map the OrderId property of the OrderDetail class to
the OrderId column in the OrderDetail table, as in the following snippet:

<EntitySetMapping Name="OrderDetails">
 <EntityTypeMapping TypeName="IsTypeOf(OrderITModel.OrderDetail)">
 <MappingFragment StoreEntitySet="OrderDetail">
 ...
 <ScalarProperty Name="OrderId" ColumnName="OrderId" />
 </MappingFragment>
 </EntityTypeMapping>
</EntitySetMapping>

The one-to-one relationship between the detail and its order is now set up. In the next
section, you’ll learn how to build the one-to-many relationship between the order and
its details.

5.3.2 One-to-many relationships

Creating the one-to-many relationship is only slightly different from creating the one-
to-one relationships. The process is exactly the same as before, but because you’ve
already put association data in the EDM, you only need to modify the Order class and
reflect the modifications inside the CSDL.

141Defining relationships in the model

ADDING A PROPERTY TO THE PARENT CLASS

The Order class maintains a reference to its details with a collection property named
OrderDetails. To be Entity Framework–compliant, the property must be of type
ICollection<OrderDetail>, ISet<OrderDetail>, or any type that implements them
such as List<T> or HashSet<T>.

 A collection property needs to be initialized before it’s accessed, or you’ll get a
NullReferenceException. How you create the property depends on the type you
choose for the collection. If you use an interface, you’ll have to instantiate it lazily. If
you use a real type, you can instantiate it either in the constructor or lazily.

 The reason for this behavior is that when a proxy for the instance is created, if the
property is exposed using an interface, it creates a concrete type and assigns it to the
property. When this is done, the property can’t be reassigned; if you do, you’ll get an
InvalidOperationException. Furthermore, putting your instantiation code in the
constructor would override the instantiation made by the proxy (if you have a proxy),
causing the exception to occur. If you use a concrete type, the proxy ignores the prop-
erty instantiation, so you’re free to put instantiation code wherever you want.

 We recommend always using the lazy approach, as shown in the next listing.

C#
public class Order
{
 ...
 private ICollection<OrderDetail> _OrderDetails;
 public virtual ICollection<OrderDetail> OrderDetails
 {
 get
 {
 _OrderDetails = _OrderDetails ?? new HashSet<OrderDetail>();
 return _OrderDetails;
 }
 set
 {
 _OrderDetails = value;
 }
 }
}

VB
Public Class Order
 ...
 Private _OrderDetails As ICollection(Of OrderDetail)
 Public Overridable Property OrderDetails() As ICollection(Of OrderDetail)
 Get
 _OrderDetails = If(_OrderDetails, New HashSet(Of OrderDetail)())
 Return _OrderDetails
 End Get
 Set(ByVal value As ICollection(Of OrderDetail))

Listing 5.16 Creating a property that references a collection of objects
 _OrderDetails = value

142 CHAPTER 5 Domain model mapping

 End Set
 End Property
End Class

There’s nothing more to do. Notice that the foreign key to the order details doesn’t
exist here. Now, let’s move on to the conceptual schema.

MODIFYING THE CONCEPTUAL SCHEMA

To add the new property to the Order description in the conceptual schema, you add
a NavigationProperty as you did for OrderDetail, changing the Name attribute and
inverting the roles because here you’re moving from Order to OrderDetail. This is
the property mapping:

<NavigationProperty Name="OrderDetails" FromRole="Order"
 ToRole="OrderDetail" Relationship="OrderITModel.OrderOrderDetail" />

 And that’s all. The relationship has already been defined in the CSDL and SSDL;
and in the MSL, nothing changes because the navigation property doesn’t need to be
mapped.

 The last relationship we need to analyze is the many-to-many. In the OrderIT
example, such a relationship exists between the products and the suppliers. People
are often afraid of many-to-many relationships because they can be intricate. But
don’t worry: many-to-many mapping isn’t complicated at all.

5.3.3 Many-to-many relationships

The steps for creating a many-to-many relationship are always the same. First, you cre-
ate collection properties in both classes to relate them to each other, and then you
modify the EDM. The difference in this type of relationship is that there are no
foreign-key properties. The relationship between classes is direct, so the link table in
the database has no correspondence in the model. This means you have to use an
independent association.

 You’ve already seen the relevant code for classes, CSDL, and SSDL because we’ve
dealt with collection properties before. Here’s a quick recap of how to set up the
many-to-many relationship between the product and supplier:

1 Product and Supplier need to be associated to each other using collection
properties.

2 In the CSDL, you need to map classes and their association, without inserting
information about the foreign-key association.

3 In the SSDL, you need to declare and define Product, Company, and Product-
Supplier tables and their associations.

4 In the MSL, you need to map the relationship between Product and Supplier
to the database.

At this point, because you haven’t used a foreign-key association, you have to define
how the classes are related. This is done in the mapping file.

143Defining relationships in the model

MODIFYING THE MAPPING SCHEMA

In the mapping schema, you use the AssociationSetMapping element to map data-
base columns to independent associations. The AssociationSetMapping element has
three attributes:

 Name—Specifies the name of the association in the conceptual schema
 TypeName—Represents the full name of the association set in the conceptual

schema
 StoreEntitySet—Contains the name of child table in the database

Inside AssociationSetMapping, you put two EndProperty elements whose Name attri-
bute matches the Role attribute of the End element in the Association node of the
conceptual schema. Finally, you include a ScalarProperty element that specifies the
property of the class and the foreign key column in the linked table. This column is
used in conjunction with the primary key of the linked table to create the join when
generating the SQL.

 The overall mapping fragment is shown in this listing.

<AssociationSetMapping Name="ProductsSuppliers"
 TypeName="OrderItModel.ProductsSuppliers"
 StoreEntitySet="ProductSupplier">
 <EndProperty Name="Suppliers">
 <ScalarProperty Name="CompanyId" ColumnName="SupplierId" />
 </EndProperty>
 <EndProperty Name="Products">
 <ScalarProperty Name="ProductId" ColumnName="ProductId" />
 </EndProperty>
</AssociationSetMapping>

Finished. The many-to-many relationship just required a new tag in the mapping
schema. Before we move on and talk about inheritance, let’s look at a few points about
relationships.

5.3.4 Some tips about relationships

The first thing to know about relationships is that you aren’t obliged to use foreign-
key associations. You can, for example, remove the OrderId from the OrderDetail
class and map the association with Order using an independent association. But work-
ing with foreign associations is easier than working with independent associations,
especially when you’re persisting an object graph. When possible, we always recom-
mended using foreign keys.

 Another thing you should know is that you can’t map an association using both for-
eign keys and independent associations. You have to choose in advance which strategy
you want to use. The designer enforces this rule, disabling one option when the other
is used.

Listing 5.17 Mapping an independent property

144 CHAPTER 5 Domain model mapping

 If you don’t want to work with independent associations in many-to-many scenar-
ios, you can follow the LINQ to SQL approach: create a class that matches the link
table, and associate the classes with that. This would allow using foreign keys, but it’s
poor design, and we discourage this technique.

 You’ve now learned everything you need to know about relationships. It’s time to
investigate inheritance mapping. An expressive model often makes use of inheritance;
in OrderIT, Customer and Supplier inherit from the Company class, whereas Shoe and
Shirt are specializations of the Product class.

5.4 Mapping inheritance
OrderIT uses two different inheritance strategies: table per hierarchy (TPH) for the
Customer and Supplier classes and table per type (TPT) for the product-related
classes. The database doesn’t support inheritance at all, but by using these inheritance
strategies, you can simulate this behavior. Let’s start with the TPH strategy.

5.4.1 Table per hierarchy inheritance

The TPH inheritance mapping model states that an entire hierarchy of objects is
mapped into a single table. In OrderIT, the Customer and Supplier classes are per-
sisted into the Company table. Company has a Type column that acts as a discrimina-
tor, identifying whether a particular row is about a customer or a supplier. In
chapter 2, we discussed the benefits of this inheritance model; here we’ll cover only
the practical task of mapping, starting with the class code.

DESIGNING THE CLASSES

Inheritance doesn’t require any additional effort during class development. You sim-
ply create the base class (Company, in this case) and then create the other classes
(Customer and Supplier), letting them inherit from the base class. Notice that the
discriminator column must not be mapped because it’s handled by Entity Framework.
The following listing shows the class-declaration code.

C#
public abstract class Company
{
 ...
}
public class Customer : Company
{
 ...
}
public class Supplier : Company
{
 ...
}

Listing 5.18 The Company, Customer, and Supplier classes

145Mapping inheritance

VB
Public MustInherits Class Company
 ...
End Class
Public Class Customer
 Inherits Company
 ...
End Class
Public Class Supplier
 Inherits Company
 ...
End Class

As usual, describing the new classes in the EDM is the next step. We’ll start with the
conceptual schema.

MODIFYING THE CONCEPTUAL SCHEMA

Inside the EntityContainer element of the conceptual schema, you put only one
entity set for the entire hierarchy. Describing the classes requires the Abstract and
BaseType attributes. For Company, Abstract is set to true and BaseType is empty. For
Customer and Supplier, Abstract is set to false and BaseType is set to the FQN of
Company. Their mapping is shown in the following listing.

<EntityContainer ...>
 <EntitySet Name="Companies" EntityType="OrderIT.Domain.Company" />
</EntityContainer>

<EntityType Name="Company" Abstract="true">
 <Key>
 <PropertyRef Name="CompanyId" />
 </Key>
 <Property Type="Int32" Name="CompanyId" Nullable="false"
 store:StoreGeneratedPattern="Identity" />
 <Property Type="String" Name="Name" Nullable="false" MaxLength="50" />
</EntityType>

<EntityType Name="Customer" BaseType="OrderITModel.Company" >
 <Property Name="BillingAddress" Type="OrderITModel.AddressInfo"
 Nullable="false" />
 <Property Name="ShippingAddress" Type="OrderITModel.AddressInfo"
 Nullable="false" />
 <Property Type="String" Name="WSUsername" Nullable="true"
 MaxLength="20" />
 <Property Type="String" Name="WSPassword" Nullable="true" />
 <Property Type="String" Name="WSEnabled" Nullable="false" />
</EntityType>

<EntityType Name="Supplier" BaseType="OrderITModel.Company" >
 <Property Type="String" Name="IBAN" Nullable="false" FixedLength="true"
 MaxLength="26" />
 <Property Type="Int16" Name="PaymentDays" Nullable="false" />
</EntityType>

Listing 5.19 Defining inheritance in the conceptual schema

146 CHAPTER 5 Domain model mapping

Notice that each EntityType node must define only the properties of the class it
describes. The description of Company contains only the ID and the name. The
description of Customer includes the addresses and web service properties, whereas
the Supplier description adds payment information.

 That’s all you need to do in the conceptual schema, so we can move on to the stor-
age. You’ve already seen the tables, so we’ll go directly to the mapping schema.

MODIFYING THE MAPPING SCHEMA

As usual, the real power emerges in the mapping file. The EntitySetMapping element
allows you to map multiple classes in one entity set.

 We’ll start by mapping Company. The Name attribute of EntitySetMapping must be
set to Companies—that’s the entity set defined in the conceptual schema. Inside
EntityTypeMapping, TypeName must be set to IsTypeOf(OrderITModel.Company).
Finally, StoreEntitySet attribute inside the MappingFragment element must be set to
Company—that’s the storage entity set name (which, by default, matches the table
name). Inside MappingFragment, you put all the properties defined in the conceptual
schema.

 Here’s what it looks like:

<EntitySetMapping Name="Companies">
 <EntityTypeMapping TypeName="IsTypeOf(OrderITModel.Company)">
 <MappingFragment StoreEntitySet="Company">
 <ScalarProperty Name="CompanyId" ColumnName="CompanyId" />
 <ScalarProperty Name="Name" ColumnName="Name" />
 </MappingFragment>
 </EntityTypeMapping>
 ...
<EntitySetMapping Name="Companies">

In the Customer mapping, you don’t create a new EntitySetMapping. Instead, you add
an EntityTypeMapping node inside it. Into this new node, you put another Mapping-
Fragment node. In the EntityTypeMapping node, you set the TypeName attribute to
IsTypeOf(OrderITModel.Customer). This way, you’ve changed only the mapped class,
whereas the entity set and the database table have remained the same. Naturally, here
you define only the properties described in the class, ignoring those inherited from
Company except for the key properties. You can see that in the following snippet:

<EntityTypeMapping TypeName="IsTypeOf(OrderITModel.Customer)">
 <MappingFragment StoreEntitySet="Company">
 <Condition ColumnName="Type" Value="C" />
 <ScalarProperty Name="CompanyId" ColumnName="CompanyId" />
 <ScalarProperty Name="WSUsername" ColumnName="WSUsername" />
 <ScalarProperty Name="WSPassword" ColumnName="WSPassword" />
 ...
 </MappingFragment>
</EntityTypeMapping>

Mapping the Supplier entity is a matter of copying and pasting the Customer snippet,
changing the TypeName attribute, and mapping the properties, as shown in the next

snippet:

147Mapping inheritance

<EntityTypeMapping TypeName="IsTypeOf(OrderITModel.Supplier)">
 <MappingFragment StoreEntitySet="Company">
 <Condition ColumnName="Type" Value="S" />
 <ScalarProperty Name="CompanyId" ColumnName="CompanyId" />
 ...
 </MappingFragment>
</EntityTypeMapping>

The last tweak is the discriminator. You know that in the TPH mapping strategy you
need a discriminator column to identify what type a row is mapped to. In OrderIT, the
discriminator column specifies whether the row is about a customer or a supplier. This
must be specified in the mapping schema; the conceptual side must have no knowl-
edge of this plumbing because it’s a storage requirement.

 To specify the discriminator, you use the Condition element inside Mapping-
Fragment to specify a value for the discriminator column. When the column has the
specified value, the row belongs to the type that’s being mapped. The value C specifies
that the row is about a customer, whereas the value S identifies a supplier. You can see
this tag at work in the previous snippets.

 Well done! You’ve successfully mapped an inheritance hierarchy with the TPH
strategy. It wasn’t that hard. You’ve only had to learn one new node, Condition, and
the rest were the same ones covered before.

 Now that you’re a master of TPH, we can move ahead and talk about the OrderIT
product scenario, which uses the TPT inheritance mapping strategy. TPT has a com-
pletely different point of view compared to TPH, but the way you map it is similar.

5.4.2 Table per type inheritance

In the TPT approach, you map each entity in the hierarchy to a dedicated table. The
table contains as many columns as the related type defines. In OrderIT, for example,
you have Product, Shoe, and Shirt tables, and similarly named classes that hold their
data.

 In the TPH model, the discriminator column is responsible for distinguishing the
customers from the suppliers. In the TPT model, there’s no need for such a column
because the primary keys specify the product type. For instance, if a product has ID 1
and it’s in the Product and Shirt tables, it’s a shirt; if it’s in the Product and Shoe
tables, it’s a pair of shoes. With the use of ad hoc SQL joins, Entity Framework is able
to determine the type of each product when querying and to correctly update data
when persisting objects.

 Mapping the TPT isn’t complicated, because you already have all the necessary
knowledge. The code is identical to that used for TPH; you define the classes and their
inheritance chain as in the following listing.

C#
public abstract class Product
{

Listing 5.20 The Product, Shoe, and Shirt classes
 ...

148 CHAPTER 5 Domain model mapping

}
public class Shoe : Product
{
 ...
}
public class Shirt : Product
{
 ...
}

VB
Public MustInherits Class Product
 ...
End Class
Public Class Shirt
 Inherits Product
 ...
End Class
Public Class Shoe
 Inherits Company
 ...
End Class

What changes between the TPT and TPH strategies is the mapping and the storage
schemas, not the way the classes are shaped.

 In the conceptual schema, you define the entities exactly the same way as for the
TPH strategy and create one EntitySet for the root of the hierarchy. The storage
schema is different because you have more than one table for each entity, but you
already know how to define tables, so we won’t show that again.

 In the mapping file, you use the EntitySetMapping element, nesting an Entity-
TypeMapping node for each entity. Inside EntityTypeMapping, you include a Mapping-
Fragment element to associate the table with the entity. Inside MappingFragment, you
map only the properties declared in the entity plus the primary key. The mapping
result is shown next.

<EntitySetMapping Name="Products">
 <EntityTypeMapping TypeName="IsTypeOf(OrderITModel.Product)">
 <MappingFragment StoreEntitySet="Product">
 ...
 </MappingFragment>
 </EntityTypeMapping>
 <EntityTypeMapping TypeName="IsTypeOf(OrderITModel.Shirt)">
 <MappingFragment StoreEntitySet="Shirt">
 ...
 </MappingFragment>
 </EntityTypeMapping>
 <EntityTypeMapping TypeName="IsTypeOf(OrderITModel.Shoes)">
 <MappingFragment StoreEntitySet="Shoe">
 ...
 </MappingFragment>
 </EntityTypeMapping>

Listing 5.21 Mapping TPT inheritance in the MSL
</EntitySetMapping>

149Extending the EDM with custom annotations

For the umpteenth time, you’ve reused your knowledge without having to learn any-
thing to create a brand-new feature. Despite its intricacies, EDM isn’t so hard to master.

5.5 Extending the EDM with custom annotations
The EDM is made of three XML files. Like any other XML file, it can be extended by
adding custom namespaces and linking nodes to them. Even if all the information
about mapping is already there, adding custom information can be useful when you
need additional data that isn’t included in the default schema.

 A simple example is validation. The Supplier class has an IBAN property (IBAN
being an international format for identifying bank accounts). You could specify the
format in the EDM and then use templates, as shown in chapter 2, to customize the
class’s code generation to add validation code in the IBAN property setter. Even better,
you could generate a DataAnnotation attribute so that the class was compliant with
ASP.NET MVC validation specifications. Whatever your choice, EDM customization is
where it all begins.

 Another example involves collection properties. Suppose that an order can’t have
more than 10 details. You can add this value to the property in the EDM and then cre-
ate a CLR custom collection that, in the Add method, compares the number of details
to the limit, raising an exception or performing some other action if there are too
many lines.

 There are several other cases where customization of the EDM is a winning choice.
It’s a powerful tool in your toolbox. Now that you know why you should customize the
EDM, let’s look at how to do it.

5.5.1 Customizing the EDM

Adding custom annotations is pretty straightforward. You just have to add a
namespace, inside of which you put the tags.

 Suppose you need to add IBAN validation information in the EDM. The easiest way
to validate a string is with a regular expression. The following listing adds such an
expression to the IBAN property.

<Schema xmlns:val="http://val" ...> Declares namespace
 <EntityType Name="Supplier">
 <Property Name="IBAN" ...>
 <val:regex>

Adds custom [a-zA-Z]{2}\d{2}[][a-zA-Z]\d{3}[]\d{4}[]\d{4}[]\d{4}
annotation➥ []\d{4}[]\d{3}|[a-zA-Z]{2}\d{2}[a-zA-Z]\d{22}

 </val:regex>
 </Property>
 </EntityType>
<Schema>

Naturally, you can add attributes following the same principle. There’s no technical

Listing 5.22 Adding a custom tag to the EDM
limitation—the choice is up to you.

150 CHAPTER 5 Domain model mapping

 Keep in mind that not all tags in the EDM accept inner custom tags. The following
tags don’t allow customizations:

 Using
 Schema

 Key
 PropertyRef

The reason for this limitation is that those tags don’t have a correspondence in the
Entity Framework metadata object model, so they can’t be accessed. Similarly, MSL
tags can’t be customized, whereas SSDL and CSDL tags can.

NOTE That last sentence probably sounded like Jabba the Hutt speaking
without subtitles, but don’t worry; in chapter 12, which focuses on meta-
data, you’ll learn about the metadata object model and tag customization.

For the moment, keep in mind that you can customize the EDM. The real power that
comes from using this technique will be revealed later.

5.6 Summary
In this chapter, you’ve learned what you need to know to create and map entities to
tables. We have not covered some very task-specific details, like the mapping of stored
procedures, because they’ll be discussed in depth in chapter 9.

 Mapping is a complicated task at first, but when you understand the use of the
five main elements of the mapping (EntitySet, EntityType, AssociationSet,
Association, and EntitySetMapping), there’s little more to learn. They, in combina-
tion, open the door to every mapping scenario.

 Fortunately, creating the CLR classes is simpler than creating the EDM. Thanks to
the POCO support, you can have classes that are completely ignorant of Entity Frame-
work or any other persistence mechanism, allowing you to focus only on the business
problem.

 It was a long trip from defining classes to mapping them through to the database.
If you have a complex model, you can end up spending a lot of time maintaining this
infrastructure code. This is what drove the Entity Framework team to create a
designer. By using the designer, you only need to worry about the business code, leav-
ing to the designer the burden of creating the plumbing.

 Now that you know how to map the domain model and how to use the power of que-
rying with Entity Framework, it’s time to learn how to modify objects and persist their
modifications into the database. This will allow you to start developing real projects.

Understanding
the entity lifecycle
At this point in the book, you have two-thirds of the basics you need to implement
Entity Framework–based data access code. You have learned how to create an
object model, how to map it against the database using the EDM, how to perform
queries to retrieve data, and how to transform data in objects. What you’re still
missing is an understanding of the entity lifecycle and how to persist modifications
made to an entity into the database. This chapter is about the first part of that: the
entity lifecycle.

 In this chapter, you’ll learn about the different states an entity can be in and
what can be done in each one of them. This is a central subject because the
changes you make to an entity affect its state, which in turn affects the way those
modifications are later persisted.

 Let’s start our discussion by analyzing the lifecycle of an entity and its several

This chapter covers
 Understanding entity states

 Understanding transitions between states

 Automatic and manual state changes
151

states.

152 CHAPTER 6 Understanding the entity lifecycle

6.1 The entity lifecycle
During its lifetime, an entity has a state. Before looking at how to retrieve entity state,
let’s take a look at what entity state is. The state is an enum of type System.
Data.EntityState that declares the following values:

 Added —The entity is marked as added.
 Deleted—The entity is marked as deleted.
 Modified —The entity has been modified.
 Unchanged —The entity hasn’t been modified.
 Detached —The entity isn’t tracked.

What do these states represent? What is the state related to? How can an entity pass
from one state to another? Does the state affect the database? To answer these ques-
tions, we’ll have to look at the concepts behind the object lifecycle.

6.1.1 Understanding entity state

As explained in chapter 3, the context holds a reference to all objects retrieved from
the database. What’s more important for our discussion, the context holds the state of
an entity and maintains modifications made to the properties of the entity. This fea-
ture is known as change tracking (or object tracking).

 If you create an entity outside the context, its status is Detached because the con-
text can’t track it.

NOTE More precisely, an entity outside the context has no state. We
referred to Detached status because in Entity Framework 1.0 that’s the
state an entity is in when it’s not tracked by a context.

If you attach an entity to the context (more on this in section 6.2), it will move to the
Unchanged state. If you retrieve an entity from the database and then get rid of the
context, the entity state will be Detached. If you retrieve an entity, dispose of the con-
text, and create a new context and add the entity to it, the entity will be in the Added
state (again, this will be explained in section 6.2). As these examples make clear, the
state is the relationship between the entity and the context that holds a reference to it.

 At first, you might have thought that the entity state reflected the state of the entity
compared to the corresponding row in the database, but it’s not like that. The context
is the application database; this is why entities relate their state to the context and not
to the database.

NOTE The fact that the state of an entity relates to the context instead of
the database often confuses people when they first approach Entity
Framework. It’s important to understand this point.

Let’s look at an example. Suppose you have two methods in the OrderIT web service:
the first retrieves data about a customer, and the second updates the data. The client
uses the first method to retrieve the data and display it in a form. In this method, you

create a context to retrieve the data and then destroy the context.

153The entity lifecycle

 The user modifies some of the data, such as the shipping address, and then saves
it, invoking the second method and passing in the updated customer data. In the web-
service method, you create a new context and attach the entity to it. The new context
can’t know what data has been modified by the user (if any) unless it goes to the data-
base and performs a comparison.

 Going to the database would be too expensive, so it’s not performed automatically.
This means that when the entity is attached to the context, it enters the Unchanged
state, because the context knows nothing about modifications. If the entity state
reflected the actual state against the database, it would be Modified, but that’s not the
case. This example is simple, but it explains why the state indicates the relationship
between the entity and the context, and not the entity and the database.

 Naturally, the state of an entity affects the way it’s persisted. Not surprisingly, when
you persist entities, those in the Added, Modified, or Deleted state are saved using the
INSERT, UPDATE, or DELETE command in the database.

6.1.2 How entity state affects the database

The state represents not only the state of the entity in the context, but also how the
data will be persisted into the database. For each state, there is a corresponding SQL
command.

 An entity in Added state is persisted using an INSERT command to create a new row
in the mapped tables. An entity that’s Modified already has a correspondence with a
table row, so it will be persisted using an UPDATE command. An entity in Deleted state
has a correspondence with a table row, but it triggers a DELETE instead of an UPDATE.

 The Detached and Unchanged states have no impact on the database: a detached
entity isn’t tracked by a context, so it can’t be persisted, whereas an unchanged one
has no modifications to persist.

 During its lifetime, an entity can change its state. Let’s look at how this happens
and what API you can to use to make it happen manually.

6.1.3 State changes in the entity lifecycle

The state of an entity is sometimes set automatically by the context and can also be
modified manually by the developer. Although all the combinations of switches from
one state to another are possible, some of them are pointless. For instance, there’s no
point in moving an Added entity to the Deleted state, or vice versa. Figure 6.1 shows all
the states and how an entity can pass from one to another.

 The figure is quite clear. The only thing we need to add is that all the methods
shown belong to the ObjectContext or to the ObjectSet<T> classes. Now, let’s look
more closely at the different states.

DETACHED STATE

When an entity is Detached, it isn’t bound to the context, so its state isn’t tracked. It
can be disposed of, modified, used in combination with other classes, or used in any
other way you might need. Because there is no context tracking it, it has no meaning

to Entity Framework.

Query

Query with
tracking
disabled

DeleteObject()

Detach() Detach()

AddObject() A�ach()

Detach()

ApplyCurrentValues()
ApplyOriginalValues()
Property Modifica�on

DeleteObject()
Detach()

Deleted

Added

Unchanged

Detached

Modified

Database

Figure 6.1 The different entity
states and the context methods
that make them change

154 CHAPTER 6 Understanding the entity lifecycle

As a consequence, Detached is the default state of a newly created entity (one created
using the new constructor) because the context can’t track the creation of any object
in your code. This is true even if you instantiate the entity inside a using block of the
context. Detached is even the state of entities retrieved from the database when track-
ing is disabled.

UNCHANGED STATE

When an entity is Unchanged, it’s bound to the context but it hasn’t been modified. By
default, an entity retrieved from the database is in this state.

 When an entity is attached to the context (with the Attach method), it similarly is
in the Unchanged state. The context can’t track changes to objects that it doesn’t refer-
ence, so when they’re attached it assumes they’re Unchanged.

ADDED STATE

When an entity is in the Added state, you have few options. In fact, you can only detach
it from the context using Detach.

 Naturally, even if you modify some property, the state remains Added, because mov-
ing it to Modified, Unchanged, or Deleted would be nonsense—it’s a new entity and
has no correspondence with a row in the database. This is a fundamental prerequisite
for being in one of those states (but this rule isn’t enforced by the context).

MODIFIED STATE

When an entity is Modified, that means it was in Unchanged state and then some prop-
erty was changed.

 After an entity enters the Modified state, it can move to the Detached or Deleted
state, but it can’t roll back to the Unchanged state even if you manually restore the orig-
inal values (unless you detach and reattach the entity to the context). It can’t even be
changed to Added (unless you detach and add the entity to the context, because a row
with this ID already exists in the database, and you would get a runtime exception
when persisting it.

NOTE The preceding rules can be overridden using an API we’ll discuss
in section 6.2.6.

155Managing entity state

DELETED STATE

An entity enters the Deleted state because it was Unchanged or Modified and then the
DeleteObject method was used. This is the most restrictive state, because it’s pointless
changing from this state to any other value but Detached.

 That covers what each state means and how an entity can have its status changed.
Now, let’s take the methods that are responsible for this process and put them into
action.

6.2 Managing entity state
The change from the Unchanged to the Modified state is the only one that’s automati-
cally handled by the context. All other changes must be made explicitly using proper
methods:

 AddObject—Adds an entity to the context in the Added state
 Attach—Attaches an entity to the context in the Unchanged state
 ApplyCurrentValues and ApplyOriginalValues—Change the state to

Modified, comparing the tracked entity with another one
 DeleteObject—Marks an entity as Deleted
 AcceptAllChanges—Marks all entities as Unchanged
 ChangeState and ChangeObjectState—Change an entity from one state to

another without any restrictions (except for Detached)
 Detach—Removes an entity from the context

These methods are exposed by the ObjectContext and ObjectSet<T> classes, with the
exception of AttachTo, which is defined only by the context, and ChangeState, which
is defined by the state manager (we’ll look at this component shortly). The Object-
Set<T> methods internally invoke the context methods, so there’s no difference
between them.

 In the first release of Entity Framework, only the ObjectContext methods existed.
The interface for these methods is muddy, so the team added the new ones to
ObjectSet<T>, improving usability and simplifying code readability. Because of these
advantages, we strongly recommend using the ObjectSet<T> methods and consider
the context methods obsolete.

 Let’s look at each of these methods, starting with the one that adds an entity to the
context.

6.2.1 The AddObject method

AddObject allows you to add an entity to the context in the Added state. When the
entity is added to the context, it’s added to those tracked by the context for modifica-
tions. When the persistence process is triggered, the context saves the object as a new
row in the tables using INSERT commands. In the OrderIT example, persisting an
order will cause an INSERT into the Order table, whereas persisting a shirt will cause

an INSERT into the Product and the Shirt tables.

156 CHAPTER 6 Understanding the entity lifecycle

 Let’s look at the code. We’ll first analyze the context method, and then we’ll look
at the entity-set method so that you understand why a new API was desirable.

 The AddObject context method receives two arguments, the entity set name and
the entity:

C#
public void AddObject(string entitySetName, object entity)

VB
Public Sub AddObject(ByVal entitySetName As String,
 ByVal entity As Object)

There are at least two weaknesses in this code. First, the entity set name is passed as a
string. If you type it incorrectly, you’ll get an exception only at runtime. Here’s an
example:

C#
ctx.AddObject("Companis", new Customer() { ... });

VB
ctx.AddObject("Companis", New Customer() With { ... })

Second, the entity argument is of type Object, meaning you can potentially pass any
CLR object and receive an exception only at runtime if the object isn’t correct. Here’s
an example that compiles, despite having the wrong object and wrong entity set
name. It produces a runtime exception:

C#
ctx.AddObject("Companis", String.Empty);

VB
ctx.AddObject("Companis", String.Empty)

The following listing shows the correct code.

C#
ctx.AddObject("Companies", new Customer() { ... });

VB
ctx.AddObject("Companies", New Customer() With { ... })

In the strong-typing era, such an API is unbearable. To overcome this bad design, the
Entity Framework team introduced an equivalent API in the entity set interface. It
accepts as input only the object that needs to be added:

C#
public void AddObject(TEntity entity)

VB
Public Sub AddObject(ByVal entity As TEntity)

TEntity is the type of the entity maintained by the entity set (remember that an entity

Listing 6.1 Adding an entity to the context via the ObjectContext method

157Managing entity state

set is an instance of a type implementing the IObjectSet<T> interface). Due to strong
typing, you have no chance to pass an object of the incorrect type to the method. Fur-
thermore, because the entity set knows its name, there’s no need to specify it.

 Listing 6.2 shows the code that uses the new method.

C#
ctx.Companies.AddObject(new Product() { ... });

ctx.Companies.AddObject(new Customer() { ... });

VB
ctx.Companies.AddObject(New Product() With { ... })

ctx.Companies.AddObject(New Customer() With { ... })

In each case, the first line doesn't compile; Product isn’t allowed. The second line
compiles, and Customer inherits from Company.

 Now, look at listings 6.1 and 6.2. Didn’t you fall in love with the new syntax?
 Adding an entity to the context using the method exposed by the entity set prop-

erty of the context class is pretty straightforward. Later in the chapter, we’ll deal with
relationships, and you’ll discover there are subtleties that can complicate your life.

 Adding an entity to the context is useful when you need to persist the object as a
new row in the database. But when the object already has a correspondence with a row
in the database, it must be persisted using an UPDATE command. The flow changes,
and you have to use the Attach method.

6.2.2 The Attach method

The Attach method attaches an object to the context in an Unchanged state. When the
entity is attached to the context, it’s tracked by the context for modifications made to
scalar properties.

 In a real-world application, there are plenty of situations where an entity needs to
be attached. Web applications and web services are typical examples. Let’s go back to
the example from section 6.1, where a customer updates its data. In the method that
retrieves the customer, you create a context, perform a query, return the object to the
client, and then dispose of the context. In the update method, you create a brand-new
context and then attach the customer to it. Finally, you persist the customer. (There’s
also something else to do, as you’ll discover later in this chapter.)

 Let’s get back to the Attach method. The Attach context method receives two
arguments: the entity-set name and the entity. This method suffers from the same lim-
itations of AddObject and so has become obsolete. In its place, you can use the Attach
entity-set method, which needs only the object to be attached, as you can see in the
next listing.

Listing 6.2 Adding an entity to the context with the ObjectSet<T> class method

158 CHAPTER 6 Understanding the entity lifecycle

C#
var c = new Customer { CompanyId = 1 };
...
ctx.Companies.Attach(c);

VB
Dim c as New Customer With { .CompanyId = 1 }
...
ctx.Companies.Attach(c)

You attach an object to the context because you want its data to be updated (or
deleted, as you’ll see later) in the database. The object must have a correspondence
with a row in the database, and this correspondence is identified by the primary-key
properties and columns.

NOTE As you have learned before, the context doesn’t go to the data-
base to check whether the object’s primary key has a correspondence
with a database row.

When you attach an object to the context, the primary-key columns must be set, or
you’ll get an InvalidOperationException at runtime. Furthermore, during the per-
sistence phase, if the UPDATE command doesn’t affect any row, the context throws an
exception.

 Because an attached entity goes to the Unchanged state, you must find a way to
mark it as Modified to persist it in the database. The next methods we’ll discuss can
do this.

6.2.3 The ApplyCurrentValues and ApplyOriginalValues methods

In our customer web-service example, when you have attached the object, you need to
persist it. The problem is that after it’s attached, it’s in Unchanged state, so you need to
find a way to change it to Modified state. The simplest way is to query the database for
the latest data, and compare it with the input entity.

 You know that the object context keeps a reference to each entity read from the
database or that is added through the AddObject or Attach method. What we haven’t
mentioned is that it keeps in memory both the original values and the current values of
the scalar properties when the entity is bound to the context (you’ll learn more about
this in section 6.3).

 The ApplyOriginalValues method takes an entity as input (the one coming from
the database, in this case). The method then retrieves in the context’s memory an
object of the same type and with the same key as the input entity (we’ll refer to this
entity as the context entity). Finally, the method copies the values of the input entity’s
scalar properties into the original value of the context entity’s scalar properties. At this
point, the scalar properties’ original values held in the context contain data from the
database, whereas the scalar properties’ current values held in the context contain the

Listing 6.3 Attaching an entity with the Attach method

159Managing entity state

values of the entity from the web service. If original values are different from current
values, the entity is set to Modified state; otherwise it remains Unchanged.

 You can follow the opposite path too. Instead of attaching the entity and querying
the database, you can query the database and then apply modifications from the web
service’s entity. This is what the ApplyCurrentValues method does. It takes an entity
as input (the one from the web service, in this case). The method then retrieves in the
context’s memory an object of the same type and with the same key as the input entity
(again, we’ll call this the context entity). Finally, the method copies the values of the
input entity’s scalar properties into the current value of the context entity’s scalar
properties. At this point, the current values held in the context contain data from the
web service entity, and the original values are the values from the database. If they are
different, the entity is set to Modified state; otherwise it remains Unchanged.

 When persistence is triggered, if the entity is in Modified state, it’s persisted using
UPDATE commands.

 Like the previous methods we’ve discussed, the ApplyOriginalValues and Apply-
CurrentValues methods belong to the ObjectContext and ObjectSet<T> classes, and
we recommend using those exposed by the latter, as shown here.

C#
Dim entityFromDb = GetEntityFromDb(entityFromService.CompanyId);
ctx.Companies.Attach(entityFromService);
ctx.Companies.ApplyOriginalValues(entityFromDb);

ctx.Companies.First(c => c.CompanyId == entityFromService.CompanyId);
ctx.Companies.ApplyCurrentValues(entityFromService);

VB
Dim entityFromDb = GetEntityFromDb(entityFromService.CompanyId)
ctx.Companies.Attach(entityFromService)
ctx.Companies.ApplyOriginalValues(entityFromDb)

ctx.Companies.First(Function(c) c.CompanyId = entityFromService.CompanyId)
ctx.Companies.ApplyCurrentValues(entityFromService)

You must be aware of a little trap here. Both methods only care about scalar and com-
plex properties of the input entity. If a scalar property in an associated entity changes,
or if a new line is added, removed, or changed in an associated collection, it won’t be
detected.

 The other persistence operation in a database is DELETE. The DeleteObject
method marks an entity for deletion.

6.2.4 The DeleteObject method

The DeleteObject method marks an entity as Deleted. The only caveat that you have
to keep in mind is that the entity passed to this method must be attached to the con-
text. The object must come from a query or have been attached to the context using

Listing 6.4 Changing state with ApplyOriginalValues and ApplyCurrentValues
the Attach method.

160 CHAPTER 6 Understanding the entity lifecycle

 If the object isn’t found in the context, an InvalidOperationException is thrown
with this message: “The object cannot be deleted because it was not found in the
ObjectStateManager.”

 The next listing shows how easy it is to use the DeleteObject method exposed by
the ObjectSet<T> class.

C#
var c = ctx.Companies.OfType<Customer>() Connected

scenario .Where(w => w.CompanyId == 1);
ctx.Companies.DeleteObject(c);

var c = new Customer { ... }; Disconnected
scenarioctx.Companies.Attach(c);

ctx.Companies.DeleteObject(c);

VB
Dim c = ctx.Companies.OfType(Of Customer)(). Connected

scenario Where(Function(w) w.CompanyId = 1)
ctx.Companies.DeleteObject(c)

Dim c as New Customer { ... } Disconnected
scenarioctx.Companies.Attach(c)

ctx.DeleteObject(c)

When DeleteObject is invoked, the entity isn’t deleted from the context; it’s marked as
deleted. When persistence is triggered, the entity is removed from the context, and
DELETE commands are issued to delete it from the database.

 The next method we’ll explore is used to commit entity modification inside the
context.

6.2.5 The AcceptAllChanges method

The AcceptAllChanges method takes all entities that are in Added and Modified states
and marks them as Unchanged. It then detaches entities in Deleted state and eventu-
ally updates the ObjectStateManager entries (more on this in section 6.3).

AcceptAllChanges is exposed only by the ObjectContext and doesn’t have a coun-
terpart in the ObjectSet<T> class. That’s why you need to use this code:

C#
ctx.AcceptAllChanges();

VB
ctx.AcceptAllChanges()

The methods you’ve seen so far are very strict. They change the entity state to a spe-
cific value. The next methods we’ll look at are different because they give you the free-
dom to switch to any state.

Listing 6.5 Deleting an entity

161Managing entity state

6.2.6 The ChangeState and ChangeObjectState methods

The ChangeState and ChangeObjectState methods are the most flexible state-
changing methods. They allow you to change the state of an entity to any other possi-
ble state (except Detached). When working with one entity, these methods are useful.
But their importance grows when dealing with complex object graphs, as you’ll dis-
cover later in this chapter.

ChangeState is exposed by the ObjectStateEntry class, whereas ChangeObject-
State is exposed by the ObjectStateManager class (more on these classes in
section 6.3). ChangeState only needs the new state, because the ObjectStateEntry
instance already refers to an entity. ChangeObjectState accepts the entity and the new
state as arguments. Both methods are shown in the following listing.

C#
var osm = ctx.ObjectStateManager;
osm.ChangeObjectState(entity, EntityState.Unchanged);
osm.GetObjectStateEntry(entity).ChangeState(EntityState.Unchanged);

VB
Dim osm = ctx.ObjectStateManager
osm.ChangeObjectState(entity, EntityState.Unchanged)
osm.GetObjectStateEntry(entity).ChangeState(EntityState.Unchanged)

These methods don’t always physically change the entity state; sometimes they resort
to using the previous methods. For instance, moving an entity to the Unchanged state
means calling the AcceptChanges method of the ObjectStateEntry class
(AcceptChanges is internally invoked by the AcceptAllChanges method we discussed
in section 6.2.5). In contrast, changing the state from Unchanged to Added means
changing the state.

 Sometimes you don’t need the entities to be persisted or to be tracked for modifi-
cation by the context. In that case, you can remove the entities from the context by
detaching them.

6.2.7 The Detach method

The Detach method removes the entity from the list of entities tracked by the context.
Whatever the state of the entity, it becomes Detached, but entities referenced by the
detached one aren’t detached.

 Invoking this method is pretty simple, as you see in listing 6.7, because it accepts
only the entity that must be detached. (We show only the entity set method, which is
the recommended one.)

C#
ctx.Companies.Detach(c);

VB

Listing 6.6 Changing object state using ChangeObjectState and ChangeState

Listing 6.7 Detaching an entity
ctx.Companies.Detach(c)

162 CHAPTER 6 Understanding the entity lifecycle

The precondition for successful detaching is that the entity must already be attached
to the context. If that’s not the case, you’ll get an InvalidOperationException with
the message, “The object cannot be detached because it is not attached to the Object-
StateManager.”

 You’ve now learned how to move an entity from one state to another, but there’s
still one missing piece. So far, we’ve said that the context is able to track modifications
to the objects it references. This is true, but only to a certain extent. The truth is that
the context delegates change-tracking management to another inner component:
ObjectStateManager.

6.3 Managing change tracking with ObjectStateManager
The ObjectStateManager component (state manager from now on) is one of Entity
Framework’s hidden gems. It’s responsible for everything related to object tracking in
the context:

 When you add, attach to, or delete an entity from the context, you actually do
that against the state manager.

 When we say that the context keeps an in-memory collection of all entities read
from the database, it’s the state manager that holds this data.

 When the context performs an identity-map check (discussed in chapter 3), it’s
really the state manager that performs the check.

 When we say that the context keeps track of relationships between entities, it’s
the state manager that keeps track of everything.

NOTE Because ObjectContext wraps the state manager, it’s still valid to
say that the context performs the tracking.

Tracking changes to entities is only one of the state manager’s tasks. It also provides
APIs for retrieving entity state and manipulating it.

 The state manager isn’t directly accessible. Because it’s an inner component of the
context, it’s exposed as a property, named ObjectStateManager, of the Object-
Context class. This is the code you use to access the state manager:

C#
var osm = ctx.ObjectStateManager;

VB
Dim osm = ctx.ObjectStateManager

NOTE For brevity, we’ll use the variable osm to identify the state manager
in the code.

The context is responsible for the lifecycle of the state manager. It handles its instanti-
ation and disposal, and there’s absolutely nothing you can do to change this behavior
(nor is there any reason why you should).

 Now that you know what the purpose of the state manager is, let’s go deeper and

look at how it accomplishes its tasks. Let’s first investigate what data it manages.

163Managing change tracking with ObjectStateManager

6.3.1 The ObjectStateEntry class

When you query the state manager to retrieve an entity tracked by the context, it
replies with an ObjectStateEntry object (entry from now on). This object contains
more than the simple tracked entity. It holds data that fully represents the entity and its
history inside the state manager. It also holds the relationships between the entity and
other entities it references by navigation properties. More specifically, it exposes two
types of members: properties and methods that reveal data about the entry (shown in
table 6.1) and methods that manipulate entry data (discussed in section 6.3.3).

This is a lot of information. The most important members for you are likely Entity-
State, OriginalValues, and CurrentValues; the others are there mainly because
Entity Framework itself is their first consumer.

NOTE OriginalValues and CurrentValues are of type DbDataRecord.

ObjectStateEntry is an abstract class that acts as a base class for two other classes:
EntityEntry and RelationshipEntry. They’re internal classes, so you’ll never work
with them directly. As their names suggest, EntityEntry contains data about an entity,
and RelationshipEntry contains information about a relationship between entities.
EntityEntry needs no explanation, but we’ll get back to RelationshipEntry in sec-
tion 6.3.5.

 The EntityKey property is vital because it represents the key of the entity inside
the state manager. The EntityKey concept is a little bit tricky, so it’s worth looking
into it.

UNDERSTANDING HOW THE STATE MANAGER IDENTIFIES AN OBJECT BY ITS KEY

The EntityKey property is what the state manager uses to ensure that only one entity
of a given type with a given ID is tracked. The identity-map check is performed by

Table 6.1 Members exposed by the ObjectStateEntry class that give access to data in the entry

Member Description

Entity property Entity tracked by the state manager

EntityKey property Key of the entity

EntitySet property Entity set that the entity belongs to

EntityState property State of the entity

OriginalValues property Value of each entity property when it was attached

CurrentValues property Current value of each entity property

GetModifiedProperties method Properties modified since the entity was tracked

IsRelationship property Flag that specifies whether the entry contains data about an
entity or a relationship
inspecting the entity’s EntityKey property and not the entity’s key properties.

164 CHAPTER 6 Understanding the entity lifecycle

EntityKey contains two important properties: the entity set and the values of the
properties that compose the entity’s primary key.

 When you add an object to the context, it’s added to the state manager with a tem-
porary entity key, because Entity Framework knows it must persist the object as a new
row. This temporary key isn’t evaluated by the identity-map check, so if you add the
another object of the same type and with the same ID, it’s added with another tempo-
rary key. When persistence is triggered, two INSERT commands are issued.

 If the row ID is autogenerated on the database (as it is in OrderIT), persistence
works fine. If you use natural keys (such as the SSN), the persistence process will throw
a duplicate-key exception because the second INSERT command uses the same ID,
causing a primary-key violation on the database.

 When you attach an entity, the state manager automatically creates an EntityKey
object and saves it in the entry created for the entity. This EntityKey object isn’t tem-
porary and is used by the identity-map check.

NOTE When you call ChangeState or ChangeObjectState to change the
state from Added to Unchanged or Deleted, the EntityKey is regenerated.
The new EntityKey isn’t temporary and is filled with the key properties
of the entity. If there’s already an entity with that key, the state change
triggers an exception.

Not only does ObjectStateEntry contain data, but it also incorporates behavior. It
allows you to change the state of an entity and override its original and current values.
In the rest of this section and chapter, we’ll look at how to use the power of Object-
StateEntry to solve problems.

 The only way to obtain an ObjectStateEntry instance is to query the state man-
ager. In the next section, you’ll see how to do this and why this is a great feature.

6.3.2 Retrieving entries

You know perfectly well whether you’re adding, attaching, or deleting entities, so why
would you ever need to query the context for entity state? There are two situations
where this is useful: first, Entity Framework itself needs to query object state; and sec-
ond, you may want to report the entity state in some sort of generic logging or other
scenario.

 Suppose you want to log each persistence operation triggered by your application.
One way to do this might be to create an extension method that performs an attach,
add, or delete and then adds an entry to the logging storage. This implementation is
naive because you might need to halt the persistence process for some reason, and
you’d end up logging operations that hadn’t happened. (Yes, you could roll back the
logging, but that’s not the point here.)

 Another approach might be subscribing to the SavingChanges event, which is trig-
gered before the persistence process begins (SaveChanges), retrieving entities in the
Added, Modified, and Deleted states, and writing entries in the log. This solution,

165Managing change tracking with ObjectStateManager

shown in the next listing, better serves your needs; it doesn’t even require you to cre-
ate and use extension methods.

C#
ctx.SavingChanges +=
 new EventHandler(ctx_SavingChanges);

Subscribes
to event

B

ctx.SaveChanges();

void ctx_SavingChanges(object sender, EventArgs e)
{
 var osm = (sender as OrderITEntities).ObjectStateManager;
 var entries = osm.GetObjectStateEntries(
 EntityState.Added | EntityState.Modified

Iterates over
modified
entities

C

 | EntityState.Deleted);

 foreach(var entry in entries)
 {
 Logger.Write(entry.Entity.GetType().FullName + Writes

to log
D

 " - " + entry.State);
 }
}

VB
AddHandler ctx.SavingChanges,
 AddressOf ctx_SavingChanges

Subscribes
to event

B

ctx.SaveChanges()

Private Sub ctx_SavingChanges(ByVal sender As Object, ByVal e As EventArgs)
 Dim osm = TryCast(sender, OrderITEntities).ObjectStateManager
 Dim entries = osm.GetObjectStateEntries(
 EntityState.Added Or EntityState.Modified Or

Iterates over
modified
entities

C

 EntityState.Deleted)

 For Each entry In entries
 Logger.Write(entry.Entity.GetType().FullName & Writes

to log
D

 " - " & entry.State)
 Next
End Sub

The first step is hooking up the SavingChanges event B. Next, in the handler, you
retrieve all entries in a specific state by using the ObjectStateManager class’s Get-
ObjectStateEntries method C. It accepts an EntityState parameter representing
the state to look for, and it returns a collection of all entries in that state. If you need
entries in different states, you can combine them using the flag syntax. Eventually, you
invoke the logger method to write the entry D.

 Often, you’ll only need to retrieve a single entry. GetObjectStateEntries is unus-
able in such scenario. What you need is another method that lets you pass an entity
and get the corresponding state-manager entry. The state manager has a method that
serves this purpose.

Listing 6.8 Logging persisted objects

166 CHAPTER 6 Understanding the entity lifecycle

RETRIEVING A SINGLE ENTRY

To retrieve the entry related to a single entity, you can use the GetObjectStateEntry
method, passing the entity as argument, as shown here:

C#
var entry = osm.GetObjectStateEntry(entity);

VB
Dim entry = osm.GetObjectStateEntry(entity)

The input entity must have the key properties set, because when the state manager tries
to retrieve the entry, it creates an EntityKey using them and performs a lookup. If no
entry contains this EntityKey, the method throws an InvalidOperationException
with the message, “The ObjectStateManager does not contain an ObjectStateEntry
with a reference to an object of type ‘type’.”

 To avoid the exception, you can use TryGetObjectStateEntry. It performs the
same task as GetObjectStateEntry; but following the design guidelines of the .NET
Framework, this method accepts the entity and an output parameter representing the
entry found, and it returns a Boolean value indicating whether the entry was found.
Should it return false, the output parameter is null. The following listing contains
code using this method.

C#
ObjectStateEntry entry;
var found = osm.TryGetObjectStateEntry(c, out entry);

VB
Dim entry As ObjectStateEntry
Dim found = osm.TryGetObjectStateEntry(c, entry)

With the ObjectStateEntry class, you can modify the state of the entity, as you’ve seen
before, by using the ChangeState method. But that’s not your only option. In the next
section, you’ll discover other methods that allow you to change entity state.

6.3.3 Modifying entity state from the entry

When you have the entry, you can modify the state of the related entity because the
context methods we looked at earlier in this chapter internally invoke the methods in
the ObjectStateEntry class. These methods are listed in table 6.2.

NOTE Technically, talking about entity state is incorrect. The actual state
of an entity is the state of its entry in the state manager. However, the
term entity state is intuitive and more commonly understood than entry
state, so we’ll continue using it.

Listing 6.9 Retrieving an entry from the ObjectStateManager

Listing 6.10 Safely retrieving an entry from ObjectStateManager

167Managing change tracking with ObjectStateManager

These methods are pretty simple to use because most of them don’t accept any param-
eters. The only exceptions are SetModifiedProperty, which accepts the name of the
property to set as Modified, and ChangeState, which accepts the new state the entity
should be changed to.

 Previously we said that the only state change that’s automatically performed by the
state manager is from Unchanged to Modified when you modify a property, but we said
that it’s not always the case. In the next section, we’ll dig deep into the object-tracking
mechanism, discuss its internals, and see how to avoid its traps.

6.3.4 Understanding object tracking

Technically speaking, the state manager can’t monitor modifications to properties
inside an entity; it’s the entity that notifies the state manager when a change is made.
This notification mechanism isn’t always in place—it depends on how you instantiate
the entity. You can create the following kinds of entities:

 POCO entity not wrapped by a proxy (a plain entity)
 POCO entity wrapped by a proxy (a proxied entity)

A wrappable entity is a class written to enable extensibility via proxy. You have already
discovered that a class is wrappable when it isn’t closed to inheritance and its proper-
ties are virtual. In particular, a wrappable class enables change tracking if all scalar
properties are virtual. A wrapped (or proxied) entity is an instance of such an entity
that has been wrapped inside a virtual proxy.

 The state manager doesn’t care whether a class is wrappable or not. What’s impor-
tant to it is whether the entity has been instantiated as a proxy or as a pure POCO class.
Let’s look at some examples to clarify the distinctions in the preceding list.

CHANGE-TRACKING OF AN ENTITY NOT WRAPPED INSIDE A PROXY

An entity might be obtained from a web service, from the deserialization of the

Table 6.2 Methods exposed by the ObjectStateEntry class that modify entity state

Method Description

Delete Marks the entity as deleted. This method is also invoked by
DeleteObject and ChangeState when moving to the Deleted
state.

SetModified Marks the entity and all of its properties as Modified. This method is
internally invoked by ChangeState when moving to the Modified
state.

SetModifiedProperty Marks a property as Modified, and consequently marks the entity too.

AcceptChanges Changes the entity’s state to Unchanged and overrides the original
values of the entry with the current ones.

ChangeState Changes the entity’s state to the input value.
ASP.NET ViewState in a web page, from a query where the context has proxy creation

168 CHAPTER 6 Understanding the entity lifecycle

disabled, or from instantiating it with a constructor. These objects aren’t wrapped by a
proxy, because only the context with proxy-creation enabled (the default setting) can
create a wrapped entity. What’s more, an entity may not be wrappable, so even if it
comes from a context, it may not be proxied.

 As you saw in chapter 5, entities’ property setters have no knowledge of the state
manager, so how can the state manager learn when a property is modified? You may
be surprised to discover that it can’t.

 Let’s look at an example. Suppose you need to modify a customer. You query the
database to retrieve the customer, and you modify a property, such as the name, and
then persist it. Because the state manager doesn’t know that you have modified a
property, the state of the entity remains Unchanged, as you can see here.

C#
var customer = ctx.Customers.First();
var entry = osm.GetObjectStateEntry(customer);
customer.Name = "NewCustomer"; State Unchanged
ctx.SaveChanges();

VB
Dim customer = ctx.Customers.First()
Dim entry = osm.GetObjectStateEntry(customer)
customer.Name = "NewCustomer" State Unchanged
ctx.SaveChanges()

When the SaveChanges method is invoked, the modifications are persisted into the
database even if the state is Unchanged! How can this work? Why are modifications
persisted if the state manager knows nothing about them?

 The magic is buried inside the ObjectStateManager class’s DetectChanges
method, which is internally invoked by the SaveChanges method. This method iter-
ates over all state-manager entries, and for each one compares the original values with
those stored in the entity. When it detects that a property has been modified—the cus-
tomer name, in this example—it marks the property as Modified, which in turn marks
the entity as Modified and updates the current value of the entry. When
DetectChanges has finished its job, the entities and their entries in the state manager
are perfectly in sync, and SaveChanges can move on to persistence.

 Because the state manager isn’t automatically synchronized with the entities, when-
ever you need to work with its APIs, you must invoke the DetectChanges method to
avoid retrieving stale data, as in the previous listing. You can do this as in the next
snippet.

C#
var entry = osm.GetObjectStateEntry(customer);
customer.Name = "NewCustomer"; State Unchanged

Listing 6.11 Modifying a customer using an entity not wrapped inside a proxy

Listing 6.12 Invoking the DetectChanges method
ctx.DetectChanges(); State Modified

169Managing change tracking with ObjectStateManager

VB
Dim entry = osm.GetObjectStateEntry(customer)
customer.Name = "NewCustomer" State Unchanged
ctx.DetectChanges() State Modified

DetectChanges isn’t problem-free. It iterates over all entities and evaluates all their
properties. If lots of entities are tracked, the iteration may be expensive. Use it, but
don’t abuse it.

CHANGE TRACKING WRAPPED INSIDE A PROXY

When an entity is wrapped in a proxy, there is more magic under the covers. A prox-
ied entity enables automatic change tracking, meaning that it immediately notifies the
state manager when a property is modified. This happens because the proxy overrides
property setters, injecting code that notifies the state manager about property
changes. Figure 6.2 contains a simplified version of the code inside the proxy.

public class ProxyCustomer: Customer
{
 public override string WSUsername
 {
 set
 {
 No�fyPropertyChanging(”WSUsername”, value)
 WSUsername = value;
 No�fyPropertyChanged(”WSUsername”, value)
 }
 }
}

public class Customer : Company
{
 public virtual string WSUsername { get; set; }
}

Figure 6.2 The code injected by the
proxy notifies the state manager about
changes in properties.

 This feature is fantastic because, without any effort, you get automatic synchroniza-
tion between the state manager entry and the entity. This behavior is clear in the next
listing.

C#
var entry = osm.GetObjectStateEntry(customer); State Unchanged
customer.Name = "NewCustomer"; State Modified

VB
Dim entry = osm.GetObjectStateEntry(customer) State Unchanged
customer.Name = "NewCustomer" State Modified

In chapter 3, you learned that proxies enable lazy loading. In this chapter, you’ve
learned that proxies also enable automatic change tracking. In Entity Framework 1.0,
these features required tons of code, and now you get them almost for free. This is
another huge step ahead in Entity Framework 4.0.

Listing 6.13 Modifying a customer inside a proxy

170 CHAPTER 6 Understanding the entity lifecycle

 Not only can the context track single entities, but it also tracks entities’ relation-
ships. You might expect this to be done using the primary-key properties of associated
objects or foreign keys; sometimes it’s done that way, but sometimes it’s done in other
ways.

6.3.5 Understanding relationship tracking

When an entity is attached to the context, a new entry is added in the state manager.
After that, the context scans the navigation properties to find associated entities.
Those that aren’t null are automatically attached. The same behavior holds true
when adding entities.

 When a related entity is attached, if the relationship is via an independent associa-
tion, a new RelationshipEntry is added to the state manager, containing information
about the related entities. For instance, if you attach an order that has a reference to a
customer and many order details, the state manager will contain the order, its details,
and its customer entries, along with their association entries. Figure 6.3 shows what
the state manager looks like after such an attach process.

Figure 6.3 The state manager entries after an order with independent
associations is attached (shown in the QuickWatch window). There are six
entities (one for the order, one for the customer, two for the order details,
and two for their related products) and five entries for the relationships
between the entities (one for the relationship between the order and the
customer, two for the relationship between the order and its details, and
two for the relationship between the order details and their product).

 If the order is loaded using a query, things are slightly different. The state man-
ager creates one entry for the order, one for the customer, and one for their relation-
ship (order details are ignored because collection associations are ignored). This
happens even if you don’t retrieve the customer with the order. The customer entry
contains only the primary key (taken from the CustomerId column in the Order
table), whereas the relationship points to both entities, so the state manager has
everything it needs.

 A relationship can be in the Added or Deleted state but can’t be in the Modified
state. Usually, you won’t need to modify relationship state, because it’s handled by the

171Managing change tracking with ObjectStateManager

state manager. In the rare cases when you need to modify the relationship state, you
can use the ObjectStateManager class’s ChangeRelationshipState method or the
ObjectStateEntry class’s ChangeState method. Naturally, if you try to change the
relationship state to Modified, you’ll get a runtime exception.

 If foreign-key associations are used, no relationship entries are created because
you don’t need the associated entity, just the foreign-key property. The result is that
after attaching the same order as before, the state manager looks like what you see in
figure 6.4.

Figure 6.4 The state manager after an order with foreign-key associations
is attached. There are three entities (one for the order and two for the
details). The relationship entries don’t exist because foreign keys are used.

 When an entity is retrieved from the database, neither the entity entries nor the
relationship entries are created in the state manager for the associated entities. Fur-
thermore, changing a relationship is trivial because you only need to change the
foreign-key property. As you can see, foreign-key associations make things simple and
reduce the state manager’s work.

 Now that you know how the state manager tracks entities and relationships, let’s
investigate a couple of caveats.

CHANGES ARE TRACKED ONLY WHEN ENTITIES ARE TRACKED BY CONTEXT

When entities are outside the scope of the context, changes made to them aren’t
tracked. If you create an order, add a detail, or change its associated customer, and
then attach the order to the context, the context will never know what happened. The
order and the relationship entry will be in the Unchanged state when they’re attached.

STATE MANAGER DOESN’T SUPPORT PARTIALLY LOADED GRAPHS

When you attach an entity, the context scans all navigation properties and attaches
related objects as well. (The same happens if you add an object to the context.) All
entities are put in Unchanged state if they’re attached, and in Added state if they’re
added.

 If the context already tracks an entity of the same type and with the same key as an
entity in the graph, it raises an InvalidOperationException because it can’t hold two
objects of the same type with the same key.

 When adding a graph, there’s no risk of an exception because the entity key associ-
ated with the objects is temporary. A problem arises if the entity is later marked as
Unchanged (which does happen, as you’ll discover later in this chapter). In such a
case, the EntityKey is regenerated and becomes permanent, and if there’s already an
entity with the same key, an InvalidOperationException is thrown with the message,

“AcceptChanges cannot continue because the object’s key values conflict with another

172 CHAPTER 6 Understanding the entity lifecycle

object in the ObjectStateManager. Make sure that the key values are unique before
calling AcceptChanges.”

HOW RELATIONSHIPS CHANGE IN SINGLE-REFERENCE PROPERTIES

Suppose you have to change the customer associated with an order. You can find your-
self in two situations:

 Customer is already attached to the context. If a foreign key association is in place,
the property is synchronized and the Order object becomes Modified. If you
use an independent association, only the RelationshipEntry is created
between the entities.

 Customer isn’t attached to the context. The Customer is added to the context
(remember it doesn’t support partial graphs) in the Added state. If the associa-
tion is kept using a foreign-key association, the property is synchronized and
the Order object becomes Modified. If you use an independent association,
only the RelationshipEntry is created between the entities.

NOTE If the instances are proxies, the state change is automatic. If the
instances are plain objects, you’ll see state changes only after a call to
DetectChanges.

Suppose you have an order without a customer. If you use a foreign-key association,
setting the foreign-key property to null makes the association between the order and
the customer disappear. If you use an independent association, setting the Customer
property to null leads to the same result (the RelationshipEntry becomes Deleted).

 Keep in mind that only the association between the customer and the order is
removed. None of the objects are deleted.

HOW RELATIONSHIPS CHANGE IN COLLECTION PROPERTIES

A call to the Remove method of a collection property causes the reference to the mas-
ter to be removed from the detail. For instance, when you remove a detail from an
order, its Order property is set to null, and its status is set as Modified. Because the
foreign-key property (OrderId) isn’t nullable, during persistence an Invalid-
OperationException occurs with this message: “The operation failed: The relation-
ship could not be changed because one or more of the foreign-key properties is non-
nullable. When a change is made to a relationship, the related foreign-key property is
set to a null value. If the foreign-key does not support null values, a new relationship
must be defined, the foreign-key property must be assigned another non-null value, or
the unrelated object must be deleted.”

 Although the message might look encrypted, its quite clear. The OrderId property
of the detail can’t be null because you can’t have an orphan order detail. The detail
must always be assigned to an order. If you supported orphan details, the OrderId col-
umn in the OrderDetail table would be nullable. Similarly, the OrderID property in
the OrderDetail class would be nullable. In this case, persistence wouldn’t throw any
exception, so the order would be persisted and the order detail would become an

173Managing change tracking with ObjectStateManager

orphan. (Of course, there’s no point in having an orphan detail—we mention this
only for completeness.)

 If you use an independent association, you’ll get a different message: “A relation-
ship from the ‘OrderOrderDetail’ AssociationSet is in the ‘Deleted’ state. Given multi-
plicity constraints, a corresponding ‘OrderDetail’ must also in the ‘Deleted’ state.”
This means that the RelationshipEntry in the state manager is Deleted, but the
entity is Modified, and that isn’t allowed because orphan order details aren’t allowed;
the detail must be deleted too.

 The solution to the problem is to invoke the context’s DeleteObject method
instead of the collection property’s Remove method.

 You’re probably wondering why Entity Framework doesn’t automatically delete the
entity instead of simply removing the reference. The answer is that in other situations
this isn’t the correct behavior. Think about the many-to-many relationships between
suppliers and products. In that case, you don’t have to delete a product if you remove
it from those sold by a supplier. You just have to delete the reference in the Product-
Supplier table. Due to these different behaviors, the Entity Framework team decided
conservatively to let you explicitly choose what to do.

NOTE We hope that in the next release, the Entity Framework team will
allow us to map what to do and add an element in the EDM that specifies
whether the entity must be deleted or just the reference, when the entity
is removed from a collection property. Having to explicitly call the
DeleteObject method sounds less fluent than removing an element
from the collection.

 When you add an entity to a collection property (such as adding an order detail to
an order), you can find yourself in two different situations depending on whether the
entity is attached to the context or not:

 The detail is attached to the context. If foreign-key association is in place, the prop-
erty must be synchronized with the ID of the order. If you use an independent
association, only the RelationshipEntry is created between the entities.

 The detail isn’t attached to the context. The Customer is added to the context in
Added state (remember, the context doesn’t support partial graphs). If the asso-
ciation is kept using a foreign-key association, the property must be synchro-
nized with the ID of the order. If you use an independent association, a
RelationshipEntry between the entities is also created.

There are a lot of rules, and knowing them in advance makes manipulating graphs
easier and less scary.

 Do you remember MergeOption? It’s a way to specify how an entity that’s tracked by
the context is merged with an entity with the same key coming from a query. We
looked at all the options in chapter 3, but we only analyzed them from a querying
point of view. Now let’s look at them from the state manager’s point of view.

174 CHAPTER 6 Understanding the entity lifecycle

6.3.6 Change tracking and MergeOption

MergeOption is a property of the ObjectSet<T> class. It’s an enum of type System.
Data.Objects.MergeOption that contains the following values:

 AppendOnly

 NoTracking

 OverwriteChanges

 PreserveChanges

During an object’s materialization, when AppendOnly is used (the default setting), the
state manager checks whether there’s already an entry with the same key. If so, the
entity related to the entry is returned and data from the database is discarded. If not,
the entity is materialized and attached to the context. In this case, the state manager
creates the entry using the original and current values of the materialized entity. Even-
tually, the materialized entity is returned.

 When NoTracking is used, the context doesn’t perform the identity-map check, so
data from the database is always materialized and returned, even if there’s already a
corresponding entity in the state manager. The entities returned when the NoTracking
option is enabled are in Detached state, so they’re not tracked by the context.

 When OverwriteChanges is used, if the identity-map check doesn’t find an entry in
the state manager, the entity is materialized, attached to the context, and returned. If
the entry is found, the related entity state is set to Unchanged, and both the current
and original values are updated with values from the database.

 When PreserveChanges is used, if the identity-map check doesn’t find an entry in
the state manager, the entity is materialized, attached to the context, and returned. If
the identity-map check does find an entry in the state manager, there are a few things
that can happen:

 If the state of the entity is Unchanged, the current and original values in the
entry are overwritten with database values. The state of the entity remains
Unchanged.

 If the state of the entity is Modified, the current values of the modified proper-
ties aren’t overwritten with database values. The original values of the unmodi-
fied properties are overwritten with database values.

 If the current values of the unmodified properties are different from the values
from the database, the properties are marked as Modified. This is a breaking
change from version 1.0, because in that version properties aren’t marked as
Modified. If you need to restore the version 1.0 behavior, set the UseLegacy-
PreserveChangesBehavior property to true as follows:

C#
ctx.ContextOptions.UseLegacyPreserveChangesBehavior = true;

VB
ctx.ContextOptions.UseLegacyPreserveChangesBehavior = true

175Summary

Now you know all there is to know about MergeOption’s behavior. It’s an important
aspect of any application, and it’s often misused or underestimated. In chapter 19,
you’ll discover that it dramatically affects performance.

6.4 Summary
Understanding the entity lifecycle will enable you to manage objects efficiently and
avoid surprises. Because an entity’s state affects how modifications are persisted into
the database, its vital that you fully master this aspect of Entity Framework.

 Correctly managing the various states and their transitions is very important and
will prevent problems when objects are later persisted. This is particularly true when
you’re working with object graphs, where Entity Framework will automatically attach
and add related objects.

 You must also pay attention to tracking. When working with plain POCO entities,
you have to remember that they aren’t in sync with the state manager. If you plan to
search entities in the state manager, always remember to synchronize it with the actual
entities.

 When you fully master these subjects, persistence will become much easier, as
you’ll discover in the next chapter.

Persisting objects
into the database
Now that you know how to handle entity lifecycles, you’re ready to take the next
step: persisting modifications made to objects into the database.

 In this chapter, we’ll discuss how to insert, update, and delete entities in both
connected and disconnected scenarios. We’ll cover single-object updates, such as a
customer, and complex graph updates, such as an order and its details. By the end
of this chapter, you’ll be able to manage updates through Entity Framework.

NOTE In this chapter, we won’t be discussing topics like transaction
and concurrency management. They get a chapter of their own—
chapter 8.

Let’s start our discussion with how the persistence process works.

This chapter covers
 Persisting modified objects into the database

 Persisting complex object graphs into the database

 Persisting with foreign-key and independent associations
176

177Persisting entities with SaveChanges

7.1 Persisting entities with SaveChanges
Entity persistence is the process that stores entities data inside the database. Trigger-
ing this procedure is simple as invoking the SaveChanges method of the Object-
Context class (which is the class from which the OrderITEntities class in OrderIT
inherits).

 The following snippet shows an example of how to use SaveChanges to persist
modifications made to a customer:

C#
var customer = from c in ctx.Companies
 where c.Id == 1
 select c;
customer.Name = "new name";
ctx.SaveChanges();

VB
Dim customer = From c In ctx.Companies Where c.Id = 1
customer.Name = "new name"
ctx.SaveChanges()

Using SaveChanges is easy. When it’s invoked, it internally iterates over the entities in
the Modified, Deleted, and Added states, generates the appropriate SQL statements,
and executes them against the database. In the next section, we’re going deeper into
this subject.

SaveChanges performs all the plumbing required for persisting entities. Not only
does it synchronize the state manager with the entities (as you learned in chapter 6),
but it also detects dirty entities (entities in the Added, Modified, and Deleted states),
starts the connection and the transaction with the database, generates the correct SQL
and commits or rolls back everything depending on whether some exception
occurred. Eventually, it removes deleted entities and sets added and modified ones to
Unchanged. In the end, it’s a complex process that uses the database, the state man-
ager, and SQL to accomplish its task, as you see in figure 7.1.

Detect dirty
en��es

Start
database

SQL code
execu�on

SQL code
genera�on

Database
transac�on

commit/rollback

Commit en��es
Figure 7.1 The steps performed
by the SaveChanges method to

 Now let’s look at each step, starting with the first.

7.1.1 Detecting dirty entities

Dirty entities are entities that are in the Added, Modified, or Deleted state. As you
learned in chapter 6, entities and their related entries in the state manager aren’t
always in sync. The SaveChanges method needs to synchronize them.

 This phase is the easiest one in the persistence process. The SaveChanges method
invokes the DetectChanges method (introduced in chapter 6) so that entities and
transac�on persist entity state

178 CHAPTER 7 Persisting objects into the database

entries in the state manager are synchronized. When DetectChanges has finished its
work, the SaveChanges method queries the state manager to retrieve entries for enti-
ties in the Added, Modified, and Deleted states so that it can persist them.

 Here is an excerpt of the code in the SaveChanges method that’s executed during
this phase:

C#
DetectChanges();
var entries = ObjectStateManager.GetObjectStateEntries(
 EntityState.Added | EntityState.Modified | EntityState.Deleted);

VB
DetectChanges();
Dim entries = ObjectStateManager.GetObjectStateEntries(
 EntityState.Added Or EntityState.Modified Or EntityState.Deleted);

The entries returned by the query to the state manager contains first the added enti-
ties, then the modified ones, and finally the deleted ones.

 Our exploration of the state manager in the last chapter should make this step
fairly easy to understand. Now we can move on to the second part.

7.1.2 Starting database transactions

At this point in the process, the SaveChanges method opens a connection to the data-
base and starts a transaction. All commands that are executed in the following phase
are executed in the context of this transaction.

NOTE In chapter 8, you’ll learn how to customize the transaction
management.

This phase is simple. Let’s move on and discuss the most complicated one.

7.1.3 SQL code generation and execution

SQL code generation is pretty complex compared with detecting the dirty entities or
starting the transaction. Here the entries returned from the call to the GetObject-
StateEntries method is iterated through, and for each entity in it, the appropriate
SQL code is generated.

 When it comes to persisting entities in Added state, generating the SQL code isn’t
difficult. A simple INSERT SQL statement is created.

 The situation gets more complicated with entities in the Modified state. Because
the state manager keeps track of both the original and current values of each loaded
entity, Entity Framework generates UPDATE commands that modify only the changed
properties. This is a great optimization that saves you a lot of work. Isn’t Entity Frame-
work lovely?

 Probably the simplest SQL code to generate is the DELETE commands for entities in
the Deleted state. The SQL code deletes an object using its key properties.

179Persisting entities with SaveChanges

 The SQL generation and execution is an iterative process because statements often
need data from previous ones. For example, think about the order and its details. To
insert each detail, Entity Framework needs the ID of the order saved previously, so the
SQL for the order detail is generated only after the order has been persisted.

7.1.4 Database transaction commit or rollback

If every SQL command executed in the previous phase is executed correctly, the data-
base transaction is committed. But if an error occurs during the execution of a SQL
statement, the transaction is rolled back.

 An error can occur for several reasons. For instance, the database can be temporar-
ily down or there can be a network problem. Those are common hardware problems,
and software problems are treated exactly the same way. A duplicate key or a not-
nullable column receiving a null value causes the execution flow to terminate and the
transaction to roll back.

 Those sorts of errors are raised by the database, but there’s another type of error
that causes the persistence process to stop suddenly, even if the database doesn’t raise
an exception: a concurrency exception. This is a software exception, and it’s raised by
Entity Framework itself. We’ll discuss concurrency in chapter 8.

7.1.5 Committing entities

By default, if the transaction terminates correctly, the context invokes the AcceptAll-
Changes method, which internally invokes the AcceptChanges method of each dirty
entry in the state manager. After its invocation, the entries are in sync with both the
entities and the database, so you can think of this as a commit for entities. Entities in
Added or Modified state become Unchanged, and entities in Deleted state are removed
from the context (and the state manager).

 You can manipulate this commit process by using an overload of SaveChanges that
accepts an enum of type SaveOptions (namespace System.Data.Objects). The enum
has three possible values:

 None—Neither the DetectChanges nor the AcceptAllChanges methods are
invoked.

 AcceptAllChangesAfterSave—The AcceptAllChanges method is invoked.
 DetectChangesBeforeSave—The DetectChanges method is invoked before sav-

ing changes.

The enum is a flag, so you can combine the values.

NOTE When no parameter is passed to SaveChanges, both the Accept-
AllChangesAfterSave and DetectChangesBeforeSave values are auto-
matically passed.

Earlier we mentioned that if an error occurs during persistence, the transaction rolls
back. In that case, AcceptAllChanges isn’t triggered, so if you invoke the SaveChanges

180 CHAPTER 7 Persisting objects into the database

method again, the context will try to persist the entities again, the same way it did
when the exception occurred because nothing has been touched.

 If no error occurs during persistence and the AcceptAllChangesAfterSave value
isn’t passed to SaveChanges method, the entities and the entries in the state manager
remain untouched so a new call to SaveChanges would trigger persistence again.

7.1.6 Overriding SaveChanges

The SaveChanges method is virtual. You can override it in the context to inject any
logic you need or even to completely override the persistence logic. Overriding
SaveChanges is useful for building a logging system, as you saw in section 6.3.2. It
could also be used to invoke a method on the entity, notifying it when it’s updated,
added, or deleted. That’s not hard to do, especially if this method is exposed through
an interface or a base class.

NOTE If you don’t want to completely override the SaveChanges logic,
remember to invoke the base implementation.

Now you have all the basics necessary to understand how Entity Framework persists
entities. In the next section, we’ll see some of these concepts in action and look at
how they affect the database.

7.2 Persisting changed entities into the database
Persisting a single entity means saving it into the database. You have three ways to
do this:

 Persisting it as a new row
 Using its properties to update an existing row
 Using its key properties to delete an existing row

We’ll look at each of these options in this section.
 In chapter 4, we introduced a user as the tester of OrderIT. In the next sections,

this user will return to simulate a real-world scenario.

7.2.1 Persisting an entity as a new row

The first thing the user wants to do is create customers, suppliers, and products. You
made the user happy about data retrieval, and you’ll make the user happy about data
insertion too.

 The first thing you need to do is allow the user to create customers. This is
extremely easy to do: you can use the AddObject method, pass the Customer instance,
and then invoke SaveChanges. Here’s what it looks like.

C#
var cust = new Customer()

Listing 7.1 Persisting a new customer
{

181Persisting changed entities into the database

 Name = "Stefano Mostarda",
 BillingAddress = new AddressInfo()
 {
 Address = "5th street",
 City = "New York",
 Country = "USA",
 ZipCode = "0000000"
 },
 ShippingAddress = new AddressInfo()
 {
 Address = "5th street",
 City = "New York",
 Country = "USA",
 ZipCode = "0000000"
 },
 WSEnabled = true,
 WSUserName = "user1",
 WSPassword = "user1pwd"
};
ctx.Companies.AddObject(cust);
ctx.SaveChanges();

VB
Dim cust As new Customer() With
{
 .Name = "Stefano Mostarda",
 .BillingAddress = new AddressInfo() With
 {
 .Address = "5th street",
 .City = "New York",
 .Country = "USA",
 .ZipCode = "0000000"
 },
 .ShippingAddress = new AddressInfo() With
 {
 .Address = "5th street",
 .City = "New York",
 .Country = "USA",
 .ZipCode = "0000000"
 },
 .WSEnabled = true,
 .WSUserName = "user1",
 .WSPassword = "user1pwd"
}
ctx.Companies.AddObject(cust)
ctx.SaveChanges()

This listing shows how you can create a customer. Because the primary-key property is
an identity, you don’t need to set it; if you do, the value will be ignored.

NOTE In the event that the key isn’t an identity, you need to set it, or
you’ll get an InvalidOperationException at runtime.

Despite its simplicity, the code generates more than a simple insert. To better under-

stand some of the background, let’s look at the SQL that’s generated.

182 CHAPTER 7 Persisting objects into the database

exec sp_executesql N'insert [dbo].[Company](
[Name],
[BillingAddress], [BillingCity], [BillingZipCode], [BillingCountry],
[ShippingAddress], [ShippingCity], [ShippingZipCode], [ShippingCountry],
[WSUserName], [WSPassword], [WSEnabled], [Type], [IBAN], [PaymentDays])
values
(@0,
@1, @2, @3, @4,
@5, @6, @7, @8,
@9, @10, @11, @12, null, null)

Inserts
customer

B

select [CompanyId]
from [dbo].[Company]
where @@ROWCOUNT > 0 and [CompanyId] = scope_identity()', Retrieves IDC
N'@0 varchar(30), @1 varchar(20), @2 varchar(20), @3 varchar(10),
@4 varchar(20), @5 varchar(20), @6 varchar(20), @7 varchar(10),
@8 varchar(20), @9 varchar(20), @10 varchar(20), @11 bit,
@12 char(1)',
@0='Stefano Mostarda', @1='5th street', @2='New York', @3='0000000',
@4='USA', @5='5th street', @6='New York', @7='0000000', @8='USA',
@9='user1', @10='user1pwd', @11=1, @12='C' Sets parametersD

The first thing that’s triggered is the insertion of the record B. Then, after the record
is added, the database-generated ID is retrieved C. (The primary-key property is an
Identity, which causes it to be assigned a database-generated ID.)

 Notice that the discriminator column (Type) is automatically handled D. Because
a customer was added, the value of the column is set to C. If a supplier was added, the
value would have been S—these are the values of the discriminator specified in the
mapping. This is a great feature that lets you code using the OOP paradigm and leave
Entity Framework to handle the transformation to the relational jargon.

 The same paradigm applies to products. If you want to add a new Shirt, you create
an instance, add it to the context, and then persist it. The SQL generated will insert
the record into both the Product and Shirt tables. Again, you code using OOP and let
Entity Framework worry about the database.

 Persisting new entities isn’t tricky. Even if the persistence process involves complex
stuff, it’s nicely handled by the context and kept hidden from you. Next, we’ll look at
how to persist modifications to an entity.

7.2.2 Persisting modifications made to an existing entity

It’s 4 p.m. Friday, and the phone rings. The user has saved a customer with an incor-
rect name, and now the record needs to be modified.

PERSISTENCE IN THE CONNECTED SCENARIO

The first path you can follow is to update data in a connected scenario—that’s when an
entity is retrieved from the database and modified in the same context. In this scenario,
you can modify the properties and then call the SaveChanges method, as follows.

Listing 7.2 The SQL generated by the insert

183Persisting changed entities into the database

C#
var cust = ctx.Companies.OfType<Customer>()
 .First(c => c.CompanyId == 1);
cust.Name = "Stefano Mostarda";
ctx.SaveChanges();

VB
Dim cust = ctx.Companies.OfType(Of Customer)().
 First(Function(c) c.CompanyId = 1)
cust.Name = "Stefano Mostarda"
ctx.SaveChanges()

This code is pretty simple and needs no explanation. What’s more, because the state
manager keeps track of the original and current values of entity properties, the SQL
affects only columns mapped to modified properties. As a result, the UPDATE com-
mand is highly optimized, as you can see in the following snippet:

exec sp_executesql
N'update [dbo].[Company] set [Name] = @0 where ([CompanyId] = @1)',
N'@0 varchar(15), @1 int', @0='Stefano Mostarda', @1=13

There is an important point to understand here. When you modify a scalar property
in a complex type, all properties of the complex type are persisted. For instance, if you
modify the shipping address, the SQL will update the shipping city, country, and ZIP
code even if they haven’t been modified. This happens because the state-manager
entry considers a complex property to be a unique block. The modification of a single
property in the block causes the entire block to be considered modified.

 This connected scenario is by far the easiest one to code. In the disconnected sce-
nario, things are more complex.

PERSISTENCE IN THE DISCONNECTED SCENARIO

Suppose you have a method that accepts a Customer instance. You create a new con-
text, attach the customer, and then persist it. The problem is that when you attach the
entity to the context, it’s Unchanged, and SaveChanges won’t persist anything.

 You have two ways to overcome this problem:

 Attach the input entity, and change its state to Modified by using the Change-
ObjectState method.

 Query the database to retrieve the entity, and then use the ApplyCurrent-
Values method to overwrite properties of the database entity with the proper-
ties of the input entity.

The first solution is the simplest and the most used. It’s shown in the following listing.

C#
void UpdateCustomer(Customer cust)

Listing 7.3 Persisting a modified entity in the connected scenario

Listing 7.4 Updating an entity using ChangeObjectState
{

184 CHAPTER 7 Persisting objects into the database

 using (var ctx = new OrderITEntities())
 {
 ctx.Companies.Attach(cust);
 ctx.ObjectStateManager.ChangeObjectState(cust, EntityState.Modified);
 ctx.SaveChanges();
 }
}

VB
Sub UpdateCustomer(ByVal cust as Customer)
 Using ctx = New OrderITEntities()
 ctx.Companies.Attach(cust)
 ctx.ObjectStateManager.ChangeObjectState(cust, EntityState.Modified)
 ctx.SaveChanges()
 End using
End Sub

SQL
exec sp_executesql
N'update [dbo].[Company]
 set [Name] = @0, [BillingAddress] = @1, [BillingCity] = @2,
 [BillingZipCode] = @3, [BillingCountry] = @4,
 [ShippingAddress] = @5, [ShippingCity] = @6,
 [ShippingZipCode] = @7, [ShippingCountry] = @8, [WSUserName] = @9,
 [WSPassword] = @10, [WSEnabled] = @11
 where ([CompanyId] = @12)',
N'@0 varchar(15), @1 varchar(10), @2 varchar(8),@3 varchar(5),
 @4 varchar(3), @5 varchar(10), @6 varchar(8), @7 varchar(5),
 @8 varchar(3), @9 varchar(3), @10 varchar(3), @11 bit,
 @12 int',
@0='newCustomerName', @1='7th Avenue', @2='New York', @3='98765',
@4='USA', @5='7th Avenue', @6='New York', @7='98765', @8='USA', @9='US1',
@10='US1',@11=1,@12=1

The drawback to this approach is that ChangeObjectState marks the entity and all its
properties as Modified. As a result, the UPDATE command will modify all the mapped
columns, even if they weren’t really changed. If a property isn’t set, its value will over-
write the one in the database, causing data loss.

 Let’s look at an example. Suppose you have a customer with ID 1. You create a
Customer instance and set CompanyId to 1 and Name to NewName. You then attach the
instance to the context, mark it as Modified, and call SaveChanges. The generated
UPDATE command will update the Name column, and all the other columns will be
assigned their default values (null for strings, 0 for integers, and so on), meaning that
any previous data for that customer in the database is lost. Figure 7.2 illustrates this
problem.

 Figure 7.2 clearly shows the problem that arises when using ChangeObjectState to
set a partially loaded entity in the Modified state. As you can see, if all the properties
are correctly set, this is a powerful technique that offers good performance and sim-
plicity, but it can be dangerous if you don’t know the internals.

Figure 7.2 The billing address and
city are empty in the persisted entity,
so the database’s original values are
lost after persistence.

185Persisting changed entities into the database

NOTE You could argue that updating all columns, even those that
weren’t modified, causes a slowdown in performance. In most databases,
this cost is negligible. In fact, when the database has to perform an
update, the biggest effort is in row retrieval. The column-update phase
takes an insignificant percentage of the entire operation time.

The second solution for updating an object is pretty simple, even if it’s slightly more
complex than the one based on ChangeObjectState. For this second solution, you
query the database to retrieve the entity you want to modify, and then you use the
ApplyCurrentValues method to apply the values from the modified entity. Finally,
you invoke SaveChanges. When the modifications are persisted, the most optimized
SQL is generated because the state manager knows which properties have been modi-
fied. Here’s the code for such a solution.

C#
void UpdateCustomerWithApplyCurrentValues(Customer cust)
{
 using (var ctx = new OrderITEntities())
 {
 ctx.Companies.OfType<Customer>()
 .First(c => c.CompanyId == cust.CompanyId);
 ctx.Companies.ApplyCurrentValues(cust);
 ctx.SaveChanges();
 }
}

VB
Private Sub UpdateCustomerWithApplyCurrentValues(ByVal cust As Customer)
 Using ctx = New OrderITEntities()
 ctx.Companies.OfType(Of Customer)().
 First(Function(c) c.CompanyId = cust.CompanyId)
 ctx.Companies.ApplyCurrentValues(cust)
 ctx.SaveChanges()
 End Using

Listing 7.5 Updating an entity using ApplyCurrentValues
End Sub

186 CHAPTER 7 Persisting objects into the database

Unfortunately, ApplyCurrentValues suffers from the same problem as Change-
ObjectState because it overwrites the current values of the entry, and the attached
entity properties, with those from the input entity. If a property in the input entity
isn’t set (if it’s null, empty, or set to the type’s default value), that property overwrites
the current value of the entry, which is later used to update the database. The result,
once again, is data loss.

ApplyCurrentValues suffers from another problem. It involves two round trips to
the database: one to read data and one to update it. Performance can be hurt by this
behavior. The problem gets even bigger when the data is separated in multiple tables,
such as for the product data in OrderIT. Querying requires a join between tables, and
updating can affect one or more tables, depending on what properties have been
changed. If performance is critical, you’ll probably have to choose the ChangeObject-
State approach, because it goes to the database only for the update process.

 In the end, both approaches work in some cases but may cause data loss if misused.
If you know in advance that some properties aren’t set and that you’ll lose data using
one of these approaches, you have two options:

 Retrieve the customer from the database, and manually modify its properties one by one,
based on the values in the input entity. This approach works well because it works
like the connected scenario.

 Attach the input entity, and explicitly mark the properties to be updated. This approach
eliminates both the need to go to the database to retrieve the entity and the
risks of data loss.

The last option is the best one. It requires some code, but it’s effective because it
offers the best performance while avoiding data loss.

CHOOSING WHAT PROPERTIES TO UPDATE IN THE DISCONNECTED SCENARIO

Let’s look at updating the customer information. The user wants to update the cus-
tomer name and addresses (web service–related properties are updated in another
dedicated form).

 To do this, you can create a method that attaches the entity and marks the speci-
fied properties as Modified. This marking process automatically puts the entity in the
Modified state too. When you invoke the SaveChanges method, only the specified
properties are persisted into the database.

 The method that marks a property as Modified is SetModifiedProperty. It accepts
only one parameter, which represents the name of the property to be updated, as you
can see in the following snippet:

C#
var entry = osm.GetObjectStateEntry(customer);
entry.SetModifiedProperty("Name");
entry.SetModifiedProperty("ShippingAddress");
entry.SetModifiedProperty("BillingAddress");

VB

Dim entry = osm.GetObjectStateEntry(customer)

187Persisting entities graphs

entry.SetModifiedProperty("Name")
entry.SetModifiedProperty("ShippingAddress")
entry.SetModifiedProperty("BillingAddress")

We’ve now covered all the possible ways of updating an entity. The user can update
customer information and is happy. But only for a couple of hours, because now the
user needs to delete a customer.

7.2.3 Persisting entity deletion

Deleting an entity is a simple task. You already know that marking an entity as Deleted
is a simple matter of invoking the DeleteObject method and passing in the entity.
After the entity is marked, the related row in the database is deleted when the
SaveChanges method is invoked.

 Before being marked as Deleted, the entity must be attached to the context. This
will be the case if the entity has been queried (in the connected scenario) or if it has
been attached (in the disconnected scenario). The following listing shows examples
of both techniques.

C#
var cust = ctx.Companies.OfType<Customer>().First(); Connected

scenarioctx.DeleteObject(cust);
ctx.SaveChanges();

var cust = new Customer() { CompanyId = id };

Disconnected
scenario

ctx.Companies.Attach(cust);
ctx.DeleteObject(cust);
ctx.SaveChanges();

VB
Dim cust = ctx.Companies.OfType(Of Customer).First() Connected

scenarioctx.DeleteObject(cust)
ctx.SaveChanges()

Dim cust As new Customer() With { .CompanyId = id }

Disconnected
scenario

ctx.Companies.Attach(cust)
ctx.DeleteObject(cust)
ctx.SaveChanges()

Congratulations. You have successfully written code to modify customer data in any
way the user may need. But that’s just the beginning. The next step is to write a new
part of OrderIT: order management. This is a brand-new environment because you’ll
be working with associations.

7.3 Persisting entities graphs
Order persistence requires you to work with up to four entities. Although you’ll
update only the order and its details, the customer that places the order and the prod-
ucts in the details are equally involved as read-only data. Because more entities are

Listing 7.6 Deleting an entity in both connected and disconnected scenarios
involved, we talk about an entities graph (or objects graph); sometimes its persistence can

188 CHAPTER 7 Persisting objects into the database

be challenging, because entities in the same graph may need different actions. For
instance, some may be added while others are modified or ignored.

 To see these problems in practice and how to solve them, let’s get back to our user.
To start with, the user needs a mask where they can choose the customer, fill in order
data, and specify the products to be ordered.

7.3.1 Persisting a graph of added entities

When the user saves the order, the persistence process must be triggered. This is what
you have to do:

1 Create an Order instance.
2 Associate the Order with a Customer.
3 Create an OrderDetail instance.
4 Associate the OrderDetail with a product.
5 Add the OrderDetail to the Order.
6 Repeat steps 3 to 5 for each detail.
7 Add the Order to the context.
8 Persist the modifications.

The code that performs these steps varies depending on whether you opt for foreign-
key or independent associations, but the basic idea is the same. We’ll look at both
options in turn.

PERSISTING A GRAPH OF ADDED ENTITIES USING FOREIGN-KEY ASSOCIATIONS

Thanks to the foreign-key feature, associating a customer with the order is pretty
easy; you just have to set the foreign-key property with the primary key of the related
entity. Setting the CustomerId property of the order to 1 automatically associates the
order with the customer that has that ID. The same thing happens when you set the
ProductId column of the detail.

 As we mentioned, Entity Framework doesn’t support an object graph being par-
tially loaded when an order is added—the details are added too. You can see this in
the following listing.

C#
var order = new Order
{
 CustomerId = 1,
 OrderDate = DateTime.Now.Date
};
order.ShippingAddress = new AddressInfo()
{
 Address = "2th street",
 City = "New York",
 Country = "USA",
 ZipCode = "0000001"

Listing 7.7 Creating an order using foreign-key associations
};

189Persisting entities graphs

var detail1 = new OrderDetail()
{
 ProductId = 2,
 Quantity = 3,
 UnitPrice = 10
};
var detail2 = new OrderDetail()
{
 ProductId = 1,
 Quantity = 5,
 UnitPrice = 10
};
order.OrderDetails.Add(detail1);
order.OrderDetails.Add(detail2);
ctx.Orders.AddObject(order);
ctx.SaveChanges();

VB
Dim order As New Order With
{
 .CustomerId = 1, _
 .OrderDate = DateTime.Now.Date
}
order.ShippingAddress = New AddressInfo()
{
 .Address = "2th street",
 .City = "New York",
 .Country = "USA",
 .ZipCode = "0000001"
}
Dim detail1 As New OrderDetail()
{
 .ProductId = 2,
 .Quantity = 3,
 .UnitPrice = 10
}
Dim detail2 As New OrderDetail()
{
 .ProductId = 1,
 .Quantity = 5,
 .UnitPrice = 10
}
order.OrderDetails.Add(detail1)
order.OrderDetails.Add(detail2)
ctx.Orders.AddObject(order)
ctx.SaveChanges()

Persisting a new order isn’t difficult thanks to foreign keys. They don’t require you to
load the associated customer and products. You only work with the Order and Order-
Detail entities.

 Foreign keys are simple to use, but they’re not the only way to maintain relation-
ships between entities. During model design, you may decide not to use foreign keys
and to rely on independent associations instead. Or perhaps you’re upgrading an
application to Entity Framework 4.0 from Entity Framework 1.0, which has no concept

of foreign keys.

190 CHAPTER 7 Persisting objects into the database

PERSISTING A GRAPH OF ADDED ENTITIES USING INDEPENDENT ASSOCIATIONS

When you use an independent association, the CustomerId column of the Order table
is mapped to the CompanyId property of the Customer class. There’s no CustomerId
property in the Order class. As a result, to associate a customer with an order, you have
to create a customer instance and associate it with the order. The same process applies
to the association between the details and their product.

 Because you need only the ID of the customer and the ID of the product, instead of
retrieving them from the database, you can create an instance (a stub) for each of
them, set the ID, and then associate the instances with the order and the details. The
following listing contains a first draft of the code for this technique.

C#
var cust = new Customer() { CompanyId = 1 };
var product1 = new Product() { ProductId = 1 }
var product2 = new Product() { ProductId = 2 };

var order = new Order
{
 Customer = cust,
 OrderDate = DateTime.Now.Date
};
order.ShippingAddress = new AddressInfo()
{
 Address = "2th street",
 City = "New York",
 Country = "USA",
 ZipCode = "0000001"
};
var detail1 = new OrderDetail()
{
 Product = product1,
 Quantity = 3,
 UnitPrice = 10
};
var detail2 = new OrderDetail()
{
 Product = product2,
 Quantity = 5,
 UnitPrice = 10
};
order.OrderDetails.Add(detail1);
order.OrderDetails.Add(detail2);

ctx.Orders.AddObject(order);
ctx.SaveChanges();

VB
Dim cust As New Customer() With { .CompanyId = 1 }
Dim product1 As New Product() With { .ProductId = 1 }
Dim product2 As New Product() With { .ProductId = 2 }

Listing 7.8 Creating an order using independent associations

191Persisting entities graphs

Dim order As New Order With
{
 .Customer = cust,
 .OrderDate = DateTime.Now.Date
}
order.ShippingAddress As New AddressInfo() With
{
 .Address = "2th street",
 .City = "New York",
 .Country = "USA",
 .ZipCode = "0000001"
}
Dim detail1 As New OrderDetail() With {
 .Product = product1,
 .Quantity = 3,
 .UnitPrice = 10
}
Dim detail2 As New OrderDetail() With
{
 .Product = product2,
 .Quantity = 5,
 .UnitPrice = 10
}
order.OrderDetails.Add(detail1)
order.OrderDetails.Add(detail2)

ctx.Orders.AddObject(order)
ctx.SaveChanges()

Take a moment to look through the code again and ask yourself, “Will this code
work?” The answer is, “No.” It will raise an exception during the persistence phase.
More precisely, you’ll receive an UpdateException whose InnerException is a Sql-
Exception stating that you can’t insert a null value into the Name column of the
Company table.

 This happens because the customer is marked as Added, due to the AddObject
method, so the persistence process tries to insert the customer too. Because you’ve
set only the ID, the insert fails because the name is null, and the database doesn’t
allow that.

 To make everything work correctly, you have to use the ChangeObjectState
method to mark the customer as Unchanged before calling SaveChanges. The same
method must be invoked to set the products as Unchanged. This way, only the order
and its details are persisted; the rest remains untouched. The following listing shows
the code that must be added to listing 7.8 to make everything work.

C#
ctx.Orders.AddObject(order);
osm.ChangeObjectState(cust, EntityState.Unchanged);
osm.ChangeObjectState(product1, EntityState.Unchanged);
osm.ChangeObjectState(product2, EntityState.Unchanged);

Listing 7.9 Correctly creating an order with independent associations
ctx.SaveChanges();

192 CHAPTER 7 Persisting objects into the database

VB
ctx.Orders.AddObject(order)
osm.ChangeObjectState(cust, EntityState.Unchanged)
osm.ChangeObjectState(product1, EntityState.Unchanged)
osm.ChangeObjectState(product2, EntityState.Unchanged)
ctx.SaveChanges()

As you can see, independent associations are harder to manage.
 The user is happy for a while. But then the user discovers that when a new cus-

tomer calls, the user can take the order but can’t associate it with the customer,
because the new customer hasn’t been created yet. The user has to go back to the cus-
tomers form, create the customer, and then reinsert the order. Instead, the user wants
to be able to insert data about the new customer and the order in the same form.

PERSISTING A GRAPH OF ENTITIES IN DIFFERENT STATES

Achieving this goal is pretty easy. You can create a Customer instance with all the data,
associate it with the order, and not set its state to Unchanged.

 If you write the code directly in the form, you’ll probably have a flag indicating
whether the customer is new or not. If you use an external method, you could pass
that flag, but a more independent solution would be better. The problem is how to
decide whether the customer must be inserted into the database or not without hav-
ing a flag.

 The ID is the key. In the case of foreign-key associations, if the foreign-key property
is 0, the customer is new; otherwise, the customer already exists. In the case of inde-
pendent associations, if the ID of the Customer entity is 0, the customer is new; other-
wise, the customer exists.

NOTE By following this simple rule, you can decide whether an instance
is new or not and correctly persist any graph. If you have composed keys
or you use GUIDs, another check might be needed, but the general idea
remains the same. Using mapping information (metadata) you could
even write an extension method that checks any graph in a generic way
and set entity state automatically.

Persisting a graph of added entities isn’t difficult. The real challenge comes when you
have to save modifications made to the objects—to do this, you have to manually
detect what’s changed.

7.3.2 Persisting modifications made to a graph

You’ve just deployed the new version of OrderIT, and the user has called to congratu-
late you on the excellent job. Five minutes later, the user gets back to you saying that
they’ve made a mistake in the shipping address of an order and need to change it.
That’s pretty easy to do. It doesn’t even involve a graph, because you can update the
order and ignore its details.

 Soon the user is back again. A customer has changed their mind and needs more red

shirts (ProductId 1), no shoes (ProductId 2), and a new green shirt (ProductId 3).

193Persisting entities graphs

What’s worse, the user discovered that the order has been erroneously associated with
the wrong customer.

 This is a big challenge. The data in the Order instance is untouched, but the asso-
ciation with the customer has changed. Some items in the details list must be changed
or removed, and others must be added. Coordinating all the updates will require
some effort.

PERSISTING MODIFICATIONS USING FOREIGN-KEY ASSOCIATIONS

If you’re in a connected scenario, you read the data and show it on the form, and
when the user saves the modifications, you apply them to the entities. In this case,
everything is pretty simple, as the following listing shows, because you’re always con-
nected to the context, which tracks any modifications.

C#
order.ActualShippingDate = DateTime.Now.AddDays(2);

var product1 = new Product() { ProductId = 3 };
var detail1 = new OrderDetail()
{
 Product = product1,
 Quantity = 5,
 UnitPrice = 3
};
order.OrderDetails.Add(detail1);

order.OrderDetails[1].Quantity = 2;
ctx.OrderDetails.DeleteObject(order.OrderDetails[2]);
ctx.SaveChanges()

VB
order.ActualShippingDate = DateTime.Now.AddDays(2)

Dim product1 As New Product() With { .ProductId = 3 }
Dim detail1 As New OrderDetail() With
{
 .Product = product1,
 .Quantity = 5,
 .UnitPrice = 3
}
order.OrderDetails.Add(detail1)

order.OrderDetails(1).Quantity = 2
ctx.OrderDetails.DeleteObject(order.OrderDetails(2))
ctx.SaveChanges()

This code causes four operations to occur. The order shipping date is updated, a new
detail is added, an existing quantity is modified, and another is deleted. Fairly easy to
understand, isn’t it?

 In a disconnected scenario, everything is more difficult. Suppose you’re putting
persistence logic in an external method—it doesn’t know anything about what has

Listing 7.10 Updating an order in a connected scenario

194 CHAPTER 7 Persisting objects into the database

been modified, added, or removed. It receives the order and then needs a way to dis-
cover what’s been changed. In a layered application, this is a common scenario.

 The solution is simple. You query the database to retrieve the order and its details.
After that, you use the ApplyCurrentValues method to update the order from the
database with the value of the input order. Unfortunately, the ApplyCurrentValues
method affects only the order, leaving the details untouched. To discover how the
details have been modified, you have to use LINQ to Objects.

 The added order details are in the input order but not in the order retrieved from
the database. (Because their OrderDetailId property is 0, you could use that search
condition to locate added order details too.) The removed order details are among
those downloaded from the database, but they won’t have been received by the
method. The order details in both the database and the input order may have been
modified, and by using ApplyCurrentValues, you can easily find out. Figure 7.3 illus-
trates this technique.

DB

Input

OrderId: 1

OrderId: 1

Updated Removed Updated Added

OrderDetailId: 1 OrderDetailId: 2

OrderDetailId: 2 OrderDetailId: 0

Figure 7.3 An order and details with matching keys are updated. Details from the input
order with a key of 0 have been added. Other details from the database order are deleted.

 At the end of the matching process, the order you have read from the database is
updated with the input data and is ready to be persisted. The following listing shows
the overall code for this technique.

C#
void UpdateOrder(Order order)
{
 using (var ctx = new OrderITEntities())
 {
 var dbOrder = ctx.Orders.Include("OrderDetails")
 .First(o => o.OrderId == orderId);
 var added = order.OrderDetails.Except(order2.OrderDetails);
 var deleted = order2.OrderDetails.Except(order.OrderDetails);
 var modified = order2.OrderDetails.Intersect(order.OrderDetails);
 ctx.Orders.ApplyCurrentValues(order);
 added.ForEach(d => dbOrder.OrderDetails.Add(d));
 deleted.ForEach(d => ctx.OrderDetails.DeleteObject(d));
 modified.ForEach(d => ctx.OrderDetails.ApplyCurrentValues(d));
 ctx.SaveChanges();
 }
}

VB

Listing 7.11 Updating an order in the disconnected scenario
Sub UpdateOrder(ByVal order As Order)

195Persisting entities graphs

 Using ctx as New OrderITEntities()
 Dim dbOrder = ctx.Orders.Include("OrderDetails").
 First(Function(o) o.OrderId = orderId)
 Dim added = order.OrderDetails.Except(order2.OrderDetails)
 Dim deleted = order2.OrderDetails.Except(order.OrderDetails)
 Dim modified = order2.OrderDetails.Intersect(order.OrderDetails)
 ctx.Orders.ApplyCurrentValues(order)
 added.ForEach(Function(d) dbOrder.OrderDetails.Add(d))
 deleted.ForEach(Function(d) ctx.OrderDetails.DeleteObject(d))
 modified.ForEach(Function(d) ctx.OrderDetails.ApplyCurrentValues(d))
 ctx.SaveChanges()
 End Using
End Sub

What’s lovely about this approach is that, thanks to foreign keys, the association with
the customer can be modified too, because the foreign-key property is tracked as a
scalar property and so is affected by ApplyCurrentValues. Naturally, the same behav-
ior applies to the relationship between a detail and the product.

NOTE The LINQ queries work only because these entities implement
Equals and GetHashCode. If that’s not the case, you should pass an object
that implements IEqualityComparer.

When independent associations are used, things are, once again, harder to figure out.

PERSISTING MODIFICATIONS USING INDEPENDENT ASSOCIATIONS

When independent associations are involved, the code that modifies the order and its
details remains the same. What’s different is the way you change the association with
the customer.

 Because you don’t have the foreign-key property, ApplyCurrentValues doesn’t
change the association between the order and the customer. The only way to change
the customer is to assign an instance representing the new customer to the Customer
property of Order.

 If the customer instance isn’t attached to the context, it will be associated to the
context in the Added state. That’s clearly not what you need, because you don’t want to
insert the customer but just change the customer associated with the order. You have
three possible ways to do that:

 Retrieve the customer from the database, so that it’s already attached to the
context, and assign it to the order.

 Associate the customer with the order, and then modify the entity state using
the ChangeObjectState method.

 Attach the entity to the context, and then associate it with the order.

All of these options will work, so choosing one pattern or the other is a matter of per-
sonal taste and case-by-case circumstances. Naturally, you can change the association
between an order detail and a product in the same way.

196 CHAPTER 7 Persisting objects into the database

 The following listing shows how to change the customer association using the third
option. You’ve already seen the code for the other options. Note that the same code
can be used to change the association between an order detail and a product.

C#
var order = GetOrder();
ctx.Companies.Attach(order.Customer);
dbOrder.Customer = order.Customer;
ctx.SaveChanges();

VB
Dim Order = GetOrder()
ctx.Companies.Attach(order.Customer)
dbOrder.Customer = order.Customer
ctx.SaveChanges()

Persisting modifications made to objects is difficult, because you need to check lots of
things. When it comes to object deletion, the situation is simpler.

7.3.3 Persisting deletions made to a graph

Our user has just received sad news—a customer has cancelled an order. As a conse-
quence, the order must be removed from the database. In this scenario, the associa-
tion type between the order, the customer, the details, and the products makes the
difference.

PERSISTING DELETIONS USING FOREIGN-KEY ASSOCIATIONS

Once again, foreign-key associations make everything simple. In a connected sce-
nario, you retrieve the order, call DeleteObject, and then call SaveChanges.

 In a disconnected scenario, you create an order instance populating the ID, attach
it to the context, invoke DeleteObject, and invoke SaveChanges, and the game is
done. There’s no need for a graph here because details are useless. The following list-
ing shows the simplicity of deleting a graph in the disconnected scenario.

C#
void DeleteOrder(int orderId)
{
 using (var ctx = new OrderITEntities())
 {
 Order order = new Order() { OrderId = orderId };
 ctx.Orders.Attach(order);
 ctx.Orders.DeleteObject(order);
 ctx.SaveChanges();
 }
}

VB

Listing 7.12 Changing the customer of an order using independent associations

Listing 7.13 Deleting an order with foreign-key associations, disconnected scenario
Sub DeleteOrder(ByVal Int32 As orderId)

197Persisting entities graphs

 Using ctx as New OrderITEntities()
 Dim order As New Order() With { .OrderId = orderId }
 ctx.Orders.Attach(order)
 ctx.Orders.DeleteObject(order)
 ctx.SaveChanges()
 End Using
End Sub

There is a little performance caveat you need to be aware of. Even if the EDM is aware
of the cascade constraint in the database, the context will issue a DELETE command for
each child entity attached to the context.

 Suppose you have an order with 30 details. You may expect that one delete for the
entire order is issued, but it’s not like that. In the conceptual schema, a cascade con-
straint between the order and order details is specified; so, if they’re attached to the
context, they’re marked as deleted, and a delete for each of them is issued to the
database.

 Naturally, if you don’t have the delete-cascade constraint, you must retrieve all
details and mark them as deleted. Unfortunately, this solution is error prone, because
in the time between retrieving the details and their physical deletion, a new detail
could be added, and the context would know nothing about it. This would result in a
foreign-key error when deleting data from the database, because this detail wouldn’t
be deleted and would remain an orphan when the order was deleted.

 An alternative solution is to launch a custom database command that deletes all
details and then lets the context issue a separate delete for the order. This spares the
retrieval and deletion of all the details from the database, and this is good.

NOTE You’re probably thinking that if you’re removing an order and
someone else adds a detail in the meantime, there should be a concur-
rency check. In the next chapter, we’ll talk about that, but let’s ignore it
for now.

In the end, if you use delete cascade, everything is simpler. The code doesn’t care about
details, and database performance improves. Without the cascade, you have more con-
trol over the deletion process, but that means more code and slower performance.

 That’s all there is to deleting entities using foreign-key associations. Independent
associations are harder to manage because the relationships stored in the state man-
ager claim their role.

PERSISTING DELETIONS USING INDEPENDENT ASSOCIATIONS

Conceptually speaking, deleting entities in a graph using independent associations is
no different from deleting an entity in a graph using foreign-key properties. What
changes is the code, because to delete an entity, the context requires all the one-to-
one related entities to be attached. If you need to delete a customer, you don’t need
orders because they’re on the many side. But if you need to delete an order, you need
its customer, and this is weird because only the order ID should be needed.

198 CHAPTER 7 Persisting objects into the database

 The reason why deleting an order requires you to know the customer is that the
state manager marks the relationship between the two entities as Deleted and trans-
lates this into SQL, adding the foreign-key column to the WHERE clause of the DELETE
command for the order.

 In the end, to delete an order, instead of issuing a statement like DELETE FROM
Order WHERE OrderId = 1, the context emits DELETE FROM order WHERE OrderId = 1 AND
CustomerId = 2. Unfortunately, this odd requirement is one of those things that you’ll
have to live with.

 In the connected scenario, the difference between independent and foreign-key
associations doesn’t exist. When you retrieve the order, the state manager already
knows about its customer and their relationship, so it has everything it needs.

 In the disconnected scenario, you must attach the customer along with the order.
This is trivial; all you need to do is create the order, associate the related customer,
attach the order to the context, and then pass it to the DeleteObject method.
Because the cascade constraint exists, details are automatically deleted too, as you can
see in the following listing.

C#
void DeleteOrder(int orderId, int customerId)
{
 using (var ctx = new OrderITEntities())
 {
 var order = new Order() { OrderId = orderId };
 order.Customer = new Customer() { CompanyId = 1 };
 ctx.Orders.Attach(order);
 ctx.Orders.DeleteObject(order);
 ctx.SaveChanges();
 }
}

VB
Sub DeleteOrder(ByVal Int32 As orderId, ByVal Int32 As customerId)
 Using ctx as New OrderITEntities()
 Dim order As New Order() With { .OrderId = orderId }
 order.Customer = New Customer() With { .CompanyId = 1 }
 ctx.Orders.Attach(order)
 ctx.Orders.DeleteObject(order)
 ctx.SaveChanges()
 End Using
End Sub

If the delete cascade constraint doesn’t exist, the same considerations made for for-
eign keys apply. The only thing to point out is that in order to delete the details, their
related products must be loaded too (just as the customer is required by the order). To
remove an order without delete-cascade constraints, you have to load the whole graph.

 That’s it. Now the user can manipulate orders any way they need. There’s only one

Listing 7.14 Deleting an order with independent associations
thing that the user needs to do now: associate products with a supplier.

199A few tricks about persistence

7.3.4 Persisting many-to-many relationships

Many-to-many relationships introduce nothing new. You have learned everything you
need in the previous sections. To add a product to a supplier, you create the supplier
and the product instances, add the product to the supplier’s list of products, and call
SaveChanges.

 The same result can be obtained the opposite way. You can create the supplier and
product, add the supplier to the product’s list of suppliers, and invoke SaveChanges.

 When you have to remove a product from a supplier in the connected scenario,
you remove the product from the supplier’s list and call SaveChanges. In the discon-
nected scenario, you retrieve data from the database and compare it to the input data
to identify the changes. As you can see, there’s nothing new here.

 Now we can look at a new question. What happens if you wrongly associate an
order with a customer that doesn’t exist? More generally, what happens when some-
thing goes wrong during persistence? And what if you need to execute a custom com-
mand? Those questions will be answered in the next section.

7.4 A few tricks about persistence
Many things may cause an error during persistence. A string that’s too long, a foreign-
key violation, a not-nullable column set to null, a duplicate key, and so on—these are
typical reasons for exceptions. Let’s look at how you can handle exceptions in code.

7.4.1 Handling persistence exceptions

Generally speaking, handling an exception is simple; you wrap the call to
SaveChanges inside a try/catch block, and you’re done. In terms of exceptions
caused by Entity Framework, the situation is similar, but you have one specific excep-
tion to catch: UpdateException. UpdateException contains information about the
entry whose entity persistence caused the error.

 The entry is exposed by the StateEntries property, which is of type ReadOnly-
Collection<ObjectStateEntry>. The StateEntries property is a list because it
returns an EntityEntry for the entity that caused the exception, plus all its related
RelationshipEntry instances. You receive only one entity, because as soon as the
problem is encountered, the persistence process stops and the current entry is passed
to the exception.

 Important information is stored in the InnerException too. Here you’ll find the
raw SqlException raised by the managed provider.

 If you mix up the information from the inner exception with that in the entries,
you can build a log entry that is useful for understanding what went wrong. If you
want to go further, you can build a form that gives the user enough information to
understand what the problem was and how it can be solved (if possible). The follow-
ing listing shows how to catch the exception and write it to a log.

200 CHAPTER 7 Persisting objects into the database

C#
try
{
 ...
 ctx.SaveChanges();
}
catch (UpdateException ex)
{
 Log.WriteError(ex.StateEntries, ex.InnerException);
}

VB
Try
 ...
 ctx.SaveChanges()
Catch ex As UpdateException
 Log.WriteError(ex.StateEntries, ex.InnerException)
End Try

Handling errors is simple; you can easily log information, rethrow the exception, dis-
play information to the user, or do whatever you need. We suggest wrapping
SaveChanges in a method and invoking that when persisting entities. This way, you
don’t have to clutter your code with try/catch blocks every time you save data.

 The next feature about persistence that you must know is how to send custom com-
mands to the database to update data. This turns out to be particularly useful when
manipulating orders and their details.

7.4.2 Executing custom SQL commands

Entity Framework can persist any modifications, but there are cases where a custom
SQL command simplifies things compared to having Entity Framework persist every-
thing. Let’s see how a custom SQL command can help in the OrderIT application.

 In OrderIT, there are always 0 items in stock. This value is never updated when the
product is created or when an item is sold. That’s because in chapter 5, you mapped
the AvailableItems property to the AvailableItems column in the Product table and
set the property as Computed. This means the property is never used to update the
mapped column in the database; when an entity is persisted, the computed column
value is immediately queried from the database and put into the property.

 Essentially, this approach relieves the context from updating the available items by
delegating the update to the database or a custom SQL command like a stored proce-
dure. This approach was necessary to correctly calculate the value.

 To correctly calculate the available items, you need to modify the code you have
already written to add the following actions:

1 When you create the product, you let the context create the row in the database
and then issue a SQL command that updates the AvailableItems column.

Listing 7.15 Managing persistence exceptions

201A few tricks about persistence

2 When you create or update an order, if the detail is new, you issue a SQL com-
mand that subtracts the sold items from the number in stock; if the detail is
removed, you issue a SQL command that adds the number of sold items to the
number in stock; and if the detail is changed, you issue a SQL command that
subtracts the old quantity and then adds the new quantity to the number in
stock.

Why do it this way? Why not let Entity Framework persist the column? The reasons are
two: concurrency and simplicity.

 Concurrency—Suppose two users create an order simultaneously. They both read
the product data at the same time, and the first user then updates the data; the
second user will subsequently be updating stale data. A concurrency check
could be a solution, but this would be a waste of user time. The user shouldn’t
have to reinsert the order because the number of items in stock has changed
since the data was last read.

 Simplicity—Updating a product requires the product to be attached, even if you
use foreign-key associations. What’s more, you have to update the Available-
Items property and the overall entity state, resulting in more complex code. A
manual UPDATE is more straightforward and less complex.

Performing the task this way is pretty simple. Before invoking SaveChanges, you take
all the details in Modified state and add the quantity to AvailableItems. After
SaveChanges, you take all the Added and Modified entities and subtract the quantity
from AvailableItems. Finally, for each detail entity in Deleted state, you add the
quantity to AvailableItems.

 To execute a custom SQL command, you use the ObjectContext class’s Execute-
StoreCommand method. This method has the same features as the ExecuteStore-
Query<T> method you saw in chapter 4. You can use a numbered list as well as classic
ADO.NET parameters in SQL code, and the parameter values can be passed as
DbParameter or simple values. This listing shows how you can use such a method.

C#
ctx.ExecuteStoreCommand("Update Product set

➥ AvailableItems = AvailableItems - 3 where productid = 1");

VB
ctx.ExecuteStoreCommand("Update Product set

➥ AvailableItems = AvailableItems - 3 where productid = 1")

You learned in chapter 4 that embedding SQL in the application code isn’t always a
good idea, because you tie the application to a specific database. This might not be
problem in many situations, but a stored procedure can be more desirable. You’ll
learn how to replace the preceding code with a stored procedure in chapter 10.

Listing 7.16 Executing a custom SQL command to update data

202 CHAPTER 7 Persisting objects into the database

7.5 Summary
You now know how to persist objects into the database. Although the order-detail sce-
nario is simple, it introduced lots of caveats and intricacies. Delete-cascade con-
straints, connected and disconnected scenarios, foreign keys and independent
associations, and frequently updated columns are situations that you’ll often encoun-
ter during development. Now you’re ready to master them. It doesn’t matter whether
it’s an order-detail scenario or different types of data: the concepts remain the same.

 You’re almost ready to write a complete application, but we still have to cover two
important concepts related to persistence: transaction management and concurrency
checks. The first is particularly important when you need to launch custom com-
mands that must be executed in the same transaction of the context. The second is
essential to avoid updating stale data when multiple users work on the same entity at
the same time. In the next chapter, we’ll cover these two subjects.

Handling concurrency
and transactions
Suppose you want to book a flight online. You search for the flight you want and
find an available seat, but when you click the reservation button, the system says the
flight is fully booked. If you search for the flight again, it isn’t shown.

 What happened is that at the moment when you searched for the flight, a seat
was available; but in the time between the search response and the booking
attempt, someone else booked the last seat. There were concurrent searches for the
last seat, and the first person to book it won. If the booking application hadn’t
checked for concurrency, the flight would have been overbooked.

 When you book a flight, you register on the carrier’s website, and your informa-
tion is stored so it can be retrieved and updated anytime you want. This kind of
data is rarely updated and is only modified by you or a carrier’s employee. Conten-

This chapter covers
 Understanding the concurrency problem

 Configuring concurrency

 Managing concurrency exceptions

 Managing transactions
203

tion in this context is so low that you can easily live without concurrency checks.

204 CHAPTER 8 Handling concurrency and transactions

 These examples demonstrate why and when concurrency management is essential
for a serious application. This chapter will dig deep into this subject, because it’s a
simple Entity Framework feature to use, but it’s easy to misunderstand.

 The second subject covered in this chapter is transaction management. In the pre-
vious chapter, we looked at manually updating product-availability data before and
after SaveChanges. These updates were not executed in the same transaction as the
commands issued by the SaveChanges method, which would cause data inconsistency
if exceptions occurred during persistence. The commands issued manually and the
commands generated by SaveChanges must be executed in the same transaction.

 Similarly data must often be updated on more than one database or sent to out-
side systems, like Microsoft Message Queuing (MSMQ), and everything must be trans-
actional. Thanks to the classes in the System.Transaction namespace, it’s easy to
manage these scenarios. If you have never used these classes, you’ll enjoy seeing them
in action.

 It’s time to cover concurrency. The example of booking a flight gave a good pic-
ture of what concurrency is all about, so now we’ll look at how the concurrency prob-
lem fits into OrderIT.

8.1 Understanding the concurrency problem
The user’s business is growing every day, and the company now needs employees to
register and manage incoming orders. This means that two or more people will be
working on the application at the same time, accessing and sometimes modifying the
same data. OrderIT needs to coordinate updates to avoid having two employees work-
ing on the same order at the same time and overriding each other’s data.

8.1.1 The concurrent updates scenario

Consider this scenario: a big customer has different departments that place orders.
Department 1 calls employee 1 to place an order. A few hours later, department 1 calls
employee 1 again to update the order. At the same time, department 2 calls employee
2 to update the same order, adding some products. If you think about the code in the
previous chapter, you can probably imagine where this is headed.

 The two employees retrieve the order. Employee 1 modifies some details, adds a
couple more, and saves the order. Employee 2 removes a detail and saves the order a
minute later. What happens is that employee 1 saves data and employee 2 overrides it
with other data. The two employees will never be aware of this problem, and an incor-
rect shipment will be delivered to the customer.

 There’s a worse scenario. If department 2 called to delete the order instead of
modifying it, the customer would lose the entire order. Figure 8.1 illustrates potential
problems arising from not managing concurrency during persistence.

 Technically speaking, there could be contention on every editable entity in the
application. It’s always possible for two users to work contemporarily and unknowingly

Employee 1
Employee 1

Employee 2
Employee 2

Detail 1

Detail 2

1 2 3Reads data Saves data Saves data

Detail 1

Modified detail 2

New detail

Detail 1

Detail 2

New detail

Detail 2

Detail 1
Detail 1

Detail 2
New detail 4

Detail 1

Modified detail 2

New detail 3

Figure 8.1 A typical concurrency
scenario. Both users read the same
data, employee 1 saves the records
first, and employee 2 overrides
them later. New detail 3 and the
modifications to detail 2 are lost.

205Understanding the concurrency problem

on the same data. But in the real world, very little data is subject to contention, and
often it’s not important enough to deserve a concurrency check.

 For instance, order data is vital and must always be checked. Customer and sup-
plier data is surely important, but not as important as orders. What’s more, customers
and suppliers are less frequently updated, reducing the risks a lot. As a result, it’s
probably not worth handling concurrency checks for them. The same considerations
apply to products; after they’re added to the database, they’re rarely changed except
for their prices (which is something you won’t change often) and their quantity in
stock (which is handled manually, as you saw in chapter 7).

 Now that the problem is clear, let’s look at the possible solutions. The first adopts a
pessimistic approach, locking the database rows until they’re updated. This approach
has pros and cons, as you’ll see in the next section.

8.1.2 A first solution: pessimistic concurrency control

When you need to update data and
want to be sure that nobody else can
do so at the same time, the safest way
to go is exclusively physically locking
the data on the database. When data
is locked, other users can’t access it
either to read or update it. This way,
nobody else can change the data
until it’s updated or unlocked. This
approach is named pessimistic, and it’s
illustrated in figure 8.2.

 What’s good about pessimistic
concurrency control is that it grants a

Reads order
with locking

Reads order and
remains pending
or fails

Saves order

Order

Order

Order

Order

Employee 1 Employee 2 Employee 2

Reads order
successfully

Figure 8.2 In pessimistic concurrency, employee 1
reads the data, and it can’t be read by employee 2 until
single user exclusive access to the it’s saved by employee 1.

206 CHAPTER 8 Handling concurrency and transactions

information, eliminating any possibility of contentions. What’s bad is that exclusive
locking produces many complications from a performance and usability point of view.

 Locking the row exclusively makes it impossible for other users to read informa-
tion. That means even if another user wants to see the order, they can’t. If the user
who holds the lock works on the order for a long time, they slow down other people’s
productivity. What’s worse, if the application crashes (and don’t say it shouldn’t hap-
pen; it does), the lock remains there until it expires or a DBA manually removes it.

NOTE A less aggressive policy might allow other users to read data but
not to modify it.

Pessimistic concurrency is a good technique, but its cons often outweigh its pros.
Unless you’re obliged to use it, other approaches are preferable.

 The basic idea behind pessimistic concurrency is that because there might be data
contention, the data is locked by the first reader. Another technique that solves con-
currency problems starts with an opposite approach: because data contention isn’t fre-
quent, it’s pointless to lock data. The check for contention is performed only during
the update phase.

8.1.3 A better solution: optimistic concurrency control

How often will multiple users work simultaneously on the same order or customer or
whatever else? If this happens, is it a problem for the first person who updates the data
to win, and for the others to have to reapply their modifications? Usually the answers
to these questions are “almost never” and “no,” respectively.

 Locking in this sort of situation would be only a waste of resources, because there is
low, or no, contention. A softer approach can be taken. You can allow all users to read
and even change data, but when you update the database, you must check that nothing
in the record has been changed since data retrieval. This is the optimistic approach.

 The easiest way to do this is to add a version column that changes on every row
modification. In the case of concurrent modifications, the first to save the data wins;
the others can’t update the data because the version has changed since they read it.
Figure 8.3 illustrates this concept.

 Checking the version column is as easy as
including the value initially read from the
database in the SQL WHERE clause, along with
the ID of the order. This means the real key of
the row is the primary-key columns plus the
version column, as shown here:

UPDATE [order]
SET ..., version = 2
WHERE OrderId = 1 AND version = 1

If the query updates the row, you know that

Order v1

Order v1 to v2

Order v1

Reads order Reads order

Saves order

Saves order and gets
concurrency excep�on

Order v1

Employee 1 Employee 2

Figure 8.3 With optimistic concurrency,
employee 1 and employee 2 read order
version 1. Employee 1 saves the order, which
is updated to version 2. Employee 2 saves
the version hadn’t changed since the order order version 1 and gets an exception.

207Understanding the concurrency problem

was read. If the query doesn’t update any rows, that’s because the version number had
changed, and there was a concurrency problem. In figure 8.3, the same UPDATE is
issued by two employees: employee 1 wins, and employee 2 gets the exception because
the version had changed.

 When using optimistic concurrency, we recommend you use an autogenerated col-
umn for the row version (TimeStamp or RowVersion for SQL Server) so you don’t have
to manage its value manually.

NOTE Sometimes you can’t change the table structure to add a version
column, such as when you have a legacy database. In this case, you can
use some or all of the columns to perform a concurrency check. Those
you choose for the concurrency check will end up in the WHERE clause.

By not using locks, optimistic concurrency improves system scalability and usability
because the data is always available for reading. This improvement comes at the cost of
managing versioning in the code, but that’s not a heavy burden, as you’ll discover later.
The main drawback is that unless you write some sophisticated code, the users who get
the concurrency exceptions will have to read the updated data and then reapply their
modifications. It’s a waste of time that is usually affordable, but sometimes it isn’t.

8.1.4 The halfway solution: pessimistic/optimistic concurrency control

This last technique takes the pros of the previous approaches. It doesn’t allow concur-
rent modifications to an order, nor does it physically lock the row on the database.

 The way it works is pretty simple. First you add version and flag columns to the
table. Then, when a user edits the data, the user’s application issues a command to the
database to set the flag column to true. If two users do this simultaneously, the first
wins. After that, anyone can read the data, but nobody can modify it because the cli-
ent checks the flag and denies any modifications until it’s set back to false. This is the
pessimistic/optimistic approach.

 This technique minimizes contention over the data, but it suffers from the same
limitations as pessimistic concurrency control. If the application crashes, the lock
must be removed manually. If the user who’s editing the order goes to get coffee or to
a meeting without saving or canceling the modifications, other users are prevented
from making modifications. You can create a demon that kills locks held for longer
than a certain amount of time, but that increases the complexity needed do to man-
age concurrency.

 This last technique isn’t a perfect solution; it’s another string in your bow. Broadly
speaking, optimistic concurrency is the best choice in most scenarios. If it doesn’t fit
your needs, try the pessimistic/optimistic approach; and only if that isn’t appropriate
should you move on to pessimistic concurrency.

 Now that you have a clear understanding of the concurrency problem, it’s time to
look at how you can take care of it from a database point of view. It’s time to see how
Entity Framework can help in managing concurrency.

208 CHAPTER 8 Handling concurrency and transactions

8.2 Handling concurrency in Entity Framework
Entity Framework makes concurrency management easy. It handles most of the
plumbing, leaving you only the burden of managing configuration and handling
exceptions when they occur.

 The first thing you need to know is that Entity Framework doesn’t support pessimis-
tic concurrency control. That’s by design, and the development team doesn’t intend
to add this feature in the future. That gives you an idea of how little pessimistic con-
currency is used in the real world.

 By design, only optimistic concurrency is supported. The pessimistic/optimistic
approach is an artifact that can be re-created in a few lines of code.

8.2.1 Enabling optimistic concurrency checking

It’s time to enable optimistic concurrency in OrderIT. To do so, you need to follow
these steps:

1 Add a version column to the Order, Company, and Product tables. Name the
column Version, and set its type as TimeStamp (RowVersion if you SQL Server
2008 or higher).

2 Right-click the designer, and choose Update Model from Database. The
designer opens a dialog box displaying the last form of the wizard, which lets you
generate the model from the database (we discussed the wizard in chapter 2).
Click the OK button.

3 The designer updates the Order, Company, and Product entities, adding a
Version property and mapping it to the
new Version column in the mapped
tables. Because the TimeStamp/Row-

Version type is managed by SQL Server,
the columns in the SSDL and the prop-
erty in the CSDL are automatically
marked as Computed.

4 Right-click the Version property in the
Company entity, and select Properties.

5 In the Properties window, change the
Concurrency Mode to Fixed, as shown
in figure 8.4.

6 Repeat steps 4 and 5 for the Order and
Product entities.

In terms of EDM, step 5 sets the Concurrency-
Mode attribute of the Version property to
Fixed, as shown here:

<Entity Type="Company" Abstract="True">
Figure 8.4 Enabling concurrency
checking for a property in the designer
 ...

209Handling concurrency in Entity Framework

 <Property Name="Binary" Type="timestamp" Nullable="false"
 a:StoreGeneratedPattern="Computed" ConcurrencyMode="Fixed" />
</Entity>

That’s it. When you’re done, the Version property will automatically be appended in
the WHERE clause of the UPDATE and DELETE SQL commands.

 It’s important to note that the value used in the WHERE clause isn’t the one from the
entity but the one from the original value of the entry in the state manager. If you
attach the entity to the context, and the Version property is 1, that value will be used
in the query even if you set the property’s value to 2 (which you should never do inten-
tionally, but could be done by a bug). This makes sense because for concurrency you
have to use the original value from the database and not a new one.

 Now that the configuration is finished, it’s time to move on to the code. Although
Entity Framework manages all the plumbing, you still need to write code to introduce
concurrency management into the persistence process. More specifically, you have to
manage the version column and handle the concurrency exception.

8.2.2 Optimistic concurrency in action

In the previous chapter, we looked at how to persist entities in different scenarios
using different techniques:

 Connected scenario
 Disconnected scenario with the ChangeObjectState method
 Disconnected scenario with the ApplyCurrentValues method
 Connected and disconnected scenarios with graphs

Let’s analyze how concurrency affects these techniques.

HANDLING CONCURRENCY IN THE CONNECTED SCENARIO

The connected scenario is once again the easiest to code. It doesn’t require any modi-
fication because the original value of the Version property is in sync with the data-
base. If you read the entity from the database and Version is 1, that value will be used
in the WHERE clause, so there is nothing you have to do.

HANDLING CONCURRENCY IN THE DISCONNECTED SCENARIO WITH CHANGEOBJECTSTATE

In the disconnected scenario, you have an entity and you have to attach it to the con-
text and persist it. As in the connected scenario, the code doesn’t change here. You
must only make sure that the Version property has the same value as when the data
was initially read.

 For instance, suppose you have created a web form to display customer data. You
read the Customer entity, display it, store its Version property in the ViewState, and
then dispose of both the entity and the context. When the user saves the modifica-
tions, you create a new context and re-create the entity, populating properties with the
form’s data. When you attach the re-created entity to the new context, the value of the
properties is used by the context to populate the original value of the entry in the
state manager. The result is that the value of the Version property at the moment it’s

attached to the context is the value used in the WHERE clause.

210 CHAPTER 8 Handling concurrency and transactions

 If you set the value of the Version property to the value previously saved in
ViewState after the entity is attached to the context, the original value of the Version
property in the state manager entry is null because when the entity was attached, the
Version property was null. The result is that the UPDATE command uses the NULL
value in the WHERE clause, and the row isn’t updated; this causes a concurrency excep-
tion to be raised by Entity Framework.

 If you serialize the entire Customer entity in ViewState or in the ASP.NET session,
you don’t need to maintain the version. Because the object isn’t disposed of when the
form is displayed, when the user saves data you can retrieve the object from ViewState
or the ASP.NET session and update the object’s properties with the form values, leav-
ing the version unmodified. When you attach the object to the context, the Version
property is already set, so the original value in the entry is set too. When you persist
the customer, the UPDATE command will place the correct value in the WHERE clause.

HANDLING CONCURRENCY IN THE DISCONNECTED SCENARIO
WITH APPLYCURRENTVALUES

When you use the ApplyCurrentValues method in the disconnected scenario, you
query for the current data in the database and then apply your changes. This means
the original values of the entry are those read by the database. When you call Apply-
CurrentValues, the current values in the entry are modified but the original values
(which are those read from the database) aren’t.

 Here a big problem arises. When you invoke SaveChanges, the generated WHERE
clause uses the original value of the Version property, which holds the current data-
base value. The consequence is that the database’s current value is used in the WHERE
clause, causing the data to be modified even if it has since been changed by someone
else.

 Let’s look at an example: employee 1 reads the customer with ID 1 and version 1
from the database. Later, employee 2 reads and updates the same customer (so that
it’s now ID 1, version 2 in the database). Then employee 1 updates the customer and
saves it with ID 1, version 1.

 When employee 1 triggers persistence, you read the customer from the database
(ID 1, version 2) and use ApplyCurrentValues to update the customer data with the
input customer object containing the modified data. After the call to ApplyCurrent-
Values, the current values of the entry contain the modified data, but the original val-
ues are still those read from the database (ID 1, version 2). The result is that the
UPDATE command generated during persistence will be the following:

UPDATE ...
WHERE CompanyId = 1 and Version = 2

As you see, even if the version of the customer has been changed since employee 1
read it, the updates are applied because the version isn’t the original one read by
employee 1 but the one last read from the database. The modifications made by
employee 2 are lost.

211Handling concurrency in Entity Framework

 Fortunately, there is a way to granularly change the original values of an entry.
This allows you to modify the original value of the Version property, setting it to the
one held by the entity (1 in the preceding example), ensuring that the WHERE clause
is correct.

 To accomplish this, you have to use the ObjectStateEntry’s GetUpdatable-
OriginalValues method, which returns an OriginalValueRecord instance. This class
has a set of SetXXX methods that allow you to modify the values inside OriginalValue-
Record. The following snippet shows how you can use the SetValue method, which is
the most generic one:

C#
var entry = ctx.ObjectStateManager.GetObjectStateEntry(dbEntity);
var origValues = entry.GetUpdatableOriginalValues();
origValues.SetValue(origValues.GetOrdinal("Version"), entity.Version);

VB
Dim entry = ctx.ObjectStateManager.GetObjectStateEntry(dbEntity)
Dim origValues = entry.GetUpdatableOriginalValues()
origValues.SetValue(origValues.GetOrdinal("Version"), entity.Version)

SetValue is a nontyped method. We used it because Version is imported as a Byte[]
and there isn’t a SetByteArray (or similar) method. If you already know that you’re
updating a string or integer or another simple type, you can use SetString, SetInt32,
SetDateTime, SetBoolean, and so on.

 When you have updated the original value of Version, you can safely invoke
SaveChanges. The complete code is shown in the following listing.

C#
private void UpdateCustomerWithApplyCurrentValues(Customer cust)
{
 using (var ctx = new OrderITEntities())
 {
 var dbCust = ctx.Companies.OfType<Customer>()
 .First(c => c.CompanyId == cust.CompanyId);
 ctx.Companies.ApplyCurrentValues(cust);
 var entry = ctx.ObjectStateManager.GetObjectStateEntry(dbCust);
 var origValues = entry.GetUpdatableOriginalValues();
 origValues.SetValue(origValues.GetOrdinal("Version"), cust.Version);
 ctx.SaveChanges();
 }
}

VB
Private Sub UpdateCustomerWithApplyCurrentValues(ByVal cust As Customer)
 Using ctx = New OrderITEntities()
 Dim dbCust = ctx.Companies.OfType(Of Customer)().
 First(Function(c) c.CompanyId = cust.CompanyId)
 ctx.Companies.ApplyCurrentValues(cust)
 Dim entry = ctx.ObjectStateManager.GetObjectStateEntry(dbCust)

Listing 8.1 Performing concurrency checks with ApplyCurrentValues

212 CHAPTER 8 Handling concurrency and transactions

 Dim origValues = entry.GetUpdatableOriginalValues()
 origValues.SetValue(origValues.GetOrdinal("Version"), cust.Version)
 ctx.SaveChanges()
 End Using
End Sub

You have now seen that performing a concurrency check on an entity is mostly a mat-
ter of configuration. A little tweak in the code is required only in this particular sce-
nario. But when graphs come into play, more changes must be made.

HANDLING CONCURRENCY WITH GRAPHS IN THE CONNECTED AND DISCONNECTED SCENARIOS

You know that order persistence involves a graph consisting of the order and its
details. Technically speaking, we could put a Version property in both entities, but
we’ve chosen to put it only on the order for this example. We made this choice
because the details can’t exist without an order; even if you modify only one detail, the
order version should be updated.

 If yours is the only application working on the database, everything is fine. If other
applications also work on the database, all have to respect the rule of updating the
order when a detail is touched. If this didn’t happen, the concurrency checks would
be inconsistent, and you should add a version property in the order details too. (We
won’t take this route in this chapter.)

 To update the order version even if only a detail is changed, you have to make sure
the Order instance is in Modified state; otherwise, no update will be performed and
no concurrency check will happen.

 If you work in a connected scenario and don’t change any properties, or if you use
ApplyCurrentValues and nothing was modified, the state of the entity remains
Unchanged. Using ChangeObjectState to set the order to Modified ensures that every-
thing is updated properly.

OPTIMISTIC CONCURRENCY AND INHERITANCE

When dealing with inheritance, there is an important rule to know: you can’t use a
property of an inherited type for concurrency. For instance, you couldn’t use a prop-
erty in the Customer or Supplier entity for concurrency checks; only properties in
the Company entity can be used. If, to enable concurrency, you use properties from
an inherited type, you’ll get a validation error from the designer or a runtime excep-
tion when instantiating the context. In OrderIT, this would also apply to the Product
hierarchy.

 Products are persisted using the TPT strategy (as discussed in chapter 2). When
dealing with TPT, you may need to update only a property of an inherited entity (for
example, Shirt or Shoe in OrderIT). When SaveChanges generates the SQL, it
updates only the table containing the column mapped to the modified property. The
table containing the versioning column isn’t touched, because there aren’t any modi-
fied properties that must be persisted to it. This way, the concurrency check isn’t
performed.

 To perform the concurrency check, Entity Framework performs a nice trick. Sup-

pose a user modifies a shirt and changes only the size. Size is a column in the Shirt

213Handling concurrency in Entity Framework

table, so its modification doesn’t affect the Product table, which contains the version
column. When SaveChanges is called, Entity Framework issues a fake UPDATE com-
mand against the Product table to perform a concurrency check, as you can see in
this listing.

C#
var dbProduct = ctx.Products.OfType<Shirt>()
 .First(p => p.ProductId == 2);
dbProduct.Gender = "f";
ctx.SaveChanges();

VB
Dim dbProduct = ctx.Products.OfType(Of Shirt)().
 First(Function(p) p.ProductId = product.ProductId)
dbproduct.Gender = "f"
ctx.SaveChanges()

SQL
exec sp_executesql N'declare @p int

Issues fake
update on
Product table

B

update [dbo].[Product]
set @p = 0
where (([ProductId] = @0) and ([Version] = @1))
select [Version]

Retrieves
current version
of product

C

from [dbo].[Product]
where @@ROWCOUNT > 0 and [ProductId] = @0',N'@0 int,@1

binary(8)',@0=2,@1=0x000000000000084F

exec sp_executesql N'update [dbo].[Shirt]

Updates
Shirt table

D

set [Gender] = @0
where ([ProductId] = @1)
',N'@0 char(1),@1 int',@0='f',@1=2

The first query executes the fake UPDATE on the Product table to see if the command
would update a row B. If the update affects 0 records, a concurrency exception is
thrown. The SELECT C is executed only because Version property is marked as
Computed, so its value is immediately retrieved from the database after any command.
Finally, if no concurrency exception has been raised, the UPDATE on the Shirt table is
executed D.

 You’ve now seen how to make Entity Framework generate the correct SQL to check
for concurrency. What we haven’t done yet is handle the exception generated when
you update stale data.

8.2.3 Catching concurrency exceptions

When an update doesn’t affect any rows, the context raises an OptimisticConcurrency-
Exception exception, which inherits from UpdateException and doesn’t add any
methods or properties. Its only purpose is letting you handle exceptions related to per-
sistence and concurrency. Handling this exception is simple, as shown in this listing.

Listing 8.2 Performing concurrency checks with TPT hierarchies

214 CHAPTER 8 Handling concurrency and transactions

C#
try
{
 ...
 ctx.SaveChanges();
}
catch (OptimisticConcurrencyException ex)
{
 Log.WriteError(ex.StateEntries, ex.InnerException);
}
catch (UpdateException ex)
{
 //Some logic
}

VB
Try
 ...
 ctx.SaveChanges()
Catch ex As OptimisticConcurrencyException
 Log.WriteError(ex.StateEntries, ex.InnerException)
Catch ex As UpdateException
 //Some logic
End Try

The catching logic is pretty simple. Just keep in mind that if you handle both concur-
rency and update exceptions, you have to catch the concurrency exception first.
Because OptimisticConcurrencyException inherits from UpdateException, if you put
the catch block with UpdateException first, the code in that block is executed and the
other catch blocks are ignored even if the exception is of type OptimisticConcurrency-
Exception.

 Catching the exceptions is straightforward, but what should you do when you
catch them? Logging the exception is pointless, because it isn’t caused by a bug in the
code. Letting the system solve the problem is too risky. The right approach is to create
instruments to let the user decide what to do.

8.2.4 Managing concurrency exceptions

Suppose that employee 1 and employee 2 are unknowingly modifying data about a cus-
tomer at the same time. Employee 1 changes the web-service password and saves the
data. Employee 2 changes the name, saves the data, and gets the exception. It would be
great if employee 2 could see what’s been changed since the data was read and try to fix
the problem, instead of reloading the form and modifying the data from scratch. In
this example, employee 2 could reload the form and enter the new name again; in big-
ger forms with lots of information, this might be an unbearable waste of time.

 Your best ally is the ObjectContext class’s Refresh method, which restores entry
and entity values, depending on your choice, with data from the database. It accepts

Listing 8.3 Intercepting concurrency exception
the entity to be refreshed and an enum specifying what data must be refreshed. The

215Handling concurrency in Entity Framework

enum is of type System.Data.Objects.RefreshMode and has two possible values:
ClientWins and StoreWins.

 If you pass ClientWins, the method updates the original values of the entry in the
state manager (the object context cache) with those from the data source. The cur-
rent values and the entity remain untouched. Furthermore, all properties are marked
as Modified even if they’re unchanged.

 If you pass StoreWins, the original and current values of the entry and the entity
are refreshed with data from the data source. Furthermore, the state is rolled back to
Unchanged because the entity now reflects the database’s state. This means all the
modifications made by the user are lost.

 Getting back to the example, you can use the Refresh method and then use the
current and original values of the entry to show the user how things have changed on
the database since the data was last read. Users can review the changes and choose
between the database version and their own entries.

REFRESHING VALUES FROM THE DATABASE

Refreshing values from the database is fairly easy: you invoke Refresh and pass in the
ClientWins value, as shown in the following listing. This way, the original values in the
state manager entry reflect the server data, and the current values in the state man-
ager entry reflect the data edited by the user.

C#
try
{
 ctx.SaveChanges();
}
catch (OptimisticConcurrencyException ex)
{
 var errorEntry = ex.StateEntries.First();
 ctx.Refresh(RefreshMode.ClientWins, errorEntry.Entity);
 ...
}

VB
Try
 ctx.SaveChanges()
Catch ex As OptimisticConcurrencyException
 Dim errorEntry = ex.StateEntries.First()
 ctx.Refresh(RefreshMode.ClientWins, errorEntry.Entity)
 ...
End Try

If you invoke SaveChanges after Refresh, the database is correctly updated with
employee 2’s new name value, because all properties are marked as Modified. What’s
bad about this is that employee 1’s password change is updated with employee 2’s
value, which is the old one before employee 1’s modification. That’s why employee 2

Listing 8.4 Refreshing entities with values from the server
must see the changes and confirm them.

216 CHAPTER 8 Handling concurrency and transactions

BUILDING THE COMPARISON FORM

There are many ways to show original and current values to the user. You can take a
form-by-form approach or opt for a generic solution. We’ll take the generic approach
here because it’s quicker.

 At first, you might consider creating a form that displays a grid with the name and
original and current values of each property. The problem with this implementation is
that complex types can’t be represented in a row. We choose a tree view. It has check
boxes that allow the user to specify which properties to save and which to ignore. Fig-
ure 8.5 shows such a form.

Figure 8.5 The tree view showing original and
current values of the conflicting Customer entry.
Employee 2 is changing the name from “Giulio
Mostarda” to “Stefano Mostarda”. In the
meantime, employee 1 has changed the password
from “PWD1” to “password1”.

 The form may seem complex at first, but it’s easy to understand when you get used
to it.

NOTE Including check boxes for properties of complex properties and
for original and current value nodes is pointless. They’re included
because we’re lazy and didn’t want to override the tree-view rendering.

Here’s the main code used to create the form in figure 8.5.

C#
private void EntriesComparer_Load(object sender, EventArgs e)
{
 var modifiedProperties = _entry.GetModifiedProperties();
 for (int i=0;
 i<_entry.OriginalValues.FieldCount; i++)
 {
 var isModified = modifiedProperties.Any(n => n ==
 _entry.OriginalValues.GetName(i));

 TreeNode node = new TreeNode(CreateNodeText(

Listing 8.5 Showing entry values in a tree view display
 _entry.OriginalValues.GetName(i), isModified));

217Handling concurrency in Entity Framework

 node.Tag = _entry.OriginalValues.GetName(i);
 tree.Nodes.Add(node);

 if (_entry.OriginalValues[i] is DbDataRecord)
 DrawComplexType(node,
 _entry.OriginalValues[i] as DbDataRecord,
 _entry.CurrentValues[i] as DbDataRecord);
 else
 DrawProperty(node, _entry.OriginalValues[i],
 _entry.CurrentValues[i]);
 }
}

VB
Private Sub EntriesComparer_Load(ByVal sender As Object,
 ByVal e As EventArgs)
 Dim modifiedProperties = _entry.GetModifiedProperties()
 For i As Integer = 0 To
 _entry.OriginalValues.FieldCount - 1
 Dim isModified = modifiedProperties.Any(
 Function(n) n = _entry.OriginalValues.GetName(i))

 Dim node As New TreeNode(CreateNodeText(
 _entry.OriginalValues.GetName(i), isModified))
 node.Tag = _entry.OriginalValues.GetName(i)
 tree.Nodes.Add(node)

 If TypeOf _entry.OriginalValues(i) Is DbDataRecord Then
 DrawComplexType(node,
 TryCast(_entry.OriginalValues(i), DbDataRecord),
 TryCast(_entry.CurrentValues(i), DbDataRecord))
 Else
 DrawProperty(node, _entry.OriginalValues(i),
 _entry.CurrentValues(i))
 End If
 Next
End Sub

DrawProperty generates a node whose text indicates the name of the property and
whether it’s marked as Modified. It then renders two child nodes for the current and
original values of the property. DrawComplexType creates a node and then invokes
DrawProperty to generate a child node for each of its properties.

 In the end, building the visualizer is straightforward. What’s challenging is writing
the code to let users persist its modifications. In this case, employee 2 selects the Name
property to mark it as to-persist and then clicks the Merge button. At this point, you
have to roll back the state to Unchanged and then manually mark the properties
selected by the user (Name in this case) as Modified.

 To switch the state to Unchanged, you use the entry’s ChangeState method. But the
problem with this method is that not only does it change the state, it also overrides the
original values with the current ones (remember, it calls the AcceptChanges method
of the ObjectStateEntry class). This poses a problem, because the current value of
Version still contains the old value, which will overrides the original (most updated)

value. If you invoke SaveChanges now, you’ll still get an exception.

218 CHAPTER 8 Handling concurrency and transactions

 Let’s consider this step by step. Employee 1 and employee 2 read the customer
with Version 1. Employee 1 updates Version to 2. Then, employee 2 saves the data
using Version 1 and gets an exception. When Refresh is invoked, the original value
of Version becomes 2, but the current Version remains 1. When ChangeState is then
invoked, the original value of Version becomes 1 because it’s overwritten with the
original value. This way the UPDATE will always fail. Table 8.1 shows this workflow. The
last row shows that the original value is set to the incorrect value.

The trick to resolving this is the same one you saw in listing 8.1. You save the original
value of Version into a variable, modify the state to Unchanged, and then restore the
original value using the variable by using the GetUpdatableOriginalValues method
and the OriginalValueRecord class’s methods that you saw in section 8.2.2. This list-
ing shows the code.

C#
private void Merge_Click(object sender, EventArgs e)
{
 ApplyChanges = true;
 object version = _entry.OriginalValues["Version"];
 _entry.ChangeState(EntityState.Unchanged);
 _entry.GetUpdatableOriginalValues()
 .SetValue(
 _entry.OriginalValues.GetOrdinal("Version"),
 version);

 foreach (TreeNode node in tree.Nodes)
 {
 if (node.Checked)
 _entry.SetModifiedProperty(node.Tag.ToString());
 }
 Close();
}

Table 8.1 The update workflow and the problem with the version value

Employee Action
Database
version

Current
version

Original
Version

Employee 1 Reads customer 1 1 1

Employee 2 Reads customer 1 1 1

Employee 1 Saves customer 2

Employee 2 Saves customer and gets exception 2 1 1

Employee 2 Refresh method 2 1 2

Employee 2 ChangeState to Unchanged 2 1 1

Employee 2 Saves customer and gets exception 2 1 1

Listing 8.6 Persisting only selected columns

219Handling concurrency in Entity Framework

VB
Private Sub Merge_Click(ByVal sender As Object, ByVal e As EventArgs)
 ApplyChanges = True
 Dim version As Object =
 _entry.OriginalValues("Version")
 _entry.ChangeState(EntityState.Unchanged)
 _entry.GetUpdatableOriginalValues().
 SetValue(
 _entry.OriginalValues.GetOrdinal("Version"),
 version)

 For Each node As TreeNode In tree.Nodes
 If node.Checked Then
 _entry.SetModifiedProperty(node.Tag.ToString())
 End If
 Next
 Close()
End Sub

This code saves the version, rolls back the entity to Unchanged, sets the version, and
then sets the checked properties as Modified. The visualizer form is a generic form
that is opened by another form to resolve conflicts. ApplyChanges is a property of the
visualizer form that informs the calling form that the SaveChanges method must be
invoked after the user has finished checking the changed values. The complete code
for the method that saves the data from the edit form now looks like the following.

C#
try
{
 ctx.SaveChanges();
}
catch (OptimisticConcurrencyException ex)
{
 var errorEntry = ex.StateEntries.First();
 ctx.Refresh(RefreshMode.ClientWins, errorEntry.Entity);
 var form = new EntriesComparer(errorEntry);
 form.ShowDialog();
 if (form.ApplyChanges)
 ctx.SaveChanges();
}

VB
Try
 ctx.SaveChanges()
Catch ex As OptimisticConcurrencyException
 Dim errorEntry = ex.StateEntries.First()
 ctx.Refresh(RefreshMode.ClientWins, errorEntry.Entity)
 Dim form = New EntriesComparer(errorEntry)
 form.ShowDialog()
 If form.ApplyChanges Then
 ctx.SaveChanges()
 End If

Listing 8.7 Complete code for managing concurrency exceptions
End Try

220 CHAPTER 8 Handling concurrency and transactions

Under some circumstances, you can handle concurrency problems automatically,
without user involvement. For instance, you may have a rule stating that if the Name is
modified, the user must check what happened. Another rule may state that if a user
modifies the shipping address while another modifies the billing address, the system
must reconcile everything automatically. Fortunately, by working with Refresh, this
shouldn’t be too difficult to achieve.

NOTE In this example, we assumed that concurrency is handled by a
property named Version. Using metadata from the EDM (which we’ll dis-
cuss more in chapter 12), you can write a generic method that looks for
properties that have the ConcurrencyMode attribute set to Fixed, and use
those properties instead of embedding a property name in code.

Congratulations. You have achieved the master level in concurrency management. As
a reward, you can go on to the next stage, which is transaction management. It mostly
involves persistence processes, but you’ll discover that it might even have an impact
on queries.

8.3 Managing transactions
When you invoke SaveChanges, the context automatically starts a transaction and
commits or rolls it back depending on whether the persistence succeeded. This is all
transparent to you, and you’ll never need to deal with it.

 But sometimes persistence is complex. Think about the product-availability calcu-
lation in the previous chapter. When you update an order, you iterate over each detail,
adding the old quantity using a custom command, and then invoke SaveChanges.
Then you add, for each detail, the new quantity using another custom command.

 The problem with such a solution is that the custom commands aren’t executed in
any transaction. If a problem occurs during SaveChanges, the first set of custom com-
mands is executed and committed, the order isn’t committed, and the second set of
custom commands isn’t even executed. The result is that the product availability val-
ues are compromised.

 That’s a simple example. A more complex scenario is when you have to integrate
your application with an external system. For instance, when you save the order, you
may have to send a message over MSMQ or update another database. Everything must
be executed in the scope of a transaction.

 Even if these actions have different natures and use different technologies, they can
be grouped together in the same transaction by using the TransactionScope class. It’s
defined in the System.Transactions namespace inside the System.Transactions
assembly.

 The TransactionScope class is pretty simple to use. You instantiate it in a using
statement, and before disposing of it, you either invoke its Complete method to mark
the transaction as committed or do nothing to roll it back. In the using block, you put
all the code that must execute in the scope of the transaction. The following snippet

shows how simple the code is:

221Managing transactions

C#
using (var transaction = new TransactionScope())
{
 ...
 scope.Complete();
}

VB
Using transaction = New TransactionScope()
 ...
 scope.Complete()
End Using

It’s that easy. But how is it possible? How can a class handle transactions that span mul-
tiple databases and different technologies? The answer lies in the Microsoft Distrib-
uted Transaction Coordinator (MSDTC or simply DTC). It’s a component embedded
in Windows that coordinates transactions across different platforms.

 Connecting to the DTC is an expensive task, so TransactionScope tries not to do it
unless it’s necessary. When you connect to the database, the DTC starts a classic trans-
action: SqlTransaction, OleDbTransaction, or another as appropriate. If you con-
nect to a second database or another platform like MSMQ, TransactionScope
automatically promotes the transaction to the DTC. As the following listing shows, this
behavior is totally transparent; you don’t have to change your code to adapt to the dif-
ferent transaction technology.

C#
using (var ctx = new OrderITEntities())
{
 var cust = new Customer() { ... };
 ctx.Companies.AddObject(cust);
 using (var transaction = new TransactionScope())
 {
 ctx.SaveChanges(SaveOptions.DetectChangesBeforeSave);
 using (var altCtx = new OrderITEntities("name=OrderIT2"))
 {
 var newCust = new Customer() { ... };
 altCtx.Companies.AddObject(newCust);
 altCtx.SaveChanges(
 SaveOptions.DetectChangesBeforeSave);

Transaction
is promoted

 }
 transaction.Complete();
 ctx.AcceptAllChanges();
 altCtx.AcceptAllChanges();
 }
}

VB
Using ctx = New OrderITEntities()
 Dim cust = New Customer() With { ... }

Listing 8.8 An example of transaction promotions
ctx.Companies.AddObject(cust)

222 CHAPTER 8 Handling concurrency and transactions

 Using transaction = New TransactionScope()
 ctx.SaveChanges(SaveOptions.DetectChangesBeforeSave)
 Using altCtx = New OrderITEntities("name=OrderIT2")
 Dim newCust = New Customer() With { ... }
 altCtx.Companies.AddObject(newCust)
 altCtx.SaveChanges(
 SaveOptions.DetectChangesBeforeSave)

Transaction
is promoted

 End Using
 transaction.Complete()
 ctx.AcceptAllChanges()
 altCtx.AcceptAllChanges()
 End Using
End Using

Consider the calculation of product availability during order persistence. To execute
all the commands in a single transaction, you can wrap them in a TransactionScope
using block. What’s absolutely great is that because only one database is involved, the
transaction isn’t promoted to the DTC, sparing resources and gaining performance.

NOTE SQL Server 2008 has improved its capabilities in avoiding transac-
tion promotion. With SQL Server 2008, transaction promotion happens
less frequently than it does with SQL Server 2005.

If you want to know whether some code will cause a transaction to be promoted, you
have to use SQL Profiler, because it always specifies when this happens. You can see an
example in figure 8.6.

Figure 8.6 The first
INSERT is executed under
a database transaction.
Later, the transaction is
promoted, and then the

SQL Profiler is useful during development and debugging. If you want to control
how many transactions are promoted and monitor related statistics, you’ll have to
resort to performance counters, which have a category dedicated to DTC.

 In listing 8.7, the value SaveOptions.DetectChangesBeforeSave is passed to the
SaveChanges method. Passing such a value without combining it with the Save-
Options.AcceptAllChangesAfterSave value guarantees that the entities’ modifica-
tions in the context aren’t committed after the SaveChanges has finished executing.

8.3.1 The transactional ObjectContext

You know that SaveChanges accepts an enum of type SaveOptions, indicating whether
it has to invoke DetectChanges and AcceptAllChanges. If no value is passed to
SaveChanges, or if the value SaveOptions.AcceptAllChangesAfterSave is specified,
second INSERT is issued.

223Managing transactions

then when SaveChanges has finished its job, the objects in Modified and Added states
return to Unchanged, and the ones in Deleted state are removed from the context.
(This is the SaveChanges method’s commit phase for entities that you learned about
in chapter 7.)

 If you pass the value SaveOptions.DetectChanges to the SaveChanges method
and don’t pass SaveOptions.AcceptAllChangesAfterSave, the entities’ commit
phase isn’t triggered. This is exactly what you need when extending the transaction
span, because if something fails in commands executed after the SaveChanges
method, the transaction is rolled back and the entities in the context maintain their
state.

 After you’ve committed the transaction, you can manually call the AcceptAll-
Changes method to bring the objects into a clean state. This is necessary because the
entities’ commit phase in the object context isn’t transactional. You have to manually
take care of keeping everything synchronized.

 Transactions are widely used to provide an all-or-nothing method of saving data on
databases, but they’re useful when reading data too.

8.3.2 Transactions and queries

You can’t roll back a read; it’s pure nonsense. But you can use a transaction to control
an important aspect of data retrieval: the isolation level. You can use it to decide what
types of records can be read and whether they can be modified. For instance, you may
decide to search for rows that are in the database, including those that aren’t commit-
ted yet. Or you may decide to include uncommitted rows and enable their modifica-
tions too.

 These options are configurable via the IsolationLevel property of the
TransactionScope class. It’s an enum of type IsolationLevel and can have the follow-
ing values:

 Unspecified
 Chaos
 ReadUncommitted
 ReadCommitted
 RepeatableRead

 Serializable
 Snapshot

If you’re used to database transactions, you’ll know what these levels correspond to.
We won’t cover them here, but if you want to delve more into this subject, the MSDN
documentation is a good starting point: http://mng.bz/hGel. The following snippet
shows how to set the isolation level of a transaction:

C#
var transaction = new TransactionScope(TransactionScopeOption.Required,
 new TransactionOptions()
 {

 IsolationLevel = IsolationLevel.ReadUncommitted

224 CHAPTER 8 Handling concurrency and transactions

 }
);

VB
Dim transaction As New TransactionScope(TransactionScopeOption.Required,
 New TransactionOptions() With
 {
 .IsolationLevel = IsolationLevel.ReadUncommitted
 }
)

Some years ago, transactions would have been a complex subject. Nowadays, thanks to
the DTC component and the TransactionScope class, controlling them is incredibly
simple.

8.4 Summary
You’ve now finished the second part of this book, which means you have enough
knowledge to develop an application using Entity Framework as a persistence engine.
Concurrency and transaction management complete the circle, because they inte-
grate with persistence, which was covered in the previous chapter.

 Now you can handle concurrent writes to the same data and make custom SQL
commands work in the same transaction as the SaveChanges method, even if those
SQL commands are external to Entity Framework. That makes you an Entity Frame-
work pro.

 It’s time to become a master by learning a few other features. For instance, Entity
SQL isn’t as easy to use as LINQ to Entities is, but sometimes it makes life easier.
Another feature that you must learn about is the use of stored procedures. In environ-
ments where the DBA is the governor of the database, learning how to use stored pro-
cedures and functions is fundamental. These and other topics will be the subject of
the next part of the book.

Part 3

Mastering
Entity Framework

In part 1, you learned about Entity Framework’s fundamentals, and in part 2
you put Entity Framework to work. In part 3, you’ll learn about some advanced
features that are necessary to get the best out of Entity Framework.

 Mapping data between database and entities, reading data from the database,
and updating data is vital to creating an application, but there’s still a lot to
learn. What about stored procedures? How can you customize the generated
code? How can you use the mapping metadata to write generic code? We’ll
answer these questions in this part of the book.

 Chapter 9 covers Entity SQL. Although LINQ to Entities is the most attractive
language for querying the model, Entity SQL is still useful. There are tasks that
require lots of lines of LINQ to Entities code that you can do with a single clause
in Entity SQL.

 Chapter 10 is about stored procedures. You’ll learn how to integrate them in
Entity Framework and how to use them to read and update data.

 Chapter 11 is about the DefiningQuery element and about reusing code
through the use of database and user-defined functions in LINQ to Entities.
You’ll see how you can dramatically simplify query code.

 Chapter 12 introduces one of the hidden gems of Entity Framework: code
and database generation. Code-generation templates enable you to fully custom-
ize code generation. You’ll also learn about database-generation customization

and about extending the designer.

 Chapter 13 describes how to read mapping information and how to take advantage
of that information to write generic code. Such code can make applications much eas-
ier to write and maintain.

An alternative way
of querying: Entity SQL
In this chapter, we’ll cover one of the hidden gems of Entity Framework: Entity
SQL. LINQ to Entities has made this language almost obsolete, and developers
don’t feel comfortable with it—its string-based nature is less expressive than the
object-oriented LINQ. But thinking that Entity SQL is useless is a huge mistake,
because some types of queries are easier to write using such a language.

 In the first part of the chapter, we’ll discuss the querying capabilities of Entity
SQL, focusing on different types of common operations, exactly as we did in chap-
ter 4 when discussing LINQ to Entities. After that, we’ll explain how to easily use
query-builder methods to use Entity SQL in combination with the ObjectContext.
Later, we’ll talk about some advantages Entity SQL has over LINQ to Entities and
look at the Entity Client data provider, which is the lowest level of Entity Framework
and is used to interact almost directly with the database.

This chapter covers
 Executing queries using Entity SQL

 Executing queries using query-builder methods

 Using the Entity Client data provider
227

 We’ll begin by looking at the basics of querying.

A brief history of Entity SQL
When Entity Framework was first presented at Tech-Ed EMEA in 2006, it was called
ADO.NET vNext. (Visual Studio 2008, codenamed Orcas, was no more than a proto-
type, and the LINQ project was taking its first steps.) To perform queries, the
speaker used a strangely familiar syntax. It was a string-based language that used a
SQL-like syntax.

At that time, creating a new language to query the model was the only choice,
because LINQ wasn’t ready yet. The Entity Framework team decided not to start from
scratch but to use a syntax that was developer-friendly: the SQL syntax. That’s why
the language was named Entity SQL.

Initially, the language was very similar to SQL; you almost couldn’t spot the differ-
ence. But SQL is meant to query tabular database structures, and it lacks concepts
like inheritance, polymorphism, and other OOP features. Because Entity Framework
must accommodate these characteristics, Entity SQL had to be adapted. This led to
the introduction of new keywords, and the language began to evolve. Now it’s grown
to the point where it shares just a few keywords with SQL.

When LINQ to Entities came around, Entity SQL, which had little appeal, became a
secondary query language, because its counterpart was far more intuitive and pro-
ductive. LINQ expressiveness immediately made LINQ to Entities the principal query
language. Articles began talking about LINQ to Entities as if it were the entire Entity
Framework technology, and people weren’t even aware that Entity SQL was in the
game.

Nonetheless, Entity SQL is still included in Entity Framework; and due to some LINQ
to Entities limitations, it remains the most powerful (although hidden) language for
querying. Entity SQL will remain an integral part of Entity Framework. Even if the pres-
ence of LINQ to Entities puts it in second place, it will be maintained and evolved like
any other part of the framework.

228 CHAPTER 9 An alternative way of querying: Entity SQL

9.1 Query basics
Entity SQL’s SQL-like structure makes it more familiar for developers. Let’s look at this
similarity by analyzing a simple Entity SQL query. The following query retrieves all
orders.

SELECT
VALUE c
FROM OrderITEntities.Orders
AS c

The SELECT keyword is mandatory, and each query must begin with it. After SELECT,
you must specify what data you want to retrieve. In this case, you’re retrieving a known
CLR type, so you use the keyword VALUE. Next, you use the FROM keyword, followed by
the full name of the entity set that you’re querying. Finally, you specify the alias of the

Listing 9.1 A simple Entity SQL query
entity set with the AS keyword.

229Query basics

NOTE Unlike in SQL, the alias is mandatory and is commonly referred to
as the defining variable. This is important, because in Entity SQL queries,
you always refer to a property starting from the defining variable.

You’ve now written your first Entity SQL query. There are several ways to execute it:

 Through ObjectContext
 Through ObjectContext with query-builder methods
 Through Entity Client

For now, you’ll use ObjectContext features to execute Entity SQL queries. In section
9.8, we’ll talk about query-builder methods, and in section 9.9 we’ll show you how to
use Entity SQL in combination with Entity Client.

 To execute an Entity SQL query through the ObjectContext class, you have to
invoke its CreateQuery<T> method, passing the Entity SQL query as the parameter,
and the return type as the generic parameter. Here’s an example of consuming such
a method:

C#
using (var ctx = new OrderITEntities())
{
 ObjectQuery<Order> result = ctx.CreateQuery<Order>(
 "SELECT VALUE c FROM OrderITEntities.Orders AS c");

 foreach(var item in result)
 {
 //code that handles orders
 }
}

VB
Using ctx = New OrderITEntities()
 Dim result = ctx.CreateQuery(Of Order)(
 "SELECT VALUE c FROM OrderITEntities.Orders AS c")

 For Each item As var In result
 'code that handles orders
 Next
End Using

The result variable contains a list of Order objects that you can use for whatever you
need. Keep in mind that, as for LINQ to Entities, the query isn’t executed until the
data are actually used by the code. This means the query is executed when the code
reaches the foreach loop and not before.

 Now that you understand the basics of Entity SQL, we can move on and start cover-
ing queries. As we mentioned, we’ll follow the same path as chapter 4, so we’ll begin
with filtering and then move to projecting, grouping, sorting, and joining.

NOTE We won’t show the context instantiation in the examples again.
The ctx variable will represent it.

The first query we looked at returns all orders without applying any filters. In the next

section, we’ll look at how to restrict the data returned.

230 CHAPTER 9 An alternative way of querying: Entity SQL

9.2 Filtering data
Filtering the data you want returned is the most common operation of a query. Entity
SQL performs this basic operation exactly as SQL does, with the WHERE clause. The fol-
lowing listing shows how to retrieve orders that must be shipped to New York.

C#
var result = ctx.CreateQuery<Order>("SELECT VALUE c

➥ FROM OrderITEntities.Orders as c

➥ WHERE c.ShippingAddress.City =

➥ @city");
result.Parameters.Add(new ObjectParameter("city", name));
return result.ToList();

VB
Dim result = ctx.CreateQuery(Of Order)("SELECT VALUE c

➥ FROM OrderITEntities.Orders as c

➥ WHERE c.ShippingAddress.City =

➥ @city ")
result.Parameters.Add(New ObjectParameter("city", name))
Return result.ToList()

In the WHERE clause, two features come up clearly. The first is the syntax when dealing
with complex properties . When you refer to the scalar value of a complex property,
you have to reach it as if you were navigating to it in VB or C# code.

 The second feature is the parameter syntax, which is the same syntax used when
executing queries through the classic ADO.NET provider for SQL Server. After declar-
ing the parameter in the query, you have to create an ObjectParameter and add it to
the collection that contains parameters for the query.

NOTE From now on, we won’t show the code required to run the query;
we’ll focus on the Entity SQL syntax.

The query in listing 9.2 is fairly simple and deals with only one entity. In the real
world, such queries are very rare; usually, multiple related entities are involved in a
query. Understanding how to work with associations is fundamental to writing Entity
SQL queries, and we’ll look at that next.

9.2.1 Working with associations

You know that in a model, associations are one-to-one, one-to-many, or many-to-many.
Let’s start with one-to-one associations, like the one between an order and its customer.

FILTERING WITH A SINGLE ASSOCIATION

Filtering based on a single association is easy: you navigate to the property as if you
were using it in code. Because the property represents a single instance, it’s seen as an
extension of the main object, so its use is trivial.

 The following snippet shows an example of filtering on an association and retriev-

Listing 9.2 Retrieving all orders shipped to New York
ing all orders that are placed by customers in New York:

231Filtering data

SELECT VALUE o FROM OrderITEntities.Orders AS o
WHERE o.Customer.BillingAddress.City = 'New York'

Like LINQ to Entities and unlike SQL, you don’t have to worry about joins between
tables. The Entity Framework generator creates the SQL, making use of the mapping
information.

FILTERING WITH COLLECTION ASSOCIATIONS

Filtering based on a collection property is a bit more complicated than filtering based
on a single reference property. This is because the filter must be applied on a value
calculated on the collection data. It may be a count, a sum, or the mere existence of
data in the associated collection.

 For example, the next snippet retrieves orders that have at least one detail related
to a product whose brand property is MyBrand:

SELECT VALUE o FROM OrderITEntities.Orders as o
WHERE EXISTS
 (SELECT d FROM o.OrderDetails AS d WHERE d.Product.Brand = 'MyBrand')

EXISTS is an Entity SQL function that’s equivalent to the Any method of LINQ to Enti-
ties and to the SQL EXISTS clause. In this case, it’s used to filter the orders based on
the presence of at least one detail that contains a product with brand MyBrand.

NOTE The LINQ to Entities syntax is different than that used by Entity
SQL, but if you compare the SQL generated by the two languages, you’ll
find it’s exactly the same. The only difference is in the parameter name;
in LINQ to Entities, you can’t specify parameter names, whereas in Entity
SQL you’re forced to do so.

Checking for the existence of a child element in a collection isn’t the only filter you
may want to apply. Often, an aggregated value is the discriminator for a filter. For
example, if you wanted to retrieve all orders with no discount, you could take those
where the sum of the discount in the details was 0, as in the following snippet:

SELECT VALUE o FROM OrderITEntities.Orders as o
WHERE SUM(SELECT VALUE d.discount FROM o.OrderDetails as d) = 0

As you can see, the SUM function takes as input another query that returns the dis-
count of each detail. In SQL, it would be impossible to write a query with this structure
because SUM can be used only in the SELECT, HAVING, and GROUP BY clauses. Here you
can use it in the WHERE clause, which makes the query more natural from a logical
point of view. Thumbs up for Entity SQL!

 Another example of filtering based on aggregated data is searching for orders that
contain more than one product. In OrderIT, due to the discount policy, a single prod-
uct can appear twice in an order, so you can have two details but one product. That
means you can’t simply count the details to find orders with more than one product
sold. By using the COUNT and DISTINCT functions, you can easily determine how many
different products are in an order, as follows:

232 CHAPTER 9 An alternative way of querying: Entity SQL

SELECT VALUE o FROM OrderITEntities.Orders AS o
WHERE COUNT(
 SELECT VALUE DISTINCT(d.product.productid) FROM o.OrderDetails AS d
) > 1

The DISTINCT clause removes duplicates, and then COUNT adds up how many products
are in the order. Like SUM, the COUNT clause is used inside the WHERE clause. As you can
see, this way of querying is more intuitive than plain old SQL.

 Filtering based on a collection isn’t difficult when you understand the mechanism
of working on aggregated values. But filtering based on data is only part of the game.
You can also perform filtering on a count basis. The simplest example is when you
want to retrieve only the first n rows, or you need to page data in a grid on a web page.

9.2.2 Paging results

How many times have you been asked to create a report containing the top 10 of
something? It’s a common request. The top 10 (or 100) request can be considered a
filtering matter because you’re narrowing down the number of objects returned.

 To take only the first n occurrences, you use the LIMIT clause. It must be put at the
end of the statement, followed by the number of objects you want returned, as in the
following snippet:

SELECT VALUE o FROM OrderITEntities.Orders AS o ORDER BY o.OrderId LIMIT 5

Notice the use of the Order By clause. It’s mandatory when using LIMIT. If you don’t
specify the sort field explicitly, you’ll get a runtime exception.

 Another typical requirement is paging data in web applications. This goal is easily
achievable by combining the use of LIMIT with SKIP. The latter’s task is to skip n rows
before retrieving the number of rows specified by LIMIT.

 Suppose you want to retrieve the second page of a grid that shows five records per
page. In this case, you have to skip the first five rows and limit the retrieved ones to
five. That’s what the following example does:

SELECT VALUE o FROM OrderITEntities.Orders AS o
ORDER BY o.orderid SKIP 5 LIMIT 5

It’s not mandatory to put SKIP before LIMIT, but inverting them would result in the
query returning the first five occurrences, because the parser considers clauses in the
order it receives them.

 All the preceding queries return full entities. More precisely, the preceding que-
ries return a list of Order objects. Often you don’t need the full instance, but only
some of its properties. What you need is a projection.

9.3 Projecting results
The process of projecting data in Entity SQL is natural. As in SQL, you specify the pro-
jected data in the Entity SQL SELECT clause. What’s different between a query that
returns an entity and one that returns a projection is that the VALUE keyword must be

omitted for the projection.

233Projecting results

 Projecting with Entity SQL is also different from projecting in LINQ to Entities
because the output result is different. Due to its typed syntax, LINQ to Entities can
return an anonymous type with the selected properties. Entity SQL is string-based, and
the compiler can’t create a class from strings.

9.3.1 Handling projection results

The output of a projected query is an ObjectQuery<DbDataRecord> instance. As you
know, DbDataRecord is the class that represents a row in a DbDataReader. This means
you have to forget strong typing and use a generic object, as in the following listing.

C#
var result = ctx.CreateQuery<DbDataRecord>("SELECT c.CompanyId, c.Name

➥ FROM OrderITEntities.Companies AS c");

foreach (var item in result)
 Console.WriteLine((int)item["CompanyId"] + "-" + (string)item["Name"]);

VB
dim result = ctx.CreateQuery(Of DbDataRecord)("SELECT c.CompanyId,

➥ c.Name FROM OrderITEntities.Companies AS c")

For Each item In result
 Console.WriteLine(item("CompanyId") + "-" + item("Name"))
Next

Returning data as a list of DbDataRecord objects isn’t the most desirable approach.
First, the invoking code needs to be aware of the column names. Second, you lose the
strong typing and compile-time checking.

 Returning a class (DTO) in this case is the best way to go, but it’s a more time-
consuming approach because it involves more steps. First you have to create an ad hoc
class to hold the data. Then you have to execute the query. Finally, you need to use a
LINQ to Objects query to move data from the DbDataRecord to the class. You can see
the code in the following listing.

C#
public class KeyValue<T, K>

DTO class
{
 public T Id { get; set; }
 public K Value { get; set; }
}

public List<KeyValue<int, string>> GetCompaniesProjection()

Data-access
method

{
 var q = ctx.CreateQuery<DbDataRecord>(
 "SELECT c.CompanyId, c.Name

➥ FROM OrderITEntities.Companies AS c").ToList();
 return q.Select(i => new KeyValue<int, string>(
 (int)i["CompanyId"], i["Name"].ToString())).ToList();

Listing 9.3 Using projected data

Listing 9.4 Returning projected data as typed objects
}

234 CHAPTER 9 An alternative way of querying: Entity SQL

foreach (var item in GetCompaniesProjection()) Data-access
consumer Console.WriteLine(item.Id, item.Value);

VB
Public Class KeyValue(Of T, K)

DTO class Public Property Id() As T
 Public Property Value() As K
End Class

Public Function GetCompaniesProjection() As

Data-access
method

 List(Of KeyValue(Of Integer, String))

 Dim q = ctx.CreateQuery(Of DbDataRecord)(
 "SELECT c.CompanyId, c.Name

➥ FROM OrderITEntities.Companies AS c").ToList()
 Return q.Select(Function(i)
 New KeyValue(Of Integer, String)
 (i["CompanyId"], i["Name"]))).ToList()
End Function

For Each item In GetCompaniesProjection()
Data-access
consumer Console.WriteLine(item.Id, item.Value)

Next

As you can see, the invoking code is now much more readable. The dirty stuff of con-
verting the projection from a DbDataRecord to an object is handled by the data-access
method. The invoker doesn’t need to worry about typing and column names because
it works directly with objects.

NOTE Instead of creating the DTO class, you could create a Company
instance, setting only the CompanyId and Name properties. Although using
the Company class works perfectly, this approach results in an object that’s
only partially filled with values. A DTO is much better.

Another thing you can do with projections is concatenate properties. You can join all
the billing-address properties of an order into a scalar property, as in the following
snippet. This makes data binding easier:

SELECT (o.ShippingAddress.Address + '-' + o.ShippingAddress.City + '-' +
 o.ShippingAddress.Country + '-' + o.ShippingAddress.ZipCode)
 AS ShippingAddress
FROM OrderITEntities.Orders AS o

You can also group properties into a complex property. In this case, the column in the
DbDataRecord doesn’t hold a scalar value, but another DbDataRecord, which in turn
contains the scalar values. This nifty method of organization allows you to nest com-
plex properties infinitely.

 Grouping is achieved through the ROW function. The following query shows an
example that returns only the city and street address of an order grouped into a single
property:

SELECT o.OrderId, o.OrderDate,

ROW(o.ShippingAddress.City, o.ShippingAddress.Address)

235Projecting results

 AS ShippingAddress
FROM OrderITEntities.Orders AS o

The way you access the scalar columns
doesn’t change, but when you access the
column that contains the grouping prop-
erty, the situation is different because it
contains a DbDataRecord instance contain-
ing the scalar columns. Figure 9.1 displays
how the grouping property is organized.

 As a result of this organization, you have to cast the inner DbDataRecord’s column
to DbDataRecord in order to access the scalar column’s value. The next snippet shows
the simplicity of the code:

C#
var sa = ((DbDataRecord)item["ShippingAddress"])["Address"];

VB
Dim sa = DirectCast(item("ShippingAddress"), DbDataRecord)("Address")

There’s nothing more you need to know about projections based on single entities, so
let’s move on to projecting with associations.

9.3.2 Projecting with associations

It’s no surprise that associations can participate in projections. As with filtering, you
have to distinguish between projections that involve one-to-many associations and pro-
jections with a one-to-one association. That’s the only similarity between projecting
and filtering.

PROJECTING WITH SINGLE ASSOCIATIONS

Handling projections for single associations is simple. Because a single association can
be seen as a sort of extension of the class, retrieving it is easy.

 You have two options when projecting a single association: return a projection of
the main entity plus the entire associated one, or return a projection of the main
entity plus a projection of the associated one.

 In the first case, you need to put the name of the associated property in the SELECT
clause, as follows:

SELECT o.OrderId, o.OrderDate, o.Customer FROM OrderITEntities.Orders AS o

In the output result, the column containing the associated property directly exposes
the object (Customer). To retrieve its data, you cast the column to Customer and then
access its properties.

 If you project the association too, you need to put the properties in the SELECT
clause using the usual navigation syntax, like this:

SELECT o.OrderId, o.OrderDate, o.Customer.CompanyId, o.Customer.Name
FROM OrderITEntities.Orders AS o

Figure 9.1 The ShippingAddress column in the
DbDataRecord is a DbDataRecord
representing the complex property.

236 CHAPTER 9 An alternative way of querying: Entity SQL

The result is flat because all properties are scalar values. There’s no need to do any
additional processing.

PROJECTING WITH COLLECTION ASSOCIATIONS

There are three main ways you can project with collection associations, depending on
what you need:

 Return partial data from the main entity, plus all the data from the collection.
 Return partial data from both the main entity and the associated collection.
 Return calculated values from the list of associated data.

Let’s start with the first case.
 A typical situation is when you retrieve parts of the selected orders and their full

details. To do this in Entity SQL, you have to put the property in the SELECT clause.
The column containing the collection holds a List<T> instance, where T is the type of
object in the collection. The value of the column must be cast to List<T> and then
iterated. This is what the next listing does.

C#
var result = ctx.CreateQuery<DbDataRecord>("SELECT o.OrderId,

➥ o.OrderDate, o.OrderDetails Retrieves
association➥ FROM OrderITEntities.Orders AS o");

foreach (var item in result)
{
 Console.WriteLine(item["OrderId"]);
 var details =

(List<OrderDetail>)item["OrderDetails"]; Iterates over
association foreach (var detail in details)

 Console.WriteLine(" " + detail.OrderDetailId);
}

VB
Dim result = ctx.CreateQuery(Of DbDataRecord)("SELECT o.OrderId,

➥ o.OrderDate, o.OrderDetails Retrieves
association➥ FROM OrderITEntities.Orders AS o")

For Each item In result
 Console.WriteLine(item("OrderId"))
 Dim details = DirectCast(item["Details"], Iterates over

association List(Of OrderDetail)
 For Each detail in details)
 Console.WriteLine(" " & detail.OrderDetailId);
 Next
Next

The second case, returning partial data from both the main entity and the associated
collection, often happens when you retrieve parts of the selected orders, plus the
quantities, IDs, and products from their details. In Entity SQL, to project collection
data, you insert a subquery in the SELECT specifying the columns of the association
you want to retrieve. The subquery is shown in bold in the following example.

Listing 9.5 Projecting an order plus full details

237Grouping data

SELECT o.OrderId, o.OrderDate,
 (SELECT d.OrderDetailId, d.Product.ProductId, d.Quantity
 FROM o.OrderDetails As d) as Details
FROM OrderITEntities.Orders AS o

The output result is a three-column DbDataRecord whose third column is a collection.
The difference between this collection and the one generated by the previous query is
that because it contains a projected detail, it holds a list of DbDataRecord instances.

 Even if the objects are different, the concept still remains the same: to access the
association data, you have to cast the column to List<DbDataRecord> and iterate over
the items in the list. Figure 9.2 illustrates the column data in this case.

 The last case, returning calculated values
from a list of associated data, is common and
useful when you need to retrieve orders and
their total amounts. In this case, you don’t get
a collection; you get a scalar value that is easier
to manage. From the query perspective, the
amount is calculated using a subquery, in the
SELECT clause that returns only a property, as
in the next snippet:

SELECT o.OrderId, o.OrderDate,
 SUM(SELECT VALUE (d.UnitPrice - d.Discount) * d.Quantity
 FROM o.OrderDetails As d) AS Total
FROM OrderITEntities.Orders AS o

The result is a list of DbDataRecord objects containing the OrderId, OrderDate, and
Total columns. Because the Total column is a simple scalar value, it’s retrieved as a
classic scalar column.

 Now you understand two important pieces of Entity SQL: filtering and projecting.
The next step is learning how to group data using this language.

9.4 Grouping data
Grouping data is a basic function of any advanced query language. SQL, LINQ, LINQ
to Entities, and Entity SQL have this feature in their toolbox. Once again, grouping
data in Entity SQL is similar to doing so in SQL. You use a GROUP BY clause to specify
the grouping fields. That’s all.

 As a first example, let’s extract the orders and group them by shipping city:

SELECT o.ShippingAddress.City,
 (SELECT VALUE o2
 FROM OrderITEntities.Orders AS o2
 WHERE o.ShippingAddress.City = o2.ShippingAddress.City) AS Orders
FROM OrderITEntities.Orders AS o
GROUP BY o.ShippingAddress.City

The output of this query is an ObjectQuery<DbDataRecord>, where each record con-
tains a column for the shipping city and another for the orders, as shown in figure 9.3.

Figure 9.2 The result of projecting both
orders and details

Figure 9.3 The result of a grouping query. The first column contains the grouping field—City, in this
case. The second column contains the orders shipped to the city.

238 CHAPTER 9 An alternative way of querying: Entity SQL

To process the records extracted by the query, you need to iterate over them. Remem-
ber that the second column contains a List<Order> object and not a List<DbData-
Record> object because the query didn’t perform any projection.

 You can also group data on more than one property. For instance, you might have
to group orders by shipping city and zip code. To do this, you’d include both columns
in the GROUP BY clause, separating them with a comma (,) as in the following query:

SELECT o.ShippingAddress.City, o.ShippingAddress.ZipCode,
 (SELECT VALUE o2
 FROM OrderITEntities.Orders AS o2
 WHERE o.ShippingAddress.City = o2.ShippingAddress.City) AS Orders
FROM OrderITEntities.Orders AS o
GROUP BY o.ShippingAddress.City, o.ShippingAddress.ZipCode

The DbDataRecord output contains the columns in the SELECT clause.
 Data retrieved by the query can be projected; you aren’t forced to return an entire

entity. To do so, remove the VALUE keyword from the SELECT clause, and select the
properties you need, as shown in the next snippet. The difference between this and
the previous example is that the column that contains the projected data isn’t a
List<Order> instance but a List<DbDataRecord> instance:

SELECT o.ShippingAddress.City,
 (SELECT o2.OrderId, o2.OrderDate
 FROM OrderITEntities.Orders AS o2
 WHERE o.ShippingAddress.City = o2.ShippingAddress.City) AS details
FROM OrderITEntities.Orders AS o
GROUP BY o.ShippingAddress.City

Sometimes you may need to filter data after it’s grouped. More often, you may need to
filter on an aggregated value. For instance, you may want to retrieve data only for
those cities that have more than two orders.

 As with SQL, the solution is the HAVING clause. It must be put after the GROUP BY
clause and can specify any valid Entity SQL expression (COUNT is used in the following
example):

SELECT o.ShippingAddress.City,
 (SELECT VALUE o2 FROM OrderITEntities.Orders AS o2

 WHERE o.ShippingAddress.City = o2.ShippingAddress.City) AS details

239Sorting data

FROM OrderITEntities.Orders AS o
GROUP BY o.ShippingAddress.City
HAVING COUNT(o.ShippingAddress.City) > 2

As you can see, grouping data is a fairly easy task. By mixing GROUP BY and HAVING, you
can perform powerful queries. Next, it’s time to look at sorting.

9.5 Sorting data
Sorting in Entity SQL is identical to sorting in SQL. The ORDER BY clause is used, fol-
lowed by a list of comma-separated columns that the sorting is based on. You can even
set the sorting direction with the DESC and ASC keywords:

 Here’s an example of sorting on one column:

SELECT VALUE o
FROM OrderITEntities.Orders AS o
ORDER BY o.ShippingAddress.City

And here’s a similar example of sorting on multiple columns:

SELECT VALUE o
FROM OrderITEntities.Orders AS o
ORDER BY o.ShippingAddress.City, o.ShippingAddress.ZipCode

Sorting is a simple matter of using the ORDER BY clause. But when associations are
involved, you can do interesting things.

9.5.1 Sorting data based on associations

The first thing you may want to do when associations are involved is to sort data on the
basis of an aggregated value calculated on a collection association. For instance, the
next example sorts the orders based on their total amounts:

SELECT VALUE o
FROM OrderITEntities.Orders AS o
ORDER BY
 Sum(SELECT VALUE (d.UnitPrice - d.Discount) * d.Quantity
 FROM o.OrderDetails AS d)

What’s great in this query is that you can use a subquery in the ORDER BY clause. This
is something SQL doesn’t allow—it’s another Entity SQL feature that makes life easier.

 Another interesting Entity SQL feature is the ability to retrieve an entity, or a pro-
jection of it, and have only its associated collection data sorted. The following exam-
ple retrieves the orders and sorts their details by the items sold:

SELECT o.OrderId, o.OrderDate,
 (Select VALUE d
 FROM o.OrderDetails AS d
 ORDER BY d.Quantity) AS Details
FROM OrderITEntities.Orders AS o

When it comes to associations that point to a single reference, sorting is trivial. The
reference points to a single instance, so you can navigate to properties as usual. In the

following snippet, the orders are sorted by their customer city:

240 CHAPTER 9 An alternative way of querying: Entity SQL

SELECT VALUE o
FROM OrderITEntities.Orders AS o
ORDER BY o.Customer.ShippingAddress.City

That’s all you need to know about sorting. In the next section, we’ll talk about another
feature: joins between objects.

9.6 Joining data
You already discovered in chapter 4 that manually joining data is unnecessary because
Entity Framework automatically takes care of relationships when generating SQL. But
there are some situations where you may need to manually join objects, so you must
be aware of this mechanism.

 Once again, Entity SQL syntax for joins is identical to SQL syntax; you use the JOIN
clause. In the following example, orders and companies are joined by the shipping
city and the customer ID:

SELECT o.OrderId, o.OrderDate
FROM OrderITEntities.Orders AS o
JOIN OrderITEntities.Companies AS c ON o.Customer.CompanyId = c.CompanyId
 AND o.ShippingAddress.City = c.ShippingCity

The last feature needed to query data is the inheritance-querying mechanism. This is
a bit different from what you’ve seen so far, because it’s something that doesn’t exist in
SQL.

9.7 Querying for inheritance
When talking about inheritance, two types of queries can be performed:

 Queries that return objects, exposing them through the base class
 Queries that return only objects of a specified type

 The first type of query is pretty simple and doesn’t involve any Entity SQL inheri-
tance knowledge. Because the entity set you query exposes objects through the base
class, you perform a query using properties on that class. At runtime, Entity Frame-
work generates the concrete classes by analyzing the mapping information.

 The second type of query requires some explanation, because Entity SQL inheri-
tance features come into play via the OFTYPE function. This function is placed immedi-
ately after the FROM clause and accepts the full entity-set name and the full type name
to be retrieved, as shown in the next snippet:

SELECT VALUE c
FROM OFTYPE(OrderITEntities.Companies, OrderIT.Model.Customer) AS c

Naturally, you can add filters. Because this query retrieves customers, you can add a
WHERE clause on the customer properties. The next snippet looks for customers who
are enabled to use the web service:

SELECT VALUE c
FROM OFTYPE(OrderITEntities.Companies, OrderIT.Model.Customer) AS c

WHERE c.WSEnabled = true

241Using query-builder methods

Not only can you filter data, but you can also project, sort, and group it any way you
want.

 This is all you really need to know to consider yourself an Entity SQL master, but
Entity SQL is wide subject. It has a lot of functions and operators. MSDN has great doc-
umentation for the Entity SQL Language; you can find the MSDN language reference
at http://mng.bz/f3ew.

 So far, you’ve used the CreateQuery<T> method for querying, passing in the entire
Entity SQL string. To simplify the creation of Entity SQL queries, you can use a set of
methods, named query-builder methods, to shorten the code.

9.8 Using query-builder methods
Query-builder methods are a convenient way to organize Entity SQL queries and can
often simplify dynamic query creation. These methods do exactly what their name
suggests: they let you build an Entity SQL query using methods instead of having to
write the entire Entity SQL on your own. Query-builder methods don’t cover all
aspects of querying, but, in our experience, 90% of a project’s queries can be devel-
oped using them.

 Query-builder methods aren’t extension methods like the LINQ to Entities meth-
ods. They’re included in the ObjectQuery<T> class and implement the fluent tech-
nique, which allows them to be chained, because they return an ObjectQuery<T>
instance. The query-builder methods are listed in table 9.1.

Table 9.1 The query-builder methods

Method Functionality

Distinct Specifies that returned data must be unique

Except Limits query results by excluding results based on the results of another object query

Include Eager-loads related associations

Intersect Limits query results by including only the results that exist in another object query

OfType<T> Retrieves only instances of objects of the specified type

OrderBy Defines the sorting properties

Select Defines the properties to retrieve

SelectValue<T> Defines the properties to retrieve, and returns them in the object specified

Skip Sorts the data by a key, and skips the first n occurrences

Top Returns only the first n occurrences

Union Merges the results of two queries, removing duplicates

UnionAll Merges the results of two queries

Where Defines filters

http://mng.bz/f3ew

242 CHAPTER 9 An alternative way of querying: Entity SQL

Let’s see a simple query in action. This one retrieves all orders shipped to New York:

C#
var result = ctx.Orders.Where("it.ShippingAddress.City = 'New York'");

VB
Dim result = ctx.Orders.Where("it.ShippingAddress.City = 'New York'")

This query is simple; it uses the Where method to filter returned data. Despite its sim-
plicity, there is one thing to point out: the it defining variable. it is the name of the
defining variable, but the name can be changed programmatically using the Object-
Query<T> instance’s Name property.

 Note that you must be aware of some caveats when changing the defining variable.
It’s bound to the chaining mechanism, which we’ll cover next.

9.8.1 Chaining methods

Chaining multiple query-builder methods together is a simple and powerful mecha-
nism for shaping a query at runtime. Suppose you have a method with many filter
parameters. When you create the query, you have to apply the filters only for the input
parameters that have a value. In this case, you can call the Where method multiple
times, as shown here.

C#
ObjectQuery<Order> result = ctx.Orders;
if (city != String.Empty)
 result = result.Where("it.ShippingAddress.City = '" + city + "'");
if (zipCode != String.Empty)
 result = result.Where("it.ShippingAddress.ZipCode = '" + zipCode + "'");

VB
Dim result As ObjectQuery<Order> = ctx.Orders
If city <> String.Empty
 result = result.Where("it.ShippingAddress.City = '" + city + "'")
End If
If zipCode <> String.Empty
 result = result.Where("it.ShippingAddress.ZipCode = '" + zipCode + "'")
End If

The Entity SQL code generated by a chaining method isn’t necessarily what you may
expect. If you were to create the Entity SQL string on your own, you would probably
create a WHERE clause with multiple ANDs. Entity SQL behaves differently, generating a
nested query for each call to the Where method. Although this may seem to be a cum-
bersome approach, it guarantees the needed flexibility in code generation.

 The following query is the Entity SQL generated by the code in listing 9.6, obtained
by inspecting the CommandText property of the ObjectQuery<T> class:

SELECT VALUE it
FROM

Listing 9.6 Chaining query-builder methods
 (

243Using query-builder methods

 SELECT VALUE it
 FROM ([Orders]) AS it
 WHERE it.ShippingAddress.City = 'New York'
) AS it
WHERE it.ShippingAddress.ZipCode = '98765'

As you see, the second WHERE causes a query-nesting process.
 Earlier, we said you can change the defining variable name programmatically, but

you should be aware of a caveat when doing so. When you have just one method call,
you can change the defining variable name and then use it in the method:

VB
ctx.Orders.Name = "o"
ctx.Orders.Where("o.ShippingAddress.ZipCode = '98765'")

C#
ctx.Orders.Name = "o";
ctx.Orders.Where("o.ShippingAddress.ZipCode = '98765'");

But if you’re chaining multiple methods, you have to change the name before each
method. This is mandatory, because queries are nested, and it is automatically used
as the defining variable name for each one:

VB
Dim result As ObjectQuery<Order> = ctx.Orders
result.Name = "o"
result = result.Where("o.ShippingAddress.ZipCode = '98765'")
result.Name = "o2"
result = result.Where("o2.ShippingAddress.ZipCode = '98765'")

C#
ObjectQuery<Order> result = ctx.Orders;
result.Name = "o";
result = result.Where("o.ShippingAddress.ZipCode = '98765'");
result.Name = "o2";
result = result.Where("o2.ShippingAddress.ZipCode = '98765'");

You should now understand why, despite its power, Entity SQL isn’t famous among
Entity Framework adopters. Its string-based nature makes it less appealing than LINQ
to Entities. Nevertheless, query-builder methods make things easier and are fantastic
when the query must be created at runtime. Entity SQL is friendlier than LINQ to Enti-
ties in such cases.

9.8.2 Query-builder methods vs. LINQ to Entities methods

A typical situation when a query must be built dynamically is when the sorting field is
decided at runtime based on user input. This often happens if the user can sort a grid
by clicking a column header. Due to LINQ to Entities’ strong typing nature, this task
can be handled only by using a set of if or switch statements.

 Because Entity SQL is string-based, query-builder methods, and Entity SQL in gen-
eral, make runtime construction easy. The following listing shows the code required for

runtime query construction using both LINQ to Entities and query-builder methods.

244 CHAPTER 9 An alternative way of querying: Entity SQL

C#
IEnumerable result; Dynamic sorting

with LINQ to
Entities

Bif (sortField == "city")
 result = ctx.Orders.OrderBy(
 o => o.ShippingAddress.City);
else if (sortField == "ZipCode")
 result = ctx.Orders.OrderBy(
 o => o.ShippingAddress.ZipCode);
else
 result = ctx.Orders.OrderBy(
 o => o.ShippingAddress.Country);

var result = ctx.Orders.OrderBy(Dynamic sorting
with Entity SQLC

 "it.ShippingAddress." + sortField);

VB
Dim result as IEnumerable Dynamic sorting

with LINQ to
Entities

Bif sortField == "city"
 result = ctx.Orders.OrderBy(Function(o)
 o.ShippingAddress.City)
elseif (sortField == "ZipCode")
 result = ctx.Orders.OrderBy(Function(o)
 o.ShippingAddress.ZipCode)
else
 result = ctx.Orders.OrderBy(Function(o)
 o.ShippingAddress.Country)

Dim result = ctx.Orders.OrderBy(Dynamic sorting
with Entity SQLC

 "it.ShippingAddress" & sortField)

Wow. Just one statement C, as compared to seven B. Isn’t that great? You should now
understand why we said that Entity SQL in combination with query-builder methods is
more useful than LINQ to Entities in such cases.

 Listing 9.6 uses string concatenation to create a query; this is bad. We just wanted to
demonstrate that Entity SQL offers great flexibility in creating a query. But in that sort
of situation, there’s no doubt that the best way to go is to use parameters. We intro-
duced them in section 9.2, and we’ll discuss them in more detail in the next section.

9.8.3 Using parameters to prevent injection

Lots of queries are parameterized through arguments. For instance, a query that looks
for customers by their billing city accepts the customer’s city as an argument. In this
type of query, we strongly recommend you to use parameters to avoid SQL injection
attacks. You should never concatenate user input to create Entity SQL code. If you
have already developed solutions using ADO.NET, you should be accustomed to
parameters. If not, you’ll find them easy to use.

NOTE You can learn more about SQL injection and about how parame-
ters help you in avoiding this type of attack from the MSDN article “SQL

Listing 9.7 Chaining query-builder methods vs. chaining LINQ to Entities methods
Injection” at http://mng.bz/76s4.

http://mng.bz/76s4

245Using query-builder methods

To simplify the use of parameters, each query-builder method that requires parame-
ters (the majority) accepts a list of ObjectParameter objects as a second argument.
The parameters are accepted as param/ParamArray, so you can declare and instantiate
them in a single statement, as shown in the following snippet:

C#
ctx.Orders.Where("it.ShippingAddress.City = @city",
 new ObjectParameter("city", city));

VB
ctx.Orders.Where("it.ShippingAddress.City = @city",
 New ObjectParameter("city", city))

The SQL code generated by a LINQ to Entities query uses parameters, so there’s noth-
ing you have to do to use them; with Entity SQL, you must explicitly use parameters in
your query.

 We’ve never seen it happen, but if you encounter a situation where you can’t use
parameters, you’ll have to check the user input for malicious data. Even if the user
input is smarter than your validation process, it still has to perform a complicated
action: inject code that’s perfectly valid for Entity SQL and in turn SQL. Although
Entity SQL and SQL are similar, there are subtle differences. For instance, Entity SQL
doesn’t support the semicolon (;) character, which is often used in SQL injection to
interrupt a SQL statement and create a new malicious one.

 This doesn’t mean Entity SQL is more secure than plain old ADO.NET, but it surely
makes life harder for attackers. Nevertheless, the greater difficulty of injection doesn’t
mean you can lower your defenses; always take care of this aspect of security.

 Naturally, all of these considerations apply to Entity SQL in general, and not only
to query-builder methods.

PARAMETER TRANSLATION

When an Entity SQL query with parameters is translated into SQL, the generated SQL
uses the parameter feature of each database engine. For instance, OrderIT uses SQL
Server, which has the sp_executesql stored procedure. This stored procedure
accepts a string that represents both the SQL string and a set of parameters that are
used to execute the query.

 Generic solutions like O/RM have a generic structure that makes them ready for
any situation. When it comes to parameters, this means many O/RM tools use the
maximum size of the parameter type. For instance, a string parameter is translated in
SQL as a varchar(8000).

 This is one place where Entity Framework is optimized. It uses the real size of the
value of the parameter, instead of assuming the maximum size for the type. Although
it may seem negligible, this is a huge optimization.

 So far, we’ve used the context as the gateway to the data. But Entity Framework
has another layer that lets you communicate with the database: the Entity Client data
provider.

246 CHAPTER 9 An alternative way of querying: Entity SQL

9.9 Working with the Entity Client data provider
You learned in chapter 1 that the Object Services layer isn’t directly connected to the
database. It’s situated on the Entity Client data provider (Entity Client from now on),
which is an ADO.NET data provider built for Entity Framework. Entity Client is respon-
sible for many Entity Framework internal behaviors (like transforming data read from
the database into a format that’s later transformed into objects by the Object Services
layer), and it uses the ADO.NET data provider specified in the connection string to
physically interact with the database.

 Because the Entity Client is an ADO.NET data provider, like OracleClient, Sql-
Client, and OleDb, it contains a set of classes that implement the standard ADO.NET
base classes:

 EntityConnection—Inherits from DbConnection and represents the connec-
tion to a database. It adds some functionality to the base class.

 EntityTransaction—Inherits from DbTransaction and represents a transac-
tion to the database. It’s a wrapper needed to implement a full ADO.NET
provider.

 EntityCommand—Inherits from DbCommand and represents the class necessary to
execute any command to the database.

 EntityParameter—Inherits from DbParameter and represents a parameter of a
query.

 EntityDataReader—Inherits from DbDataReader and contains the result of a
query executed by the EntityCommand class.

If you’re familiar with ADO.NET development, these classes will be nothing new.
 Keep in mind that the Entity Client doesn’t physically connect to the database; it

relies on the underlying ADO.NET provider. Entity Client is a wrapper that works with
the EDM to generate SQL from queries and to shape the results of queries. The only
language you can use to query the database via Entity Client is Entity SQL (LINQ to
Entities works only with Object Services).

 The following listing shows how you can retrieve orders by writing an Entity SQL
query, not a SQL one.

C#
using (var conn = new EntityConnection(
 Parameters.ConnectionString))
{
 using (EntityCommand comm = new EntityCommand("SELECT VALUE o

➥ FROM OrderITEntities.Orders AS o", conn))
 {
 conn.Open();
 EntityDataReader reader =
 comm.ExecuteReader(
 CommandBehavior.SequentialAccess);
 while (reader.Read())

Listing 9.8 Retrieving orders with Entity Client
 { ...

247Working with the Entity Client data provider

 }
 }
}

VB
Using conn As New EntityConnection(
 Parameters.ConnectionString)
 Using comm As New EntityCommand("SELECT VALUE o

➥ FROM OrderITEntities.Orders AS o", conn)
 conn.Open()
 Dim reader As EntityDataReader =
 comm.ExecuteReader(
 CommandBehavior.SequentialAccess)
 While reader.Read()
 ...
 End While
 End Using
End Using

This example is quite simple: it creates a connection, creates a command, executes a
query, and consumes data. If you have written at least one query in your life, you
should be able to follow what it does. Let’s focus on the objects that are used in it,
starting with the connection.

9.9.1 Connecting with EntityConnection

EntityConnection is the class that establishes a connection with the underlying
ADO.NET provider. Two main points are worth looking at here.

 The first point to highlight is the connection string that’s passed to the Entity-
Connection class. In chapter 3, you learned the different ways you can pass the con-
nection string to the ObjectContext. The same paths can be followed when using the
EntityConnection class. You can pass the full connection string, or a formatted string
that contains the keyword Name followed by an equal sign (=) and then the name of
the connection string in the configuration file:

Name=OrderITEntities

The second thing to note is that EntityConnection exposes the StoreConnection
property that represents the physical connection to the database. The property is of
DbConnection type, but the real underlying type is the one you specified in the con-
nection string.

 Having access to the real database connection turns out to be particularly useful in
scenarios that aren’t natively supported by Entity Framework. For instance, Entity
Framework doesn’t support stored procedures that return multiple resultsets. To
bypass this limitation, you can retrieve the physical connection to the database, launch
the stored procedure, and then handle the result manually.

NOTE You can also use this method to execute native queries on the
database. But although this is technically possible, we strongly discourage
it. As you’ll discover in the next chapter, you have other ways to launch

native commands against the database.

248 CHAPTER 9 An alternative way of querying: Entity SQL

EntityConnection is a gateway to the metadata of the EDM too. Through its Get-
MetadataWorkspace method, you can access all of the information of the EDM and get
information about the objects, their relationships, and their mapping to the database.
We’ll talk more about this subject in chapter 12.

9.9.2 Executing queries with EntityCommand

The EntityCommand class doesn’t introduce any new concepts that you haven’t seen in
any other ADO.NET-specific provider. The only additional feature it introduces is the
ability to enable or disable the caching of the query. The property involved is Enable-
PlanCaching, which is a Boolean whose default value is true. We’ll talk more about
the plan-caching feature in chapter 19, which is dedicated to performance.

 The ExecuteReader method has a peculiarity: you have to pass the Command-
Behavior.SequentialAccess parameter. This indicates that when reading columns
from the reader, you have to access them sequentially, not randomly. If you access the
columns randomly, you’ll get an InvalidOperationException. The reason for this
requirement is to avoid excessive memory usage. The following snippet shows exam-
ples of correct and incorrect code:

C#
var f1 = Reader[1]; Incorrect (random)

accessvar f2 = Reader[0];

var f1 = Reader[0]; Valid (sequential)
accessvar f2 = Reader[1];

VB
Dim f1 = Reader(1) Incorrect (random)

accessDim f2 = Reader(0)

Dim f1 = Reader(0) Valid (sequential)
accessDim f2 = Reader(1)

The situation doesn’t change if you access columns by name. You always have to access
them in sequential order.

 The EntityCommand class has a unique feature: the way it sizes parameters. In the
previous section, you saw that Entity Framework automatically adjusts the size and
type of a query parameter based on the value it contains. Although that’s a good
thing, in some scenarios you may want full control over parameter sizes or types. In
this situation, the EntityParameter class comes into play.

EntityParameter isn’t any different from other providers. Its instantiation pro-
cess, properties, and methods are exactly the same. The fact that you can control
parameter type and size is all that makes it different from the LINQ to Entities and
ObjectParameter implementations of parameters.

9.9.3 Processing query results with EntityDataReader

Hardly surprisingly, the EntityDataReader class is the container for data returned by the
EntityCommand’s ExecuteReader method. As you’ll discover, this DbDataReader imple-

mentation is likely the most different from any of the other providers you have seen.

249Working with the Entity Client data provider

In terms of query results, what’s their format in the data reader? Are the results
shaped like the database query, or are they formatted like classes? The answer is two-
fold. The data is shaped like classes, but it’s held in a generic structure like the
DbDataRecord instead of a typed object.

 This has two effects. First, when the data is retrieved from the database, the Entity
Client uses the projection, if present, or queries the EDM to understand how the data
should be returned to the code. Figure 9.4 illustrates how the data is organized in log-
ical, not in database, format.

Figure 9.4 The structure of an EntityDataReader record returned by listing 9.8

 Second, although you work with a data reader, you aren’t connected to the data-
base. The underlying ADO.NET provider data reader that contained the data pulled
off by the query has already been processed by the Entity Client. This may seem
unusual if you’re accustomed to ADO.NET development.

 Now you know how the data is shaped, but how do you access it? When the column
holds a scalar value, you get the value by name or index; but when the column con-
tains a complex property, you have to cast it to DbDataRecord and then access its scalar
columns. In the case shown in figure 9.4, casting the ShippingAddress columns to
DbDataRecord gives you access to the inner columns.

NOTE Columns inside the inner DbDataRecord must be accessed sequen-
tially too.

Wouldn’t it be good if you could transform a DbDataReader into objects? This would
make your code easier to understand. Well, thanks to the ObjectContext class’s
Translate method, this is possible.

TRANSFORMING A DBDATAREADER INTO OBJECTS

Working with a DbDataReader isn’t type safe and is extremely error prone. Working
with objects is far more appealing. Thanks to the ObjectContext class’s Translate
method, you can transform a DbDataReader into a list of objects in a single line of
code. This method uses the same materialization process used by the ObjectContext’s
ExecuteStoreQuery method: it sets properties by comparing their names with the col-
umns in the reader.

 The Translate method accepts a generic parameter representing the object that’s
materialized and the DbDataReader instance, as shown in the following listing.

C#
using (var conn = new EntityConnection(Parameters.ConnectionString))
{
 using (var comm = new EntityCommand("SELECT value o

Listing 9.9 Materializing order details
➥ FROM OrderITEntities.OrderDetails AS o", conn))

250 CHAPTER 9 An alternative way of querying: Entity SQL

 {
 conn.Open();
 var reader = comm.ExecuteReader(CommandBehavior.SequentialAccess);
 using (var ctx = new OrderITEntities())
 {
 var result = ctx.Translate<OrderDetail>(reader); Invokes

Translate
methodB

 foreach(var item in result)
 {
 ...
 }
 }
 }
}

VB
Using conn = New EntityConnection(Parameters.ConnectionString)
 Using comm = New EntityCommand("SELECT value o FROM

➥ OrderITEntities.OrderDetails AS o", conn)

 conn.Open()
 Dim reader = comm.ExecuteReader(CommandBehavior.SequentialAccess)
 Using ctx = New OrderITEntities()
 Dim result = ctx.Translate(Of OrderDetail)(reader) Invokes

Translate
methodB

 For Each item In result
 ...
 Next
 End Using
 End Using
End Using

What’s good about Translate is that it accepts a DbDataReader B. Because DbData-
Reader is the base class for all ADO.NET data readers, you can use this method to
materialize data readers from queries made through any ADO.NET provider (SQL
Server, OLE DB, and so on). Furthermore, Translate isn’t bound to the EDM, so it can
materialize any CLR object. The only rule is that all properties must have a counter-
part in the data reader.

 What’s bad about Translate is that because it uses the same materialization mech-
anism used by ExecuteStoreQuery, it suffers from the same limitations.

 So far, you’ve used the Entity Client to query the database. In almost all cases, this
is how you’ll use this layer. But occasionally, you may need to execute a Create,
Update, Delete (CUD) operation that you can’t or don’t want to perform using the
context. In that situation, the Entity Client is the only way to go.

9.9.4 Going beyond querying with Entity Client

Often there are scenarios where it’s wiser to adopt a manual solution, even if you
could use Entity Framework. A typical example is when you need to perform a bulk
operation. Suppose that in OrderIT you wanted to increase the price of all products
by 5 percent.

251Summary

 If you handle this requirement the Entity Framework way, you’ll have to retrieve
the all products, modify their prices, and send the updates back to the database. If you
have 100 products, you’ll have to launch 101 commands: 1 for retrieval and 100 for
the updates. Awful.

 You can avoid this waste of resources by using a stored procedure that performs an
update. You’ll learn exactly how to perform such a task in the next chapter, which dis-
cusses stored procedures; the point here is that you can invoke such a stored proce-
dure using the Entity Client.

 The method that allows you to invoke stored procedures is EntityCommand’s
ExecuteNonQuery. To use this method, you set the CommandType property of the com-
mand to CommandType.StoredProcedure and set the command text to the name of
the stored procedure. Naturally, everything must be mapped in the EDM, but you’ll
see more about that in the next chapter.

Entity SQL vs. LINQ to Entities
At first glance, there’s no comparison between Entity SQL and LINQ to Entities. Why
use the string-based approach of Entity SQL when you can have the autocompletion,
IntelliSense, and compile-time checking features of LINQ to Entities? It’s a common
question. Throughout the chapter, you’ve seen many situations where the Entity SQL
syntax is ugly and awkward compared with the LINQ to Entities syntax.

But there are cases where Entity SQL is the only or the most reasonable way to
achieve something. The most noticeable of Entity SQL’s benefits is the dynamicity
introduced by the query-builder methods. They simplify query composition for scenar-
ios where the fields to be used are retrieved at runtime.

Entity SQL is also sometimes cleaner than LINQ to Entities. When a query becomes
complex, the LINQ to Entities syntax grows ungracefully, keeping readability low. If
you’re accustomed to the SQL language, the SQL-like syntax of Entity SQL can help
in keeping the query more comprehensible for developers.

In the end, we suggestion you use LINQ to Entities to write most of your queries.
When things become too complex, query-builder methods should be your second
choice. When the situation is extreme, you can resort to using Entity SQL.

9.10 Summary
In this chapter, you have seen the full querying potential of Entity SQL. You’re now
aware of all the querying mechanisms of Entity Framework. The only part you haven’t
learned about yet is the use of database functions in Entity SQL—that’s a subject we’ll
cover in chapter 11.

 After reading this chapter, you should understand how to use Entity SQL for pro-
jecting, grouping, filtering, and sorting data, and to perform other typical query-
related tasks. You have even learned how to simplify the generation of Entity SQL que-
ries by using query-builder methods. We also covered the subject of combining LINQ

252 CHAPTER 9 An alternative way of querying: Entity SQL

to Entities queries and query-builder methods to further ease query composition at
runtime. You also learned about possible security breaches, and how to mitigate the
problem by using parameters.

 In the last part of the chapter, you learned how to use the Entity Client data pro-
vider to execute queries on a layer closer to the database and to process the results as
generic objects and not as typed ones.

 Now it’s time to investigate how Entity Framework deals with stored procedures.
There’s a lot to learn about this subject, because you can both query and update data,
and many scenarios aren’t particularly obvious.

Working with
stored procedures
Now that you’ve mastered Entity SQL, we can move forward and take a closer look
at another advanced feature of Entity Framework: the use of stored procedures.

 Because LINQ to Entities makes it so easy to write queries, leaving the burden of
creating SQL code to the framework, you may think that stored procedures are no
longer needed. From a developer’s point of view, writing queries against the
domain model with LINQ to Entities is more natural than writing a stored proce-
dure that returns raw data. But there is another side to this coin: the DBA.

 Often, DBAs want full control over the commands that are executed against the
database. Furthermore, they want only authorized users to have read and write per-
missions on the tables, views, and so on. A well-defined set of stored procedures
gives the DBA this control over the database and guarantees that the SQL is highly

This chapter covers
 Mapping stored procedures in the EDM

 Retrieving data using stored procedures

 Embedding SQL commands in the EDM

 Updating data using stored procedures
253

optimized.

254 CHAPTER 10 Working with stored procedures

 Another situation where stored procedures are useful is when you want to put
some logic in them. In OrderIT, when an order is placed, you have to update the
quantity of in-stock products by subtracting the items sold. A stored procedure is the
ideal place to put such logic.

 The first half of this chapter discusses stored procedures that read data. You may
encounter several different situations when using such stored procedures, and each
one deserves attention. We’ll cover this topic in great detail. After that, we’ll look at how
to use stored procedures to persist data instead of using dynamically generated SQL.

 Before digging into querying with stored procedures, let’s start with the basics:
how to make stored procedures available to Entity Framework.

10.1 Mapping stored procedures
Entity Framework doesn’t allow a stored procedure to be queried until it’s mapped in
the EDM. As usual, this is a three-step affair: import the stored procedure into the stor-
age schema, create its counterpart in the conceptual schema, and finally map every-
thing in the MSL.

 The designer is powerful enough to let you perform all these operations graphi-
cally without touching the EDMX file manually. But you’ll learn as you read this chap-
ter that you need a deep knowledge of the EDM to use its stored procedure–related
features. Such knowledge is necessary because the designer doesn’t cover all EDM
capabilities; to use specific features, you’ll have to manually modify the EDMX file.

 In this section, we’ll map the following stored procedure, which returns all the
details of an order, given its ID:

CREATE PROCEDURE GetOrderDetails
 @OrderId as int
As
SELECT OrderDetailId, Quantity, UnitPrice, Discount, ProductId, OrderId
 FROM OrderDetail
 WHERE OrderId = @OrderId

Let’s see how to make it available to the code. You’ll use the designer to accomplish
this task. When that’s done, you’ll see how the steps made using the designer modify
the EDMX file.

10.1.1 Importing a stored procedure using the designer

The designer doesn’t allow you to write stored procedures and bring them into the
database. That means it doesn’t matter whether you opt for the model-first or
database-first approach; you always have to create your stored procedures in the data-
base and later import them into the EDM.

 Here you’ll import the stored procedure mentioned at the end of the previous sec-
tion into the EDM, but these general steps can be used to import any stored proce-
dure. Follow these steps:

255Mapping stored procedures

1 Right-click the designer, and select the
Update Model from Database option.

2 In the wizard, expand the Stored Proce-
dures node, and check the GetOrder-
Details stored procedure, as shown in
figure 10.1.

3 Click Finish to import the stored
procedure.

4 In the Model Browser, open the Order-
ITModel.Store node, open its Stored
Procedures child folder, and right-click
GetOrderDetails, as shown in figure 10.2.
In the context menu, select Add Func-
tion Import.

5 In the Returns a Collection Of section
of the wizard, click the Entities radio
button and select the OrderDetail

entity from the drop-down list, as shown
in figure 10.3.

Now the EDM contains all the information needed to invoke the stored procedure. In
the Model Browser window (shown in figure 10.4) you can see that the stored proce-
dure has been imported into the conceptual side of the EDM.

 That was easy—with a bunch of clicks, everything is ready.
 But what happened under the covers? What does the EDM look like now that the

stored procedure has been imported and mapped? We’ll look at that next.

Figure 10.3 The wizard makes the stored procedure available on Figure 10.4 Once imported, the
GetOrderDetails stored

Figure 10.1 The GetOrderDetails
stored procedure in the wizard

Figure 10.2
The GetOrderDetails stored procedure
in the Model Browser window
the conceptual side and maps its result to the OrderDetail class.
procedure is visible in the Model.

256 CHAPTER 10 Working with stored procedures

10.1.2 Importing stored procedures manually

The wizard steps in the previous section can be performed manually by modifying the
EDM. As you’ll discover, it’s not a difficult task. There are three main steps:

1 Declare the stored procedure in the storage schema.
2 Declare the function in the conceptual schema (so that it becomes available to

the code).
3 Create the mapping between the stored procedure in the storage schema and

the function in the conceptual schema.

We’ll look at these steps in turn.

DEFINING A STORED PROCEDURE IN THE STORAGE SCHEMA

The first EDM schema involved is the storage schema. Here you define the shape of
the stored procedure via the Function node inside the Schema element, as in the next
snippet:

<Function Name="GetOrderDetails" IsComposable="False"
 ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo">
 <Parameter Name="OrderId" Type="int" Mode="In" />
</Function>

The Name attribute contains the logical name of the function inside the EDM, and
StoreFunctionName specifies the name of the stored procedure in the database. If
StoreFunctionName isn’t specified, Name must be set to the name of the stored proce-
dure. The ability to specify a name that is different from the stored procedure name
turns out to be useful when procedures have meaningless names and you want to use
more friendly ones.

 The ParameterTypeSemantics attribute is an enumeration that specifies how the
.NET parameter types are converted to the equivalent SQL types. The default value is
AllowImplicitConversion, which instructs the runtime to take care of the conversion
so you don’t have to worry about it.

 The IsComposable attribute specifies whether the stored command can be used to
create other commands or not. Its default value is true, but for stored procedures it
must be set to false because stored procedures can’t be queried on the server. (You
can’t write SELECT * FROM StoredProcName.)

 Finally, the Schema attribute identifies the owner of the stored procedure (it has
nothing to do with EDM schemas).

 If the stored procedure has parameters, you have to nest a Parameter element for
each one. In this element, the Name attribute contains the name of the parameter,
Type specifies the database type of the parameter, and Mode identifies the direction.
Mode is an enumeration that contains one of three values: In (input-only), Out
(output-only), and InOut (input-output).

 The preceding attributes of the Parameter element are mandatory, but Parameter
has other optional attributes. The first is MaxLength, which is used when the parame-

ter is a string and you need to specify the maximum length for its value. If you have

257Mapping stored procedures

decimal parameters, you can also use Precision and Scale to specify how much data
the number can contain.

 At this point, you’ve imported the stored procedure in the EDM. This is the same
thing you achieve when completing step 3 of the wizard we discussed in section 10.1.1.
Now you need to declare the function in the conceptual schema so that it becomes
available to the code.

DEFINING A FUNCTION IN THE CONCEPTUAL SCHEMA

In the conceptual schema, a stored procedure is referred to as function. When you cre-
ate a function in the conceptual schema, you’re actually importing a stored procedure
from the storage schema. This is why, in the conceptual layer, the element responsible
for declaring the function is called FunctionImport and is nested in the Entity-
Container node.

 In the next snippet, you can see that not only does FunctionImport declare the
function, it also describes the function’s parameters and results:

<FunctionImport Name="GetOrderDetails" EntitySet="OrderDetails"
 ReturnType="Collection(OrderITModel.OrderDetail)">
 <Parameter Name="orderid" Mode="In" Type="Int32" />
</FunctionImport>

The Name attribute represents the name of the function in the conceptual layer and is
the only mandatory attribute. This name is decoupled from the stored-procedure
name in the storage schema because it’s the mapping schema that binds the function
to the stored procedure. EntitySet specifies the entity set returned by the stored pro-
cedure, and ReturnType declares the type returned. The Collection keyword is man-
datory because even if the function returns only a single record, it’s included in a list.

NOTE When the function returns an entity, specifying the entity set and
the type may seem to be a duplication. But when you deal with objects
that are part of an inheritance hierarchy, you may have different types for
the same entity set, so you have to specify both to clearly identify the
result of the function. What’s more, in situations where you don’t
retrieve an entity but a custom type, you can omit EntitySet and declare
only the ReturnType attribute.

Not all stored procedures are used for querying—many are used to update data in
tables and don’t return any results. In this case, you don’t include the EntitySet and
ReturnType attributes.

 The Parameter element is used to specify function parameters (which match the
stored-procedure parameters). Its attributes are exactly the same as those for the
Parameter element in the storage file, with the only difference being that here Type is
expressed as a .NET type: Int32, String, DateTime, and so on.

 The last step is creating the mapping between the stored procedure in the storage
schema and the function in the conceptual schema. Not surprisingly, this is done in
the mapping file.

258 CHAPTER 10 Working with stored procedures

BINDING A STORED PROCEDURE TO A FUNCTION IN THE MAPPING SCHEMA

Mapping a stored procedure to a function is trivial. The following mapping fragment
shows that you just need to add a FunctionMapping element inside EntityContainer-
Mapping:

<FunctionImportMapping FunctionImportName="GetOrderDetails"
 FunctionName="OrderITModel.Store.GetOrderDetails" />

FunctionImportName is the name of the function in the conceptual schema, and
FunctionName is the name of the stored procedure in the storage schema.

 The EDM is now ready. It contains everything needed to invoke the stored proce-
dure on the database and have the results returned as objects. It’s time to talk about
the code.

10.2 Returning data with stored procedures
Retrieving data with stored procedures is a common task in any data-centric applica-
tion. What’s different when using an O/RM tool is that the results must be poured into
objects that are then returned to the application. What’s more, the results of the
stored procedures are just resultsets with columns, and these columns may be any-
thing. The columns may match the properties of an entity, they may come from multi-
ple joined tables, they may contain a single scalar value, or they can be anything else.

 We’ll discuss the following scenarios in the upcoming sections:

 Stored procedures whose columns match the properties of an entity
 Stored procedures whose columns don’t match the properties an entity
 Stored procedures that return scalar values
 Stored procedures that return objects in an inheritance hierarchy

NOTE Stored procedures can return output parameters too. You must
keep this in mind in any of the preceding scenarios.

Each of these cases has a different solution and has its particular needs. The first three
cases are the easiest to deal with. Thanks to the designer’s capabilities, you can handle
them visually without getting your hands dirty in the EDM. The fourth case is a little
more complicated, but it’s not too difficult.

 Let’s start with the first and analyze how a stored procedure’s results become an
entity.

10.2.1 Stored procedures whose results match an entity

Executing a stored procedure is pretty easy. Once it’s imported into the conceptual
side of the EDM, you can use the ExecuteFunction<T> method, whose signature is
shown in the following snippet:

C#
public ObjectResult<TElement> ExecuteFunction<TElement>(string functionName,

MergeOption mergeOption, params ObjectParameter[] parameters)

259Returning data with stored procedures

VB
Public Function ExecuteFunction(Of TElement) _
 (ByVal functionName As String, ByVal mergeOption As MergeOption, _
 ByVal ParamArray parameters As ObjectParameter()) _
 As ObjectResult(Of TElement)
parameters)

The generic parameter is the class returned by the query. The arguments represent
the function name as imported in the CSDL, the MergeOption for the returned enti-
ties, and the parameters passed to the stored procedure.

 The following snippet shows how to use the ExecuteFunction<T> method to
invoke the stored procedure:

C#
ObjectParameter orderidParameter = new ObjectParameter("orderid", 1);
var result = ctx.ExecuteFunction<OrderDetail>("GetOrderDetails",
 orderidParameter);

VB
Dim orderidParameter As New ObjectParameter("orderid", 1)
Dim result = ctx.ExecuteFunction(Of OrderDetail)("GetOrderDetails",

orderidParameter)

The POCO template that generates code automatically generates a convenient wrap-
per method for each function. The stored-procedure parameters are exposed as
method arguments, so the invocation code is simplified. Due to this simplicity, we
strongly recommend using these autogenerated methods, as shown in listing 10.1,
instead of directly invoking ExecuteFunction<T>.

C#
public virtual ObjectResult<OrderDetail> GetOrderDetails(
 Nullable<int> orderid)
{
 ObjectParameter orderidParameter;
 if (orderid.HasValue)
 orderidParameter = new ObjectParameter("orderid", orderid);
 else
 orderidParameter = new ObjectParameter("orderid", typeof(int));

 return base.ExecuteFunction<OrderDetail>("GetOrderDetails",
 orderidParameter);
}

VB
Public Overridable Function GetOrderDetails _
 (ByVal orderid As Nullable(Of Integer)) As ObjectResult(Of OrderDetail)
 Dim orderidParameter As ObjectParameter
 If orderid.HasValue Then
 orderidParameter = New ObjectParameter("orderid", orderid)
 Else
 orderidParameter = New ObjectParameter("orderid", GetType(Integer))

Listing 10.1 The autogenerated method to invoke a stored procedure
 End If

http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://System.Data.Entity:3.5.0.0:b77a5c561934e089/System.Data.Objects.ObjectContext/ExecuteFunction%3c%3e(String,System.Data.Objects.ObjectParameter%5b%5d):System.Data.Objects.ObjectResult%3c%3c!!0%3e%3e
http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://mscorlib:2.0.0.0:b77a5c561934e089/System.String
http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://System.Data.Entity:3.5.0.0:b77a5c561934e089/System.Data.Objects.ObjectParameter
http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://System.Data.Entity:3.5.0.0:b77a5c561934e089/System.Data.Objects.ObjectResult%3c%3e

260 CHAPTER 10 Working with stored procedures

 Return MyBase.ExecuteFunction(Of OrderDetail)
 ("GetOrderDetails", orderidParameter)
End Function

Notice that parameters are passed as nullable. The database allows you to pass a null
value to any stored procedure parameter, so this possibility is left open in the code.

 The last piece of background you need to know is how the result of the stored pro-
cedure becomes an entity. In the world of mapping, you would expect the stored pro-
cedure result to be explicitly mapped against a class. Well, it’s not like that.

HOW A STORED PROCEDURE’S RESULTS ARE MAPPED TO A CLASS

An object is materialized from each row of the result based on the column and scalar
property names. It’s almost the same materialization mechanism used by the Object-
Context class’s ExecuteStoreQuery<T> method.

NOTE We said almost because later you’ll see that you can slightly tweak
the materialization process using the EDM.

Let’s look at the GetOrderDetails stored procedure. The OrderDetail entity that the
GetOrderDetails stored procedure result is mapped to has the following scalar prop-
erties: OrderDetailId, Quantity, UnitPrice, Discount, ProductId, and OrderId. To
map the stored procedure result to the entity, the stored procedure must return a
resultset containing the columns OrderDetailId, Quantity, UnitPrice, Discount,
ProductId, and OrderId. The order in which they’re returned isn’t important, but the
names of the class properties and the resultset column names must match exactly or
you’ll get an InvalidOperationException with the message, “The data reader is
incompatible with the specified ‘TypeName’. A member of the type, ‘PropertyName’,
does not have a corresponding column in the data reader with the same name.”

 Figure 10.5 illustrates how the mapping works.

Figure 10.5 The mapping between the function
result and the class is based on the match

 Navigation properties are ignored by the materialization process. They are han-
dled by class code. If they aren’t initialized within the constructor, they’re null; other-
wise they’re set to whatever value the constructor gives them. This is true even if the
foreign-key properties are set.

 If the query returns more columns than there are entity properties, the extra col-
umns are ignored. If the query doesn’t return enough columns to match the entity
between column and property names.

261Returning data with stored procedures

properties, the materialization process fails, and you get the runtime exception men-
tioned earlier.

 The example shown here is the easiest case: the stored procedure results line up
perfectly with an entity. In the next section, we’ll discuss how to handle resultsets that
don’t match up with an entity.

10.2.2 Stored procedures whose results don’t match an entity

When a stored procedure’s results don’t match up with an entity, you can resort to
complex types. You can create a new complex type in the designer (as you learned how
to do in chapter 2) and map the stored procedure’s results to it. The materialization
mechanism is the same as is used for entities; there are no differences.

 There are three possible situations where the stored procedure’s results don’t
align with an entity:

 The resultset is an aggregation or contains columns that don’t match with
any entity.

 The resultset columns contain data that match up with an entity but that
have different names.

 The entity has complex properties.

Let’s start with the first case, where the result of the stored procedure isn’t an entity
but is something else: a set of columns plus other aggregated columns, a set of col-
umns that partially fill an entity, or perhaps a set of columns coming from a query that
joins multiple tables and that don’t fit any entity.

STORED PROCEDURES WHOSE RESULTS HAVE COLUMNS
THAT DON’T LINE UP WITH AN ENTITY

In OrderIT, the GetTopOrders stored procedure returns the top ten orders sorted by
their total amount. Its code is as follows:

CREATE PROCEDURE GetTopOrders
AS
 SELECT TOP 10 c.Name, o.OrderId, o.OrderDate,
 SUM(od.UnitPrice * (Quantity - Discount)) as Total
 FROM [order] o
 JOIN company c ON o.CustomerId = c.CompanyId
 JOIN orderdetail od ON od.OrderId = o.OrderId
 GROUP BY c.Name, o.OrderId, o.OrderDate
 ORDER BY Total DESC

This stored procedure returns a resultset that doesn’t match the Order class or any
other entity in OrderIT. You can see the result in figure 10.6.
In figure 10.7, you can see a class that matches the result of the stored procedure.

 There’s no entity like this in OrderIT, so how do you map the result of the stored pro-
cedure, and to which class? The solution is simple: you map the results to an ad hoc class;
more precisely, you map the results to a complex type (the TopOrder class in this case).

Figure 10.6 The result of the GetTopOrders stored procedure

Figure 10.7 The class
that matches the results of
the GetTopOrders
stored procedure

262 CHAPTER 10 Working with stored procedures

NOTE Because the results of the stored procedure are specified in the
EDM, the class must be in the EDM. You can’t use a class that isn’t in
the EDM.

Once again, the designer comes to the rescue by simplifying the plumbing. After
you’ve imported the stored procedure from the database, you can import it into the
conceptual side by using the form you saw earlier in figure 10.3.

 What’s different in this case is that instead of mapping the result to an entity, you
map it to a complex type. If there are no complex types that match the stored proce-
dure’s results, you can let the form inspect the stored procedure and create the com-
plex type for you. Your productivity will increase to an incredible extent thanks to this
feature.

 Follow these steps to import the stored procedure into the conceptual schema of
the EDM:

1 Right-click the designer, and choose Update Model from Database.
2 In the wizard (shown earlier in figure 10.1), expand the Stored Procedures

node, and check the GetTopOrders item.
3 Click Finish to import the stored procedure.
4 In the Model Browser, open the OrderITModel.Store node, open its Stored

Procedures child, and then right-click the GetTopOrders item. In the context
menu, select the Add Function Import option.

5 In the Returns a Collection Of section of the Add Function Import dialog box,
click the Complex radio button.

6 In the Stored Procedure Column Information section of the dialog box, click
the Get Column Information button. The stored procedure’s results structure
will be displayed in a grid, as shown in figure 10.8.

7 Click the Create New Complex Type button to create a complex type from the
results’ structure.

263Returning data with stored procedures

8 A new item is added in the Complex drop-down list, and you can change its
name. By default, the name follows the pattern FunctionName_Result, but you
can change the name to whatever you want. (We opted for TopOrder.)

9 Click OK to finish the import.
10 Right-click the POCO templates that generate the context and entities’ code.

Click the Run Custom Tool item in the context menu that pops up. At the end
of the process, you’ll have the GetTopOrders method (which invokes the stored
procedure) in the context class, and the TopOrder class that the result of the
stored procedure is mapped to.

It’s that easy. Now you have the EDM, the code to invoke the stored procedure in the
context, and the code for the class that holds the results. All that with just a few clicks.

 Invoking the stored procedure is simple. You can call the ExecuteFunction<T>
method directly (not recommended):

C#

var orders = ctx.ExecuteFunction<TopOrder>("GetTopOrders");

VB

Dim orders = ctx.ExecuteFunction(Of TopOrder)("GetTopOrders")

Or you can use the autogenerated GetTopOrders context method (recommended):

C#

var orders = ctx.GetTopOrders();

VB

Dim orders = ctx.GetTopOrders()

Naturally, stored procedures are mutable, meaning that you can add, remove, and
rename columns in the results. In such cases, you need to realign the complex type
with these changes. Once again, the designer lets you do this visually by following
these steps:

1 In the Model Browser window, expand the OrderITModel > Entity Container:
OrderITEntities > FunctionImport nodes, and double-click the GetTopOrders

Figure 10.8 The structure of the
stored procedure’s results
item.

264 CHAPTER 10 Working with stored procedures

2 Click the Update button next to the Complex drop-down list. Doing so triggers
the stored procedure inspection and automatically updates the complex type
structure.

3 In the Explorer Solution window, right-click the template that generates code
for entities, and select Run Custom Tool to regenerate the class’s code. The
class that the stored procedure maps to is updated to reflect the changes in the
stored-procedure results). There’s no need to update the context because its
code doesn’t change.

Again, the designer spares you a lot of work. It’s fantastic being able to use stored pro-
cedures and simply configure everything from the designer.

 Another scenario where the stored procedure’s results don’t fit an entity is when
the results don’t contain all of an entity’s data. For instance, a stored procedure may
return the ID and the name of all customers, and ignore all other properties. In this
case, one possible way to go would be to modify the stored procedure to return all col-
umns. This approach has two problems: you may not be able to modify the stored pro-
cedure, and returning unused data is a waste of resources. Once again, complex types
are the best solution.

 So far, we’ve assumed that the stored procedure’s column names match the prop-
erties of the entity. But sometimes entity properties are named differently from data-
base columns, or the stored procedure may rename the result columns for some
reason.

STORED PROCEDURES WHOSE RESULT COLUMNS’ NAMES
ARE DIFFERENT FROM ENTITY PROPERTIES

A typical case where column names in a stored procedure’s results differ from entity
property names is when you have a legacy database with meaningless table and col-
umn names. For example, some legacy databases still have table and column names
that are limited to eight characters. Due to this limitation, columns names are almost
or totally meaningless (such as USISAPPM standing for USer IS APPlication Manager).
In such a situation, it’s best to rename all the classes and properties in the model so
they’re clearer for developers.

 When a stored procedure is run, and the column names in the results don’t match
property names in the entity, the materialization fails. To solve this problem, you can
use the FunctionImportMapping section in the mapping schema to manually specify
how a column maps to a property. Once again, the designer spares you from the man-
ual work by adding a new window to visually perform this task.

 In the following steps, you’ll modify the GetOrderDetails stored procedure to
return a result with column names that don’t line up with the OrderDetail entity, and
you’ll see how to make the mapping work:

1 Modify the GetOrderDetails stored procedure by changing the name of the
Quantity column as shown in the following code:
SELECT orderDetailId, Quantity as q, UnitPrice, Discount, orderid
 FROM orderdetail

 WHERE orderid = @orderid

265Returning data with stored procedures

2 In the Model Browser window, expand the OrderITModel > Entity Container:
OrderITEntities > FunctionImport nodes, right-click the GetOrderDetails
item, and select the Function Import Mapping item.

3 In the mapping window, the properties are displayed on the left and the col-
umns on the right. Change the name of the Quantity column to q (as shown in
figure 10.9), and you’re done.

 It’s that easy. This approach is better than using a complex type just because a
property name doesn’t match, isn’t it?

 Before moving on to the next subject, take a look at this snippet to see what the
EDM’s MSL schema looks like after this modification:

<FunctionImportMapping FunctionImportName="GetOrderDetails"
 FunctionName="OrderITModel.Store.GetOrderDetails" >
 <ResultMapping>
 <EntityTypeMapping TypeName="OrderITModel.OrderDetail">
 <ScalarProperty Name="Quantity" ColumnName="q" />
 </EntityTypeMapping>
 </ResultMapping>
</FunctionImportMapping>

This code is saying that the return type is OrderDetail and that the property
Quantity maps to the column q. Only the differently named columns must be
included; by default, the other ones are matched by name. What’s good is that only
the mapping schema changes; the conceptual and storage schemas are untouched.

 We’ve now talked about entities with scalar and navigation properties. The situa-
tion gets more challenging when complex properties come into play.

STORED PROCEDURES THAT RETURN RESULTSETS OF AN ENTITY WITH COMPLEX TYPES

Mapping a function to an entity or a complex type with a complex property is tricky.
The flat nature of a stored procedure’s results and the complex nature of objects
make the materialization impossible, as you see in figure 10.10.

 The only way to go is to use a defining query, but as you’ll discover in chapter 11, this
requires the database to be adapted and that’s not always possible.

 Stored procedures, and queries in general, return not only entities, but also scalar
values. Using a class to contain a single value is pointless; other approaches are
preferable.

Figure 10.9 Mapping a column to
a property with a different name

Order

OrderId

OrderDate

+ ShippingAddress

Address

City

Country

ZipCode

EstimatedShippingDate

ActualShippingDate

CustomerId

Resultset

OrderId

OrderDate

ShippingAddress

ShippingCity

ShippingZipCode

ShippingCountry

EstimatedShippingDate

ActualShippingDate

CustomerId

GetOrderById

Figure 10.10 Mapping function result to a class with a complex property is impossible
due to the names mismatch.

266 CHAPTER 10 Working with stored procedures

10.2.3 Stored procedures that return scalar values

In OrderIT, the GetTotalOrdersAmount stored procedure returns the amount of all
orders placed. This stored procedure returns a single decimal value; neither complex
types nor entities are involved:

CREATE PROCEDURE GetTotalOrdersAmount
AS
 SELECT sum(Quantity * (UnitPrice - Discount))
 FROM orderdetail

Let’s see how to import this stored procedure in the EDM and how to use it.
 With the designer you import the stored procedure from the database and then

import it in the conceptual side. In the wizard form (shown in figure 10.11), select the
Scalar option, and select the Decimal type from the drop-down list.

 Finally, you need to update the context code using the POCO template, and you’re
done.

 The autogenerated method in the context returns an ObjectResult<Int32>
object. Because it implements the IEnumerable<T> interface, and you already know
that only one item is returned, you can call the LINQ First method to retrieve the
value. Remember that everything is generated as nullable; the result is no exception,
as the following code demonstrates:

C#

decimal? amount = ctx.GetTotalOrdersAmount().First();

VB

Nullable(Of Decimal) amount = ctx.GetTotalOrdersAmount().First()

If, instead of using the designer, you want to manually modify the EDM, you’ll have to
declare the stored procedure in the SSDL and map it to the MSL as you’ve seen before.

In the CSDL, the situation is slightly different.

Figure 10.11 The wizard imports
into the conceptual schema a
stored procedure that returns a
single decimal value.

267Returning data with stored procedures

First of all, because you aren’t retrieving an entity, you don’t have an entity set, and
consequently an entity, to associate the result to. This means the EntitySet attribute
in the FunctionImport element isn’t needed.

 Second, even if the function returns a single value, Entity Framework can’t know in
advance whether the stored procedure returns more than one result, so it’s always
mapped as a collection. This is clearly indicated by the use of the Collection keyword
in the next mapping fragment:

<FunctionImport Name="GetTotalOrdersAmount"
 ReturnType="Collection(Decimal)" />

Naturally, it’s possible that a stored procedure returns a collection of scalar values. For
instance, you may need to retrieve a list of order IDs. In that case, you can simply loop
over the results of the function, and you’re finished.

 So far, we haven’t talked about polymorphic stored procedures. You know that you
can query a hierarchy using LINQ to Entities and Entity SQL to obtain only a specified
type or an entire hierarchy, regardless of the mapping strategy you choose. Stored
procedures allow you to do this too, but the implementation is a bit more complex.

268 CHAPTER 10 Working with stored procedures

10.2.4 Stored procedures that return an inheritance hierarchy

When the stored procedure returns data about classes involved in an inheritance hier-
archy, two very different scenarios are possible:

 The resultset maps to a specified type of the hierarchy.
 The resultset returns data about different types in the hierarchy.

In the first case, the stored procedure’s results are mapped to a single entity. That’s
not any different from what you’ve seen already. The materialization process doesn’t
care whether the class is part of an inheritance hierarchy or not. It simply creates an
instance and populates it. As usual, the only important thing is that column and prop-
erty names match.

 Things get more complicated when the stored procedure returns data about dif-
ferent types in the hierarchy. Suppose you have a stored procedure that returns all
customers and suppliers. Because the materialization process doesn’t care about map-
ping information, how can it know whether a row is about a customer or a supplier?

RETURNING A HIERARCHY MAPPED WITH THE TPH STRATEGY

To map a result to all types of an inheritance hierarchy, the stored procedure must
return a resultset that includes all columns for the involved types. Because the result-
set is mapped on a column basis, you must include a discriminator column that identi-
fies which class must be generated from each row. This is the same concept you’ve
seen for the TPH mapping strategy.

NOTE For this section, we’ll assume that there aren’t any complex prop-
erties but just scalar ones; otherwise, the following code won’t work. This
section just explains how to use stored procedures to query an inheri-
tance graph persisted with TPH. In chapter 11, you’ll see how to make
complex properties, inheritance, and stored procedures work together.

Let’s start by analyzing the customer/supplier scenario. In the model, the Get-
Companies stored procedure returns all the companies without worrying whether
they’re customers or suppliers. In this situation, the return type can’t be Customer or
Supplier but must be Company.

Company is abstract,, and mapping the stored procedure as described in the pre-
ceding paragraph generates an exception at runtime. What’s worse, because the use
of stored procedures bypasses any inheritance configuration, if Company isn’t abstract,
all the objects returned by the invocation of the stored procedure are of Company type,
even if the result contains rows about customers and suppliers.

 To solve the previous problems, you still use Company as the return type, but you
also have to manipulate the mapping file of the EDM, specifying a discriminator col-
umn and what concrete type corresponds to each value of that column.

 The node responsible for this configuration is FunctionImportMapping. Inside it,
you nest a ResultMapping node containing as many EntityTypeMapping elements as

there are possible return types. Each EntityTypeMapping element specifies the full

269Returning data with stored procedures

name of the mapped type, and inside that you add a Condition node for each
column of the function that acts as a discriminator. The result of this configuration is
shown here.

<FunctionImportMapping FunctionImportName="GetCompanies"
 FunctionName="OrderITModel.Store.GetCompanies">
 <ResultMapping>
 <EntityTypeMapping TypeName="OrderITModel.Supplier">
 <Condition ColumnName="Type" Value="S"/>
 </EntityTypeMapping>
 <EntityTypeMapping TypeName="OrderITModel.Customer">
 <Condition ColumnName="Type" Value="C"/>
 </EntityTypeMapping>
 </ResultMapping>
</FunctionImportMapping>

The conceptual file and storage file don’t specify any additional information other
than what you’ve seen previously.

 Finally, here’s the code for the stored procedure. As you can see, it’s trivial:

CREATE PROCEDURE GetTotalOrdersAmount
AS
SELECT * FROM company

Now you can invoke the stored procedure. Thanks to the inheritance mapping set-
tings and the correct names of the columns, everything works fine.

NOTE We haven’t used the designer here because it doesn’t support this
feature. You have to change the EDM manually.

Using stored procedures to retrieve entities mapped using the TPH strategy is pretty
easy. Mapping classes using a discriminator is something you’re familiar with. But what
about the TPT approach? You don’t have a discriminator in this situation, so how do
you map inheritance?

RETURNING A HIERARCHY MAPPED WITH THE TPT STRATEGY

The product scenario uses the TPT approach. Even if the data organization is different
from the TPH strategy, the way inheritance is mapped with stored procedures doesn’t
change at all. You still have to use a discriminator. You can’t rely on the relationship
between tables, because here you’re dealing only with the resultset. This is why the only
thing that changes in the TPT approach is the stored procedure code—it must per-
form the join between the tables and create a discriminator column on the fly.

 In OrderIT, the GetProducts stored procedure returns all the products in the
database. As you’ll see, this stored procedure is more complicated than you may think,
because there are columns with the same names in different tables, and they must be
handled carefully, as the following stored procedure demonstrates:

Listing 10.2 Mapping resultset rows to types with a discriminator

270 CHAPTER 10 Working with stored procedures

ALTER PROCEDURE GetProducts
AS
 SELECT p.*, isnull(sho.Color, shi.color) Color,
 isnull(sho.Size, shi.Size) Size,
 isnull(sho.Gender, shi.gender) Gender,
 sho.Sport, shi.SleeveType, shi.Material,
 case isnull(sho.gender, '0')
 when '0' then 'SHIRT' else 'SHOE' end as type
 FROM Product p
 LEFT JOIN Shoes sho ON (p.ProductId = sho.ProductId)
 LEFT JOIN Shirt shi ON (p.ProductId = shi.ProductId)

This SQL takes the Product table and joins it to the tables that contain product-
specific data. Naturally, it’s a left join, so you’re sure that all products are returned.
Additional columns for shoes are left null when the row belongs to a shirt and vice
versa. In addition to joining data, this query creates a column that’s used in the map-
ping file to identify the row type: Type.

 As you can see, there are many ISNULL statements in this T-SQL command. In T-SQL,
ISNULL returns the value of the first parameter unless it’s null. If it’s null, the second
value is returned. You do this because the Shirt and Shoe tables share the same column
names. If you extract them twice, the materializer will always use the first column,
ignoring the second one.

 This means that if you extract shoe size and then shirt size as different columns,
only the first one will be used to populate the property of both objects. If the object to
be created is Shoe, everything works fine; but when the object is Shirt, it receives a
null value, leading to exceptions or bugs due to erroneous data. Figure 10.12 illus-
trates this problem.

Figure 10.12 Mapping
between the function
result and the objects.
Values in the first Color
column are used to set
both Shirt and Shoe
entity properties. The
second Color column is
ignored.

 Using the ISNULL function allows you to have a single column that contains data
for both records. This way, the value of the column will be used to populate both
classes. In figure 10.13 you can see that the problem is solved.

Figure 10.13 Mapping
between the function result
and the objects. The Color,
Size, and Gender columns are
used to fill properties of both
classes.

271Returning data with stored procedures

The type column acts as a discriminator, letting you map the results as if they were
coming from a TPH strategy. Here’s the mapping code.

<FunctionImportMapping FunctionImportName="GetProducts"
 FunctionName="OrderITModel.Store.GetProducts">
 <ResultMapping>
 <EntityTypeMapping TypeName="OrderITModel.Store.Shirt">
 <Condition ColumnName="Type" Value="SHIRT"/>
 </EntityTypeMapping>
 <EntityTypeMapping TypeName="OrderITModel.Store.Shoe">
 <Condition ColumnName="Type" Value="SHOES"/>
 </EntityTypeMapping>
 </ResultMapping>
</FunctionImportMapping>

Stored procedures return resultsets, but in some cases you may want them to return
additional information. The best way to do this is to use output or input-output
parameters.

10.2.5 Stored procedures with output parameters

A typical example where you need an output parameter is when creating a stored pro-
cedure that returns paged data. To build an efficient paging system, you must retrieve
only the data that needs to be bound to a control (such as a grid) and the number of
records to create a pager. In OrderIT, the GetPagedOrderDetails stored procedure
retrieves the order details based on paging information and sets an output parameter
with the total number of details. Its code is as follows.

CREATE PROCEDURE GetPagedDetails
 @pageIndex int,
 @rowsPerPage int,
 @count int output

Listing 10.3 Mapping resultset rows to types via a discriminator with TPT hierarchies

Listing 10.4 Stored procedure that returns a resultset plus an output parameter
AS

272 CHAPTER 10 Working with stored procedures

BEGIN
 WITH PageRows
 AS (
 SELECT TOP(@pageIndex * @rowsPerPage)
 RowNumber = ROW_NUMBER() OVER (ORDER BY orderdetailid), *
 FROM orderdetail
)
 SELECT *
 FROM PageRows
 WHERE RowNumber > ((@pageIndex - 1) * @rowsPerPage);

 select @count = COUNT(*) from orderdetail
END

Entity Framework natively supports output parameters for stored procedures. When
you import a stored procedure by the designer, Entity Framework automatically inspects
the stored procedure looking for output parameters and marking them in the EDM.

 If you modify the EDM manually, you need to set the Mode attribute of the
Parameter element to Out for output parameters or InOut for both input and output,
as in the next fragment:

<Parameter Name="count" Type="int" Mode="Out" />

The context code autogenerated by the POCO template is more complicated than it
may seem. So far, you’ve used the automatically generated methods, passing in a value
for each input parameter of the function. Output parameters are a bit different. They
must still be passed to the method, but as ObjectParameter objects instead of simple
values. This is due to the way Entity Framework retrieves the output parameter’s value
after execution.

 The fetching of stored procedure results is lazy. First the resultset is processed, and
only after that are the output parameters retrieved. This means you can’t get the out-
put parameter values until you’ve fetched all the resultset records. To avoid this, the
template code generates the method parameter related to the stored procedure out-
put parameter as an object of ObjectParameter type. If you pass an out value for C#
or ref for VB, you will always have an empty value because the results have not been
iterated yet. The following listing contains the correct code.

C#
public ObjectResult<OrderDetail> GetPagedOrderDetails(
 int pageIndex, int rowsPerPage,
 ObjectParameter parameter)

Output parameter
as ObjectParameter

{
 return ExecuteFunction<OrderDetail>("GetPagedOrderDetails",
 new ObjectParameter("pageIndex", pageIndex),
 new ObjectParameter("rowsPerPage", rowsPerPage), parameter);
}

var par = new ObjectParameter("count", 0);
var result = ctx.GetPagedOrderDetails(pageIndex, rowsPerPage,
 par).ToList();

Result
iteration

Listing 10.5 Output parameters returned as ObjectParameter objects
count = Convert.ToInt32(par.Value); Parameter setting

273Returning data with stored procedures

VB
Public Function GetPagedOrderDetails(_
 ByVal pageIndex As Integer, ByVal rowsPerPage As Integer, _
 ByVal parameter As ObjectParameter) _
 As ObjectResult(Of OrderDetail)

Output parameter
as ObjectParameter

 Return ExecuteFunction(Of OrderDetail)("GetPagedOrderDetails", _
 New ObjectParameter("pageIndex", pageIndex), _
 New ObjectParameter("rowsPerPage", rowsPerPage), parameter)
End Function

Dim par = New ObjectParameter("count", 0)
Dim result = ctx.GetPagedOrderDetails(pageIndex, rowsPerPage, _
 par).ToList()

Result
iteration

count = Convert.ToInt32(par.Value) Parameter setting

What’s bad about this approach is that the invoking code needs to know the names of
the output parameters. This makes it impossible to encapsulate the logic of the func-
tion call.

 An alternative is shown in the following listing. Here you iterate over the results
directly into the context function, so that inside it you have both the results and the
values of the parameters.

C#
public List<OrderDetail> GetPagedOrderDetails Result is listB
 (int pageIndex, int rowsPerPage, int count) Output parameter

as simple valueC
{
 Dim outParam = new ObjectParameter("count", 0);
 var result = ExecuteFunction<OrderDetail>("GetPagedOrderDetails",
 new ObjectParameter("pageIndex", pageIndex),
 new ObjectParameter("rowsPerPage", rowsPerPage),
 outParam).ToList();

Result
iteration

D

 count = Convert.ToInt32(outParam.Value);

Parameter settingE
 return result;
}

var count = 0;
var result = ctx.GetPagedOrderDetails(pageIndex, rowsPerPage, out count);

VB
Public Function GetPagedOrderDetails(_
 ByVal pageIndex As Integer, ByVal rowsPerPage As Integer, _
 ByVal count As Integer) Output parameter

as simple valueC
 As List(Of OrderDetail) Result is listB
 Dim outParam = New ObjectParameter("count", 0)
 Dim result = ExecuteFunction(Of OrderDetail)("GetPagedOrderDetails", _
 New ObjectParameter("pageIndex", pageIndex), _
 New ObjectParameter("rowsPerPage", rowsPerPage),
 outParam).ToList()

Result
iteration

D

 count = Convert.ToInt32(outParam.Value)

Parameter settingE
 Return result
End Function

Listing 10.6 Output parameters returned as simple values

274 CHAPTER 10 Working with stored procedures

Dim count as Integer
Dim result = ctx.GetPagedOrderDetails(pageIndex, rowsPerPage, count)

The function result is no longer an ObjectResult<T> instance but a List<T> B,
because the data is fetched inside it. The method no longer accepts an Object-
Parameter parameter but a simple value C. Inside the method, you execute the func-
tion and immediately iterate its result using the ToList method D. Finally, you set the
simple output parameter value E.

 Remember that returning results as a List<T> is different from returning them as
an ObjectResult<T>. Choose each option on a one-by-one basis.

 Sometimes, instead of using output parameters, data is returned in a second result-
set. Let’s see what you can do in this case.

OUTPUT PARAMETERS IN A SECOND RESULTSET

If you opt for a solution where the additional data is returned as a second resultset
instead of in output parameters, you must keep in mind that ExecuteFunction<T>
doesn’t support multiple resultsets. It doesn’t fail if more than one resultset is
returned from the stored procedure; it takes the first and ignores the others. The
workaround is to use the Entity Client and its internal physical connection to manu-
ally invoke the stored procedure and iterate over its results. This goes beyond Entity
Framework, so you’re better off directly using ADO.NET.

 Now you know everything about reading data using stored procedures. But some-
times you don’t have a stored procedure, and you’d like to. If you can’t create one
because you don’t have permissions (or for any other reason) you can create one
inside the EDM.

10.3 Embedding functions in the storage model
Although the storage file describes the database, you can add information to it that
isn’t related to the real database structure. More precisely, you can create functions
that don’t exist in the database but that are still seen as functions by the engine. Fig-
ure 10.14 shows the flow of a storage model function’s execution.

Storage

DatabaseEn�ty Framework

Get SQL from

1

2
LaunchSQL against

Figure 10.14 The function-execution process:
Entity Framework gets the SQL from the SSDL

 Naturally, you have to define the SQL code for such functions, and you have to do
it using the database-specific SQL code (for instance, T-SQL for SQL Server or PL-SQL
for Oracle).

 This feature turns out to be useful when you want to optimize a query and you
don’t have an appropriate stored procedure. Another situation where it’s useful is
model and then executes it against the database.

275Updating data with stored procedures

when you must use a particular database feature that neither LINQ to Entities nor
Entity SQL allows you to use. The power of this feature really shines when you have to
update data using stored procedures; we’ll cover this subject in section 10.4.

 Defining a function in the storage model is similar to defining a stored procedure.
The only difference is that the Function element has a nested CommandText element,
inside which you put the SQL code. Should the function need any parameters, you use
the Parameter element. (The CommandText element must be put before Parameter
elements.) The following snippet shows the definition of a function:

<Function Name="GetOrderDetailsByIdUsingEmbeddedFunction"
 IsComposable="false" Schema="dbo">
 <CommandText>
 select * from [orderdetail] where orderid = @orderid
 </CommandText>
 <Parameter Mode="In" Name="orderid" Type="int"/>
</Function>

NOTE If the SQL code contains the < or > sign, you must use its escaped
versions: > or <. This is necessary to avoid any conflict with the
XML format of the mapping files.

The conceptual and mapping schemas aren’t even aware that the function is embed-
ded in the storage schema. As a result, the declaration of the function in the CSDL,
and the mapping between the function and the stored procedure in the MSL, don’t
change. The code generated by the POCO template and the way you use the code isn’t
affected either. You can invoke the function exactly as you do for stored procedures.

NOTE This feature isn’t supported by the Visual Studio Designer. What’s
worse, every time you update the model from the database, it re-creates
the storage schema from scratch, and the function is lost. Despite these
limitations, this feature is a great example of mapping flexibility in Entity
Framework and a great example of the advantages of EDM decoupling.

The SQL embedded in the function can contain more than one command. It can con-
tain any SQL command you need. Potentially, you could avoid writing stored proce-
dures in the database and put all of them into the storage schema. But naturally, we
wouldn’t recommend this practice to our worst enemies, let alone to you.

 So far, you’ve learned how to query data using stored procedures and storage-
model functions, but that’s only half of the story. Stored procedures can perform any
operation on the database, including making modifications. In the next section, we’ll
investigate how to make Entity Framework interact with this type of stored procedure.

10.4 Updating data with stored procedures
Updating data using stored procedures is a common way of hiding SQL and database
complexity from the code. Sometimes such complexity can be difficult to manage in
code, and a stored procedure may be a good place to put the logic.

276 CHAPTER 10 Working with stored procedures

 For instance, using a stored procedure is useful when an operation on one entity
requires updating another entity. In OrderIT, adding an order requires updating the
stock of the ordered products. You’ve seen how to update the number of items in
stock via code, but using a stored procedure would probably have been simpler.

 Sometimes, handling the update via Object Services isn’t convenient because of
concurrency or other reasons. In OrderIT, this was the case with updating the number
of items in stock when new items are added to the available ones. You learned in chap-
ter 8 that if you update the number of items in stock, you risk concurrency check
problems even if you don’t need the check to be performed. In such a case, a stored
procedure is a good way to avoid concurrency checks.

 These are the possible scenarios when updating entities using stored procedures:

 A stored procedure persists a standalone entity.
 A stored procedure persists an entity in an inheritance hierarchy.
 A stored procedure upgrades and downgrades an entity in an inheritance

hierarchy.
 A stored procedure performs an arbitrary operation not connected to any

entities.

The first two cases are straightforward and are almost identical in terms of how you
handle them. The third case is a bit more complex and deserves particular handling.
The last one covers launching commands other than those executed by Entity Frame-
work for persistence.

 Let’s start by analyzing the simplest scenario, where a standalone entity is updated
using stored procedures.

10.4.1 Using stored procedures to persist an entity

Persisting an entity using stored procedures is an all-or-nothing affair. You can’t use a
stored procedure that inserts data into the database and leave Entity Framework to
generate the SQL for UPDATE and DELETE operations. That isn’t supported, and if you
try it you’ll get a runtime exception.

 To demonstrate using a stored procedure to persist an entity, you’ll persist an
Order. This is probably the most complex entity in the model, and it uses all the
function-mapping features. It has foreign keys and complex properties, and it’s the
parent of a relationship, which means its database-generated ID is necessary for insert-
ing the details.

 The following steps will show you specifically how to map the stored procedure to
insert an order, but the same process applies to updates and deletions:

1 Create the stored procedure as in the following listing.

CREATE PROCEDURE InsertOrder
 @OrderDate datetime,

Listing 10.7 A stored procedure that inserts an order
 @CustomerId int,

277Updating data with stored procedures

 @ShippingAddress varchar(50),
 @ShippingCity varchar(50),
 @ShippingZipCode varchar(15),
 @ShippingCountry varchar(50),
 @EstimatedShippingDate datetime,
 @ActualShippingDate datetime
as
INSERT INTO [Order] (OrderDate, CustomerId , ShippingAddress, ShippingCity,
 ShippingZipCode, ShippingCountry, EstimatedShippingDate,
 ActualShippingDate)
VALUES (@OrderDate, @CustomerId, @ShippingAddress, @ShippingCity,
 @ShippingZipCode, @ShippingCountry, @EstimatedShippingDate,
 @ActualShippingDate) Inserts order

SELECT SCOPE_IDENTITY() AS OrderId Returns ID

2 Import the stored procedure the
same way as before. (You don’t
need to create the function in the
conceptual schema.)

3 Right-click the Order entity, and
select the Stored Procedure Map-
ping item.

4 In the Mapping Details window,
associate each operation to the
related stored procedure, as shown
in figure 10.15.

5 Map the stored procedure’s parameters to the Order class’s properties. The
designer automatically maps columns and properties whose names match.
Complex properties must be mapped manually.

6 In the Result Column Bindings section (shown in figure 10.16), write OrderId
in Parameter/Column column, and associate it to the OrderId property. This
way, the column containing the autogenerated ID returned by the stored proce-
dure (see the last line of listing 10.7) is used to set the OrderId property of the
order after the stored procedure has been executed. Naturally, this is only
needed for database-generated values; if you generate primary keys on your
own, it’s not necessary.

The preceding steps can also be used to map stored procedures that perform updates
and deletions. The only difference is that step 6 isn’t required because UPDATE and
DELETE commands don’t generate the ID of the row.

 That’s it. You don’t need to invoke these stored procedures manually. Because
Entity Framework knows how they’re mapped to the properties, it invokes the stored
procedures when it needs to persist the entity, instead of generating SQL code.

 To demonstrate this, suppose that you added an order and two details to the con-
text. When you call the SaveChanges method, the SQL Profiler would look like fig-

Figure 10.15 Mapping a stored procedure to
persist a new order. The same process applies for
modifications and deletions.
ure 10.17.

278 CHAPTER 10 Working with stored procedures

What’s great about this technique is that if
you decide to switch from using Entity
Framework–generated SQL code to stored
procedures, it’s completely transparent to
you. What’s dangerous is that although the
Entity Framework code updates only the
modified properties of the entity, the stored
procedures you write generally update all the properties. Always remember that,
because if you persist a partially loaded entity (an entity where not all properties are
set), you may end up losing your data.

 Before passing on to the next subject, let’s take a quick look at how the EDM is
affected when you map stored procedures to persist an entity, as in the previous series
of steps.

STORED PROCEDURES THAT PERSIST AN ENTITY AND THE EDM

From the SSDL point of view, the stored procedures are declared as usual; there’s
nothing new about that. The same thing happens for the CSDL. Because the stored
procedures are invoked automatically by Entity Framework, there’s no need to import
them to the conceptual schema: you’ll never use them.

 What really changes is the mapping schema, as you see here.

<EntityTypeMapping TypeName="OrderITModel.Order">
 <ModificationFunctionMapping>
 <InsertFunction FunctionName="OrderITModel.Store.InsertOrder">
 <ScalarProperty Name="ActualShippingDate"
 ParameterName="ActualShippingDate" />
 <ScalarProperty Name="EstimatedShippingDate"
 ParameterName="EstimatedShippingDate" />
 <ScalarProperty Name="CustomerId" ParameterName="CustomerId" />
 <ScalarProperty Name="OrderDate" ParameterName="OrderDate" />
 <ComplexProperty Name="ShippingAddress"
 TypeName="OrderITModel.AddressInfo">

Listing 10.8 Mapping an entity to persistence stored procedures in the MSL

Figure 10.16
Mapping the stored
procedure’s parameters to
the entity’s properties

Figure 10.17 The order is inserted using a
stored procedure; details are stored using
Entity Framework–generated code.
 <ScalarProperty Name="Country" ParameterName="ShippingCountry" />

279Updating data with stored procedures

 <ScalarProperty Name="ZipCode" ParameterName="ShippingZipCode" />
 <ScalarProperty Name="City" ParameterName="ShippingCity" />
 <ScalarProperty Name="Address" ParameterName="ShippingAddress" />
 </ComplexProperty>
 <ResultBinding Name="OrderId" ColumnName="OrderId" />
 </InsertFunction>
 <UpdateFunction ...> ... </UpdateFunction>
 <DeleteFunction ...> ... </DeleteFunction>
 </ModificationFunctionMapping>
</EntityTypeMapping>

In the EntityTypeMapping element related to the Order type, you include a
ModificationFunctionMapping element. It instructs Entity Framework that the persis-
tence of the entity is delegated to the stored procedure defined in this element. Inside
EntityTypeMapping, you define three nodes that correspond to the insert, update, and
delete stored procedures: InsertFunction, UpdateFunction, DeleteFunction (the
order isn’t important).

 We’ll focus on the mapping information for the insert function here, but this
information is valid for the other elements too. The InsertFunction element con-
tains the FunctionName attribute, which defines the full name of the stored procedure
as declared in the storage schema. Inside it, you declare a set of ScalarProperty
nodes to map scalar-entity properties to stored-procedure parameters; complex prop-
erties are mapped using the ComplexProperty node. Furthermore, using the Result-
Binding element, you define the mapping for data returned by the function. It’s
particularly important for insert functions that can return the ID of the row just added
to the database.

 After you’ve mapped all the parameters for the insert function, you have to map
the update and delete ones too, and then you’re ready to go.

 What about concurrencies? You know that the automatically generated SQL
reflects the concurrency settings. Because with stored procedures you have to manage
everything manually, you have to handle concurrency too.

10.4.2 Using stored procedures to update an entity with concurrency

Entity Framework natively supports optimistic concurrency. With stored procedures,
this support is totally up to you, but the infrastructure and the designer help a lot.
Because the state manager keeps track of the original values, you can pass them to the
stored procedure along with the current ones. When you have both, you can perform
the concurrency check in the stored procedure.

 What’s absolutely great is that the retrieval of the original values is hidden from the
code. You specify it directly in the mapping using the designer. In the Mapping Details
window (shown in figure 10.18), next to the Property column is a Use Original Value
column containing check boxes. If Use Original Value is checked, the original value
of the property is used; otherwise, the current value is used.

Figure 10.18 The original value of the Version field is passed to the stored
procedure. The other parameters take the property’s current value.

280 CHAPTER 10 Working with stored procedures

Manually mapping the version in the EDM is simple. Just add the Version attribute of
the ScalarProperty element, and set it to Original to pass the original value, as in
the following fragment:

<ScalarProperty Name="Version" ParameterName="Version"
 Version="Original" />

Or set ScalarProperty to Current to use the current value.

NOTE Remember that even if you don’t need concurrency, the Version
attribute is mandatory for the parameters declared in an Update-
Function.

A standalone entity is easy to map. The situation gets more complicated when the
entity is part of an inheritance hierarchy. In the next section, we’ll investigate such a
scenario.

10.4.3 Persisting an entity that’s in an inheritance hierarchy

When inheritance comes into play, there are some additional considerations. Once
again, all or nothing is the main rule: if you want to use stored procedures to persist
an entity that’s part of an inheritance hierarchy, all of the concrete (non-abstract)
entities that belong to the same hierarchy must be persisted using stored procedures.

 In the customer/supplier scenario, you have to create three stored procedures for
the customer and three stored procedures for the supplier. It works like a charm with-
out you needing to learn anything new.

 But the difference between the customer and supplier stored procedures is just a
few fields. It would be nice to create a stored procedure that manages one operation
for both entities. For instance, you could create a stored procedure that handles the
insert for both customers and suppliers, and do the same for updates and deletions.
This would spare some lines of code and keep the set of stored procedures smaller.

281Updating data with stored procedures

USING ONE STORED PROCEDURE TO PERSIST A HIERARCHY

The idea behind this technique is to create a single stored procedure to perform a
type of update for both classes. (Potentially, you could write a single stored procedure
that performs all CUD operations for all classes, but it would be a mess.)

 After the stored procedure is created, you can create two functions in the SSDL
and personalize the command to invoke the real stored procedure with different
parameters. This can be done using the CommandText element, as you saw in section
10.3. This technique is shown in listing 10.9. (For the sake of clarity, we have hidden
the parameter declarations.)

<Function Name="CreateCustomer" IsComposable="false"
 ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo">
 <CommandText>
 exec CreateCompany @Name,
 @BillingAddress, @BillingCity,

Invokes SP
for customer

 @BillingZipCode, @BillingCountry,
 @ShippingAddress, @ShippingCity,
 @ShippingZipCode, @ShippingCountry,
 @WSUserName, @WSPassword,
 @WSEnabled, null, null, 'C')
 </CommandText>
 <Parameter Name="Name" Type="varchar" Mode="In" />
 <Parameter Name="BillingAddress" Type="varchar" Mode="In" />
 <Parameter Name="BillingCity" Type="varchar" Mode="In" />
 <Parameter Name="BillingZipCode" Type="varchar" Mode="In" />
 <Parameter Name="BillingCountry" Type="varchar" Mode="In" />
 <Parameter Name="ShippingAddress" Type="varchar" Mode="In" />
 <Parameter Name="ShippingCity" Type="varchar" Mode="In" />
 <Parameter Name="ShippingZipCode" Type="varchar" Mode="In" />
 <Parameter Name="ShippingCountry" Type="varchar" Mode="In" />
 <Parameter Name="WSUserName" Type="varchar" Mode="In" />
 <Parameter Name="WSPassword" Type="varchar" Mode="In" />
 <Parameter Name="WSEnabled" Type="bit" Mode="In" />
</Function>
<Function Name="CreateSupplier" IsComposable="false"
 ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo">
 <CommandText>
 exec CreateCompany @Name, null, null, Invokes SP

for supplier null, null, null, null, null,
 null, null, null, null, @IBAN, @PaymentDays, 'S'
 </CommandText>
 <Parameter Name="Name" Type="varchar" Mode="In" />
 <Parameter Name="IBAN" Type="char" Mode="In" />
 <Parameter Name="PaymentDays" Type="smallint" Mode="In" />
</Function>

The last step is mapping the stored procedures to the InsertFunction node of the
customer and the supplier classes. That’s done the same way as before, so we won’t
show it again here. Naturally, the same technique applies to update and deletion

Listing 10.9 Declaring functions and letting them invoke stored procedures
stored procedures.

282 CHAPTER 10 Working with stored procedures

NOTE We didn’t use the designer because this feature isn’t supported.
Everything must be done manually. And remember that the storage
schema is rewritten each time you update the model from the database,
so you’ll lose any changes when that happens.

We have now analyzed the customer/supplier (TPH) scenario, but everything we have
done is perfectly valid for the product (TPT) scenario. In both mapping strategies, you
can encounter a case where you need to upgrade or downgrade an entity. Let’s see
what that means.

10.4.4 Upgrading and downgrading an entity
that’s in an inheritance hierarchy

In OrderIT, you can’t persist a company or a product. You have to use the specialized
classes (Customer, Supplier, Shoe, and Shirt) because the base classes have no mean-
ing in the business (in fact, they’re abstract). In other situations, the base classes may
have meaning as well as the inheriting classes. Think about a contact list where a sim-
ple contact can become a customer. You can model this situation using the TPH strat-
egy: Contact is the base class, and Customer inherits from it.

 When you create a new contact, it’s persisted in the table with a discriminator value
of CO. At a certain point, the contact decides to buy something and becomes a cus-
tomer. Lots of additional data is required, and the discriminator column must be
changed to CU. We’ll call this process upgrade. If for some reason you need to delete
the customer but keep the person or company as a contact, you perform a downgrade.

 Entity Framework doesn’t support this functionality. This means you have to per-
form all the updates manually using stored procedures or custom SQL commands. If
you aren’t comfortable with this approach, you can use the classic ADO.NET approach
to modify data in the table. If you use the TPH strategy, you just have to modify the dis-
criminator column to change the type. If you use the TPT strategy, you have to delete
the record from the specialized table, leaving the data only in the main table.

 It’s important to highlight that the domain-driven design rules state that the type
of an entity must always be the same during its lifetime. What we have described here is
a situation where we’re changing the type of an entity. This is a situation we have
encountered several times and have solved using stored procedures without any prob-
lems, but you could also achieve the same goal in other ways. Because there are many
variables involved, every case must be evaluated on its own.

 Sometimes you need to perform an update on the database that’s not connected
to the persistence of an entity. For instance, you may want to log each time a user signs
in. In this case, you don’t have a Log entity; what you need to do is add a record in a
table. Using a stored procedure to do this is pretty simple. Let’s see how to do that.

10.4.5 Executing stored procedures not connected to an entity

In chapter 7 you saw that a custom command can be executed using the Execute-

StoreCommand method, but this has the disadvantage of breaking the database-

283Summary

independence model, because it accepts a SQL string. A stored procedure is definitely
a better way to go; it encapsulates the logic, makes the application database-agnostic,
and keeps the DBA happy. You kill three birds with one stone.

 Having said that, to invoke a stored procedure that doesn’t return data, you have
to use the ExecuteFunction method. It’s different from ExecuteStoreCommand
because it doesn’t accept a generic parameter and returns only an Int32 containing
the number of affected rows. The only arguments it accepts are the stored procedure
name plus an array of ObjectParameter objects representing the parameters.

 Naturally, to be invoked via the context class, the stored procedure must be
imported to the conceptual schema. Even if you import the stored procedure in the
conceptual schema, the POCO template you’ve been using so far to generate code
doesn’t generate a context method to invoke these types of stored procedures. Fortu-
nately, with a little bit of work on the POCO template, you can change that. You’ll
learn how to do that in chapter 13.

10.5 Summary
Stored procedures are a key feature of any database, and they’re used in almost every
project we have developed. It’s very important that you understand how to best use
them in any situation.

 This chapter has given you some great insight into what you can do with Entity
Framework and stored procedures. In this version of Entity Framework, native sup-
port for stored procedures has been greatly improved, but there’s still a lot to do to
make them work seamlessly.

 The designer offers great productivity improvements and the template-generated
context class offers better integration, but the ability to map stored procedure to enti-
ties with complex types and support for eager loading are still missing. We’ll probably
see these features in the next release, but for the moment we have to live without
them.

 We’re now finished with stored procedures, but there’s another similar feature
that’s key in Entity Framework: database and model functions, which are discussed in
the next chapter, together with defining queries.

Working with functions
and views
In the previous chapter, you saw that you can embed native SQL commands into the
storage model of the EDM to simulate stored procedures. The same idea can be
applied to create custom views that aren’t on the database. Creating such views can
allow you to write simpler queries, easing the development process.

 Another thing that eases querying is the use of database and model functions.
These are pieces of code that can be reused across different queries, avoiding
repetitive code. In Entity Framework 1.0, these functions could be used only via
Entity SQL, but now they’re available in LINQ to Entities too. What’s even better,
now you can create your own set of functions in the EDM, allowing further customi-
zation and even more reuse.

 This chapter is all about these feature. First we’ll discuss embedding views in the

This chapter covers
 Using defining queries

 Creating custom database functions

 Creating model defined functions
284

EDM, and specifically the defining query feature, which is one of the most

285Views in the storage model: defining queries

powerful, and hidden, features of Entity Framework. Then, we’ll talk about custom
database functions and user-defined functions. By the end of this chapter, you’ll grad-
uate from the university of the EDM.

 Let’s first look at how you can embed views into the storage model.

11.1 Views in the storage model: defining queries
Conceptually, stored procedures and views are quite different. A stored procedure is a
block of statements that optionally returns data; a view is an object that contains data
obtained by a predefined query. But the main difference is that stored procedures
can’t be combined on the server, whereas views can. If the stored procedures at your dis-
posal already cover all your needs, you may not need views, but in our experience,
views are often worth a place in your toolbox.

 There are two ways to handle views in Entity Framework:

 Map them as if they were tables —In this case, Entity Framework makes no differ-
ence between views and tables. If you modify properties of the entities returned
by the query to a view, the context will keep track of them and will generate the
statements required to update them on the database (which will fail). Although
technically possible, we don’t recommend this approach.

 Map them using a defining query —In this case, Entity Framework knows that the
entity is read-only, and unless you specifically instruct it on how to update data,
it disables this option. This is the most common scenario because, in most
cases, data coming from a view is read-only.

The storage schema is where you decide which approach to use. If you opt for the first
choice, chapter 5 contains all the information you need, because Entity Framework
treats views as tables. If you opt for the second option, the next section contains all
you need to know.

11.1.1 Creating a defining query

Views are a storage affair. It’s not surprising that when you have learned how to define
them in the SSDL, there’s nothing more you have to learn. In fact, when you map an
entity to a view, the conceptual and the mapping schemas simply define the entity and
map it to the view as if it were a normal table.

 Before delving into the storage schema, let’s look at a query that generates a view.
The following query retrieves the total amount of the orders, grouped by customer:

CREATE VIEW SalesByCustomer
AS
 SELECT c.Name, SUM(d.Quantity * (d.UnitPrice - d.Discount)) AS Total
 FROM dbo.[Order] AS o
 INNER JOIN dbo.Company AS c ON c.CompanyId = o.CustomerId
 INNER JOIN dbo.OrderDetail AS d ON o.OrderId = d.OrderId
 GROUP BY c.Name

286 CHAPTER 11 Working with functions and views

Defining a view in the SSDL is simple. In the EntitySet element inside Entity-
Container, you put a DefiningQuery node, and inside it you write the SELECT, in
database-native SQL code, from the database view. The next snippet shows how this
is done:

<EntitySet Name="SalesByCustomer"
 EntityType="OrderITModel.Store.SalesByCustomer">
 <DefiningQuery>
 SELECT Name, Total FROM SalesByCustomer
 </DefiningQuery>
</EntitySet>

When it comes to the entity description, you must choose a key. In this example, you
could use the name of the customer, because there is one row per customer, and two
customers can’t have the same name. In situations where there isn’t a unique natural
key, consider including in the view an autogenerated column that acts as a key.

 After you’ve created a class, mapped it against the view, and generated the related
entity set in the context, you can query it as if it were a table. The following listing
demonstrates this.

C#
from s in ctx.SalesByCustomer
orderby s.Total descending
select s

VB
From s In ctx.SalesByCustomer
Order By s.Total Descending

SQL
SELECT
[Extent1].[Name] AS [Name],
[Extent1].[Total] AS [Total]
FROM (
 SELECT Name, Total
 FROM SalesByCustomer
) AS [Extent1]
ORDER BY [Extent1].[Total] DESC

As you can see, when the SQL generator creates the code, the SQL in the Defining-
Query node is embedded in a nested query, and operations defined in the LINQ to
Entities or Entity SQL query act on the nested one.

 You have seen that the query in the DefiningQuery element isn’t the query that
defines the view, but is a command that returns all of its data. This means that in a
DefiningQuery element, you can write SQL code to cover any needs you may have.
This is the real power of the defining query: if there’s something you can’t map using
EDM, a defining query is the solution.

 An example of this power is when you have to map a stored procedure to an entity

Listing 11.1 Code for querying a view, and the generated SQL
with complex properties.

287Views in the storage model: defining queries

11.1.2 Mapping stored procedures to classes with complex properties

You know that a stored procedure can’t be mapped to an entity that defines a complex
property. This is because the mapping is based on column and property names, and
complex properties break this model. A defining query creates a sort of EDM view, so
an entity with complex properties can be mapped against it. If the SQL in the defining
query returns data from a stored procedure (such as EXEC GetOrders 1), you can eas-
ily map it to an entity with complex properties, overcoming the current limitations. If
it seems too good to be true, that’s because it isn’t completely true.

 You must keep a couple of caveats in mind when following this path:

 A defining query creates a read-only entity. A defining query specifies a query by
which you retrieve data. If you need to update data retrieved using a defining
query, Entity Framework can’t generate INSERT, UPDATE, and DELETE (CUD)
commands based on such a query. To solve this problem, you have to map CUD
operations to ad hoc stored procedures.

 Stored procedures can’t be queried. You can’t query stored procedures on the
server; you can’t write a SQL statement like SELECT * FROM GetOrders.

In spite of the second limitation, you can still achieve the goal of mapping a database
function (not a stored procedure) to an entity with complex properties by bending
the database model. The technique we’ll look at uses a SQL Server feature known as
table-valued functions.

 Like stored procedures, table-valued functions expose the result of a query, but
they can be queried on the server. The following snippet shows the code that invokes
the table-valued function in the DefininqQuery:

<EntitySet Name="Orders"
 EntityType="OrderITModel.Store.Order">
 <DefiningQuery>
 SELECT * FROM GetOrders()
 </DefiningQuery>
</EntitySet>

GetOrders is the table-valued function. Now you can easily map this view to the Order
class, even if it contains the Address complex property.

 What happens when relationships come into play? Order has a relationship with its
details and with the customer. Because Order is mapped to a query and not directly to
a table, the SQL code may get complicated. Fortunately, the runtime query composi-
tion of Entity Framework is what the Entity Framework team has concentrated more
of its efforts on. An entity mapped to a storage object that uses a defining query can
participate in relationships like any other table without any additional effort. The
query-nesting process during SQL generation for a defining query is valid even when
relationships are taken into account. The result is that the following queries work
exactly as expected:

288 CHAPTER 11 Working with functions and views

C#
var order = ctx.Orders.Include("Details");
var customer = order.Customer;

VB
Dim order = ctx.Orders.Include("Details")
Dim customer = order.Customer

Mapping an entity to a defining query that invokes a table-valued function that
returns all the records of a table may seem useless, but this way you can have database
functions that map against entities with complex property too. It’s a good example of
the power of the EDM.

 Now you know everything about functions and views that return data. The next
things we’ll look at help in the reuse of queries: user-defined functions and scalar-
valued functions. They allow you to define logic in (sort of) functions that can be
reused in querying, so that writing queries becomes simpler.

11.2 User-defined functions and scalar-valued functions
You often need to calculate the total amount of an order detail. The formula is pretty
simple: (unit price - discount) * quantity. If you need to calculate this amount in
lots of queries, you end up placing the same formula in many different places, and
then if you need to change things, you have to check lots of queries. In a large project,
this is unacceptable.

 To overcome this problem, you can create a function that performs the calculation
for you. You can’t use a CLR function because LINQ to Entities isn’t able to translate it
into SQL, and Entity SQL has no knowledge of CLR functions; so how can you solve the
problem? The answer is to use a scalar-valued function.

11.2.1 Scalar-valued functions

A scalar-valued function is a special type of database function that accepts any parame-
ter you have and returns a scalar value. The following SQL code represents the (unit
price - discount) * quantity function:

CREATE FUNCTION GetTotalAmount
(@unitprice as money, @quantity as int, @discount as money)
RETURNS money
AS
BEGIN
 return (@unitprice - @discount) * @quantity
END

When you have the function, you need to import it into the storage schema using the
designer, as you did for stored procedures. Then you can invoke the database function
using the following Entity SQL query:

SELECT o.OrderId,
 SUM(SELECT VALUE OrderITModel.Store.GetTotalAmount(d.UnitPrice,
 d.Quantity, d.Discount)

289User-defined functions and scalar-valued functions

 FROM o.OrderDetails As d)
 FROM OrderITEntities.Orders AS o

In Entity Framework 1.0, only Entity SQL lets you use the database functions. There’s
no way to use it in a LINQ to Entities query even if you import the function to the con-
ceptual schema. This is because LINQ to Entities knows nothing about the EDM; it
works on .NET classes and methods.

 Fortunately, this limitation was lifted in Entity Framework version 4.0. To use a
scalar-valued function in LINQ to Entities, you need to create a stub method, as shown
in the following listing, which acts as a bridge between LINQ to Entities and the EDM.

C#
[EdmFunction("OrderITModel.Store", "GetTotalAmount")]
public static Nullable<decimal> GetTotalAmount(Nullable<decimal> unitprice,
 Nullable<int> quantity, Nullable<decimal> discount)
{
 throw new NotImplementedException("Cannot invoke this method");
}

VB
<EdmFunction("OrderITModel.Store", "GetTotalAmount")> _
Public Shared Function GetTotalAmount(_
 ByVal unitprice As Nullable(Of Decimal), _
 ByVal quantity As Nullable(Of Integer), _
 ByVal discount As Nullable(Of Decimal)) As Nullable(Of Decimal)
 Throw New NotImplementedException("Cannot invoke this method")
End Function

This function has many prerequisites:

 It must be static.
 It must return the same type as the database function.
 It must be marked with the EdmFunction attribute. (The attribute needs two

mandatory parameters: the storage schema namespace and the name of the
function.)

 Its body should throw an exception. (This isn’t mandatory, but because the
function is only a stub for LINQ to Entities, its code is never really invoked.)

NOTE Unfortunately, the POCO template doesn’t generate the stub
method, so you have to write everything on your own. In chapter 13, we’ll
show you how to modify the template to generate this code too.

After you’ve created the stub method, LINQ to Entities knows that this stub method is
mapped to the database function in the storage schema, so you can consume it in your
queries as shown in the following listing. We prefer putting the method in the context
class, but you can place it wherever you like.

Listing 11.2 Stub method that maps a function in the storage to a CLR method

290 CHAPTER 11 Working with functions and views

C#
from o in ctx.Orders
select new
{
 o.OrderId,
 Amount = o.OrderDetails.Sum(d => OrderITEntities.GetTotalAmount(
 d.UnitPrice,
 d.Quantity,
 d.Discount))

}

VB
From o In ctx.Orders
Select New With
{
 .o.OrderId,
 .Amount = o.OrderDetails.Sum(Function(d) OrderITEntities.GetTotalAmount(
 d.UnitPrice,
 d.Quantity,
 d.Discount))
}

Placing querying logic in a database function facilitates code reuse and maintainabil-
ity. This is probably one of the greatest features in Entity Framework 4.0 because in
large-scale projects, reusability and maintainability are essential in the long term.

 But what if you can’t add the function to the database? What if you need a function
that returns more than a scalar value? The database can’t help in such scenarios, so
you have to resort to user-defined functions.

11.2.2 User-defined functions

When the database can’t help, the EDM comes to the rescue. In this case, it lets you
define a conceptual function that can be used in both Entity SQL and LINQ to Entities
(always via a stub).

 The function is defined in the CSDL, which knows nothing about SQL. So the ques-
tion is, how do you conceptually define a function? The answer is, using Entity SQL.
You can create a function whose body is an Entity SQL expression that returns a result.
This function is a user-defined function.

 The output result can be anything. It can be a scalar value, an object, or a DbData-
Record. This is the big difference between user-defined functions and scalar-valued
functions—the latter can only return scalar values. This doesn’t mean you should
only adopt user-defined functions; they’re just more powerful. The choice is entirely
up to you.

 User-defined functions have one big problem: they aren’t supported by the
designer. You have to manually change the EDM to use them. If you don’t like touch-
ing the raw XML, this is a real pain.

Listing 11.3 Using the stub function in LINQ to Entities
 The first step is to create the function in the conceptual schema, as shown here.

291User-defined functions and scalar-valued functions

<Schema ...>
 <Function Name="GetUDFTotalAmount" ReturnType="Decimal">
 <Parameter Name="UnitPrice" Type="Decimal" />
 <Parameter Name="Quantity" Type="Int32" />
 <Parameter Name="Discount" Type="Decimal" />
 <DefiningExpression>
 (UnitPrice - Discount) * Quantity
 </DefiningExpression>
 </Function>
</Schema>

The declaration is straightforward. In the Function node, you declare the function
name and return type. Then, you include a Parameter node for each input parameter.
Finally, you create a DefiningExpression node, inside which the function code is
written using Entity SQL. That’s it for the EDM.

 Next, you have to create the CLR stub method for the function to make it available
to LINQ to Entities. That’s done the same way as for a scalar-valued function except
that the first parameter of the EdmFunction attribute must contain the namespace of
the conceptual schema, not the namespace of the storage one. Of course, the name
must be changed too. The final code is shown in the following snippet:

C#
[EdmFunction("OrderITModel", "GetUDFTotalAmount")]

VB
<EdmFunction("OrderITModel", "GetUDFTotalAmount")> _

Now you can invoke the function in both LINQ to Entities and Entity SQL queries. In
LINQ to Entities queries, you won’t see the difference between a scalar-valued func-
tion and a user-defined one. The code is exactly the same, because you simply invoke
a method. In Entity SQL, you have to change the way you invoke the function com-
pared with how you invoke the database scalar-valued function because the user-
defined function is defined on the conceptual side. The difference is highlighted in
the next snippet:

SELECT o.OrderId,
 SUM(SELECT VALUE OrderITModel.GetUDFTotalAmount(d.UnitPrice,
 d.Quantity, d.Discount)
 FROM o.OrderDetails As d)
 FROM OrderITEntities.Orders AS o

So far, scalar-valued functions and user-defined functions have reached the same goal.
From now on, you’ll see how user-defined functions are more powerful. We’ll start
with an interesting feature: the ability to pass objects as parameters.

PASSING AN OBJECT AS A PARAMETER OF A FUNCTION

Suppose that, in the future, you’re asked for another type of discount. To achieve this
goal, you add a new column and property to the OrderDetail table and class. Natu-
rally, this affects the way the total amount is calculated, because the new discount

Listing 11.4 User-defined function that returns and accepts scalar values
comes into play.

292 CHAPTER 11 Working with functions and views

 You need to change the GetUDFTotalAmount function to accept a fourth parame-
ter, and that means changing all callers to pass that parameter. If the function is used
in several places, this work can be tedious and error prone. The alternative is to
change your approach and to pass the entire OrderDetail object. This way, if you
need to add another parameter, you won’t have to change the code but just the func-
tion in the EDM. That’s shown in this snippet:

<Function Name="GetUDFTotalAmount" ReturnType="Decimal">
 <Parameter Name="detail" Type="OrderITModel.OrderDetail" />
 <DefiningExpression>
 (detail.UnitPrice - detail.Discount) * detail.Quantity
 </DefiningExpression>
</Function>

Notice that now there is only one Parameter node, and its type is a class mapped in
the EDM (OrderDetail). The code is Entity SQL, so you can refer to the parameter
properties as in a classic Entity SQL query.

 The stub signature is different because now it accepts an OrderDetail instance as
a parameter, and not the unit price, quantity, and discount parameters. Naturally,
both LINQ to Entities and Entity SQL queries must be adapted to this different
parameter list.

 Passing an object as a parameter is only half of the game. You can even let the func-
tion return objects.

RETURNING A NONTYPED OBJECT FROM A FUNCTION

Suppose that you often perform projections. Repeating this in every query is error
prone and troublesome when something changes. It would be great if you could
encapsulate the projection in a function and then reuse it.

 The following listing takes out the customer’s name and the main information
about the shipping and billing addresses.

<Function Name="GetUDFAddresses">
 <ReturnType>
 <RowType>
 <Property Name="Name" Type="String" />
 <Property Name="BillingAddress" Type="String"/>
 <Property Name="BillingCity" Type="String"/>
 <Property Name="ShippingAddress" Type="String"/>
 <Property Name="ShippingCity" Type="String"/>
 </RowType>
 </ReturnType>
 <Parameter Name="customer" Type="OrderITModel.Customer" />
 <DefiningExpression>
 ROW(detail.Name, detail.BillingAddress.Address,
 detail.BillingAddress.City, detail.ShippingAddress.Address,
 detail.ShippingAddress.City)
 </DefiningExpression>

Listing 11.5 User-defined function that accepts an object and returns a DbDataRecord
</Function>

293User-defined functions and scalar-valued functions

The return type of this function is a DbDataRecord that contains the columns specified
in the ReturnType/RowType node. It’s important that the Entity SQL expression return
the columns in the same order as they’re declared, and that they’re wrapped inside
the ROW function.

 The stub method returns a DbDataRecord. There’s nothing more you need to do.
Now you can use the function in listing 11.5 in both LINQ to Entities and Entity SQL
queries, as in the following code:

C#
from c in ctx.Companies.OfType<Customer>()
select OrderITEntities.GetUDFAddresses(c)

VB
From c In ctx.Companies.OfType(Of Customer)()
Select OrderITEntities.GetUDFAddresses(c)

Entity SQL
SELECT OrderITModel.GetUDFAddresses(c)
FROM OFTYPE(OrderITEntities.Companies, OrderIT.Model.Customer) As c

Working with the DbDataRecord isn’t bad, but having a class returned is much better.
This is another great opportunity you can take advantage of.

RETURNING A TYPED OBJECT FROM A FUNCTION

The tweaks needed to switch from a DbDataRecord instance to a typed object are very
minor. First, you have to create the class that holds the data. Because it must be in the
CSDL, you can easily create that using the designer. Then you have to create the func-
tion shown in the following fragment:

<Function Name="GetUDFTypedAddresses">
 <ReturnType Type="OrderITModel.CustomerProjection"/>
 <Parameter Name="customer" Type="OrderITModel.Customer" />
 <DefiningExpression>
 OrderITModel.CustomerProjection(customer.Name,
 customer.BillingAddress.Address, customer.BillingAddress.City,
 customer.ShippingAddress.Address, customer.ShippingAddress.City)
 </DefiningExpression>
</Function>

The first thing to notice here is that the return type is neither a scalar value nor a
generic class, but a specific type (the complex one generated in the designer). The
second point is that the return columns aren’t wrapped in a Row function, but in the
return type class. This is an Entity SQL feature that allows the return of a typed object
instead of a generic DbDataRecord. The stub method for such a function returns the
object instead of a DbDataRecord.

NOTE It’s mandatory to place the method parameters in the same order
in which the properties of the class are declared.

The LINQ to Entities and Entity SQL queries don’t change. The only thing that
changes is the way the application manages the result, because now it’s a class and

that’s much better.

294 CHAPTER 11 Working with functions and views

 All of the preceding functions have one thing in common—they return a single
instance. Because functions are all about reuse and encapsulation, it would be a pity if
you couldn’t return collections too. Fortunately, that’s possible.

11.2.3 User-defined functions and collection results

Suppose that in many queries, you need to return only the order details that have no
discount. Repeating these conditions in all the queries would be a problem; a ready-
to-use function would definitely be better.

 User-defined functions can return an enumerable of scalar values, an enumerable
of DbDataRecord instances, or an enumerable of objects. There’s no limit to what you
can do.

RETURNING A LIST OF SCALAR VALUES

Let’s start with the basics and return the IDs of the details that have no discount. Cre-
ating this function is pretty easy, as you can see in this snippet:

<Function Name="GetUDFDetailsWithNoDiscount_Scaar"
 ReturnType="Collection(Int32)">
 <Parameter Name="o" Type="OrderITModel.Order" />
 <DefiningExpression>
 SELECT VALUE d.OrderDetailId FROM o.OrderDetails AS d
 WHERE d.discount == 0
 </DefiningExpression>
</Function>

The ReturnType attribute contains the Collection keyword, which says that this func-
tion returns a list of Int32 instances and not a single value. In the Entity SQL code in
the DefiningExpression element, you place a full query, not just a simple expression.
With these simple tweaks, a function can return a collection of items.

 The stub method must return an IEnumerable<Nullable<Int32>> object. That’s
the only tweak needed to make the stub method work. Once again, you can use the
method in your queries.

RETURNING A LIST OF GENERIC OBJECTS

You may need more information than just the ID of the details. For instance, you may
need the quantity and the unit price. The following listing shows how you can do that
using the DbDataRecord class.

<Function Name="GetUDFDetailsWithNoDiscount_Record">
 <ReturnType>
 <CollectionType>
 <RowType>
 <Property Name="OrderDetailId" Type="Int32"/>
 <Property Name="UnitPrice" Type="Decimal"/>
 <Property Name="Quantity" Type="Int32"/>
 </RowType>
 </CollectionType>

Listing 11.6 User-defined function that returns a list of DbDataRecord objects

295Summary

 </ReturnType>
 <Parameter Name="o" Type="OrderITModel.Order" />
 <DefiningExpression>
 SELECT d.OrderDetailId, d.UnitPrice, d.Quantity
 FROM o.OrderDetails AS d
 WHERE d.discount == 0
 </DefiningExpression>
</Function>

The ReturnType attribute disappears, and you create the ReturnType node to specify
the shape of the result. Because it’s a list, you use a CollectionType element and
then use RowType to specify the output properties.

 The stub returns an IEnumerable<DbDatarecord>. You’re ready again to use the
function in your queries.

RETURNING A LIST OF TYPED OBJECTS

Returning a list of typed objects is fairly simple. You just have to specify the type of the
object returned and prepare the Entity SQL query using the following code:

<Function Name="GetUDFDetailsWithNoDiscount_Object"
 ReturnType="Collection(OrderITModel.OrderDetail)">
 <Parameter Name="o" Type="OrderITModel.Order" />
 <DefiningExpression>
 SELECT VALUE d FROM o.OrderDetails AS d WHERE d.discount == 0
 </DefiningExpression>
</Function>

This code is very similar to that used for returning a scalar value, and it needs no fur-
ther explanation.

 The stub method for such function is simple. In fact, it returns an IEnumerable
<OrderDetail> object.

 In the end, scalar-valued functions enable a great level of reuse in your code.
That’s worth taking into account when you’re developing a project.

11.3 Summary
Mastering functions and defining queries is important in any real-world project. Func-
tions, in particular, really make a difference when you’re writing queries. They avoid
repetitive code and promote code reuse to an incredible extent. No technology
before this has ever enabled such code reuse in queries. You can’t help falling in love
with them.

 What’s great about functions is that in addition to enabling the use of database
functions in LINQ to Entities, they also enable you to write your own custom functions
in Entity SQL and make them available to LINQ to Entities. Thumbs up!

 Now you have a complete understanding of the EDM, and you’ve been introduced
to its potential and its intricacies. What you need to know next is how you can access
EDM metadata in code. That’s the subject of the next chapter.

Exploring
EDM metadata
Roughly speaking, the EDM consists of three XML files carrying information about
classes, database, and their mappings. It’s no surprise that Entity Framework is the
first consumer of these XML files, using them to generate the SQL code for CRUD
operations, to understand whether a column is an identity on the database, and
much more.

 Reading XML files with LINQ to XML is easier than ever, but it will never be like
having a set of well-designed APIs that access the same data. Entity Framework’s reg-
ular need to access EDM metadata led to the need for simplicity, which in turn led
to a set of APIs. At the beginning, the APIs were for internal use only, but they were
later made public so that everyone could access them.

Metadata retrieval introduces the possibility of writing generic code. By generic,

This chapter covers
 Reading the EDM

 Retrieving entity structures

 Retrieving function structures

 Writing generic code
296

we mean code that works with entities without even knowing what type the entities

http://efex:InsertWhen

297Metadata basics

are. For instance, you could write a clever extension method that takes an entity and
decides whether to perform an AddObject or an Attach based on the key value, as we
described in chapter 6.

 Thanks to metadata, you can discover the key property at runtime, retrieve the
value via reflection, and then perform the correct operation. By using custom annota-
tions, you can even specify in the EDM which value causes an AddObject and which
causes an Attach. Although this is a simple example, it makes clear why metadata is
important.

 This chapter discusses all these subjects starting from the basics. First we’ll show
how metadata can be reached and what pitfalls you may encounter when accessing it.
After that, we’ll take a tour of the API system. Finally, you’ll finally put everything into
action by building a metadata viewer and completing an example that chooses
between the AddObject and Attach methods.

12.1 Metadata basics
You know where the EDM is, but how are the APIs to access its data exposed? How are
the different files in the EDM identified? And when is the metadata loaded?

 The APIs are accessible via three different classes: ObjectContext, Entity-
Connection, and MetadataWorkspace. This may sound confusing, but there’s a good
reason for this variety, which we’ll get to shortly.

 To identify the different files during data retrieval, you have to specify the dataspace
when you query for a certain object, or a list of objects. The same APIs retrieve meta-
data for both the conceptual and storage models, so you must state each time which
file should be inspected. (MSL isn’t available via the APIs; you can only access it via
LINQ to XML.)

 As for when the metadata is loaded, the CSDL is immediately available, but the
SSDL can be inspected only after a request that requires that metadata is triggered (a
query, for example).

 Those short answers will barely get you started. Let’s look at each of these topics in
more detail.

12.1.1 Accessing metadata

The class that exposes APIs to access metadata is MetadataWorkspace. It can be
instantiated directly using one of its constructors or accessed through the Object-
Context or EntityConnection class. Manually instantiating the MetadataWorkspace
class can be tough because it requires lots of code; you’re better off using one of the
other methods.

NOTE We’ve directly instantiated the MetadataWorkspace class only
when generating code via a template (in chapter 13, you’ll see why this is
extremely useful). In all other cases, we’ve accessed the Metadata-
Workspace class through the context, and only in very rare cases through

the connection.

298 CHAPTER 12 Exploring EDM metadata

Let’s look at how you can access metadata through the ObjectContext.

ACCESSING METADATA USING THE CONTEXT

When you work with objects, the context is your gateway to the database. To correctly
handle objects, the context works with the conceptual schema of the EDM. It must
know whether a property is an identity, which properties are used for concurrency,
and so on.

 Fortunately, the context constructor already knows about metadata because the
connection string, which contains the metadata’s location, is passed in the construc-
tor. That’s why you only need to access the MetadataWorkspace property, as shown in
the next snippet:

C#
var ctx = new OrderITEntities();
var mw = ctx.MetadataWorkspace;

VB
Dim ctx As New OrderITEntities()
Dim mw = ctx.MetadataWorkspace

That’s really all you need to do when you have a context around. But this isn’t always
the case—you may be working with a connection.

ACCESSING METADATA USING THE CONNECTION

The EntityConnection class exposes metadata through the GetMetadataWorkspace
method, which returns a MetadataWorkspace object. After the connection is created,
you can invoke the method:

C#
var ctx = new EntityConnection(connString);
var mw = conn.GetMetadataWorkspace();

VB
Dim conn As New EntityConnection(connString)
Dim mw = conn.GetMetadataWorkspace()

NOTE From now on, we’ll use the variable mw to identify a MetadataWork-
space in the code.

In chapters 3 and 7, you learned that the context relies on the underlying Entity-
Connection to access the database. It turns out that the context relies on the connec-
tion to access metadata too. When the context is instantiated, it creates the
connection and then internally clones the metadata, making it available to the con-
text consumer.

 We’ve developed many projects using Entity Framework and have never needed to
access metadata without having a context or a connection in place. Obviously, that
doesn’t mean it can’t happen to you. In that case, working directly with the Metadata-
Workspace class may be the only way.

299Metadata basics

ACCESSING METADATA USING THE METADATAWORKSPACE CLASS

When you work with the context or the connection, you always have a connection
string. When working with MetadataWorkspace class, metadata in the class can be ini-
tialized in the constructor or via specific methods.

 When you use the constructor, you have to pass in the paths of the three EDM files
plus the assemblies containing the CLR classes. If the three EDM files are embedded in
an assembly, that assembly must be passed to the constructor.

 Note that if the three EDM files aren’t embedded in an assembly, you have to refer-
ence them using their full paths; but if they’re embedded, you can use the same syn-
tax used in the connection string, as the following listing demonstrates.

C#
Assembly asm = Assembly.LoadFile("C:\\OrderIT\\OrderITModel.dll");
var mw1 = new MetadataWorkspace

Embedded
files

 (new string[] { "res://*/ Model.csdl", "res://*/ Model.ssdl" },
 new Assembly[] { asm });
var mw2 = new MetadataWorkspace

Plain files
 (new string[] { "C:\\OrderIT\\Model.csdl", "C:\\OrderIT\\Model.ssdl" },
 new Assembly[] { asm });

VB
Dim asm = Assembly.LoadFile("C:\OrderIT\OrderITModel.dll")
Dim mw1 = New MetadataWorkspace Embedded
 (New String() { "res://*/Model.csdl", "res://*/ Model.ssdl" }, files
 New Assembly() { asm })
Dim mw2 = New MetadataWorkspace

Plain files
 (New String() { " C:\OrderIT\Model.csdl", " C:\OrderIT\Model.ssdl" },
 New Assembly() { asm })

If you opt for creating the MetadataWorkspace class without passing EDM information
in the constructor, the job gets harder. MetadataWorkspace internally registers a set of
collections for each file type. What you have to do is initialize these collections one by
one and register them using the RegisterItemCollection method.

 Each collection is of a different type, depending on the EDM file it handles. For
instance, if you want to register metadata about the storage layer, you need to create a
StoreItemCollection instance and pass in the SSDL file; the EdmItemCollection
instance is used for the CSDL.

 Even without seeing the code, you can see that this approach isn’t desirable,
because you have to write lots of code to instantiate and load the collections. We’ve
never used this approach in the past and are unlikely to ever do so in the future. But if
you encounter a case where this is the only way to make things work, you now know
how to handle it.

 We mentioned earlier that the assembly containing the CLR classes must be passed
to the MetadataWorkspace class constructor. Have you wondered why? Aren’t EDM
metadata only about CSDL, SSDL, and MSL? That’s what we’ll look at next.

Listing 12.1 Accessing the metadata using the MetadataWorkspace class

300 CHAPTER 12 Exploring EDM metadata

12.1.2 How metadata is internally organized

What’s great about the metadata APIs is that they’re reused across the different sche-
mas of the EDM. It doesn’t matter if you’re scanning through the storage or the con-
ceptual model, the APIs you use remain the same. So the question is, how do you
specify what schema to look for?

 The answer is that the dataspace lets you specify what schema to look in. The
dataspace is an enum of type DataSpace (System.Data.Metadata.Edm namespace)
that contains the following values:

 CSpace—Identifies the conceptual schema.
 SSpace—Identifies the storage schema.
 CSSpace—Identifies the mapping schema. Unfortunately, support for the map-

ping schema is minimal; you can’t retrieve anything useful about it using the
APIs. The best way to retrieve this metadata is to use LINQ to XML.

 OSpace—Identifies the CLR classes. This may seem weird, but CLR classes are
included in the metadata. That’s why you have to include them when instantiat-
ing the MetadataWorkspace. Naturally, only object-model classes are included,
and you’ll discover that this is feature is handy.

 OCSpace—Identifies the mapping between the CLR classes and the CSDL. In
.NET Framework 1.0, the mapping between CLR classes and properties with the
conceptual schema is based on custom attributes. In .NET Framework 4.0, it’s
based on the names of the classes and properties. This mapping information
can be queried, but it’s there more for Entity Framework’s internal use than for
helping you.

The DataSpace is passed to all MetadataWorkspace methods, as you can see in the fol-
lowing snippets:

C#
mw.GetItems<EntityType>(DataSpace.CSpace);
mw.GetItems<EdmFunction>(DataSpace.SSpace);

VB
mw.GetItems(Of EntityType)(DataSpace.CSpace)
mw.GetItems(Of EdmFunction)(DataSpace.SSpace)

The first method returns all entities in the conceptual space, and the second returns
all stored procedures in the storage schema.

NOTE Keep the EntityType and EdmFunction classes in mind. They are
pretty useful, as you’ll discover later in this chapter.

You now know how to access the metadata and how to specify what schema you’re
extracting data from. The next step is understanding when you can retrieve the data.

301Retrieving metadata

12.1.3 Understanding when metadata becomes available

Metadata information is lazily loaded by Entity Framework; because Entity Framework
doesn’t need it, you can’t access it. For example, when you instantiate a context, the
conceptual schema is immediately loaded because the context works with it. If you try
to query the storage schema, you’ll get a runtime InvalidOperationException with
the message. “The space ‘SSpace’ has no associated collection.” No query has been
performed, so Entity Framework hasn’t needed to access the MSL and SSDL.

 Naturally, wherever there’s an inconvenient limitation like this, a workaround is
nearby. Most of the MetadataWorkspace methods come with an exception-safe version.
For instance, you have GetItem<T> as well as TryGetItem<T>. You can use the Try*
methods, and if data the data isn’t ready yet, you can artificially cause it to be loaded.

 The easiest way to force loading is to perform a query, but you won’t want to waste
a round trip to the database. Fortunately, the ToTraceString method, used in the fol-
lowing listing, does the trick. It causes Entity Framework to load the MSL and SSDL
schemas to prepare a query, but it doesn’t actually execute it.

C#
ItemCollection coll = null;
var loaded = mw.TryGetItemCollection(DataSpace.SSpace, out coll);
if (!loaded)
 ctx.Orders.ToTraceString(); Forces

schema loadingVB
Dim coll As ItemCollection
Dim loaded = mw.TryGetItemCollection(DataSpace.SSpace, coll)
If Not loaded Then
 ctx.Orders.ToTraceString() Forces

schema loadingEnd If

You now have enough background to advance to the next stage: querying. You’ve had
a sneak peek with the GetItems<T>, GetItem<T>, TryGetItem<T>, and GetItem-
Collection methods, and now it’s time to look at them more closely.

12.2 Retrieving metadata
MetadataWorkspace has many methods for retrieving metadata, but you’ll generally
only be using a few of them. All the metadata can be reached using a single generic
API, but some types of metadata have dedicated retrieval methods (such as Get-
EntityContainer and GetFunctions). We discourage the use of such dedicated meth-
ods because using a single generic one makes the code easier to read.

 These are the generic methods for accessing metadata:

 GetItems—Retrieves all items in the specified space
 GetItems<T>—Retrieves all items of type T in the specified space
 GetItemCollection and TryGetItemCollection—Retrieve all items in the

specified space returning a specialized collection

Listing 12.2 Forcing the loading of the storage and mapping schemas
 GetItem<T> and TryGetItem<T>—Retrieve a single item in the specified space

302 CHAPTER 12 Exploring EDM metadata

The first three of these methods do almost the same thing, with tiny differences. In
the example that you’ll create in this chapter, we’ll only use GetItem<T>, TryGet-
Item<T>, and GetItems<T>. As you’ll see, the other methods aren’t all that necessary.

 You’re probably wondering what type T can be. If you want to retrieve all entities in
the conceptual space, what should you pass as T? It’s important to understand this
before going deeper into the various retrieval methods.

12.2.1 Understanding the metadata object model

The metadata object model consists of classes that are in the System.Data.Metadata.
Edm namespace, but not all classes in this namespace are related to the EDM. For
instance, MetadataWorkspace acts as the gateway, but it doesn’t work with metadata.

 What we’re interested in are the classes strictly related to metadata. Each node in
the CSDL and SSDL has a corresponding class (with some exceptions). What’s good is
that in almost all cases, classes have the same name as their corresponding nodes.
What’s even better is that because the SSDL and CSDL share the same structure, even
the classes are the same. Table 12.1 shows the correspondences between EDM nodes
and metadata classes.

Table 12.1 The correspondence
between metadata classes and

EDM node Metadata class name

EntityContainer EntityContainer

EntityType EntityType

ComplexType ComplexType

Function EdmFunction

Association AssociationType

 All the other EDM elements you learned about in chapter 5 are exposed as proper-
ties of the classes in table 12.1. For instance, the EntityContainer class has a BaseEn-
titySets property, which lists the AssociationSet and EntitySet elements, and a
FunctionImports property, which exposes the FunctionImport elements, all in the
EDM’s EntityContainer element.

 The EntityType class has a similar structure. It exposes the Properties property,
containing all the Property elements inside the EntityType node in the EDM; and
KeyMembers, which lists the PropertyRef elements inside the Key element that is
nested in the EntityType node of the EDM.

 The ComplexType class is pretty simple because it contains only the properties,
whereas EdmFunction exposes the Parameters and ReturnParameter properties.

 The AssociationType class is the most complex because it exposes the Role prop-
erty, plus ReferentialConstraint, which has Principal and Dependent properties
that in turn have PropertyRef elements.

 Now that you know about the classes, it’s time to look closely at the methods for
accessing metadata that we introduced before.
EDM nodes

303Retrieving metadata

12.2.2 Extracting metadata from the EDM

Querying the EDM is just a matter of invoking methods on the MetadataWorkspace
class. Let’s analyze these methods one by one; later, you’ll put everything in action.
We’ll start with the GetItems method.

EXTRACTING METADATA WITH GETITEMS

When you need all the items in a schema, GetItems is the best method to use. Not
only does it return objects you’ve defined, but also primitive types and function types
that are embedded in the EDM. It’s easy to invoke, as the next snippet shows:

C#
var items = ctx.MetadataWorkspace.GetItems(DataSpace.CSpace);

VB
Dim items = ctx.MetadataWorkspace.GetItems(DataSpace.CSpace)

The variable items contains 272 elements! It contains all EDM primitive types, like
Edm.String, Edm.Boolean, and Edm.Int32; primitive functions like Edm.Count,
Edm.Sum, and Edm.Average; and the objects you’ve defined.

 The preceding query operates on the conceptual schema, but the same consider-
ations hold true for the storage schema. The only difference is that primitive types are
in another namespace dedicated to the database. SqlServer.varchar, SqlServer.Bit,
SqlServer.int, SqlServer.COUNT, SqlServer.SUM, and SqlServer.AVERAGE are just
an example of what you’ll get. Figure 12.1 shows an excerpt from the Visual Studio
Quick Watch window containing types from the CSDL and SSDL.

Figure 12.1 On the left side
is a snapshot of items
returned by GetItems in the
CSpace. On the right side
are items returned by

 The objects returned by GetItems are of type ReadOnlyCollection<GlobalItem>,
which implements IEnumerable<T>. That means you can query the data using LINQ.
For instance, if you want to retrieve all primitive types, you can perform the following
query:

C#
ctx.MetadataWorkspace.GetItems(DataSpace.CSpace)
 .Where(i => i.BuiltInTypeKind == BuiltInTypeKind.PrimitiveType);

VB
ctx.MetadataWorkspace.GetItems(DataSpace.CSpace).
 Where(Function(i) i.BuiltInTypeKind = BuiltInTypeKind.PrimitiveType)

Like GetItems, GetItemCollection returns all the items that belong to a specific
schema, but with a subtle difference: the type returned is different.
GetItems in the SSpace.

http://efex

304 CHAPTER 12 Exploring EDM metadata

EXTRACTING METADATA WITH GETITEMCOLLECTION AND TRYGETITEMCOLLECTION

The GetItemCollection method retrieves all items in the specified schema, and it
returns them in an ItemCollection instance. ItemCollection inherits from Read-
OnlyCollection<GlobalItem>, meaning that you can use LINQ to query its data, and
it adds some convenient methods. Its use is shown in the following snippet:

C#
var items = ctx.MetadataWorkspace.GetItemCollection(DataSpace.CSpace);

VB
Dim items = ctx.MetadataWorkspace.GetItemCollection(DataSpace.CSpace)

The items variable contains the same data extracted by GetItems. The difference is
that now you can call additional methods like GetItems<T>, GetFunctions, and others
that are also exposed by the MetadataWorkspace class. These methods act on the data
extracted by GetItemCollection, whereas the methods invoked on Metadata-
Workspace need the schema to scan through.

 These additional methods exposed by the ItemCollection class don’t particularly
simplify development. What really helps development is the TryGetItemCollection
method, which you can use to check whether metadata in that space is loaded, as you
saw in listing 12.2.

 Both GetItems and GetItemCollection return all data from the queried
dataspace. If you want to filter it, you have to use LINQ or, in the case of GetItem-
Collection, some specific methods. Either way, the core behavior doesn’t change;
you retrieve all the data and then pick up what you need.

 But wouldn’t it be better to only have the items you wanted, without having to filter
them after retrieving them?

EXTRACTING METADATA WITH GETITEMS<T>

The GetItems<T> method enables you to retrieve items of a certain type immediately.
No additional methods and no LINQ queries are needed: just a method call. Isn’t that
better?

GetItems<T> returns a ReadOnlyCollection<T>, where T is the type searched for.
If you searched all entities in the conceptual schema, the result would be a ReadOnly-
Collection<EntityType>. The following example shows how to use this method:

C#
var items = ctx.MetadataWorkspace.GetItems<EntityType>(DataSpace.CSpace);

VB
Dim items = ctx.MetadataWorkspace.GetItems(Of EntityType)(DataSpace.CSpace)

Because ReadOnlyCollection<T> implements IEnumerable<T>, you can perform
LINQ queries on the result returned by GetItems<T>. This is full control.

 Unfortunately, GetItems<T> doesn’t have an exception-safe version, meaning that
the metadata for the searched space must be loaded, or this method will raise an
exception.

305Retrieving metadata

 All the methods we’ve seen so far return a list of items, but often you’ll just need
one item. For instance, you may need to inspect the Supplier item to validate the
IBAN property with a regular expression (remember the example in chapter 5?).

EXTRACTING METADATA WITH GETITEM<T> AND TRYGETITEM<T>

The GetItem<T> method retrieves a single entity. It accepts the dataspace and a string
representing the full name of the entity.

 It’s important that you understand what we mean by the full name. When you
search through the CSpace or the SSpace, the namespace is the one specified in the
Schema element. When you search through OSpace, the namespace is the CLR class
namespace that doesn’t necessarily match with its counterpart in the CSDL. In the fol-
lowing listing, you can see the difference in how data from different spaces is
retrieved.

C#
var csItem = ctx.MetadataWorkspace.GetItem<EntityType>
 ("OrderITModel.Supplier", DataSpace.CSpace);
var osItem = ctx.MetadataWorkspace.GetItem<EntityType>
 ("OrderIT.Model.Supplier", DataSpace.OSpace);

VB
Dim csItem = ctx.MetadataWorkspace.GetItem(Of EntityType)(
 "OrderITModel.Supplier", DataSpace.CSpace)
Dim osItem = ctx.MetadataWorkspace.GetItem(Of EntityType)(
 "OrderIT.Model.Supplier", DataSpace.OSpace)

The object returned by GetItem<T> is of the type specified in the generic parameter.
In this listing, csItem and osItem are of EntityType type.

 If an element isn’t found, or if the metadata for the dataspace isn’t loaded, Get-
Item<T> throws an exception. If you’re sure that the metadata is loaded and that the
item exists in the space, GetItem<T> is for you; otherwise, the exception-safe version
TryGetItem<T>, used in the following listing, is a better choice.

C#
EntityType osItem = null, csItem = null;
var csloaded = ctx.MetadataWorkspace.TryGetItem<EntityType>
 ("OrderITModel.Supplier", DataSpace.CSpace, out csItem);
var osloaded = ctx.MetadataWorkspace.TryGetItem<EntityType>
 ("OrderIT.Model.Supplier", DataSpace.CSpace, out osItem);

VB
Dim osItem As EntityType = Nothing
Dim csItem As EntityType = Nothing
Dim csloaded = ctx.MetadataWorkspace.TryGetItem(Of EntityType)(
 ("OrderITModel.Supplier", DataSpace.CSpace, csItem)
Dim osloaded = ctx.MetadataWorkspace.TryGetItem(Of EntityType)(

Listing 12.3 Using GetItem<T> to retrieve metadata

Listing 12.4 Using TryGetItem<T> to retrieve metadata
 "OrderIT.Model.Supplier", DataSpace.CSpace, osItem)

306 CHAPTER 12 Exploring EDM metadata

Congratulations! You’re close to becoming a metadata Jedi. You have the knowledge;
now it’s time to see how to use it. Let’s look at how you can build powerful stuff using
what you’ve learned.

12.3 Building a metadata explorer
The best way to use all you’ve seen in this
chapter is to create a metadata explorer.
The metadata explorer is a simple form
with a tree view showing all elements
defined in the conceptual and storage
schemas. The elements are grouped in
nodes, and the most important proper-
ties of each type of element are shown.

 For instance, for each entity, all prop-
erties are shown with the primary-key
properties displayed in bold and the
foreign-key properties shown in bold and
red. Function return values and parame-
ters are listed along with their types.

 After the metadata is loaded, the
metadata explorer form is very similar to the designer’s Model Browser window. Fig-
ure 12.2 shows the metadata browser you’re going to build.

 Take a quick look at the tree in figure 12.2. Doesn’t it remind you the structure of
the conceptual and storage schemas? You have entities, complex types, functions, and
containers. It’s much easier to read than raw XML, isn’t it?

 Representing both the conceptual and the storage schemas takes about 120 lines
of code in the editor (but only about 80 if you don’t count blank lines and lines with
only curly brackets). In the tree view, each schema is represented with two root nodes,
labeled Conceptual Side and Storage Side, with four inner nodes: Entities,
ComplexTypes (only for the conceptual schema), Functions, and Containers. Let’s
see how you can populate the tree view, starting with the Entities node.

12.3.1 Populating entities and complex types

The entities node has a child for each entity in the schema. Listing all the entities is
just a matter of using GetItems<T>, passing EntityType as the generic parameter, and
creating a node for each item.

 Each entity node has three children:

 Base types —Contains all classes that the entity inherits from
 Derived types—Contains all classes that inherit from the entity
 Properties —Contains all entity properties

The following code creates the entities node.

Figure 12.2 The tree view where metadata is
shown. The conceptual side is divided into
entities, complex types, functions, and
containers. The same is done for the storage side.

307Building a metadata explorer

C#
var entities = ctx.MetadataWorkspace.GetItems<EntityType>
 (DataSpace.CSpace);
foreach (var item in entities)
{
 var currentTreeNode = tree.Nodes[0].Nodes[0] Node for entity
 .Nodes.Add(item.FullName);
 WriteTypeBaseTypes(currentTreeNode, item);

Nodes for
entity details

 WriteTypeDerivedTypes(currentTreeNode,
 item, entities);
 WriteProperties(currentTreeNode,
 item, ctx, DataSpace.CSpace);
}

VB
Dim entities = ctx.MetadataWorkspace.GetItems(Of EntityType)(
 DataSpace.CSpace)
For Each item In entities
 Dim currentTreeNode = tree.Nodes(0).Nodes(0). Node for entity
 Nodes.Add(item.FullName)
 WriteTypeBaseTypes(currentTreeNode, item)
 WriteTypeDerivedTypes(currentTreeNode, item, entities) Nodes for

entity details WriteProperties(currentTreeNode,
 item, ctx, DataSpace.CSpace)
Next

So far, everything is pretty easy. The core code lies in the three internal methods
WriteTypeBaseTypes, WriteTypeDerivedTypes, and WriteProperties, whose names
explain perfectly what they do.

RETRIEVING ENTITY BASE TYPES

The WriteTypeBaseTypes method retrieves the base types. It uses the BaseType prop-
erty of EntityType, which points to another EntityType object representing the base
class. For instance, the entity type representing Order has the BaseType property set to
null, and the one representing Customer has the property set to Company. Here’s the
code.

C#
private void WriteTypeBaseTypes(TreeNode currentTreeNode, EntityType item)
{
 var node = currentTreeNode.Nodes.Add("Base types");
 if (item.BaseType != null)
 node.Nodes.Add(item.BaseType.FullName);
}

VB
Private Sub WriteTypeBaseTypes(ByVal currentTreeNode As TreeNode,
 ByVal item As EntityType)

Listing 12.5 Creating the entities node

Listing 12.6 Creating the base types nodes
 Dim node = currentTreeNode.Nodes.Add("Base types")

308 CHAPTER 12 Exploring EDM metadata

 If item.BaseType IsNot Nothing Then
 node.Nodes.Add(item.BaseType.FullName)
 End If
End Sub

As you can see, looking for the base type is trivial. Finding types that inherit from an
entity is a little more complicated.

RETRIEVING ENTITY-DERIVED ENTITIES

Retrieving which entities inherit from the current one requires a simple LINQ query
that searches for entities whose base type matches the current entity. The Write-
TypeDerivedTypes method that retrieves this data is shown in this listing.

C#
private void WriteTypeDerivedTypes(TreeNode currentTreeNode,
 EntityType item, ReadOnlyCollection<EntityType> entities)
{
 var node = currentTreeNode.Nodes.Add("Derived types");
 var derivedTypes = entities Retrieves

derived
entities

B
 .Where(e => e.BaseType != null &&
 e.BaseType.FullName == item.FullName);
 foreach (var entity in derivedTypes)
 {
 node.Nodes.Add(entity.FullName);
 }
}

VB
Private Sub WriteTypeDerivedTypes(ByVal currentTreeNode As TreeNode,
 ByVal item As EntityType,
 ByVal entities As ReadOnlyCollection(Of EntityType))
 Dim node = currentTreeNode.Nodes.Add("Derived types")
 Dim derivedTypes = entities.Where(Function(e) Retrieves

derived
entities

B
 e.BaseType IsNot Nothing AndAlso
 e.BaseType.FullName = item.FullName)
 For Each entity In derivedTypes
 node.Nodes.Add(entity.FullName)
 Next
End Sub

The LINQ query is fairly simple B. You just match the FullName property of the cur-
rent entity with the FullName property of all entities’ base types. That’s all.

 So far, everything has been simple. The next, and last, method retrieves properties
and their information. That’s a bit harder, compared with what you’ve done so far.

RETRIEVING PROPERTIES

The method that writes properties for the current entity in the tree view is Write-
Properties. This method accepts the entity to be inspected as a StructuralType
instance. Because EntityType inherits from StructuralType, passing the parameter
as an EntityType instance is perfectly valid.

Listing 12.7 Creating the derived type nodes

309Building a metadata explorer

StructuralType has a property named Member that lists all the entity’s properties.
Highlighting the primary key ones is a simple matter of checking whether the current
property name is included in the KeyMembers property, which is a list of primary-key
properties.

 Determining whether a property is a foreign-key property is a bit more complex. It
requires a LINQ query that looks for foreign-key associations where the end role is the
current entity and the dependent properties contain the current property. These and
other features are shown in the following listing.

C#
private void WriteProperties(TreeNode currentTreeNode, StructuralType item,
 OrderITEntities ctx, DataSpace space)
{
 var node = currentTreeNode.Nodes.Add(
 (space == DataSpace.CSpace) ? "Properties" : "Columns");
 foreach(var prop in item.Members)

Enumerates
properties

B

 {
 var propNode = node.Nodes.Add(
 GetElementNameWithType(prop.Name, Gets

property name
C

 prop.TypeUsage, space));

 var entityItem = item as EntityType;
 if (entityItem != null)
 {
 if (entityItem.KeyMembers

Checks if
property is
primary key

D
 .Any(p => p.Name == prop.Name))
 {
 propNode.NodeFont =
 new Font(this.Font, FontStyle.Bold);
 }

 if (ctx.MetadataWorkspace Checks if
property is
foreign key

E
 .GetItems<AssociationType>(space)
 .Where(a => a.IsForeignKey).Any(a =>
 a.ReferentialConstraints[0]
 .ToProperties[0].Name == prop.Name &&
 a.ReferentialConstraints[0]
 .ToRole.Name == item.Name))
 {
 propNode.NodeFont = new Font(this.Font, FontStyle.Bold);
 propNode.ForeColor = Color.Red;
 }
 }

 var metaNode = propNode.Nodes.Add("Metadata Properties");
 foreach (var facet in prop.TypeUsage.Facets) Retrieves

property
facetsF

 {
 propNode.Nodes.Add(facet.Name + ": " + facet.Value);
 }

 foreach (var meta in prop.MetadataProperties) Retrieves
 {

Listing 12.8 Creating the properties nodes
property
metadataG metaNode.Nodes.Add(meta.Name + ": " + meta.Value);

310 CHAPTER 12 Exploring EDM metadata

 }
 }
}

VB
Private Sub WriteProperties(ByVal currentTreeNode As TreeNode,
 ByVal item As StructuralType, ByVal ctx As OrderITEntities,
 ByVal space As DataSpace)
 Dim node = currentTreeNode.Nodes.Add(
 If((space = DataSpace.CSpace), "Properties", "Columns"))
 For Each prop In item.Members

Enumerates
properties

B

 Dim propNode = node.Nodes.Add(
 GetElementNameWithType(prop.Name, Gets

property name
C

 prop.TypeUsage, space))

 Dim entityItem = TryCast(item, EntityType)
 If entityItem IsNot Nothing Then Checks if

property is
primary key

D
 If entityItem.KeyMembers.Any(Function(p)
 p.Name = prop.Name) Then
 propNode.NodeFont =
 New Font(Me.Font, FontStyle.Bold)
 End If

 If ctx.MetadataWorkspace.
 GetItems(Of AssociationType)(space). Checks if

property is
foreign key

E
 Where(Function(a) a.IsForeignKey).
 Any(Function(a)
 a.ReferentialConstraints(0)
 .ToProperties(0).Name = prop.Name AndAlso
 a.ReferentialConstraints(0)
 .ToRole.Name = item.Name) Then
 propNode.NodeFont = New Font(Me.Font, FontStyle.Bold)
 propNode.ForeColor = Color.Red
 End If
 End If

 For Each facet In prop.TypeUsage.Facets

Retrieves
property
facets

F

 propNode.Nodes.Add(facet.Name & ": " & facet.Value)
 Next

 Dim metaNode = Retrieves property
metadata

G
 propNode.Nodes.Add("Metadata Properties")
 For Each meta In prop.MetadataProperties
 metaNode.Nodes.Add((meta.Name & ": ") & meta.Value)
 Next
 Next
End Sub

Wow, that’s a huge amount of code. But don’t worry. It’s the only long function in this
chapter.

 As we mentioned before, the input entity is of type StructuralType and not
EntityType. This happens because this function can be used to write complex types
too, and both ComplexType and EntityType inherit from StructuralType.

 In the code, all properties are iterated via the Members property B. For each prop-

erty, the following actions are taken:

311Building a metadata explorer

 A node is created, setting the text with the result of the GetElementNameWith-
Type method, which returns the property name and its type C. The code for
this method isn’t shown here because it’s of no interest for this discussion. You
can look at it in the book’s source code.

 If the input item is an entity, a check is performed to see whether the property
is part of the primary key D and if it’s a foreign key E.

 A node for each facet is added. The facets are the attributes of the property
node (nullable, maxLength, and so on) F.

 A node for each metadata property is shown G.

It’s important to note that metadata properties are exposed by every EDM-related class
and that they contain the custom nodes you may add to an element. Do you remem-
ber the custom node that expresses the validation of the IBAN property of Supplier?
You can see it in figure 12.3.

Figure 12.3 The regular expression
of the IBAN is reachable through the
property metadata.

 Now that the entities are described, it’s time to talk about complex types.

RETRIEVING COMPLEX TYPES

Complex types are similar to entities, but they’re simpler to manage because they
can’t be inherited, which means there are no Base Type and no Derived type nodes,
and they have no primary or foreign keys. Only the Properties node is shared
between entities and complex types.

 The method that writes properties is already aware of complex types, so you can
reuse it as the following listing demonstrates (note that in this listing and the rest of
the chapter, the tree variable refers to the tree view in the form).

C#
foreach (var item in ctx.MetadataWorkspace.GetItems<ComplexType>

Listing 12.9 Creating the complex types nodes
 (DataSpace.CSpace))

312 CHAPTER 12 Exploring EDM metadata

{
 var currentTreeNode = tree.Nodes[0].Nodes[2].Nodes.Add(item.FullName);
 WriteProperties(currentTreeNode, item, ctx, DataSpace.CSpace);
}

VB
For Each item In ctx.MetadataWorkspace.GetItems(Of ComplexType)(
 DataSpace.CSpace)
 Dim currentTreeNode = tree.Nodes(0).Nodes(2).Nodes.Add(item.FullName)
 WriteProperties(currentTreeNode, item, ctx, DataSpace.CSpace)
Next

That’s it! You retrieve complex types and then call WriteProperties for each of them.
Cool, isn’t it?

 The second step is populating the functions. What’s nice here is that you only have
parameters and results to show, so there’s not a lot to learn.

12.3.2 Populating functions

The functions node contains a child for each function, which in turn has a child node
for each parameter. The text shown in the root node for each function is formatted
with the name followed by the return type.

 The technique is always the same: you retrieve all the functions using Get-
Items<EdmFunction>, and for each of them you call a method that populates the
parameters and return types. Here’s the code that does that.

C#
var functions = ctx.MetadataWorkspace.GetItems<EdmFunction>
 (DataSpace.CSpace)
 .Where(i => i.NamespaceName != "Edm");

Extracts only
functions
defined by you

B

foreach (var item in functions)
{
 var currentTreeNode = tree.Nodes[0].Nodes[1].Nodes.Add(
 GetElementNameWithType(item.FullName, item.ReturnParameter.TypeUsage,
 DataSpace.CSpace));
 WriteFunctionParameters(currentTreeNode, item.Parameters,
 DataSpace.CSpace);
}

VB
Dim functions = ctx.MetadataWorkspace.GetItems(Of EdmFunction)(
 DataSpace.CSpace)

BExtracts only
functions

defined by you

 .Where(Function(i) i.NamespaceName <> "Edm")
For Each item In functions
 Dim currentTreeNode = tree.Nodes(0).Nodes(1).Nodes.Add(
 GetElementNameWithType(item.FullName, item.ReturnParameter.TypeUsage,
 DataSpace.CSpace))
 WriteFunctionParameters(currentTreeNode, item.Parameters,
 DataSpace.CSpace)
Next

Listing 12.10 Creating the functions nodes

313Building a metadata explorer

Notice the filter applied to the items returned by GetItems<EdmFunction> B. It’s
applied because primitive functions are returned too, and the namespace is the only
way to differentiate them from those defined by you (which are the ones you’re inter-
ested in).

 The WriteFunctionParameters method is trivial, as you can see in the following
listing. It iterates over function parameters, leveraging the GetElementNameWithType
method to get their names and types, and adding the directions: In, Out, or InOut.

C#
private void WriteFunctionParameters(TreeNode parentNode,
 ReadOnlyMetadataCollection<FunctionParameter> parameters,
 DataSpace space)
{
 foreach (var param in parameters)
 parentNode.Nodes.Add(
 GetElementNameWithType(param.Name, Name, type, and

direction creation param.TypeUsage, space) + ": " + param.Mode);
}

VB
Private Sub WriteFunctionParameters(ByVal parentNode As TreeNode,
 ByVal parameters As ReadOnlyMetadataCollection(Of FunctionParameter),
 ByVal space As DataSpace)
 For Each param In parameters
 parentNode.Nodes.Add(
 (GetElementNameWithType(param.Name, Name, type, and

direction creation param.TypeUsage, space) & ": ") + param.Mode)
 Next
End Sub

The code is self-explanatory. We can move on and talk about the last part of the con-
ceptual schema: the containers.

12.3.3 Populating containers

The containers node contains a child node for each container found. Each container
has three children: entity sets, association sets, and function imports. Association sets
and entity sets are very similar and, in terms of metadata, share the base class. Func-
tion imports are identical to functions, so this listing reuses the code from the previ-
ous section.

C#
var containers = ctx.MetadataWorkspace.GetItems<EntityContainer>
 (DataSpace.CSpace);
foreach (var item in containers)
{

Function
imports nodes

 var currentTreeNode = tree.Nodes[0].Nodes[3].Nodes.Add(item.Name);

Listing 12.11 Creating parameter nodes for each function

Listing 12.12 Creating the containers nodes
 WriteFunctionImports(currentTreeNode, item);

314 CHAPTER 12 Exploring EDM metadata

 WriteEntitySets<EntitySet>(currentTreeNode, item); Entity sets
nodes WriteEntitySets<AssociationSet> Association

sets nodes (currentTreeNode, item);
}

VB
Dim containers = ctx.MetadataWorkspace.GetItems(Of EntityContainer)
 (DataSpace.CSpace)
For Each item In containers

Function
imports nodes

 Dim currentTreeNode = tree.Nodes(0).Nodes(3).Nodes.Add(item.Name)
 WriteFunctionImports(currentTreeNode, item)
 WriteEntitySets(Of EntitySet)(currentTreeNode, item) Entity sets

nodes WriteEntitySets(Of AssociationSet)(Association
sets nodes currentTreeNode, item)

Next

Here you retrieve all the containers, using GetItems<EntityContainer>, and then
invoke the methods that build the inner nodes. Those methods are the interesting
part, as you can see in the next in listing.

C#
private void WriteEntitySets<T>(TreeNode currentTreeNode,
 EntityContainer item) where T: EntitySetBase
{
 var entitySetsNode = currentTreeNode.Nodes.Add(
 typeof(T) == typeof(EntitySet) ? "Entity sets" : "Association sets");
 foreach (var bes in item.BaseEntitySets.OfType<T>())
 {
 var node = entitySetsNode.Nodes.Add(bes.Name + ": " + bes.ElementType);
 }
}

private void WriteFunctionImports(TreeNode currentTreeNode,
 EntityContainer item)
{
 var funcsNode = currentTreeNode.Nodes.Add("FunctionImports");
 foreach (var func in item.FunctionImports)
 {
 var funcNode = funcsNode.Nodes.Add(func.Name);
 WriteFunctionParameters(funcNode, func.Parameters, DataSpace.CSpace);
 }
}

VB
Private Sub WriteEntitySets(Of T As EntitySetBase)(
 ByVal currentTreeNode As TreeNode, ByVal item As EntityContainer)
 Dim entitySetsNode = currentTreeNode.Nodes.Add(
 IIf(GetType(T) = GetType(EntitySet), "Entity sets","Association sets"))
 For Each bes In item.BaseEntitySets.OfType(Of T)()
 Dim node = entitySetsNode.Nodes.Add((bes.Name & ": ") &
 bes.ElementType)
 Next
End Sub

Listing 12.13 Creating the entity sets and function imports nodes

315Building a metadata explorer

Private Sub WriteFunctionImports(ByVal currentTreeNode As TreeNode,
 ByVal item As EntityContainer)
 Dim funcsNode = currentTreeNode.Nodes.Add("FunctionImports")
 For Each func In item.FunctionImports
 Dim funcNode = funcsNode.Nodes.Add(func.Name)
 WriteFunctionParameters(funcNode, func.Parameters, DataSpace.CSpace)
 Next
End Sub

The WriteEntitySets method is the most interesting. The classes representing entity
sets and association sets are EntitySet and AssociationSet, both of which inherit
from the EntitySetBase class. The EntityContainer class has a BaseEntitySets
property that exposes both sets via their base class. To show them in different nodes,
you pass the type as a generic parameter and then use the OfType<T> LINQ method to
extract only the sets for that type. Then for each set, a node with the name and base
type is created.

 The WriteFunctionImports method is less complex. It creates a node for each
function and then describes it using the WriteFunctionParameters method you’ve
seen before.

 The conceptual node is now populated. It contains all the conceptual schema
items, so it’s time to move on to the storage-schema representation. Fortunately,
because CSDL and SSDL share the same schema, all the functions can be reused.

12.3.4 Populating storage nodes

Populating the storage-side nodes is slightly easier than populating the conceptual-
side modes. In a database, you don’t have complex types; there’s only one container
because you can’t describe more databases, and there’s no function-import concept.
These differences lead to simpler code, as you can see in the following listing.

C#
foreach (var item in
 ctx.MetadataWorkspace.GetItems<EntityType>(DataSpace.SSpace))
{
 var currentTreeNode = tree.Nodes[1].Nodes[0].Nodes.Add(item.ToString());
 WriteProperties(currentTreeNode, item, ctx, DataSpace.SSpace);
}
foreach (var item in
 ctx.MetadataWorkspace.GetItems<EdmFunction>(DataSpace.SSpace)
 .Where(i => i.NamespaceName != "SqlServer"))
{
 var currentTreeNode = tree.Nodes[1].Nodes[1].Nodes.Add(item.ToString());
 WriteFunctionParameters(currentTreeNode, item.Parameters,
 DataSpace.SSpace);
}
var container = ctx.MetadataWorkspace.GetItems<EntityContainer>
 (DataSpace.SSpace).First();
var currentNode = tree.Nodes[1].Nodes[2].Nodes.Add(container.ToString());

Listing 12.14 Creating the containers nodes

316 CHAPTER 12 Exploring EDM metadata

WriteEntitySets<EntitySet>(currentNode, container);
WriteEntitySets<AssociationSet>(currentNode, container);

VB
For Each item In ctx.MetadataWorkspace.GetItems(Of EntityType)
 (DataSpace.SSpace)
 Dim currentTreeNode = tree.Nodes(1).Nodes(0).Nodes.Add(item.ToString())
 WriteProperties(currentTreeNode, item, ctx, DataSpace.SSpace)
Next
For Each item In ctx.MetadataWorkspace.GetItems(Of EdmFunction)
 (DataSpace.SSpace).Where(Function(i) i.NamespaceName <> "SqlServer")
 Dim currentTreeNode = tree.Nodes(1).Nodes(1).Nodes.Add(item.ToString())
 WriteFunctionParameters(currentTreeNode, item.Parameters,
 DataSpace.SSpace)
Next
Dim container = ctx.MetadataWorkspace.GetItems(Of EntityContainer)
 (DataSpace.SSpace).First()
Dim currentNode = tree.Nodes(1).Nodes(2).Nodes.Add(container.ToString())
WriteEntitySets(Of EntitySet)(currentNode, container)
WriteEntitySets(Of AssociationSet)(currentNode, container)

As you can see, the differences are small:

 The SSpace value, instead of CSpace, is used to extract items from the storage
side.

 The namespace for removing primitive functions is SqlServer, not Edm.

The rest of the code makes extensive reuse of the existing methods, making every-
thing easier than you may have thought.

 We’ve covered a lot, but now you’ve mastered metadata. This academic exercise
was a good way to learn a new feature, but you may find a bite of the real world more
interesting. In the next section, we’ll show you how metadata can positively affect your
real code.

Why there’s no mapping representation
You surely have noticed that there’s no MSL metadata in the tree. That’s because
there are no methods to access the mapping schema. Although there’s the CSSpace
value in the DataSpace enum, it’s of absolutely no use. The classes representing the
mapping metadata aren’t exposed by Entity Framework, so you can’t access them.

If you think there’s some esoteric reason for this lack, you’re wrong. There has just
been no developer interest in having such APIs. The Entity Framework team decided
to keep the APIs internal, suggesting that you use LINQ to XML to search for the nec-
essary information. It’s not nice, but it’s not difficult to do once you get used to the
mapping structure.

12.4 Writing generic code with metadata
In chapter 6, we introduced a smart method that adds or attaches an entity to the con-
text depending on the value of the primary key. That method works with a fixed

317Writing generic code with metadata

entity, meaning that if you have 100 entities, you have to duplicate it 100 times. That’s
unbearable. Fortunately, thanks to metadata, you can write a single method that can
handle any class.

 Another interesting method is the one that allows you to retrieve any type of entity
using just its keys. Every project has a GetById method for almost every entity. This
requires some coding for the types of the properties and the returning types. Using
metadata, you can write a generic method and save some lines of code.

 We’ll look at these examples in the next sections so you can understand how to use
metadata in such real-world scenarios.

12.4.1 Adding or attaching an object based on custom annotations

Let’s assume you’re adding a new customer. Its CompanyId property is 0 because the
real value is calculated on the database. If you need to update a customer, the
CompanyId property is already set to a value that matches the value in the database (a
value that is higher than 0).

 In chapter 6, you created a method that decided whether to attach or add an entity
to the context based on the value of the primary key properties. If the value is 0, the
entity is added; otherwise, it’s attached. Wouldn’t it be good if such a method could
decide whether to add or to attach an entity based on a value configured in the EDM?

 The steps are pretty simple:

1 Add a custom annotation to the key properties in the EDM, indicating what
value causes the AddObject method to be invoked.

2 Create an extension method (say, SmartAttach) that accepts the entity. It then
checks the key properties’ values, and if they match the ones expressed in the
custom annotation, it invokes the AddObject method; otherwise it invokes the
Attach method.

The first point needs no explanation. We covered it in depth in chapter 5. You just
need to add the efex (or any name you like) namespace, and then use the Insert-
When element inside the CompanyId attribute:

<Schema xmlns:efex="http://efex" ...>
 ...
 <EntityType Name="Company" Abstract="true">
 <Property Name="CompanyId" ...>
 <efex:InsertWhen>0</efex:InsertWhen>
 </Property>
 ...
 </EntityType>
 ...
</Schema>

The fun part is the second point. Look at the following listing.

318 CHAPTER 12 Exploring EDM metadata

C#
public static void SmartAttach<T>(this ObjectSet<T> es, T input)
 where T : class
{
 var objectType = ObjectContext.GetObjectType(input.GetType());
 var osItem = es.Context.MetadataWorkspace.GetItem<EntityType>
 (objectType.FullName, DataSpace.OSpace);
 var csItem = (EntityType)es.Context Retrieves conceptual entityB
 .MetadataWorkspace.GetEdmSpaceType(osItem);
 var value = ((XElement)(csItem.KeyMembers.First() Retrieves insert

value annotation
C .MetadataProperties.First(p =>

 p.Name == "http://efex:InsertWhen").Value)).Value;
 var idType = input.GetType().GetProperty(csItem.KeyMembers.First().Name)
 .PropertyType;
 var id = input.GetType().GetProperty(csItem.KeyMembers.First().Name)
 .GetValue(input, null);
 if (id.Equals(Convert.ChangeType(value, idType))) Adds or attaches object

based on entity and
metadata value

D set.AddObject(input);
 else
 set.Attach(input);
}

VB
<System.Runtime.CompilerServices.Extension>
Public Shared Sub SmartAttach(Of T As Class)(
 ByVal es As ObjectSet(Of T), ByVal input As T)
 Dim objectType = ObjectContext.GetObjectType(input.GetType ())
 Dim osItem = es.Context.MetadataWorkspace.GetItem(Of EntityType)(
 objectType.FullName, DataSpace.OSpace)
 Dim csItem = DirectCast(es.Context. Retrieves

conceptual entity
B

 MetadataWorkspace.GetEdmSpaceType(osItem),
 EntityType)
 Dim value = DirectCast((csItem.KeyMembers.First() Retrieves

insert value
annotation

C
 .MetadataProperties.First(Function(p) _
 p.Name = "http://efex:InsertWhen").Value),
 XElement).Value
 Dim idType = input.[GetType]().GetProperty _
 (csItem.KeyMembers.First().Name).PropertyType
 Dim id = input.GetType().GetProperty(csItem.KeyMembers.First().Name).
 GetValue(input, Nothing)
 If id.Equals(Convert.ChangeType(value, idType)) Then Adds or attaches

object based on
entity and
metadata value

D es.AddObject(input)
 Else
 es.Attach(input)
 End If
End Sub

The method signature is simple; it extends the ObjectSet<T> class and accepts the
entity to be added or attached.

 The first two statements retrieve the POCO type of the entity (remember that it
could be a proxied instance) and look for the entity in the object space of the meta-
data. The object retrieved is then passed to the GetEdmSpaceType method to obtain its

Listing 12.15 Adding or attaching an entity depending on the value in the EDM
conceptual space counterpart B.

319Writing generic code with metadata

 Next, the key property is retrieved, and its custom annotation value is extracted,
obtaining the value that determines whether the entity should be marked for addition
C. The first thing to notice here is that the custom annotation is retrieved using its
full name, http://efex:InsertWhen, and not using the namespace alias. The second
thing is that the custom annotation is exposed as an XML fragment. It’s first cast to
XElement, and then the value is extracted.

 Finally, the value from the metadata is converted to a key property type and com-
pared with the key property value D. If they match, the entity is marked as added; oth-
erwise, it’s attached.

NOTE In this example, we’ve made the assumption that the entity has
only one key property. Naturally, this isn’t always the case, because you
may have many key properties. Accommodating this case doesn’t change
the code a lot; instead of dealing with a single property, you must deal
with an array of properties. Have fun.

The next example we’ll look at involves a generic GetById<T> method. If you’ve used
NHibernate, you’ll know that this method is already provided by the session. Let’s
realize it using Entity Framework.

12.4.2 Building a generic GetById method

ObjectContext has a GetObjectByKey method that searches for an object using its
key. This method has two drawbacks: it returns an object instance that requires cast-
ing to the actual entity type, and it requires an EntityKey instance as input. These
drawbacks make the GetObjectByKey method awkward. Let’s see how to create a
smarter method.

 The GetById<T> method you’ll create in this section overcomes the limitations of
the GetObjectByKey method. First, the GetById<T> method makes use of generics,
eliminating the need for casting the result to the entity type you need. Second, the
GetById<T> method accepts only the key properties’ values, so that the method inter-
face is extremely simple.

GetById<T> internally uses GetObjectByKey, and GetObjectByKey needs an
EntityKey instance as parameter. GetById<T> automatically retrieves, through meta-
data, the values necessary to create the EntityKey instance that is then passed to
GetObjectByKey.

 The code of the GetById<T> method is shown in the following listing.

C#
public static T GetById<T>(this ObjectContext ctx, object id)
{
 var container = ctx.MetadataWorkspace.GetEntityContainer
 (ctx.DefaultContainerName, DataSpace.CSpace);
 var osItem = ctx.MetadataWorkspace.GetItem<EntityType>

Listing 12.16 The GetById<T> implementation
 (typeof(T).FullName, DataSpace.OSpace);

320 CHAPTER 12 Exploring EDM metadata

 var csItem = (EdmType)ctx.MetadataWorkspace.GetEdmSpaceType(osItem);

 while (csItem.BaseType != null) Retrieves
first base type

B
 csItem = csItem.BaseType;

 var esName = container.BaseEntitySets
 .First(s => s.ElementType.FullName == csItem.FullName).Name;
 var fullEsName = container.Name + "." + esName;
 var keyName = ((EntityType)csItem).KeyMembers.First().Name;
 return (T)ctx.GetObjectByKey(new EntityKey(fullEsName, keyName, id));
}

VB
<System.Runtime.CompilerServices.Extension>
Public Shared Function GetById(Of T)(
 ctx As ObjectContext, id As Object) As T

 Dim container = ctx.MetadataWorkspace.
 GetEntityContainer(ctx.DefaultContainerName, DataSpace.CSpace)
 Dim osItem = ctx.MetadataWorkspace.GetItem(Of EntityType)(
 GetType(T).FullName, DataSpace.OSpace)
 Dim csItem = DirectCast(
 ctx.MetadataWorkspace.GetEdmSpaceType(osItem), EdmType)

 While csItem.BaseType IsNot Nothing Retrieves
first base type

B
 csItem = csItem.BaseType
 End While

 Dim entitySetName = container.BaseEntitySets.First(
 Function(s) s.ElementType.FullName = csItem.FullName).Name
 Dim esName = container.Name + "." & entitySetName
 Dim keyName = DirectCast(csItem, EntityType).KeyMembers.First().Name
 Return DirectCast(
 ctx.GetObjectByKey(New EntityKey(esName, keyName, id)), T)
End Function

At this point in the chapter, you should have no difficulty understanding this method.
The first part retrieves the container and the entity in the metadata. They’re necessary
to get the entity set name that is then used to create the EntityKey instance.

 Because the entity set points to the base entity of an inheritance hierarchy, the
base class for the input entity is retrieved through the BaseType property B. The loop
is required because the inheritance can be more than one level deep. When BaseType
is null, the base class has been reached.

 The full entity set name is required by GetObjectByKey, so the entity set name is
appended to the container name. After that, the key property name is retrieved from
the entity. Now every parameter necessary for GetObjectByKey to work has been
retrieved. You just invoke it, cast the result to the generic type, and then return it to
the caller.

 Hopefully these examples have given you an idea of what you can do with meta-
data. You may still be somewhat uncertain of its usefulness, but if you give metadata a

chance, you won’t regret it.

321Summary

12.5 Summary
In this chapter, you’ve learned about a powerful, often underestimated, feature of the
Entity Framework: metadata retrieval.

 You’ve learned how to read the conceptual and storage schemas, and you’ve
learned what the object space is useful for and why the mapping layer doesn’t have a
set of public APIs. All this knowledge makes you a Padawan of metadata.

 What takes you to the Jedi Master level is the ability to find places where metadata
helps you cut down on the code. We presented two examples at the end of the chap-
ter, but there are many others, and your duty is to find them.

 Understanding metadata is also vital to code and database generation, which we’ll
discuss in the next chapter. Code generation uses metadata to create CLR classes from
the model, and database generation creates mapping schema, storage schema, (and
the SQL DDL from this last schema) starting from the conceptual model.

Customizing code
and the designer
You know that by default the Visual Studio designer generates Entity Framework
1.0–style classes. You also know that these classes are generated through a template.
What’s great is that you can modify this template, or create new templates, to gener-
ate classes to fit your needs. You’ve already seen an example in chapter 2, when we
introduced the POCO template provided by Microsoft. Another point where tem-
plates help in generating code is during database DDL generation from the storage
model (when you use the model-first approach). You’ll learn about that later in this
chapter.

 When you modify templates to change the way CLR code or database DDL is
generated, you have to deal with different Entity Framework features and other
products in the .NET framework.

This chapter covers
 Understanding the Visual Studio T4 mechanism

 Customizing code generation

 Customizing database DDL generation

 Customizing the designer
322

323How Visual Studio generates classes

 Metadata is an important feature that you must use to be able to modify templates.
When you create or modify classes in the designer, only the EDMX file is modified; the
template generates the code on demand. It reads the conceptual schema metadata
and generates the code based on that data. The same way, when the database DDL is
generated, the storage and mapping schema are generated. After that, the storage
schema data is used to create the DDL. Everything is metadata-driven.

 To modify templates, a minimal knowledge of Windows Workflow Foundation (WF)
is necessary too, because during database script generation (when using the model-
first approach), the MSL, SSDL, and DDL are generated by a custom workflow action.

 Finally, having good knowledge of the designer helps simplify code generation,
because it can be customized to make things easier for you. For instance, it can be
extended to write custom annotations in the EDMX file without you having to do it
manually.

 This chapter will cover all of these subjects—templates, metadata, Workflow Foun-
dation, and designer extensions—putting them into action to help you customize
your development environment.

13.1 How Visual Studio generates classes
When Visual Studio 2008 shipped, it introduced a text-generation engine named Text
Template Transformation Toolkit (better known as T4). It’s a template-file-based
engine that can generate any data you need.

 We said data, but T4’s generation potential is unlimited. You can create text
strings and save them to a file, or you can create images, Word documents, and so on.
Despite its enormous potential, the goal here is using it for creating classes, which are
just text files.

 Creating a template file is pretty simple. If you’ve already used code-generation
tools (such as CodeSmith), you won’t find it difficult. If you have a Classic ASP back-
ground, you’ll see many similarities between a template and an ASP page.

 A template is a plain-text file with a .tt extension. It has a dedicated icon in the
Solution Explorer window, as figure 13.1 illustrates.

 A template contains code that generates data. This code is executed automatically
when you open the template and save it. A simpler way to trigger generation is right-
clicking the template and selecting the Run Custom Tool item from the context menu.

 A template file is divided into two main sections:

 Directives (pragmas)—Declares assemblies, namespaces, includes, and other
global information

 Code—Contains the code that actually generates the
code (classes, in our case)

Each of these parts is identified by tags that are a key aspect of
the template. We’ll first discuss the tags and then look at the
two sections of the file.

Figure 13.1 A template
file shown in the Solution
Explorer

Template-editing extension
When you open a template, the editor doesn’t offer any help. Autocompletion isn’t
enabled, and there’s no syntax highlighting. Fortunately, Tangible Engineering has
created an extension for Visual Studio that offers features to make editing and com-
prehension easier. You can install it directly from Extension Manager inside Visual
Studio:

1 Click the Tools menu, and select Extension Manager to open the Extension
Manager pop-up window.

2 In that window, click the Online Gallery item at left.
3 Type T4 Editor in the search box at upper right (see the figure).

The free version of this extension offers a limited set of features; if you want the full
version, you can buy it from the Tangible website (http://mng.bz/WAxC).

The Extension Manager window shows the T4 editors.

324 CHAPTER 13 Customizing code and the designer

13.1.1 Understanding template tags

We already said that a template is a text file that is interpreted by an engine to gener-
ate code. To interpret the template file, the engine relies on specific markup in the
template itself.

 We also said that a template file is very similar to a Classic ASP page; the template is
a mix of directives, code, and dynamic text, with the code and directives being identi-
fied by special tags. One difference is that in Classic ASP pages, the server code is sur-
rounded by <% %> tags; but in the template file, both the code and the directives are
surrounded by <# #> tags. Everything inside the tags is interpreted by the engine as

http://mng.bz/WAxC

325How Visual Studio generates classes

code that must be executed (also known as a block); the text that’s not included inside
the tags is what is written to the output file.

 In some cases, you may need to append a special character to the opening tag to
perform special tasks. The first special character is @, which specifies that the block is a
directive:

<#@ template language="C#" debug="false" hostspecific="true" #>

Another important character is =. The block inside this tag returns a value, and it’s
written in the generated code:

public class <#= ClassName #> { }

This block is also known as an evaluation block.
 The last special character is +. It specifies that the code inside the block is class-like.

If you have to create properties or methods, you have to use this character.

<#+
void WriteClassName() {
 ...
}
#>

This block is also known as a class block.
 Understanding tags is only the first step toward understanding templates. We’ll

look at the pragma section next.

13.1.2 Understanding directives

The first directive of a template is template. It identifies the file as a template, and it
must be the first element. It also specifies the language and enables or disables
debugging:

<#@ template language="C#" debug="false" hostspecific="true"#>

Although the template directive is mandatory, all the other directives are optional.
The first one is assembly. It imports an assembly, making its classes available to the
code. The assembly is specified in the name attribute:

<#@ assembly name="System.Core" #>

Once the assembly is declared, you can use the import directive to import a
namespace so you can use classes inside the namespace in the code without fully refer-
encing them. This directive has the same purpose as the Imports and using state-
ments in VB and C#:

<#@ import namespace="System" #>

Another useful directive is output. With it, you can specify the extension of the file
generated by the template, through the extension attribute, and the encoding of the
file, through encoding:
<#@ output extension=".cs" #>

326 CHAPTER 13 Customizing code and the designer

The last directive is include. It allows you to import a code file whose classes can be
used by the template:

<#@ include file="EF.Utility.CS.ttinclude"#>

NOTE The file to be included must be placed in the %ProgramFiles%\
Microsoft Visual Studio 10.0\Common7\IDE\Extensions\Microsoft\Entity
Framework Tools\Templates\Includes folder, or in the same folder as
the template.

You’re two-thirds of the way through learning about templates. The last third, and the
most complex, is the code section.

13.1.3 Writing code

Suppose you need to write a template that generates an HTML page that displays all
the files in a specific directory. This isn’t an Entity Framework–related example, but
don’t worry; you’ll learn about more real-world scenarios later.

 To accomplish this task, you need to add a new file of Text Template type to the
project and write code to retrieve the files in the directory that you need to display;
then, you have to create tags that will write files to the output stream. The following
listing shows an example of a template that generates HTML.

C#
<#@ template language="C#" debug="false" hostspecific="true"#>
<#@ output extension=".html"#>

<#var files = System.IO.Directory.GetFiles("D:\\");#>

Retrieves filesB

<html>
<head><title>Files</title></head>

Writes
static HTML

C

<body>
<#foreach (var file in files){#> Writes

dynamic HTML
D <#=file#>

<#}#>
</body>
</html>

VB
<#@ template language="VB" debug="false" hostspecific="true"#>
<#@ output extension=".html"#>

<#
Dim files = System.IO.Directory.GetFiles("D:\")

Retrieves filesB

Dim file
#>
<html> Writes

static HTML
C<head><title>Files</title></head>

<body>
<#For Each file In files#> Writes

dynamic HTML
D <#=file#>

<#Next#>
</body>

Listing 13.1 Template that creates an HTML file that lists a directory’s files
</html>

327How Visual Studio generates classes

In the first line of this listing, a code block is opened and the files are retrieved B.
The block is then closed to write the beginning part of the HTML C. This part, not
included in code tags, is written in the output stream as is. Next, a new code block
starts the iteration over the files. For each item, an evaluation block adds the filename
to the result stream. Finally, another code block closes the iteration: } for C# and Next
for Visual Basic D.

 The HTML file generated by the preceding template looks like this:

<html>
<head><title>Files</title></head>
<body>
 D:\file1.txt

 D:\file2.txt

</body>
</html>

This example writes the names of the files in a folder. In many cases, you may need a
more complex result whose calculation is better encapsulated in a method (for read-
ability reason). Doing that is easy. First, you add a class block inside which you put a
method that accepts the filename and returns the calculated result. Then, you change
the evaluation block to invoke the method. The new method and the code that
invokes the method are shown here.

C#
...
<#=GetFileName(file)#>

...
<#+
string GetFileName(string file){
 return file;
}
#>

VB
...
<#=GetFileName(file)#>

...
<#+
Private Function GetFileName(ByVal file As String) As String
 Return file
End Function
#>

The GetFileName function is trivial because it just returns the filename. We created it
only to explain how to create and consume methods in the template.

 The result is automatically saved in a file that’s named after the template file and
whose extension matches the template language. If the template name is test.tt, then
the filename is test.cs or test.vb. But wouldn’t it be better to force the extension to be
.html? The output pragma does the trick:

Listing 13.2 Creating methods in the template
<#@ output extension=".html"#>

328 CHAPTER 13 Customizing code and the designer

It’s that simple. The next step is to modify Entity Framework templates to adapt them
to your needs. You’ll learn how to do that next.

13.2 Customizing class generation
In chapter 2, we introduced a template released by the Entity Framework team that
generates POCO classes. Actually, there are two templates: one that generates object
model classes and one that generates the context class. In OrderIT, you placed them
in a single assembly; to keep things simple, we decided to use a single assembly with
data-access code and object model classes.

 In the next chapter, you’ll see that in a well-layered architecture, you put object-
model classes in one assembly and the context class in another. The Entity Framework
team kept this in mind when they decided to deliver two different templates.

 In sections 13.2.2 and 13.2.3, we’ll show you how to customize those templates; but
first, you need to understand how they’re structured so that modifying them will be
easier.

13.2.1 Understanding the available POCO template

Creating a template that reads the EDMX file and generates classes isn’t difficult. You
know that the EDMX file combines the three EDM files in one, so you need metadata
APIs to read conceptual and storage-schema metadata.

 As you learned in chapter 12, accessing metadata using the ObjectContext class or
the EntityConnection is easy. Because the template must generate the context class,
you can’t use the ObjectContext class, and using the EntityConnection class is too
complicated. The only way to access EDMX file metadata is by using the Metadata-
Workspace class directly.

 You learned in chapter 12 that directly creating an instance of MetadataWorkspace
class is complicated. Fortunately, the Entity Framework team has created a helper file
containing a set of classes that expose metadata. What’s even better, the metadata is
exposed as an ItemCollection, so you can reuse the APIs as you learned in chapter 12.

 The helper file is named EF.Utility.CS.ttinclude for C# and EF.Utility.VB.ttinclude
for VB, and it’s in the Visual Studio includes folder. The main class in the helper file is
MetadataLoader, and it exposes metadata through the CreateEdmItemCollection
method, which returns an EdmItemCollection instance. You know that this class holds
conceptual data only. If you want to retrieve the storage data, you have to do it on your
own. But don’t worry; we’ll show you how to do that in section 13.2.2.

 There are other important classes. The first is MetadataTools, which exposes
methods that work on EDM types. For instance, its ClrType method accepts the EDM
type and returns the CLR equivalent. IsKey accepts a property and returns a Boolean
indicating whether it’s part of its entity’s primary key.

 The CodeGenerationTools class performs the dirty work on strings. Its Escape
function has many overloads that accept metadata objects like EdmFunction, Edm-
Property, EntityType, and so on, and returns their escaped names so they don’t con-

flict with language keywords. The SpaceAfter and SpaceBefore methods ensure that

329Customizing class generation

the string they accept as input has a space after or before, respectively, so the string
isn’t bound to the next or the preceding text.

 The last interesting class is Accessibility. It contains static methods that read the
visibility of a type or property defined in the EDM and return a string in the chosen
language. For instance, if a property is defined as public in the EDM, the For-
Property method returns the string "public" for C# and "Public" for VB.

 Both templates instantiate these classes at the very beginning of the code section
so you can use them without any effort. That’s another point for Entity Framework’s
productivity, isn’t it?

 It’s finally time to put all this knowledge to work. The first thing we’ll show you is
how to modify the context template to generate user-defined and scalar-valued func-
tions, as we hinted in the previous chapter.

13.2.2 Generating user-defined and scalar-valued functions

User-defined functions are part of the CSDL; scalar-valued functions are defined in the
SSDL because they’re defined in the database. We said previously that MetadataLoader
only returns data about the conceptual schema, so to retrieve scalar-valued functions
defined in the storage schema, you have to write the code on your own.

 Retrieving the storage schema isn’t that hard. What you need to do is retrieve the
raw XML representing the SSDL and pass it to the MetadataItemCollectionFactory.
CreateStoreItemCollection method. It returns a StoreItemCollection instance
that can be queried, as you saw in the previous chapter.

 You can embed the code to retrieve the storage schema in a class-block method
inside the template. You could even add the code to the MetadataLoader class, but we
don’t recommend that because the file containing the MetadataLoader class isn’t
under source control, and you should maintain it manually on each workstation.
What’s worse, if the Entity Framework team releases a new version of the file contain-
ing the MetadataLoader class, your modifications will be overwritten.

 This listing shows the code you need in the template to retrieve the storage schema.

C#
<#+
StoreItemCollection CreateStoreItemCollection(string sourcePath)
{
 var _textTransformation = DynamicTextTransformation.Create(this);
 sourcePath = Gets EDMX file

absolute path _textTransformation.Host.ResolvePath(sourcePath);

 XNamespace edmx =
 MetadataConstants.EDMX_NAMESPACE_V2;
 var model =

XDocument.Load(sourcePath)
Gets
storage

 .Element(edmx + "Edmx")
 .Element(edmx + "Runtime")

Listing 13.3 Retrieving the storage schema
node .Element(edmx + "StorageModels")

330 CHAPTER 13 Customizing code and the designer

 .Elements().First();
 using (XmlReader reader = model.CreateReader())
 {
 IList<EdmSchemaError> errors = null;
 return MetadataItemCollectionFactory. Loads

storage
schema

 CreateStoreItemCollection(
 new List<XmlReader> { reader }, out errors);
 }
}
#>

VB
<#+
Private Function CreateStoreItemCollection _
 (ByVal sourcePath As String) As StoreItemCollection
 Dim _textTransformation = DynamicTextTransformation.Create(Me)
 sourcePath = Gets EDMX file

absolute path _textTransformation.Host.ResolvePath(sourcePath)

 Dim edmx As XNamespace = MetadataConstants.EDMX_NAMESPACE_V2
 Dim model = XDocument.Load(sourcePath).
 Element(edmx + "Edmx"). Gets

storage
node

 Element(edmx + "Runtime").
 Element(edmx + "StorageModels").
 Elements().First()
 Using reader As XmlReader = model.CreateReader()
 Dim errors As IList(Of EdmSchemaError) = Nothing
 Return

MetadataItemCollectionFactory. Loads
storage
schema

 CreateStoreItemCollection(
 New List(Of XmlReader)(), errors)
 End Using
End Function
#>

In addition to the schema, you need the namespace. It’s required in order to build the
stub methods. Retrieving the namespace requires a new method whose code is quite
similar to listing 13.3. The difference is that when you have the Schema element, you
return its namespace attribute instead of the whole element:

C#
string GetStoreNamespace(string sourcePath)
{
 ...
 return model.Attribute("Namespace").Value;
}

VB
Private Function GetStoreNamespace(ByVal sourcePath As String) As String
 ...
 Return model.Attribute("Namespace").Value
End Function

Now that the plumbing is ready, you can write the code that creates the stubs for the

functions. First, you retrieve all the functions from both the conceptual and storage

331Customizing class generation

schemas using a LINQ query. Then, you iterate over the elements, and for each one
you retrieve the return type and the parameters. When you have them, you can write
the stub methods’ code. That’s all shown in the following listing.

C#
<#
var modelNamespace = loader. Retrieves model

namespaces
B

 GetModelNamespace(inputFile);
var storeNamespace = GetStoreNamespace(inputFile);
var functions = CreateStoreItemCollection(inputFile) Retrieves scalar-valued

and user-defined functionsC
 .GetItems<EdmFunction>()
 .Where(f => (bool)f.MetadataProperties
 .First(p => p.Name == "IsComposableAttribute").Value
 && f.NamespaceName == storeNamespace)
 .Select(f => new { Namespace = storeNamespace, Function = f })
 .Union(ItemCollection.GetItems<EdmFunction>()
 .Where(i => i.NamespaceName == modelNamespace)
 .Select(f => new { Namespace = modelNamespace, Function = f }));

foreach(var item in functions){
 string returnTypeElement = String.Empty;

Generates
function return
type string

D

 try
 {
 returnTypeElement = code.Escape(ef.GetElementType(
 item.Function.ReturnParameter.TypeUsage));
 }
 catch
 {
 returnTypeElement = "DbDataRecord";
 }
 if (item.Function.ReturnParameter
 .TypeUsage.EdmType is CollectionType)
 returnTypeElement =
 "IEnumerable<" + returnTypeElement + ">";

 var parameters = FunctionImportParameter.Create
 (item.Function.Parameters, code, ef);

Generates
parameter
string

E

 string paramList = String.Join(", ", parameters.Select(
 p => p.FunctionParameterType + " " +
 p.FunctionParameterName).ToArray());
#>
 [EdmFunction("<#=item.Namespace#>", Writes

functions
F

 "<#=item.Function.Name#>")]
 public static <#=returnTypeElement#>
 <#=item.Function.Name#> (<#=paramList#>)
 {
 throw new NotImplementedException
 ("Cannot call this method");
 }<#
}#>

Listing 13.4 Creating the code for stub methods

332 CHAPTER 13 Customizing code and the designer

VB
<#
Dim modelNamespace = Retrieves model

namespaces
B

 loader.GetModelNamespace(inputFile)
Dim storeNamespace = GetStoreNamespace(inputFile)
Dim functions = CreateStoreItemCollection(inputFile) Retrieves scalar-valued

and user-defined functionsC
 .GetItems(Of EdmFunction)()
 .Where(Function(f) CBool(f.MetadataProperties
 .First(Function(p) p.Name = "IsComposableAttribute").Value)
 AndAlso f.NamespaceName = storeNamespace)
 .Select(Function(f)
 New With { .Namespace = storeNamespace, .Function = f })
 .Union(ItemCollection.GetItems(Of EdmFunction)()
 .Where(Function(i) i.NamespaceName = modelNamespace)
 .Select(Function(f)
 New With { .Namespace = modelNamespace, .Function = f }))

For Each item In functions
 Dim returnTypeElement As String = String.Empty

Generates
function
return
type
string

D
 Try
 returnTypeElement = code.Escape(ef.GetElementType(
 item.Function.ReturnParameter.TypeUsage))
 Catch
 returnTypeElement = "DbDataRecord"
 End Try
 If TypeOf item.Function.ReturnParameter.TypeUsage.EdmType Is
 CollectionType Then
 returnTypeElement =
 "IEnumerable(Of" & returnTypeElement & ")"
 End If

 Dim parameters = FunctionImportParameter.Create(item.Function.Parameters,
 code, ef)

Generates
parameter string

E
 Dim paramList As String = String.Join(", ", parameters.Select(
 Function(p) (p.FunctionParameterType & " ") +
 p.FunctionParameterName).ToArray())
#>
 <EdmFunction("<#=item.Namespace#>", Writes

functions
F

 "<#=item.Function.Name#>")> _
 Public Shared Function <#=item.Function.Name#>
 (<#=paramList#>) As <#=returnTypeElement#>
 throw new NotImplementedException(
 "Cannot call this method");
 End Function<#
Next#>

Lots of interesting things happens in this listing. First, the namespace from both mod-
els is retrieved so it can be later used to create the stubs B. The loader variable is an
instance of the MetadataLoader class, and it’s used to retrieve the conceptual schema
namespace. GetStoreNamespace is the method that returns the storage schema
namespace. inputFile is the EDMX file.

 After that, a LINQ query joins the storage and conceptual functions C. Notice how
only the objects in the specified namespace are extracted, and in the case of the stor-
age schema how only scalar-valued functions (functions whose IsComposable-

Attribute attribute value is true) are retrieved.

333Customizing class generation

 Next, a loop over the functions is started, and for each one the string representing
the return type is retrieved. The key point here is that you get the type as a string by
invoking the MetadataTools class’s GetElementType method, and you don’t have to
deal with the complexity of converting information from EDM to CLR format D. If the
method throws an exception, the function returns a DbDataRecord. If the return value
is a list, it’s wrapped by the IEnumerable<T> class.

 The next step is creating the string for the parameters E. First, the Function-
ImportParameter class’s Create method creates an array of parameters where each
one exposes the type and the name as a string. Then, a LINQ query joins this informa-
tion, separating the individual parameters with commas.

 Finally, you have the function namespace, name, parameters, and return type. You
now can close the block method and create the function using markup text and evalu-
ation blocks F.

 This is the result of the template in listing 13.4:

C#
[EdmFunction("OrderITModel", "GetUDFTypedAddresses")]
public static CustomerProjection GetUDFTypedAddresses
 (Customer customer)
{
 throw new NotImplementedException("Cannot call this method");
}

VB
<EdmFunction("OrderITModel", "GetUDFTypedAddresses")> _
Public Shared Function GetUDFTypedAddresses(ByVal customer As Customer) _
 As CustomerProjection
 Throw New NotImplementedException("Cannot call this method")
End Function

Modifying the template that generates object model classes isn’t any different from
modifying the context template. Naturally the type of data to be treated changes, but
the technique is the same: you use a mix of code blocks and generated text.

13.2.3 Generating data-annotation attributes

In chapters 5 and 12, we showed you how to add custom information to EDM and how
to retrieve it in the code. Here we’ll complete the circle and show you how to generate
data annotation attributes from those custom EDM annotations.

 The example we looked at in those chapters added validation information to the
Supplier class’s IBAN property. What you’ll do now is generate an attribute for that
property, as shown in the following snippet:

C#
[RegularExpression(@"[a-zA-Z]{2}\d{2}[][a-zA-Z]\d{3}[]\d{4}

➥[]\d{4}[]\d{4}[]\d{4}[]\d{3}|[a-zA-Z]{2}\d{2}[a-zA-Z]\d{22}"]

VB
<RegularExpression("[a-zA-Z]{2}\d{2}[][a-zA-Z]\d{3}[]\d{4}[]
➥\d{4}[]\d{4}[]\d{4}[]\d{3}|[a-zA-Z]{2}\d{2}[a-zA-Z]\d{22}")> _

334 CHAPTER 13 Customizing code and the designer

As you can imagine, the template that generates object-model classes retrieves the
entities’ metadata from the EDM’s conceptual schema and iterates over them, generat-
ing classes, properties, and so on. We’re interested in the property-creation process
because you have to add the preceding code to the IBAN property. You need to plug in
the code before the scalar properties are written. You can easily find the point where
scalar properties are generated by looking for the LINQ query that retrieves them
from the entity’s properties.

 Listing 13.5 adopts another technique. Instead of mixing text and code blocks, it
uses a method that takes the property and returns a string containing the attribute.
Just before the property is written, the method is invoked in an evaluation block.

C#
<#+
string WriteAttribute(EdmMember edmProperty)
{
 var meta = edmProperty.MetadataProperties.FirstOrDefault(
 mp => mp.Name.IndexOf("http://val") > -1);

Searches for
custom node

B

 if (meta != null)
 {
 XElement xe = meta.Value as XElement;
 return "[RegularExpression(@\"" + xe.Value + "\")]"; Writes

attribute C
 }
 return String.Empty;
}#>

VB
<#+
Private Function WriteAttribute(ByVal edmProperty As EdmMember) As String
 Dim meta = edmProperty.MetadataProperties.FirstOrDefault(
 Function(mp) mp.Name.IndexOf("http://val") > -1)

Searches for
custom node

B

 If meta IsNot Nothing Then
 Dim xe As XElement = DirectCast(meta.Value, XElement)
 Return "<RegularExpression(""" & xe.Value & """)> _ " Writes

attribute C
 End If
 Return String.Empty
End Function
#>

This code should look familiar to you. The first noticeable thing is that the method
scans the input property’s metadata, looking for an item with the validation
namespace (the one specified in the Schema element) B.

 If the metadata exists, it’s cast to XElement, and its value is used to create the data
annotation attribute C. You can then invoke the WriteAttribute method before a
property is created, in the following way:

<#=WriteAttributes(edmProperty)#>

The use of the template increases productivity. If it didn’t generate the scalar-valued

Listing 13.5 Creating a data annotation containing a regular expression for a property
and user-defined functions, you would have to write and maintain them, which means

335Customizing class generation

writing and maintaining a lot of code. Thanks to the template, these functions are
generated and maintained by a single Visual Studio command.

 Class generation greatly benefits from templates. The creation of POCO classes is
just one of the possible scenarios. The ability to create attributes, to customize setters,
and so on speeds things up to a great extent. We consider templates to be a great new
feature in Entity Framework 4.0.

 Classes don’t consist only of data from the database. They can also contain meth-
ods and properties that aren’t persisted in the database. The EDM knows nothing
about them, so you have to find a way to create them.

13.2.4 Extending classes through partial classes

Suppose you need to create a FullShippingAddress string property in the Customer
class. This property will be read-only and flattens the ShippingAddress complex prop-
erty into a string.

 Templates can’t generate such a property for you, and if you add such a property
to the class generated by the template, the property will be lost at the next code regen-
eration. To add this code to the class manually without losing it when the class is
regenerated, you have to create it in a partial class.

 Partial classes are a feature introduced in .NET Framework 2.0 that allow you to
split a class into multiple files in the same assembly. At compile time, the compiler
joins the files and generates only one class. The basic requirement for a class to be
partial is that all files that define it contain the partial keyword in the definition, as
shown in the following code:

C#
public partial class Customer
{
 ...
}

VB
Public Partial Class Customer
 ...
End Class

The template already generates partial classes, so you don’t have to touch it. What you
have to do is add a new class to the project, name it Customer, sign it with the partial
keyword for C# or Partial keyword for Visual Basic, and then add the property as the
following listing shows.

C#
public partial class Customer
{
 public string FullShippingAddress
 {

Listing 13.6 Creating a partial class
 get

336 CHAPTER 13 Customizing code and the designer

 {
 return String.Concat(ShippingAddress.Address, ",",
 ShippingAddress.ZipCode, ", ",
 ShippingAddress.City);
 }
 }
}

VB
Public Partial Class Customer
 Public ReadOnly Property FullShippingAddress() As String
 Get
 Return String.Concat(ShippingAddress.Address, ",",
 ShippingAddress.ZipCode, ", ",
 ShippingAddress.City)
 End Get
 End Property
End Class

With this technique, you can extend your classes and add any code you need.
 Nevertheless, there are things you can’t do with partial classes. For instance, you

can’t add an attribute to a property or method defined in another file, nor can you
change the implementation of a method or property defined in another file. You can
only add code, and nothing more.

NOTE Properties added in partial classes can’t be used in LINQ to Enti-
ties or Entity SQL queries because they aren’t mapped in the EDM.

We mentioned before that just as you can generate code from the EDM, you can create
a script to generate the database from the storage schema. This is what model-first
design is all about. You design the conceptual schema, and then the mapping schema,
the storage schema, and the database script are generated on that basis. The good
part is that the database generation is completely customizable.

13.3 How Visual Studio generates database DDL
As we said in chapter 2, the model-first support in the designer is still naive. Its current
limitations make it impractical to use. Fortunately, the designer has been built on a
great extension mechanism that you can use to modify the designer’s default behav-
ior. This extension mechanism isn’t simple. It requires the use of Workflow Founda-
tion, templates, metadata, and EDM knowledge. Due to this complexity, we’ll go slowly
and explain it all in detail.

 The Entity Framework team that built the designer’s extensibility mechanism has
also published a toolkit that simplifies the process of building designer extensions to
generate databases. The extensions are still a bit difficult to create, but it’s a lot sim-
pler when you use the toolkit. The toolkit, Entity Designer Database Generation
Power Pack, can be downloaded here: http://mng.bz/ssf0; or you can download it via
Visual Studio’s Extension Manager window.

 Before delving into the details, let’s take a quick look at the steps involved when

you adopt the model-first approach and generate a database script. In the model-first

http://mng.bz/ssf0

337How Visual Studio generates database DDL

scenario, you design entities without worrying about how they’re mapped, because
you don’t have a database yet. When you’ve finished designing the model, you right-
click the designer and select the Generate Model from Database option.

 The command opens a pop-up window in which you can add the database connec-
tion string (required the first time you generate the database). After some internal
processing, a new window opens, displaying the database script.

 How does this happen? It’s all based on a Windows Workflow Foundation workflow
launched by the designer. We’ll look at that next.

13.3.1 Choosing the workflow

To choose which workflow the designer should use to generate mapping schema, stor-
age schema, and database script, you have to open the designer, right-click it, and
select properties. Figure 13.2 shows the interesting part of the Properties toolbox.

Figure 13.2 The designer
properties that manage
database script generation

 The Database Generation Workflow property indicates what workflow is used to
generate the database. The only workflow available out of the box is TablePerType-
Strategy.xaml. The designer knows about it because it looks for files with an .xaml
extension in the %ProgramFiles%\Microsoft Visual Studio 10.0\Common7\IDE\
Extensions\Microsoft\Entity Framework Tools\DBGen directory.

 As you can see in figure 13.2, the workflow property has a drop-down list, meaning
you can choose a different workflow. To do that, you need to create another .xaml
workflow file inside the DBGen directory. The Properties Window will automatically
list it in the drop-down menu when it’s expanded.

 Whatever workflow you choose, it has to do three things:

1 Generate the storage schema from the conceptual schema.
2 Generate the mapping schema.
3 Generate the database script from the storage schema.

The default workflow separates these steps into two actions. The first action takes care
of steps 1 and 2, and the second action performs step 3. The entire workflow can be
seen in the following listing.

<Activity x:Class="GenerateDatabaseScriptWorkflow"
 xmlns="http://schemas.microsoft.com/netfx/2009/xaml/activities"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:s="clr-namespace:System;assembly=mscorlib"
 xmlns:sde="clr-namespace:System.Data.Metadata.Edm;

➥assembly=System.Data.Entity"
 xmlns:edm="clr-

Listing 13.7 Workflow that generates a script to persist inheritance with TPT
➥namespace:Microsoft.Data.Entity.Design.DatabaseGeneration.Activities;

338 CHAPTER 13 Customizing code and the designer

➥assembly=Microsoft.Data.Entity.Design.DatabaseGeneration"
 xmlns:edm1="clr-

➥namespace:Microsoft.Data.Entity.Design.DatabaseGeneration.Activities;

➥assembly=Microsoft.Data.Entity.Design">
 <x:Members>
 <x:Property Name="Csdl" Type="InArgument(sde:EdmItemCollection)" />
 <x:Property Name="ExistingSsdl" Type="InArgument(s:String)" />
 <x:Property Name="ExistingMsl" Type="InArgument(s:String)" />
 <x:Property Name="Ssdl" Type="OutArgument(s:String)" />
 <x:Property Name="Msl" Type="OutArgument(s:String)" />
 <x:Property Name="Ddl" Type="OutArgument(s:String)" />
 </x:Members>
 <Sequence>
 <edm:CsdlToSsdlAndMslActivity CsdlInput="[Csdl]"
 SsdlOutput="[Ssdl]" MslOutput="[Msl]"
OutputGeneratorType="Microsoft.Data.Entity.Design.DatabaseGeneration.

➥OutputGenerators.CsdlToSsdl,

➥Microsoft.Data.Entity.Design.DatabaseGeneration"
MslOutputGeneratorType="Microsoft.Data.Entity.Design.DatabaseGeneration

➥.OutputGenerators.CsdlToMsl,

➥Microsoft.Data.Entity.Design.DatabaseGeneration" />
 <edm1:SsdlToDdlActivity ExistingSsdlInput="[ExistingSsdl]"
 SsdlInput="[Ssdl]" DdlOutput="[Ddl]" />
 </Sequence>
</Activity>

Even if you aren’t a workflow expert, you should be able to understand what this work-
flow does. The CsdlToSsdlAndMslActivity activity reads the CSDL and generates
SSDL and MSL, whereas SsdlToDdlActivity creates the database script starting from
the SSDL. It’s that simple.

13.3.2 Generating SSDL, MSL, and DDL

The CsdlToSsdlAndMslActivity activity doesn’t require you to do anything. It
already has everything it needs to accomplish its task. That’s not true of the SsdlTo-
DdlActivity activity, which needs an input from you.

 In figure 13.2, you see two important properties: Database Schema Name and DDL
Generation Template. The first is the database schema, and by default it’s set to dbo.
You’re free to modify it as you like, but keep in mind that all tables will be generated
under that schema. The second property is more important because it specifies the
template that will be invoked by the second workflow action (SsdlToDdlActivity).

 The default template is SSDLToSQL10.tt, and it’s situated in the same folder as the
workflow file. Like the workflow property, the template property has a drop-down list.
The designer looks for *.tt files in the DBGen folder to populate the drop-down list
with templates.

 Let’s quickly recap:

 You can customize the way MSL and SSDL are generated (for instance, to apply a
TPH strategy instead of TPT, which is the default).

 You can customize the way the database script is generated (for instance, to cre-
ate an Oracle database or to generate a script that contains only the modifica-

tions made to the model since the last time the database script was generated).

339Customizing DDL generation

That’s complete control.
 It’s now time to talk about the Entity Designer Database Generation Power Pack

toolkit.

13.4 Customizing DDL generation
The Database Generation Power Pack installer copies a set of .xaml and .tt files into
the Visual Studio template folder. When you open the drop-down lists for the Data-
base Generation Workflow and DDL Generation Template properties, you’ll see many
more options, as shown in figure 13.3.

Figure 13.3 The workflows and
templates installed by the Database
Generation Power Pack

NOTE The templates installed by this CTP are written in C# only, so we
won’t show VB versions.

This gives you lots of new toys to play with. As you may imagine based on its name, the
Generate T-SQL Via T4 (TPH).xaml file is the workflow that generates tables to persist
inheritance hierarchies using the TPH strategy. We’re going to talk about this work-
flow and show you how the Database Generation Power Pack works.

 Here’s the Sequence section from the XAML file:

<Sequence>
 <dbtk:CsdlToSsdlTemplateActivity SsdlOutput="[Ssdl]"

 TemplatePath="$(VSEFTools)\DBGen\CSDLToSSDL_TPH.tt"/>

340 CHAPTER 13 Customizing code and the designer

 <dbtk:CsdlToMslTemplateActivity MslOutput="[Msl]"
 TemplatePath="$(VSEFTools)\DBGen\CSDLToMSL_TPH.tt"/>
 <ded:SsdlToDdlActivity ExistingSsdlInput="[ExistingSsdl]"
 SsdlInput="[Ssdl]" DdlOutput="[Ddl]" />
</Sequence>

The three activities started here create the SSDL, the MSL, and the DDL. What’s really
smart about these workflow actions is that instead of consisting of lots of code, they
generate SSDL, MSL, and DDL by running the CSDLToSSDL_TPH.tt, CSDLToMSL_
TPH.tt, and SSDLToSQL10.tt templates, respectively. Let’s take a quick look at each of
them so you understand how they work.

13.4.1 Understanding the conceptual-to-storage template

The first node to be created in the storage model is Schema. It needs the data-store
namespace, the database type, and the database version. Database information is
retrieved via the connection string, and the namespace name is based on the concep-
tual schema name. This information is available in the template because it’s passed in
by the workflow action.

 This is the template code that generates the Schema element:

<Schema Namespace="<#=ssdlModelNamespace#>" Alias="Self"
 Provider="<#=providerInvariantName#>"
 ProviderManifestToken="<#=providerManifestToken#>"
 xmlns="<#=ssdlNamespace#>" xmlns:store="<#=essgNamespace#>">

And this is the generated output:

<Schema Namespace="OrderITModel.Store" Alias="Self"
 Provider="System.Data.SqlClient"
 ProviderManifestToken="2008"
 xmlns:store="http://schemas.microsoft.com/ado/2007/12/edm/

➥ EntityStoreSchemaGenerator"
 xmlns="http://schemas.microsoft.com/ado/2009/02/edm/ssdl">

NOTE The variables ssdlModelNamespace, providerInvariantName, and
so on are populated in the template before this piece of code. If you want
to see how the variables are populated, look at the template.

After the Schema element, the container and the entity set are created. The code gen-
erates a table for each base class and a table for each many-to-many relationship (the
famous link table). To easily obtain information about base classes and many-to-many
relationships from the EDM, the template uses a set of extension methods that the
Entity Framework team has created. For instance, the GetAllEntityTypes method
wraps a call to the GetItems<EntityType> method of the EdmItemCollection class.
The following listing shows this code.

<EntityContainer
 Name="<#=this.WriteEntityContainerName(csdlModelNamespace)#>">

Listing 13.8 Container and entity-set creation
<#

341Customizing DDL generation

foreach (EntityType entityType in edm.GetAllEntityTypes()
 .Where(e => !e.IsDerivedType()))
{#>

 <EntitySet Name="<#=WriteEntityTypeName(entityType, edm)#>"
 EntityType="<#=ssdlModelNamespace#>.
 <#=WriteEntityTypeName(entityType, edm)#>" store:Type="Tables"
 Schema="<#=databaseSchemaName#>" />
<#}
foreach (AssociationSet associationSet in edm.GetAllAssociationSets()
 .Where(set => set.GetAssociation().IsManyToMany())) { #>

 <EntitySet Name="<#=associationSet.Name#>"
 EntityType="<#=ssdlModelNamespace#>.
 <#=associationSet.ElementType.Name#>" store:Type="Tables"
 Schema="<#=databaseSchemaName#>" />
<#}

The association sets are also created at this point, but showing that code here would
bore you and take up too much space. You can find the code in the template if you’re
interested.

 The next thing the template does is describe the tables. This involves a lot of code
to correctly generate the storage schema:

 Complex properties don’t exist in the database, so their inner properties must
be correctly named to avoid conflicts (think about BillingAddress and
ShippingAddress in OrderIT’s Customer entity). The pattern used to avoid col-
lisions is ComplexPropertyName_SubPropertyName.

 In tables containing an inheritance hierarchy, a discriminator column must be
added.

 Foreign-key columns must be added even if they aren’t specified in the entity,
because they’re required in the database to maintain relationships.

The following listing shows an excerpt of what the template code looks like. The table,
key, and discriminator definitions are shown here—the property definition requires a
lot more code.

<EntityType Name=
 "<#=WriteEntityTypeName(csdlEntityType, edm)#>"> Table definition
 <Key>
 <#foreach (EdmMember key in csdlEntityType.GetRootOrSelf()
 .GetKeyProperties())
 {#>
 <PropertyRef Name="<#=key.Name#>" /> Primary key columns
 <#}#>
 </Key>
...
<#if (csdlEntityType.GetEntitySet(edm).ContainsInheritanceHierarchy(edm)){
#>
 <Property Name="__Disc__" Type="nvarchar" MaxLength="Max"
 Nullable="false" /> Discriminator column

Listing 13.9 Table, primary key, and discriminator definitions
<#}#>

342 CHAPTER 13 Customizing code and the designer

We didn’t cover associations here because they would involve a lot of code. If you want
to learn more, look at the template.

 That’s pretty much all there is to know about the storage-schema generation. Let’s
move on to the mapping schema, which is relatively simpler.

13.4.2 Understanding the conceptual-to-mapping template

The concept that drives the generation of the mapping schema is the same as for the
storage schema. Entities are retrieved using metadata, and each standalone entity has
a one-to-one mapping with the corresponding table. Entities that are part of an inher-
itance hierarchy have all their properties grouped into a single table.

 Following these principles, writing a template is straightforward, as the following
listing demonstrates.

<#foreach (EntitySet set in edm.GetAllEntitySets()) {#>
 <EntitySetMapping Name="<#=set.Name#>">
 <#
 IEnumerable<EntityType> containingTypes = set.GetContainingTypes(edm);
 bool containsInheritanceHierarchy = containingTypes.Count() > 1;
 foreach (EntityType type in containingTypes)
 {#>
 <EntityTypeMapping TypeName="<#=type.FullName#>">
 <MappingFragment
 StoreEntitySet="<#=WriteEntityTypeName(set.ElementType, edm)#>">
 <#foreach (EdmProperty property in Retrieves key

properties
B

 set.ElementType.GetKeyProperties())
 {
 #>
 <ScalarProperty Name="<#=property.Name#>"
 ColumnName="<#=property.Name#>" />
 <#}
 foreach (EdmProperty property in
 (type.GetPropertiesInAllBaseTypes(). Retrieves all

other properties
C

 Except(set.ElementType.GetKeyProperties()
 .Distinct())
 {
 if (property.IsComplexProperty())
 {
 ConstructComplexProperty(property, property.Name,
 csdlModelNamespace);
 }
 else
 {#>
 <ScalarProperty Name="<#=property.Name#>"
 ColumnName="<#=property.Name#>" />
 <#}
 }
 if (containsInheritanceHierarchy) Maps discriminator

for hierarchies
D

 {#>

Listing 13.10 Mapping entities to tables
 <Condition ColumnName="__Disc__"

343Customizing DDL generation

 Value="<#=type.Name#>" /> Maps discriminator
for hierarchiesD <#}#>

 </MappingFragment>
 </EntityTypeMapping>
 <#}#>
 </EntitySetMapping>
<#}#>

The method names are so self-explanatory that the code is easy to follow. It first
retrieves all the entity sets, and for each one retrieves the table mapping, first for the
key properties B, and then for all other properties of the entity that are part of the
entity set C. At the end, the discriminator column is mapped if the entity is part of an
inheritance hierarchy D.

 You’ve now seen how the workflow activities generate the EDM (more precisely,
how the templates generate text that is saved and encapsulated in the EDMX). The
step for us to look at is how the database script is generated from the storage schema.

13.4.3 Understanding the storage-to-database script template

The database-script-generation process is very similar to the process we looked at in
the previous section. The template reads metadata from the storage schema and gen-
erates DDL script like what you see in the following listing.

<#
foreach (EntitySet entitySet in Store.GetAllEntitySets())
{
 string schemaName = Id(entitySet.GetSchemaName());
 string tableName = Id(entitySet.GetTableName());
#>
CREATE TABLE [<#=schemaName#>].[<#=tableName#>] (
<#
 for (int p = 0; p < entitySet.ElementType.Properties.Count; p++)
 {
 EdmProperty prop = entitySet.ElementType.Properties[p];
#>
 [<#=Id(prop.Name)#>] <#=prop.ToStoreType()#>
 <#=WriteIdentity(prop, targetVersion)#>
 <#=WriteNullable(prop.Nullable)#>
 <#=(p < entitySet.ElementType.Properties.Count - 1) ? "," : ""#>
 <#}#>
);
<#}#>

This code retrieves all the storage entity sets (the database tables) and then builds the
CREATE TABLE statements by iterating over all the properties.

 Congratulations. You’ve just learned how the Database Generation Power Pack cre-
ates the code that builds a database script based on the entities created in the
designer.

Listing 13.11 Generating database tables

344 CHAPTER 13 Customizing code and the designer

 What you have seen so far is an external extension to the designer; the designer
always remains the same. Prepare yourself, because in the next section we’ll show you
how to add new behavior to the designer.

13.5 Creating designer extensions
The Entity Framework team has added a lot of extensibility points into the designer.
You can plug in custom behaviors via these four interfaces:

 IEntityDesignerExtendedProperty—Allows you to add custom properties to
any item on the designer surface: entities, properties, associations, and so on.

 IModelTransformExtension—Lets you customize the EDMX file in two phases:
after it’s loaded (but before it’s shown by the designer) and before it’s saved.

 IModelConversationExtension—Lets you transform a mapping file in a cus-
tom format to the EDMX format, which is then passed to the designer for visual-
ization. There’s also a reverse method that takes the EDMX and allows you to
save it in your format.

 IModelGenerationExtension—Exposes methods that let you customize behav-
ior when the EDMX file is generated by the initial wizard and when it’s updated
by the Update Model wizard.

Unless you need very particular customizations, the last three interfaces are of little
interest; the first one may save you from having to make some manual EDMX
modifications.

 Let’s take a step back and look at the SmartAttach<T> extension method created
in chapter 12. That method takes an entity as input and decides whether to add or
attach it to the context based on the value of the primary key specified in a custom
EDM annotation: if the primary-key property value is 0, the method adds the entity to
the context; otherwise, the method attaches the entity to the context.

 You know that you have to manually modify the EDMX file to add the custom anno-
tation that specifies the value that determines whether the input entity must be added
or attached to the context. Wouldn’t it be absolutely fantastic if you could set this
value by using the designer, without manually touching EDMX? It would look some-
thing like what’s shown in figure 13.4.

 We bet you’re whispering, “wow.” In the rest of this section, we’ll show you how to
build this designer extension.

13.5.1 How the property-extension mechanism works

Customizing a designer is generally thought to be tough work, and often that’s true.
Lots of base classes and interfaces to implement, plus a lack of documentation, make
thing really difficult sometimes. Fortunately, the Entity Framework designer is an
exception. Its extensibility model is built on the Managed Extensibility Framework
(MEF), which already takes care of all the plumbing.

Figure 13.4 The custom
annotation value is shown in
the Property Editor when the
entity property is selected.

345Creating designer extensions

The result is that you only have to create two classes to extend the designer. The first
(which we’ll call the property class) reads and writes values from and to the EDMX, and
the second (often known as the factory) acts as the bridge between the designer and
the first class.

 When you select an item in the designer and then go to the Properties window, the
designer goes to the factory and asks for an object containing the property to be
added to the Properties window. The factory instantiates the property class and
returns it to the designer.

 The designer sends the object to the Properties window, which retrieves the
exposed property and shows it in the designer. From that moment on, when you mod-
ify the property, the getter and setter work directly with the EDMX. Figure 13.5 illus-
trates this workflow.

Returns the
property class

Returns the
property class

property class
Instan�ates the Checks addi�onal Asks for addi�onal

proper�esproper�es

Shows
property
class
proper�es

Property
window Designer Factory Property

class

Figure 13.5 The Property window asks
the designer for additional properties to
display. The designer delegates the
factory, which instantiates the property
class that is then displayed by the
Properties window.

 The first step in extending the designer is creating the extension project.

13.5.2 Setting up the project containing the extension

A designer-customization project requires two classes: the manifest file that installs the
generated extension, and a couple of references. To create these, follow these steps:

1 Create a new Class Library project inside the OrderIT solution, and name it
OrderIT.DesignerExtensions.

2 Delete the Class1.* file.
3 Add a reference to the System.ComponentModel.Composition assembly that’s

situated in the .NET Framework 4.0 folder (%ProgramFiles%\Reference
Assemblies\Microsoft\Framework\.NETFramework\v4.0).

346 CHAPTER 13 Customizing code and the designer

4 Add a reference to the Microsoft.Data.Entity.Design.Extensibility

assembly located in the Visual Studio assemblies folder (%ProgramFiles%
\Microsoft Visual Studio 10.0\Common7\IDE\PublicAssemblies).

5 Add a new class, and name it InsertWhenValue. It’s the property class that
manipulates the EDMX file.

6 Add a new class, and name it InsertWhenFactory. It’s the bridge class, or
factory.

7 Add a new XML file, and name it extension.vsixmanifest. It’s needed to
install the extension in Visual Studio.

8 Right-click the XML file, and select Properties. In the Properties window, set the
Build Action property to VsixContent.

The project is now set up. What you need to do next is put some code inside the
classes. We’ll start with the property class that handles the EDMX file; it’s the most
important.

13.5.3 Creating the property class

The property class has two purposes: exposing the properties that must be added to
the Properties window, and reflecting their values in the EDMX. In this example, when
you set the value in the Properties window, the property setter has to create, or
update, the custom annotation in the EDMX. Similarly, when the property is read, the
getter must retrieve the custom annotation and return its value, which is then shown
in the Properties window.

 Here’s the code for the property class.

C#
class InsertWhenValue
{
 internal static XName ELEMENTNAME = XName.Get("InsertWhen",
 "http://EFEX");

 private XElement _property;
 private PropertyExtensionContext _context;

 public InsertWhenValue(XElement parent, Accepts designer context
and EDM element

B PropertyExtensionContext context)
 {

 _context = context;
 _property = parent;
 }

 [DisplayName("Add to context value")]
 [Description("Gets or sets the value that adds an entity the context")]
 [Category("Extensions")]
 [DefaultValue(false)]

Listing 13.12 Creating the designer property class
 public string Value

347Creating designer extensions

 {
 get
 {
 XElement child = _property.Element(ELEMENTNAME); Returns EDM

element value
C return (child == null)

 ? String.Empty : child.Value;
 }
 set
 {
 if (String.IsNullOrEmpty(value)) return;
 using (EntityDesignerChangeScope scope =

Creates scope
for designer
undo command

D

 _context.CreateChangeScope("Set InsertWhen"))
 {
 var element = _property.Element(ELEMENTNAME); Sets EDM

element
value

E if (element == null)
 _property.Add(
 new XElement(ELEMENTNAME, value));
 else
 element.SetValue(value);
 scope.Complete();
 }
 }
 }
}

VB
Class InsertWhenValue
 Friend Shared ELEMENTNAME As XName = XName.Get("InsertWhen", _
 "http://EFEX")

 Private _parent As XElement
 Private _context As PropertyExtensionContext

 Public Sub New(ByVal property As XElement, _ Accepts designer context
and EDM element

B ByVal context As PropertyExtensionContext)
 _context = context
 _parent = property
 End Sub

 <DisplayName("Add to context value")> _
 <Description("Gets or sets the value that adds an entity the context")> _
 <Category("Extensions")> _
 <DefaultValue(False)> _
 Public Property Value() As String
 Get
 Dim child As XElement = Returns EDM

element value
C _property.Element(ELEMENTNAME)

 Return If((child Is Nothing),
 String.Empty, child.Value)
 End Get
 Set(ByVal value As String)
 If String.IsNullOrEmpty(value) Then
 Return
 End If
 Using scope As EntityDesignerChangeScope =

Creates scope
for designer

D

 _context.CreateChangeScope("Set InsertWhen") undo command

348 CHAPTER 13 Customizing code and the designer

 Dim element = _property.Element(ELEMENTNAME) Sets EDM
element
value

E If element Is Nothing Then
 _property.Add(
 New XElement(ELEMENTNAME, value))
 Else
 element.SetValue(value)
 End If
 scope.Complete()
 End Using
 End Set
 End Property
End Class

Notice how the class is POCO. You don’t have to implement any interfaces or inherit
from any class!

 Another important thing to notice is the constructor. It accepts an XElement
object, representing the XML element inside the EDMX, and a PropertyExtension-
Context object, which carries context information about the designer environment
B. As you may imagine, the XElement object is the Property node of the EDMX. Mod-
ifying and reading it means modifying and reading the EDMX.

 When the Properties window needs to show a label for the Value property, it takes
the string contained in the DisplayName attribute of that property (it’s the Add to
Context Value property in this case, as you can see in figure 13.4). When the Proper-
ties window needs the property value, the getter is triggered, and the custom annota-
tion element is searched for. If found, its value is returned; otherwise, an empty string
is returned C.

 The setter is slightly more complex then the getter. The first thing to notice is its
use of the context received by the constructor. The setter invokes the context’s
CreateChangeScope method, which creates a scope that’s needed for Visual Studio to
create the undo list, so that any modification can be undone D.

NOTE Creating the scope is mandatory. Any attempt to modify the
XElement outside of a scope throws an exception.

Once inside the scope, the custom annotation is searched for. If it’s not found, it’s
added to the property; otherwise, it’s updated E.

 The simplicity of this feature may be a surprise to you. You’ll be glad to know that
creating the factory class is even easier.

13.5.4 Creating the factory class

The factory class is a very simple class that, in many cases, contains only one line of
code! It must implement the IEntityDesignerExtendedProperty interface, and it
must be decorated with two attributes, as you can see in this listing.

349Creating designer extensions

C#
[Export(typeof(IEntityDesignerExtendedProperty))]

Integrates class
with designer

B

[EntityDesignerExtendedProperty(Specifies which EDM
element is extended

C EntityDesignerSelection.ConceptualModelProperty)]
class InsertWhenFactory :

Declares
required
interface/D

 IEntityDesignerExtendedProperty
{
 public object CreateProperty(XElement element,
 PropertyExtensionContext context)
 {
 var edmXName = XName.Get("Key",
 "http://schemas.microsoft.com/ado/2008/09/edm");
 var keys = element.Parent.Element(edmXName) Retrieves key

properties
E .Elements().Select(e =>

 e.Attribute("Name").Value);
 if (keys.Contains(element.Attribute("Name").Value))
 return new InsertWhenValue(element, context);

Returns property class if
current property is a key F

 return null;
 }
}

VB
<Export(GetType(IEntityDesignerExtendedProperty))> _

Integrates class
with designer

B

<EntityDesignerExtendedProperty(_ Specifies which EDM
element is extended

C EntityDesignerSelection.ConceptualModelProperty)> _
Class InsertWhenFactory

Declares
required
interfaceD

 Implements IEntityDesignerExtendedProperty
 Public Function CreateProperty(ByVal element As XElement, _
 ByVal context As PropertyExtensionContext) As Object
 Dim edmXName = XName.[Get]("Key", _
 "http://schemas.microsoft.com/ado/2008/09/edm")
 Dim keys = element.Parent.Element(edmXName) Retrieves key

properties
E .Elements().Select(Function(e)

 e.Attribute("Name").Value)
 If keys.Contains(

Returns property class if
current property is a key F

 element.Attribute("Name").Value) Then
 Return New InsertWhenValue(element, context)
 End If
 Return Nothing
 End Function
End Class

There’s a lot to say about this little listing. First, notice the Export attribute B. It’s
defined in the System.ComponentModel.Composition namespace and accepts the
implemented interface type.

 The EntityDesignerExtendedProperty attribute tells the designer which EDM ele-
ment the factory class applies to. When the designer invokes the factory class, the
designer also specifies what object is currently selected (an entity, a property, the
designer itself, and so on) C. If the selected object doesn’t match the attribute defini-
tion, the factory class is ignored.

Listing 13.13 Creating the bridge class

350 CHAPTER 13 Customizing code and the designer

 The object to which the factory class applies to is expressed by an enum of type
EntityDesignerSelection. It has lots of values, but these are the most important:

 DesignerSurface—The factory class is invoked if the selected object is the
designer surface.

 ConceptualModelEntityType—The factory class is invoked if the selected
object is an entity.

 ConceptualModelProperty—The factory class is invoked if the selected object
is an entity’s property.

 ConceptualModelNavigationProperty—The factory class is invoked if the
selected object is an entity’s navigation property.

 ConceptualModelAssociation—The factory class is invoked if the selected
object is an association between two entities.

 ConceptualModelComplexType—The factory class is invoked if the selected
object is a complex type.

 ConceptualModelComplexProperty—The factory class is invoked if the selected
object is an entity’s complex property.

 ConceptualModelFunctionImport—The factory class is invoked if the selected
object is a function in the conceptual schema.

 ConceptualModelFunctionImportParameter—The factory class is invoked if
the selected object is a parameter of a function in the conceptual schema.

In this example, you’re working on entity properties only.
 The factory class has to implement the IEntityDesignerExtendedProperty inter-

face—that’s required by the extensibility mechanism D. This interface has only the
CreateProperty method, which is invoked by the designer to obtain the property
class. It accepts both the element that represents the property in the EDMX and a con-
text. These parameters are then passed to the property class constructor when the
property class is instantiated.

 By default, the factory class applies to all properties of an entity. That means the
designer enables you to put the custom annotation on all of an entity’s properties, and
this isn’t what you need; only key properties should have these annotations. That’s
why the code navigates from the property to the parent element (the EntityType ele-
ment), taking the Key node and retrieving its children, which contain the key proper-
ties’ names E.

 If the current property is in the key properties list, the property class is instantiated
and returned. Otherwise, null is returned so that the Properties window doesn’t show
any additional properties F.

 There are about 30–40 lines of real code in this example. That’s all there is to the
code—isn’t it great? What still remains is the manifest file.

351Creating designer extensions

13.5.5 Creating the manifest extension file

The manifest file is required by Visual Studio to install any extension. It contains basic
information, like the author, description, and version, and important information
such as the Visual Studio supported version, the range of .NET Framework versions
supported, and the assembly containing the extension. Here’s an example of a mani-
fest file.

<?xml version="1.0" encoding="utf-8"?>
<Vsix Version="1.0.0"
 xmlns="http://schemas.microsoft.com/developer/vsx-schema/2010" >
 <Identifier Id="OrderIT.DesignerExtensions">
 <Name>OrderIT.DesignerExtensions</Name>
 <Author>Stefano Mostarda</Author>
 <Version>1.0</Version>
 <Description>Add InsertWhen to key properties</Description>
 <Locale>1033</Locale>
 <InstalledByMsi>false</InstalledByMsi>
 <SupportedProducts>
 <VisualStudio Version="10.0">
 <Edition>VST_All</Edition>
 <Edition>Express_All</Edition>
 </VisualStudio>
 </SupportedProducts>
 <SupportedFrameworkRuntimeEdition MinVersion="3.5" MaxVersion="4.0">
 </SupportedFrameworkRuntimeEdition>
 </Identifier>
 <References />
 <Content>
 <MefComponent>OrderIT.DesignerExtensions.dll</MefComponent>
 </Content>
</Vsix>

The XML contains the name of the package, along with the author, the version, a long
description, the list of supported Visual Studio and .NET Framework versions, and
much more. If you’re accustomed to XML (and we know you are, or the EDM would
have scared you to death), this listing will be a piece of cake.

NOTE The Entity Framework team has published an ADO.NET Entity
Data Model Designer Extension Starter Kit that adds a project template
to Visual Studio for creating designer extensions. It’s available here:
http://code.msdn.microsoft.com/DesignerExtStartKit.

You’ve now finished from the code point of view, but there are still a few subjects that
are worth a look: installing, debugging, and uninstalling.

Listing 13.14 The manifest file

http://code.msdn.microsoft.com/DesignerExtStartKit

352 CHAPTER 13 Customizing code and the designer

13.5.6 Installing, debugging, and uninstalling the extension

After you’ve built the assembly, Visual Studio creates the extension as a VSIX file in the
bin\debug|release folder. The extension is a zip file containing the manifest and the
compiled assembly.

 To install the extension, you simply need to run it; the next time you open Visual
Studio, the extension will be there. When you open the Entity Framework designer
and select a key property of an entity in the designer, you’ll see the additional prop-
erty in the Property window.

 To uninstall the extension, open the Extension Manager window, select the
OrderIT.DesignerExtensions item, and click the Uninstall button in the box. That’s it.

 When it comes to debugging, the procedures are a bit more involved. Because the
host of the extension is Visual Studio, you have to debug Visual Studio, which means
you need to start a second instance of Visual Studio to debug the first one. By properly
configuring the project properties, you can make things go smoothly.

 To configure the project properties, follow these steps:

1 Open the project properties by right-clicking the project in the Solution
Explorer window and choosing the Properties item.

2 In the project properties form, choose the Debug tab, and select the Start
External Program radio button.

3 In the text box next to the radio button, insert the path to the Visual Studio
executable file: %ProgramFiles%\Microsoft Visual Studio 10.0\Common7\
IDE\\devenv.exe. The forms looks like figure 13.6.

The effect of this configuration is that when you run the extension project, a second
instance of Visual Studio will be started, and the debugger will automatically be
attached. When the extension code is hit, the first instance enables debugging.

 The tricky part comes in when you make modifications and need to debug them.
Each time you have to rebuild the extension, you need to uninstall it, close all your
Visual Studio instances, reinstall the extension, restart Visual Studio, and rerun the
extension project. This is annoying, but it’s the only way to go.

 The example you’ve built in this section is very simple, but it should give you an
understanding of how extending the designer could simplify your life. With a mix of
template customization, database-generation customization, and designer extensions,
you can create powerful frameworks that simplify your use of the designer and gener-
ate a lot of code for you. This can make the difference between an easily maintainable
project and a real nightmare.

353Summary

13.6 Summary
In this chapter, you learned about features that greatly increase productivity. Code
generation isn’t only about POCO classes. You can also write tests, mocks, repositories,
and anything else that can be automatically generated. That’s a big step forward.
Customizing database generation isn’t a step toward productivity but a step toward a
different way of designing models. By using a powerful template, you could perform a
match between an existing database and the SSDL and create a script for the differ-
ences. It could make model-first design much more usable than it is now.

 Finally, customizing the designer makes its usage simpler. By creating ad hoc
extensions, you can avoid getting your hands in the EDMX, making everything simpler
and less error prone.

 Now it’s time to talk about how to design a real-world application that uses Entity
Framework to access data.

Figure 13.6 Configuring the extension project to debug the extension

Part 4

Applied
Entity Framework

You’ve learned how Entity Framework can simplify application development
and make code more readable and usable. In part 4, you’ll discover how Entity
Framework behaves in the real world. Web and Windows applications have dif-
ferent needs and different architectures, and by making Entity Framework enti-
ties aware of these needs, you can easily integrate them into any application. The
context lifecycles of these applications differ too; web applications and web ser-
vices are disconnected by nature, whereas Windows applications are connected,
so different approaches are required.

 In the real world, an application’s architecture must be aware of Entity
Framework for both data access and testing. The domain-driven design philoso-
phy is growing in popularity, and you’ll learn how Entity Framework can be inte-
grated with it.

 Performance is also critical in any data-access application. Even if applica-
tions do what they’ve been created for, if they do it too slowly, it’s like having a
nonfunctional application.

 In chapter 14, we’ll tour the different types of architectures. We’ll start with a
classic three-layer application and move on to a domain-model-driven one.
Finally, we’ll look at how Entity Framework fits into a domain-model-driven
application.

 Chapters 15, 16, and 17 talk about Entity Framework inside the different applica-
tion types. ASP.NET applications, web services, Windows Forms applications, and WPF
applications are covered in these chapters.

 Chapter 18 covers the subject of testing. Here you’ll learn how to make applica-
tions testable even when Entity Framework and LINQ to Entities are in place.

 Chapter 19 discusses performance. By the end of this chapter, you’ll be a master of
Entity Framework.

Designing the application
around Entity Framework
This chapter moves slightly away from what you may expect from a book about
ADO.NET Entity Framework. We’ve faced the matter of persistence from a technical
point of view, trying to understand how to use this O/RM tool to store a graph of
objects in a relational database. In this chapter, we’re going to discuss the same
topic but from an architectural point of view.

 First, we’ll look at how to integrate Entity Framework in a typical three-layer
architecture, which represents a good and widely used strategy for designing mod-
ern applications. But layering itself may not be helpful in handling the complex
business logic typical of enterprise applications; in these cases, your design must
move toward a more suitable domain-driven design modeling style. Finally, we’ll
look at how you can shape your object model to handle this kind of architecture
and how Entity Framework fits in.

This chapter covers
 Basic concepts of layered architectures

 Principles of domain-driven design

 Repository pattern implementation with Entity Framework
357

358 CHAPTER 14 Designing the application around Entity Framework

14.1 The application design process
As software architects, we tend to
work on two kinds of applications:
those that will never see a second
release, because they’re built for a
specific need of the moment; and
meaningful products that are des-
tined to last through time, perhaps
evolving as the years go by. In the lat-
ter case, despite the complexity of
the problems to be handled, we
don’t need something that just
works. We must try to achieve a
result that meets the following
requirements:

 Robust—This guarantees that the code does its job in every situation.
 Maintainable—This makes future bug fixes as easy as possible.
 Expandable—This means you can implement new functionality or improve-

ments with little effort, and without greatly affecting the overall architecture.

Meeting these requirements isn’t easy. A common technique to improve your chances
is to split the application into simpler parts, called layers, with each one having its own
specific functional responsibilities.

 Three-layer applications, whose conceptual schema is shown in figure 14.1, are the
most common example of such a layered architecture.

 Starting from the bottom, a three-layer application consists of these layers:

 Data access layer—Interacts with the database and shields the rest of the applica-
tion from its specific logic. Concepts like connections, commands, and tables
only make sense within this layer and should never be exposed to the upper lay-
ers. This is also where Entity Framework fits in; in most cases, it can be consid-
ered the entire data access layer on its own.

 Business layer—Holds all the business logic and provides services that imple-
ment the real-world processes that the application is built to take care of.
Although it doesn’t care where its inputs come from, it knows whether a fund
transfer can take place between two bank accounts and how to handle it cor-
rectly, invoking the data access layer when it needs to query the database or
store something there.

 Presentation layer—Contains all the logic for interacting with the user, correctly
rendering windows or web pages, and interpreting user commands, translating
them to business method invokes.

Sql Server

Presenta�on layer

Business layer

Data access layer

Object
model

ASP .NET WPF Silverlight

Services WCF Workflow
Founda�on

ADO .NET En�ty Framework

Oracle Other DBMS

Figure 14.1 A diagram of the three-layer architecture

359A typical three-layer architecture

Each layer can interact only with the one immediately lower, sending and receiving
messages in the form of classes that belong to the application’s object model, which is
a sort of common language shared among them all.

 Although it’s designed to bring simplicity to our software, this layered architecture
requires more effort on the part of the developer compared to applications that have
a monolithic structure. Layered applications have more class libraries, references,
classes, and so on—in other words, more code! But the layered architecture offers the
tremendous advantage of splitting this complexity across simpler elements that are
easier to implement, test, and maintain, with obvious benefits on the overall result.

14.2 A typical three-layer architecture
To better understand how concerns should be separated into the three layers, let’s
consider a practical example. Let’s go back to the OrderIT application to reconsider
some of its requirements and rethink its architecture. We’ll implement the feature
that allows customers to place orders. Imagine you’re building an ASP.NET web appli-
cation with a Place a New Order page like the one shown in figure 14.2.

Figure 14.2 An interface for
an order-placing web page

 This page features some nice rich client interaction, like allowing drag and drop
from the list box on the left to the grid on the right to compose an order, and it has a
couple of buttons to calculate the total amount and to eventually place the order.

14.2.1 Filling the product list

The first task the web page has to accomplish, once loaded, is filling the list on the left
with all the products currently available, as in the following listing.

C#
protected void Page_Load(object sender, EventArgs e)
{

Listing 14.1 Filling the productsList list box
 if (!IsPostBack)

360 CHAPTER 14 Designing the application around Entity Framework

 {
 var availableProducts = ProductsService.GetAvailableProducts();
 this.productsList.DataSource = availableProducts;
 this.productsList.DataBind();
 }
}

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 If Not IsPostBack Then
 Dim availableProducts = ProductsService.GetAvailableProducts()
 Me.productsList.DataSource = availableProducts
 Me.productsList.DataBind()
 End If
End Sub

In this listing, a lot of presentation logic, like triggering the Load event or the ListBox
data binding, is provided under the hood by the ASP.NET Framework. But you should
notice that page code has absolutely no knowledge of where the list of available prod-
ucts comes from, nor does it know when a product is available according to the busi-
ness logic.

 A static ProductsService class holds the code that retrieves the available products;
its code can be seen in the next listing.

C#
public static class ProductsService
{
 public static List<Product> GetAvailableProducts()
 {
 using (OrderITEntities ctx = new OrderITEntities())
 {
 return ctx.Products
 .Where(p => p.QuantityInStock > 0)
 .ToList();
 }
 }
}

VB
Public Module ProductsService
 Public Function GetAvailableProducts() As List(Of Product)
 Using ctx As New OrderITEntities()
 Return ctx.Products.Where(Function(p) p.QuantityInStock > 0) _
 .ToList()
 End Using
 End Function
End Module

The ProductsService class is part of the business layer, and it has a single responsibil-
ity: it models the business rule that makes a product available. That rule could be

Listing 14.2 Retrieving available products
something like, “we still have stock for that item,” or “this item can be sold in the

361A typical three-layer architecture

current period of the year.” Its logic is implemented within the GetAvailableProd-
ucts method, which knows how to query the data access layer to retrieve a list based
on the rule. In any case, ProductsService can’t see what its caller is going to do with
that list of products, nor does it know how the context is actually retrieving them.

 As we said in the previous section, Entity Framework can be considered the appli-
cation’s data access layer, because it shields the business layer from concepts like con-
necting to a relational database and executing a query. To establish communication
among the layers, you need them to share a common vocabulary in terms of an object
model (for the Product class in the previous example) and to use it to exchange infor-
mation with each other.

 This example showed a case where a requirement can be fulfilled with the cooper-
ation of all the three application layers. Despite this being the most common situa-
tion, there are also cases in which functionalities don’t traverse a layer boundary: the
form’s drag-and-drop logic, for example, belongs entirely to the presentation layer
and is totally unknown to the layers below.

14.2.2 Calculating order totals and saving them to the database

The user can recalculate the order total by clicking the Recalculate button. When the
button is clicked, the application has to evaluate whether discount lines have to be
created, according to the business requirements:

If the customer buys more than five items of the same product, there is a discount of 10
percent for each subsequent item. Should the discount be applicable, the order must
contain two details: the first contains data about the first five items with no discount,
and the other contains data about the additional items and the related discount.

When the user clicks the Recalculate button, the web page executes code similar to
the following.

C#
private void btnCalculateTotal_Click(object sender, EventArgs e)
{
 Order order = getCurrentOrder();
 OrdersService.PreProcess(order);
 this.bindOrderData(order);
}

VB
Private Sub btnCalculateTotal_Click(ByVal sender As Object,
 ByVal e As EventArgs)
 Dim order As Order = getCurrentOrder()
 OrdersService.PreProcess(order)
 Me.bindOrderData(order)
End Sub

Even though you’re triggering this logic from the presentation layer, the rule belongs

Listing 14.3 Calculating the order total
to the business layer. Thus it would be incorrect to pollute the click event handler

362 CHAPTER 14 Designing the application around Entity Framework

with code that explores the order details and decides whether it should benefit from a
discount; it makes much more sense to encapsulate that logic within a specific class,
called OrdersService, which has the responsibility and the knowledge to rearrange
order details according to the discount logic.

 We won’t dive into the actual implementation of the PreProcess method, but you
should appreciate how a layered architecture offers an undeniable advantage in terms
of code simplicity, logic, and reusability (which often leads to easier maintainability).
The code that implements the discount logic is always the same, regardless of the cli-
ent. If you were to change from using a web page to a WPF application, you could eas-
ily reuse it. At the same time, any bug fixes or changes to the business rules have no
impact on the user interface code and remain confined in the OrderService class.

 When it comes time to save an order, things tend to become tricky, because you
have to pursue several steps:

1 Verify whether user inputs are correct.
2 Verify whether there’s enough stock of the item being ordered.
3 Update the item stock.
4 Save the order and its details to the database.
5 Notify the user that the order was correctly placed, perhaps sending an email.

While dealing with such a workflow, the presentation, business, and data access layers
interact according to logic that can become rather complex. In such cases, a UML
sequence diagram like the one in figure 14.3 can help to represent all the interactions.

Presenta�on layer Business layer Data access layer

place(order)

startTransac�on

isValid(order)

checkStocksAvailability

updateStocks

checkCustomerCredit

storeOrder

sendNo�fyEmailorderPlaced

commitTransac�on

Figure 14.3 A sequence UML diagram of the order-placing process

 This diagram illustrates how messages flow across the various application layers,
and shows the actors involved with the exchange and their lifecycle.

363Principles of domain-driven design

14.2.3 Dealing with higher levels of complexity

Earlier in this chapter, we mentioned the concept of an application’s object model,
which represents a common library that all the application layers can use to communi-
cate with each other and to store information. The Order class is part of OrderIT’s
object model, so it holds all the order data, such as the details, the customer that
placed the order, and the order time.

 There aren’t any rules carved in stone about how an object model has to be made.
For example, nothing prevents you from building it upon the well-established Data-
Set/DataTable infrastructure we’ve been using since .NET Framework 1.0. But when
dealing with a layered architecture, it’s common to see object models made of various
classes, whose shapes come directly from the tables of the underlying data source.
Each instance maps to a specific row of the database and stores the row’s primary key
value to keep track of this relationship. Often, those classes are somehow intercon-
nected, sometimes by holding a reference to another object, or sometimes only by
storing its key.

 Unfortunately, as complexity arises, this kind of architecture begins to show its lim-
its. There’s nothing wrong with layering itself, but the model we just presented has
two main issues that need to be addressed:

 All the logic resides outside the object model and tends to concentrate within a
series of business methods, giving the application a potentially dangerous pro-
cedural flavor.

 There’s no guidance on how the object model itself should be built, which is
the main reason for it to mime the database schema, regardless of whether you
implement it using plain classes or DataTables. Although the data is ultimately
stored in a relational database, you still have a full object-oriented program-
ming language at your disposal, and this model leaves a lot of its peculiarities
unused; there may be a way to use them to achieve a better design.

In conclusion, we need a different starting point: something that isn’t strictly related
to how data is shaped in our database, but that helps us model the real-world domain
the application is supposed to manage. The result of this process is called the domain
model, and it’s the central concept behind domain-driven design.

14.3 Principles of domain-driven design
The first thing we should point out when talking about domain-driven design (DDD)
is that it isn’t a brand-new kind of architecture, different from layering. It’s a bunch of
rules and formalizations to effectively design the application’s business layer or, better
said, the domain model.

 As we’ve discussed, every class in a layered architecture has a specific functionality,
and that means easier coding and improved maintainability. But everything is
designed by keeping in mind the precise role that the object will have in the applica-

tion ecosystem.

364 CHAPTER 14 Designing the application around Entity Framework

 In contrast, with DDD you start from a different and innovative
point of view: the aim of the designer is to let the domain model be
the object-oriented alter ego of the real-world concepts the appli-
cation is supposed to handle, keeping track of their attributes and
relationships and implementing the same behaviors. It interacts
with three other application layers, defining an architectural parti-
tioning much like what you’re used to, as shown in figure 14.4.

 Once again, starting from the bottom, the first layer is the
infrastructure layer, which carries a slightly broader responsibility
than its data access layer counterpart. The infrastructure layer
encompasses all the technical functionality that the upper layers
may need, such as sending email, interacting with a database, or
opening TCP/IP channels.

Entity Framework as part of the infrastructure layer
When layering according to DDD, the infrastructure layer doesn’t just manage data
access, although this feature represents a big part of it. You’ll see shortly that you
can use Entity Framework’s designer in Visual Studio to build an Entity Data Model,
which can be thought as a raw domain layer. Thanks to that, when it comes time to
fetch or store data to the database, Entity Framework completely shields you from
what’s needed under the hood to communicate with it: you won’t have to open con-
nections or use commands to execute stored procedures anymore, because you
won’t code over tables but over a fully object-oriented model.

That’s why, when dealing with a three-layer architecture, we pointed out that Entity
Framework fits inside the data access layer or, in some cases, can be considered the
entire data access layer on its own; this is still valid in DDD, when talking about the
infrastructure layer. Should other services (emails, third-party web services, and so
on) be needed, they’re implemented in other assemblies. These assemblies, along
with the Entity Framework ones, together form the application’s infrastructure layer.

We already talked about the domain layer. The application layer coordinates the inter-
actions between the various layers and objects of the application. Usually this layer is
kept thin; it shouldn’t hold any business concepts, because those belong to the
domain layer.

 On the side, the presentation layer is much the same as before, taking care of any-
thing that concerns displaying data and reacting to user input.

DDD introduces a few new concepts related to how a domain model should be cre-
ated. Let’s explore them in the context of OrderIT.

14.3.1 Entities

Let’s start building the OrderIT domain model following the application requirements,
as you did in chapter 2, looking particularly at the first feature you need to fulfill:

 OrderIT must store data about customers.

Presenta�on
layer

Domain
layer

Applica�on
layer

Infrastructure
layer

Figure 14.4
Application layering
according to DDD
 Each customer has a name, billing address, and shipping address.

365Principles of domain-driven design

The customer is the first business concept that finds a place in the application, and
you also have a small subset of data you need to track for it: name, billing address, and
shipping address. Let’s imagine that you did such a great job that the application will
be a commercial success in the near future, having hundreds of registered customers.
Probably among them you’ll find many with the same names, such as John Smith (or
Mario Rossi, if you lived in Italy); moreover, some of them could move over the years,
so the users would need to update their addresses.

 OrderIT will need to keep on correctly placing orders and dispatching items, no
matter how many matching names are in the database and how many times they
change locations. If OrderIT wasn’t able to do so, users would probably end up send-
ing goods to the wrong people and wouldn’t receive payments for their bills.

 In other words, some business concepts (like a customer) own a well-defined,
sometimes implicit, identity that isn’t related to their attributes and that remains the
same for their entire lifecycle within the application. Objects with such features are
called entities.

Order, too, is an entity for this application: an order has its own lifecycle, and while
it lasts, it should always be unambiguously identifiable; that’s why after it’s created,
every order is given a unique and immutable number that represents its identity field.
Every entity should have one, and that’s the first aspect deserving attention when a
brand-new entity appears in your domain.

Different scenarios require different identities
The entity concept is strictly related to the application’s purpose, and not to the real-
world object that’s being modeled. If you were working on an inventory-management
application that used the concept of incoming and outgoing orders to increase and
decrease the stock of a given item, you probably wouldn’t care about an order’s life-
cycle and identity: you’d just want to know whether it contains a certain item or not.
In other words, two orders for the same amount of the same item would be identical
for that business process. In this example, Order wouldn’t be an entity for your
domain model. We’ll get back to this distinction shortly.

In OrderIT, Order and Customer have a rela-
tionship with each other that’s called an associa-
tion. Figure 14.5 shows an early version of the
domain model you’re building.

 Another concept that the domain-model
philosophy has is the value object.

14.3.2 Value objects

Let’s go back for a moment to the requirement of storing customer data:

 OrderIT must store data about customers. Each customer has a name, billing
address, and shipping address. The address isn’t plain text, but consists of four

-Id
Customer

1

-Number
Order

*

Figure 14.5
An Order and Customer UML diagram
separate pieces of data: street, city, ZIP code, and country.

366 CHAPTER 14 Designing the application around Entity Framework

We can easily identify another business concept in that statement: the address. But the
nature of this object is considerably different from Order or Customer. Does OrderIT
really need an addresses catalog? Does an address have its own lifecycle? Are two
addresses different even though they’re pointing to the exactly the same location?
The answer is no. You only need a customer’s address to correctly deliver bills and
goods, so two addresses with the same attributes can be considered absolutely the
same address. That means there are objects whose equality is solely determined by
their attributes. These objects are called value objects.

 Typically value objects are small classes that group one or more attributes used in
many points of the domain model, maybe encapsulating some sort of behavior.
They’re not independent, which means a value object can’t exist on its own: in
OrderIT, for example, an address has no business meaning unless it’s related to an
order, to store its delivery address.

 Relationships that involve value types are called compositions. Figure 14.6 shows how
Address fits into the domain model to represent one customer’s billing and shipping
addresses.

-Number
Order

-Id
Customer

* 1

-Street
-City
-State

Address

-ShippingAddress

1 1

-BillingAddress1

1

Figure 14.6 UML diagram with the Address value object

 Considering their nature, value objects can be freely exchanged. Given two cus-
tomers, the following statement can be used to copy the first customer’s billing
address data to the other:

C#
customer2.BillingAddress = customer1.BillingAddress;

VB
customer2.BillingAddress = customer1.BillingAddress

You may argue that a statement like this isn’t completely free of side effects: we’re talk-
ing about .NET classes, and modifying customer1’s billing address would result in a
harmful bug, because customer2 would inherit the change as well.

 A possible solution for that (and absolutely a best practice) is always designing
value objects as immutable, which means giving them read-only properties and fields.
This rule has also has a more philosophical reason behind it: because a value object’s
identity is completely defined by its attributes, modifying one of them should result in
a brand-new object. That’s why it’s more correct to create a new instance when its val-
ues need to be changed.

367Principles of domain-driven design

14.3.3 Handling associations correctly: domain roots and aggregates

Each order must keep track of the products and quantities it involves. Hence, it’s
pretty clear that you need to add a collection of OrderDetail objects.

Is OrderDetail an entity or a value object?
Based on what we said in the previous pages, you may wonder whether OrderDetail
should be considered an entity or a value object. Two order details that relate to the
same item and have the same quantity could be considered exactly the same thing,
so at first sight, you may consider OrderDetail a value object.

When it comes to dealing with domain-model persistence, though, you must be aware
of how the domain design impacts the infrastructure layer. Saving a detail table of
value objects isn’t easy, because they don’t have their own identity field that maps
the instance to a specific and well-identified database row. That’s why it’s sometimes
worth sacrificing the model’s pureness to achieve an easier implementation when
writing the code.

This chapter’s concepts work whether OrderDetail is modeled as an entity or as a
value object.

Order and OrderDetail provide a typical example of a master-detail relationship. To
make the relationship navigable in both directions, you need an Order property in the
OrderDetail class that references the order to which it belongs, and you need a col-
lection of details (OrderDetails property) in the Order object.

 Does it make sense to blindly apply this pattern to every association in the domain
model? Earlier in this chapter, for example, you saw that Customer and Order have a
similar association, but you designed it as navigable only from the Order. Should you
add an Orders property to the Customer entity?

 There’s a subtle difference between these two examples: an order detail is useless if
taken away from its root; the Order entity along with all its details encompasses the
business concept of a real-world order. Using a term specific to DDD, they form an
aggregate of entities, whose root is the order itself. When you’re dealing with aggre-
gates, you’re never supposed to directly reference an entity that isn’t the aggregate’s
root: following this rule results in a more polished domain, in which external objects
only refer to the order as a whole and never deal with its internal composition.

 That said, implementing a master-detail relationship between the two makes a lot
of sense, because you’re always going to access order details from the main Order
entity. Figure 14.7 shows how to represent an aggregate in a UML diagram.

 Notice that the Customer entity, along with its addresses, also forms an aggregate.
Note also that you’re allowed to reference other entities from within an aggregate, as
it happens between OrderDetail and Product.

 The relationship between a customer and its orders now appears clearly different
from the relationship between an order and its details, because they aren’t part of the

same aggregate! In fact, there’s nothing wrong with directly referencing an order

-Number
Order

-Id
Customer

* 1

-Street
-City
-State

Address

-ShippingAddress

1 1

-BillingAddress1

1

-Quantity
-Discount
-Price

OrderDetail

1

*

-Number
Product*

1

Figure 14.7 An updated UML diagram
with Order and Customer aggregates

368 CHAPTER 14 Designing the application around Entity Framework

without coming from the customer that placed it. An order makes a lot of sense (and
has a huge business meaning) even if you don’t consider which customer it belongs
to. In DDD terms, a customer and its orders aren’t an aggregate.

 Why should you a avoid master-detail relationship between customers and orders?
Because associations are easy to navigate, but they don’t come for free: they have a sig-
nificant cost in terms of complexity and performance. Moreover, getting all the orders
for a given customer doesn’t have a great business meaning; more often, you’ll need to
recover orders placed within a certain period of time, or orders that are still waiting to
be delivered. Repositories are better candidates for accomplishing these tasks, because
they provide full object-oriented querying features. We’ll cover repositories later in this
chapter; now we need to work a bit more on the order entity.

14.3.4 Refining the model

Now that the Order and Customer parts of your domain model are well defined, it’s
time to think about how the discount calculation fits in:

The policy for discounts states that if the customer buys more than five of the same
product, there is a discount of 10 percent for each subsequent item. Should the discount be
applicable, the order must contain two details: the first contains data about the first five
items with no discount, and the other contains data about the additional items and the
related discount.

You implemented this feature earlier as a method in the OrderService class. Now
you’re starting from a different perspective, because you’re trying to model an object-
oriented representation of the order business concept. In this context, it’s natural to
include a ComputeDiscount method in the Order class. This method should explore
the details collection and eventually add discount rows where needed.

 Listing 14.4 shows a sample implementation of this method. Notice that it often

refers to this when the Order entity is involved, because it’s an instance method.

369Principles of domain-driven design

C#
public void ComputeDiscount()
{
 compactOrderDetails();
 var detailsToDiscount =
 this.Details.FindAll(d => d.Quantity > 5);

 foreach(var orderDetail in detailsToDiscount)
 {
 int exceedingQuantity = orderDetail.Quantity - 5;
 orderDetail.Quantity = 5;
 OrderDetail discountDetail = new OrderDetail
 {
 Order = this,
 Item = orderDetail.Item,
 Quantity = exceedingQuantity,
 Discount = 0.1
 }
 this.Details.Add(discountDetail);
 }
}

VB
Public Sub ComputeDiscount()
 compactOrderDetails()
 Dim detailsToDiscount = Me.Details.FindAll(_
 Function(d) d.Quantity > 5)

 For Each orderDetail In detailsToDiscount
 Dim exceedingQuantity As Integer = orderDetail.Quantity - 5
 orderDetail.Quantity = 5
 Dim discountDetail As New OrderDetail() With _
 { _
 .Order = me, _
 .Item = orderDetail.Item, _
 .Quantity = exceedingQuantity, _
 .Discount = 0.1 _
 }

 Me.Details.Add(discountDetail)
 Next
End Sub

The domain model isn’t anemic anymore!
A domain model is called anemic when it only contains data, and no code. Many peo-
ple think that a domain should be modeled that way, because usually processes
change, but data doesn’t, and modifying a domain class after the application has
shipped could require great effort, given its centrality in the overall architecture. But
remember that your ultimate goal is to take a real-world order and describe it as a
class. As a general rule, there’s nothing bad about adding logic to a domain class if
you’re sure it belongs to the class. In any case, you’ll shortly see that there are better
options in this case, and the model can be further improved.

Listing 14.4 Computing an order’s discount

370 CHAPTER 14 Designing the application around Entity Framework

Now let’s imagine that, after some months of OrderIT running in production, this
promotion discount expires, perhaps to be replaced with another one with different
logic. This would force you to roll up your sleeves and modify the domain code; but
besides that, isn’t there something conceptually wrong with a changing promotion
requiring maintenance on the order class? Should an order discount really belong to
the order itself?

 When you added the discount logic to
the order, you hid a concept that you must
make explicit to improve the overall
design: the logic that determines whether
an order is suitable for a discount or not.
This logic is a new element of the OrderIT
domain model, which we’ll call Discount-
Policy. Figure 14.8 shows the updated
UML diagram.

 The CalculateDiscount method can
now be refactored, as shown in the follow-
ing listing.

C#
public void ComputeDiscount()
{
 compactOrderDetails();
 this.DiscountPolicy.EvaluateDiscount(this);
}

VB
Public Sub ComputeDiscount()
 compactOrderDetails()
 Me.DiscountPolicy.EvaluateDiscount(Me)
End Sub

Notice how the DiscountPolicy class encapsulates the whole discount calculation logic.

Why making DiscountPolicy explicit results in a better design
The step you just made brings great benefits to our design. The domain model is for-
mally more correct, because you introduced a new business concept that avoids pol-
luting the Order entity with responsibilities that don’t belong to it. Moreover, it gives
you the chance to use the object-oriented paradigm, using the Strategy pattern to
easily support new discount policies to come.

 This design isn’t applicable to every situation. Sometimes the business process is
too complex and involves too many objects, and you don’t want to include all that
logic in a single entity; sometimes there isn’t a specific entity to which the processes
belong. In such cases, you can introduce specific objects in your domain, called
domain services, to handle those tasks. In OrderIT, you can use a domain service to

Listing 14.5 Computing an order’s discount with DiscountPolicy

-Number
Order

+EvaluateDiscount()

DiscountPolicy

-Quantity
-Discount
-Price

OrderDetail

1

*

Figure 14.8 The refined
model of the discount policy

371Retrieving references to a domain’s entities

implement the order-placing logic, which involves saving the new order, updating the
stock, notifying the customer by email, and so on.

 But beware of abusing domain services, or you’ll soon be dealing again with proce-
dural code. A process must be implemented as a service only when it meets all of these
criteria:

 The service represents flows that don’t directly belong to an entity or a value
object, but that interact with various domain model elements.

 The service interface is solely composed of domain model objects.
 The service logic is stateless, which means an invocation result doesn’t depend

on previous results.

So far, we’ve focused on how the domain model must be shaped, without caring
whether its building blocks are already in memory or need to be fetched from a data-
base or created as new. In the next section, you’ll discover which tools you can use to
retrieve references to entities and value objects so you can use and manipulate them
in the code.

14.4 Retrieving references to a domain’s entities
If domain objects spend their whole lifecycle in memory, they should always be reach-
able from your code; otherwise, the garbage collector will wipe them out. Thanks to
the persistence layer, objects are also stored in other ways, such as in databases, so they
can be kept alive even if the application quits, the server restarts, or the code doesn’t
keep references to them. Sooner or later, you’ll want to recover that reference. You
could do it by navigating object references within an object graph, but you’d still need
an aggregate root to start from. This is where repositories fit in.

14.4.1 Repositories at a glance

In DDD, you model the application’s business concepts in the form of classes, and the
most intuitive way for the object-oriented programmer to group a set of instances of
the same class is using collections. In fact, if you put aside for a moment the need to
store entities in a relational database, it would probably be most convenient to hold all
the customer references in a globally reachable AllCustomers collection somewhere
in the application design. For OrderIT, a customer would exist only if it was in that
collection, and removing a customer from the collection would mean deleting it.

 Unfortunately, in the real world, durable data needs to be stored in a durable plat-
form, but it would still be great to abstract the storage as if it were made of collec-
tions. That would offer the best of both worlds. A repository is an object that acts like a
collection of aggregate roots, giving the client the illusion that every entity it contains
is already in memory. Entities can be added or removed from a repository to carry
out inserts and deletes, and a repository can be queried to get references to the enti-
ties it holds.

 Let’s try to find a way to implement a generic repository that uses Entity Frame-
work to interact with the relational database.

372 CHAPTER 14 Designing the application around Entity Framework

14.4.2 Implementing a repository

Implementing a repository is an almost trivial task, because Entity Framework already
uses a repository-like pattern internally: each entity belongs to a well-defined entity
set, and you only need to wrap them.

Why you should build your own repositories
If Entity Framework already provides entity sets, why would you need to build your own
repositories? To answer this question, we must go back for a moment to the applica-
tion layering we introduced in section 14.3. If you look at figure 14.4, you can see
that repository implementations belong to the infrastructure layer, because they can
interact with the underlying database to fetch customer data and rebuild a customer
entity. This requires a reference from the infrastructure layer to the domain layer.

This works perfectly when the interactions between the domain and infrastructure lay-
ers are orchestrated by the application layer: for example, when a web page must
query the database to get a customer list. But it’s not uncommon for domain entities
to require the repository’s services too. For example, a DiscountPolicy may need
to check a customer’s order history to determine whether a discount should be
applied.

For this reason, you must separate repository implementations from their interfaces
(thus building your own repository library). The repository implementations belong to
the infrastructure layer, and the interfaces are part of the domain layer. A domain
class would only reference the interface, but an Inversion of Control (IoC) container
would then inject the actual implementation.

Another important reason to build your own repositories is for testing purposes. We’ll
explore this topic later in the book.

Because repositories must act as if they were in-memory collections, it’s logical to
inherit the generic interface from ICollection<T>, which provides Add, Remove, and
other typical collection methods and properties. You can then add some specific func-
tionalities. You’ll start by defining the repository interface as shown in this listing.

C#
public interface IRepository<T> : ICollection<T> where T : class
{
 IEnumerable<T> Query(Func<T, bool> predicate);
 T GetSingle(Func<T, bool> predicate);
 void Update(T entity);
}

VB
Public Interface IRepository(Of T As Class)
 Inherits ICollection(Of T)
 Function Query(ByVal predicate As Func(Of T, Boolean)) As _
 IEnumerable(Of T)

Listing 14.6 A generic IRepository<T> interface
 Function GetSingle(ByVal predicate As Func(Of T, Boolean)) As T

373Retrieving references to a domain’s entities

 Sub Update(ByVal entity As T)
End Interface

The IRepository<T> interface adds three methods. Query and GetSingle can be used
to query the repository’s content and retrieve an enumerable or a single entity, respec-
tively. Both methods accept a predicate as an argument (that’s a delegate that accept
an instance of a T and returns true or false) and can be easily invoked using a
lambda expression, as you’re used to doing with LINQ’s Where extension method. Last
but not least, you can use Update to attach an existing entity to the repository.

 The concrete Repository<T> class has some prerequisites to work properly: first, it
must be instantiated within a persistence context, which means it must operate on a
valid and alive Entity Framework context. This is why, in order to initialize a reposi-
tory, you need a context whose reference will be held for further use.

 This isn’t enough, though, because you can’t query or add entities directly to the
context. You also need a reference to the entity’s entity set. The following listing shows
the Repository<T> constructor.

C#
public class Repository<T> : IRepository<T> where T : class
{
 private ObjectContext context;
 private ObjectSet<T> entitySet;

 public Repository(ObjectContext context)
 {
 if (context == null)
 throw new ArgumentNullException("context");

 this.context = context;
 this.entitySet = context.CreateObjectSet<T>();
 }
}

VB
Public Class Repository(Of T As Class)
 Implements IRepository(Of T)
 Private context As ObjectContext
 Private entitySet As ObjectSet(Of T)

 Public Sub New(ByVal context As ObjectContext)
 If context Is Nothing Then
 Throw New ArgumentNullException("context")
 End If

 Me.context = context
 Me.entitySet = context.CreateObjectSet(Of T)()
 End Sub
End Class

Now you can get back to the interface and look at the Query method. As you can see

Listing 14.7 Repository constructor
in listing 14.8, when you have a reference to the object set, its implementation is

374 CHAPTER 14 Designing the application around Entity Framework

straightforward. All you need to do is query the object set, forwarding the predicate to
LINQ’s Where extension method. GetSingle uses the same code, but it returns a single
instance of the T entity.

C#
public IEnumerable<T> Query(Func<T, bool> predicate)
{
 return this.entitySet.Where(predicate);
}

public T GetSingle(Func<T, bool> predicate)
{
 return this.Query(predicate).Single();
}

VB
Public Function Query(ByVal predicate As Func(Of T, Boolean)) As _
 IEnumerable(Of T)
 Return Me.entitySet.Where(predicate)
End Function

Public Function GetSingle(ByVal predicate As Func(Of T, Boolean)) As T
 Return Me.Query(predicate).[Single]()
End Function

IRepository<T> provides two methods to connect an entity to the underlying
ObjectSet<T>: Add comes from the base ICollection<T> interface you’re inheriting
from, whereas the Update method was explicitly defined in listing 14.6. You have to
implement them for the context to be able to track every change you make to the
entity and generate proper persistence queries. A third method, Remove, also belongs
to the base ICollection<T> interface, and it can be used to flag the given entity for
deletion. The following listing shows what we just described.

C#
public void Add(T entity)
{
 if (!this.Contains(entity))
 this.entitySet.AddObject(entity);
}

public void Update(T entity)
{
 if (!this.Contains(entity))
 this.entitySet.Attach(entity);
}

public bool Remove(T entity)
{
 if (!this.Contains(entity))

Listing 14.8 Query and GetSingle implementations

Listing 14.9 Add, Remove, and Update implementations
 return false;

375Retrieving references to a domain’s entities

 this.entitySet.DeleteObject(entity);

 return true;
}

VB
Public Sub Add(ByVal entity As T)
 If Not Me.Contains(entity) Then
 Me.entitySet.AddObject(entity)
 End If
End Sub

Public Sub Update(ByVal entity As T)
 If Not Me.Contains(entity) Then
 Me.entitySet.Attach(entity)
 End If
End Sub

Public Function Remove(ByVal entity As T) As Boolean
 If Not Me.Contains(entity) Then
 Return False
 End If

 Me.entitySet.DeleteObject(entity)

 Return True
End Function

All these methods internally use Contains (which you can see in listing 14.10) to
determine whether the entity already belongs to the object context. Contains, in
turns, asks the state manager for the entity’s state and evaluates it.

C#
public bool Contains(T item)
{
 ObjectStateEntry state;

 if (!this.context.ObjectStateManager
 .TryGetObjectStateEntry(item, out state))
 return false;

 return (state.State != EntityState.Detached);
}

VB
Public Function Contains(ByVal item As T) As Boolean
 Dim state As ObjectStateEntry

 If Not Me.context.ObjectStateManager.TryGetObjectStateEntry _
 (item, state) Then
 Return False
 End If

 Return (state.State <> EntityState.Detached)
End Function

Listing 14.10 ICollection<T>.Contains implementation

376 CHAPTER 14 Designing the application around Entity Framework

In order to successfully implement ICollection<T>, the compiler requires you to also
write members like Clear or GetEnumerator that aren’t useful in this scenario. We
won’t cover their implementation here.

 Let’s move on to the client’s point of view, and imagine how you would typically
use a repository in your code. For example, if a discount should be applied to a cus-
tomer’s first order, the discount rule could be defined as follows.

C#
public bool ApplyDiscount(Customer customer)
{
 IRepository<Order> orderRepository =
 container.Get<IRepository<Order>>();

 return orderRepository.Query(o => o.Customer == customer).Count() == 0;
}

VB
Public Function ApplyDiscount(ByVal customer As Customer) As Boolean

 Dim orderRepository As IRepository(Of Order) = _
 container.[Get](Of IRepository(Of Order))()

 Return orderRepository.Query(Function(o) o.Customer = customer) _
 .Count() = 0
End Function

Notice how the FirstOrderDiscountRule doesn’t directly reference the concrete
repository class but uses it via its interface. You can achieve this by using an Inversion
of Control container to keep the interface separated from the actual implementation;
this is the meaning of the container variable the code refers to.

 Inversion of Control is a well-known and widely used pattern for loosely coupling
various application dependencies; if you’re interested in this topic, an internet search
will turn up hundreds of related articles and libraries.

14.4.3 Getting a reference to a brand new entity

When you’re dealing with complex domains, building new entities can be challenging
and require interactions between various aggregates in your domain model. Consider
the Order entity and its relationship with DiscountPolicy, as discussed in section
14.3.4: what has the responsibility to associate an order to the proper discount policy?
It can’t be the order itself, which hasn’t any knowledge of the various policies the
application supports; at the same time, you don’t want the developer, who will use the
domain model, to have the deep knowledge required to select the correct discount
policy—that would reveal too many details of the Order class’s internal structure. In
such cases, factories are what you need: they’re domain objects that are responsible for
creating instances of aggregates.

 Factories can also be useful when you need to invoke infrastructure services (like a

Listing 14.11 Typical repository usage
logging service) and you don’t want to expose this logic to the end user.

Factories that use Entity Framework’s foreign keys
Although in your entity data model you have navigation properties to traverse relations,
Entity Framework 4.0 introduces the concept of foreign-key properties, which are plain
scalar properties containing the associated entity’s ID. You can set them to modify
this association if you want to. When you fetch an entity from the database, the
foreign-key properties and their corresponding navigation properties are bound
together, and changing the former results in an automatic update of the latter. To
achieve the same behavior with new entities, you can use the ObjectContext.
CreateObject<T> method.

In DDD, you shouldn’t use foreign keys, because they’re a technical and infrastruc-
tural concept that you shouldn’t pollute your domain model with. For the same rea-
son, you shouldn’t explicitly invoke ObjectContext.CreateObject<T> within the
domain model. But it’s also true that foreign-key features can be very useful in your
infrastructure layer.

To keep the best of both worlds, you can use a factory to encapsulate this logic and
use it when the time comes to create new entities.

377Summary

14.5 Summary
In this chapter, we explored the basics of an application’s structure. We introduced a
layered architecture, showing how the overall application design can benefit from bet-
ter code organization and separation of concerns.

 Then we moved on to domain-driven design (DDD), which aims to encapsulate the
pure business logic in an object-oriented model, referred to as the application’s
domain. We introduced some key building blocks, like entities, value objects, reposito-
ries, and factories, giving examples of how you could use them to rethink the OrderIT
application you’ve been working on in this book. If you want to explore all these con-
cepts more deeply, we recommend reading Domain-Driven Design, by Eric Evans
(Addison-Wesley, 2003), which is considered the “bible” of DDD. Although these DDD
concepts are abstract and don’t necessarily require a persistence framework such as
Entity Framework, we showed how you can integrate Entity Framework with DDD.

 Application architecture is a great place to start to achieve robustness and maintain-
ability, but it covers only half of the journey. In the next chapters, you’ll apply these
concepts to some typical real-world applications, and then we’ll focus on another tech-
nique that dramatically improves software quality: automatic code testing.

Entity Framework
and ASP.NET
ASP.NET is the technology used in the .NET Framework to build web applications.
In this chapter, we’ll analyze the ASP.NET and Entity Framework integration, so a
basic knowledge of data-binding techniques in ASP.NET is required. You can find
more information on this topic on MSDN, in the “ASP.NET Data-Bound Web Server
Controls Overview” article at http://mng.bz/c3k4.

 You can use Entity Framework’s features in two different ways: you can use
ASP.NET RAD support to directly tie them together; or you can manually manage
the ObjectContext lifecycle by writing more code. The first approach has the main
advantage of not requiring code, whereas the latter gives you maximum control

This chapter covers
 Binding data with the EntityDataSource control

 Using Dynamic Data controls and Entity Framework

 Understanding the ObjectContext lifecycle

 Common scenarios related to integrating ASP.NET and
Entity Framework
378

http://mng.bz/c3k4

379EntityDataSource, a new approach to data binding

over what is performed under the hood. Which is the best approach for your applica-
tion is up to you: typically, the former is indicated in small (or quick-and-dirty) appli-
cations, because you can be very productive, whereas the latter is for enterprise
applications. We’ll start with the simpler approach and then look at how to directly
manage the ObjectContext lifecycle in a typical ASP.NET application.

 Before we can move on, it’s useful to note that Entity Framework’s ObjectContext
can be instantiated only once per page. If you want to build some kind of layer over
Entity Framework (as you did in chapter 14), you’ll have to handle this task manually.
If you prefer to let ASP.NET do the magic for you, just sit down and relax: there is a
special control, called EntityDataSource that will perform most of the tasks for you.
Let’s start by looking at what EntityDataSource can do.

15.1 EntityDataSource, a new approach to data binding
Starting with version 2.0, ASP.NET offered a new approach to data binding, using a
new set of web controls named data source controls. Data source controls are, in fact,
used to enable a development approach based on Rapid Application Development
(RAD) in Visual Studio, providing a drag-and-drop-based development environment.

15.1.1 A practical guide to data source controls

You can build an entire application based on data source controls with the wizards
and RAD tools integrated in Visual Studio. The result is markup code that includes the
configuration for extracting data and for binding to the associated data control, such
as the GridView or Repeater.

 Several data source controls are available for different scenarios. These are the
most used:

 SqlDataSource—Makes a direct connection to a database structure
 ObjectDataSource—Enables the business logic to access business objects in

common three-tier applications
 LinqDataSource—Adds support to LINQ to SQL’s DataContext
 EntityDataSource—Implements support for Entity Framework’s data model

and ObjectContext

Every data source has a different set of pros and cons, depending on the approach
you want to use in your application architecture.

THE SQLDATASOURCE CONTROL

SqlDataSource is used when you want to couple your database to your web interface.
This situation isn’t ideal in common applications, but it may be useful in quick-and-
dirty scenarios, when all you want is a GUI to manipulate your data. When you use
SqlDataSource, the connection string and SQL query are saved directly in the
markup, so this isn’t the best choice in terms of flexibility.

380 CHAPTER 15 Entity Framework and ASP.NET

THE OBJECTDATASOURCE CONTROL

ObjectDataSource provides an alternative method of access in three-tier applications,
where you have a separation between the data layer and business logic, and you
manipulate data using object representations. This approach is suitable when you
want a better architecture and the ability to build the graphical interface using a RAD
approach. ObjectDataSource can use an EDM, but you’ll have no benefits: you’re
using objects in a simple form.

THE LINQDATASOURCE AND ENTITYDATASOURCE CONTROLS

LinqDataSource and EntityDataSource offer the same functionality against different
data sources: LINQ to SQL’s DataContext and Entity Framework’s ObjectContext,
respectively. They both use the same approach; they don’t use a tier to separate the
data access from the interface, but use the O/RM capabilities directly. You can add
your own validation and loading logic to both DataContext and ObjectContext by
using partial classes.

 Using the LinqDataSource and EntityDataSource controls prevents you from sep-
arating your data access strategy from your business rules. It may not be a good idea to
directly expose the data access in the page. Putting the data access in the business
logic tier is a better choice in terms of modularity and maintenance, resulting in a bet-
ter application architecture. But if keeping the data access separate from the business
rules isn’t a problem for you and your application, the EntityDataSource control is a
very practical and productive way to go.

 Using a data source control has the advantage of avoiding code in your pages,
because the DataBind method is performed automatically, during the PreRender
event, by the data control itself. If you have a Repeater control on your page, you sim-
ply have to set the DataSourceID property to the ID of your data source control. The
magic behind the scenes is done by ASP.NET: the resulting page will print data out of
your data source.

15.1.2 The EntityDataSource control in depth

From a technical perspective, the EntityDataSource control is very similar to Linq-
DataSource, because they’re both based on the System.Web.Extensions.IDynamic-
DataSource interface. This interface is primarily used to ensure compatibility in
applications based on Dynamic Data controls (which will be discussed in section 15.2).

EntityDataSource in ASP.NET 3.5
In order to use EntityDataSource with ASP.NET 3.5, you need to reference the
System.Web.Entity assembly, located in the Global Assembly Cache (GAC) and
installed by .NET Framework 3.5 Service Pack 1. Entity Framework was added with
Service Pack 1 and isn’t directly available with ASP.NET 3.5.

ASP.NET 4.0 directly supports this control.

381EntityDataSource, a new approach to data binding

To explore EntityDataSource’s capabili-
ties, let’s build a simple application to
show its features. You’ll build a simple
web page that will show the products avail-
able from OrderIT. You’ll use this data-
base in all the examples presented in this
chapter.

 To begin this little project, you need to
locate the EntityDataSource control. You
can find the EntityDataSource control in
your toolbox, as shown in figure 15.1.

 You can start by adding a data con-
trol, like a Repeater or ListView. Select
the New Data Source option from the
Choose Data Source smart task, as shown
in figure 15.2. This smart task will appear
when the editor is in design view.

 The Data Source Configuration Wiz-
ard will guide you through a series of
options. The most important step is the
selection of your EDM and the entity that
you want to display.

Figure 15.2 It’s possible to directly define a new EntityDataSource using the associated
Visual Studio smart task. Choose the New Data Source option to open a specific wizard.

Figure 15.1 You can insert an
EntityDataSource control via the Visual Studio
toolbar. It can be found under the Data category.

382 CHAPTER 15 Entity Framework and ASP.NET

The first wizard step is shown in figure 15.3.

Figure 15.3 By selecting Entity in the Data Source Configuration Wizard, you can later define
all the details associated with the to-be-created EntityDataSource.

 In this example, you’re using the OrderIT database hosted in the local SQL Server
instance: choose Products as the EntitySetName in order to display all the products in
the database. This step is shown in figure 15.4.

 If you want to automatically let EntityDataSource handle inserts, updates, and
deletes, all you have to do is select the corresponding check boxes in the wizard
screen shown in figure 15.4. Given the common nature of ObjectContext, Entity-
DataSource knows how to manipulate entities: the control uses the ObjectContext to
persist your actions in the corresponding database, using the previously defined
model. When you click the Finish button, the wizard exits, and the corresponding
markup is generated in the page.

 If you look at the resulting ASP.NET page markup, you’ll see what the EntityData-
Source control needs to make things work. The markup is shown in this listing, with
the key properties in bold.

<asp:ListView ID="ListView1" runat="server" DataKeyNames="ProductId"
 DataSourceID="EntityDataSource1">
 ...
</asp:ListView>
<asp:EntityDataSource ID="EntityDataSource1" runat="server"
 ConnectionString="name=OrderITEntities"
 DefaultContainerName=" OrderITEntities"
 EntitySetName="Products">

Listing 15.1 EntityDataSource markup code that displays a list of products
</asp:EntityDataSource>

Figure 15.4 Choose the entity from the EntitySetName drop-down list. If you don’t need
to create a partial view of your entity, Select All is the preferred option in the Select box.

383EntityDataSource, a new approach to data binding

As you can see, ListView’s DataSourceID property is used to configure the correspond-
ing data source control, so it can get the data from the source and display the value.

 Speaking of EntityDataSource, the ConnectionString property is used to refer to
the EDM previously defined, whereas DefaultContainerName is used to identify the
ObjectContext. Finally, EntitySetName contains the entity set from which to get
objects (and data).

 In listing 15.1, you’re taking all the data from a table named Products, located in
the OrderIT database, mapped on an EntitySet named Products, using the Object-
Context named OrderITEntities.

 All you need to do to display the value is run the page shown in figure 15.5.
 You don’t need to write any code to get this result: all the magic is done by the

EntityDataSource and the associated data control, which in this example is a
ListView.

 Your mileage with this approach may vary. As already mentioned, if you want more
control over what happens under the hood, don’t worry. We’ll soon look at a more
powerful approach to integrating ASP.NET and Entity Framework. First, though, we
need to look at Dynamic Data controls, because their features are interesting if you

simply need to manipulate data using a nice looking interface.

Figure 15.5 The rows are materialized into entities and displayed in the web page using the
EntityDataSource control’s capabilities. This is performed without writing code.

384 CHAPTER 15 Entity Framework and ASP.NET

15.2 Using Dynamic Data controls with Entity Framework
ASP.NET Dynamic Data is a feature initially introduced in ASP.NET 3.5 Service Pack 1
and further enhanced in version 4. The idea behind this technology is to simplify the
typical actions related to working with data: displaying, filtering, and altering data.

 Dynamic Data controls ship with ASP.NET, and they support both Entity Framework
and LINQ to SQL, using the LinqDataSource and EntityDataSource controls dis-
cussed previously. Dynamic Data is based on a simple assumption: because the
ObjectContext has a fixed set of features that won’t change, even for different map-
pings, its calls can be generically created. Using generics and reflection, the typical
operations performed by the ObjectContext can be standardized. The same princi-
ples are valid for LINQ to SQL.

 Dynamic Data controls work with a special kind of project—the Dynamic Data
Entities Web Application, which can be found with the other ASP.NET projects. You
can see it highlighted in figure 15.6.

 Dynamic Data controls are composed of a set of templates and pages, located in
the DynamicData directory. In this directory, you can find the templates used to repre-
sent different types, such as strings, integers, Booleans, and so on.

15.2.1 Registering the model

To start with Dynamic Data, you define the model you’re going to work against, and
the rest of the work will be performed by using the information already present in it.
The model contains the list of entities, and each entity describes itself, so each set of
entities can be represented and edited automatically.

 The model and routes are registered in listing 15.2. The necessary code is partially
generated by the wizard, but you need to add your context in order to use it with
Dynamic Data.

Figure 15.6 Dynamic Data Entities Web Application is the template project you need to select to start using
Dynamic Data controls with Entity Framework. The other templates won’t work for this purpose.

385Using Dynamic Data controls with Entity Framework

C#
public class Global : System.Web.HttpApplication
{
 private static MetaModel s_defaultModel = new MetaModel();
 public static MetaModel DefaultModel
 {
 get
 {
 return s_defaultModel;
 }
 }

 void Application_Start(object sender, EventArgs e)
 {
 // model registration
 DefaultModel.RegisterContext(typeof(OrderITEntities),

Uses
ObjectContext
as model

 new ContextConfiguration() {
 ScaffoldAllTables = true }); Enables

scaffoldingB // routes

Listing 15.2 The model and routes registration
 RouteTable.Routes.Add(new DynamicDataRoute("{table}/{action}.aspx")

386 CHAPTER 15 Entity Framework and ASP.NET

 {
 Constraints = new RouteValueDictionary(new {
 action = "List|Details|Edit|Insert" }),
 Model = DefaultModel
 });
 }
}

VB
Public Class Global_asax
 Inherits System.Web.HttpApplication
 Private Shared s_defaultModel As New MetaModel()
 Public Shared ReadOnly Property DefaultModel() As MetaModel
 Get
 Return s_defaultModel
 End Get
 End Property

 Public Sub Application_Start(ByVal sender as Object, ByVal e as EventArgs)
 ' model registration
 Dim config As New ContextConfiguration()
 config.ScaffoldAllTables = True

Enables
scaffolding

B

 DefaultModel.RegisterContext(GetType(OrderITEntities),
 config) Uses ObjectContext

as model ' routes
 RouteTable.Routes.Add(New DynamicDataRoute("{table}/{action}.aspx")

➥With {
 .Constraints = New RouteValueDictionary(New With {
 .Action = "List|Details|Edit|Insert"}),
 .Model = DefaultModel})
 End Sub
End Class

This code explicitly sets the scaffold feature B, so every entity is automatically dis-
played in the start page. If you prefer to control this list, you must turn it off. If you use
the routing features from ASP.NET 4.0, the resulting URL will be similar to /Custom-
ers/List.aspx, where Customers is the entity set to be managed, and List is the action.
As you can see in listing 15.2, the Details, Edit, and Insert actions can be used to
manage the respective statuses.

15.2.2 Working with data annotations

In figure 15.7, you can see the default results you’ll get when you display the Customer
list from the model.

 By default, the display template is inferred from the column’s type, but it can be
specified too. Generally, you specify templates by creating a new class, specifically for
this scenario, that extends the entity using the MetadataTypeAttribute attribute.
Dynamic Data controls work with data annotations, a feature introduced in .NET
Framework 3.5 SP1 and further enhanced in version 4. In this example, we’re using
POCO entities, so the annotations are directly generated using the T4 engine (which

was introduced in chapter 13). If you’re using the default entity-generation engine,

Figure 15.7 Dynamic Data controls are capable of displaying any mapped entity. As shown here, the
display can be customized.

387Using Dynamic Data controls with Entity Framework

you can use a partial class and the aforementioned MetadataTypeAttribute. More
information on this topic is available from MSDN in the “MetadataTypeAttribute
Class” article: http://mng.bz/q9hA.

 In this example, we added some custom logic to the default generation engine by
altering the CDSL inside the EDMX file to generate the exact code used to represent
the additional properties required by data annotations. Data annotations work with
attributes, as you can see in the following listing, which contains an entity generated
with these annotations.

C#
public abstract partial class Company : INotifyPropertyChanged,

IEditableObject
{
 ...
 [DisplayName("Company name")]

Attributes
for data
annotations

 [Required(ErrorMessage = "Company name is required")]
 [DataType("MultilineText")]
 [RegularExpression("[\\w]{2,}",

➥ErrorMessage = "At least 2 chars.")]
 public virtual string Name
 {

Listing 15.3 POCO entities generated by a template with data annotations
 get { return _name; }

http://mng.bz/q9hA

388 CHAPTER 15 Entity Framework and ASP.NET

 set { _name = value; NotifyPropertyChanged("Name"); }
 }
}

VB
Public MustInherit Partial Class Company
 Implements INotifyPropertyChanged
 Implements IEditableObject
 ...
 <DisplayName("Company name")>

Attributes
for data
annotations

 <Required(ErrorMessage := "Company name is required ")>
 <DataType("MultilineText")>
 <RegularExpression("[\w]{2,}",
 ErrorMessage := "At least 2 chars.")>
 Public Overridable Property Name() As String
 Get
 Return _name
 End Get
 Set(ByVal value As String)
 _name = value
 NotifyPropertyChanged("Name")
 End Set
 End Property
End Class

The annotations influence the way the property is displayed and how its value is
validated:

 DisplayNameAttribute—Sets a more friendly name to be displayed
 RequiredAttribute—Lets you define the property as required, associating an

error message to be displayed
 DataTypeAttribute—Specifies a new template
 RegularExpressionAttribute—Specifies a regular expression for validation

You can see how Dynamic Data controls handles these attributes in figure 15.8.
Data annotations are a very important way of using Entity Framework in ASP.NET.
Their use isn’t limited to working with Dynamic Data controls but can be expanded to
ASP.NET MVC model validation. You can find more information on the available attri-
butes in the “System.ComponentModel.DataAnnotations Namespace” article on
MSDN: http://mng.bz/2cWi.

 We’re now finished with Dynamic Data controls. It’s time to learn how to directly
manage the ObjectContext’s lifecycle in a typical ASP.NET application, how to handle
it properly, and what the main aspects to consider are.

15.3 The ObjectContext lifecycle in ASP.NET
EntityDataSource and Dynamic Data controls are interesting if you want to be very
productive, or if you just need a simple interface to display and manipulate your data.
In real-world applications, though, where enterprise techniques are needed, this
approach won’t work.

http://mng.bz/2cWi

Figure 15.8 The data-annotation attributes modify the way the properties are
displayed and how their values are handled. By using them, you can influence what
Dynamic Data does.

389The ObjectContext lifecycle in ASP.NET

As you learned in chapter 14, it’s possible to isolate Entity Framework’s dependency
from the application, using a different approach from the one already introduced in
this chapter. By using repositories, you can avoid coupling and maintain better control
over what is performed under the hood. The examples provided in chapter 14 intro-
duced you to the basics of this subject. The purpose of using a repository is to simplify
testability, and, at the same time, to provide flexibility. By using a clean approach, pri-
marily based on interfaces, the use of repositories also avoids coupling, generally
thanks to an Inversion of Control (IoC) container that wraps the complexity.

NOTE The example provided in this section is based on Unity, an IoC
container that’s part of the Enterprise Library, created by the Microsoft
Pattern & Practice team. The configuration is performed in the web.con-
fig file.

By using an IoC container, you can reuse part of the code already presented in chap-
ter 14, which didn’t incorporate ASP.NET. We can reuse it here because we designed
the application with great flexibility in mind.

15.3.1 The Context-per-Request pattern

To make sure your strategy-based repositories can be implemented, you need to build
a set of classes that will encapsulate the logic, as illustrated in figure 15.9.

 There are different ways to handle the ObjectContext’s lifecycle, but the best in
web applications, in terms of flexibility and functionality, is to handle it per-request (as

e t

x

) y

eEFModule tOBjectContext

xPage.aspx

)GetData()

Applica�onContext

Resolve<T> yMyRepository

Figure 15.9 By using the
IoC container, both the
ObjectContext and
repositories are resolved at
runtime. This helps to avoid
coupling and lets you manage
the ObjectContext’s
lifecycle correctly.

390 CHAPTER 15 Entity Framework and ASP.NET

in the Context-per-Request pattern). Every request will have its own ObjectContext
instance, shared by different repositories, with there generally being one instance of
the ObjectContext per entity set.

 This simplifies the problem in many ways, because different parts of the page can
access the same context, and multiple actions can be completed at the same time.
Thanks to the IQueryable interface, the real query to the database will be performed
only when the entity set is effectively enumerated, so no tangible overhead is associ-
ated with this approach.

15.3.2 Wrapping the context

In order to support this scenario, you first need to create a basic implementation that
gets the ObjectContext. We previously prepared an interface called IObjectContext
that can support more scenarios, like unit testing, or Windows applications. The
implementation is shown in the following listing.

C#
public class WebContextWrapper : IObjectContext
{
 public WebContextWrapper()
 {
 if (HttpContext.Current.Items[ConfigurationKeys.ConnectionString] ==
 null)
 throw new
 InvalidProgramException("You must register the HttpModule first.");

 this.Context = ((OrderITEntities)
 HttpContext.Current Populates item

from module .Items[ConfigurationKeys.ConnectionString]);
 this.objectStateManager = new
 ObjectStateManagerWrapper(Context.ObjectStateManager);
 }

 public IObjectSet<T> CreateObjectSet<T>() where T : class
 {

Listing 15.4 Context wrapper creating an instance of the ObjectContext
 return this.Context.CreateObjectSet<T>(); Creates object

391The ObjectContext lifecycle in ASP.NET

 }

 public IObjectStateManager ObjectStateManager
 {
 get { return this.objectStateManager; }
 }

 public OrderITEntities Context { get; set; }
 private IObjectStateManager objectStateManager;
}

VB
Public Class WebContextWrapper
 Implements IObjectContext
 Public Sub New()
 If HttpContext.Current.Items(ConfigurationKeys.ConnectionString) Is
 Nothing Then
 Throw New

➥InvalidProgramException("You must register the HttpModule first.")
 End If

 Me.Context = DirectCast(
 HttpContext.Current Populates item

from module➥ .Items(ConfigurationKeys.ConnectionString),
 OrderITEntities)
 Me.m_objectStateManager = New

➥ ObjectStateManagerWrapper(Context.ObjectStateManager)
 End Sub

 Public Function CreateObjectSet(Of T As Class)() As IObjectSet(Of T)
 Return Me.Context.CreateObjectSet(Of T)() Creates object
 End Function

 Public ReadOnly Property ObjectStateManager() As IObjectStateManager
 Get
 Return Me.m_objectStateManager
 End Get
 End Property

 Private _Context As OrderITEntities
 Public Property Context() As OrderITEntities
 Get
 Return _Context
 End Get
 Set(ByVal value As OrderITEntities)
 _Context = value
 End Set
 End Property
 Private m_objectStateManager As IObjectStateManager
End Class

The repositories were created in chapter 14, so we won’t address that topic here. The
next step is to create the module to handle the per-request instance. This can easily be
accomplished by writing an HttpModule.

392 CHAPTER 15 Entity Framework and ASP.NET

15.3.3 A module to handle the lifecycle

You’ve handled the context, so now you need to build the module to manage the
ObjectContext instance using the Context-per-Request pattern. The code is very sim-
ple, as you can see here.

C#
public class WebContextModule : IHttpModule
{
 public void Dispose() {}

 public void Init(HttpApplication context)
 {
 context.BeginRequest += new EventHandler(context_BeginRequest);
 context.EndRequest += new EventHandler(context_EndRequest);
 }

 void context_BeginRequest(object sender, EventArgs e)
 {
 HttpContext.Current.Items[ConfigurationKeys.ConnectionString] =
 new OrderITEntities(Configuration.ConnectionString); Creates

instanceB
 }

 void context_EndRequest(object sender, EventArgs e)
 {
 var ctx = ((ObjectContext)
 HttpContext.Current.Items[ConfigurationKeys.ConnectionString]);
 if (ctx != null)
 ctx.Dispose(); Disposes of

instanceC
 }
}

VB
Public Class WebContextModule
 Implements IHttpModule
 Public Sub Dispose()Implements IHttpModule.Dispose
 End Sub

 Public Sub Init(ByVal context As HttpApplication)

➥ Implements IHttpModule.Init
 AddHandler context.BeginRequest, AddressOf context_BeginRequest
 AddHandler context.EndRequest, AddressOf context_EndRequest
 End Sub

 Private Sub context_BeginRequest(ByVal sender As Object,

➥ ByVal e As EventArgs)
 HttpContext.Current.Items(ConfigurationKeys.ConnectionString) =
 New OrderITEntities(Configuration.ConnectionString) Creates

instanceB
 End Sub

 Private Sub context_EndRequest(ByVal sender As Object,

➥ ByVal e As EventArgs)
 Dim ctx = DirectCast(
 HttpContext.Current.Items(ConfigurationKeys.ConnectionString),

Listing 15.5 HttpModule that instantiates the ObjectContext per request
 ObjectContext)

393Common scenarios involving ASP.NET and Entity Framework

 If ctx IsNot Nothing Then
 ctx.Dispose() Disposes of

instanceC
 End If
 End Sub

End Class

The code speaks for itself: at the beginning of every request, the context is created B,
and then it’s destroyed at the end C. Note that you must dispose of the Object-
Context, or memory leaks may occur. Remember also to register the module, which is
an ASP.NET HttpModule, under the appropriate section in the web.config file; other-
wise, you’ll receive an error informing you that the module isn’t configured.

15.3.4 Using the repository in a page

In order to use the repository to display customers in the page, you need to use this
code in a Web Form page:

C#
Products.DataSource =
 ApplicationContext.Current.Companies.OfType<Customer>();
Products.DataBind();

VB
Products.DataSource =
 ApplicationContext.Current.Companies.OfType(Of Customer);
Products.DataBind()

As you can see, the access to repositories is wrapped in a singleton class, named
ApplicationContext, which holds the reference to the repositories. The rest of the
code you have already seen.

 This approach, with POCO entities, gives you the freedom to change the imple-
mentation at any given time, because there’s no deep coupling between ASP.NET and
Entity Framework. The approach based on repositories and the Context-per-Request
patterns gives you good control over the ObjectContext lifecycle, too. The resulting
web page is shown in figure 15.10, where an ASP.NET MVC view is used.

 If you need more advanced features in your repositories, you can easily add more
complexity to them using this design. Each piece is interchangeable, thanks to the
IoC container.

 Now we need to look at some common ASP.NET and Entity Framework scenarios
and see what needs to be addressed when they’re used together.

15.4 Common scenarios involving ASP.NET
and Entity Framework
You have to know a few things when working with Entity Framework in an ASP.NET
application:

 Serializing objects in ViewState —By default, POCO entities aren’t serializable when
they’re proxied. If you need to save an entity in ASP.NET’s ViewState, for exam-

ple, this may be an issue. If a proxy isn’t in place, the entities must be decorated

Figure 15.10 The customers in the database are displayed using the new design.

394 CHAPTER 15 Entity Framework and ASP.NET

with SerializableAttribute. You can manually disable the proxy created or
use a DTO (if that’s suitable for your needs). This is discussed in chapter 16, in
the context of analyzing Entity Framework in n-tier applications.

Non-POCO entities (the ones generated by default) are serializable by
default because they’re generated with SerializableAttribute.

 Using transactions and concurrency —ASP.NET applications are disconnected by
nature. Between different requests there isn’t a real state bag, so entities are
created and destroyed frequently. If you need to handle transactions or con-
currency, you have to keep this in mind. You can find more on this topic in
chapter 8.

 Attaching entities —Attaching previously detached entities is a common scenario
in web applications, because this atomic action is composed of two different
steps: first, you get and display the data from the entity; then, you alter its prop-
erties, getting the value from the previous form. This problem is very similar to
the previous point, and is specifically addressed in chapters 6 and 7.

Now you know how to create web sites using ASP.NET WebForm technology.

395Summary

15.5 Summary
In this chapter, we discussed the two main options offered by ASP.NET for handling
Entity Framework’s ObjectContext. You can easily integrate them either automatically
or manually.

 Both EntityDataSource and Dynamic Data controls can make you very produc-
tive. In particular, Dynamic Data controls can work with the custom T4 template to
generate rich data-editing interfaces, using data annotations to further enhance the
generated interface. This approach has some limits in terms of controlling the
ObjectContext creation, and it can’t be used to wrap the ObjectContext behind a
domain model.

 If you prefer to isolate Entity Framework, you can manually manage the Object-
Context. Doing so gives you great flexibility; but ObjectContext’s lifecycle needs to be
carefully managed in web applications, where multiple instance of the same object
may occur per request—this situation must be resolved. You can address this scenario
by writing a specific set of classes that automatically instantiate the ObjectContext at
the beginning of every request and destroy it when the request is completed. In this
scenario, using an IoC container gives you the flexibility to control what happens
when common tasks related to your entities are performed.

ASP.NET is the most common way to use Entity Framework; but as a part of the
.NET Framework, Entity Framework isn’t limited to web pages: you can use Entity
Framework in virtually any kind of application. The following chapters will look at
using Entity Framework in n-tier and Windows-based applications.

Entity Framework
and n-tier development
You can solve many problems with a service-oriented application. Sometimes these
types of applications are used by client applications (clients from now on) within a
larger system. Other times, clients are developed by third-party organizations, and
your duty is to build services. This means that you have no GUI to develop—just
services.

 Whatever the client is, the application must be separated into different physical
tiers that are completely disconnected from each other and that communicate
through a specific interface: the contract. In the context of Entity Framework, work-
ing in a disconnected way is the obvious pattern for these types of applications
because the context can’t be propagated from the server to the client tier, which
means modifications made on the client side can’t be tracked, and a new context

This chapter covers
 Solving n-tier development problems

 Developing Windows Communication Foundation services

 Developing with self-tracking entities
396

for each request is required on the server side.

397n-Tier problems and solutions

 In chapter 6, you learned that a degree of discipline is required to work in a dis-
connected scenario. Although the code on the client side is simple (the client code
isn’t even aware that Entity Framework is used by the server), persisting modifications
on the service side requires a certain amount of code.

 In this chapter, you’ll learn what problems services have to face and what tech-
niques you can use to solve them. You’ll also learn that under some circumstances,
Entity Framework can simplify n-tier applications so that you can stay more focused on
the business code and not spend as much time on persistence problems.

16.1 n-Tier problems and solutions
Distributed applications introduce challenges that don’t exist for applications that are
always connected (such as Windows applications), including client change-tracking
and entity serialization. We’ll look at these n-tier problems and solutions in the next
few sections, so we can spend the rest of the chapter looking at how to implement n-
tier applications.

16.1.1 Tracking changes made on the client

The biggest challenge you face when developing n-tier applications is that the con-
text exists only on the server side, so changes made to entities on the client aren’t
tracked (this is a typical example of a disconnected scenario). Suppose you have a
web service with one method that reads the customer and another that updates it (an
example we’ve looked at previously). Figure 16.1 shows how such a web service han-
dles the context.

Client

Server

Context

Instan�ates

Gets customer

Disposes

Returns
customer

Invokes

Context
Instan�ates

Context

No tracking informa�on

Read
method

Update
method

Invokes

Figure 16.1 The path of an update
in a n-tier application. The context
that’s used to read a customer is
different from the one used to
update it. Furthermore, client
change-tracking isn’t available.

 In the method that retrieves the customer, you create a context, retrieve the cus-
tomer, return it to the caller, and then destroy the context. In the method that saves
the customer, you create a context, but it has no knowledge of what has been modi-
fied on the client side. The result is that you have two ways to update the customer:

 Retrieve the customer from the database, compare it with the input version,
update the database with the differences, and destroy the context.

 Attach the input customer to the context, mark it as Modified, persist all its
data, and destroy the context.

398 CHAPTER 16 Entity Framework and n-tier development

Both solutions are simple because Customer is a single entity; but what happens with
orders? Creating and deleting an order is pretty easy, but how do things change if you
have to update one? You have to handle its relationships with the customer and with
the details, which must in turn keep their relationships with the products. You have to
know which details have been updated, added, or deleted.

 A possible solution is to compare details from the database with the ones in the
input order. Another option is adopting a convention where details with ID 0 are
added, those with ID greater than 0 are updated, and those with ID greater than 0 and
with all properties set to their default values are deleted. Whatever your choice is, you
have to arrange a sort of logic contract between the client and the server, and the cli-
ent must know how to let the service understand what happened. This logic contract
requires lots of code on both the client and the server.

 Another alternative is to use self-tracking entities (STEs). These are POCO entities
that contain data plus logic that internally stores the modifications made to the prop-
erties. Thanks to this feature, the client can send the entities back to the server, which
can read the internal state and save the modifications to the database. STEs aren’t bul-
letproof. They’re perfect in some scenarios, but in others they’re unusable. Later in
this chapter, we’ll discuss when and why you can use them.

 In addition to the change-tracking problem, another problem that arises when
working in n-tier scenarios is the contract between the client and server. Usually you
won’t want to send full entities to the client because they could contain sensitive
information.

16.1.2 Choosing data to be exchanged between server and client

In OrderIT, each customer has a username/password combination that grants access
to the web service they can use to modify personal data and to create and modify
orders. You should never let the password flow through the web service. You can let the
customer reset the password, send it to the customer via mail, or let the system admin-
istrator change it, but you shouldn’t let the password flow to the customer through the
service (especially if the channel isn’t secured by HTTPS).

 What’s more, it’s the system administrator who decides whether a customer can
access the web service and what username is assigned, so the customer can’t change
web service–related information through the web service.

 Now, suppose that you’re realizing the web service methods that let customers read
and modify their personal data. The first thing you have to decide is how to exchange
data with the client. Because the Customer entity has the WSPassword, WSUsername,
and WSEnabled properties (which we’ll refer to collectively as the WS* properties), and
you don’t want to send them to the web service client, you have two choices:

 Send the Customer entity to the client, emptying the WS* properties. This approach
works. You just need to pay attention to not filling the WS* properties when
sending data to the client and to not using the WS* properties’ values to update

the database when data comes back from the client. The obvious drawback is

399n-Tier problems and solutions

that because you’re ignoring the WS* properties, there’s not much point in
sending them back and forth. The next option is better than this one.

 Create a CustomerDTO class, a data transfer object (DTO) class, containing only the data
needed for communication, and expose it to the client. This approach works really
well. You just need to create an ad hoc class (a DTO), pour data into it when
reading the Customer entity, and pour data from it to the Customer entity when
updating the database (not updating the WS* properties). This way, you have a
much cleaner design, with the only drawback being that you need to maintain
one more class.

But remember that T4 templates can help you generate such classes. Just cre-
ate a custom property (as you did in the Add/Attach example in chapter 13)
that states whether the entity property must be included in the DTO, and then
create a template that generates the DTO for you. If this doesn’t make you fall
in love with T4, nothing will.

The class you expose to the client is known as the contract. Choosing what type of con-
tract to expose to the client isn’t strictly related to Entity Framework; it’s more related
to application design. Nonetheless, choosing whether to send the full entity or a DTO
to the client has an impact on how you work with Entity Framework.

 Let’s now look at another common problem. Generally speaking, to let data flow
over the wire, the data must be serialized. You know that when an entity is returned by a
query, the real type is a proxy (unless you disable proxy generation). This creates a
problem, because Windows Communication Foundation (WCF), which is the frame-
work we’ll use to create the web service, isn’t able to serialize a proxy instance.

16.1.3 The serialization problem

By default, when you query for a customer, you get an instance of an object that inher-
its from Customer (such as CustomerProxy). WCF can serialize only types it knows
about (referred to as known types), and CustomerProxy, although it inherits from
Customer, isn’t a known type. The consequence is that serializing it throws an excep-
tion, as illustrated in figure 16.2.

 The problem isn’t only on the server side, but
on the client side also. The client can be an appli-
cation that uses Entity Framework for its own pur-
poses. Suppose the client reads customer data
from its own database and then calls the service to
synchronize local database data with server data.
In this case, the client could have a proxy instance
that would need to be serialized by WCF: different
layers, but the same problem.

 Often you don’t need a proxy. If you only need
to read an entity from the database and send this

Customer

WCF

Knows

CustomerProxy

Serializes
and throws
excep�on

Figure 16.2 WCF knows Customer
but not CustomerProxy, so it throws
an exception when serializing
CustomerProxy.

400 CHAPTER 16 Entity Framework and n-tier development

entity over the wire, you don’t need either change-tracking or lazy-loading behavior.
In such cases, you can disable proxy generation.

NOTE If you have a proxy instance, remember to disable lazy loading
before serializing, or you’ll end up sending unwanted data to the client.
This happens because the WCF serializer extracts all properties, including
navigation properties, and this causes them to be lazily loaded.

In some cases, though, you may need to have a proxy instance and to serialize it. The
Entity Framework team considered this possibility and used a new WCF 4.0 feature to
serialize proxies: the contract resolver. WCF’s DataContractResolver class allows you to
dynamically map one type to another type.

 The Entity Framework team created the ProxyDataContractResolver class, which
inherits from DataContractResolver, to map the proxy type to the POCO type that
the proxy wraps (for example, from CustomerProxy to Customer). To resolve the map-
ping, ProxyDataContractResolver invokes the ObjectContext class’s static Get-
ObjectType method, which returns the base type of the proxy, which is the POCO
entity (for example, Customer is the base type of CustomerProxy).

 Because WCF knows the POCO entity, WCF treats the proxy as if it were the POCO
entity, so WCF serializes the entity without any problem. It’s that easy.

ProxyDataContractResolver is great, but it does nothing on its own. You must
plug it into the WCF pipeline. We’ll look at how to do this in the next section, where
you’ll start to develop a service.

 You now have a clear idea of what intricacies you face when developing a service
application. In the next sections, you’ll develop services that use plain entities, DTOs,
and STEs so that the full spectrum of options will be covered. By the end of the chap-
ter, you’ll have a solution for each situation.

16.2 Developing a service using entities as contracts
In many projects, entities are fully exposed through a web service (so DTOs aren’t
used). If the client can access all of an entity’s properties, using the entity to exchange
data between client and server isn’t an issue. If the client shouldn’t access some
entity’s properties, using the entity to exchange data between client and server isn’t
the best solution. For instance, as we mentioned in the previous section, exposing the
Customer entity in OrderIT poses a problem because you don’t want to send WS* prop-
erties back and forth. However, as long as you don’t set them when you send the entity
to the client, and you don’t update them when the entity comes back, you can let the
properties flow across the tiers.

 Let’s look at how you can create a service that uses the Customer entity to let the
customer read and update its personal data. The first thing to do is to create a service
interface like the one in this listing.

401Developing a service using entities as contracts

C#
[ServiceContract]
public interface IOrderITService
{
 [OperationContract]
 Customer Read();

 [OperationContract]
 void Update(Customer customer);
}

VB
<ServiceContract()> _
Public Interface IOrderITService
 <OperationContract()> _
 Function Read() As Customer

 <OperationContract()> _
 Sub Update(ByVal customer As Customer)
End Interface

The Read method returns the current customer. There’s no CustomerId parameter
because the web service is secured, and the security check returns the id of the
logged-in customer. This way, you’re sure that a call to Read returns data about the
current customer.

 The Update method takes the customer back and updates it.

NOTE Update accepts a Customer entity, but it could have accepted sin-
gle properties (shipping address, city, name, and so on). There are pros
and cons in both techniques, so choosing one approach or the other is a
matter of personal taste.

The implementation of Read queries for the customer by the ID, blanks out the WS*
properties, and returns the entity to the caller. The code is shown in the following
listing.

C#
public Customer Read()
{
 using (var ctx = new OrderITEntities())
 {
 var result = ctx.Companies
 .OfType<Customer>()
 .FirstOrDefault(
 c => c.CompanyId == _customerId);
 result.WSPassword = String.Empty;
 result.WSUsername = String.Empty;

Listing 16.1 The interface exposed by the service

Listing 16.2 The implementation of the Read method
 result.WSEnabled = false;

402 CHAPTER 16 Entity Framework and n-tier development

 return result;
 }
}

VB
Public Function Read() As Customer
 Using ctx = New OrderITEntities()
 Dim result = ctx.Companies.
 OfType(Of Customer)().
 FirstOrDefault(
 Function(c) c.CompanyId = _customerId)
 result.WSPassword = String.Empty
 result.WSUsername = String.Empty
 result.WSEnabled = False
 Return result
 End Using
End Function

The query to retrieve the customer is simple, and you’ve seen it several times before.
Blanking out the WS* properties is pretty simple too. The entire method is definitely
trivial.

 At runtime, the code performs correctly; but when WCF serializes the entity, a seri-
alization exception is thrown because result is a proxied instance of the Customer
entity. In the next section, you’ll see how to overcome this problem, but for the
moment we’ll let it stand and examine how to handle the Update method.

Update takes the modified customer and persists it. The problem here is that it
should only update the address-related properties and the name, and ignore the
others.

 If you mark the entity as Modified using the ChangeObjectState method, all the
properties will be modified even if they’re blank or null. If you retrieve the customer
from the database and then use ApplyCurrentValues to update it with the values
from the input entity, you’ll have the same problem. The password is blank in the
input entity, and it has a value in the one coming from the database. Because Apply-
CurrentValues overrides database entity values with ones from the input entity, the
blank value would be persisted.

 The ideal solution should allow you to set the entity as Modified but for only some
of the properties to be updated. This result can be achieved using the Object-
StateEntry class’s SetModifiedProperty method, which marks a property (and the
entry) as Modified. You see it in action in this listing.

C#
public void Update(Customer customer)
{
 using (var ctx = new OrderITEntities())
 {
 ctx.Companies.Attach(customer);

Listing 16.3 The implementation of the Update method
 var entry = ctx.ObjectStateManager.

403Developing a service using entities as contracts

 GetObjectStateEntry(customer);
 entry.SetModifiedProperty("ShippingAddress");
 entry.SetModifiedProperty("BillingAddress");
 entry.SetModifiedProperty("Name");
 ctx.SaveChanges();
 }
}

VB
Public Sub Update(ByVal customer As Customer)
 Using ctx = New OrderITEntities()
 ctx.Companies.Attach(customer)
 Dim entry = ctx.ObjectStateManager.
 GetObjectStateEntry(customer)
 entry.SetModifiedProperty("ShippingAddress")
 entry.SetModifiedProperty("BillingAddress")
 entry.SetModifiedProperty("Name")
 ctx.SaveChanges()
 End Using
End Sub

First the entity is attached to the context. After that, the related entry is retrieved and
the properties that were updatable by the user are marked as Modified. Finally, the
entity is persisted. This way, only marked properties are persisted.

 Updating a single entity is fairly simple. But as we said before, when it comes to
orders and details, the situation becomes more complex.

16.2.1 Persisting a complex graph

Updating just the order or a detail is pretty simple, because you can reuse the same
technique used for the customer. What’s difficult is understanding what details have
been added or removed.

 In section 7.3.3, you learned how to detect what’s been changed. The drawback in
that code is that it requires a comparison between details in the database and the
details you’ve been passed by the client. To avoid this, you can establish a logic con-
tract with the client: deleted details are always sent to the server with only the ID set
(and with all other properties at their default values), added details are assigned an ID
of 0, and other details are considered to be modified. This way, you can retrieve
deleted, added, and modified details in a snap using simple LINQ queries.

 The disadvantage of this technique is that you move some business logic to the cli-
ent, and that’s not good from a design point of view. That’s why we disregard this pat-
tern and opt for the comparison with the database, despite its additional querying.

 Naturally, customers can’t change an order’s estimated or actual shipping dates,
nor can they change an order detail’s discount. To prevent customers from updating
this data, you can use the same technique discussed in the preceding section.

 So far, you’ve sent full entities over the wire, taking care to blank out properties
that shouldn’t be seen by the client. But wouldn’t it be better if the properties that
shouldn’t be shown to the client weren’t exposed by the service at all, so you could

avoid writing the code that blanks these properties out? Let’s look at how to do that.

404 CHAPTER 16 Entity Framework and n-tier development

16.2.2 Optimizing data exchanges between client and server

If you want to fully customize the way you send data back and forth, using DTOs is the
best way. You can use plain entities and have them behave sort of like DTOs, but this
solution has some disadvantages that we’ll analyze in this section.

 By default, WCF exposes all entities’ public properties to the client. You can change
this behavior and selectively decide what properties to expose by applying WCF-
specific attributes on classes and properties. For example, you can apply attributes on
the CompanyId, Name, ShippingAddress, and BillingAddress properties so that only
they are available to the client. The following listing shows how to apply such attri-
butes to classes.

C#
[DataContract(IsSerializable=true)] Marks classB
public partial abstract class Company
{
 [DataMember]

Marks
properties

C
 public virtual int CompanyId { ... }
 [DataMember]
 public virtual string Name { ... }
 [DataMember]
 public virtual byte[] Version { ... }
}

[DataContract(IsSerializable=true)] Marks classB
public partial class Customer : Company
{
 ...
 [DataMember]

Marks
properties

C public virtual AddressInfo BillingAddress { ... }
 [DataMember]
 public virtual AddressInfo ShippingAddress { ... }
}

VB
<DataContract(IsSerializable := True)> _ Marks classB
Public MustInherit Partial Class Company
 <DataMember()> _

Marks
properties

C
 Public Overridable Property CompanyId() As Int32
 <DataMember()> _
 Public Overridable Property Name() As String
 <DataMember()> _
 Public Overridable Property Version() As Byte()
End Class

<DataContract(IsSerializable := True)> _ Marks classB
Public Partial Class Customer
 Inherits Company
 ...
 <DataMember()> _

Marks Public Overridable Property BillingAddress() As AddressInfo

Listing 16.4 Marking entities for WCF custom serialization
properties
C

 <DataMember()> _

405Developing a service using entities as contracts

 Public Overridable Property ShippingAddress() As AddressInfo
End Class

The attributes to use are DataContract B and DataMember C. DataContract must
be applied on the class to specify that only properties decorated with DataMember
should be exposed by the service. The result of listing 16.4 is that in the WSDL
exposed by the service, Company contains the CompanyId, Name, and Version (required
for concurrency checks) properties, and Customer contains only the Shipping-
Address and BillingAddress properties. When the client generates its classes from
the WSDL, it will create them with only those properties and will never know that on
the server, the classes contain more properties.

NOTE Manually modifying entities isn’t the best practice because the
modifications are lost at each code generation. It’s better to create a cus-
tom annotation in the EDM and then modify the template that generates
the code (as we discussed in chapter 13).

Exposing only the correct properties is optimal not only from a design point of view
but for performance too. When you send full entities with blanked-out properties, the
empty properties are still sent to the client. Not sending the WS* properties over the
wire means that less data is sent and more requests can be served.

 In the code for reading the customer, the only difference is that you don’t need to
blank out the WS* properties because they’re not sent to the client. In the update
phase, nothing changes because only the addresses and name properties must be
updated.

NOTE Even if the Customer entity that goes over the wire is different
from the actual one (it has fewer properties), WCF is able to map it to the
original one by using the DataContract and DataMember attributes.

We’ve already talked about the serialization problem, but we haven’t talked much
about its solution. Let’s look at that now.

16.2.3 Dealing with serialization in WCF

The easiest way to make an entity that’s returned by a query serializable by WCF is to
set the ContextOptions.ProxyCreationEnabled property of the context to false (by
default, it’s true) before performing the query. This way, you obtain the plain entity
instead of a proxied one, eliminating any serialization problem.

 Disabling proxy generation isn’t always possible because you may need lazy loading
or change tracking. In such cases, you need to serialize a proxied instance.

 In section 16.1.3, you’ve learned that ProxyDataContractResolver is the key to
proxy serialization. The contract resolution is a WCF feature that enables you to map
the actual type (the proxy) to a WCF known type (the entity exposed) using the work-
flow illustrated in figure 16.3.

Customer WCF
Knows

CustomerProxy

Serializes

Resolver

Asks for real type

Customer

Maps en�ty to

Figure 16.3 WCF knows
Customer, and when it receives
CustomerProxy, it uses the
resolver to map CustomerProxy
to Customer.

406 CHAPTER 16 Entity Framework and n-tier development

ProxyDataContractResolver performs such mappings but it isn’t able to interfere
with the WCF pipeline. That’s something you have to do manually. Fortunately, this pro-
cess is pretty simple; you just have to create an attribute and decorate the service inter-
face methods with it. You can see the code for the attribute in the following listing.

C#
public class ProxyResolverAttribute : Attribute, IOperationBehavior
{
 public void AddBindingParameters(OperationDescription description,
 BindingParameterCollection parameters) { }

 public void ApplyClientBehavior(OperationDescription description,
 ClientOperation proxy)
 {
 SetResolver(description);

Sets client-side
resolver

B

 }

 public void ApplyDispatchBehavior(OperationDescription description,
 DispatchOperation dispatch)
 {
 SetResolver(description); Sets service-side

resolverC
 }

 public void Validate(OperationDescription operationDescription) { }

 private void SetResolver(OperationDescription description)
 {
 var dataContractSerializerOperationBehavior = Retrieves

serializer
behavior

D
 description.Behaviors.Find
 <DataContractSerializerOperationBehavior>();

 dataContractSerializerOperationBehavior. Sets resolver
on serializer
behavior

E
 DataContractResolver =
 new ProxyDataContractResolver();
 }
}

VB
Public Class ProxyResolverAttribute
 Inherits Attribute
 Implements IOperationBehavior

Listing 16.5 Class that plugs the contract resolver into WCF
 Public Sub AddBindingParameters(

407Developing a service using entities as contracts

 ByVal description As OperationDescription,
 ByVal parameters As BindingParameterCollection)
 End Sub

 Public Sub ApplyClientBehavior(ByVal description As OperationDescription,
 ByVal proxy As ClientOperation)
 SetResolver(description) Sets client-side

resolverB
 End Sub

 Public Sub ApplyDispatchBehavior(
 ByVal description As OperationDescription,
 ByVal dispatch As DispatchOperation)
 SetResolver(description) Sets service-side

resolverC
 End Sub

 Public Sub Validate(ByVal operationDescription As OperationDescription)
 End Sub

 Private Sub SetResolver(ByVal description As OperationDescription)
 Dim dataContractSerializerOperationBehavior = Retrieves

serializer
behavior

D
 description.Behaviors.Find(
 Of DataContractSerializerOperationBehavior)()

 dataContractSerializerOperationBehavior. Sets resolver
on serializer
behavior

E
 DataContractResolver =
 New ProxyDataContractResolver()
 End Sub
End Class

The ProxyResolverAttribute class intercepts both the client B and service C serial-
ization processes, setting the actual resolver to a ProxyDataContractResolver
instance. The SetResolver method is the most important, because it’s here that you
retrieve the serialization behavior D and set its resolver to ProxyDataContract-
Resolver E.

 After the attribute class is created, you decorate the Read interface method with
the attribute, as shown in the next snippet:

C#
[OperationContract]
[ProxyResolverAttribute]
Customer Read();

VB
<OperationContract()> _
<ProxyResolverAttribute()> _
Function Read() As Customer

From now on, each time WCF tries to serialize entities in the Read method, it will use
the Entity Framework resolver. By applying the attribute to all service methods, you
can work with both plain and proxied entities everywhere, without worrying about
their serialization. This is a huge step forward for productivity and simplicity.

 Working with proxies introduces the problem of lazy loading during serialization.
This problem deserves a brief discussion.

408 CHAPTER 16 Entity Framework and n-tier development

BEWARE LAZY LOADING WHEN SERIALIZING

The Customer entity doesn’t have any navigation properties. Order is the opposite,
because it references the customer and the details.

 Suppose you want to write a method that returns just the order without details and
customer. When WCF serializes the order, it uses all public properties, or those marked
with the DataMember attribute. If the Order instance is a proxy, the access to its naviga-
tion properties causes them to be lazy-loaded and then serialized to be sent to the cli-
ent. Depending on how you write the code, two things can happen.

 One option is to instantiate the context in a using statement. When the WCF serial-
izer accesses the properties, the context is gone. This causes the access to navigation
properties by the serializer to throw an exception, because the lazy-loading code
needs the context. Figure 16.4 shows this flow.

WCFMethod code

Retrieves
order

Destroys
context

Creates
context

Serializes
order

Tries to retrieve
details and throws

excep�on
because context is

disposed of

Figure 16.4 The flow when the context is disposed of and a proxied entity
is later serialized. Accessing the navigation properties (OrderDetail)
causes the navigation properties to be lazy loaded and a serialization
exception to be thrown because the context is disposed of.

 The second option is to not use the using statement. When the WCF serializer
accesses the properties, the context is still there because it’s referenced by the proxied
entity, and the properties are lazy-loaded. For instance, when the OrderDetails prop-
erty is accessed, details are dynamically loaded and added to the message sent to the
client. Because the details are proxy instances, the access to the Product property
causes it to be, once again, lazy loaded and added to the message. Finally, because
Product has a reference to the suppliers, they’re loaded too.

 The result in this case is that a method that should return an order returns an
enormous quantity of useless and unwanted data. Depending on how many associa-
tions are in the model, the entire database could be sent to the client (or you’ll
receive a WCF exception due to message size). What’s even worse than sending a huge
and useless message to the client is for the database to be flooded by lots of queries
generated by the lazy-loading feature. Figure 16.5 shows this nightmare!

 There are two ways to solve these problems:

 Disable proxy creation (and use Include if you need to eager load some
properties).

 Disable lazy loading before sending data to the client.

Both options work, so which you choose must be evaluated on a case-by-case basis.

409Developing a service using DTOs

 You’ve learned in this section that there
are some tricks to developing a service
using Entity Framework–generated entities.
Let’s see how to overcome these potential
problems using the DTO approach.

16.3 Developing a service
using DTOs
A DTO is a standalone class used only for
communication purposes. By creating a
DTO, you can easily control what data is
sent to the client. In fact, customizing enti-
ties to add serialization attributes can be a
real pain due to the complexity of modify-
ing the EDM and template (unless you gen-
erate the model once, modify it manually,
and never regenerate it ... but that’s an extremely improbable scenario).

 Creating a DTO for the Customer class is just a matter of creating a class containing
the properties you need to expose to the client. You can create and maintain such a
class manually, but nothing prevents you from using custom annotations in the EDM
and a template to generate the class. The DTO class is simple, as you see in this listing.

C#
public class CustomerDTO
{
 public int CompanyId { get; set; }
 public string Name { get; set; }
 public AddressInfo ShippingAddress { get; set; }
 public AddressInfo BillingAddress { get; set; }
 public Byte[] Version { get; set; }
}

VB
Public Class CustomerDTO
 Public Property CompanyId() As Integer
 Public Property Name() As String
 Public Property ShippingAddress() As AddressInfo
 Public Property BillingAddress() As AddressInfo
 Public Property Version() As Byte()
End Class

Let’s leave the Read and Update methods working with the full entities and create two
new methods: ReadDTO and UpdateDTO. These methods won’t work with Customer but
with CustomerDTO. Adding methods to the service interface is trivial, so we’ll move
directly to their implementation. Here’s the ReadDTO method.

Listing 16.6 The DTO class for the customer

Order

Detail1
Detail2
Detail3

Customer

Product 1 Product 2 Product 3

Supplier C
Supplier A

Supplier B
Supplier A

Supplier B
Supplier C

Query

Query
Query

Query QueryQuery

Query QueryQuery

Figure 16.5 When lazy loading is active,
serialization can generate lots of unwanted
queries to the database, which may lead to an
entire graph being loaded.

410 CHAPTER 16 Entity Framework and n-tier development

C#
public CustomerDTO ReadDTO()
{
 using (var ctx = new OrderITEntities())
 {
 return ctx.Companies
 .OfType<Customer>()
 .Select(c => new CustomerDTO Creates

returned
DTO

B
 {
 BillingAddress = c.BillingAddress,
 CompanyId = c.CompanyId,
 Name = c.Name,
 ShippingAddress = c.ShippingAddress,
 Version = c.Version
 })
 .FirstOrDefault(c => c.CompanyId == _customerId);
 }
}

VB
Public Function ReadDTO() As CustomerDTO
 Using ctx = New OrderITEntities()
 Return ctx.Companies.
 OfType(Of Customer)().
 Select(Function(c) New CustomerDTO With Creates

returned
DTO

B
 {
 .BillingAddress = c.BillingAddress,
 .CompanyId = c.CompanyId,
 .Name = c.Name,
 .ShippingAddress = c.ShippingAddress,
 .Version = c.Version
 }).
 FirstOrDefault(Function(c) c.CompanyId = _customerId)
 End Using
End Function

The ReadDTO implementation is trivial because you can create a CustomerDTO instance
directly in the LINQ to Entities query B and return it.

 The UpdateDTO implementation consists of more code, but it’s still pretty simple.

C#
public void UpdateDTO(CustomerDTO customer)
{
 using (var ctx = new OrderITEntities())
 {
 var newCustomer = new Customer Creates stubB
 {
 CompanyId = customer.CompanyId
 Version = customer. Version

Listing 16.7 The ReadDTO method using DTO

Listing 16.8 The UpdateDTO method using DTO
 };

411Developing a service using DTOs

 ctx.Companies.Attach(newCustomer); Attaches
stubC newCustomer.ShippingAddress = Sets stub

properties
D

 customer.ShippingAddress;
 newCustomer.BillingAddress =
 customer.BillingAddress;
 newCustomer.Name = customer.Name;
 ctx.SaveChanges();
 }
}

VB
Public Sub UpdateDTO(ByVal customer As CustomerDTO)
 Using ctx = New OrderITEntities()
 Dim newCustomer As New Customer() With { Creates stubB
 .CompanyId = custmer.CompanyId,
 .Version = customer.Version }
 ctx.Companies.Attach(newCustomer) Attaches

stubC
 newCustomer.ShippingAddress = Sets stub

properties
D

 customer.ShippingAddress
 newCustomer.BillingAddress =
 customer.BillingAddress
 newCustomer.Name = customer.Name
 ctx.SaveChanges()
 End Using
End Sub

You don’t have a Customer entity, so you need to create one using DTO properties.
Because you don’t have all of the Customer entity’s properties, the best solution is cre-
ating a Customer stub (an entity where only key properties are set), setting its
CompanyId and Version properties B, attaching it to the context C, and then setting
other properties using DTO properties D. This way, the context will persist only prop-
erties modified after the entity was attached to the context and won’t care if other
properties (such as username and password) are empty or null; it won’t persist them.

NOTE Unlike CompanyId, the Version property isn’t necessary for the
attaching process. The reason it’s set before attaching in listing 16.8 is
that we care about concurrency. To perform the concurrency check, Entity
Framework uses the value in the OriginalValues property of the entry. If
you didn’t set the Version property before attaching the entity, the
entry’s original value would be null because the original values are set
with the value of the properties when the entity is attached to the con-
text. In that case, the persistence would fail, raising an Optimistic-
ConcurrencyException.

Even with DTOs, updating a single entity isn’t complex. Let’s look at what it takes to
use DTOs to maintain the order graph.

16.3.1 Persisting a complex graph

Assume that you’ve created the DTOs for both order and details. After the client
updates the data and sends it back, you can use the code from the previous section to

modify the order.

412 CHAPTER 16 Entity Framework and n-tier development

 To determine which details have been added, deleted, and modified, you can go to
the database (arguably a best practice) and perform a comparison, or use the logic
contract (arguably a worst practice).

 If you choose the first option, there’s a caveat you have to know about. Because the
OrderDetailDTO and the OrderDetail classes are different, you can’t use the Inter-
sect and Except LINQ methods, as we discussed in chapter 7, because they work on
classes of the same type. The workaround is to compare only the IDs of the objects,
instead of comparing the objects, as you did in chapter 7. This is shown in the following
listing (where order is the DTO instance and dbOrder is the order from the database).

C#
var added = order.OrderDetails.Where(d =>
 !dbOrder.OrderDetails.Any(od => od.OrderDetailId == o.OrderDetailId));
var deleted = dbOrder.OrderDetails.Where(d =>
 !order.OrderDetails.Any(od => od.OrderDetailId == o.OrderDetailId));
var modified = order.OrderDetails.Where(d =>
 dbOrder.OrderDetails.Any(od => od.OrderDetailId == o.OrderDetailId));

VB
Dim added = order.OrderDetails.Where(Function(d) _
 Not dbOrder.OrderDetails.Any(Function(od) _
 od.OrderDetailId = o.OrderDetailId))
Dim deleted = dbOrder.OrderDetails.Where(Function(d) _
 Not order.OrderDetails.Any(Function(od) _
 od.OrderDetailId = o.OrderDetailId))
Dim modified = order.OrderDetails.Where(Function(d) _
 dbOrder.OrderDetails.Any(Function(od) _
 od.OrderDetailId = o.OrderDetailId))

When you know what’s changed, the hardest part is done and you can persist entities
easily. Added details are added to the details collection of the dbOrder variable,
deleted ones are removed through a call to the DeleteObject method of the details
entity set, and updated ones are modified by setting their properties to the DTO set-
tings. Easy, isn’t it?

 If you compare development using DTOs with development using Entity Frame-
work–generated entities, you’ll find that DTOs don’t increase complexity, they guaran-
tee optimal performance, and they decouple your entities from the service interface.
These are all great reasons to adopt DTOs.

 So far, the client has received an object (the client doesn’t know whether it’s an
entity or a DTO), modified it, and sent it back to the service. Let’s now investigate
another scenario where the client and server exchange both information about the
entity and information about what entity’s properties have been modified on the cli-
ent, so the service can update the database easily. Objects that contain both data and
information about what’s changed on the client are called STEs.

Listing 16.9 Detecting added, deleted, and modified details in an order

413Developing a service using STEs

16.4 Developing a service using STEs
So far, we’ve followed a pattern where the client invokes a method on the service to
obtain entities. The client modifies these entities and sends them back to the service.
These entities contain data and nothing else.

 If they contained information about what’s changed on the client (change-
tracking information), it would be much easier for the service to update the database.
It would even be better if these entities themselves contained the behavior to detect
and store changes made on the client. Self-tracking entities (STEs) contain all these
features: entity data and internal change-tracking behavior.

 By having an inner change-tracking manager, the entity can set its actual state as
Modified when a property is modified, so the server doesn’t need to discover what’s
been changed. The same way, when a linked entity is removed or added (think about
details in an order), the entity keeps track of the change. When the entity is sent back
to the service, the context reads the tracking information in the entity’s change-
tracker component and immediately knows what to do without your having to write
code to detect changes on your own.

 Figure 16.6 shows the entire workflow of an entity sent from the server to the cli-
ent, which modifies it and then sends it back to the server.

Service

Client

Changes customer ID Edits detail1 Removes detail2 Adds detail3

READSTE method
Reads Customer from database

Creates Customer STE
Returns Customer STE to client

Invokes

Customer STE

All proper�es
State: Unchanged
Detail1 state: Unchanged
Detail2 state: Unchanged

CustomerId: 1

UPDATEDSTE method

Inspects Customer STE
Saves modifica�on to database

Invokes

Customer STE

All proper�es
State: Modified

: Detail1 state Modified
: Detail2 state Deleted

Detail3 state: Added
CustomerId: 2

Figure 16.6 The client
reads the STE, modifies it,
and then sends it back.
During the process, the STE
keeps track of the changes.

 As you may expect, STEs are generated through template. The template that gen-
erates STEs, in addition to creating the entities and their properties adds the inner
change-tracking code to the entities. The template that generates the context code
creates an ObjectContext extension method that accepts an STE, reads change-
tracking information from it, and then sets the state manager so that it reflects the
entity changes.

414 CHAPTER 16 Entity Framework and n-tier development

 Naturally, tracking information must be part of the entity, and this entity structure
is described in the WSDL. But the WSDL doesn’t describe behavior. How does the cli-
ent know how to populate the change-tracking information? The answer is the logic
contract.

 An STE exposes a structure containing entity data and change-tracking data. It’s up
to the client to correctly populate the latter. As we’ve said, exposing such business
logic to the client isn’t optimal, but STEs introduce so many benefits that in some cases
we can make exceptions.

 We say “some cases” because STEs aren’t always the best option. We’ll discuss this
more at the end of this section. First, let’s create a service using STEs.

16.4.1 Enabling STEs

The first step in adding STEs to a project is creating them. Entity Framework ships
with a template for generate this type of entity:

1 In OrderIT.Model, add a STE folder named STE.
2 Inside the folder, add a new template of type ADO.NET Self-Tracking Entities

Generator and name it STE, as shown in figure 16.7. Two templates are added to
the solution: one for the context (STE.Context.tt) and one for the entities
(STE.tt).

3 Open the context template, and set the inputFile variable to the path of the
EDMX file (../model.edmx).

4 Create a new assembly, name it OrderIT.Model.STE, cut the entities template
file, and paste it inside this new assembly.
Figure 16.7 Adding STEs to the project

415Developing a service using STEs

5 Open the entities template, and set the inputFile variable to the relative path
of the EDMX (../OrderIT.Model/model.edmx).

6 In the OrderIT.Model assembly, add a reference to the OrderIT.Model.STE
assembly.

Now you have an assembly with all the entities and the context in OrderIT.Model. This
is the best configuration, as you’ll discover later.

 Next, let’s investigate how the STE template generates the entities and the context.

16.4.2 Inside an STE

An STE is a POCO entity that has properties plus some infrastructure code that man-
ages serialization and adds change-tracking capabilities to the entity itself. The infra-
structure code that manages serialization is made of the DataContract,
DataCollection, and DataMember attributes, which decorate the entity and its proper-
ties to be serialized. The change-tracking infrastructure code in the entity consists of
the IObjectChangeTracker interface and its implementation in the entity. This inter-
face is vital for change tracking.

UNDERSTANDING THE ENTITY CHANGE TRACKER

The IObjectChangeTracker interface declares the ChangeTracker property, which is
of type ObjectChangeTracker. As you may guess from the name, the ObjectChange-
Tracker class is responsible for entity’s change-tracking behavior. You can consider
the ObjectChangeTracker to be equivalent to the ObjectStateManager class, but lim-
ited to one entity.

 The ObjectChangeTracker (change tracker from now on) is particularly complex. It
has the following properties:

 ChangeTrackingEnabled—Specifies whether the change tracking is enabled or
not, with a Boolean value

 ObjectState—Specifies the state of the entity
 ObjectsRemovedFromCollectionProperties—Contains objects removed from

a collection navigation property (for instance, details removed from an order)
 OriginalValues—Contains the original values for properties that were

changed
 ExtendedProperties—Contains extended properties needed for Entity Frame-

work internals (for instance, if you use independent associations, it contains the
keys of the referenced entities)

Each of these properties is related to a key feature of the change tracker. Change-
TrackingEnabled is true by default, and it’s mostly there because the change tracker
needs to set it appropriately during the entity’s serialization and deserialization phase.
You’ll probably never need to turn it off, but doing so will pose no problem other than
the fact that modifications won’t be tracked.

416 CHAPTER 16 Entity Framework and n-tier development

ObjectState is important because when the entity is sent back to the server, it’s
attached to the context, which analyzes the entity and sets its state to the value speci-
fied by the ObjectState property. By default, an STE is in Added state, not Unchanged.

ObjectsRemovedFromCollectionProperties is one of the most important proper-
ties. When you use DTOs or entities to exchange data between the server and the cli-
ent, and an object from a collection navigation property is removed (for instance, a
detail is removed from an order) that object is removed from the collection and it
isn’t sent to the service. The consequence is that on the service you have to perform a
comparison between the database’s and the entity’s data to determine which details
have been removed.

 When you use STEs, if an object is removed from a collection navigation property,
it’s moved into the ObjectsRemovedFromCollectionProperties property. When the
entity is sent back to the server, you don’t need to perform a comparison with the data-
base to discover which objects have been removed from the collection navigation prop-
erty because these objects are in the ObjectsRemovedFromCollectionProperties
property of the STE’s change tracker. The context on the server sets all objects in the
ObjectsRemovedFromCollectionProperties property to Deleted state.

OriginalValues maintains the original values of properties that are required for
concurrency management. In the case of the Customer entity, it contains the original
value of the Version property. This way, concurrency management is handled without
you having to do anything.

ExtendedProperties is a repository for properties needed by Entity Framework,
and you never have to deal with it.

HOW THE CHANGE TRACKER DETECTS ENTITY MODIFICATION

In addition to IObjectChangeTracker, an STE implements INotifyPropertyChanged.
The change tracker subscribes to the PropertyChanged event that’s raised by the set-
ter of entity properties. In the handler of the event, the change tracker sets the entity
state to Modified (if it’s not already in Added or Deleted state) and registers the origi-
nal value of the property if it’s used for concurrency or is part of the key.

 Collection properties are of type TrackableCollection<T>, which inherits from
ObservableCollection<T>. This collection exposes the CollectionChanged event,
which is raised when an item is added or removed. The change tracker subscribes to
this event so it knows when an object is removed from the collection and can store the
object in the ObjectsRemovedFromCollectionProperties internal property.

MANAGING ENTITY STATE

STEs also offer some interesting methods. The most important methods are the
MarkAs* methods (where the asterisk stands for a state), which allow you to manually
modify the internal state of an entity.

 MarkAsAdded —Marks an entity as Added
 MarkAsUnchanged —Marks an entity as Unchanged
 MarkAsModified —Marks an entity as Modified

 MarkAsDeleted —Marks an entity as Deleted

417Developing a service using STEs

The StartTracking and StopTracking methods allow you to enable and disable
change tracking, respectively. They do this by setting the ChangeTrackingEnabled
property of the change tracker.

 Finally, the AcceptChanges method accepts all modifications and sets the state of
the entity to Unchanged. You can think of it as a sort of commit for modifications.

 That covers how an STE tracks its modifications, keeps its internal state, and lets
you manually modify it. The next thing you need to know is how the context is gener-
ated and how it reads the STEs internal state.

16.4.3 Inside the context

The context generated by the STE template isn’t any different from the one generated
by the POCO template, except for one thing: in the constructor, the proxy creation is
disabled so that plain entities are returned. The STE template also generates another
class that contains an extension method to the ObjectContext class.

 The extension method is ApplyChanges<T>, and it’s responsible for accepting an
STE, attaching it to the context, analyzing its properties, and reflecting the changes
stored in the entity change tracker to the context state manager. After the Apply-
Changes<T> invocation, the state of the entry in the context-state manager will be the
same as that of the entity in its change tracker.

 What’s more, if the entity attached has navigation properties that contain other
entities, those entities are attached to the context too, and their state is poured into
the state manager. This way, in a single method call, you’ve prepared a whole graph
for persistence. Sounds cool, doesn’t it?

 Now let’s write some code.

16.4.4 Using STEs

When the client generates classes from the WSDL, it knows it has to populate data in
the change-tracking properties, but it doesn’t know how to do that. You could write
this code manually, but that’s a pain.

 Fortunately, because the STE template generates classes with both data and behav-
ior, you can reference the assembly with STE from both server and client. This is why
you created a separated assembly for the STE earlier. This way, when Visual Studio gen-
erates the classes from the WSDL, it doesn’t create entities but just WCF classes for
communicating with the service, because the entities are already referenced.

NOTE As you can imagine, there are several problems arising from this
configuration. We’ll talk about the problems and solutions shortly.

On the service, let’s add two new methods that use the Customer STE: ReadSTE and
UpdateSTE. Implementing the interface to add these methods is extremely simple.
You don’t even need to apply the serialization behavior required to serialize a proxy,
because the STE context disables proxied-class generation. Let’s skip the interface

code and move on to the method implementation.

418 CHAPTER 16 Entity Framework and n-tier development

 The ReadSTE method is pretty simple. You instantiate the context and return data
for the logged-in customer.

C#
public Customer ReadSTE()
{
 using (var ctx = new OrderITEntities())
 {
 return ctx.Companies
 .OfType<Customer>()
 .FirstOrDefault(c => c.CompanyId == _customerId);
 }
}

VB
Public Function ReadSTE() As Customer
 Using ctx = New OrderITEntities()
 Return ctx.Companies.
 OfType(Of Customer)().
 FirstOrDefault(Function(c) c.CompanyId = _customerId)
 End Using
End Function

This code is straightforward, but ... wait: the Customer entity contains web service–
related data that you don’t want sent over the wire. Because the Customer STE is
shared between the client and the service, you can modify the entity, removing the
DataMember attribute from the properties (as discussed in section 16.2.2) or blanking
them before returning the entity (see section 16.2). So far, there’s nothing new.

 What’s different is the UpdateSTE method. In this method, you can create the con-
text, call the ApplyChanges<T> method to copy the entity’s change tracker informa-
tion to the context state manager, and call the SaveChanges method.

C#
public void UpdateSTE(Customer customer)
{
 using (var ctx = new OrderITEntities())
 {
 ctx.Companies.ApplyChanges(customer);
 ctx.SaveChanges();
 }
}

VB
Public Sub UpdateSTE(ByVal customer As Customer)
 Using ctx = New OrderITEntities()
 ctx.Companies.ApplyChanges(customer)
 ctx.SaveChanges()
 End Using

Listing 16.10 The ReadSTE method implementation

Listing 16.11 The UpdateSTE method implementation
End Sub

419Developing a service using STEs

The internal state of the Customer STE is Modified. The ApplyChanges<T> method
attaches the entity to the context, reads the state, and invokes the ChangeState
method to synchronize the state in the state manager. You learned in chapter 6 that
when you use the ChangeState or ChangeObjectState method, all properties are
marked as Modified, so the UPDATE statement will update all the properties.

 This is what you have to avoid, because you don’t want the customer to be able to
change the web service information. The solution is awkward because after Apply-
Changes<T>, you should mark the entity as Unchanged and then mark the single prop-
erties as Modified, as in listing 16.3. In this case, STE fails to be useful.

 Let’s now look at a case where STEs show their full power: persisting complex
graphs.

UPDATING A COMPLEX GRAPH WITH STES

So far, you’ve used a single entity. You may think that updating an order may be differ-
ent, but it’s not, because the ApplyChanges<T> method scans navigation properties
too. Thanks to the properties of the ObjectTracker class, having a single entity or an
object graph makes no difference.

 An UpdateOrderSTE method would look like this:

C#
ctx.Orders.ApplyChanges(order);
ctx.SaveChanges();

VB
ctx.Orders.ApplyChanges(order)
ctx.SaveChanges()

If the order contains details, they’re attached to the context too. Added, removed,
and modified details are stored in the Order entity change-tracker. When Apply-
Changes<T> is invoked, the state of each detail is poured into the context state man-
ager so you don’t have to do anything. The logic contract between the client and the
server is handled by STE change tracker and the ApplyChanges<T> method.

 Having the logic contract handled automatically, and having a single API to man-
age everything, is a strong point for STEs. Unfortunately, they’re useful only in scenar-
ios where the client can change all the entity’s properties. In scenarios where only
some properties can be updated, STEs are more likely to complicate your life than
ease it.

ADDING OR DELETING AN ENTITY USING STES

STEs show their enormous power when updating an entity or a complex graph. In
other scenarios they’re valid, but not that powerful.

 When you need to add an entity, you don’t have either concurrency problems or
need to compare with data in the database. There’s not even any need to resort to
ApplyChanges<T>, although it works perfectly well, because you can directly invoke
AddObject.

 Deleting an entity is even simpler, because only the ID and the concurrency token

(if used) are required. You can pass these properties to the service method, create a

420 CHAPTER 16 Entity Framework and n-tier development

stub inside it with just these properties, attach the stub to the context, and invoke
DeleteObject.

MANY-TO-MANY RELATIONSHIPS AND STES

Suppose you have to develop a method that updates a product and its associated sup-
pliers. This method will accept the Product STE, which contains the Suppliers prop-
erty listing the suppliers.

 Suppose that on the client side, you have to associate a new supplier to a product.
If you create a Supplier instance, add it to the Suppliers property of the Product
instance, and send the product back to the service, you’d expect the association to be
created. But it doesn’t work like that. Previously we mentioned that an STE is, by
default, in Added state. On the service, after the call to ApplyChanges<T>, the Supplier
entry is marked as Added, so when SaveChanges is invoked, Entity Framework tries to
create a new row for the supplier in the Company table of the database. This causes an
exception to be raised, because the properties required to persist the supplier aren’t
set. This problem can be solved both on the client and on the service.

 On the client side, you can invoke the Supplier entity’s MarkAsUnchanged method.
This way, the entity state becomes Unchanged, and when ApplyChanges<T> is invoked,
the entry in the context will become Unchanged as well.

 The problem with this approach is that it requires some code on the client, mean-
ing that if a client doesn’t follow this path, exceptions are raised on the server. It’s
much better to solve the problem in the service to cut down on the possibility of
errors.

 On the service, there are two ways of solving the problem. The first one, shown in
the next snippet, is to invoke the MarkAsUnchanged method on all entities in the
Suppliers property before calling ApplyChanges<T>:

C#
product.Suppliers.ForEach(s => s.MarkAsUnchanged);
ctx.ApplyChanges(product);

VB
product.Suppliers.ForEach(s => s.MarkAsUnchanged)
ctx.ApplyChanges(product)

The second approach is to call ApplyChanges<T>, retrieve all Added entities of type
Supplier in the state manager, and invoke ChangeObjectState to set their states to
Unchanged. The following code demonstrates this technique:

C#
ctx.ApplyChanges(product);
ctx.ObjectStateManager
 .GetObjectStateEntries(EntityState.Added)
 .Where(e => e.Entity is Supplier)
 .ForEach(s => s.ChangeState(EntityState.Unchanged);

VB
ctx.ApplyChanges(product)

ctx.ObjectStateManager.

421Developing a service using STEs

 GetObjectStateEntries(EntityState.Added).
 Where(Function(e) TypeOf e.Entity Is Supplier).
 ForEach(Function(s) s.ChangeState(EntityState.Unchanged))

That’s all you need to do. We have demonstrated this process on many-to-many rela-
tionships because it fits in perfectly with OrderIT, but the same technique can be
applied to other types of relationships.

INTERNAL STATE AND CONTEXT STATE

There’s a caveat that’s worth mentioning. If you have an STE attached to the context,
modifying it (by changing a property or invoking a MarkAs* method) will cause the
STE change tracker to change the entity state, but it won’t have any effect on the con-
text state manager until the DetectChanges method is invoked. This happens because
the context generated by the STE template disables proxy creation, so the instances
created queries are plain entities, which, as you learned in chapter 6, aren’t connected
to the context.

 Now that you know how to use STEs, it’s time to talk a bit about their pros and
cons.

16.4.5 STE pros and cons

The code that tracks changes within STEs isn’t simple. That’s why the Entity Frame-
work team added the STE template, which reads data from the EDMX file and gener-
ates the STE.

 If you’re the client developer, you can freely use the STE assembly. If the clients can
be developed by any consumer, you can distribute the STE assembly to those who
develop on .NET 4.0 and beyond. If the clients can be heterogeneous (such as Java or
PHP), client developers are responsible for creating their entities and for creating the
change-tracking behavior to ensure that the contract with the service is honored
(guaranteeing that the state is correct, that entities removed from collection proper-
ties are stored in the change tracker, and so on). As we’ve said before, creating
change-tracking behavior in entities isn’t easy, so non-.NET clients are pretty hard to
create; that’s a big obstacle.

 Another con of STEs is that they expose the full entity to the clients. As we’ve men-
tioned in this chapter, that’s bad because often you don’t want to send all of an entity’s
properties to the client.

 We already hinted that when an STE is in Modified state, the ApplyChanges<T>
method uses the ObjectStateManager class’s ChangeObjectState method to set the
entity state to Modified in the context state manager. You know that when the
ChangeObjectState method is used to set an entity’s state to Modified, all the entity’s
properties are marked as Modified, so all of them will be persisted on the database. In
cases where only some properties must be updated, this is an inconvenience because
allowing only some properties to be updated requires manually reworking the entry in
the state manager.

422 CHAPTER 16 Entity Framework and n-tier development

 It’s clear that STEs are the answer only in cases where full entities can be sent over
the wire without any problems. In such cases, STEs greatly simplify development, and
you should always use them. In all other cases, we strongly recommend using DTOs.

16.5 Summary
Developing a service is challenging. The disconnected nature of services makes it
impossible to track changes made to entities on the client side. This requires you to
write code on the service side to detect what’s been changed on the client. To further
complicate the scenario, not all entities’ properties should be sent to the clients.

 Using the entities generated by the POCO template is a viable solution, but it
results in full entities going back and forth. That’s good in some cases but not optimal
in others. If some properties shouldn’t be sent over the wire, using WCF attributes may
optimize things, but you have a better solution.

 In such cases, the best way to go is to use a DTO so you achieve full control over the
data that’s sent over the wire, and you ensure complete decoupling between the ser-
vice and the entities used for persistence.

 Eventually, in scenarios where you have full control over the clients, you can use
STEs so that changes made on the client side are stored inside the entities and made
available to the service when they’re sent back.

 Now you’re ready for the next subject: integrating Entity Framework in Windows
Forms and WPF applications.

Entity Framework and
Windows applications
In a web application, the browser receives HTML and then renders it. When the
rendering is finished, the browser relies on JavaScript to add behavior to the page.
There are many JavaScript libraries (jQuery, Ext JS, Scriptaculous, and so on) that
can help with this, but whatever your choice is, you work on client-side objects.

 Applications that use web services to manage data take the same approach. In
the application, you use classes that are generated by the WSDL inspector. These
classes contain the same data as the service classes (which can be Entity Framework
entities), but they’re just local copies. This means that you always work with objects
that aren’t generated by Entity Framework.

 But loads of Windows applications don’t have a tiered architecture and directly
access the database through Entity Framework. In such situations, you can model
your classes to let them interact with the binding capabilities of both Windows

This chapter covers
 Customizing entities for binding

 Data binding with Windows Forms

 Data binding with WPF
423

Forms and Windows Presentation Foundation (WPF) applications.

424 CHAPTER 17 Entity Framework and Windows applications

 These applications have rich binding systems that rely on specific aspects of classes.
For instance, if you create a form for manipulating orders, you’ll surely have a grid dis-
playing some orders and a set of components that show the selected order properties.
The synchronization between the components, the data grid, and the orders can be
completely handled by the binding system.

 In this chapter, you’ll learn how to adapt classes to make them binding-aware and
what pattern to follow to get the best out of Windows applications. We’ll look at both
Windows Forms and WPF technologies. Although Windows Forms is less powerful, it’s
still widespread, and tons of applications are based on it, so it’s worth looking at. WPF
is the future. Nowadays, creating a new Windows application using Windows Forms is
a nuisance; WPF is far more powerful and rich.

 Before we look at the technologies, though, let’s look at the example we’ll use in
this chapter.

17.1 An example application
We’re going teo create a form that allows the user to create, modify, and delete orders
and their details. Figure 17.1 shows the final result.

Figure 17.1 The Windows form shows orders and their data in the Orders

 We’ll make extensive use of both Windows Forms and WPF binding capabilities.
You’ll see that with some binding-related interfaces, a binding engine, and Entity
Framework, you can create such a form in a snap and with few lines of code.
box and the details related to the current order in the Order Details box.

425Designing model classes for binding

 Before you create the form, though, let’s look at what interfaces the model classes
must implement to interact with the binding.

17.2 Designing model classes for binding
To fully support the binding capabilities in both Windows Forms and WPF applica-
tions, classes must implement a few specific interfaces:

 INotifyPropertyChanged —Notifies a client that the value of a property has
been modified

 IEditableObject—Allows an entity to roll back modifications made to a
property

 IDataErrorInfo —Lets entity errors flow to the binding system

Mastering these interfaces isn’t difficult. Don’t believe it? Let's look at the first inter-
face right now.

17.2.1 Implementing INotifyPropertyChanged

When you modify a property, you must notify the binding system so that every related
component (data grids, text boxes, and another components) can update their val-
ues. For instance, in figure 17.1, when the user modifies the estimated shipping date
in the text box, the grid above the text boxes should display the value modified. Simi-
larly, if the user edits a value in the grid showing the orders, the text boxes must be
updated as well.

NOTE From now on, we’ll discuss the Order class, but the same rules
apply to all other classes.

By implementing INotifyPropertyChanged, you can raise an event that sends a
change notification to subscribers, which can then react to the modification. In the
example, the subscriber is the binding system, and its reaction is to update the compo-
nents bound to the modified property. The implementation of INotifyProperty-
Changed is shown in the following listing.

C#
public partial class Order : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 protected void NotifyPropertyChanged(String info)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(info));
 }
}

VB
Public Partial Class Order
 Implements INotifyPropertyChanged

Listing 17.1 Implementing the INotifyPropertyChanged interface
 Public Event PropertyChanged As PropertyChangedEventHandler

426 CHAPTER 17 Entity Framework and Windows applications

 Protected Sub NotifyPropertyChanged(ByVal info As String)
 RaiseEvent PropertyChanged(Me, New PropertyChangedEventArgs(info))
 End Sub
End Class

Implementing INotifyPropertyChanged is just a matter of declaring the Property-
Changed event. The NotifyPropertyChanged method is a convenient way to inform
the subscribers of the event (the input parameter represents the name of the modi-
fied property).

 On its own, this interface is useless. You have to call NotifyPropertyChanged, pass-
ing the modified property name to make the binding aware of the modification. This
call must be made in the setters of the entity’s properties, which means that you no
longer use automatic properties in entities. This listing clearly shows that.

C#
public virtual Nullable<DateTime> EstimatedShippingDate
{
 get { return _estimatedShippingDate; }
 set
 {
 _estimatedShippingDate = value;
 NotifyPropertyChanged("EstimatedShippingDate"); Change notification
 }
}
private Nullable<DateTime> _estimatedShippingDate;

VB
Public Overridable Property EstimatedShippingDate() _
 As Nullable(Of DateTime)
 Get
 Return _estimatedShippingDate
 End Get
 Set(ByVal value As Nullable(Of DateTime))
 _estimatedShippingDate = value Change notification
 NotifyPropertyChanged("EstimatedShippingDate")
 End Set
End Property
Private _estimatedShippingDate As Nullable(Of DateTime)

What’s great about this technique is that you don’t have to do anything on the form to
update values; you simply configure the connections between the Order properties
and the form components at design time, and at runtime the binding system takes
care of everything.

INotifyPropertyChanged is trivial to implement. Let’s move on to the next
interface.

17.2.2 Implementing IEditableObject

Like everyone else, you’ve probably modified a value in a text box and then wanted to

Listing 17.2 Raising the data-changed event
roll back your modifications. This feature is useful, and you can enable it in your

427Designing model classes for binding

application by implementing the IEditableObject interface, which allows transac-
tional modifications of an entity.

 Implementing IEditableObject is pretty simple, as you can see in this listing.

C#
public partial class Order : IEditableObject
{
 void IEditableObject.BeginEdit() Starts transactionB
 {
 BeginEditProtected();
 }

 void IEditableObject.EndEdit() Commits changesC
 {
 EndEditProtected();
 }

 void IEditableObject.CancelEdit() Rolls back changesD
 {
 CancelEditProtected();
 }

 private bool isEditing = false;

 protected virtual void BeginEditProtected()
 {
 if (!isEditing) Stores

initial
values

E
 {
 OrderIdEdit = OrderId;
 OrderDateEdit = OrderDate;
 EstimatedShippingDateEdit = EstimatedShippingDate;
 ActualShippingDateEdit = ActualShippingDate;
 CustomerIdEdit = CustomerId;
 VersionEdit = Version;
 isEditing = true;
 }
 }

 protected virtual void EndEditProtected()
 {
 isEditing = false; Stops editingF
 }

 protected virtual void CancelEditProtected()
 {
 OrderId = OrderIdEdit; Restores

initial
values

G
 OrderDate = OrderDateEdit;
 EstimatedShippingDate = EstimatedShippingDateEdit;
 ActualShippingDate = ActualShippingDateEdit;
 CustomerId = CustomerIdEdit;
 Version = VersionEdit;
 isEditing = false;
 }

Listing 17.3 Implementing the IEditableObject interface
}

428 CHAPTER 17 Entity Framework and Windows applications

VB
Public Partial Class Order
 Implements IEditableObject
 Private Sub BeginEdit() _ Starts

transaction
B

 Implements IEditableObject.BeginEdit
 BeginEditProtected()
 End Sub

 Private Sub EndEdit() _ Commits
changes

C
 Implements IEditableObject.EndEdit
 EndEditProtected()
 End Sub

 Private Sub CancelEdit() _ Rolls back
changes

D
 Implements IEditableObject.CancelEdit
 CancelEditProtected()
 End Sub

 Private isEditing As Boolean = False

 Protected Overridable Sub BeginEditProtected()
 If Not isEditing Then Stores

initial
values

E
 OrderIdEdit = OrderId
 OrderDateEdit = OrderDate
 EstimatedShippingDateEdit = EstimatedShippingDate
 ActualShippingDateEdit = ActualShippingDate
 CustomerIdEdit = CustomerId
 VersionEdit = Version
 isEditing = True
 End If
 End Sub

 Protected Overridable Sub EndEditProtected()
 isEditing = False Stops editingF
 End Sub

 Protected Overridable Sub CancelEditProtected()
 OrderId = OrderIdEdit Restores

initial
values

G
 OrderDate = OrderDateEdit
 EstimatedShippingDate = EstimatedShippingDateEdit
 ActualShippingDate = ActualShippingDateEdit
 CustomerId = CustomerIdEdit
 Version = VersionEdit
 isEditing = False
 End Sub
End Class

Even though the code is long, it’s pretty simple. There are three interface methods:

 BeginEdit—Invoked when an entity is selected in the grid B
 EndEdit—Invoked when the selected entity modifications are committed C
 CancelEdit—Invoked when the selected entity modifications are rolled

back D

Each method internally invokes another method, but that’s not a requirement. The
BeginEditProtected method checks whether the selected entity is already in transac-

tion mode. If not, it saves the properties of the entity in the backup properties E.

429Designing model classes for binding

NOTE The *Edit properties are simple duplicates of the original proper-
ties. They don’t contain any logic and are used only for transaction pur-
poses. In fact, they’re implemented using automatic property syntax.

The EndEditProtected method puts the entity in committed mode F.
 The CancelEditProtected method resets the properties using the backup ones,

returning the entity to its initial state when the BeginEdit method was invoked. After
that, the entity is put in the committed state G.

NOTE You’re probably wondering why we created different methods and
made them overridable, instead of putting the code in the interface
methods. The reason is that if, in the future, you have to create a class
that inherits from Order, you can override these methods and add trans-
action support for additional properties.

Easy, isn’t it? Now let’s move on to the last interface, which is responsible for notifying
the binding system of errors in the entity’s properties.

17.2.3 Implementing IDataErrorInfo

When the user sets the actual shipping date of an order, it can’t be earlier than the
estimated one. This rule can be enforced in the setter of the ActualShippingDate
property. The real question is how to notify the user when an invalid date is entered.
The IDataErrorInfo interface is the solution.

 The IDataErrorInfo interface is another piece of binding magic. The binding sys-
tem invokes the interface’s methods to determine whether there are any errors in the
entity, and then it dispatches any errors received to the error providers. Here’s the
implementation of this interface.

C#
Dictionary<string, string> errors = new Dictionary<string, string>();

string IDataErrorInfo.Error
{
 get { return errors.Any() ? "There are errors" : String.Empty; }
}

string IDataErrorInfo.this[string columnName]
{
 get
 {
 if (errors.ContainsKey(columnName))
 return errors[columnName];
 else
 return String.Empty;
 }
}

Listing 17.4 Implementing the IDataErrorInfo interface

430 CHAPTER 17 Entity Framework and Windows applications

VB
Private errors As New Dictionary(Of String, String)()

Private ReadOnly Property [Error]() As String
 Implements IDataErrorInfo.Error
 Get
 Return If(errors.Any(), "There are errors", String.Empty)
 End Get
End Property

Default ReadOnly Property Item(ByVal columnName As String) As String
 Implements IDataErrorInfo.this
 Get
 If errors.ContainsKey(columnName) Then
 Return errors(columnName)
 Else
 Return [String].Empty
 End If
 End Get
End Property

The interface comprises the Error property and the default property. The Error
property returns a string representing an error message related to the entire entity.
The default property accepts a property name, and if there’s an error for that prop-
erty then the default property returns the error message; otherwise, it returns an
empty string.

 Listing 17.4 shows the interface implementation where the errors are extracted
from a dictionary (the errors variable) whose key is the property name and whose
value is the error message. But where is the dictionary filled with errors? The answer is
obvious: the properties setter. The following listing shows that.

C#
public virtual Nullable<System.DateTime> ActualShippingDate
{
 get { return _actualShippingDate; }
 set
 {
 _actualShippingDate = value;
 NotifyPropertyChanged("ActualShippingDate");
 errors.Remove("ActualShippingDate");

Avoids duplicate
key exception

B

 if (value.HasValue &&

Adds error if
rule is broken

C

 EstimatedShippingDate.HasValue &&
 value.Value < EstimatedShippingDate.Value)
 {
 errors.Add("ActualShippingDate",
 "Actual shipping date cannot

➥ be lower that estimated shipping date");
 }
 }
}

Listing 17.5 Adding errors to the dictionary

431Designing model classes for binding

VB
Public Overridable Property ActualShippingDate()
 As Nullable(Of System.DateTime)
 Get
 Return _actualShippingDate
 End Get
 Set(ByVal value As Nullable(Of System.DateTime))
 _actualShippingDate = value
 NotifyPropertyChanged("ActualShippingDate")
 errors.Remove("ActualShippingDate")

Avoids duplicate
key exception

B

 If value.HasValue AndAlso

Adds error if
rule is broken

C

 EstimatedShippingDate.HasValue AndAlso
 value.Value < EstimatedShippingDate.Value Then
 errors.Add("ActualShippingDate",
 "Actual shipping date cannot
➥ be lower that estimated shipping date")
 End If
 End If
 End Set
End Property

As you can see in this listing, the code in the property’s setter checks that the actual
shipping date isn’t earlier than the estimated shipping date. Before performing the
check, any error related to the property is removed from the errors dictionary B.
Then, if the check fails, a new entry for the property is added to the errors diction-
ary C. The binding system invokes the default property once for each property
that’s bound, and it uses the returned information to display the errors.

 The interfaces you’ve seen so far have opened up a brand-new problem: because
the code is generated via templates, each time you run the template your customiza-
tions are lost. Nevertheless, there’s nothing preventing you from modifying the tem-
plate to generate the code you need, based on custom annotations in the EDM.

17.2.4 Using a template to generate the binding code

In chapter 13, you learned about code generation. Binding code is another good can-
didate for template-driven code generation.

NOTE We won’t show any code in this section because it would be unnec-
essarily lengthy. You’ll find the templates in the book’s source code.

Adding code to the INotifyPropertyChanged interface isn’t difficult. Its implementa-
tion is static, so the steps are always the same:

1 Modify the class declaration, adding the interface.
2 Add the code for the event.
3 Add the code for the method that notifies subscribers.
4 Modify the properties setter to invoke the preceding method.

The only point you have to remember is that the code in steps 1–3 must be generated
only for base classes. For example, the Product class must have those methods and

events; but Shirt and Shoes inherit them, so you don’t have to declare them again.

432 CHAPTER 17 Entity Framework and Windows applications

 When it comes to adding code for the IEditableObject interface, the situation is
slightly different. The steps are similar, but you have to pay more attention to inheri-
tance details:

1 Modify the class declaration, adding the interface.
2 Add the code for the interface methods.
3 Add the code for backup properties.
4 Add the code for the internal methods.

Steps 1 and 2 must be done only for base classes and not in inherited classes, as we dis-
cussed before. Step 3 must always be performed, and step 4 is the trickiest. In base
classes, you have to declare the internal methods as virtual for C# or Overridable
for VB, whereas in inherited classes they must be declared as override for C# or
Overrides for VB. What’s more, in inherited classes these methods must invoke the
base class implementation to ensure that all properties are backed up.

 Adding code for IDataErrorInfo is more complicated than for the other inter-
faces. Here the code is dynamic, because the rules must be modified by you and can’t
be generated unless you create a set of designer extensions, which add new elements
to the EDM and then customize the template to read those elements and generate val-
idation code (you saw something similar in chapter 13).

 If you opt for writing the code on your own, you must modify the template to place
a hook in the property setter to inject the validation code, and here partial methods
come to the rescue:

1 Modify the class declaration, adding the interface.
2 Add the code for the method.
3 Add the code for the default property.
4 Add the partial method declaration.
5 Create a partial class where you implement partial methods, adding validation.

In the partial method implementation, you write the validation code and add errors
to the dictionary. There’s no need to do anything else, because the rest of the code is
template-generated.

 Now that you know how to adapt classes for binding, it’s time to start using them in
a Windows Forms application, so that you can see the benefits of implementing such
interfaces.

17.3 Binding in Windows Forms applications
The form you’ll create enables users to create, modify, and delete orders and details.
You have to perform several tasks:

 Create the grid for orders.
 Create the text box for editing orders.
 Create the grid for the selected order’s details.

 Create the components for editing details.

433Binding in Windows Forms applications

 Link order and detail data to create a master-detail relationship.
 Enable transactional editing, property-changed notifications, and error

notifications

Don’t worry, this is going be fun.

17.3.1 Showing orders

The first step is creating the grid for displaying orders and binding it to the orders
coming from database. To do this, you have to add a data source to the application,
use it to create the order-related controls, and bind them. Follow these steps:

1 From the Visual Studio menus, select Data > Show Data Sources. Visual Studio
opens the Data Source window.

2 In the window, click the Add New Data Source button to start the Data Source
Configuration Wizard.

3 In the first wizard page, select Object, and click Next.
4 In the second wizard page, shown in figure 17.2, expand the OrderIT.Model

assembly node and the OrderIT.Model namespace, select the OrderIT.Model.
Order class, and click Finish.

5 The Data Source window now shows the Order class. Drag it onto the form to
insert a grid, a toolbar to navigate through grid rows (we’ll refer to it as the
orders toolbar) and a BindingSource component, which points to the Order class.
Figure 17.2 The second page of the wizard allows you to select data-source classes.

434 CHAPTER 17 Entity Framework and Windows applications

6 Declare a form-level variable of OrderITEntities type (the context).
7 Add the following code in the Load form’s Load event:

C#
ctx = new OrderITEntities();
orderBindingSource.DataSource = new BindingList<Order>
 (ctx.Orders.Include("OrderDetails").ToList());

VB
ctx = new OrderITEntities()
orderBindingSource.DataSource = New BindingList(Of Order)(
 ctx.Orders.Include("OrderDetails").ToList())

8 Run the example. The form shows the grid with all the orders.

There are a couple of important points to highlight in this code. First, you have a
form-level context. Instead of creating a new instance each time you perform a query,
you create an instance when loading the form and destroy that instance when closing
the form. The result is that all modifications made to objects are tracked by the same
context that retrieved them, making things a lot easier.

NOTE This is the recommended pattern, and it’s known as the Context-
per-Form pattern.

The second thing to notice is the BindingList<T> class. It offers special binding
behaviors, and we strongly suggest you use it.

NOTE Instead of using the BindingList<T> class, you could use the
ObjectSet<T> class’s Execute method, which, like the BindingList<T>
class, offers some binding facilities. BindingList<T> is more powerful,
because you can create a class that inherits from BindingList<T> and
overrides or adds any behavior you need. The Execute method returns
an ObjectResult<T> instance, and there’s no way for you to modify the
behavior of that class.

Now you can move on the next task: adding a set of controls to the form to display the
data for the selected order.

17.3.2 Showing data for the selected order

Showing data for the selected order is pretty simple. You can do that by selecting the
properties of the Order class in the Data Source window and dragging them onto the
form. The properties are ActualShippingDate, EstimatedShippingDate, OrderDate,
CustomerId, and ShippingAddress (this last property is a complex property, so you
create a text box for each inner property).

NOTE When a property is dropped onto the form, Visual Studio detects
the property’s type and automatically uses the best control for it. For
instance, DateTime properties are rendered using a DateTimePicker,
whereas check boxes are used for Boolean properties. The other proper-

ties are rendered as text boxes.

435Binding in Windows Forms applications

At this point, the form looks like figure 17.3.

Figure 17.3 The form
shows the orders and
the current order data.

 Have you noticed that ugly number in the Customer Id combo box? That’s the ID
of the customer who placed the order. In terms of usability, this form is unacceptable.
Let’s see how to enable a lookup combo box that shows the customer name and works
with the ID behind the scenes.

ADDING A LOOKUP COMBO BOX FOR DISPLAYING
AND CHANGING A CUSTOMER

The combo box is the best control to display and change the customer who placed an
order, but you have to make it customer-aware.

 The first thing to do is to add a data source that points to the Customer class, as you
did before for Order. After that, select the combo box smart tag (shown in figure
17.4), and set the Data Source property to the OrderIT.Model.Customer object (this
automatically imports a BindingSource into the form), set Display Member to Name,
set Value Member to CompanyId, and set Selected Value to the CustomerId property of
the orderBindingSource object. This last setting is important, because it binds the
CustomerId property of the order to the CompanyId property of the customer,
enabling the lookup.

Figure 17.4 Configuring the
combo box. The CompanyId and
CustomerID properties are bound
to enable the lookup.

 At this point, you have a form with controls to display and edit order data. The
next step is to show the details of the selected order.

436 CHAPTER 17 Entity Framework and Windows applications

17.3.3 Showing details of the selected order

The binding mechanism helps a lot in showing details for the selected order. What
you have to do is add a new data source that points to OrderIT.Model.OrderDetail,
and then drag it onto the form to create a data grid. (The toolbar used to navigate
through the order details, which we’ll refer to as the details toolbar, isn’t created auto-
matically, so you have to add it to the form manually and let it point to the details
binding source.)

 The data grid points to the details data source, but you have to bind it to the details
of the selected order. To do this, you add the following two lines of code in the Load
event:

C#
orderDetailBindingSource.DataSource = orderBindingSource;
orderDetailBindingSource.DataMember = "OrderDetails";

VB
orderDetailBindingSource.DataSource = orderBindingSource
orderDetailBindingSource.DataMember = "OrderDetails"

Now run the form, and you’ll see that when you change the selected order in the grid,
its details are shown in the second grid. (For clarity, we removed some columns from
the order and details grids, but you don’t need to.) Figure 17.5 illustrates the details
of the selected order.

Figure 17.5 Details related
to the selected order are
shown in the second grid.

 Naturally, controls to show and edit the current details are needed in this form.
Let’s see how to add them.

437Binding in Windows Forms applications

17.3.4 Showing selected detail information

The binding between the details grid and the controls that show the selected detail’s
data can be done at design time. But in this case, you’re binding the details grid to the
selected order using code, so you have to do the same for controls that show selected
detail information. There’s no rule that states which pattern is better; this is a choice
you have to make on a case-by-case basis. Fortunately, the binding engine is easy to use
both at design time and runtime.

 The first step in binding components that show data of the selected detail to the
details data source is adding text boxes for the Quantity, UnitPrice, and Discount
properties and a combo box for Product. This combo box must be configured the
same way as the combo box that displays the customer that placed the order, with the
obvious difference that it must point to a data source related to the
OrderIT.Model.Product class and that it must not be bound to the details binding
source.

 Next, you need to express bindings between the controls and the details binding
source in the code. Once again, you can place this code in the Load event, as the fol-
lowing listing demonstrates.

C#
productBindingSource.DataSource = ctx.Products.ToList();
discountTextBox.DataBindings.Add("Text",
 orderDetailBindingSource, "Discount");
productIdComboBox.DataBindings.Add("SelectedValue",
 orderDetailBindingSource, "ProductId");
quantityTextBox.DataBindings.Add("Text",
 orderDetailBindingSource, "Quantity");
unitPriceTextBox.DataBindings.Add("Text",
 orderDetailBindingSource, "UnitPrice");

VB
productBindingSource.DataSource = ctx.Products.ToList();
discountTextBox.DataBindings.Add("Text",
 orderDetailBindingSource, "Discount")
productIdComboBox.DataBindings.Add("SelectedValue",
 orderDetailBindingSource, "ProductId")
quantityTextBox.DataBindings.Add("Text",
 orderDetailBindingSource, "Quantity")
unitPriceTextBox.DataBindings.Add("Text",
 orderDetailBindingSource, "UnitPrice")

The Add method accepts the bound property, the original data source, and the prop-
erty of the data source.

 You now have the complete form with all grids and controls, but the form simply
displays information. Let’s modify it so you can use it to add and modify data.

Listing 17.6 Binding controls in code

438 CHAPTER 17 Entity Framework and Windows applications

17.3.5 Adding code to persist modifications

The user must be able to use this form to modify orders, creating new ones or edit or
delete existing ones. In this section, you’re see how much little code is required to
enable these features.

MODIFYING AN ORDER

The first operation a user would want to do is modify an order or one of its details.
Suppose the user modifies the estimated and actual shipping dates for an order and
then wants to save it. You need a Save button at the bottom of the form.

NOTE You might consider using the Save button (the one with the disk
icon) in the orders toolbar instead of adding one to the form. But that
button isn’t database-aware and does nothing on the database; it only
commits changes in the data source. You could add code to the toolbar
button so it issues commands to the database, but we’re fans of the classic
Save button at the bottom-right corner of the form.

In the method that handles the click of the Save button on the form, you call the
SaveChanges method of the context instance you declared at form level. Because the
context tracks the objects it has read from database and it’s alive for the lifetime of the
form, you’re in a connected scenario. The context has tracked all modifications made
to objects, so there’s nothing more you need to do.

 The same approach applies to details. If the user modifies a detail, the call to
SaveChanges will cause that change to be persisted into the database.

 Naturally a user can delete an order too, and that requires a bit of extra work.

DELETING AN ORDER

When the user clicks the Delete button in the order toolbar, the order is removed
from the data source and disappears from the list but it’s not removed from the data-
base until the user confirms deletion by clicking the Save button. The problem is that
if the user clicks the Save button, no command hits the database because even if the
order has been removed from the data source, nothing told the context to delete it
from the database. To trigger the deletion on the database, you have to handle the
click event of the Delete button on the orders toolbar and call the DeleteObject
method, passing in the current order obtained via the Current property of the order-
related binding source, as shown in this snippet:

C#
ctx.Orders.DeleteObject((Order)orderBindingSource.Current);

VB
ctx.Orders.DeleteObject(DirectCast(orderBindingSource.Current, Order))

As you know, this doesn’t actually delete the order. The physical deletion from the
database is triggered only when the user clicks the Save button, which invokes the con-
text SaveChanges method.

439Binding in Windows Forms applications

DELETING A DETAIL

When the user clicks the Remove button on the details toolbar, the detail is removed
from the order. If the user clicks the Save button, an exception is raised because, as
you learned in chapter 7, Entity Framework doesn’t delete the detail but tries to
remove the reference to the order, and this isn’t possible in this scenario because you
can’t have a detail without an order.

 Because only the reference to the order is removed, the Order property of the
detail is set to null and its state is Modified. This means that before calling
SaveChanges, you have to search all modified entities of type OrderDetail whose
Order property is null, and mark them as Deleted. That code is shown in this listing.

C#
ctx.ObjectStateManager
 .GetObjectStateEntries(EntityState.Modified)
 .Select(c => c.Entity)
 .OfType<OrderDetail>()
 .Where(c => c.Order == null)
 .ToList()
 .ForEach(c => ctx.DeleteObject(c));

VB
ctx.ObjectStateManager.
 GetObjectStateEntries(EntityState.Modified).
 Select(Function(c) c.Entity).
 OfType(Of OrderDetail)().
 Where(Function(c) c.Order Is Nothing).
 ToList().
 ForEach(Function(c) ctx.DeleteObject(c))

The LINQ query combines Entity Framework methods and several LINQ methods. It
first retrieves all entities in the Modified state, then filters them out to retrieve only
those of type OrderDetail whose OrderDetail property is null, and finally marks
them as Deleted.

 Deletions are pretty simple. Let’s move on and see what you need to do to create a
new order.

CREATING AN ORDER

To create a new order, the user just clicks the Add button in the order toolbar, enters
the order information, clicks the Add button in the details toolbar, enters information
for the detail, and continues adding more details as necessary. This way, the user can
create many orders. When the user has finished creating orders, they click the Save
button to send the new orders to the database.

 As with deletions, the call to the SaveChanges method causes nothing to be per-
sisted because although the orders and details were added to the data source, nothing
told the context to add the objects that were created when the Add button was
clicked. What you need to do is add the new orders (which have their OrderId

Listing 17.7 Detecting deleted details

440 CHAPTER 17 Entity Framework and Windows applications

properties set to 0) to the context before invoking SaveChanges when the Save button
is clicked. That code is shown in this listing.

C#
var datasource = ((BindingList<Order>)orderBindingSource.DataSource);
foreach (var order in datasource.Where(o => o.OrderId == 0))
{
 ctx.Orders.AddObject(order);
}
SaveChanges();

VB
Dim datasource =
 DirectCast(orderBindingSource.DataSource, BindingList(Of Order))
For Each order In datasource.Where(Function(o) o.OrderId = 0)
 ctx.Orders.AddObject(order)
Next
SaveChanges()

That’s it. Easy, wasn’t it? With a few lines of code, you have enabled users to manipu-
late orders in every way they need. That’s productivity.

 But you haven’t yet seen how to take advantage of the interfaces you’ve imple-
mented in the entities. That’s the subject of the next section.

17.3.6 Taking advantage of binding interfaces

The advantage offered by INotifyPropertyChanged is that when you modify a prop-
erty, the binding engine modifies all controls bound to that property. You can easily
verify this by modifying the value in the actual shipping date text box, removing the
focus from the text box, and noticing that the grid cell that shows the actual shipping
date for the current order reflects the new value. This synchronization is very impor-
tant, because, internally, the binding engine makes extensive use of the INotify-
PropertyChanged interface.

 Regarding IEditableObject, you have to know that when the user selects a row in
the grid, the binding engine checks whether the entity implements the IEditable-
Object interface; if so, the binding engine automatically invokes the binding source’s
BeginEdit method, which in turns invokes the current object’s BeginEdit method.
When you move to another row, the binding engine invokes the EndEdit method,
committing the modifications. To let the user roll back modifications to an object, you
have to create an Undo button in the order toolbar and in its handler for the click
event invoke the CancelEdit method of the related binding source. Because the prop-
erties are restored, their setters are invoked and the INotifyPropertyChanged inter-
face comes in handy because it triggers updates for all controls, aligning them to the
entity properties.

 Finally, IDataErrorInfo is completely useless unless you combine it with an

Listing 17.8 Marking new orders as added before saving changes
ErrorProvider component. By dragging this component onto the form and binding

441Binding in WPF applications

it to the orders binding source (through the DataSource property), the user is auto-
matically notified of errors related to each property, displayed as a red circle next to
the control representing the property or a red circle in the cell of the grid.

 Although they’re fairly simple to create, Windows Forms applications are doomed.
With the advent of WPF and good designers, more and more developers are moving
toward this platform. This is why in the next section we’ll show you how to achieve the
same results using a WPF application.

17.4 Binding in WPF applications
The WPF binding engine is far more powerful than the Windows Forms one. After
reading this section, you’ll probably want to migrate all your applications from Win-
dows Forms to WPF to take advantage of its binding capabilities.

 For instance, in Windows Forms, showing inner properties of a complex property
in the grid requires you to write code. In WPF, this can be done declaratively. Further-
more, the binding between orders and details is declarative too. You don’t have to
write any code. These are the features we’re using in this section, but there’s much
more you can do with WPF that you can’t do with Windows Forms.

NOTE We won’t show the full XAML code in the examples in this section.
We’ll look at the binding-related attributes and ignore the style ones.

Let’s re-create the Windows Forms application using WPF. As before, the first step is
creating a grid that displays all orders in the database.

17.4.1 Showing orders

WPF 4.0 has a useful DataGrid control that you can use to show orders easily. This list-
ing shows the XAML needed to use it.

<DataGrid
 AutoGenerateColumns="False"
 ItemsSource="{Binding}"
 Name="orderDataGrid"
 CanUserDeleteRows="True"
 CanUserAddRows="True">
 <DataGrid.Columns>
 <DataGridTextColumn Binding="{Binding Path=OrderDate}"/>
 <DataGridTextColumn Binding="{Binding Path=EstimatedShippingDate}"/>
 <DataGridTextColumn Binding="{Binding Path=ActualShippingDate}"/>
 </DataGrid.Columns>
</DataGrid>

The Binding attribute on the DataGrid element is the most important, because it
binds the data grid to the data context of the container (the form, in this case). In
code you set the context to the orders retrieved from the database.

Listing 17.9 A DataGrid that shows orders

442 CHAPTER 17 Entity Framework and Windows applications

Binding is also used in the DataGridTextColumn node to bind the column to a
property of the source object. It’s worth noticing that you can refer to inner proper-
ties by navigating to them, as you would do in code. For instance, the following bind-
ing expression retrieves the city of the shipping address:

{Binding Path=ShippingAddress.City}

The code to bind orders to the form context is pretty simple. Because the form
exposes a DataContext property, you just need to set it with the result of the query,
with a little caveat. Instead of using a BindingList<T> to wrap the data, you use the
ObservableCollection<T> class, which is specifically designed to work with WPF bind-
ing, as shown in the following snippet:

C#
var orders = new ObservableCollection<Order>
 (ctx.Orders.Include("OrderDetails").ToList());
DataContext = orders;

VB
Dim orders As New ObservableCollection(Of Order)(
 ctx.Orders.Include("OrderDetails").ToList())
DataContext = orders

So far, it’s been straightforward. Now, let’s see how to create controls that show infor-
mation about the order selected in the grid.

17.4.2 Showing data for the selected order

We said that the WPF binding engine is very powerful —now you’re going to see why.
To add data-bound controls to the form, you just add the XAML in the following list-
ing to the form.

<Grid Name="orderInfo"
 DataContext="{Binding ElementName=orderDataGrid, Sets context for

child controls
B

 Path=SelectedItem}">
 ...
 <ComboBox Name="Customers"
 DisplayMemberPath="Name"
 SelectedValuePath="CompanyId"
 SelectedValue="{Binding Path=CustomerId}"

Binds lookup
properties

C

 ItemsSource="{Binding}" />
 <DatePicker Name="orderDateDatePicker"
 SelectedDate="{Binding Path=OrderDate}" />

Binds a simple
property

D

 <TextBox Name="addressTextBox"
 Text="{Binding Path=ShippingAddress.Address}" />

Binds a
complex property

E

</Grid>

 This little snippet contains lots of magic. First, the grid’s DataContext property sets
the data context of the controls inside the grid to the order selected in the orders data
grid B.

Listing 17.10 Controls that show order information

443Binding in WPF applications

 The lookup combo box control displays customer names (via DisplayMemberPath)
and uses the CompanyId property to perform the lookup with the CustomerId prop-
erty of the order C. Next, a DatePicker control allows the user to edit the date of the
order, and it binds the date to the OrderDate property D. Finally, a text box shows the
address property of the shipping address E. Notice how easy it is to navigate the com-
plex properties.

 The combo box control must be filled with customer names from the database, so
you must add the following query to the form’s Loaded event:

C#
Customers.ItemsSource = ctx.Companies.OfType<Customer>().ToList();

VB
Customers.ItemsSource = ctx.Companies.OfType(Of Customer)().ToList()

Listing 17.10 shows the XAML code that creates components that display only some
properties. The full XAML code is included in the source code for the book.

 Now it’s time to display the order details.

17.4.3 Showing selected order details

Showing the details of the selected order is easy. First, you have to create a DataGrid
and set its DataContext property using a Binding expression that points to the
SelectedItem property of the orders data grid (the current order). Then, you have to
set the ItemsSource property to the OrderDetails property of the order. The follow-
ing snippet shows the XAML code:

<DataGrid Name="detailsDataGrid"
 AutoGenerateColumns="False"
 DataContext="{Binding ElementName=orderDataGrid, Path=SelectedItem}"
 ItemsSource="{Binding Path=OrderDetails}">
 <DataGrid.Columns>...<DataGrid.Columns>
</DataGrid>

There’s nothing more to do. When the user selects an order, the data grid is popu-
lated with the details. XAML makes things much easier, doesn’t it?

 The last thing to do to complete the form is adding controls to the form so the
user can view and edit the detail information.

17.4.4 Showing selected detail information

You can add controls that let the user view and edit information related to the selected
order detail the same way you did for orders. The only difference here is that you have
to point to the details data grid, as the following listing shows.

<Grid
 DataContext="{Binding
 ElementName=detailsDataGrid, Path=SelectedItem}">

Listing 17.11 Controls that show detail information
 ...

444 CHAPTER 17 Entity Framework and Windows applications

 <TextBox Name="quantityTextBox"
 Text="{Binding Path=Quantity}" />
 <ComboBox Name="Products"
 DisplayMemberPath="Name"
 SelectedValuePath="ProductId"
 SelectedValue="{Binding Path=ProductId}" />
</Grid>

Once again, the Grid control’s DataContext property is set to the current detail, and
child controls are bound to properties of the detail.

 The lookup combo box needs to be populated with the products. Again, you can
use the form’s Loaded event, adding the following code:

C#
Products.ItemsSource = ctx.Products.ToList();

VB
Products.ItemsSource = ctx.Products.ToList()

When you run the application, you’ll see the form shown in figure 17.6.

Figure 17.6 The WPF form
showing orders and details

 Building a display form was simple, thanks to XAML and the WPF binding engine.
Now let’s see how you can write code to allow modifications.

445Binding in WPF applications

17.4.5 Adding code to persist modifications

Persisting modifications is just a matter of adding a Save button and invoking the
SaveChanges method when the user clicks it. But even in this case, you have to write
some code to notify the context about what objects to add and delete.

DELETING AND ADDING AN ORDER

The ObservableCollection<T> class you used to populate the form’s DataContext
has a CollectionChanged event that’s invoked when items in the collection are added
or removed. You can subscribe to this event and in its handler call AddObject when an
order is added and DeleteObject when one is deleted. Here’s the code.

C#
orders.CollectionChanged +=
 new NotifyCollectionChangedEventHandler(order_CollectionChanged);
void order_CollectionChanged(object sender,
 NotifyCollectionChangedEventArgs e)
{
 if (e.Action == NotifyCollectionChangedAction.Remove)
 foreach (Order item in e.OldItems)
 ctx.Orders.DeleteObject(item);
 else if (e.Action == NotifyCollectionChangedAction.Add)
 ctx.Orders.AddObject((Order)e.NewItems[0]);
}

VB
AddHandler orders.CollectionChanged, AddressOf order_CollectionChanged

Private Sub order_CollectionChanged(
 ByVal sender As Object, ByVal e As NotifyCollectionChangedEventArgs)
 If e.Action = NotifyCollectionChangedAction.Remove Then
 For Each item As Order In e.OldItems
 ctx.Orders.DeleteObject(item)
 Next
 ElseIf e.Action = NotifyCollectionChangedAction.Add Then
 ctx.Orders.AddObject(DirectCast(e.NewItems(0), Order))
 End If
End Sub

The situation changes when you want to notify the context about removing an order
detail. In this case, you can’t rely on the CollectionChanged event because it doesn’t
get fired when an order is modified (the ObservableCollection<T> class monitors
orders, not their details).

DELETING A DETAIL

When a detail is removed from an order, the reference is deleted, its Order property is
set to null, and its state is Modified. This means that before calling SaveChanges, you
have to use the same code as in listing 17.7 to mark orphan details as Deleted.

Listing 17.12 Intercepting an order’s removal and addition for context notification

446 CHAPTER 17 Entity Framework and Windows applications

 This can be accomplished without many problems. As you have seen, Entity
Framework–related code isn’t very invasive, so you can concentrate mostly on your
business code. Once again, that means productivity.

17.5 Summary
If you’re an experienced Windows Forms or WPF developer, you have surely been
happy to discover that Entity Framework gracefully integrates with the binding
engines of both technologies. You can even create classes that inherit from Binding-
List<T> and ObservableCollection<T> and handle context communication inter-
nally, so you don’t have to write anything in your form.

 Thanks to POCO support, you can easily implement interfaces and customize code
so that binding is even easier. Most of this code can be generated via templates, so
things have been simplified a lot. All this simplicity means you can write very little
Entity Framework–related code in your form and concentrate your effort on the busi-
ness code.

 Now that you’ve seen how to use Entity Framework in web applications, web ser-
vices, and Windows applications, it’s time to move on to another important subject:
testing.

Testing Entity Framework
Testing is a critical part of the software development lifecycle—development can’t
be considered complete until you’ve verified that the code you wrote works as
expected. Unfortunately, testing code is rarely a trivial task for two main reasons:

 Test complexity strongly depends on the complexity of the application itself.
It tends to grow in a nonlinear manner as you add functionality, objects,
tiers, or dependencies with external systems.

 Fixing bugs or adding new features can potentially lead to regressions,
harming your software stability and reliability. In these cases, you can’t be
sure you didn’t damage existing functionality until you’ve reexecuted all the
tests on them.

But what does “testing” a feature or a portion of code involve? It can mean launch-
ing your application and using UI to verify whether an order is correctly placed and
that the stock of a given product is correctly adjusted, or it can mean building small

This chapter covers
 Unit-testing basics

 Dependency isolation and mock objects

 Persistence testing with Entity Framework
447

console applications that invoke a method, so you can debug it and step through its

448 CHAPTER 18 Testing Entity Framework

code to check it behaves as expected. Or it can mean something smarter and auto-
mated, such as a durable and stable test suite that you can run on a daily basis (or after
every build) to check that everything is working properly.

 This chapter focuses on this last technique, showing the tools you can use and how
you should design the code of an application using Entity Framework so it’s effectively
testable.

18.1 Unit tests at a glance
Automatic unit testing is a well-established concept in computer programming. It was
initially introduced in Smalltalk, and then spread to a number of different technolo-
gies, including .NET. Today, unit testing is considered a fundamental step in quality
software development.

 A unit test is no more than a series of methods that execute some code from the
application being tested, providing well-known inputs and checking the outputs. In
OrderIT, for example, you’ll often need to handle an order total, perhaps because you
want to show it to the end user or because you need to send it to a credit card payment
service. You already implemented a simple read-only property within the Order class
that performs the calculation on the fly and returns the order total.

C#
public decimal Total
{
 get
 {
 decimal result = 0;
 this.OrderDetails.ForEach(d => result += d.UnitPrice * d.Quantity);

 return result;
 }
}

VB
Public ReadOnly Property Total() As Decimal
 Get
 Dim result As Decimal = 0
 Me.OrderDetails.ForEach(
 Function(d)
 result = result + d.UnitPrice * d.Quantity
 End Function)

 Return result
 End Get
End Property

Because this is such a critical part of the application, you want to be sure it always
behaves as expected, so it needs to be tested. You could run the application, create an
order, and see if the Total property shown in the page was correct, but you’d have to

Listing 18.1 Calculating an order total
deal with all sorts of details (like authenticating in OrderIT, or selecting items that are

449Unit tests at a glance

in stock) that you don’t want to be concerned with. An easier path is creating a simple
console application that references the OrderIT.DomainModel assembly. You can write
code like the following listing.

C#
public static void Main(string[] args)
{
 var order = new Order();

 order.OrderDetails.Add(
 new OrderDetail { Quantity = 2, UnitPrice = 10});

Provides
dummy data

 order.OrderDetails.Add(
 new OrderDetail { Quantity = 3, UnitPrice = 15});

 Debug.Assert(order.Total == 65);

Checks for
correct result

}

VB
Public Shared Sub Main(ByVal args As String())
 Dim order = New Order()

 Dim od = New OrderDetail()

Provides
dummy data

 od.Quantity = 2
 od.UnitPrice = 10
 order.OrderDetails.Add(od)

 od = New OrderDetail()
 od.Quantity = 3
 od.UnitPrice = 15
 order.OrderDetails.Add(od)

 Debug.Assert(order.Total = 65)

Checks for
correct result

End Sub

Although this is only a few lines of code, it has a great result—a durable test method
that you can run from time to time to make sure you haven’t broken any working logic
(for example, after introducing support for discounts within Order.Total).

 We call this a unit test because it tests a simple and atomic part of the application.
Order.Total doesn’t rely on external resources to perform its task, like methods of
external classes, databases, or web services. Later in this chapter, we’ll talk about fak-
ing dependencies and perform integration testing, which do test how different pieces
of code work with each other. For now, you only need to notice that, if the test fails,
you can assert with certainty that one or the other of the following is true:

 There’s a bug in the method being tested, and the test method was able to track
it and identify it.

 The test method has a bug.

Bugs are something you want to absolutely avoid, and one of the best ways to do that is
to keep the logic of the test method as simple as possible.

Listing 18.2 Console application that tests order’s Total calculated property

How to make sure a test method doesn’t have any bugs
Although we’re just starting to look at testing, it’s already clear that having bug-free
unit tests is essential; and the first rule to achieving this is keeping the test methods
as simple as possible. That means avoiding if branches and cycles and using inher-
itance and other object-oriented peculiarities such as polymorphism or overrides as
moderately as possible.

An interesting extreme programming technique, called test-driven development (TDD)
consists of writing tests prior to the programming unit; when you have the test, the
next step is writing the application code to let the test project compile, but without
implementing any kind of logic. The purpose is making the test fail, so you can check
out its effectiveness; if the test doesn’t fail when the logic has not yet been imple-
mented, that probably means there’s something wrong with it. Only after a test failure
do you code the new method.

Another recent trend is using fault injection, such as by using the CLR’s Profiler API
to artificially let the code under test return the wrong results. A sample library that
allows you to do this is an open source project called TestApi, which can be down-
loaded from CodePlex at http://testapi.codeplex.com/.

450 CHAPTER 18 Testing Entity Framework

A typical enterprise application needs hundreds of unit tests to verify its features prop-
erly, and using a console application for this would be inappropriate. Moreover, there
are advanced development scenarios in which unit tests are completely integrated
into the source control system (in some organizations, you need to provide the test
code along with the application code in order to check a new feature into the source
control) or into the build process (after every build, the tests are executed, and only if
they all pass will the new version be released to customers).

 A test tool is essential for writing, managing, and executing tests because it pro-
vides a runtime environment for executing the test code and producing reports like
the one shown in figure 18.1, which allows you to immediately identify and locate
errors in the code.
Figure 18.1 A typical test report

http://testapi.codeplex.com/

451Writing a test suite in Visual Studio 2010

 There are a number of unit-testing tools out there, with NUnit and MSTest being
the most widely used today. NUnit is an open-source port of the well-established Java
JUnit test framework, and MSTest is provided by Microsoft and is completely inte-
grated into the Visual Studio IDE. It’s included in every edition of Microsoft Visual
Studio 2010, and it’s the one you’ll use for the rest of this chapter.

 In the next section, you’ll see how to use MSTest to effectively test OrderIT.

18.2 Writing a test suite in Visual Studio 2010
The first step in testing the OrderIT project is creating a new test project in Visual Stu-
dio 2010. You can do that by selecting the Test Project template from the New Project
dialog box shown in figure 18.2. Name the new project OrderIT.DomainModel.Tests,
because it will contain all the tests for the classes belonging to OrderIT.DomainModel.

 This is the first naming convention we’ll introduce in this chapter, and others will
follow. Good naming of test projects and classes is critical in real-world scenarios
because, as we stated before, it’s common to have hundreds of tests scattered among
different assemblies, and naming them correctly helps identify which part of your
application is failing.

 Now it’s time to dive into the code and writing your first test class.

18.2.1 Testing a simple method

As a first example, let’s test the Total property we introduced at the beginning of the
chapter. Because it belongs to the Order class, you’ll add a new class to the test project
that will be conventionally named OrderTests.

 In order to make the class recognizable to the test framework, you need to deco-
rate it with the TestClass attribute. Here’s the code.
Figure 18.2 Creating a new test project in Visual Studio 2010

452 CHAPTER 18 Testing Entity Framework

C#
[TestClass]
public class OrderTests
{
 [TestMethod]
 public void Total_CalculateWithoutDiscount_ReturnsTheCorrectSum()
 {
 var order = new Order(); Sets up test

environment
B

 order.OrderDetails.Add(
 new OrderDetail { Quantity = 2, UnitPrice = 10 });
 order.OrderDetails.Add(
 new OrderDetail { Quantity = 3, UnitPrice = 15 });

 var result = order.Total; Executes code
being testedC Assert.AreEqual(65, result); Checks resultD

 }
}

VB
<TestClass()> _
Public Class OrderTests

 <TestMethod()> _
 Public Sub Total_CalculateWithoutDiscount_ReturnsTheCorrectSum()
 Dim order = New Order()

Sets up test
environment

B

 Dim od = New OrderDetail()
 od.Quantity = 2
 od.UnitPrice = 10
 order.OrderDetails.Add(od)

 od = New OrderDetail()
 od.Quantity = 3
 od.UnitPrice = 15
 order.OrderDetails.Add(od)

 Dim result = order.Total

Executes code
being tested

C

 Assert.AreEqual(65, result) Checks resultD
 End Sub
End Class

The method’s name is, once again, built according to a naming convention that allows
it to be absolutely self-explanatory. The name is composed of three parts:

 The program unit being tested
 The action being taken and any other useful information (in this example,

that’s the fact that you aren’t considering discounts in the test)
 The expected result

The method’s body follows a pattern called Arrange, Act, Assert (AAA) , which consists
in setting up the environment B, executing the code C, and then verifying the result

Listing 18.3 OrderTests class
obtained D. It’s similar to what you wrote in the console application in listing 18.2,

453Writing a test suite in Visual Studio 2010

but this uses Assert.AreEqual instead of Debug.Assert. With Assert.AreEqual, you
can express the conditions of the failure or success of the test.

 The testing framework is completely integrated into the Visual Studio IDE.
Because the method in listing 18.3 has the TestMethod attribute, after building the
project, you can execute it by right-clicking its name and selecting the Run Tests
option from the context menu. Visual Studio will run the code and, we hope, will
return a test-passed report similar to the one in figure 18.3.

Figure 18.3 Order.Total test-results report

 Based on the test report, you may decide to run another test, debug a failing one,
check out a detailed test report, or even get a historic view of the results of every test.

 But those aren’t the sole advantages of using this test tool. In the following section,
we’ll look at some other useful features you can take advantage of while building a test
suite.

18.2.2 Advanced features of Microsoft’s Unit Testing Framework

In chapter 14, you designed a class called DiscountPolicy that analyzes an order to
determine if the customer deserves a discount. Its method EvaluateDiscount accepts
an instance of an Order and, as a coding best practice, should throw an Argument-
NullException if invoked with a null argument.

 Because testing the raising of expected exceptions is as important as testing the
correctness of a method’s results, every test framework provides built-in support for
doing this. In Microsoft’s Unit Testing Framework, for example, you can decorate the
test code with the attribute ExpectedException, as shown in this listing.

C#
[TestMethod,
 ExpectedException(typeof(ArgumentNullException))]

Exception
expectation

B

public void EvaluateDiscount_InvokedWithNull_ThrowsArgumentNullEx()
{
 var discountPolicy = new DiscountPolicy();
 discountPolicy.EvaluateDiscount(null);
}

VB
<TestMethod(),
 ExpectedException(GetType(ArgumentNullException))> _

Exception
expectation

B

Public Sub EvaluateDiscount_InvokedWithNull_ThrowsArgumentNullEx()

Listing 18.4 Testing the raising of an exception

454 CHAPTER 18 Testing Entity Framework

 Dim discountPolicy = New DiscountPolicy()
 discountPolicy.EvaluateDiscount(Nothing)

End Sub

 Notice that, although this test don’t have an Assert method, this is still code that
can fail or succeed because the assertion part of the AAA pattern is written in a declar-
ative manner. It has an attribute B that is then consumed and checked by the run-
time itself.

 In many other cases, while testing the DiscountPolicy class, you must provide a
valid Order instance, perhaps also adding some details and assigning a customer to it.
We’re probably talking about several lines of code for the arrange stage. Even if you
build a helper method like this

Order order = buildTestOrder();

you’d still have to put it in every test method of your DiscountPolicyTests class.
 To avoid this code redundancy, you can write an initialization method like this.

C#
private Order order;

[TestInitialize]
public void Init()
{
 this.order = new Order();

 this.order.Customer = new Customer
 {
 Name = "Marco De Sanctis"
 };

 // more initialization code here...
}

VB
Private order As Order

<TestInitialize()> _
Public Sub Init()
 Me.order = New Order()

 Me.order.Customer = New Customer()
 Me.order.Customer.Name = "Marco De Sanctis"

 ' more initialization code here...

End Sub

Because the method is marked with the TestInitialize attribute, the runtime will
automatically execute it before every test method, so every test will be provided with
its own new and isolated instance of the Order class. Should you need to execute code

Listing 18.5 Test initialization method
at the end of a test method, the TestCleanup attribute serves this purpose. Similar

455Isolating dependencies

attributes exist to execute custom code before the first test method and after the last
one of an entire test class (ClassInitialize and ClassCleanup) or of a whole assem-
bly (AssemblyInitialize and AssemblyCleanup).

 At this point, you’re able to use Microsoft’s Unit Testing Framework to write your
test code and keep it simple and easy to maintain. But so far we’ve only dealt with
atomic code units, which don’t rely on external dependencies to perform their tasks.
In the next section, we’ll remove this limitation and still keep the test execution inde-
pendent of these resources.

18.3 Isolating dependencies
We usually design applications with classes that cooperate with each other or that
access external resources. For example, when accepting a new order in OrderIT, you
need to check the database to see if the items are in stock, and when the order is
placed, you want to notify the customer by sending an email. Moreover, providing a
delivery-tracking system means querying the carrier’s web service.

 Suppose you wanted to implement this last requirement and query the web ser-
vice. You might write a method within the Order class similar to the one shown here.

C#
public DeliveryStatus CheckDeliveryStatus()
{
 CarrierWebService service = new CarrierWebService();

 string res = service.GetTracking(this.TrackingTicket);

 if (res == "delivered")
 return DeliveryStatus.Delivered;

 return DeliveryStatus.Dispatching;
}

VB
Public Class Order
 ' more code here

 Public Function CheckDeliveryStatus() As DeliveryStatus
 Dim service As New CarrierWebService()

 Dim res As String = service.GetTracking(Me.TrackingTicket)

 If res = "delivered" Then
 Return DeliveryStatus.Delivered
 End If

 Return DeliveryStatus.Dispatching
 End Function

End Class

Effectively testing such a method is nearly impossible. First, you need to know which

Listing 18.6 Accessing a remote web service to check delivery status
ticket number to send to the web service. Usually, service suppliers provide developer

456 CHAPTER 18 Testing Entity Framework

environments with services operating on dummy data, and this could ease your job.
But even in this case, you’d probably end up with a poor test that would be slow to run
and, worse than that, could fail for a number of reasons:

 There’s a bug in the CheckDeliveryStatus method.
 The network is down when you run the test.
 The remote service is offline.
 The remote service has a bug and throws an exception.

The CheckDeliveryStatus method depends on external systems, so there’s a depen-
dency problem. Unfortunately, there is nothing you can do with the implementation
of CheckDeliveryStatus shown in listing 18.6. Let’s modify it slightly to make it more
testable.

18.3.1 Refactoring for testability

What’s wrong with the current CheckDeliveryStatus implementation is that there’s
no way to avoid the call to the remote service. You could replicate it locally and modify
a configuration file to invoke its URL, but you’d still have to rely on an external com-
ponent that runs in a web server, and that wouldn’t solve any of the issues introduced
in the previous section.

 It would be much better to simulate the service with a plain .NET class that has the
same interface; this class could work in-process and provide hard-coded results to
known inputs. To do this, you must modify CheckDeliveryStatus, as in the following
listing, to inject the fake service instance at runtime,

C#
internal DeliveryStatus CheckDeliveryStatus(ITrackingService service)
{
 string res = service.GetTracking(this.TrackingTicket);

 if (res == "delivered")
 return DeliveryStatus.Delivered;

 return DeliveryStatus.Dispatching;
}

public DeliveryStatus CheckDeliveryStatus()
{
 return this.CheckDeliveryStatus(new CarrierWebService());
}

VB
Friend Function CheckDeliveryStatus(ByVal service As ITrackingService) As

DeliveryStatus
 Dim res As String = service.GetTracking(Me.TrackingTicket)

 If res = "delivered" Then
 Return DeliveryStatus.Delivered

Listing 18.7 A testable version of CheckDeliveryStatus
 End If

457Isolating dependencies

 Return DeliveryStatus.Dispatching
End Function

Public Function CheckDeliveryStatus() As DeliveryStatus
 Return Me.CheckDeliveryStatus(New CarrierWebService())
End Function

This code still provides an overload without parameters, which allows you to keep the
same interface you had before towards a normal caller. The internal (or Friend in
VB) overload can be left visible only to the assembly that holds all the unit tests by dec-
orating the assembly with the InternalsVisibleTo attribute, as in the next snippet:

C#
[assembly:InternalsVisibleTo("OrderIT.DomainModel.Tests")]

VB
<Assembly: InternalsVisibleTo("OrderIT.DomainModel.Tests")>

In order to compile the code without errors, you still have to let the service implement
ITrackingService. This can be done directly on the service’s proxy class if the auto-
generated code is a partial class, or you can build a simple wrapper. With this small
refactoring, you’re finally able to build a stub for your tracking service.

STUB A class or a method that mimics the behavior of an external depen-
dency, accepting the same inputs and providing likely outputs. You can
use a stub to replace that dependency for testing purposes, and you can
also use stubs to temporarily substitute for code that has yet to be written.

For example, the fake service in the following listing is a stub for ITrackingService,
simulating the service’s behavior and providing hard-coded results.

C#
public interface ITrackingService
{
 string GetTracking(string trackingTicket);
}

public class FakeTrackingService : ITrackingService
{
 public string GetTracking(string trackingTicket)
 {
 return "delivered";
 }
}

VB
Public Interface ITrackingService

 Function GetTracking(ByVal trackingTicket As String) As String

End Interface

Public Class FakeTrackingService

Listing 18.8 The ITrackingService interface and its fake implementation
 Implements ITrackingService

458 CHAPTER 18 Testing Entity Framework

 Public Function GetTracking(ByVal trackingTicket As String) As String
 Return "delivered"
 End Function

End Class

The advantage of the refactoring is that CheckDeliveryStatus will consider the fake
service to be a valid tracking service. Now, writing the unit test is straightforward, as
you can see.

C#
[TestMethod]
public void CheckDeliveryStatus_WhenOrderIsDelivered_ReturnsDelivered()
{
 var order = new Order();

 DeliveryStatus result = order.CheckDeliveryStatus(
 new FakeTrackingService());

 Assert.AreEqual(DeliveryStatus.Delivered, result);
}

VB
<TestMethod()> _
Public Sub CheckDeliveryStatus_WhenOrderIsDelivered_ReturnsDelivered()
 Dim order = New Order()

 Dim result As DeliveryStatus = order.CheckDeliveryStatus(New
FakeTrackingService())

 Assert.AreEqual(DeliveryStatus.Delivered, result)
End Sub

Building stubs and refactoring the application code so it’s loosely coupled with exter-
nal resources is the way to successfully build unit test that execute quickly and that are
reproducible and independent of the environment’s conditions.

 In doing this, though, you ended up with an additional class (FakeTracking-
Service) that can potentially contain bugs. More than that, it represents more code
to be maintained. Fortunately, this is something you can avoid. There are many frame-
works out there that allow you to dynamically build stubs at runtime, and we’ll look at
them next.

18.3.2 Using a mocking framework to fake dependencies

A mocking framework is a library you can use to dynamically replace your dependencies
and set up their behavior without needing to pollute your test assemblies with fakes
like FakeTrackingService. As for unit-testing tools, various mockers are available on
the market, some of them free and open source, and others sold as commercial prod-
ucts. Among the first group, the de facto standard is Rhino Mocks, built by Oren Eini
and freely downloadable at www.ayende.com/projects/rhino-mocks.aspx.

 To better understand how such a tool can help in writing tests, let’s rewrite the pre-

Listing 18.9 Unit test for CheckDeliveryStatus
vious example and use Rhino Mocks to build the stub. All the concepts we have

459Isolating dependencies

introduced to loosely couple CheckDeliveryStatus with the web service remain valid,
because you still need to inject a test stub in the code. Here’s the new version of the
test method.

C#
ITrackingService trackingService;
MockRepository mocks;

[TestInitialize]
public void SetUp()
{
 mocks = new MockRepository();
 trackingService = mocks.Stub<ITrackingService>();

Creates
TrackingService
stub

B

}

[TestMethod]
public void CheckDeliveryStatus_WhenOrderIsDelivered_ReturnsDelivered()
{
 SetupResult.On(trackingService)
 .Call(trackingService.GetTracking(null))
 .Return("delivered")
 .IgnoreArguments();

Sets up stub’s
behavior

C

 mocks.ReplayAll(); Switches to
Replay modeD var order = new Order();

 DeliveryStatus result = Executes
test

E
 order.CheckDeliveryStatus(trackingService);

 Assert.AreEqual(DeliveryStatus.Delivered, result);
}

VB
Private trackingService As ITrackingService
Private mocks As MockRepository

<TestInitialize()> _
Public Sub SetUp()
 mocks = New MockRepository()
 trackingService = mocks.Stub(Of ITrackingService)()

Creates
TrackingService
stub

B

End Sub

<TestMethod()> _
Public Sub CheckDeliveryStatus_WhenOrderIsDelivered_ReturnsDelivered()
 SetupResult.[On](trackingService)._
 [Call](trackingService.GetTracking(Nothing))._
 [Return]("delivered").IgnoreArguments()

Sets up stub’s
behavior

C

 mocks.ReplayAll() Switches to
Replay modeD Dim order = New Order()

 Dim result As DeliveryStatus = _
 order.CheckDeliveryStatus(trackingService) Executes testE

 Assert.AreEqual(DeliveryStatus.Delivered, result)

Listing 18.10 Testing with a Rhino Mocks stub
End Sub

460 CHAPTER 18 Testing Entity Framework

This listing uses a TestInitialize method B to create a stub of the service, which is
then stored in a local field. The arrange phase C of the subsequent test configures
that stub to simulate the service; notice the fancy fluent interface instructing it that a
call to the GetTracking method should return delivered no matter what arguments
it’s invoked with. Then, after placing the stub in replay mode D, the code unit is exe-
cuted E, exactly as if it were working with a handmade fake class.

 The main advantage of using a mocking framework is that instead of building and
maintaining a fake class, you have a dynamic stub whose responses can be easily con-
figured. But there’s still something you can improve on in the test code. You now
know that the method can correctly parse results returned by the service, but you
don’t have any code to verify that it’s invoked with the correct input. The best way to
do that is to use a mock instead of a stub.

MOCK A class dynamically generated by a mocking framework, which
you can configure to provide results to well-known inputs, similar to a
stub. In addition, a mock has the ability to set up expectations on the
members being called, and to verify them at the end of the test.

With Rhino Mocks, building a mock is similar to building a stub; the only difference is
that with a mock you can set up and verify your expectations, as in the following listing.

C#
ITrackingService trackingService;
MockRepository mocks;

[TestInitialize]
public void SetUp()
{
 mocks = new MockRepository();
 trackingService = Creates mock
 mocks.DynamicMock<ITrackingService>();
}

[TestMethod]
public void CheckDeliveryStatus_WhenOrderIsDelivered_ReturnsDelivered()
{
 var order = new Order();
 order.TrackingTicket = "test";

 Expect.Call(trackingService.GetTracking(order.TrackingTicket))
 .Return("delivered"); Sets up

expectationB
 mocks.ReplayAll();

 DeliveryStatus result = order.CheckDeliveryStatus(trackingService);

 mocks.VerifyAll(); Verifies that
expectation
has been metC

 Assert.AreEqual(DeliveryStatus.Delivered, result);
}

VB
Private trackingService As ITrackingService

Listing 18.11 Testing with a mock
Private mocks As MockRepository

461Unit-testing the data access layer

<TestInitialize()> _
Public Sub SetUp()
 mocks = New MockRepository()
 trackingService = Creates mock
 mocks.DynamicMock(Of ITrackingService)()
End Sub

<TestMethod()> _
Public Sub CheckDeliveryStatus_WhenOrderIsDelivered_ReturnsDelivered()
 Dim order = New Order()
 order.TrackingTicket = "test"

 Expect.Call(trackingService.GetTracking(order.TrackingTicket))._
 Return("delivered") Sets up

expectationB
 mocks.ReplayAll()

 Dim result As DeliveryStatus = _
 order.CheckDeliveryStatus(trackingService)

 mocks.VerifyAll()

Verifies that
expectation
has been met

C

 Assert.AreEqual(DeliveryStatus.Delivered, result)
End Sub

If the code under test doesn’t invoke the service’s GetTracking method, providing
test as an input, according the expectation B, mocks.VerifyAll would throw an
exception causing the test to fail C, which would result in a report like the one in
figure 18.4.

Figure 18.4 A mock is able to track unexpected invocations.

As you can see, mocks and stubs give you the chance to dynamically fake external
dependencies to isolate the code being tested. Stubs are useful if you want to replace a
dependency and provide hard-coded results, whereas mocks are also able to check
whether the external method was invoked as expected or not. Both are essential tools
when you have complex code, and you’re going to use them in the next section,
where you’ll use them with Entity Framework to test the data layer.

18.4 Unit-testing the data access layer
Before you start writing tests for the data layer, you need to identify which parts of it
deserve to be tested. When you build an object model using the Entity Framework
designer, you have a lot of automatically generated code, including the Object-
Context and all the entities.

 The test that may first come to mind is whether the O/RM tool is able to correctly
get those entities from and persist them to the database. Because such tests require
interactions with external resources, they’re considered integration tests. They’re as

important as unit tests, and we’ll cover them later this chapter.

462 CHAPTER 18 Testing Entity Framework

 When we talk about unit-testing the data access layer, we don’t mean verifying whether
a customer is correctly stored in its table; we mean checking whether our infrastruc-
ture interacts with Entity Framework in the way we expect.

18.4.1 A test infrastructure for a repository

In chapter 14, you designed the domain layer so it wasn’t directly exposed to the
Entity Framework classes and API. You created a set of repositories, which use Entity
Framework to access the data source, but provide to the upper layer an abstract
collection-like interface. Repositories were designed to contain a lot of logic, such as
logic to check the uniqueness of a customer’s email address while creating it, so they
deserve their own test suite.

 As a first step, you’ll test that when the repository’s Add method is invoked, the
entity is added to the underlying object set by calling AddObject. You can see the Add
method in the excerpt in listing 18.12. Notice that, for the sake of simplicity, you’re
not checking whether the entity already belongs to the object set, as you should do in
a real-world scenario.

C#
public Repository(ObjectContext context)
{
 if (context == null)
 throw new ArgumentNullException("context");

 this.context = context;
 this.objectSet = context.CreateObjectSet<T>();

Dependency on
ObjectSet<T>

B

}

private IObjectSet<T> entitySet;

public virtual void Add(T entity)
{
 this.objectSet.AddObject(entity);

Method that needs
to be mocked

C

}

VB
Public Sub New(ByVal context As ObjectContext)
 If context Is Nothing Then
 Throw New ArgumentNullException("context")
 End If

 Me.context = context
 Me.objectSet = context.CreateObjectSet(Of T)()

Dependency on
ObjectSet<T>

B

End Sub

Private entitySet As IObjectSet(Of T)

Public Overridable Sub Add(ByVal entity As T)
 Me.objectSet.AddObject(entity)

Method that needs
to be mocked

C

End Sub

Listing 18.12 Repository’s Add method
This code has dependencies on two external classes that need to be mocked:

463Unit-testing the data access layer

 ObjectContext—It needs to be faked because it’s used to create an Object-
Set<T> B, but you don’t need to check anything on it, so it can be a stub.

 IObjectSet<T>—You need to check whether this object invokes its AddObject
method C, so it needs to be a mock.

Unfortunately, Rhino Mocks can’t effectively mock concrete entities unless they have
only virtual methods. This is because the repository and its context are tightly cou-
pled. But you can easily work around this
by creating an IObjectContext interface
and a wrapper around the real ObjectCon-
text. The new class diagram is shown in
figure 18.5.

 Supporting the new IObjectContext
interface obviously requires a little refactor-
ing on the Repository constructor, but the
result is that everything is loosely coupled
and so is testable. Listing 18.13 shows the
new version of code.

C#
public interface IObjectContext

Object context's
interface

{
 IObjectSet<T> CreateObjectSet<T>();
}

public class ObjectContextWrapper : IObjectContext

Object context's
wrapper

{
 public ObjectContextWrapper(ObjectContext context)
 {
 this.Context = context;
 }

 public IObjectSet<T> CreateObjectSet<T>()
 {
 return this.Context.CreateObjectSet<T>(); Call redirection

to object context }

 public ObjectContext Context { get; set; }
}

public class Repository<T> : IRepository<T>
{
 private IObjectContext context;

 public Repository(IObjectContext context)

Constructor with
IObjectContext
argument

 {
 if (context == null)
 throw new ArgumentNullException("context");

 this.context = context;

Listing 18.13 Refactoring the RepositoryConstructor

+CreateObjectSet<T>()

«interface»
IObjectContext

-ObjectContext
ObjectContextWrapper

Repository<T>

Figure 18.5
Repository and ObjectContextWrapper
 this.entitySet = context.CreateObjectSet<T>();

464 CHAPTER 18 Testing Entity Framework

 }
}

VB
Public Interface IObjectContext
 Function CreateObjectSet(Of T)() As IObjectSet(Of T)

Object context's
interface

End Interface

Public Class ObjectContextWrapper
 Implements IObjectContext

 Public Sub New(ByVal context As ObjectContext)

Object context's
wrapper

 Me.Context = context
 End Sub

 Public Function CreateObjectSet(Of T)() As IObjectSet(Of T)
 Return Me.Context.CreateObjectSet(Of T)() Call redirection

to object context End Function

 Public Property Context() As ObjectContext

End Class

Public Class Repository(Of T)
 Implements IRepository(Of T)

 Private context As IObjectContext

 Public Sub New(ByVal context As IObjectContext)

Constructor with
IObjectContext
argument

 If context Is Nothing Then
 Throw New ArgumentNullException("context")
 End If

 Me.context = context
 Me.entitySet = context.CreateObjectSet(Of T)()
 End Sub
End Class

Why use a wrapper?
You might disagree with building a wrapper instead of implementing the interface
directly on the designer-generated ObjectContext using partial classes. In this
example, the same result could be achieved in both ways; but in a real-world sce-
nario, repositories depend also on ObjectStateManager, which is another tightly
coupled non-testable class within the Entity Framework assembly. Using a wrapper is
the only way to successfully abstract the ObjectStateManager. The full code is omit-
ted here for the sake of simplicity, but it’s included in the book’s source code.

You should avoid inserting any kind of logic into those wrappers and keep them as
simple as possible; ideally, they should only forward the calls. Otherwise, you’d need
to test them too, and this isn’t possible because of the tight coupling with untestable
classes such as ObjectContext and ObjectStateManager.

Now it’s time to return to the main goal, which is testing the repository’s Add method.
The test code is pretty simple to write, because you’re allowed to mock all the reposi-
tory dependencies. The following code is completely isolated from all Entity Frame-
work classes.

465Unit-testing the data access layer

C#
[TestInitialize]
public void SetUp()
{
 mocks = new MockRepository();
 objectContext = mocks.Stub<IObjectContext>();

Sets up stub for
ObjectContext

B

 objectSet = mocks.DynamicMock<IObjectSet<Customer>>(); Sets up mock
for ObjectSetC SetupResult.On(objectContext)

 .Call(objectContext.CreateObjectSet<Customer>())
 .Return(objectSet); Sets up result

for call on
CreateObjectSetD

}

MockRepository mocks;
IObjectContext objectContext;
IObjectSet<Customer> objectSet;

[TestMethod]
public void Repository_Add_CallsAddObject()
{
 Customer customer = new Customer();
 Expect.Call(() => objectSet.AddObject(customer));

Sets up
expectation
to test

E

 mocks.ReplayAll();

 CustomerRepository repository =
 new CustomerRepository(objectContext);
 repository.Add(customer);

 mocks.VerifyAll();

Verifies
AddObject has
been called

F

}

VB
<TestInitialize()> _
Public Sub SetUp()
 mocks = New MockRepository()
 objectContext = mocks.Stub(Of IObjectContext)()

Sets up stub for
ObjectContext

B

 objectSet = mocks. Sets up mock
for ObjectSet

C
 DynamicMock(Of IObjectSet(Of Customer))()

 SetupResult.[On](objectContext)._
 [Call](objectContext.CreateObjectSet(Of Customer)())._
 [Return](objectSet) Sets up result

for call on
CreateObjectSetD

End Sub

Private mocks As MockRepository
Private objectContext As IObjectContext
Private objectSet As IObjectSet(Of Customer)

<TestMethod()> _
Public Sub Repository_Add_CallsAddObject()
 Dim customer As New Customer()
 Expect.Call(Function() objectSet.AddObject(customer))

Sets up
expectation
to test

E

 mocks.ReplayAll()

 Dim repository As New CustomerRepository(objectContext)
 repository.Add(customer)

 mocks.VerifyAll()

Verifies
AddObject has
been called

F

Listing 18.14 Test code for the Add method
End Sub

466 CHAPTER 18 Testing Entity Framework

The test initialization builds a stub B and a mock C for the ObjectContext and the
ObjectSet<T>, respectively. They’re then injected into the repository via its construc-
tor, after setting up the ObjectContext to return the mock on D. Next comes the test,
which is straightforward and verifies that the AddObject method E is called before
repository.Add F is invoked. You can easily verify that modifying repository.Add to
artificially introduce a bug results in the test failing.

 This test infrastructure was worth the effort of building it. In the next section,
you’ll see that it’s flexible enough to cover a wide range of needs.

18.4.2 Testing LINQ to Entities queries

Mocks work perfectly when you know exactly how the object under test interacts with
the mocked instance, but you get into trouble when dealing with the extension meth-
ods LINQ is built on. Let’s take the Repository.Query method in this listing as an
example.

C#
public virtual IEnumerable<T> Query(Func<T, bool> predicate)
{
 return this.objectSet.Where(predicate);
}

VB
Public Overridable Function Query(ByVal predicate As Func(Of T, Boolean)) _
 As IEnumerable(Of T)
 Return Me.objectSet.Where(predicate)
End Function

If Where was an ObjectSet<T> instance method, Query would be trivial to test, because
you would only have to build a mock object and check that this call happens. Unfortu-
nately, despite the syntax, Where is an extension method that belongs to a class named
System.Linq.Queryable, whose implementation is anything but simple! (You can
check it out using a tool like Reflector.) Mocking such a call, testing that arguments
are passed correctly, and setting up method results would be tricky. Although less pre-
cise, using a fake data source to test LINQ queries is preferable.

 Let’s dig more into this additional technique. When customers register in
OrderIT, they must provide a valid and unique email address. The following code
belongs to the CustomerRepository’s Add method, and it checks that the email
address is unique in the database by executing a simple query.

C#
public class CustomerRepository : Repository<Customer>
{
 public override void Add(Customer entity)
 {

Listing 18.15 Query method of Repository<T>

Listing 18.16 The CustomerRepository.Add method
 if (this.GetSingleOrDefault(c => c.Email == entity.Email) != null)

467Unit-testing the data access layer

 throw new ArgumentException("Email already used"); Checks email
address base.Add(entity);

 }
}

public class Repository<T> : IRepository<T>
{
 public virtual T GetSingleOrDefault(Func<T, bool> predicate)
 {
 return this.Query(predicate).SingleOrDefault(); Executes LINQ to

Entities query
on ObjectSetB

 }

 // ... more code here
}

VB
Public Class CustomerRepository
 Inherits Repository(Of Customer)
 Public Overloads Overrides Sub Add(ByVal entity As Customer)
 If Me.GetSingleOrDefault(Function(c) c.Email = entity.Email)_
 IsNot Nothing Then
 Throw New ArgumentException("Email already used") Checks email

address End If

 MyBase.Add(entity)
 End Sub
End Class

Public Class Repository(Of T)
 Implements IRepository(Of T)

 Public Overridable Function GetSingleOrDefault(_
 ByVal predicate As Func(Of T, Boolean)) As T

 Return Me.Query(predicate).SingleOrDefault() Executes LINQ to
Entities query
on ObjectSetB

 End Function

 ' ... more code here
End Class

The code at B uses the Query method, which relies on the ObjectSet<T>. The idea is
to fake the object set, in terms of having a class that implements IObjectSet<T> but
does its job with in-memory and hard-coded data. You can easily query such an object
as you’d do with the database, but without worrying about data or transactions, and
you can reset it for every test by building another instance.

 Building a fake object set is trivial, although it’s a bit tedious because of the many
methods IObjectSet<T> requires to be implemented. The following listing contains
an excerpt from the FakeObjectSet class.

C#
internal class FakeObjectSet<T> : IObjectSet<T>
{ Stores data in

Listing 18.17 FakeObjectSet implementation (an excerpt)
 private List<T> innerList = new List<T>(); internal list

468 CHAPTER 18 Testing Entity Framework

 public List<T> InnerList
 {
 get { return this.innerList; }
 }

 public void AddObject(T entity)
 {
 this.innerList.Add(entity); Adds object to list
 }

 public void Attach(T entity)
 {
 if (!this.innerList.Contains(entity))
 this.innerList.Add(entity);
 }

 // ... more code here
}

VB
Friend Class FakeObjectSet(Of T)
 Implements IObjectSet(Of T)
 Private m_innerList As New List(Of T)()

Stores data in
internal list

 Public ReadOnly Property InnerList() As List(Of T)
 Get
 Return Me.m_innerList
 End Get
 End Property

 Public Sub AddObject(ByVal entity As T)
 Me.m_innerList.Add(entity) Adds object to list
 End Sub

 Public Sub Attach(ByVal entity As T)
 If Not Me.m_innerList.Contains(entity) Then
 Me.m_innerList.Add(entity)
 End If
 End Sub

 ' ... more code here
End Class

As we mentioned before, you can inject the fake object set into a repository using an
ObjectContext stub. Then, using it in a test is only a matter of providing some fake
data to work on. For example, testing the email address while adding a new customer
looks like this.

C#
[TestMethod, Expects

ArgumentException
B

 ExpectedException(typeof(ArgumentException))]
public void Add_WithNotUniqueEmail_ThrowsException()
{
 var customerSet = new FakeObjectSet<Customer>();

Listing 18.18 Testing CustomerRepository.Add method with FakeObjectSet
 SetupResult.On(objectContext)

469Unit-testing the data access layer

 .Call(objectContext.CreateObjectSet<Customer>())
 .Return(customerSet);

Sets up ObjectContext to
return FakeObjectSet mocks.ReplayAll();

 Customer c = new Customer();
 c.Id = 3;
 c.Email = "sample@email.com";
 customerSet.AddObject(c);

Adds test data to
FakeObjectSet

C

 CustomerRepository repo = new CustomerRepository(this.objectContext);
 repo.Add(new Customer { Email = c.Email }); Should

always failD Assert.Fail();
}

VB
<TestMethod(), ___ Expects

ArgumentException
B

 ExpectedException(GetType(ArgumentException))> _
Public Sub Add_WithNotUniqueEmail_ThrowsException()
 Dim customerSet = New FakeObjectSet(Of Customer)()

 SetupResult.On(objectContext)._
 Call(objectContext.CreateObjectSet(Of Customer)())._
 Return(customerSet)

Sets up ObjectContext
to return
FakeObjectSet

 mocks.ReplayAll()

 Dim c As New Customer()
 c.Id = 3
 c.Email = "sample@email.com"
 customerSet.AddObject(c)

Adds test data to
FakeObjectSet

C

 Dim repo As New CustomerRepository(Me.objectContext)
 Dim c1 as New Customer()
 c1.Email = c.Email
 repo.Add(c1) Should

always failD Assert.Fail()
End Sub

This test expects an exception to be thrown B by the repository, and it uses a Fake-
ObjectSet containing a sample customer C. At D it tries to add another customer
with the same email address. Internally, the repository queries the ObjectSet<T> and,
in this case, throws an ArgumentException.

 Testing a repository built on Entity Framework isn’t a trivial task, because although
the 4.0 release brings some improvements to testability, there are still classes that
aren’t directly mockable. In the last two sections, we presented two different strategies
for working around this limitation and writing effective unit tests: one was more rigor-
ous and exclusively based on mocks and stubs, and the other used fake object sets to
work with in-memory data. The first solution should be always the preferred option,
unless mocking becomes too complex. When that happens, fake object sets offer a
good alternative.

 In the next section, we’ll drop the isolation requirements. We’ll test whether enti-
ties are correctly stored and retrieved in the database. You’re going to use integration
tests to test the whole system as an ensemble, to make sure all the components inte-

grate perfectly.

470 CHAPTER 18 Testing Entity Framework

18.5 Testing the persistence and retrieval of an entity
Making sure all your repositories work as expected is only half the job of testing a data
access layer. That doesn’t prove whether Entity Framework is correctly parsing the
mapping and successfully generating queries for the CRUD operations against the
database. Even if it works now, that doesn’t shield you from trouble in the future,
because schemas evolve with time. Having a test suite that constantly verifies that
Entity Framework’s data is constantly up to date with the storage schema is valuable
and is worth a little effort to build.

 The basic idea is simple, and it’s illustrated in figure 18.6. You build a new entity,
save it to the database, fetch it back, and test whether its property values match what
you originally stored.

Cloned
entity instance

Check if they
match

Entity instance
Database

Figure 18.6 Conceptual flow
of a persistence test

 A persistence test that applies this workflow to a Customer entity would look like
this.

C#
[TestMethod]
public void Customer_IsStoredAndRetrievedCorrectly()
{
 Customer original = new Customer
 {
 Name = "Marco De Sanctis",
 Email = "test@email.com"
 };

 using (Context context = new Context())
 {
 context.AddToCustomers(original);
 context.SaveChanges();
 }

 using (Context context = new Context())
 {
 Customer customer = context.Customers
 .Where(c => c.Id == original.Id).Single();

 Assert.AreEqual(original.Name, customer.Name);
 Assert.AreEqual(original.Email, customer.Email);
 //...
 }

Listing 18.19 Persistence test for the Customer entity
}

471Testing the persistence and retrieval of an entity

VB
<TestMethod()> _
Public Sub Customer_IsStoredAndRetrievedCorrectly()
 Dim original As New Customer()

 Using context As New Context()
 context.AddToCustomers(original)
 context.SaveChanges()
 End Using

 Using context As New Context()
 Dim customer As Customer = context.Customers._
 Where(Function(c) c.Id = original.Id)._
 [Single]()

 Assert.AreEqual(original.Name, customer.Name)
 Assert.AreEqual(original.Email, customer.Email)
 '...

 End Using
End Sub

This test could work, at least the first time; there will likely be a unique constraint on
the Email column on the Company table, so the second time you run it, you’re going
to get a SqlException due to a constraint violation. Every execution perturbs the test
environment, so the test isn’t repeatable.

 You could get around this problem by using a TestCleanUp method and deleting
the new Customer, but a far better solution is using transactions to ensure database
consistency among different tests. This is pretty easy to do by using the Test-
Initialize and TestCleanUp attributes, as in the following listing.

C#
private TransactionScope transaction;

[TestInitialize]
public void SetUp()
{
 transaction = new TransactionScope();

Creates transaction
before test starts

B

}

[TestCleanup]
public void CleanUp()
{
 transaction.Dispose();

Doesn’t commit
transaction

C

}

VB
Private transaction As TransactionScope

<TestInitialize()> _
Public Sub SetUp()
 transaction = New TransactionScope()

Creates transaction
before test starts

B

End Sub

Listing 18.20 Using transactions in persistence tests

472 CHAPTER 18 Testing Entity Framework

<TestCleanup()> _
Public Sub CleanUp()
 transaction.Dispose()

Doesn’t commit
transaction

C

End Sub

This code starts a transaction B, under which you can execute the test code. Then
you release it without committing it C, ensuring that nothing remains in the data-
base. But from test to test, this will involve a lot of repetitive code, because the flow in
figure 18.6 will repeat a number of times.

 To address this issue, we’ve built a simple tool called EF Mapping Verifier; the orig-
inal idea behind it belongs to Fluent NHibernate, one of the many open source proj-
ects born around this famous .NET O/RM. The tool uses lambda expressions to write
persistence tests in a simple, concise, and intuitive way. EF Mapping Verifier supports a
more versatile set of expressions, and it’s included in the book's source code.

 After you’ve referenced EF Mapping Verifier’s assembly in your test project, the
previous example of customer persistence looks like this.

C#
[TestMethod]
public void Customer_IsStoredAndRetrievedCorrectly()
{
 using (Context context = new Context())
 {
 VerifyMapping.For<Customer>(context)
 .Test(c => c.Name, "Marco De Sanctis")
 .Test(c => c.Email, "test@email.com")
 .Execute();
 }
}

VB
<TestMethod()> _
Public Sub Customer_IsStoredAndRetrievedCorrectly()
 Using context As New Context()
 VerifyMapping.For(Of Customer)(context)._
 Test(Function(c) c.Name, "Marco De Sanctis")._
 Test(Function(c) c.Email, "test@email.com")._
 Execute()
 End Using
End Sub

In this example, the EF Mapping Verifier creates a new instance of Customer and sets
its properties to the values provided by the test method. Then it uses the given context
instance to store and subsequently retrieve the Customer instance, automatically
checking whether all the properties match. This testing tool supports a wide range of
use cases: it can test lookup relationships, master-detail relationships, and complex
types.

Listing 18.21 Persistence test of the Customer entity using EF Mapping Verifier

473Summary

18.6 Summary
This chapter covered a wide range of topics related to automatic testing of software. A
test suite is worth the effort of building it, because it gives you a chance to react to
changes, avoiding that sense of uncertainty when you need to modify the code. With a
test tool, you can effectively and constantly monitor how those changes affect the
application.

 We first looked at the challenges of writing unit tests, starting from the first trivial
examples and then moving deeper to more complex cases. We looked at some tech-
niques you can use to refactor the code to make it more testable, making it more feasi-
ble to build mocks and stubs to fake the dependencies on external resources.

 Then, we focused on Entity Framework and the testing of the data access layer in
general. We applied the concepts discussed before to writing unit tests for the reposi-
tories we introduced in chapter 14.

 Finally, we looked at integration testing. We examined how you can check whether
Entity Framework is able to store and retrieve your entities, and we introduced an
open source tool that can help you write simple, readable, and concise integration
code.

Keeping an eye
on performance
When people first approach Entity Framework, one of their first questions is, “What
about performance?” This is a great question that involves many aspects of Entity
Framework.

 Entity Framework is a layer in your application, and it’s not news that additional
layers slow down performance. But that’s not always bad. Entity Framework simpli-
fies development so much that the decreased performance can be a reasonable
tradeoff. Naturally, you must still take care of performance. Fortunately, Entity
Framework has several internal behaviors that you can use to gain much more per-
formance benefit than you might imagine.

 Optimizing SQL is only part of the game. For instance, LINQ to Entities queries

This chapter covers
 Comparing Entity Framework and ADO.NET performance

 Optimizing LINQ to Entities

 Optimizing Entity SQL

 Optimizing Entity Framework
474

can benefit from query compilation, whereas Entity SQL queries can be optimized by

475Testing configuration and environment

enabling plan caching. Change tracking plays a role too. When you only read entities,
disabling change tracking ensures better performance.

 All these optimizations are the key to a well-performing data access layer, and in
this chapter you’ll learn how to use them. Furthermore, you’ll learn how much Entity
Framework slows down performance, compared with the classic ADO.NET approach,
and you’ll see how performance optimizations can make them extremely close in cer-
tain scenarios. By the end of the chapter, you’ll be able not only to write robust appli-
cations, but also to make them perform smoothly.

 Let’s start by building a testing application that will demonstrate the performance
of the Entity Framework and ADO.NET queries we’ll look at.

19.1 Testing configuration and environment
The database we’ll use for our tests is OrderIT, and it’s installed on the same machine
where the test application will be run. The machine has the following configuration:

 8 GB of RAM

 T9600 dual core processor, 2.80 GHz
 Solid state disk, 250 MBps (read) and 220 MBps (write)
 Windows 7, 64-bit operating system
 SQL Server 2008

This is a good configuration for a desktop machine, but a server would be much more
powerful. As a result, the performance numbers in this chapter are intended only for
comparing ADO.NET and Entity Framework, or different techniques in Entity Frame-
work itself. They aren’t intended as absolute performance numbers.

 To ensure an exact comparison, we’ll follow these guidelines:

 All queries must be performed 50 times. To ensure that the context doesn’t use
state-manager caching to return objects, the context is created and destroyed
for each query. This means a connection is opened and closed each time. In
ADO.NET code, you do exactly the same thing, which ensures that ADO.NET
and Entity Framework perform exactly the same tasks.

 In ADO.NET, all fields must be iterated. Entity Framework reads all data from a
query to shape it into its internal format. When using ADO.NET, you have to
read all columns to simulate the same behavior.

 500 customers and suppliers are added in the scope of a transaction. A good test can’t
ignore updates to the database. You insert 500 records in a single SaveChanges
call, which opens a transaction, issues the commands to the database, and then
commits it. The same steps are reproduced in ADO.NET.

 An Entity Framework warm-up query must be executed before issuing the commands.
This is necessary to ensure that metadata and other stuff necessary to Entity
Framework is already in place when running the test. Otherwise, the test might
be influenced by initialization processes.

476 CHAPTER 19 Keeping an eye on performance

The tests are performed in a Windows Forms application that offers a nice way of see-
ing the results.

19.1.1 The performance test visualizer

The test application is easy to understand. It contains a single form with a set of buttons
on the left to start the tests, and a ListView on the right to show the results. The List-
View shows the test type, the total execution time, the average command-execution
time, the first command-execution time, and the execution time for all the other com-
mands (each time is shown in milliseconds). This form is shown in figure 19.1.

Figure 19.1 The testing
application. On the left
are the buttons to start
the tests and check
boxes to enable various
optimizations. The right
ListView shows the
results of each test.

 It’s particularly important to separate the first execution time from subsequent
times because, as you’ll discover, in Entity Framework the first command is the slowest
and the others are much faster. You’ll learn in this chapter how to mitigate this issue
and how much it improves performance.

 To test performance, you need to measure, and to measure you need a timer.

19.1.2 Building the timer

To build the timer, you create a class that wraps the System.Diagnostics.Stopwatch
class: Watch. Its purpose isn’t only measuring execution time, but also writing the
result to the output ListView so that showing the result has minimal impact on the

477Testing configuration and environment

test code. (We could have used the Template Method pattern, but we opted for the
“get in and out quick” approach). Here’s the Watch class.

C#
public class Watch
{
 Stopwatch _sw;
 ListView _result;
 string _testType;
 List<long> _laps;

 public Watch(ListView result)
Stores output
ListView

B

 { _result = result;
 }

 public void Start(string testType)
 {
 _laps = new List<long>(); Sets up

timer
C

 _sw = new Stopwatch();
 _testType = testType;
 _sw.Start();
 }

 public void SaveLap()
 {
 _laps.Add(_sw.ElapsedMilliseconds);

Stores
iteration length

D

 }

 public void Stop()
 {
 _sw.Stop(); Stops timerE
 if (_laps.Count > 0)
 {
 string[] localTimes = new string[_laps.Count-1];

Writes result
in ListView for
iterations

F

 for (int i = 1; i < _laps.Count-1; i++)
 {
 localTimes[i-1] =
 (_laps[i] - _laps[i - 1]).ToString();
 }
 _result.Items.Add(new ListViewItem(new[] {
 _testType,
 _sw.ElapsedMilliseconds.ToString(),
 ((double)_sw.ElapsedMilliseconds /
 (double)_laps.Count).ToString(),
 _laps[0].ToString(),
 String.Join(", ", localTimes) }));
 }
 else
 _result.Items.Add(new ListViewItem(new[] { Writes result

in ListView for
single query

G
 _testType,
 _sw.ElapsedMilliseconds.ToString(),
 _sw.ElapsedMilliseconds.ToString(),
 "0", String.Empty }));
 }

Listing 19.1 The custom timer
}

478 CHAPTER 19 Keeping an eye on performance

VB
Public Class Watch
 Private _sw As Stopwatch
 Private _result As ListView
 Private _testType As String
 Private _laps As List(Of Long)

 Public Sub New(ByVal result As ListView)
Stores output
ListView

B

 _result = result
 End Sub

 Public Sub Start(ByVal testType As String)
 _laps = New List(Of Long)() Sets up

timer
C

 _sw = New Stopwatch()
 _testType = testType
 _sw.Start()
 End Sub

 Public Sub SaveLap()
 _laps.Add(_sw.ElapsedMilliseconds)

Stores
iteration length

D

 End Sub

 Public Sub [Stop]()
 _sw.Stop() Stops timerE
 If _laps.Count > 0 Then
 Dim localTimes As String() =

Writes result
in ListView for
iterations

F

 New String(_laps.Count - 2)
 For i As Integer = 1 To _laps.Count - 2
 localTimes(i - 1) =
 (_laps(i) - _laps(i - 1)).ToString()
 Next
 _result.Items.Add(New ListViewItem(New () {
 _testType,
 _sw.ElapsedMilliseconds.ToString(),
 (CDbl(_sw.ElapsedMilliseconds) /
 CDbl(_laps.Count)).ToString(),
 _laps(0).ToString(),
 String.Join(", ", localTimes)}))
 Else
 _result.Items.Add(New ListViewItem(New () { Writes result

in ListView for
single query

G
 _testType,
 _sw.ElapsedMilliseconds.ToString(),
 _sw.ElapsedMilliseconds.ToString(),
 "0", String.Empty}))
 End If
 End Sub
End Class

Watch’s constructor B takes as input the list view the result are written into when a
test is finished.

 The Start method resets the list view internal state, saves the test type that’s passed
as an argument, and then starts the timer C.

SaveLap saves in a list the number of milliseconds that have passed since Start was
invoked D. Calling SaveLap at each iteration allows you to know how long each oper-

ation takes to execute.

479Database-writing comparison

 The Stop method stops the timer E. If any laps are stored, it first calculates the
exact execution time for each iteration and then reports it in the list view F. If no laps
are stored, there’s no calculation, and the data is reported as a single execution G.

 Now you know what you’re going to do, how you’re going to do it, and how you’ll
measure it. It’s time to see some real tests. Because you can’t query empty tables, you’ll
start by using both Entity Framework and classic ADO.NET to pour data into a table.
You’ll then measure the performance of both approaches and compare them.

19.2 Database-writing comparison
Writing data to the database means adding, modifying, and deleting rows. From a
database perspective, these operations affect performance in very different ways; but
we’re interested only in caller performance so we’ll only use the INSERT command to
make comparisons.

NOTE Because the test code is verbose and of no great interest, we’ll only
show the C# code in this chapter. The VB code is included in the book’s
source code.

The test of the INSERT commands creates 500 Customer and 500 Supplier objects,
adds them to the context, and calls the SaveChanges method, as shown in the follow-
ing listing.

using (OrderITEntities ctx = new OrderITEntities())
{
 for (int i = 0; i < 500; i++)
 {
 Customer c = CreateCustomer();
 ctx.Companies.AddObject(c);

 Supplier s = CreateSupplier();
 ctx.Companies.AddObject(s);
 }
 _watch.Start("Insert 500 customers and

➥ 500 suppliers with EF");
 ctx.SaveChanges();
 _watch.Stop();
}

This listing creates a customer and adds it to the context, creates a supplier and adds
it to the context, and then measures persistence performance. The object-creation
phase isn’t timed. You only care about the SaveChanges duration, because that code
performs the same work you’d perform when using ADO.NET: it opens a connection,
starts a transaction, and issues 500 commands to insert customers and 500 to insert
suppliers. The comparable ADO.NET code is shown in the following listing.

Listing 19.2 Inserting customers and suppliers using Entity Framework

480 CHAPTER 19 Keeping an eye on performance

_watch.Start("Insert 500 customers and

➥ 500 suppliers with ADO.NET"); Starts timer
using (var conn = new SqlConnection(connString)) Creates connection
{ conn.Open();
 using (SqlTransaction tr = conn.BeginTransaction()) Starts transaction
 {
 try
 {
 for (int i = 0; i < 500; i++)
 {
 using (SqlCommand comm = new SqlCommand("", conn, tr))
 {
 comm.CommandText = GetCustomerSQL();
 comm.Parameters = GetCustomerParams();
 comm.ExecuteNonQuery(); Saves customer
 }
 }
 for (int i = 0; i < 500; i++)
 {
 using (SqlCommand comm = new SqlCommand("", conn, tr))
 {
 comm.CommandText = GetSupplierSQL();
 comm.Parameters = GetSupplierParams();
 comm.ExecuteNonQuery(); Saves supplier
 }
 }
 tr.Commit();
 }
 catch (Exception er)
 {
 tr.Rollback();
 }
 }
}
_watch.Stop();

The GetCustomerSQL and GetSupplierSQL methods return the SQL to insert a cus-
tomer and a supplier, respectively. And as you may guess, GetCustomerParams and
GetSupplierParams return the parameters for the SQL.

 We executed both tests three times, but we wanted more. We also wanted to find
out what would happen with lower and higher numbers of records to write to the
table. Table 19.1 shows the results with 100, 5,000, and 10,000 records.
These results offer lots of information. First, the percentage difference between Entity
Framework and ADO.NET when performing bulk inserts of a small number of objects
the difference is negligible; but as number of objects grows, the difference increases
to an unacceptable level. What’s interesting is that the more objects there are, the
more slowly the difference grows.

 It’s rare that an application created for human beings inserts a huge number of
objects in a single transaction, so don’t worry too much about the preceding statistics.

Listing 19.3 Inserting customers and suppliers using ADO.NET
For small numbers of inserts, you can hardly spot the difference.

481Query comparisons in the default environment

In contrast, if you have to perform a bulk insert, Entity Framework and other O/RM
tools are your enemy. O/RM tools simplify development, but using them for bulk trans-
actions is a capital sin. You’re better off relying on ADO.NET or database-specific tools.

 When it comes to updates and deletes, the situation doesn’t change. Updating
1,000 rows is slower than inserting them, but that’s due to database internals. Both
Entity Framework and ADO.NET suffer equally from this performance slowdown.
Entity Framework is obviously slower than ADO.NET, but in both cases you can do
nothing to improve performance for database updates.

 Let’s now move on to talk about queries.

19.3 Query comparisons in the default environment
To test queries, you’ll first test them in the environment you created. Then, you’ll start
introducing the tweaks necessary to speed up things a little.

 As we mentioned in section 19.1, the query you’ll use returns customers whose
names start with C, and it’s performed 50 times. To embrace the spectrum of querying
technologies, we’ve created tests for ADO.NET, LINQ to Entities, Entity SQL via the
ObjectContext, and Entity SQL via Entity Client.

 Unlike the insert test, you won’t warm up the application for this test. Each test is
isolated from the others; after each test, the application is restarted to make sure the
test is performed in a clean environment. We wanted you to see the performance with
the default configuration, and how much performance improves when you optimize
some aspects.

 In chapter 3, you learned that you can perform queries through the Object Ser-
vices layer and through the Entity Client. In the following listing, you see the test code
that uses Object Services. Later in this section, we’ll show you the test code that uses
Entity Client. Here’s the test.

Table 19.1 Comparing the performance of Entity Framework and ADO.NET with different
numbers of records

Technology Items 1st attempt 2nd attempt 3rd Difference

ADO.NET 100 493 ms 491 ms 486 ms —

Entity Framework 100 530 ms 513 ms 521 ms +6.39%

ADO.NET 1,000 4,626 ms 4,892 ms 4712 ms —

Entity Framework 1,000 5,386 ms 5,385 ms 5,660 ms +15.46%

ADO.NET 5,000 24,906 ms 25,325 ms 24,968 ms —

Entity Framework 5,000 30,536 ms 29,914 ms 29,535 ms +19.66%

ADO.NET 10,000 48,308 ms 47,496 ms 48,324 ms —

Entity Framework 10,000 58,297 ms 57,659 ms 58,325 ms +20.92%

482 CHAPTER 19 Keeping an eye on performance

private void SelectCustomersViaObjectServices(string testType,
 bool enableTracking, bool useCompiledQuery, bool enablePlanCaching,
 bool useEntitySQL)
{
 _watch.Start(testType);
 for (int i = 0; i < 50; i++)
 {
 using (OrderITEntities ctx = new OrderITEntities())
 {
 List<Customer> items;
 if (!enableTracking) Sets change-trackingB
 ctx.Companies.MergeOption =
 MergeOption.NoTracking;

 if (!useEntitySQL)
 {
 if (useCompiledQuery) Uses compiled LINQ

to Entities query
C

 {
 var it = compQuery.Invoke(ctx, "C");
 foreach (var item in it)
 object o = item;
 }
 else
 {
 string name = "C"; Uses classic LINQ

to Entities query
D

 items = ctx.Companies.OfType<Customer>()
 .Where(c => c.Name.StartsWith(name))
 .ToList();
 }
 }
 else
 {
 var oq = ctx.CreateQuery<Customer>("SELECT VALUE c

EUses
EntitySQL

query

➥ FROM OFTYPE(OrderITEntities.Companies, OrderIT.Model.Customer)
➥ AS c WHERE c.name LIKE @name");

 if (!enableTracking) Sets
change-tracking

B
 oq.MergeOption = MergeOption.NoTracking;

 if (!enablePlanCaching) Sets plan
caching

F
 oq.EnablePlanCaching = false;

 oq.Parameters.Add(new ObjectParameter("name", "C%"));
 items = oq.ToList();
 }
 }
 _watch.SaveLap();
 }
 _watch.Stop();
}

This code tests the queries via Object Services using LINQ to Entities compiled queries
C (more about that in the next section), LINQ to Entities D, and Entity SQL E. It

Listing 19.4 Retrieving customers using Object Services
also considers plan caching F and change-tracking B depending on the parameters.

483Query comparisons in the default environment

 The following listing performs queries via the Entity Client.

string testType = "Select Customers using EntitySQL via Entity Client. ";
_watch.Start(testType);
for (int i = 0; i < 50; i++)
{
 using (var conn = new EntityConnection(connString) Opens connectionB
 {
 conn.Open();
 using (var comm = new EntityCommand(Creates

command
C

 "SELECT VALUE c

➥ FROM OFTYPE(OrderITEntities.Companies,

➥ OrderITModel.Customer)

➥ AS c WHERE c.name LIKE @name", conn))
 {
 comm.EnablePlanCaching = Sets plan

caching
D

 enablePlanCaching.Checked;
 comm.Parameters.AddWithValue("name", "C%");
 using (EntityDataReader reader =
 comm.ExecuteReader(Executes

query
E

 CommandBehavior.SequentialAccess))
 {
 while (reader.Read())

Iterates over
query result

F

 {
 var x = reader.GetValue(0);
 var x1 = reader.GetValue(1);
 var x2 = reader.GetValue(2);
 var x3 = reader.GetValue(3);
 var x4 = reader.GetValue(4);
 }
 }
 }
 }
 _watch.SaveLap();
}
_watch.Stop();

This code tests queries via Entity Client. It first opens a connection B, and then it cre-
ates a command C, enables plan-caching depending on a check box in the form D,
executes the query E, and iterates over the records returned by it F.

 The code for ADO.NET is identical to listing 19.5, except that the Entity* objects
are replaced by Sql* objects, and the connection string is in plain old ADO.NET for-
mat. You can find it in the book’s source code.

 Table 19.2 shows the performance comparison between the various techniques.
Ouch! We knew Entity Framework was likely to lose, but we didn’t expect LINQ to
Entities to take six times longer than ADO.NET (LINQ to Entities is the most-adopted
query technique).

 Things get better when Entity SQL comes into play, because it’s much easier to
parse than LINQ to Entities. But when used via the ObjectContext class’s Create-

Listing 19.5 Retrieving customers using Entity Client
Query<T> method, it takes almost five times longer than ADO.NET!

484 CHAPTER 19 Keeping an eye on performance

If you skip object generation and opt for the Entity Client, Entity Framework takes
more than twice the time ADO.NET takes. This is because, as you learned in chapter 3,
Entity Client creates a DbDataReader whose columns match the conceptual format
instead of the database format. This is one of the heaviest tasks Entity Client performs
in the query pipeline (remember that this task is performed even when using LINQ to
Entities and Entity SQL via ObjectContext).

 A couple of years ago, the ADO.NET team published an interesting blog post about
Entity Framework performance: “Exploring the Performance of the ADO.NET Entity
Framework, Part 1” (http://mng.bz/27XQ). What is great about this post is that it sep-
arates tasks performed in the query pipeline, showing how long each of them takes to
execute. You’re going to use that information to make Entity Framework much faster.

19.4 Optimizing performance
The numbers shown in table 19.2 could make you think that Entity Framework isn’t
worth the effort. You’ll be glad to know that there are four areas where you can do a
lot to improve performance, and in this section we’ll look at them in detail:

 View generation
 LINQ to Entities query compilation
 Entity SQL plan caching
 Change tracking

If you optimize these points, you’ll be surprised by how much Entity Framework gains
on ADO.NET. Let’s start with the first point, which is very important.

19.4.1 Pregenerating views

Views are Entity SQL statements that retrieve data from entity sets and association sets
declared in the SSDL and CSDL. These commands are used internally by the Entity Cli-
ent to generate the final SQL.

 According to the blog post we mentioned earlier, generating views is the most
expensive task in the query pipeline, taking 56% of overall time. Fortunately, views are
generated once per AppDomain, so when they’re created, the other queries can reuse
them, even if you use other contexts or the Entity Client.

Table 19.2 Comparing performance of Entity Framework and ADO.NET in
querying customers whose names start with C

Technology Total Average Difference

ADO.NET 171 ms 3.42 ms —

LINQ to Entities 1,078 ms 21.56 ms +530%

Entity SQL via Object Services 843 ms 16.86 ms +392%

Entity SQL via Entity Client 420 ms 8.4 ms +145%

http://mng.bz/27XQ

485Optimizing performance

 As a result of view generation, the first query is tremendously slow. If you had
warmed up the application by issuing a dummy query, the results in table 19.2 would
have been much different because the views would have already been generated.

 Table 19.3 shows the results after the warmup.

Queries executed via Object Services (rows 2 and 3 of table 19.3) are now faster, and
Entity Framework gains on ADO.NET. In contrast, queries issued using Entity Client
perform pretty much the same as before (compare table 19.3 with table 19.2).

 But although issuing a dummy query works, it’s a waste. What’s worse, when you
deal with large models, Entity Framework takes its time to generate views. You don’t
want users to wait a long time before starting to use an application. To improve on
this, you can generate the views at design time using the EdmGen tool, as shown in the
following listing, and then compile them into the project.

"%windir%\Microsoft.NET\Framework\v4.XXXX\EdmGen.exe"
/nologo
/language:C#
/mode:ViewGeneration
"/inssdl:c:\OrderIT\model.ssdl"
"/incsdl:c:\OrderIT\model.csdl"
"/inmsl:c:\OrderIT\model.msl"
"/outviews:c:\OrderIT\School.Views.cs"

EdmGen needs the CSDL, SSDL, and MSL files, and it returns a C# or VB file, depend-
ing on the /language switch, containing the views. Now you just need to add the file
to the project and compile everything.

 The problem with this approach is that you need the three EDM files, but you only
have the EDMX. You can let the designer generate the three files, but then you need to
remember to reference them differently in the connection string and deploy them
along with the rest of the application. This process is awkward.

 There’s another path you can follow:

1 Set the designer to generate the three files on build.
2 Build the application.

Table 19.3 Comparing performance of Entity Framework and ADO.NET querying
customers whose names start with C" after a warmup

Technology Total Average Difference

ADO.NET 171 ms 3.42 ms —

LINQ to Entities 975 ms 19.5 ms +470%

Entity SQL via Object Services 788 ms 15.76 ms +360%

Entity SQL via Entity Client 416 ms 8.32 ms +143%

Listing 19.6 Using EdmGen to generate views

486 CHAPTER 19 Keeping an eye on performance

3 Launch EdmGen in a post-build event.
4 Reset the designer to embed the files in the application.
5 Build it again.

This is even worse than the previous option.
 What you really want is a simpler way to generate the views at design time, without

touching the designer. Fortunately, the solution is astonishingly simple: use a template.

PREGENERATING VIEWS VIA TEMPLATE

Although view generation happens internally, the APIs are public, which means you
can generate views from code. You can write a template that reads the EDMX, extracts
the three files, and invokes the API to generate the views. Listing 19.7 contains the
main code of such a template.

C#
using (StreamWriter writer = new StreamWriter(new MemoryStream()))
{
 XmlReader csdlReader = null;
 XmlReader mslReader = null;
 XmlReader ssdlReader = null;

 GetConceptualMappingAndStorageReaders(edmxFilePath,

Creates EDM
files from EDMX

B

 out csdlReader, out mslReader, out ssdlReader);
 var edmItems = new EdmItemCollection(
 new XmlReader[] { csdlReader });
 var storeItems = new StoreItemCollection(
 new XmlReader[]{ssdlReader});
 var mappingItems = new StorageMappingItemCollection(
 edmItems, storeItems,
 new XmlReader[] { mslReader });

 EntityViewGenerator viewGenerator = Generates
view code

C new EntityViewGenerator();
 viewGenerator.LanguageOption =
 LanguageOption.GenerateCSharpCode;
 IList<EdmSchemaError> errors =
 viewGenerator.GenerateViews(mappingItems, writer);

 foreach (EdmSchemaError e in errors) Enumerates
errors

D
 this.Error(e.Message);

 MemoryStream memStream = Writes
view code
in file

E writer.BaseStream as MemoryStream;
 this.WriteLine(
 Encoding.UTF8.GetString(memStream.ToArray());
}

VB
Using writer As New StreamWriter(New MemoryStream())
 Dim csdlReader As XmlReader = Nothing
 Dim mslReader As XmlReader = Nothing

Listing 19.7 The main part of the template that generates views
 Dim ssdlReader As XmlReader = Nothing

487Optimizing performance

 GetConceptualMappingAndStorageReaders(

Creates EDM
files from EDMX

B

 edmxFilePath, csdlReader, mslReader, ssdlReader)

 Dim edmItems As New EdmItemCollection(
 New XmlReader() {csdlReader})
 Dim storeItems As New StoreItemCollection(
 New XmlReader() {ssdlReader})
 Dim mappingItems As
 New StorageMappingItemCollection(edmItems,
 storeItems, New XmlReader() {mslReader})

 Dim viewGenerator As New EntityViewGenerator() Generates
view code

C viewGenerator.LanguageOption =
 LanguageOption.GenerateVBCode
 Dim errors As IList(Of EdmSchemaError) =
 viewGenerator.GenerateViews(mappingItems, writer)

 For Each e As EdmSchemaError In errors Enumerates
errors

D
 Me.Error(e.Message)
 Next

 Dim memStream = Writes
view code
in file

E TryCast(writer.BaseStream, MemoryStream)
 Me.WriteLine(
 Encoding.UTF8.GetString(memStream.ToArray())
End Using

In the first part of this code, a stream for each EDM file is extracted from the EDMX,
and the item collections are instantiated using those streams B. When that’s done,
the EntityViewGenerator class (situated in the System.Data.Entity.Design

namespace inside the System.Data.Entity.Design assembly) is instantiated, and its
GenerateView method is invoked, passing the item collections joined into one, and
the writer that the code will be written into C. Finally, any errors are sent to the out-
put D, and the stream containing the file is serialized as a string and is written to the
output file E.

 This template has already been created and has been made available for download
by the Entity Framework team through a blog entry entitled, “How to use a T4 tem-
plate for View Generation” (http://mng.bz/8ZNK).

 We strongly recommend pregenerating views via a template. You’ll gain all the run-
time benefits of the already-compiled views without any design-time drawbacks.

 Naturally, pregeneration speeds up things only at startup. Let’s now look at a
mechanism every LINQ to Entities query can benefit from: query compilation.

19.4.2 Compiling LINQ to Entities queries

LINQ to Entities queries are parsed at runtime by the Object Services layer. The more
complex a query is, the more time the parsing process takes. The Entity Framework
team knows that, and they’ve added the option to compile queries. By compiling que-
ries, you tell Object Services to parse the query and cache the generated command
tree. The next time the query is executed, the Object Services layer doesn’t have to

parse the query again; it uses the cached command instead.

488 CHAPTER 19 Keeping an eye on performance

Obviously, the first time you execute a particular query, you get no benefits. The bene-
fits become evident from the second execution on, as you see in table 19.4.

 As you can see, compiling queries helps hugely in improving performance, but it
requires a different style of coding. You must choose during development which que-
ries must be compiled and which must not; introducing this feature later means
changing a lot of code.

WRITING A COMPILED QUERY

At first sight, creating a compiled query may look odd because it involves the
CompiledQuery class in association with a predicate. Don’t worry—after a bit of prac-
tice, it will look familiar.

 To create a compiled query, you have to write a predicate. It must accept the con-
text and any parameters you need for the query, and it must return an IQueryable
<Customer> instance. To instantiate the predicate, you have to invoke the Compiled-
Query class’s Compile method, passing in the LINQ to Entities query. The last thing
you need to do is make the predicate static.

 In this example, the predicate accepts the context plus a string containing the first
letter of the customers’ names you’re looking for in the query. (Remember, in the pre-
vious examples you looked for customers whose names start with C.) Here’s an exam-
ple of a compiled query.

C#
static Func<OrderITEntities, string, IQueryable<Customer>> compQuery =
 CompiledQuery.Compile<OrderITEntities, string, IQueryable<Customer>>(
 (ctx, name) => ctx.Companies
 .OfType<Customer>()
 .Where(c => c.Name.StartsWith(name)
)
);

VB
Shared compQuery As Func(Of OrderITEntities, String,
 IQueryable(Of Customer)) =
 CompiledQuery.Compile(Of OrderITEntities, String,
 IQueryable(Of Customer))
 (Function(ctx, name) ctx.Companies

Table 19.4 Comparing performance of Entity Framework and ADO.NET with and
without LINQ to Entities query compilation

Technology 1st query Other query average

ADO.NET 4 ms 2.59 ms

LINQ to Entities (no compilation) 378 ms 12.38 ms

LINQ to Entities (with compilation) 378 ms 10.01 ms

Listing 19.8 The compiled query code
 .OfType(Of Customer)()

489Optimizing performance

 .Where(Function(c) c.Name.StartsWith(name)
)
)

The first generic parameter of the predicate must be the context, and the last repre-
sents the return type. Between those two, you can specify any parameters you need.

 To use the query you just need to invoke the predicate, passing in the context and
the string "C":

C#
var result = compQuery.Invoke(ctx, "C").ToList();

VB
Dim result = compQuery.Invoke(ctx, "C").ToList()

That’s all you need to do to compile a LINQ to Entities query. As you can see, it’s pretty
simple. The Object Services layer takes care of compiling the query and reusing the
compiled version after the first execution. When the Object Services layer looks for an
existing compiled query, it uses the parameters too. This means that if you search for
customers whose names start with C and then for customers whose names start with A,
Object Services caches two command trees.

 Despite their simplicity, compiled queries have some nasty internals that are worth
mentioning.

COMPILED QUERY INTERNALS

The first thing to know about compiled queries is that nothing happens until they’re
executed. CompiledQuery.Invoke does nothing unless a ToList, ToArray, foreach, or
Execute forces the query to execute.

 Another aspect of compiled queries is that if you combine them with other LINQ to
Entities operators, you lose all benefits: the entire query is recompiled. For instance, if
you use the query in listing 19.8 and then attach the First operator, as shown here,
the entire command is reparsed and nothing is reused:

C#
var result = compQuery.Invoke(ctx, "C").First();

VB
Dim result = compQuery.Invoke(ctx, "C").First()

To mitigate this problem, you can call the AsEnumerable method, as in the following
snippet. It fetches data from the database and then uses LINQ to Object operators or
creates a brand-new compiled query:

C#
var result = compQuery.Invoke(ctx, "C").AsEnumerable().First();

VB
Dim result = compQuery.Invoke(ctx, "C").AsEnumerable().First()

Things get trickier when MergeOption comes into play, because MergeOption is set at
query level. This means that when the query is compiled, the merge option is saved

490 CHAPTER 19 Keeping an eye on performance

along with the compiled version. After it’s created, you can’t change the merge option
of a compiled query. The next piece of code shows what problems you might face:

C#
ctx1.Companies.MergeOption = MergeOption.NoTracking;
var c = compiledQuery(ctx1, "C").AsEnumerable().First();

ctx2.Companies.MergeOption = MergeOption.AppendOnly;
var c = compiledQuery(ctx2, "C").AsEnumerable().First();

VB
ctx1.Companies.MergeOption = MergeOption.NoTracking
var c = compiledQuery(ctx1, "C").AsEnumerable().First()

ctx2.Companies.MergeOption = MergeOption.AppendOnly
var c = compiledQuery(ctx2, "C").AsEnumerable().First()

In the first case, MergeOption is set to NoTracking, so the object is in the Detached
state. In the second case, even if the merge option has changed, the state of the object
remains Detached because the query was compiled with the NoTracking option. If you
need to perform the same query with different merge options, it’s best to create two
separate predicates.

 This is a nasty behavior, and it’s likely to change in future versions. For the
moment, you need to be aware of it so you can avoid the pitfalls.

19.4.3 Enabling plan caching for Entity SQL

When you execute an Entity SQL query, the Entity Client parses it and then saves it in
a cache along with its counterpart in native SQL. The second time the query is exe-
cuted, before it parses the query again, the Entity Client checks whether a copy
already exists in the cache.

 The check is based on the Entity SQL string and query parameters, and it’s case
sensitive. “SELECT VALUE ...” is different from “Select Value ...”. If you create two
queries like those, you’ll end up with two different entries for the same query, and
that’s a waste of resources.

 We strongly recommend choosing a convention so you can avoid that problem.
For example, use uppercase for keywords and write object names using Pascal case, as
in the following query:

SELECT VALUE c FROM OrderITEntities.Companies AS c

Plan caching is enabled by default, so you have it for free. Should you need to disable
it, you can do so via the EnablePlanCaching property of the ObjectSet<T> and
EntityCommand classes. Table 19.5 shows the benefits of having plan caching enabled.

Table 19.5 Entity SQL performance with plan caching enabled and disabled

Technology Plan caching enabled Plan caching disabled

Entity SQL via Object Services 9.66 ms 11.66 ms
Entity SQL via Entity Client 3.82 ms 4.84 ms

491Optimizing performance

There’s one last optimization to keep in mind, and it regards change tracking. Often
you read objects but don’t need to update them. Let’s see how this scenario can be
optimized.

19.4.4 Disabling tracking when it’s not needed

When you display customers in a grid, you probably don’t allow them to be modified.
In such a scenario, change tracking is unnecessary, so you can disable it by setting the
MergeOption of a query property to MergeOption.NoTracking.

 This optimization lets object generation in the context skip many steps, and it has
a dramatic impact on performance, as you can see in table 19.6.

As you can see, disabling change tracking makes object generation much quicker. We
strongly recommend removing change tracking from your application wherever it’s
unnecessary.

 You have optimized a lot. For LINQ to Entities queries, you went from +530% to
+32% greater time, as compared with ADO.NET. This is why we always suggest check-
ing not only your SQL code but your Entity Framework code too. We have encoun-
tered many cases where the problem wasn’t the SQL produced by Entity Framework,
but the total, or sometimes partial, lack of code optimization.

 Another area where you can make some optimizations is in stored-procedure exe-
cution. These types of queries are interesting, because they involve a different materi-
alization process.

19.4.5 Optimizing stored procedures

You know that invoking a stored procedure triggers a different materialization mecha-
nism. To cover the various cases, we created a stored procedure that returns all order
details and invoked it from Object Services, Entity Client, and ADO.NET so we could
compare the results, which are shown in table 19.7.

Table 19.6 Performance with change tracking enabled and disabled (average)

Technology Enabled Disabled Difference

ADO.NET 2.59 2.59 ms —

LINQ to Entities (with compilation) 10.21 ms 3.44 ms +32%

Entity SQL via Object Services 9.62 ms 3.33 ms +28%

Table 19.7 Stored-procedure execution performance

Technology Total Average Difference

ADO.NET 11 ms 0.22 ms —

Object Services 23 ms 0.46 ms +109%
Entity Client 19 ms 0.38 ms +72%

492 CHAPTER 19 Keeping an eye on performance

As you may have expected, ADO.NET is faster than any other technique. What’s inter-
esting here is that Entity Framework isn’t that much slower. If you compare these
results with those in table 19.3, you’ll see that the materialization mechanism used by
stored procedures is much faster than that used for queries. We’ve used a table that
contains less data here, but that’s not the point. What we wanted to stress is the perfor-
mance of the different materialization mechanisms.

 You know that the methods added to the context for calling the stored procedures
hide the internal call to the context’s ExecuteFunction<T> method. This method has
two overloads: the first accepts the function name and the parameters, and the second
accepts both of those plus the MergeOption. The methods added to the context for
calling stored procedures internally use only the first overload, so by default you have
the AppendOnly behavior.

 If you don’t need change tracking for entities returned by the stored procedure,
you can directly invoke the ExecuteFunction<T> method using the second overload
and passing the MergeOption.NoTracking value, as shown in the next example:

C#
var parameters = CreateParameters();
var details = ctx.ExecuteFunction<OrderDetail>("GetDetails",
 MergeOption.NoTracking, parameters);

VB
Dim parameters = CreateParameters()
Dim details = ctx.ExecuteFunction(Of OrderDetail)("GetDetails",
 MergeOption.NoTracking, parameters)

Even better, you can modify the template that generates the context to create two
overloads for each stored procedure, so you don’t have to manually invoke the
ExecuteFunction<T> method. (This book’s source code contains such a template.)

 There’s nothing more to add about performance. Now you know what the bottle-
necks are, what you can do to avoid common pitfalls, and, most important, what you
can do to make database access via Entity Framework much quicker. It’s not as fast as
ADO.NET, but it surely makes your life easier.

19.5 Summary
Performance is a key point of almost any data-driven application. If you’re developing
a simple catalog for your DVD collection, performance probably won’t even cross your
mind; but in enterprise applications with lots of clients and lots of queries, you can’t
ignore it.

 Entity Framework was built with one eye always on performance. Almost every
aspect of it has been optimized or made a target for an opt-in optimization. Plan cach-
ing and LINQ to Entities query compilation are great examples of opt-in optimiza-
tions. Unfortunately, generated SQL isn’t always as good as you might like, but you can
resort to stored procedures and live happily.

493Summary

 Always remember these golden rules: check the SQL with a profiler, use compiled
LINQ to Entities queries, and disable change tracking as much as possible. That’s your
take-away.

 Congratulations! You’ve reached the end of the book. It’s been a long journey, but
now you have a solid understanding of Entity Framework. You can develop an applica-
tion using Entity Framework and solve most of the problems you’re likely to encounter.

appendix A:
Understanding LINQ

You’re likely already familiar with the various C# and Visual Basic language innova-
tions and their importance in bringing LINQ to life. But if you haven’t come across
LINQ yet, this appendix will introduce you to the project and enumerate its advan-
tages, its requirements in terms of language modifications, and its vision. This is
important, because the main query language in Entity Framework is LINQ to Enti-
ties, which in the end is a LINQ dialect. Having a solid knowledge of LINQ’s founda-
tions will help you understanding LINQ to Entities queries.

 In the first part of this appendix, we’ll cover the reasons why the Microsoft
architects decided to embed query extensions into the language, and the broad
vision of the LINQ platform. After that, we’ll introduce the features that have made
LINQ a success. These features are the language innovations that have been intro-
duced in C# 3.0 and VB 9. There are lots of innovations to cover, so this will be a
long discussion.

 By the end of the appendix, you’ll be able to fully understand and write any
LINQ query.

A.1 Why was LINQ created?
Each data technology has its own language for performing queries. Data from data-
bases can be pulled out using SQL commands; XML data can be retrieved using the
XPath syntax; even Active Directory and ADO.NET DataTable information can be
accessed using their own syntaxes.

 Whatever the data source is, retrieving data requires that you have specific
knowledge of its query language and related .NET framework classes, as shown in
figure A.1. Although this is an obvious consequence of adopting different technol-
ogies, a common way of retrieving data is still desirable.

LINQ bridges this gap between data technologies and code development by pro-
494

viding a set of common extensions that can be used to query any data source.

DatabaseObjects XML

<order>
 <detail/>
 <detail/>
 <detail/>
 <detail/>
</order>

For
Foreach

Delegate

ADO.NET
System.Data

SQL

System.Xml
XPath

Figure A.1 Searching
data from different
sources without LINQ
requires a wide knowledge
of retrieval methods.

495Why was LINQ created?

These extensions aren’t related to a specific data technology but can be used across all
of them, creating a unique language for all data sources.

 Another point that makes LINQ a great innovation is its way of shaping query
results. When you retrieve data from a database, they’re returned in DataTable or
DbDataReader objects. The same happens for XML data, which is represented as Xml-
Node objects.

 The search for a common coding style can’t ignore such diversity. Not only does
LINQ enable a brand-new opportunity for standardizing the query language, but it
also returns the results of a query in a single well-known format: in objects. This is
another significant step toward flattening the data access differences, as figure A.2
illustrates.

<order>
 <detail/>
 <detail/>
 <detail/>
 <detail/>
</order>

DatabaseObjects XML

LINQ to
Objects

LINQ to
SQL

LINQ to
XML

LINQ to
DataSet

LINQ to
Entities

LINQ

 The real power of LINQ lies in its extensibility. Versions 1.0 and 1.1 of the .NET
Framework class library had many features that were provided as black boxes, where
you couldn’t plug in or modify any behavior. Fortunately, lots of things have changed
since version 2.0, and one of the guidelines has become extensibility. For instance, the
provider model was introduced so that you can change the underlying behavior of a
feature without touching its interface. And many classes that were sealed have been
opened for inheritance, offering developers much more flexibility and freedom.
Figure A.2 Data access using LINQ technology

496 APPENDIX A Understanding LINQ

 The current version of the .NET Framework class library has continued this trend,
and LINQ has a provider-based architecture that allows you to write providers to query
any data source. .NET Framework 3.5 introduced four flavors of LINQ:

 LINQ to Objects —Queries in-memory lists of objects
 LINQ to XML —Queries XML files or in-memory structures
 LINQ to SQL —Queries the domain model generated by the LINQ to SQL O/RM

 LINQ to DataSet —Queries data in all the DataTables of a DataSet

The evidence of LINQ’s extensibility lies in the myriad of providers that have been cre-
ated to query any data source. Further proof is the LINQ to Entities provider, which
enables you to query models based on Entity Framework.

LINQ has also introduced a conceptual change. When you write a LINQ query, you
express what you want to retrieve, but you don’t specify how to do that. That’s a big
shift for .NET languages, because for the first time, they introduce some of the func-
tional programming concepts. When you perform a SQL query, for example, you have
no idea of how the database will execute it; you just state what you want, and leave the
search to the internal system. The same thing happens with LINQ.

 To make this concept clearer, look at the following snippet:

C#
var result = from o in orders
 where o.OrderDate.Date == DateTime.Now.Date
 select o;

VB
Dim result = From o in orders _
 Where o.OrderDate.Date = DateTime.Now.Date

This query filters orders, returning only those placed today. You don’t specify anything
about the retrieval method, and you don’t know how LINQ will perform it.

NOTE LINQ uses a simple in-memory loop over the orders, but that’s
completely hidden from you. The LINQ implementation could change
one day, and you wouldn’t notice it, nor would you need to modify the
code.

The LINQ technology has its foundations in language innovations. Most of the new
features that have shown up in C# 3.0 and VB 9 are there because LINQ requires them.
In this appendix, we’ll provide a brief introduction to LINQ and the language
improvements, but you can find plenty of books and online material that discuss this
in great detail. For further information, we strongly recommend the book LINQ in
Action by Fabrice Marguerie, Steve Eichert, and Jim Wooley (Manning, 2007).

 The advent of LINQ brought about improvements in the following areas:

 Type inference
 Extension methods
 Lambda expressions

 Object initializers

497Type inference

 Anonymous types
 Query syntax

 We’ll look at these topics in the following sections.

A.2 Type inference
Type inference is the new ability of the compiler to understand the type of an object
without you having to explicitly declare it. To let you declare a variable without speci-
fying the type, C# offers the var keyword. VB doesn’t need a new keyword, because it
already has one that can be used for the same purpose: Dim. The compiler automati-
cally infers the type of the variable from the expression used to initialize it.

 In C# it’s mandatory to initialize a variable; otherwise, the compiler wouldn’t be
able to understand the type automatically and would throw a compile-time exception.
In VB, a variable that isn’t initialized becomes of type Object. The following listing
shows this behavior.

C#
string s = "Hello"; Declares

variable’s type
B

int i = 10;

var s = "Hello"; Infers variable’s
type from initializer

C
var i = 10;

var x = null;
Throws compile
time error

D

VB
Dim s as string = "Hello" Declares

variable’s type
B

Dim i as int = 10;

Dim s = "Hello"; Infers variable’s
type from initializer

C
Dim i = 10;

Dim x = null;
Sets variable’s
type to Object

E

The code generated by the compiler is exactly the same for the first two blocks of each
of these snippets B C, because it infers the types from the values assigned to the vari-
ables when they’re declared. The x variable declaration in C# D throws an exception
because it’s initialized to null, so the type can’t be inferred. The x variable declaration
in VB E is valid because the type of the x variable is Object.

 In C#, using the var keyword comes in handy when you have to declare a complex
type with many generic declarations, as in the following code:

Dictionary<string, Dictionary<int, Order>> variable = new
 Dictionary<string, Dictionary<int, Order>>();

Repeating the type for such a long piece of code is at least annoying. Using var allows
you to write the type only once, in the assignment part of the statement:

var variable = new Dictionary<string, Dictionary<int, Order>>();

In addition to making your code smaller, var can also make it less readable. C# devel-

Listing A.1 How type inference understands an object’s type
opers are used to seeing the type of a variable at the beginning of the declaration.

498 APPENDIX A Understanding LINQ

Cluttering the code with var forces developers to read the full statement to determine
the variable’s type, and some developers argue that this is a waste of time. Apart from
a few cases that you’ll see later in this appendix, using var or declaring the variable
type is a matter of personal taste.

NOTE Be aware that the var keyword in C# has nothing to do with the
var keyword in JavaScript. The var keyword in C# allows neither late
binding nor VB variant-like features.

We’ve only scratched the surface of type inference. As you’ll see in the next sections
(in particular, when we talk about lambda expressions), this feature allows you to cut
even more code than you’ve seen so far.

A.3 Extension methods
An extension method is a method that’s defined in a class but is invoked using another
class to which it’s attached by the compiler. This definition might seem a bit awkward,
but the use of extension methods will be clear enough when we look at some examples.

 Suppose you have a list of orders, and you want to serialize those created on a spec-
ified date in JSON format. Without using extension methods, the only way to go is to
write a method that accepts the orders as input and iterates over them, serializing
those that correspond to the requirement, and returning the JSON string when the
iteration is done. The code would look like this.

C#
namespace EFInaction.Common
{
 public static class Utilities
 {
 public static string SerializeOrders(List<Order> orders, DateTime date)
 {
 JavaScriptSerializer serializer = new JavaScriptSerializer();
 StringBuilder builder = new StringBuilder();
 foreach(var order in orders)
 {
 if (order.OrderDate.Date == date.Date)
 builder.Append(serializer.Serialize(order));
 }
 return builder.ToString();
 }
 }
}

namespace EFInaction.UI
{
 ...
 List<Order> orders = ctx.Order.ToList();
 string serializedOrders = Utilities.SerializeOrders(orders, DateTime.Now);
 ...

Listing A.2 Creating and using a helper method without extension methods
}

499Extension methods

VB
Namespace EFInAction.Common
 Class Utilities
 Public Shared Function SerializeOrders(_
 ByVal orders As List(Of Order), _
 ByVal now As DateTime) As String
 Dim serializer As New JavaScriptSerializer()
 Dim builder As New StringBuilder()
 For Each order In orders
 If order.OrderDate.Date = now.Date Then
 builder.Append(serializer.Serialize(order))
 End If
 Next
 Return builder.ToString()
 End Function
 End Class
End Namespace

Namespace EFInAction.UI
 ...
 Dim orders = ctx.Order.ToList()
 Dim serializedOrders = EFInAction.Common.Utilities.SerializeOrders(_
 orders, DateTime.Now)
 ...
End Namespace

The code in listing A.2 is fine, except that the caller code has to resort to calling
another class to perform steps that are closely related to the orders. Wouldn’t you feel
more comfortable if you could invoke the SerializeOrders method using the orders
instance instead the Utilities class?

 By using extension methods, you can invoke SerializeOrders on the orders
instance even if the method is defined in another class, as is demonstrated in the fol-
lowing listing. This is a modified version of listing A.2.

C#
public static string SerializeOrders(Extension

method
declaration

B
 this List<Order> orders, DateTime date)
{ ... }

using EFInAction.Common;
Extension
method import

C

string serializedOrders = Extension method
invocation

D
 orders.SerializeOrders(DateTime.Now);

VB
<System.Runtime.CompilerServices.Extension()> _ Extension

method
declaration

B
Public Function SerializeOrders(
 ByVal orders As List(Of Order), _
 ByVal now As DateTime) As String
 ...
End Function

using EFInAction.Common;
Extension
method import

C

string serializedOrders =

Listing A.3 Creating and using a helper method with extension methods
Extension method
invocation

D
 orders.SerializeOrders(DateTime.Now)

500 APPENDIX A Understanding LINQ

In the method declaration B, you have to indicate what type the method must be
attached to. In VB, this is accomplished by specifying in the first parameter the class
that’s extended, and adding the Extension attribute to the method. In C#, you only
need to add the this keyword before the extended type without using any attribute. If
the method accepts other parameters, they must be added after the first parameter; if
the type isn’t first, you’ll get a compile-time error. There is one caveat in both lan-
guages: in VB, an extension method can be defined only in a module; and in C#, it
must be defined in a static class, and the method must be static too.

 In the caller code, the first thing you have to do is to add a using statement for C#
(Imports for VB) C to import the namespace that contains the class that declares the
extension method. Without that, the compiler can’t detect the class and can’t apply
the extension method. As shown in figure A.3, Visual Studio offers autocompletion
for extension methods; but if you don’t use the using or Imports keyword, they don’t
even appear in the autocompletion list.

 The second change you have to apply to the caller code is to invoke the extension
method from the orders object D. The parameters for the method must be modified
too. The parameter for the extended class must be omitted, and only those that come
after it should be included.

 To enable extension methods in LINQ, you must add the System.LINQ namespace
to the class. This namespace contains the Enumerable class, which in turn contains all
the LINQ extension methods.
Figure A.3 Visual Studio autocompletion without and with the using statement

501Extension methods

 In section A.1, we said that LINQ was been conceived as a set of extensions to the
VB and C# languages for querying any data source. At the highest level, you can think
about LINQ as a set of extension methods that you can use to perform queries. Table
A.1 lists all the LINQ methods grouped by type.

 What’s great about LINQ methods is that they enable the fluent technique so they
can be combined in a single statement.

A.3.1 Method chaining

The power of extension methods becomes clear when you combine them to perform
a more complex query. Suppose you have to sort the orders before serializing them.
You could perform this operation in the SerializeOrders method, but if you also
need to sort orders in other parts of your application, this isn’t the most convenient
approach.

 This is the optimal solution:

1 Create an extension method that sorts the orders and returns the ordered list.
2 Invoke the SerializeOrders method to serialize the objects.

With this approach, you achieve the goal of code reuse. Because the sorting method
returns a list of orders, you can invoke the SerializeOrders method on it in the same
line of code (which is why this technique is named method chaining). Here’s an
example:

C#

Table A.1 LINQ methods grouped by type

Type Methods

Projection Select, SelectMany

Filtering Where

Sorting OrderBy, OrderByDescending, Reverse

Grouping GroupBy

Set Distinct, Union, Intersect, Except

Generation Range, Repeat, Empty

Conditional Any, All, Contains

Element Last, LastOrDefault, ElementAt, ElementAtOrDefault, First,
FirstOrDefault, Single, SingleOrDefault, SequenceEqual,
DefaultIfEmpty

Paging Take, TakeWhile, Skip, SkipWhile

Aggregation Count, LongCount, Sum, Min, Max, Average, Aggregate
var x = orders.Sort().SerializeOrders(DateTime.Now);

502 APPENDIX A Understanding LINQ

VB
Dim x = orders.Sort().SerializeOrders(DateTime.Now)

LINQ offers a wide range of extension methods. Most of the methods extend the
IEnumerable<T> interface, which is directly or indirectly implemented by all generic
lists in the .NET Framework, enabling query capabilities on any set of objects. Because
most of the methods return an IEnumerable<T> instance, method chaining is a com-
mon pattern when writing LINQ queries.

 Now that you know how LINQ enables method chaining, let’s discuss how exten-
sion methods are evaluated by the compiler.

A.3.2 Method evaluation

When you design an extension method, you have to know how the compiler evaluates
the calls to it. Let’s start with an example.

C#
public static class Extensions
{
 public static string ExtMethod(this List<Order> orders)
 {
 return "Method on List<Order>";
 }

 public static string ExtMethod(this IEnumerable<Order> orders)
 {
 return "Method on IEnumerable<Order>";
 }

 public static string ExtMethod<T>(this List<T> orders)
 {
 return "Method on generic List";
 }
}

VB
Module Extensions
 <Extension()> _
 Public Function ExtMethod(ByVal orders As List(Of Order)) As String
 Return "Method on List<Of Order>"
 End Function

 <Extension()> _
 Public Function ExtMethod(ByVal orders As IEnumerable(
 Of Order)) As String
 Return "Method on IEnumerable<Of Order>"
 End Function

 <Extension()> _
 Public Function ExtMethod(Of T)(ByVal orders As List(Of T)) As String
 Return "Method on generic List"
 End Function

Listing A.4 A set of extension methods that add methods to different classes
End Module

503Extension methods

 The class in listing A.4 contains three extension methods that extend three differ-
ent classes. Let’s see how the compiler resolves the calls, starting with the following
code:

C#
List<Order> o1 = new List<Order>();
var x = o1.ExtMethod();

VB
Dim o1 as New List(Of Order)
Dim x = o1.ExtMethod()

All of the extension methods in listing A.4 are suitable for being executed by the call
to the o1.ExtMethod in the preceding example, but only one is actually executed. To
identify the method that must be executed, the compiler checks the object to be
extended and uses the one closest to the variable definition of the object in the calling
code, starting from the bottom of the inheritance hierarchy.

 In this case, because the o1 variable is of type List<Order> and the first extension
method extends that type, it’s the one that’s attached.

 Now let’s see what method is invoked by the next snippet:

C#
IEnumerable<Order> o2 = new List<Order>();
var x2 = o2.Method();

VB
Dim o2 as IEnumerable(Of Order) = New List(Of Order)()
Dim x2 = o2.Method()

Here you have a situation where the real object is List<Order>, but it’s put into an
IEnumerable<Order> variable. As we’ve said, the compiler uses the variable declara-
tion, so in this case the second extension method of listing A.4 is invoked even if the
first would be more appropriate.

 Here’s one more example:

C#
List<Company> o3 = new List<Company>();
var x3 = o3.Method();

VB
Dim o1 as New List(Of Company)
Dim x3 = o3.Method()

Here, the second and the third methods of listing A.4 would be suitable; but because
List<T> is lower in the inheritance hierarchy, the third method is used by the compiler.

NOTE All of this method resolution is resolved at compile time. There’s
nothing dynamic at runtime.

As you learned in chapter 4, this resolution pattern turns out to be useful when writ-
ing LINQ to Entities queries that use other LINQ standard operators.

504 APPENDIX A Understanding LINQ

A.4 Lambda expressions
A lambda expression is the evolution of the anonymous method feature introduced in
.NET 2.0. It’s difficult to explain what a lambda expression is, so we’ll discuss it using
examples and comparisons with its predecessor.

A.4.1 Anonymous methods

Before digging into the lambda expression world, let’s start with the beginning. In
.NET 1.0, the only way to execute a piece of code was to create a method like the fol-
lowing one.

C#
OrderCollection GetOrdersByDate(OrderCollection orders, DateTime date)
{
 OrderCollection result = new OrderCollection();
 foreach(Order order in orders)
 {
 if (order.OrderDate.Date == date.Date)
 {
 result.Add(order);
 }
 }
 return result;
}

VB
Private Function GetOrdersByDate(ByVal orders As OrderCollection, _
 ByVal theDate As DateTime) As OrderCollection
 Dim result As New OrderCollection()
 For Each order As Order In orders
 If order.OrderDate.Date = theDate.Date Then
 result.Add(order)
 End If
 Next
 Return result
End Function

Likely, you’re quite comfortable with the code in listing A.5 and see no problems with
it, and indeed there aren’t any. But with the advent of .NET 2.0 and its anonymous
methods, there is a lot that can be optimized in this code.

 After refactoring to use the new features, the code from listing A.5 looks like this.

C#
DateTime date = DateTime.Today;
List<Order> result = orders.Find(delegate (Order order)
 {
 return order.OrderDate.Date == date.Date;

Listing A.5 A method that searches orders by date

Listing A.6 Searching orders by date using anonymous methods
 }

505Lambda expressions

);

VB
Dim theDate As DateTime = DateTime.Today;
Dim result As List(Of Order) = orders.Find(Function(ByVal order As Order) _
 order.OrderDate.Date = theDate.Date)

The amount of code you need to write is reduced a lot. The Find method handles
most of the plumbing code in the previous version, as it iterates over the items and
automatically passes each one to the code expressed in form of a predicate.

 The predicate is the piece of code you put into the Find method. It decides
whether the current object must be included in the result or not. The predicate lets
you express the filter that must be applied; in the end, the filter is the only thing you
should care about.

 This syntax is far more concise than the original in listing A.5, but it still suffers
from some verbosity because there was no type inference in the C# 2.0 compiler. For
instance, because the list contains Order instances, there’s no point in repeating this
in the predicate. C# 3.0 adds type inference, but instead of improving anonymous
methods, the team opted to include a brand-new feature called lambda expressions.

A.4.2 From anonymous methods to lambda expressions

Now that you’ve had a quick refresher on coding before .NET 3.5, you’re ready to dive
into lambda expressions and understand their logic. Let’s start by refactoring the
example in listing A.6 using lambda expressions like in figure A.4.

C#
 var result =
 orders.Where(
 o
 =>
 o.OrderDate.Date == date.Date
);

VB
 Dim result = _
 orders.Where(
 Function(o) _
 o.OrderDate.Date = Now.Date _

Type inference
Extention method
Lambda expression
Lambda operator
Lambda expression

Type inference
Extention method
Lambda expression input variable
Lambda expression

Figure A.4 The structure
of a LINQ query that uses a

 There’s probably no way you can write less code than what you see in figure A.4.
The syntax is different from what you were used to in previous versions of C# and VB.
The left part of the statement (the part before the = sign) uses the type inference to
understand the output of the right part of the statement (the part after the = sign). It’s
not mandatory to use type inference here because you know exactly what the type of
the output is: IEnumerable<Order>. That means you can replace var with the con-
crete type.

Where is a LINQ extension method that filters the list on the basis of the statement
that’s passed as input. The statement that the method receives in input is the lambda
expression.
) lambda expression

506 APPENDIX A Understanding LINQ

NOTE Sometimes LINQ extensions methods are also referred to as opera-
tors or clauses.

In C#, a lambda expression is formed by two main blocks separated by the lambda
operator. The left block declares the input parameters for the lambda expression. You
don’t have to explicitly set the type of the parameter because the compiler relies once
again on type inference to correctly identify it. Because the list that must be filtered
contains Order instances, in this case, the input variable type (o) is of type Order. If
the lambda expression accepts more than one parameter, they must be separated
using a comma, and the left part must be surrounded by brackets, as in the following
snippet:

var result = orders.Where((o, i) => o.OrderDate.Date == date.Date && i
 > 10);

The block at the right of the lambda operator contains the lambda expression that’s
applied to each object to determine whether it should be included in the result. The
difference between the lambda expression–based code and the anonymous method–
based code is that the return keyword is omitted. The C# team has enabled you to
omit the return keyword to further reduce code.

 In VB, the lambda expression is introduced by the Function keyword and includes
the parameters in parentheses. Furthermore, unlike in C#, the lambda operator
doesn’t exist. The rest of the syntax matches the C# syntax.

 To fully understand lambda expressions, let’s look at how a method that accepts a
lambda expression is declared using the Where method as an example.

C#
public static IEnumerable<TSource> Where<TSource> (
 this IEnumerable<TSource> source, Lambda expression

declaration
B

 Func<TSource, bool> predicate
)

VB
<Extension> _
Public Shared Function _
 Where(Of TSource)(
 ByVal source As IEnumerable(Of TSource), Lambda expression

declaration
B

 ByVal predicate As Func(Of TSource, Boolean))
As IEnumerable(Of TSource)

As you can see, Where is a function, so the first thing you need to do is declare the out-
put type. Because the Where method filters data without modifying it, its return type is
the same as its input.

 The Where method accepts a generic parameter that is the type of the elements
contained in the collection the Where method filters. The predicate parameter B rep-
resents the lambda expression. Func is a class of the .NET Framework that lets you

Listing A.7 Anatomy of an extension method
declare a delegate concisely. It accepts from 2 to 17 generic parameters. Regardless of

507Object initializers

how many parameters you use, the last parameter represents the output type and the
others are input types. In this example, TSource is the input type (Order), and bool is
the result of the expression.

 Now that you have a clear understanding of lambda expressions, we can move on
to another interesting feature: object initializers.

A.5 Object initializers
When you have to instantiate an object and initialize its properties, you have two
methods at your disposal. If the class provides a constructor that accepts properties to
initialize values, you can use that. Alternatively, you can use one of the other construc-
tors and initialize the properties one by one, as shown here:

C#
Order o = new Order();
o.Id = 1;
o.Address = "5th Street, 234";

VB
Dim o as New Order()
o.Id = 1
o.Address = "5th Street, 234"

Writing code like this is tedious and redundant. In .NET Framework 3.5, the C# and VB
teams introduced object initializers. An object initializer allows you to instantiate an
object and set its properties in a single statement. With object initializers, you can
drastically reduce the number of lines of code with a convenient syntax:

C#
Order o = new Order { Id = 1, Address = "5th Street, 234" };

VB
Dim o As New Order With { .Id = 1, .Address = "5th Street, 234" }

When the compiler intercepts the preceding statement, it generates the same code
created by the previous snippet. Both approaches produce the same result with
exactly the same performance.

NOTE By using tools like Reflector, this matching performance can be
easily verified. If you look, you’ll see that both examples produce the
same IL code. Because Reflector relies on IL to regenerate original code,
if you switch to C# or VB view, you’ll see that the code looks like the first
snippet in this section.

By default, the compiler uses the constructor with no parameters to instantiate the
class. If that constructor isn’t available, you’ll have to use one of the available construc-
tors and then open the curly brackets to set the properties, as in the following code:

C#
Order o = new Order(1) { Address = "5th Street, 234" };

VB

Dim o As New Order(1) With { .Address = "5th Street, 234" }

508 APPENDIX A Understanding LINQ

The object initializers offer a practical syntax and are very useful. But the real reason
for their introduction is that they lay the foundation for the anonymous types feature.

A.6 Anonymous types
The anonymous types feature enables you to create objects without declaring a class
beforehand. Because the newly created object doesn’t have a class, the var keyword
is the only way to declare it, and the object initializers offer the syntax to create
properties.

 Here’s an example:

C#
var x = new { Id = 1, Address = "5th Street" };

VB
Dim x = New With {.Id = 1, .Address = "5th Street"}

The x variable contains an instance of a class with two properties: Id and Address. The
types of the properties are automatically inferred using type inference.

 One point must be clear when dealing with anonymous types: anonymous types
can’t be used to generate types dynamically. The types are generated by the compiler
during compilation, so nothing is dynamic at runtime.

 Figure A.5 shows how the class created in the previous snippet is generated by the
compiler.
Figure A.5 The skeleton of the anonymous type generated by the compiler

509Query syntax

 Anonymous types suffer from some nasty limitations:

 The object has the scope of the method where it’s generated. When you instantiate an
anonymous object, it doesn’t have an explicit type that can be specified as input
or output for other methods. The name is generated only at compile time, so
there’s no way to use it outside the method that generated it.

 In C#, the object is immutable. The type in figure A.5 shows a peculiarity of anon-
ymous types in C#. When the compiler generates the properties of an anony-
mous type, only their getter methods are created. As a result, any instance of
this anonymous type can’t be modified after it has been created.

Object initializers and anonymous types are part of the foundation of LINQ. Their
combined use allows you to process a list with a defined source and return another list
made of other objects generated with data from the input source. As a result, these
features enable projections like the one in the following snippet:

C#
var x = orders.Select(o => new { o.OrderId, o.ShippingAddress });

VB
Dim x = orders.Select(Function(o) New With { .o.OrderId, _
 o.ShippingAddress })

Here the Select method is used to make a projection that creates a list containing
anonymous objects with the ID and shipping address.

 Writing LINQ queries is easy with the features we’ve looked at so far, but there’s
another way of doing it. Because almost all developers know the SQL language, LINQ
has a set of statements that allows you to write queries using a SQL-like syntax.

A.7 Query syntax
The last LINQ-related improvement made to the C# and VB languages is the query syn-
tax. This particular feature avoids using extension methods and lambda expressions
and instead offers a syntax closer to SQL. Here’s an example:

C#
var x = from o in orders
 where o.OrderDate.Date == DateTime.Now.Date
 select o;

VB
Dim x = From o In orders
 Where o.OrderDate.Date = DateTime.Now.Date

Although there are significant differences between this and the SQL language, this
way of writing queries is far more readable than the combination of extension meth-
ods and lambdas.

NOTE The most noticeable difference between SQL and this query syn-
tax is the position of the select clause. It’s at the end for autocomple-

tion purposes. Specifying the from clause at the beginning allows Visual

510 APPENDIX A Understanding LINQ

Studio to provide autocompletion for all the following clauses. Except
for a grouping query, the select clause is mandatory for query syntax in
C#; for VB, it’s optional and implicitly returns the type specified in the
from clause.

The query syntax is pure syntactic sugar because at compile time the code is converted
to use extension methods and lambda expressions.

 You have to keep in mind that the query syntax doesn’t cover all that the LINQ
extension methods offer. If you need to use a method that isn’t supported by the
query syntax, you’ll have to resort to extension methods and lambda expressions. Fur-
thermore, VB and C# support different keywords, so there are many differences
between the languages.

A.8 Deferred execution
LINQ is lazy by nature. If you start the debugger and execute a query block, you aren’t
really executing anything. Although this may seem strange, it’s pretty obvious in a lazy
environment. When you execute a query, you aren’t using its result unless you invoke
a method that forces result creation. The LINQ query gets executed only when you
fetch the data it returns, such as when you use a foreach, use a for, refer to an object
in a list by index, or invoke methods like ToList, ToArray, First, Single, and so on.

 The following listing contains some examples of query execution.

C#
var res = from o in orders

Nothing happens where o.Customer.CompanyId == 1
 select c;
...
foreach (var order in res){ Query is

evaluated ...
}

var res2 = (from o in orders
 where o.Customer.CompanyId == 1
 select c).ToList();

Query is
immediately evaluated

VB
Dim res = From o In orders

Nothing happens
 Where o.Customer.CompanyId = 1
...
For Each order in res Query is

evaluated ...
Next

Dim res2 = (From o In orders
 Where o.Customer.CompanyId = 1).ToList()

Query is
immediately evaluated

Listing A.8 Deferred and immediate execution of a LINQ query

511Deferred execution

When using LINQ to objects, you may not spot the difference; but when you’re using
LINQ to Entities, knowing this behavior may spare lots of resources, as you learned in
chapter 3 when we talked about inadvertent query execution.

A.8.1 Runtime query composition

Deferred execution is important because it enables scenarios where you compose a
query in different steps. Often, queries aren’t fixed but are created depending on run-
time conditions.

 Consider a search form that accepts many optional parameters. The search condi-
tion isn’t fixed because the optional parameters aren’t determined. This requires a set
of conditional statements and the construction of a query based on data the user
enters. The following listing shows an example of this.

C#
var result = orders.AsQueryable();

if (year.Text != String.Empty)
 result = result.Where(o => o.OrderDate.Year ==
 Convert.ToInt32(year.Text));

if (companyName.Text != String.Empty)
 result = result.Where(o => o.Company.Name.StartsWith(companyName.Text));

var data = result.ToList();

VB
Dim result = orders.AsQueryable()

If year.Text <> String.Empty Then
 result = result.Where(Function(o) o.OrderDate.Year = _
 Convert.ToInt32(year.Text))
End If

If companyName.Text <> String.Empty
 result = result.Where(Function(o) _
 o.Company.Name.StartsWith(companyName.Text))

Dim data = result.ToList()

This feature is another main piece of the LINQ architecture that you have to keep in
mind while writing queries.

Listing A.9 Composing a query at runtime

appendix B:
Entity Framework

tips and tricks

Mastering Entity Framework doesn’t only mean knowing its set of APIs and their
internal behavior. It also means finding the best ways to use it and to simplify devel-
opment. This appendix is all about that.

 We won’t cover a specific subject here; we’ll touch on various subjects, offering
tips and tricks that couldn’t be included in previous chapters. Here you’ll find a set
of classes and extension methods that let you write less code, making that code
more readable and easier to maintain.

 You’ll read about an extension method for simplifying the process of attaching
entities, you’ll learn how to perform specific actions once an entity is persisted on
the database, and you’ll discover how to perform full-text searches. You’ll also see
how to transform some string-based methods to lambda-based methods (such as
Include and SetModifiedProperty), and much more.

 Let’s start with a smarter way to attach entities to the context.

B.1 A smart way of attaching entities
In chapter 12, you created an extension method that, using EDM and a bit of reflec-
tion, adds or attaches an entity to the context depending on the value of the
entity’s key property. When the entity is attached, it goes to the Unchanged state,
and you then need to modify a property or use context or state manager methods
to mark it as Modified or Deleted.

 If you know what the entity state should be after it’s attached, wouldn’t it be bet-
ter to set it immediately in the same call?
512

513A smart way of attaching entities

B.1.1 Attaching an entity as Modified or Deleted

To mark the entity as Modified or Deleted, you need to call the ChangeState method
immediately after attaching the entity to the context. You’ve seen this several times in
the book.

 But to specify whether you want the entity to be marked as Modified, you need to
pass a new parameter to the SmartAttach method, whose signature is as follows:

C#
public static void SmartAttach<T>(this ObjectSet<T> os, T input,
 AttachState state)

VB
Public Shared Sub SmartAttach(Of T)(os As ObjectSet(Of T), input As T,
 state As AttachState)

The state parameter is of type AttachState. It’s an enum that specifies what state the
entity must be set to after it has been attached. These are its values:

 Unchanged—The entity remains unchanged
 Modified—The entity is changed to Modified state
 Deleted—The entity is changed to Deleted state

This way, you can set the state of the entity using the code in the following listing. (We
haven’t included the first part of the method here, but you can find it in chapter 12.)

C#
if (id.Equals(Convert.ChangeType(value, idType)))
 os.AddObject(input);
else
{
 os.Attach(input);
 var entry = set.Context.ObjectStateManager.GetObjectStateEntry(input);
 if (state == AttachState.Modified)
 entry.ChangeState(EntityState.Modified);
 else if (state == AttachState.Deleted)
 entry.ChangeState(EntityState.Deleted);
}

VB
If id.Equals(Convert.ChangeType(value, idType)) Then
 os.AddObject(input)
Else
 os.Attach(input)
 Dim entry = os.Context.ObjectStateManager.GetObjectStateEntry(input)
 If state = AttachState.Modified Then
 entry.ChangeState(EntityState.Modified)
 ElseIf state = AttachState.Deleted Then
 entry.ChangeState(EntityState.Deleted)
 End If
End If

Listing B.1 Marking the entity as Modified or Deleted after attaching it

514 APPENDIX B Entity Framework tips and tricks

This method is pretty cool. Now you can attach an entity to the context and have it
marked as Modified or Deleted in a single call. (The same method can be used to add
an entity too, in which case the state parameter is ignored.) The following snippet
marks the entity as Modified:

C#
ctx.Orders.SmartAttach(order, AttachState.Modified);

VB
ctx.Orders.SmartAttach(order, AttachState.Modified)

But that’s not enough. You know that when you use the ChangeState method to mark
an entity as Modified, not only does ChangeState mark the entity, but it also marks all
the entity’s properties as Modified. Sometimes you don’t want to mark all the proper-
ties, just some of them. In that case, you need to use the SetModifiedProperty
method of the state-manager entry.

B.1.2 Modifying only selected properties after attaching

The SetModifiedProperty method is as useful as it is badly designed, because it
accepts the property name as a string. Thanks to lambda expressions, we’re living in
the strong-typing age. Why not create a new overload of the SetModifiedProperty
method that accepts a lambda?

 Take a look at this listing.

C#
public static ObjectStateEntry SetModifiedProperty<T>(
 this ObjectStateEntry entry, Expression<Func<T, object>> expression)
{
 var body = expression.Body as MemberExpression; Extracts

property
nameB

 if (body == null) throw new ArgumentException("expr must be a
memberexpression");

 entry.SetModifiedProperty(body.Member.Name);

Sets property
as modifiedC

 return entry;
}

VB
<System.Runtime.CompilerServices.Extension> _
Public Shared Function SetModifiedProperty(Of T)(entry As ObjectStateEntry,
 expression As Expression(Of Func(Of T, Object))) As ObjectStateEntry
 Dim body = TryCast(expression.Body,

MemberExpression) Extracts
property
nameB

 If body Is Nothing Then
 Throw New ArgumentException("expr must be a memberexpression")
 End If

 entry.SetModifiedProperty(body.Member.Name)
Sets property
as modifiedC

 Return entry
End Function

Listing B.2 Strongly typed extension method for marking a property as Modified

515A smart way of attaching entities

This extension method accepts a lambda expression that specifies the property name.
It then extracts the property name as a string B and passes it to the string-based Set-
ModifiedProperty method C. Now you can use the following code to call the
method:

C#
entry.SetModifiedProperty(o => o.ShippingAddress);

VB
entry.SetModifiedProperty(Function(o) o.ShippingAddress)

The code in the previous listing can’t be included in the SmartAttach method
because it’s a generic method that must handle any type of entity. You must enable the
caller of the SmartAttach method to specify which properties must be marked for
update.

 To do that, you need to add another parameter to the SmartAttach method so you
can pass in a list of properties (in a typed manner). The new signature is shown in the
following snippet:

C#
private static void SmartAttach<T>(this ObjectSet<T> os,
 T input, AttachState state,
 params Expression<Func<T, object>>[] modifiedProperties)

VB
Private Shared Sub SmartAttach(Of T)(os As ObjectSet(Of T),
 input As T, state As AttachState,
 ParamArray modifiedProperties As Expression(Of Func(Of T, Object))())

As you can see from the signature, SmartAttach now accepts an array of Expression
objects. Each object specifies the property to be modified using the lambda expression.
When the array isn’t null or empty, the code iterates over it and passes the expression
to the extension method in listing B.2. The following listing shows this code.

C#
if (id.Equals(Convert.ChangeType(value, idType)))
 os.AddObject(input);
else
{
 os.Attach(input);
 var entry = os.Context.ObjectStateManager.GetObjectStateEntry(input);
 if (state == AttachState.Modified)
 {
 if (modifiedProperties != null && If properties

are specified…
B

 modifiedProperties.Any())
 foreach (var property in modifiedProperties) …they’re marked

as modified
C entry.SetModifiedProperty(property);

 else
 entry.ChangeState(EntityState.Modified); Otherwise all

Listing B.3 Adding code to mark the selected properties
entities are
modifiedD

 }

516 APPENDIX B Entity Framework tips and tricks

 else if (state == AttachState.Deleted)
 entry.ChangeState(EntityState.Deleted);
}

VB
If id.Equals(Convert.ChangeType(value, idType)) Then
 os.AddObject(input)
Else
 os.Attach(input)
 Dim entry = os.Context.ObjectStateManager.GetObjectStateEntry(input)
 If state = AttachState.Modified Then
 If modifiedProperties IsNot Nothing _ If properties

are specified…
B

 AndAlso modifiedProperties.Any() Then
 For Each [property] As var In modifiedProperties …they’re marked

as modified
C entry.SetModifiedProperty([property])

 Next
 Else
 entry.ChangeState(EntityState.Modified) Otherwise all

entities are
modifiedD

 End If
 ElseIf state = AttachState.Deleted Then
 entry.ChangeState(EntityState.Deleted)
 End If
End If

The only part of this code that has been modified is that related to the modification of
the entity. If some properties are passed B, they’re marked as Modified C; otherwise,
the classic ChangeState method is used D, and all properties are marked as Modified.

 Now you can invoke SmartAttach method as in the following snippet:

C#
ctx.Orders.SmartAttach(order, AttachState.Modified,
 o => o.ShippingAddress
 o => o.ActualShippingDate);

VB
ctx.Orders.SmartAttach(order, AttachState.Modified,
 Function(o) o.ShippingAddress,
 Function(o) o.ActualShippingDate)

We have been using the SmartAttach extension method for the last couple of years
and it works pretty well. It also helps in cutting down several lines of code. We strongly
recommend you use it.

 Now let’s move on and see how you can inject some logic before and after
persistence.

B.2 Building an auditing system
One of the questions that developers often ask on forums or at live events is: how can
we build an auditing mechanism to know when an entity is persisted? In chapter 6,
you saw a basic solution to this problem, but here we’ll expand on that idea and make
it more robust and reusable.

 This will take several steps because it uses many features of Entity Framework:

517Building an auditing system

1 Create an attribute to mark the auditable entities.
2 Customize the designer to let the user visually specify what entities must be

audited.
3 Customize the template that generates entities to mark the auditable entities

with an attribute.
4 Create a class that inherits from ObjectContext and that overrides

SaveChanges, invoking a method to handle the entities to be persisted.
5 Modify the template that generates the context to let the generated context

inherit from the context created in step 4.

There’s a lot to do, but once we’ve finished, you’ll understand how easy it is.

B.2.1 Creating an attribute to mark auditable entities

Most of the time, you don’t want to audit all entities. For instance, you don’t want to
keep track of modifications made to the details, just to the orders. To do that, you can
use an attribute to mark the entities you want audited.

NOTE You may consider this to be plumbing code that should stay out of
the entities. Although this is theoretically true, it’s a little tweak that
doesn’t create any problems and simplifies things.

Creating the attribute class is simple, as you can see in the next snippet:

C#
public class AuditableAttribute : Attribute { }

VB
Public Class AuditableAttribute
 Inherits Attribute
End Class

When you have the attribute, you just need to mark the auditable entities with it.
Instead of creating partial classes or modifying the code generated by the template
(remember that modifications will be lost when the code is regenerated), you can save
this information in the EDM. But modifying the EDMX file is tedious, so why not create
a designer extension?

B.2.2 Customizing the designer

Creating a designer extension is simple. Chapter 13 covered everything you need to
know about this subject.

 The only difference between that example and this one is that here the custom
property applies to the entity and not to one of its key properties. This difference is
expressed in the EntityDesignerExtendedProperty attribute of the designer exten-
sion’s factory class, which you can see in the following listing.

518 APPENDIX B Entity Framework tips and tricks

C#
[Export(typeof(IEntityDesignerExtendedProperty))]
[EntityDesignerExtendedProperty(Sets property

scope to entity EntityDesignerSelection.ConceptualModelEntityType)]
class AuditableFactory : IEntityDesignerExtendedProperty
{
 public object CreateProperty(XElement element,
 PropertyExtensionContext context)
 {
 return new AuditableValue(element, context);
 }
}

VB
<Export(GetType(IEntityDesignerExtendedProperty))> _
<EntityDesignerExtendedProperty(Sets property

scope to entity EntityDesignerSelection.ConceptualModelEntityType)> _
Class AuditableFactory
 Implements IEntityDesignerExtendedProperty
 Public Function CreateProperty(element As XElement,
 context As PropertyExtensionContext) As Object
 Return New AuditableValue(element, context)
 End Function
End Class

The code is simple. It creates a custom property for each entity in the designer.
 The AuditableValue class isn’t complex either, as you see in the next listing.

C#
class AuditableValue
{
 internal static XName ELEMENTNAME =
 XName.Get("Auditable", "http://EFEX");

 private XElement _property;
 private PropertyExtensionContext _context;

 public AuditableValue(XElement property, Stores CSDL
EntityType
node

B PropertyExtensionContext context)
 {
 _context = context;
 _property = property;
 }

 [DisplayName("Auditable")]
 [Description("Get or set the value indicating if the class is

➥ auditable")]
 [Category("Extensions")]
 [DefaultValue(false)]
 public bool Value
 {

Listing B.4 The factory for the custom property of the entity in the designer

Listing B.5 Class that manages the auditable custom annotation for the entity
 get

519Building an auditing system

 {
 XElement child = _property.Element(ELEMENTNAME); Reads custom

annotation
value

C return (child == null)
 ? false : bool.Parse(child.Value);
 }
 set
 {
 using (EntityDesignerChangeScope scope =
 _context. CreateChangeScope("Set Auditable"))
 {
 var element = _property.Element(ELEMENTNAME); Writes

custom
annotation
value

D if (element == null)
 _property.Add(
 new XElement(ELEMENTNAME, value));
 else
 element.SetValue(value);
 scope.Complete();
 }
 }
 }
}

VB
Class AuditableValue
 Friend Shared ELEMENTNAME As XName = _
 XName.Get("Auditable", "http://EFEX")

 Private _property As XElement
 Private _context As PropertyExtensionContext

 Public Sub New(prop As XElement, Stores CSDL
EntityType
node

B context As PropertyExtensionContext)
 _context = context
 _property = prop
 End Sub

 <DisplayName("Auditable")> _
 <Description("Get or set the value indicating if the class is

➥ auditable")> _
 <Category("Extensions")> _
 <DefaultValue(False)> _
 Public Property Value() As Boolean
 Get
 Dim child As XElement = Reads custom

annotation
value

C _property.Element(ELEMENTNAME)
 If child Is Nothing Then
 Return False
 Else
 Return Boolean.Parse(child.Value))
 End Get
 Set
 Using scope As EntityDesignerChangeScope =
 _context.CreateChangeScope("Set Auditable")
 Dim element = _property.Element(ELEMENTNAME) Writes

custom
D If element Is Nothing Then
annotation
value

 _property.Add(

520 APPENDIX B Entity Framework tips and tricks

 New XElement(ELEMENTNAME, value))

D Else
 element.SetValue(value)
 End If
 scope.Complete()
 End Using
 End Set
 End Property
End Class

The AuditableValue class constructor receives and stores the EntityType node and
the context from the factory B. The property getter retrieves the value of the custom
annotation C (if it exists), and the setter writes, in the scope of a transaction, the cus-
tom annotation D.

 The result is that when you click an entity, the custom property is shown in the
property window; and once you set it, the following XML code is written in the CSDL:

<EntityType Name="Order">
 ...
 <efex:Auditable>true</efex:Auditable>
</EntityType>

Now that you have the custom annotation in the CSDL, you need to modify the tem-
plate that generates entities to let it read the custom annotation and generate the
attribute.

B.2.3 Customizing the template that generates entities

Modifying the template that generates entities isn’t hard. Before writing entity code,
you need to check whether the custom annotation exists. If it exists and its value is
true, you add the Auditable attribute. The following snippet shows the template
code (C# only):

<#
var auditableElement = entity.MetadataProperties
 .FirstOrDefault(p => p.Name == "http://EFEX:Auditable");
if (auditableElement != null &&
 bool.Parse(((XElement)auditableElement.Value).Value)){
 #>
 [Auditable]
 <#
}#>

That’s all you need to do. On the entity side, you’re finished. Now you have to work on
the context.

B.2.4 Overriding the persistence process with a custom context

Next, you need to create a class, ExtendedObjectContext, that inherits from Object-
Context and that adds auditing behavior. This can be done by overriding the
SaveChanges method and placing the code in there. You can then let the generated

context inherit from ExtendedObjectContext, and you’re done.

521Building an auditing system

 Not only does this design enable you to handle auditing, but it also lets you per-
form any operation before or after persistence. To perform any operation before or
after persistence, you can create an IObjectPersistenceNotification interface that
exposes two methods: one invoked before persistence and one invoked after. This
interface is shown in the next snippet:

C#
public interface IObjectPersistenceNotification
{
 void BeforePersistence(ObjectStateEntry entry, ObjectContext context);
 void AfterPersistence(ObjectStateEntry entry, ObjectContext context);
}

VB
Public Interface IObjectPersistenceNotification
 Sub BeforePersistence(entry As ObjectStateEntry, context As ObjectContext)
 Sub AfterPersistence(entry As ObjectStateEntry, context As ObjectContext)
End Interface

As you can see, the methods accept a single entry. This means they’re invoked once
for each entry in the Added, Modified, or Deleted state.

 After that, you need to create the PersistenceNotification class, which imple-
ments the IObjectPersistenceNotification interface and writes to audit tables.
This class is shown in the following listing.

C#
public class PersistenceNotification : IObjectPersistenceNotification
{
 string _username;
 public PersistenceNotification(string username)
 {
 _username = username;
 }

 public void BeforePersistence(ObjectStateEntry entry,
 ObjectContext context)
 {
 }

 public void AfterPersistence(ObjectStateEntry entry,
 ObjectContext context)
 {
 var type = entry.Entity.GetType();
 if (type.GetCustomAttributes(Searches

Auditable attribute
B

 typeof(AuditableAttribute), false).Any())
 {
 string properties = null;
 if (entry.State ==

EntityState.Modified) Retrieves
modified
properties

C
 properties = String.Join(", ",
 entry.GetModifiedProperties());

Listing B.6 The class that writes auditing data

522 APPENDIX B Entity Framework tips and tricks

 context.ExecuteStoreCommand(Persists
modified
properties
information

D
 "Exec InsertAudit {0}, {1}, {2}, {3}, {4}",
 type.FullName, DateTime.Now, _username,
 entry.State.ToString().Substring(0,1),
 properties);
 }
 }
}

VB
Public Class PersistenceNotification
 Implements IObjectPersistenceNotification
 Private _username As String
 Public Sub New(username As String)
 _username = username
 End Sub

 Public Sub BeforePersistence(entry As ObjectStateEntry,
 context As ObjectContext)
 End Sub

 Public Sub AfterPersistence(entry As ObjectStateEntry,
 context As ObjectContext)
 Dim type = entry.Entity.GetType()
 If type.GetCustomAttributes(Searches

Auditable attribute
B

 GetType(AuditableAttribute), False).Any() Then
 Dim properties As String = Nothing
 If entry.State = EntityState.Modified Then Retrieves

modified
properties

C
 properties = String.Join(", ",
 entry.GetModifiedProperties())
 End If

 context.ExecuteStoreCommand(Persists
modified
properties
information

D
 "Exec InsertAudit {0}, {1}, {2}, {3}, {4}",
 type.FullName, DateTime.Now, _username,
 entry.State.ToString().Substring(0, 1),
 properties)
 End If
 End Sub
End Class

Again, the code is simple. The BeforePersistence method does nothing; the
AfterPersistence method is where the auditing works. If the entity is marked with
the Auditable attribute B, the code extracts the modified properties (only if the
entity is in the Modified state) C and invokes the auditing stored procedure, pass-
ing in the entity name, the timestamp, the username, the entity’s state, and the mod-
ified properties D.

NOTE As we said before, this technique can be used for other purposes
than auditing. For example, you can enable logical deletes. You can mark
an entity as Deleted in the code, but before persistence you mark it as
Modified and set the logical cancellation flag to true. This way, the code
is much easier to write (and read).

523Building an auditing system

The next step is to create the ExtendedObjectContext class we mentioned at the
beginning of this section. The first thing you have to create in the ExtendedObject-
Context class are its constructors that accept an IObjectPersistenceNotification
parameter. This way, whoever uses the context just needs to create an instance of the
PersistenceNotification class, pass it to the context, and they’re done.

 The second thing you have to do to create the ExtendedObjectContext class is to
override SaveChanges so it invokes the methods of the IObjectPersistence-
Notification interface before and after the actual persistence of the objects. The
code of the ExtendedObjectContext class is shown in the following listing.

C#
public class ExtendedObjectContext : ObjectContext
{
 protected IObjectPersistenceNotification PersistenceNotification
 {
 get;
 set;
 }

 public ExtendedObjectContext(string ConnectionString,
 string ContainerName, IObjectPersistenceNotification notification)
 : base(ConnectionString, ContainerName)
 {
 this.ContextOptions.LazyLoadingEnabled = true;
 PersistenceNotification = notification;
 }

 public ExtendedObjectContext(EntityConnection connection,
 string ContainerName, IObjectPersistenceNotification notification)
 : base(connection, ContainerName)
 {
 this.ContextOptions.LazyLoadingEnabled = true;
 PersistenceNotification = notification;
 }

 public override int SaveChanges(SaveOptions options)
 {
 DetectChanges();

Detects object
modifications

B

 if (PersistenceNotification != null)
 ObjectStateManager.GetObjectStateEntries(Calls

subscribers
before
persistence

C
 EntityState.Added | EntityState.Modified |
 EntityState.Deleted)
 .ForEach(
 e => PersistenceNotification.
 BeforePersistence(e, this));

 var result = base.SaveChanges(SaveOptions.None); Persists modificationsD

 if (PersistenceNotification != null)
 ObjectStateManager.GetObjectStateEntries(Calls

subscribers
E

 EntityState.Added | EntityState.Modified |

Listing B.7 The new context class
after
persistence

 EntityState.Deleted)

524 APPENDIX B Entity Framework tips and tricks

 .ForEach(

E e => PersistenceNotification.
 AfterPersistence(e, this));

 if (options.HasFlag(SaveOptions.AcceptAllChangesAfterSave))
 AcceptAllChanges(); Resets entity state

if requiredF
 return result;
 }
}

VB
Public Class ExtendedObjectContext
 Inherits ObjectContext
 Protected Property PersistenceNotification() _
 As IObjectPersistenceNotification

 Public Sub New(ConnectionString As String, ContainerName As String,
 notification As IObjectPersistenceNotification)
 MyBase.New(ConnectionString, ContainerName)
 ContextOptions.LazyLoadingEnabled = True
 PersistenceNotification = notification
 End Sub

 Public Sub New(connection As EntityConnection, ContainerName As String,
 notification As IObjectPersistenceNotification)
 MyBase.New(connection, ContainerName)
 ContextOptions.LazyLoadingEnabled = True
 PersistenceNotification = notification
 End Sub

Detects object
modifications

B

 Public Overrides Function SaveChanges(options As SaveOptions) As Integer
 DetectChanges()
 If PersistenceNotification IsNot Nothing Then
 ObjectStateManager.GetObjectStateEntries(Calls

subscribers
before
persistence

C
 EntityState.Added Or EntityState.Modified Or
 EntityState.Deleted)
 .ForEach(Function(e)
 PersistenceNotification.
 BeforePersistence(e, Me))
 End If

 Dim result = MyBase.SaveChanges(SaveOptions.None)
Persists
modifications

D

 If PersistenceNotification IsNot Nothing Then
 ObjectStateManager.GetObjectStateEntries(Calls

subscribers
after
persistence

E
 EntityState.Added Or EntityState.Modified Or
 EntityState.Deleted)
 .ForEach(Function(e)
 PersistenceNotification.
 AfterPersistence(e, Me))
 End If

 If options.HasFlag(SaveOptions.AcceptAllChangesAfterSave) Then
 AcceptAllChanges() Resets entity state

if requiredF
 End If
 Return result
 End Function

End Class

525Building an auditing system

Constructors are simple; they take as input an IObjectPersistenceNotification
instance. What’s interesting here is the SaveChanges method. First, you use the
DetectChanges method to sync the state manager with the entities B. Then, you
detect the entities that are ready to be persisted and invoke the BeforePersistence
method for each of them C. You then invoke the base implementation of the
SaveChanges method, passing in the SaveOptions.None parameter D. This ensures
that the DetectChanges and AcceptAllChanges methods aren’t invoked. Next, you
call the AfterPersistence method for each persisted entity E. Finally, if the input
parameter states that AcceptAllChanges must be invoked, you call that method F.

 The last step needed to build the auditing system is to modify the context template
to generate a class that inherits from ExtendedObjectContext and that calls the con-
structors correctly.

B.2.5 Customizing the context template

Modifying the context template is pretty simple. The first step is changing the name of
the base class and adding its namespace to the using list, as follows (only the C# code
is shown for brevity):

using OrderIT.Model.Notifications;

<#=Accessibility.ForType(container)#> partial class
 <#=code.Escape(container)#> : ExtendedObjectContext

When that’s done, you need to modify the generation of the existing constructors to
invoke the base constructors and pass a null value to the IObjectPersistence-
Notification parameter. You also need to modify the template to create new con-
structors that accept the same parameters as the existing ones plus an
IObjectPersistenceNotification parameter that’s then passed to the base construc-
tor. The following listing shows the template code for the default parameterless con-
structor, and the code for the constructor that accepts an IObjectPersistence-
Notification parameter.

public <#=code.Escape(container)#>()
 : base(ConnectionString, ContainerName, null)
{
 <#WriteLazyLoadingEnabled(container);#>
}

public <#=code.Escape(container)#>(
 IObjectPersistenceNotification notification)
 : base(ConnectionString, ContainerName, notification)
{
 <#WriteLazyLoadingEnabled(container);#>
}

Listing B.8 Template code for generating correct constructors

526 APPENDIX B Entity Framework tips and tricks

For the sake of brevity, we haven’t shown the code for all constructors. The preceding
listing contains all you need to know to create them, and the complete code is avail-
able in the book’s source code.

 That’s it for the auditing system. Now you just need to write code to use the classes
you’ve created.

B.2.6 Using the code

Writing code that to use the classes we created in the previous section is simple. You
just need to create an instance of the PersistenceNotification class and pass it to
the context constructor, as you can see in this listing.

C#
var c = new Customer() { ... };
var notification = Creates

auditing class
B

 new PersistenceNotification("username");
using (var ctx = new OrderITEntities(notification)) Instantiates

context with
auditing classC

{
 ctx.Companies.SmartAttach(c);
 ctx.SaveChanges();
}

VB
Dim c = New Customer() With { ... }
Dim notification = Creates

auditing class
B

 New PersistenceNotification("username")
Using ctx = New OrderITEntities(notification) Instantiates

context with
auditing classC

 ctx.Companies.SmartAttach(c)
 ctx.SaveChanges()
End Using

In this code, you create a Customer instance, create the auditing class B and pass it to
the context constructor C, attach the customer to the context (the ID is 0, so it will be
in Added state), and persist it. Now, when you execute the code and open the Audit
table in the database, you’ll see a record saying that a new customer has been added.

 Easy as pie, isn’t it? The solution we presented in this section can be further
extended. You could create a method that first creates a PersistenceNotification
instance, then creates a context passing in the PersistenceNotification instance,
and finally returns the context. This way, the code is even shorter than listing B.9 and
you wouldn’t even be aware of the auditing class.

 That was a long trip, but the solution was worth the effort. Next, let’s talk about two
subjects related to querying: the Include method and full-text searches.

B.3 Two tips for querying data
In this section, we’ll talk about two features that are important in many applications:

 The Include method, which enables eager loading in LINQ to Entities queries

Listing B.9 The code that uses the new infrastructure
 Full-text search capability, which enables fast searching in text columns

527Two tips for querying data

We’ll improve the Include method, making it more usable, ;and we’ll look at how to
use the full-text search capabilities of the SQL Server database.

B.3.1 Improving the Include method

Let’s face it: the Include method is as useful as it is badly designed. Its string-based
nature makes it ugly, because using a string to specify which properties to load in the
strong-typing age is horrible. We need to do something to improve this.

 In section B.1.2, you saw how to pass a lambda expression to a method to specify
what property should be marked Modified. Using the same idea, you can create an
Include method that accepts a lambda expression to specify what navigation property
you want loaded. Here’s the code.

C#
public static ObjectQuery<T> Include<T, TProp>(
 this ObjectQuery<T> oq, Expression<Func<T, TProp>> expression)
{
 var body = expression.Body as MemberExpression;
 if (body == null)
 throw new ArgumentException("Parameter expression must be a

➥ memberexpression");

 return oq.Include(body.Member.Name);
}

VB
<System.Runtime.CompilerServices.Extension> _
Public Shared Function Include(Of T, TProp)(oq As ObjectQuery(Of T),
 expression As Expression(Of Func(Of T, TProp))) As ObjectQuery(Of T)
 Dim body = TryCast(expression.Body, MemberExpression)
 If body Is Nothing Then
 Throw New ArgumentException("Parameter expression must be a

➥ memberexpression")
 End If

 Return oq.Include(body.Member.Name)
End Function

The Include method shown in the previous code accepts a lambda expression, then
takes the property name as a string, and invokes the real Include method of the
ObjectQuery class.

 Now you can write Include as in this snippet:

C#
ctx.Orders.Include(o => o.OrderDetails);

VB
ctx.Orders.Include(Function(o) o.OrderDetails)

This is much better than passing the OrderDetails string. If you refactor your code,

Listing B.10 The code that uses the new infrastructure
having a lambda expression helps a lot.

528 APPENDIX B Entity Framework tips and tricks

 What’s bad about this expression is that you can load only first-level properties. For
instance, you can eager-load the details and the customer related to the order, but you
can’t go deeper, loading products related to the details. To do that, you need to create
another extension method that applies to navigation properties and that lets you
define a deeper hierarchy.

 Writing such a method isn’t that difficult, but it requires a deep knowledge of
expression trees, which is one of the toughest subjects in the entire .NET Framework.
The preceding code gives you the fundamentals, and you can use it as a base for writ-
ing a more clever method.

 Now that you know how to improve the Include method, we can move on to full-
text searches.

B.3.2 Enabling full text search in Entity Framework

Entity Framework doesn’t provide any native way to integrate itself with the full-text
search capabilities of SQL Server. This means you have to let stored procedures per-
form full-text queries, and then use these stored procedures from the code. Entity
Framework doesn’t even know that inside the stored procedure there’s a full-text
search query. Easy as pie!

 Alternatively, you can also use a defining query that takes data from a table-valued
function (as you did in chapter 11). But although this gives you more flexibility in the
querying phase, it makes the code and the EDM harder to write and maintain. Stored
procedures are generally much easier to use.

 Now, let’s look at how to handle database data types that aren’t natively understood
by Entity Framework.

B.4 Working with special database types
Entity Framework doesn’t understand all the data types that some databases use. Try
this experiment. Create a table with an int and a Geometry column, and import it into
the designer. The designer will shows an entity with just one column: the int column.
If you open the EDMX as XML, you’ll see the following warning in the SSDL before the
entity description:

<!--Errors Found During Generation:
 warning 6005: The data type 'geometry' is not supported; the column 'geom'

in table 'OrderIT.dbo.GeometrySample' was excluded.
-->

This happens because Entity Framework can’t translate the Geometry database type
into a .NET type it understands. So the question is, how do you handle this type of data
if Entity Framework itself doesn’t know how to handle it? There are two easy solutions.

 The first solution is to create a view where the Geometry data type is converted to a
varbinary(max) column. You can then import the view instead of the table, and
Entity Framework will map the binary column to an array of bytes that it knows how to
handle. Here’s the query for the view:

529Working with special database types

SELECT StateID, StateName, CONVERT([varbinary](MAX), geom, 0) SpatialData
FROM dbo.state

 The second option is useful when you can’t modify the database to create the view.
In this case, you create a defining query using the same SQL code you would write for
the view. You then use the designer to create a class that maps to the defining query,
and you’re done. The defining query is declared as follows:

<EntitySet Name="GeometrySample"
 EntityType="OrderITModel.Store.GeometrySample">
 <DefiningQuery>
 SELECT Id, CONVERT([varbinary](MAX), SpatialData, 0) SpatialData
 FROM dbo.GeometrySample
 </DefiningQuery>
</EntitySet>

In both cases, the entity (GeometrySample) that maps to
the database is the one shown in figure B.1.

 Querying with a view or a defining query is like que-
rying a table, so nothing changes there. When it comes
to persistence, some extra work is required because you
have to use stored procedures or EDM embedded com-
mands. It’s not too difficult; you saw how to do this in
chapter 10.

 What’s tedious is that instead of working with a prop-
erty of SqlGeometry type (the SqlGeometry type is
defined in the Microsoft.SqlServer.Types assembly),
you have to work with the byte[] type. Let’s improve things by reusing what you’ve
learned throughout the book.

 What you can do is extend the GeometrySample class (the one mapped to the
table) through a partial class. In the partial class, you can define a property, say Typed-
SpatialData, of SqlGeometry type. In its getter, you can take the SpatialData prop-
erty, convert it to a SqlGeometry instance, and return it. In the setter, you go the
opposite way: you create an array of bytes from the input value. Here’s the code.

C#
public partial class GeometrySample
{
 SqlGeometry _geometry = null;

 public SqlGeometry TypedSpatialData
 {
 get
 {
 if (_geometry == null)
 {
 _geometry = new SqlGeometry();

Listing B.11 The partial class that defines the TypedSpatialData property

Figure B.1 The class that maps
to the table. It exposes the Id
as Int32 and SpatialData
as an array of bytes.

530 APPENDIX B Entity Framework tips and tricks

 using (var stream =
MemoryStream(SpatialData)) Converts array

of bytes to
SqlGeometry

B
 using (var rdr = new BinaryReader(stream))
 _geometry.Read(rdr);
 }

 return _geometry;
 }
 set
 {
 _geometry = value;
 using (var ms = new MemoryStream()) Converts

SqlGeometry
to array of bytes

C
 {
 using (var bw = new BinaryWriter(ms))
 value.Write(bw);
 SpatialData = ms.ToArray();
 }
 }
 }
}

VB
Private _geometry As SqlGeometry = Nothing

Public Property TypedSpatialData() As SqlGeometry
 Get
 If _geometry Is Nothing Then
 _geometry = New SqlGeometry()
 Using stream = New MemoryStream(SpatialData) Converts array

of bytes to
SqlGeometry

B
 Using rdr = New BinaryReader(stream)
 _geometry.Read(rdr)
 End Using
 End Using
 End If

 Return _geometry
 End Get
 Set
 _geometry = value
 Using ms = New MemoryStream() Converts

SqlGeometry
to array of bytes

C
 Using bw = New BinaryWriter(ms)
 value.Write(bw)
 End Using
 SpatialData = ms.ToArray()
 End Using
 End Set
End Property

To perform the conversion, you have to use streams. To convert an array of byes into a
SqlGeometry type, you have to fill a memory stream with the bytes and then pass the
stream to a binary reader, which is then used by SqlGeometry to populate itself B.

 To convert a SqlGeometry instance to an array of bytes, you do the opposite. You
create a stream and pass it to a writer that the SqlGeometry instance writes to. You
then set the SpatialData property with the array of bytes of the stream C.

531Working with special database types

 When you use the GeometrySample class, you can use the TypedSpatialData prop-
erty without any problems, because it automatically synchronizes with the Spatial-
Data property:

C#
var entity = ctx.GeometrySamples.First();
var geometries = entity.TypedSpatialData.STNumGeometries();

VB
Dim entity = ctx.GeometrySamples.First()
Dim geometries = entity.TypedSpatialData.STNumGeometries()

Always remember that because the TypedSpatialData isn’t defined in the EDM, you
can’t use it in LINQ to Entities or EntitySQL queries.

 We have used this technique for the Geometry data type, but you can use the same
approach for any type you have. It’s a pretty cool pattern, isn’t it?

index
A

abstract class 268
See also class, abstract

AcceptAllChanges
method 155, 160, 179, 525

AcceptChanges method 161,
179

Accessibility class 329
AddObject method 57, 155–

157, 180
ADO.NET provider, connecting

to 247–248
ADO.NET Self-Tracking Enti-

ties Generator 414
aggregate 367

and factories 376
and repositories 371

aggregation methods 85
annotation, custom 317, 346

generating data annotations
from 333–335

retrieving 319
anonymous method 504
anonymous type 91, 497,

508–509
assign name to property

of 91
limitations 509
nesting 91

application
creating 42–55
design process 358–359
developing using database-

like structures 5–10
layer 358

performance problem 10
strong coupling problem

8–9
three-layer architecture 358

application layer 364
ApplyChanges method

417–419
ApplyCurrentValues

method 155, 158–159,
183, 185, 194, 402

performance issue 186
ApplyOriginalValues

method 155, 158–159
architecture, three-layer. See

three-layer architecture
Arrange, Act, Assert (AAA)

pattern 452, 460
AsEnumerable method 489
ASP.NET

and Entity Framework, com-
mon scenarios 393

and transactions and
concurrency 394

attaching entities 394
presentation logic 360

assembly, creating 42–43
AssemblyCleanup attribute 455
AssemblyInitialize

attribute 455
Assert class 454

AreEqual method 453
association

creating 50–51
definition 365
deleting 49
implementing 136–144

projecting with 92–95
sorting with 101–102

association mismatch 16–18
many-to-many

relationships 17–18
one-to-many relationships 17
one-to-one relationships

16–17
AssociationSet class 315
AssociationType class 302
Attach method 59, 154–155,

157–158
AuditableValue class 518
auditing 516–526

creating attribute for
entity 517

creating custom context 517,
520–525

custom property getter in
designer 520

custom property in
designer 517–520

custom property setter in
designer 520

customizing context
template 517, 525–526

customizing designer 517
customizing entities

template 517, 520
ExtendedObjectContext

class 523
ExtendedObjectContext

constructor 525
IObjectPersistenceNotifica-

tion interface 521, 523,
525

PersistenceNotification
532

loose typing problem 9–10 independent 42, 52, 170 class 521, 523, 526

533INDEX

B

binding
adding data 440
complex properties in

XAML 441
data source 433, 435
data to context in WPF 442
deleting and adding entities

in WPF 445
deleting detail data 439
deleting detail entities in

WPF 445
deleting master data 438
details 437
error management 431
in Windows Forms

applications 432–441
in WPF applications 441–446
interfaces 440–441
lookup combo box 435
lookup combo box in

WPF 443
master/detail 436
master/detail in WPF 443
modifying data 438
transactional entities 427
Windows form 426

BindingList class 434
BindingSource

component 433, 435
bottom-up design

introduction 35
reasons to use 36
vs. top-down 36–37

bridge class 348
builder method 64
business layer 358

and business rules 361
interactions with other

layers 362
responsibility 360

Button control 361

C

C#
anonymous method 504
anonymous type 497, 508–

509
extension method 496–503

consuming 500
creating 500
importing 500

lambda expression 496,

object initializer 496,
507–508
and anonymous types 508

query syntax 497, 509–510
type inference 496, 505
using 500
var 497

CancelEdit method 440
casting, cost of 9
change tracking 152, 167–170

and MergeOption 174–175
attaching or adding

graph 171
detecting collection proper-

ties modification 194
disabling 475, 491
entity not wrapped inside

proxy 167–169
entity outside context 171
entity wrapped inside

proxy 169–170
managing with

ObjectStateManager
162–175

ChangeObjectState
method 155, 161, 183, 513

data loss 184
ChangeState method 155, 161
ChangeTracker property 415
class

abstract 37, 47
See also abstract class

benefits of using 11
compile-time checking 11
creating 123–136
describing in conceptual

schema 127–130
designing for binding

425–432
ease of development 11
extending through partial

classes 335–336
isolation from fetching

problems 14
moving to object model

13–15
name

pluralizing 45
singularizing 45

organizing data with 10–15
partial 335

creating 335
query 336

properties, filtering on 106
representing data with

storage-agnostic interface 11
strong typing 11
writing 124–126

ClassCleanup attribute 455
ClassInitialize attribute 455
code

generated. See generated
code

organizing with POCO
template 53

code first 44
CodeGenerationTools

class 328
column

discriminator. See discrimina-
tor column

identity. See identity column
versioning 10

command tree,
introduction 71

CompiledQuery class 488
Invoke method 489
MergeOption 490
recompilation 489

complex property
persistence 183
See also property, complex

complex type 37
creating 47

ComplexType class 302, 310
composition, definition 366
Computed property 200
concurrency

and inheritance 212–213
automatic management 220
building comparison

form 216–220
concurrent updates 204–205
connected scenario 209
disconnected scenario with

ApplyCurrentValues
method 210–212

disconnected scenario with
ChangeObjectState
method 209–210

enabling optimistic concur-
rency check 208–209

exceptions
catching 213–214
managing 214–220

handling 208–220
handling graphs 212
managing during

persistence 204
optimistic approach 206
504–507 11–13 advantages 207

534 INDEX

concurrency (continued)
optimistic, in action 209–213
pessimistic control 208
pessimistic lock 205
pessimistic/optimistic

approach 207
problem 204–207

optimistic control 206–207
pessimistic control 205–206
pessimistic/optimistic

control 207
refreshing database

values 215
using all columns for

versioning 207
using version column 206,

209
concurrency exception 179
connection string

creating in code 68–69
metadata 67
name 66
provider 67
providerName 67
setting up 66–69

container, populating 313–315
Contains method 375
context 30

attaching entity as modified
to 514–515

creating proxied entity 168
Identity Map pattern in

72–74
lifecycle in Windows

form 434
managing entities returned

by queries 72
context entity 158
ContextOptions.ProxyCre-

ationEnabled property 77,
405

Context-per-Form pattern 434
Context-per-Request

pattern 389–390
contract 399
converting, cost of 9
CreateChangeScope

method 348
CreateEdmItemCollection

method 328
CreateObjectSet method 65

and tracking 74
CreateQuery method 229
CsdlToSsdlAndMslActivity

D

data
aggregated, filtering 100
fetching. See fetching
filtering 81–89

based on associations
82–86

grouping. See grouping
retrieving from database

71–72
sorting. See sorting

data access layer 358, 461
Entity Framework as 361
interactions with other

layers 362
querying 361
simplifying 57
testing 461–469

data access, introduction 4–5
data adapter

creating 6
using with dataset 5

data annotation, attributes 333
data binding 360

with EntityDataSource
379–383

data container 5–8
limitations 8–10

data layer, introduction 12
data reader

inability to transparently
retrieve data 8

returning column index 9
typed methods 9
using as data container 5–8

Data Source Configuration
Wizard 433

data source controls 379–383
and DataBind method 380
practical guide to 379–380

data table 6
inability to transparently

retrieve data 8
pouring data into 6

data transfer object 93, 399
database

association mismatch 16
associations, unique and

bidirectional 17
connecting to 6
creating before model 36
deleting objects 59–60

connected approach 59

deletion, triggering 438
describing in storage

schema 130–133
designing 37–42
entity state effect on 153
foreign key. See foreign key
granularity mismatch 18
handling mismatches 22
identity mismatch 21
importing 44–46
impossibility of representing

inheritance graphs 20
inheritance mismatch 20
inserting objects 57
managing from the

context 79
modifying, performance

comparison 479–481
natural key. See natural key
never forget about 36
number of tables vs. number

of classes 18
persisting entities into

180–187
querying 55–56
retrieving data from 71–72
special types 528–531

handling using a view 528
handling using defining

query 529
structure, code bound to 7
surrogate key. See surrogate

key
transaction

commit or rollback 179
starting 178

updating 56–60
updating objects 58

connected approach 58
disconnected approach 58

values, refreshing 215
Database Generation Workflow

property 337
Database Schema Name

property 338
database-first design. See bot-

tom-up design
DataCollection attribute 415
DataColumn, introduction 10
DataContract attribute 405,

415
DataContractResolver class 400
DataGrid element, Binding
activity 338 disconnected approach 59 attribute 441

535INDEX

DataMember attribute 405,
408, 415

DataReader
casting and conversion

issues 10
introduction 10

DataSet 363
casting and conversion

issues 10
structure of 10

dataset
using as data container 5–8
vs. recordset 4

dataspace 297
DataSpace enum class 300
DataTable 363

introduction 10
datatype mismatch 15–16
DbDataAdapter,

introduction 10
DbDataReader, transforming

into objects 249–250
DbDataRecord class 233, 293

switching to typed object 293
DbParameter class 111
DDD. See domain-driven design
DDL

generating with
designer 336–339

generation,
customizing 339–344

DDL Generation Template
property 338

Debug class, Assert
method 453

DefiningQuery 265, 285–288,
529

mapping stored procedure to
classes with complex
property 287–288

relationships 287
update through

functions 287
delete cascade 51, 197
DeleteObject method 59, 155,

159–160, 173, 187, 438
design

database-first. See bottom-up
design

model-first. See top-down
design

design, bottom-up. See bottom-
up design

design, top-down. See top-down

designer
extending 344–352

factory class 348–350
installing, debugging, and

uninstalling 352
manifest file 351
property class 346–348
required classes 345
setting up project 345–346

extensions 336
debugging 352
installing 352
uninstalling 352

generating SSDL, MSD, and
DDL 338–339

workflow
choosing 337–338
TablePerTypeStrategy.xaml

337
Detach method 155, 161–162
detail, deleting 439
DetectChanges method 421,

525
DiffDays method 108
discriminator 49
discriminator column 38, 48,

268–269
Domain Driven Design

(Eric Evans) 14
domain layer 364
domain model

anemic 369
complex 376
designing 363
refactoring 370
referencing in unit tests 449
vs. object model 14

Domain Model pattern 14
domain root 371
domain service

criteria for using 371
definition 370
stateless 371

domain-driven design 363–371
aggregate 367–368
and foreign keys 377
association 365
collection 371
composition 366
domain root 367–368
domain service 370
entities 364–365

getting reference to 376
factory 376

layers 364
master-detail

relationship 367
model, refining 368–371
repository 368, 371

implementing 372–376
retrieving references to

domain entities 371
value object 365–366

DTC. See Microsoft Distributed
Transaction Coordinator

DTO 404
benefits of using 412
developing service 409–412
persisting complex

graph 411–412
See also data transfer object

Dynamic Data controls 384–388
data annotations 386–388

DataTypeAttribute
class 388

DisplayNameAttribute
class 388

RegularExpression-
Attribute class 388

RequiredAttribute
class 388

Dynamic Data Entities Web
Application 384

EntityDataSource
control 384

LinqDataSource control 384
MetadataTypeAttribute

class 386
registering model 384–386
scaffolding 386

E

eager loading 113–115
navigation path 114

EDM. See Entity Data Model
EdmFunction attribute 289,

291
EdmFunction class 302
EdmGen tool 485
EdmItemCollection class 299,

328
EDMX file 122
EF Mapping Verifier 472
Eini, Oren 458
entities graph

persisting 187–199

design identity field 365 persisting deletions 196–198

536 INDEX

entities graph (continued)
persisting graph of added

entities 188–192
using foreign-key

associations 188–189
using independent

associations 190–192
persisting graph of entities in

different states 192
persisting many-to-many

relationships 199
persisting

modifications 192–196
entity

adding to context 155–157
associating not-tracked entity

to tracked one 195
attaching 512–516
attaching as Modified or

Deleted 513–514
attaching entities in

ASP.NET 394
attaching to context 157–158
committing 179
context entity 158
creating 123–136
creating from scratch 46–49
definition 365
describing in conceptual

schema 127–130
description, key 286
designing 37–50
detaching from context

161–162
dirty, detecting 177–178
getting reference to 376
lifecycle 152–155
mapping to database 47–49
mark as Unchanged 191
marking as modified 183
marking property as

modified 186
modifications

persisting 438–440
persisting in WPF 445–446
rolling back 427

modifying 49–50
modifying selected properties

after attaching 514–516
persisting added entity

180–182
persisting added graph with

foreign-key

persisting added graph with
independent
association 190–192

persisting deletion 187
persisting deletions in graph

using foreign-key
association 196–197

persisting deletions in graph
using independent
association 197–198

persisting into database
180–187

persisting many-to-many
relationships 199

persisting mixed graph 192
persisting modified

entity 182–187
persisting modified graph

with foreign-key
association 193–195
in connected scenario 193
in disconnected

scenario 193
persisting modified graph

with independent
association 195–196

persisting with
SaveChanges 177–180

plain 167
proxied 167

enabling change
tracking 169

proxy. See proxy entity
returned by a query 76–77
self-tracking. See self-tracking

entity
set, multiple per type. See

multiple entity set per type
single, retrieving 87–89

with context methods
88–89

state. See EntityState
stub, creating 190
vs. value object 367
writing 124–126

Entity Client 31, 64
and Object Services 74–75
data provider 246–251
querying directly 31

Entity Data Model 27–29
and Visual Studio

designer 120–123
Association element in

AssociationSet element in
CSDL 137
SSDL 139

AssociationSetMapping ele-
ment in MSL 143

CollectionType element in
CSDL 295

CommandText element in
SSDL 275

ComplexProperty element in
MSL 135, 279

ComplexType element in
CSDL 127–128

conceptual model 28
splitting 28

conceptual schema 120,
127–130

Condition element in
MSL 147

custom annotations 149–150
DefiningExpression element

in CSDL 291
DefiningQuery element in

SSDL 286
DeleteFunction element in

MSL 279
Dependent element in

CSDL 139
End element in CSDL 138
EndProperty element in

MSL 143
EntityContainer element in

CSDL 127–128
SSDL 139, 286

EntityContainer element in
CSDL 127

EntityContainerMapping ele-
ment in MSL 134

EntitySet element in
CSDL 128
SSDL 131, 286

EntitySetMapping element in
MSL 134, 146

EntityType element in
CSDL 127, 129
SSDL 132–133

EntityTypeMapping element
in MSL 134, 146, 148, 268,
279

Function element in
CSDL 291
SSDL 256, 275

FunctionImport element in
CSDL 267
association 188–189 CSDL 138 SSDL 257

537INDEX

Entity Data Model (continued)
FunctionImportMapping ele-

ment in MSL 258, 264, 268
InsertFunction element in

MSL 279
introduction 120–123
Key element 129

in CSDL 129
location 122
many-to-many

relationship 142–143
in MSL 143

mapping 28–29
Mapping element in

MSL 134
mapping schema 120,

133–136
MappingFragment element

in MSL 134, 146, 148
metadata 122
ModificationFunctionMap-

ping element in MSL 279
NavigationProperty element

in CSDL 137, 142
one-to-many

relationship 140–142
in CSDL 142
in the model 141–142

one-to-one relationship
136–140
in CSDL 137–139
in MSL 140
in SSDL 139–140
in the model 136

Parameter element in
CSDL 257, 291
SSDL 256

Principal element in
CSDL 139

Property element in
CSDL 128

PropertyRef element 129
in CSDL 139

ReferentialConstraint ele-
ment in CSDL 139

relationship tips 143
ResultMapping element in

MSL 268
ReturnType and

RowType 293
ReturnType element in

CSDL 295
RowType element in

CSDL 295
ScalarProperty element in

Schema element in
CSDL 127
SSDL 340

Schema element in
CSDL 127

SSDL EntityContainer
element 131–132

SSDL Schema element 131
storage model 28
storage schema 120, 130–133
table-per-hierarchy

mapping 144–147
design model class 144–145
discriminator column 147
in MSL 145–147

table-per-type mapping
147–149

UpdateFunction element in
MSL 279

verbosity of 28
XML files 27

Entity Data Model Designer
Extension Starter Kit 351

Entity Designer Database Gen-
eration Power Pack 43

Entity Designer Database Gen-
eration toolkit 336

customizing DDL
generation 339–344

Entity Framework
and ASP.NET, common

scenarios 393
architecture 26
as part of infrastructure

layer 364
benefits of using 23–26

current version solves past
problems 25

database vendor
independence 25

inclusion in .NET
Framework 24

integration into Visual
Studio 25

LINQ as query
language 25

recommended for data
access 26

current version 25
data access 26–32
Entity Client. See Entity Client
Entity Data Model. See Entity

Data Model
Entity SQL. See Entity SQL
LINQ to Entities. See LINQ to

Object Services. See Object
Services

query languages 27
vs. NHibernate 24

Entity Framework designer,
limitations 43

entity set 372
introduction 64

Entity SQL 27, 32, 64
AS clause 228
associations

filtering with collection
associations 231

filtering with single
associations 230

navigating 230
working with 230–232

automatic joins 231
complexity of 32
COUNT function 231
defining variable 229
DISTINCT function 231
enabling plan caching

490–491
EXISTS clause 231
filtering data 230–232
FROM clause 228
GROUP BY clause 237
grouping data 237–239

and filtering 238
and projecting 238

handling complex proper-
ties in code 235

HAVING clause 238
history 228
injection 245
JOIN clause 240
joining data 240
LIMIT clause 232
navigating associations 235
navigating complex

properties 230
OFTYPE function 240
ORDER BY clause 232, 239
parameters 230
plan caching 475
projecting concatenated

columns 234
projecting data 232–237

handling results 233–235
with associations 235–237
with collection

associations 236–237
with single

associations 235–236
projecting into complex
MSL 135, 143, 279 Entities properties 234

538 INDEX

Entity SQL (continued)
projecting to DTO 233
query, basics 228–229
query-builder methods 245

chaining 242–243
creating query at

runtime 243
defining variable 242–243
preventing injection

244–245
using parameters 244–245
vs. LINQ to Entities

methods 243–244
querying for

inheritance 240–241
results, paging 232
returning single value from

collection association 237
ROW function 234, 293
SELECT clause 228, 232
SKIP clause 232
sorting data 239–240

based on associations
239–240

SUM function 231
syntax, vs. LINQ to

Entities 231
vs. LINQ to Entities 32, 251
WHERE clause 230

EntityCollection 53
EntityCommand class 246, 248

EnablePlanCaching
property 248, 490

ExecuteNonQuery
method 251

ExecuteReader method 248
EntityConnection class 66,

246–248, 298
and ObjectContext 74
connection string 247
GetMetadataWorkspace

method 248
StoreConnection

property 247
EntityConnectionString-

Builder class 68–69
EntityContainer class 302
EntityDataReader class 246,

248–250
EntityDataSource control

379–383
binding 381–383
ConnectionString

property 383
Data Source Configuration

DefaultContainerName
property 383

EntitySetName property 383
in ASP.NET 3.5 380
in depth 380–383
ObjectContext 382

EntityDesignerExtended-
Property attribute 349

EntityDesignerExtended-
Property class 517

EntityDesignerSelection
enum 350

EntityEntry class 163, 199
EntityFunctions class 108

mathematical functions 109
EntityKey class 88, 166
EntityObject 52
EntityParameter class 246, 248
EntityReference 53
EntitySet class 315
EntityState 152–153

Added 152, 154
changing 153–162
database impact 153
Deleted 152, 155
Detached 152–153
managing 155
Modified 152, 154
modifying from entry

166–167
Unchanged 152, 154
vs. entry state 166

EntityTransaction class 246
EntityType class 302, 310
entry, changing original

values 211
equality by reference 21
Equals method 125

and GetHashCode 195
ErrorProvider component 440
Evans, Eric 25

Domain Driven Design 14
event handler, and business

logic 361
Execute method, and

tracking 74
ExecuteFunction method 258,

283, 492
and multiple resultsets 274

ExecuteStoreCommand
method 201, 282

ExecuteStoreQuery
method 110, 112, 260

overloading 111

expandability 358
ExpectedException

attribute 453
Export attribute 349
extensibility 495
Extension Manager 53
extension method 466, 496,

498
consuming 500
creating 500
importing 500

extension, adding 53

F

factory
definition 376
using Entity Framework’s for-

eign keys 377
factory class 345

creating 348–350
fault injection 450
fetching 113–118

and Include method 114
eager loading 113–115
lazy loading 113, 115–116
manual deferred

loading 116–118
strategy, choosing 118

filtering
based on properties of base

class 106
based on type 105

First method 56
fluent interface 460
foreign key

association 42, 52
in database design 40
introduction 17
mapping 51
property 136

foreign-key property 377
Fowler, Martin 25
full-text search 528
function 107–109

canonical 108–109
and mathematical

functions 108
custom database 108
custom in SSDL 281
database 108–109
defining in conceptual

schema 257
defining in SSDL 275
embedding in storage
Wizard 381 execution, deferred 510–511 model 274–275

539INDEX

function (continued)
generating 329–333
model defined 108
populating 312–313
scalar-valued. See scalar-

valued function 288
user-defined. See user-defined

function
FunctionImportParameter

class 333

G

Generate Database Script from
Model 54

Generate T-SQL Via T4 (TPH)
.xaml file 339

generated code,
organizing 52–54

Geometry data type 528
GetAllEntityTypes method 340
GetHashCode method 125

and Equals 195
GetItem method 301, 305
GetItemCollection

method 301, 304
GetItems method 301,

303–304
GetMetadataWorkspace

method 298
GetObjectByKey method 88,

319
GetObjectStateEntries

method 165
GetObjectStateEntry

method 166
GetUpdatableOriginalValues

method 211, 218
granularity mismatch

and inheritance 20–21
and many-to-many

relationships 18
and value types 18–20

grouping 96–100
grouped data

changing name of 97
filtering 100
projecting 99

key 98

H

I

ICollection interface 372
Add method 372
Remove method 372

IDataErrorInfo interface 425,
429–431

customizing template 432
default property 430
Error property 430
ErrorProvider

component 440
implementing 430

identity column 38
identity field 365
identity map 72
Identity Map pattern 72–74
identity mismatch 21–22
IDisposable interface 66
IDynamicDataSource

interface 380
IEditableObject interface

425–429, 440
BeginEdit method 428
CancelEdit method 428
customizing template 432
EndEdit method 428
inheritance 429

IEntityDesignerExtended-
Property interface 344,
348, 350

CreateProperty method 350
IEnumerable interface 70, 502
IEqualityComparer

interface 195
IGrouping interface 96
IModelConversationExtension

interface 344
IModelGenerationExtension

interface 344
IModelTransformExtension

interface 344
Include method 56, 114

improving 527–528
with lambda expression 527

independent association. See
association, independent

information, selected,
showing 437

infrastructure layer 364
and foreign keys 377
Entity Framework as part

of 364

implementation 372
inheritance

adding 49
and concurrency 212–213
and polymorphic

queries 105
mapping 144–149
persisting 37–38

See also table per concrete
type

querying with 105–107
inheritance mismatch 20–21
InnerException class 199
INotifyPropertyChanged

interface 416, 425–426
advantage of 440
automatic properties 426
customizing template 431
NotifyPropertyChanged

event 426
PropertyChanged event 426

integration test 449, 461
IntelliSense 11
InternalsVisibleTo

attribute 457
Inversion of Control 376

Unity container 389
IObjectChangeTracker

interface 415–416
IObjectContext interface 463
IObjectPersistenceNotification

parameter 525
IObjectSet interface 157, 463,

467
IOrderedQueryable

interface 102
IQueryable interface 70, 390
IQueryProvider interface 70
IRepository class 374
ISet interface 141
isolation level 223
IsolationLevel enum 223
ItemCollection class 328

J

joining 102–105
group join 104

JUnit 451

K

HttpModule 392 repository key, foreign. See foreign key

540 INDEX

L

lambda expression 496,
504–507

layer 358
lazy loading 113, 115–116

enabling 77
switching off 116

link table 40
introduction 17

LINQ
chaining methods 85
Enumerable class 500
flavors 496
functional

programming 496
method chaining 501–502
method evaluation 502–503
methods list 501
provider architecture 496
query execution 510
reasons for creation of

494–497
runtime query

composition 511
unified query language 494
unified query result 495

LINQ in Action 496
LINQ to DataSet 496
LINQ to Entities 27, 31, 64

All method 84
Any method 84
Cast method 106
Contains method 82
Count method 85
Distinct method 85
dynamic querying 89
execution 77–78
filtering 81

on collection
associations 84–85

on single reference
association 82–83

First method 87
vs. Single 88

FirstOrDefault method 87
Group By and groupby

methods 96
into 98

grouping 96–100
grouping properties 91
join method 103
joining 102–105

OfType method 105, 107
orderby and Order By

methods 87, 100
paging results 86
projection 90–96

with collection
association 94

with single association 92
queries

compiling 474, 487–490
unit testing 466–469
vs. standard LINQ

queries 70
querying with

inheritance 105–107
Select method 85, 92
Single method 87

vs. First 88
SingleOrDefault method 88
Skip method 86
sorting 100–102

with associations 101–102
Sum method 84
syntax, vs. Entity SQL 231
Take method 86
vs. Entity SQL 32, 251
Where method 81

LINQ to Objects 496
LINQ to SQL 496

future of 81
LINQ to XML 496
LinqDataSource control

379–380
ListBox 360
LoadProperty method 116
logic contract, n-tier

application 398
loose typing problem 9–10

M

maintainability 358
as benefit of using O/RM 24

Managed Extensibility
Framework 344

manifest file 351
manual deferred loading

116–118
many-to-many relationship,

mapping 52
mapping

Mapping Details window 48
table per hierarchy 48

Mapping Specification Lan-
guage (MSL). See MSL

MarkAsAdded method 416
MarkAsDeleted method 416
MarkAsModified method 416
MarkAsUnchanged

method 416, 420
master-detail relationship 367

avoiding 368
materialization 27
Math class 109
max length 47
MEF. See Managed Extensibility

Framework
MergeOption class 491
MergeOption enum 174–175,

259
AppendOnly value 174
NoTracking value 174
OverwriteChanges value 174
PreserveChanges value 174

MergeOption property
AppendOnly 73
NoTracking 73
OverwriteChanges 73
PreserveChanges 73

MEST. See multiple entity set
per type

metadata
accessing 297–299

using connection 298
using context 298
using, Metadata-

Workspace 299
availability 301
basics 297–301
building explorer 306–316
extracting from EDM

303–306
with GetItem and

TryGetItem 305–306
with GetItemCollection

and TryGetItem-
Collection 304

with GetItems 303–305
force loading 301
internal organization 300
loading 301
object model 302
primitive types 303
retrieving 301–306
retrieving complex types 311
retrieving containers 314
group join 104 mapping file 29, 133–136 retrieving entities 306–307

541INDEX

metadata (continued)
retrieving entity base

type 307–308
retrieving entity derived

types 308
retrieving entity foreign-key

properties 309
retrieving entity key

properties 309
retrieving entity

properties 308–311
retrieving functions 312
retrieving storage

schema 315–316
writing generic code 316–320

Metadata Artifact Processing
property 123

MetadataItemCollection-
Factory class

CreateStoreItemCollection
method 329

MetadataLoader class 328–329
MetadataTools class 328

GetElementType
method 333

MetadataWorkspace class 297,
299

constructor 299
RegisterItemCollection

method 299
MetadataWorkspace property,

ObjectContext 298
method

aggregation family 85
chaining 85
projection family 85
set family 84

Microsoft Distributed Transac-
tion Coordinator 221

Microsoft Unit Testing
Framework 453–455

mocking framework 458–461
model

creating before database 36
defining relationships

136–144
designing 37–42

Model Browser window 47
model. See object model
model-first design. See top-down

design
MSDTC. See Microsoft

Distributed Transaction

MSL, generating in
designer 55

MSTest 451
multiple entity set per type 128

N

namespace, retrieving 330
natural key, avoiding 21
navigation path 114
navigation property 41

and independent
association 42

navigation, conceptual 82
NHibernate, vs. Entity

Framework 23
Nilsson, Jimmy 25
n-tier application

choosing data to exchange
between client and
server 398–399

logic contract 398
problems and solutions

397–400
serialization 399–400
tracking changes on

client 397–398
NUnit 451

O

O/RM
and maintainability 24
and performance 24
and productivity 24
choosing whether to use 26
introduction to 23

object
benefits of using 5
deleting 59–60

connected approach 59
disconnected approach 59

equality 5
inheritance 5
inserting 57
modifying 56–60
relationships 5
tracking

and projection 95–96
n-tier application 397–398

updating 58
connected approach 58
disconnected approach 58

vs. dataset 4

and anonymous types 508
object materialization 30
object model 359, 361, 363

introduction 13–15
moving to domain model 14
vs. domain model 14

Object Model pattern 14
object persistence 5
Object Services 27, 29–30,

64–79
and Entity Client 74–75
context 30
data organization 30
object materialization 30
query transformation 29
tasks 66

object tracking. See change
tracking

object/relational mapping.
See O/RM

object/relational mismatch 5,
15–22

example 8
ObjectChangeTracker

class 415
AcceptChanges method 417
ChangeTrackingEnabled

property 415
ExtendedProperties

property 415–416
ObjectsRemovedFromCollec-

tionProperties
property 415–416

ObjectState property
415–416

OriginalValues
property 415–416

StartTracking method 417
StopTracking method 417

ObjectContext 30
ContextOptions.UseLegacy-

PreserveChangesBehavior
property 174

ObjectContext class 64–66,
153, 155, 463

and EntityConnection 74
Connection property 75
ContextOptions.LazyLoading-

Enabled property 116
Context-per-Request

pattern 390
CreateDatabase method 79
CreateDatabaseScript

method 79

Coordinator object initializer 496, 507–508 CreateObject method 377

542 INDEX

ObjectContext class (continued)
DatabaseExists method 79
decoupling from

ASP.NET 393
DeleteDatabase method 79
implementing interface

on 464
lifecycle in ASP.NET 388–393

using HttpModule
392–393

n-tier application 397
Refresh method 214
Translate method 249–250
unit test 466
wrapping for repository

390–391
ObjectDataSource

control 379–380
ObjectMaterialized event 71, 73
ObjectParameter class 230,

245, 272
ObjectQuery class 65, 76, 88,

241
CommandText property 242

objects graph. See entities graph
ObjectSet class 64–65, 74, 153,

155
AddObject method 462
EnablePlanCaching

property 490
Execute method 434
queries written against 71
unit test 466

ObjectsRemovedFromCollec-
tionProperties
property 416

ObjectStateEntry class 163–164
AcceptChanges method 167,

217
ChangeState method 167,

171
CurrentValues property 163
Delete method 167
Entity property 163
EntityKey property 163

automatic creation 164
temporary 164

EntitySet property 163
EntityState property 163
entry, retrieving 164–166
GetModifiedProperties

method 163
IsRelationship property 163
members 163
methods that modify entity

OriginalValues property 163
SetModified method 167
SetModifiedProperty

method 167
ObjectStateManager class 27,

162–175, 464
accessing 162
adding an element in collec-

tion properties with for-
eign-key association 173

adding an element in collec-
tion properties with inde-
pendent association 173

automatic entry-entity
synchronization 169

ChangeRelationshipState
method 171

DetectChanges method 168
identifying object by

key 163–164
lifecycle 162
monitoring entity

modification 167–170
relationship change 170
relationship for collection

association 170
relationship in collection

property 172–173
relationship in single-

reference property 172
relationship management

during attach 170
relationship with foreign

key 171
relationship with indepen-

dent association 170
removing element in collec-

tion properties with for-
eign key 173

retrieving single entry 166
ObservableCollection

class 442, 445
CollectionChanged

event 445
OfType method 104
OjbectStateManager class

removing element in collec-
tion properties with inde-
pendent association 173

OptimisticConcurrencyExcep-
tion class 213

OrderDetails property 141
OrderIT

model and database,
designing 35–42

OrderIT example
introduction 34–35
requirements 34

OriginalValueRecord class 211,
218

output pragma 327
overnormalization, avoiding 19

P

paging results. See result, paging
parameter

classic 112–113
numbered lists 111–112
working with 111–113

partial class 529
performance

as benefit of using O/RM 24
bulk insert 481
comparison between com-

piled queries and
ADO.NET 488

compiling LINQ to Entities
query 488–489

database-modification
comparison 479–481
with ADO.NET 481

disabling change
tracking 475, 491
for stored procedure 492

enabling plan caching
490–491

Entity SQL plan caching 475
LINQ to Entities query

compilation 474
optimizing 484–492

compiling LINQ to Enti-
ties queries 487–490

pregenerating views
484–487

speeding up first
execution 484–487

stored procedures
491–492

pregenerating view
with EdmGen 485
with template 486

query comparison 481–484
between Object Services

and Entity Client
layer 490

with ADO.NET with track-
ing disabled 491

with all techniques 484
with view
state 167 use cases 35 pregeneration 485

543INDEX

performance (continued)
stored-procedure compari-

son with ADO.NET 491
test configuration 475
timer 476–479
visualizer 476

performance problem 10
persistence

deletion
in connected scenario 187
in disconnected

scenario 187
executing custom SQL

200–201
concurrency 201
simplicity 201

handling exceptions 199–200
logical delete 522
modifications

in connected
scenario 182–183

in disconnected
scenario 183–186

optimized update
command 183

performing operation before
and after 521

tricks 199–201
persistence by reachability 57
persistence ignorance 11, 123
persistence test 470–472

transactions in 471
plain entity. See entity, plain
plain old CLR object (POCO).

See POCO
pluralizing object names 45
POCO (plain old CLR

objects) 11, 53
and persistence

ignorance 123
importance of 123
template 322, 328–329

installing 53
organizing code with 53

polymorphic association 20
polymorphic query. See query,

polymorphic
presentation layer 358, 364

interactions with other
layers 362

logic 360
triggering 361

productivity, as benefit of using
O/RM 24

Profiler API 450

projection 90–96
and grouped data 99
and object tracking 95–96
nested 94
with associations 92–95

projection methods 85
property

complex 125
navigation. See navigation

property
read-only 50
scalar, adding 47
virtual 126

property class 345
creating 346–348

PropertyExtensionContext
class 348

provider model 495
proxy entity 76

disabling 77
proxy, and serialization 400
ProxyDataContractResolver

class 400, 405
SetResolver method 407

ProxyResolver attribute 407

Q

query
and transactions 223–224
compiled

internals 489–490
writing 488–489

defining 285–288
See also DefiningQuery

different techniques 494
double execution 78
dynamic 89
entities returned by 76–77
executing with

EntityCommand 248
manual 110–113
parameters 111–113

classic 112–113
numbered lists 111–112

performance
comparison 481–484

polymorphic 105
results, processing with

EntityDataReader 248–250
writing against classes 70

query syntax 497, 509–510
limitation 510

query transformation 29
Queryable class, Where

querying methods 64
querying, with

inheritance 105–107

R

recordset, vs. dataset 4
refactoring, for testability

456–458
Reflector 76, 466
RefreshMode enum 215

ClientWins 215
StoreWins 215

relational database, working
around inheritance 20

relationship tracking 170–173
relationship, designing 50–52
RelationshipEntry class 163,

170, 199
repository 368, 371, 389

implementation, separating
from interface 372

implementing 372–376
interface 372
reasons to build 372
test 462–466
typical usage 376

Repository class 373
constructor 373

result
paging 86–87
projecting. See projection

result column bindings 277
Rhino Mocks 458

building mock 460
building stub 459
concrete entities 463
VerifyAll method 461

robustness 358

S

Save button 438
SaveChanges method 57, 164,

168, 177–180
committing entities 179
database persistence 179
detecting dirty entities

177–178
generating SQL 178
overriding 180, 520
starting database

transactions 178
workflow 177
projecting results. See projection method 466 SaveOptions enum 179, 222

544 INDEX

SavingChanges event 164–165
scalar property, retrieving in

template 334
scalar-valued function 288–295

in LINQ to Entities 289
passing object as

parameter 292
returning a list of typed

objects 295
returning generic object 293
returning list of generic

objects 294
returning list of scalar

values 294
returning typed object 293

search, full-text. See full-text
search

self-tracking entity 398
adding or deleting

entities 419
ADO.NET Self-Tracking Enti-

ties Generator 414
change tracking 413
complex graph 419
context 417
developing service 413–422
enabling 414–415
entity change tracker

415–416
detecting modifications 416

generating 413
inner workings 415–417
internal state and context

state, automatic
synchronization 421

logic contract 414
managing entity state

416–417
many-to-many

relationships 420–421
MarkAs* methods 416
POCO 415
pros and cons 421–422
proxy creation disabled 417
service proxy 417
using 417–421

SerializableAttribute class 394
serialization

and lazy loading 408
and proxies 400
ASP.NET ViewState 393
in WCF 405
lazy loading 400

service

developing with DTOs
409–412

developing with STEs
413–422

entities as contract 400–409
interface 401
logic contract 403
optimizing data

exchanges 404–405
persisting complex

graph 403, 411–412
serialization 405–409

set methods 84
SetModifiedProperty

method 186, 402, 514
using lambda expression 514

singularizing object names 45
Smalltalk, unit testing in 448
SmartAttach method 515
sorting 100–102

with associations 101–102
SpaceAfter method 328
SpaceBefore method 328
SQL

generated by Entity
Framework 83

generated, capturing 75–76
monitoring with profiler

tool 75
SQL Profiler, and transaction

promotions 222
SqlDataSource control 379
SqlException class 191
SqlFunctions class 109
SqlGeometry .NET type 529
SSDL, generating in

designer 54
SsdlToDdlActivity activity 338
state manager 27

customizing 30
state manager component. See

ObjectStateManager class
STE. See self-tracking entity
storage schema,

retrieving 329–330
Store Schema Definition Lan-

guage (SSDL). See SSDL
stored procedure

binding to function in map-
ping schema 258

concurrency 279–280
configuring 279

defining in storage
schema 256–257

downgrading entity 282
executing 258
importing

manually 256, 258
using designer 254–255

in conceptual schema. See
function

mapping 254, 258
mapping persistence

276–277
mapping scalar resultset 266
mapping to

class with complex
property 265

classes with complex
properties 287–288

complex type 261
complex type using

designer 262–264
mapping TPH inheritance

hierarchy 268
mapping TPT inheritance

hierarchy 269
materialization of navigation

properties 260
multiple resultset 274
not connected to entity 282
not lined up with entity 264
output parameters 258,

271–274
in second resultset 274

performance,
optimizing' 491–492

persisting entity 276–279
persisting inheritance

hierarchy 280–282
querying inheritance

hierarchy 268
querying TPT inheritance

hierarchy 269
results

column names different
from entity
properties 264–265

columns that don’t line up
with entity 261–264

entity with complex
type 265

fetching 272
inheritance

hierarchy 268–271
mapping to class 260–261
scalar values 266–267
that don’t match an
and DTOs 404 definition 285 entity 261–265

545INDEX

stored procedure, results
(continued)
that match an entity

258–261
returning code with 258–274
scenarios 258
updating data with 275–283
upgrading entity 282
wrapper method 259

StoreGeneratedPattern 50
StoreItemCollection class 299,

329
Strategy design pattern 370
strong coupling problem 8–9
StructuralType class 310
stub 190

in DTO 411
stub method

building 330–333
consuming 289
generating code via

template 289
prerequisite 289
scalar-valued function 289
user-defined function 291

surrogate key 21
syntactic sugar 510

T

T4 323
table

designing 37–42
joining. See link table

table per concrete type 37
table per hierarchy 38

discriminator column 182
vs. table per type 39

table per type 37
drawbacks 39
vs. table per hierarchy 39

TablePerTypeStrategy.xaml
workflow 337

table-valued function 287–288
Tangible Engineering, Visual

Studio extension 324
template 322

adding 53
assembly directive 325
block 325
class block tag 325
code generation 323

conceptual to mapping
342–343

conceptual to storage
340–342

creating 323
creating method 327
customizing 328, 336
directive tag 325
directives 323
evaluation block tag 325
extension 327
import directive 325
include directive 326
markup 324
output directive 325
output pragma 327
pragma section 323, 325–326
storage to database

script 343–344
tags 324–325
template directive 325

TEntity type 156
Test Project template 451
test suite, writing 451–455
test, injecting fake ObjectSet to

ObjectContext stub 468
TestApi 450
TestClass attribute 451
TestCleanUp attribute 454, 471
test-driven development 450
TestInitialize attribute 454, 471
TestInitialize method 460
TestMethod attribute 453
Text Template Transformation

Toolkit. See T4
three-layer architecture 358

and complexity 363
business layer 358
code simplicity 362
data access layer 358
object model 363
presentation layer 358
typical 359–363

top-down design
in the designer 54–55
introduction 35
reasons to use 36
vs. bottom-up 36–37

ToTraceString method 76, 301
TPC. See table per concrete type
TPH. See table per hierarchy
TPT. See table per type
TrackableCollection class 416

CollectionChanged

tracking
and CreateObjectSet

method 74
and Execute method 74

transaction
and queries 223–224
and SQL Profiles 222
lifetime, extending 220
managing 220–224
ObjectContext 222–223
performance counters 222
promoting 221

TransactionScope class 220,
222

Complete method 220
IsolationLevel property 223

TryGetItem method 301, 305
TryGetItemCollection

method 301, 304
TryGetObjectByKey method 88
TryGetObjectStateEntry

method 166
type

anonymous. See anonymous
type

complex. See complex type
filtering based on 105

type inference 496–498, 505
type safety, introduction 8

U

UML, sequence diagram 362
unit test 448–451

avoiding bugs in 450
build integration 450
data access layer 461–469
dependencies 449, 456, 458,

461
exception 453
fake 456, 463
faking ObjectSet 467
initialization 454
isolating dependencies

455–461
isolation 461
JUnit 451
LINQ to Entities query

466–469
loosely coupled

dependency 458
Microsoft Unit Testing

Framework 453–455
mock 458–461, 466
code section 323, 326–328 event 416 MSTest 451

546 INDEX

unit test (continued)
naming convention 451–452
NUnit 451
persistence 470–472
refactoring 458, 463
remote service 456
repository 462–466
source control

integration 450
stub 457, 460, 466
test method 449
test report 453
testing a method 451–453

UpdateException class 191,
199

StateEntries property 199
user-defined function 290–295

and collection results
294–295

designer support 290
output 290
passing object as

parameter 291–292
returning list of generic

objects 294
returning list of scalar

values 294
returning list of typed

objects 295
returning nontyped

object 292–293
returning typed object

293–294
Using pattern 75

V

value object
definition 366
immutability 366
modifying 366
vs. entity 367
See also complex type

VB
anonymous method 504
anonymous type 497,

508–509
creating extension

method 500
Dim 497
extension method 496

consuming 500
importing 500

Function 506
Imports 500
lambda expression 496,

505–507
object initializer 496,

507–508
and anonymous types 508

query syntax 497, 509–510
type inference 496, 505

view
creating on database 285
introduction 285
mapping as table 285
mapping via

DefiningQuery 285
pregenerating 484–487

Visual Studio
debugging 352
designer 29

generating code to create
entities 123

EDMX file 29
generating classes 323–328
generating database

DDL 336
generating mapping

information 29
mapping files 29

W

WCF. See Windows Communica-
tion Foundation

web service
and DTOs 404
contract 396, 399
developing with DTOs

409–412
developing with STEs

413–422
entities as contract 400–409
exchanging data with

client 398
interface 401
logic contract 403
optimizing data

exchanges 404–405
persisting complex

graph 403, 411–412
proxy class 457
serialization 399–400,

405–409
Where method, extension

method 466
Windows Communication

Foundation 399
contract resolution 405
contract resolver 400
known types 399
serialization 405–409

Windows Forms application,
binding 432–441

Windows Presentation founda-
tion, binding in 441–446

wrappable entity. See entity,
proxied

wrapped entity. See entity, prox-
ied

WriteAttribute method 334
WriteProperties method 308
WriteTypeBaseTypes

method 307

X

XElement class 348

Mostarda De Sanctis Bochicchio

E
ntity Framework builds on the ADO.NET persistence model
and the language features of LINQ to create a powerful per-
sistence mechanism that bridges the gap between relational

databases and object-oriented languages.

Entity Framework 4 in Action is an example-rich tutorial that
helps .NET developers learn and master the subject. It begins by
explaining object/relational mapping and then shows how you
can easily transition to EF from ADO.NET. Th rough numerous
focused examples and two larger case studies, the book unfolds
the EF story in a clear, easy-to-follow style. Infrastructure and
inner workings of EF are discussed when you need them to
understand a particular feature.

What’s Inside
Full coverage of EF 4 features
Layer separation, Data Layer, and Domain Model
Best practices

Th is book is written for .NET developers. Knowledge of ADO
.NET is helpful but not required.

Stefano Mostarda, Marco De Sanctis, and Daniele Bochicchio are
all ASP.NET MVPs and core members of ASPItalia.com, Italy ’s
largest .NET community. Collectively, they have over 25 years of
.NET development experience.

For access to the book’s forum and a free ebook for owners of this
book, go to manning.com/EntityFramework4inAction

$49.99 / Can $57.99 [INCLUDING eBOOK]

Entity Framework 4 IN ACTION

.NET DEVELOPMENT

“Answers questions you
 didn’t even know you had.”
 —From the Foreword by
 Noam Ben-Ami, Microsoft

“Finally, real insight into
 the Framework.”
 —Christian Siegers, Capgemini

“.NET database development
 at the next level.”
 —Berndt Hamboeck, pmOne

“Easy to read, comprehend,
 and apply.”
 —David Barkol, Neudesic

“All you need to conquer the
 ORM beast.”
 —Jonas Bandi, TechTalk

M A N N I N G

SEE INSERT

	Entity Framework 4
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book?
	Roadmap
	Code conventions
	Source code downloads
	Author online
	About the authors

	about the cover illustration
	Part 1 Redefining your data-access strategy
	Chapter 1 Data access reloaded: Entity Framework
	1.1 Getting started with data access
	1.2 Developing applications using database-like structures
	1.2.1 Using datasets and data readers as data containers
	1.2.2 The strong coupling problem
	1.2.3 The loose typing problem
	1.2.4 The performance problem

	1.3 Using classes to organize data
	1.3.1 Using classes to represent data
	1.3.2 From a single class to the object model

	1.4 Delving deep into object/relational differences
	1.4.1 The datatype mismatch
	1.4.2 The association mismatch
	1.4.3 The granularity mismatch
	1.4.4 The inheritance mismatch
	1.4.5 The identity mismatch
	1.4.6 Handling the mismatches

	1.5 Letting Entity Framework ease your life
	1.5.1 What is O/RM?
	1.5.2 The benefits of using Entity Framework
	1.5.3 When isn’t O/RM needed?

	1.6 How Entity Framework performs data access
	1.6.1 The Entity Data Model
	1.6.2 Object Services
	1.6.3 Entity Client data provider
	1.6.4 LINQ to Entities
	1.6.5 Entity SQL

	1.7 Summary

	Chapter 2 Getting started with Entity Framework
	2.1 Introducing the OrderIT example
	2.2 Designing the OrderIT model and database
	2.2.1 Bottom-up vs. top-down design
	2.2.2 Customers and suppliers
	2.2.3 Products
	2.2.4 Orders

	2.3 Structuring the application
	2.3.1 Creating the assemblies
	2.3.2 Designing entities using the database-first approach
	2.3.3 Designing relationships
	2.3.4 Organizing the generated code
	2.3.5 The model-first approach in the designer

	2.4 A sneak peek at the code
	2.4.1 Querying the database
	2.4.2 Updating objects and reflecting changes into storage

	2.5 Summary

	Part 2 Getting started
	Chapter 3 Querying the object model: the basics
	3.1 One engine, many querying methods
	3.2 The query engine entry point: Object Services
	3.2.1 Setting up the connection string
	3.2.2 Writing queries against classes
	3.2.3 LINQ to Entities queries vs. standard LINQ queries
	3.2.4 Retrieving data from the database
	3.2.5 Understanding Identity Map in the context
	3.2.6 Understanding interaction between Object Services and Entity Client
	3.2.7 Capturing the generated SQL
	3.2.8 Understanding which entities are returned by a query
	3.2.9 When is a query executed?
	3.2.10 Managing the database from the context

	3.3 Summary

	Chapter 4 Querying with LINQ to Entities
	4.1 Filtering data
	4.1.1 Filtering data based on associations
	4.1.2 Paging results
	4.1.3 Retrieving one entity
	4.1.4 Creating queries dynamically

	4.2 Projecting results
	4.2.1 Projecting with associations
	4.2.2 Projections and object tracking

	4.3 Grouping data
	4.3.1 Filtering aggregated data

	4.4 Sorting
	4.4.1 Sorting with associations

	4.5 Joining data
	4.6 Querying with inheritance
	4.7 Using functions
	4.7.1 Canonical functions
	4.7.2 Database functions

	4.8 Executing handmade queries
	4.8.1 Working with parameters

	4.9 Fetching
	4.9.1 Eager loading
	4.9.2 Lazy loading
	4.9.3 Manual deferred loading
	4.9.4 Choosing a loading approach

	4.10 Summary

	Chapter 5 Domain model mapping
	5.1 The Entity Data Model
	5.1.1 The Entity Data Model and Visual Studio designer

	5.2 Creating consumable entities
	5.2.1 Writing the entities
	5.2.2 Describing entities in the conceptual schema
	5.2.3 Describing the database in the storage schema
	5.2.4 Creating the mapping file

	5.3 Defining relationships in the model
	5.3.1 One-to-one relationships
	5.3.2 One-to-many relationships
	5.3.3 Many-to-many relationships
	5.3.4 Some tips about relationships

	5.4 Mapping inheritance
	5.4.1 Table per hierarchy inheritance
	5.4.2 Table per type inheritance

	5.5 Extending the EDM with custom annotations
	5.5.1 Customizing the EDM

	5.6 Summary

	Chapter 6 Understanding the entity lifecycle
	6.1 The entity lifecycle
	6.1.1 Understanding entity state
	6.1.2 How entity state affects the database
	6.1.3 State changes in the entity lifecycle

	6.2 Managing entity state
	6.2.1 The AddObject method
	6.2.2 The Attach method
	6.2.3 The ApplyCurrentValues and ApplyOriginalValues methods
	6.2.4 The DeleteObject method
	6.2.5 The AcceptAllChanges method
	6.2.6 The ChangeState and ChangeObjectState methods
	6.2.7 The Detach method

	6.3 Managing change tracking with ObjectStateManager
	6.3.1 The ObjectStateEntry class
	6.3.2 Retrieving entries
	6.3.3 Modifying entity state from the entry
	6.3.4 Understanding object tracking
	6.3.5 Understanding relationship tracking
	6.3.6 Change tracking and MergeOption

	6.4 Summary

	Chapter 7 Persisting objects into the database
	7.1 Persisting entities with SaveChanges
	7.1.1 Detecting dirty entities
	7.1.2 Starting database transactions
	7.1.3 SQL code generation and execution
	7.1.4 Database transaction commit or rollback
	7.1.5 Committing entities
	7.1.6 Overriding SaveChanges

	7.2 Persisting changed entities into the database
	7.2.1 Persisting an entity as a new row
	7.2.2 Persisting modifications made to an existing entity
	7.2.3 Persisting entity deletion

	7.3 Persisting entities graphs
	7.3.1 Persisting a graph of added entities
	7.3.2 Persisting modifications made to a graph
	7.3.3 Persisting deletions made to a graph
	7.3.4 Persisting many-to-many relationships

	7.4 A few tricks about persistence
	7.4.1 Handling persistence exceptions
	7.4.2 Executing custom SQL commands

	7.5 Summary

	Chapter 8 Handling concurrency and transactions
	8.1 Understanding the concurrency problem
	8.1.1 The concurrent updates scenario
	8.1.2 A first solution: pessimistic concurrency control
	8.1.3 A better solution: optimistic concurrency control
	8.1.4 The halfway solution: pessimistic/optimistic concurrency control

	8.2 Handling concurrency in Entity Framework
	8.2.1 Enabling optimistic concurrency checking
	8.2.2 Optimistic concurrency in action
	8.2.3 Catching concurrency exceptions
	8.2.4 Managing concurrency exceptions

	8.3 Managing transactions
	8.3.1 The transactional ObjectContext
	8.3.2 Transactions and queries

	8.4 Summary

	Part 3 Mastering Entity Framework
	Chapter 9 An alternative way of querying: Entity SQL
	9.1 Query basics
	9.2 Filtering data
	9.2.1 Working with associations
	9.2.2 Paging results

	9.3 Projecting results
	9.3.1 Handling projection results
	9.3.2 Projecting with associations

	9.4 Grouping data
	9.5 Sorting data
	9.5.1 Sorting data based on associations

	9.6 Joining data
	9.7 Querying for inheritance
	9.8 Using query-builder methods
	9.8.1 Chaining methods
	9.8.2 Query-builder methods vs. LINQ to Entities methods
	9.8.3 Using parameters to prevent injection

	9.9 Working with the Entity Client data provider
	9.9.1 Connecting with EntityConnection
	9.9.2 Executing queries with EntityCommand
	9.9.3 Processing query results with EntityDataReader
	9.9.4 Going beyond querying with Entity Client

	9.10 Summary

	Chapter 10 Working with stored procedures
	10.1 Mapping stored procedures
	10.1.1 Importing a stored procedure using the designer
	10.1.2 Importing stored procedures manually

	10.2 Returning data with stored procedures
	10.2.1 Stored procedures whose results match an entity
	10.2.2 Stored procedures whose results don’t match an entity
	10.2.3 Stored procedures that return scalar values
	10.2.4 Stored procedures that return an inheritance hierarchy
	10.2.5 Stored procedures with output parameters

	10.3 Embedding functions in the storage model
	10.4 Updating data with stored procedures
	10.4.1 Using stored procedures to persist an entity
	10.4.2 Using stored procedures to update an entity with concurrency
	10.4.3 Persisting an entity that’s in an inheritance hierarchy
	10.4.4 Upgrading and downgrading an entity that’s in an inheritance hierarchy
	10.4.5 Executing stored procedures not connected to an entity

	10.5 Summary

	Chapter 11 Working with functions and views
	11.1 Views in the storage model: defining queries
	11.1.1 Creating a defining query
	11.1.2 Mapping stored procedures to classes with complex properties

	11.2 User-defined functions and scalar-valued functions
	11.2.1 Scalar-valued functions
	11.2.2 User-defined functions
	11.2.3 User-defined functions and collection results

	11.3 Summary

	Chapter 12 Exploring EDM metadata
	12.1 Metadata basics
	12.1.1 Accessing metadata
	12.1.2 How metadata is internally organized
	12.1.3 Understanding when metadata becomes available

	12.2 Retrieving metadata
	12.2.1 Understanding the metadata object model
	12.2.2 Extracting metadata from the EDM

	12.3 Building a metadata explorer
	12.3.1 Populating entities and complex types
	12.3.2 Populating functions
	12.3.3 Populating containers
	12.3.4 Populating storage nodes

	12.4 Writing generic code with metadata
	12.4.1 Adding or attaching an object based on custom annotations
	12.4.2 Building a generic GetById method

	12.5 Summary

	Chapter 13 Customizing code and the designer
	13.1 How Visual Studio generates classes
	13.1.1 Understanding template tags
	13.1.2 Understanding directives
	13.1.3 Writing code

	13.2 Customizing class generation
	13.2.1 Understanding the available POCO template
	13.2.2 Generating user-defined and scalar-valued functions
	13.2.3 Generating data-annotation attributes
	13.2.4 Extending classes through partial classes

	13.3 How Visual Studio generates database DDL
	13.3.1 Choosing the workflow
	13.3.2 Generating SSDL, MSL, and DDL

	13.4 Customizing DDL generation
	13.4.1 Understanding the conceptual-to-storage template
	13.4.2 Understanding the conceptual-to-mapping template
	13.4.3 Understanding the storage-to-database script template

	13.5 Creating designer extensions
	13.5.1 How the property-extension mechanism works
	13.5.2 Setting up the project containing the extension
	13.5.3 Creating the property class
	13.5.4 Creating the factory class
	13.5.5 Creating the manifest extension file
	13.5.6 Installing, debugging, and uninstalling the extension

	13.6 Summary

	Part 4 Applied Entity Framework
	Chapter 14 Designing the application around Entity Framework
	14.1 The application design process
	14.2 A typical three-layer architecture
	14.2.1 Filling the product list
	14.2.2 Calculating order totals and saving them to the database
	14.2.3 Dealing with higher levels of complexity

	14.3 Principles of domain-driven design
	14.3.1 Entities
	14.3.2 Value objects
	14.3.3 Handling associations correctly: domain roots and aggregates
	14.3.4 Refining the model

	14.4 Retrieving references to a domain’s entities
	14.4.1 Repositories at a glance
	14.4.2 Implementing a repository
	14.4.3 Getting a reference to a brand new entity

	14.5 Summary

	Chapter 15 Entity Framework and ASP.NET
	15.1 EntityDataSource, a new approach to data binding
	15.1.1 A practical guide to data source controls
	15.1.2 The EntityDataSource control in depth

	15.2 Using Dynamic Data controls with Entity Framework
	15.2.1 Registering the model
	15.2.2 Working with data annotations

	15.3 The ObjectContext lifecycle in ASP.NET
	15.3.1 The Context-per-Request pattern
	15.3.2 Wrapping the context
	15.3.3 A module to handle the lifecycle
	15.3.4 Using the repository in a page

	15.4 Common scenarios involving ASP.NET and Entity Framework
	15.5 Summary

	Chapter 16 Entity Framework and n-tier development
	16.1 n-Tier problems and solutions
	16.1.1 Tracking changes made on the client
	16.1.2 Choosing data to be exchanged between server and client
	16.1.3 The serialization problem

	16.2 Developing a service using entities as contracts
	16.2.1 Persisting a complex graph
	16.2.2 Optimizing data exchanges between client and server
	16.2.3 Dealing with serialization in WCF

	16.3 Developing a service using DTOs
	16.3.1 Persisting a complex graph

	16.4 Developing a service using STEs
	16.4.1 Enabling STEs
	16.4.2 Inside an STE
	16.4.3 Inside the context
	16.4.4 Using STEs
	16.4.5 STE pros and cons

	16.5 Summary

	Chapter 17 Entity Framework and Windows applications
	17.1 An example application
	17.2 Designing model classes for binding
	17.2.1 Implementing INotifyPropertyChanged
	17.2.2 Implementing IEditableObject
	17.2.3 Implementing IDataErrorInfo
	17.2.4 Using a template to generate the binding code

	17.3 Binding in Windows Forms applications
	17.3.1 Showing orders
	17.3.2 Showing data for the selected order
	17.3.3 Showing details of the selected order
	17.3.4 Showing selected detail information
	17.3.5 Adding code to persist modifications
	17.3.6 Taking advantage of binding interfaces

	17.4 Binding in WPF applications
	17.4.1 Showing orders
	17.4.2 Showing data for the selected order
	17.4.3 Showing selected order details
	17.4.4 Showing selected detail information
	17.4.5 Adding code to persist modifications

	17.5 Summary

	Chapter 18 Testing Entity Framework
	18.1 Unit tests at a glance
	18.2 Writing a test suite in Visual Studio 2010
	18.2.1 Testing a simple method
	18.2.2 Advanced features of Microsoft’s Unit Testing Framework

	18.3 Isolating dependencies
	18.3.1 Refactoring for testability
	18.3.2 Using a mocking framework to fake dependencies

	18.4 Unit-testing the data access layer
	18.4.1 A test infrastructure for a repository
	18.4.2 Testing LINQ to Entities queries

	18.5 Testing the persistence and retrieval of an entity
	18.6 Summary

	Chapter 19 Keeping an eye on performance
	19.1 Testing configuration and environment
	19.1.1 The performance test visualizer
	19.1.2 Building the timer

	19.2 Database-writing comparison
	19.3 Query comparisons in the default environment
	19.4 Optimizing performance
	19.4.1 Pregenerating views
	19.4.2 Compiling LINQ to Entities queries
	19.4.3 Enabling plan caching for Entity SQL
	19.4.4 Disabling tracking when it’s not needed
	19.4.5 Optimizing stored procedures

	19.5 Summary

	appendix A: Understanding LINQ
	A.1 Why was LINQ created?
	A.2 Type inference
	A.3 Extension methods
	A.3.1 Method chaining
	A.3.2 Method evaluation

	A.4 Lambda expressions
	A.4.1 Anonymous methods
	A.4.2 From anonymous methods to lambda expressions

	A.5 Object initializers
	A.6 Anonymous types
	A.7 Query syntax
	A.8 Deferred execution
	A.8.1 Runtime query composition

	appendix B: Entity Framework tips and tricks
	B.1 A smart way of attaching entities
	B.1.1 Attaching an entity as Modified or Deleted
	B.1.2 Modifying only selected properties after attaching

	B.2 Building an auditing system
	B.2.1 Creating an attribute to mark auditable entities
	B.2.2 Customizing the designer
	B.2.3 Customizing the template that generates entities
	B.2.4 Overriding the persistence process with a custom context
	B.2.5 Customizing the context template
	B.2.6 Using the code

	B.3 Two tips for querying data
	B.3.1 Improving the Include method
	B.3.2 Enabling full text search in Entity Framework

	B.4 Working with special database types

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Back Cover

