EXPERT INSIGHT

Django 4
By Example

Build powerful and reliable Python web
applications from scratch

2
Foreword by: "’ff///f/%%

s
/ A 7 Fo
Bob Belderbos 7 //W
' _ _
Co-Founder of Pybites _ _,A,;,; —_—

Fourth Edition

Antonio Melé




Django 4 By Example

Fourth Edition

Build powerful and reliable Python web
applications from scratch

Antonio Melé

BIRMINGHAM—MUMBAI



Django 4 By Example
Fourth Edition

Copyright © 2022 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in

a retrieval system, or transmitted in any form or by any means,
without the prior written permission of the publisher, except in the

case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure
the accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information
about all of the companies and products mentioned in this book by
the appropriate use of capitals. However, Packt Publishing cannot

guarantee the accuracy of this information.

Senior Publishing Product Manager: Manish Nainani
Acquisition Editor — Peer Reviews: Suresh Jain
Project Editor: Amisha Vathare

Content Development Editor: Bhavesh Amin

Copy Editor: Safis Editing



Technical Editor: Aditya Sawant
Proofreader: Safis Editing

Indexer: Sejal Dsilva

Presentation Designer: Pranit Padwal
First published: November 2015
Second edition: May 2018

Third edition: March 2020

Fourth edition: August 2022
Production reference: 2230822
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80181-305-1

www.packt.com


http://www.packt.com/

To my sister Paloma.



Foreword

Django: The web framework for perfectionists with deadlines.

I like this tagline because it can be easy for developers to fall prey to

perfectionism when having to deliver workable code on time.

There are many great web frameworks out there, but sometimes
they assume too much of the developer, for example, how to
properly structure a project, find the right plugins and elegantly use

existing abstractions.

Django takes most of that decision fatigue away and provides you
with so much more. But it's also a big framework, so learning it from

scratch can be overwhelming.

I learned Django in 2017, head-on, out of necessity, when we decided
it would be our core technology for our Python coding platform
(CodeChalleng.es). I forced myself to learn the ins and outs by
building a major real-world solution that has served thousands of

aspiring and experienced Python developers since its inception.

Somewhere in this journey, I picked up an early edition of this book.
It turned out to be a treasure trove. Very close to our hearts at
Pybites, it teaches you Django by building interesting, real-world
applications. Not only that, Antonio brings a lot of real-world
experience and knowledge to the table, which shows in how he

implements those projects.



And Antonio never misses an opportunity to introduce lesser-known
features, for example, optimizing database queries with Postgres,
useful packages like django-taggit, social auth using various
platforms, (model) managers, inclusion template tags, and much

more.

In this new edition, he even added additional schemas, images, and
notes in several chapters and moved from jQuery to vanilla

JavaScript (nice!)

This book not only covers Django thoroughly, using clean code
examples that are well explained, it also explains related
technologies which are a must for any Django developer: Django
REST Framework, django-debug-toolbar, frontend / JS, and, last but

not least, Docker.

More importantly, you'll find many nuances that you'll encounter
and best practices you'll need to be an effective Django developer in

a professional setting.

Finding a multifaceted resource like this is hard, and I want to thank
Antonio for all the hard work he consistently puts into keeping it up
to date.

As a Python developer that uses Django a lot, Django by Example
has become my GO TO guide, an unmissable resource I want to
have close by my desk. Every time I come back to this book, I learn
new things, even after having read it multiple times and having used

Django for a solid five years now.

If you embark on this journey, be prepared to get your hands dirty.

It's a practical guide, so brew yourself a good coffee and expect to



sink your teeth into a lot of Django code! But that's how we best

learn, right? :)
- Bob Belderbos
Co-Founder of Pybites



Contributors

About the author

Antonio Melé is the co-founder and chief technology officer of
Nucoro, the fintech platform that allows financial institutions to
build, automate, and scale digital wealth management products.
Antonio is also CTO of Exo Investing, an Al-driven digital
investment platform for the UK market.

Antonio has been developing Django projects since 2006 for clients
across several industries. In 2009 Antonio founded Zenx IT, a
development company specialized in building digital products. He
has been working as a CTO and technology consultant for multiple
technology-based startups and he has managed development teams
building projects for large digital businesses. Antonio holds an MSc.
in Computer Science from ICAI - Universidad Pontificia Comillas,
where he mentors early-stage startups. His father inspired his

passion for computers and programming.



About the reviewer

Asif Saif Uddin is a software craftsman from Bangladesh. He has a
decade-long professional experience working with Python and
Django. Besides working for different start-ups and clients, Asif also
contributes to some frequently used Python and Django packages.
For his open-source contributions, he is now a core maintainer of
Celery, oAuthLib, PyJWT, and auditwheel. He is also co-maintainer
of several Django and Django REST framework extension packages.
He is a voting member of the Django Software Foundation (DSF)
and a contributing/managing member of the Python Software
Foundation (PSF). He has been mentoring many young people to
learn Python and Django, both professionally and personally.

A special thanks to Karen Stingel and Ismir Kullolli for reading
and providing feedback on the book to enhance the content further.
Your help is much appreciated!



Contents

Preface

Who this book is for

What this book covers

To get the most out of this book
Get in touch

1.Building_a Blog_Application

Installing_ Python
Creating_a Python virtual environment
Installing_Django

Installing Django with pip
New features in Django 4

Django overview

Main framework components
The Django architecture
Creating_your first project

Applying initial database migrations
Running_the development server
Project settings

Projects and applications
Creating_an application

Creating_the blog _data models

Creating the Post model
Adding_datetime fields

Defining_a default sort order
Adding_a database index
Activating_the application
Adding_a status field

Adding_a many-to-one relationship




Creating _and applying _migrations
Creating an administration site for models

Creating_a superuser

The Django administration site

Adding _models to the administration site
Customizing how models are displayed

Working_with QuerySets and managers

Creating objects
Updating_objects
Retrieving_objects

Using_the filter()_method

Using_exclude().
Using_order_by.().

Deleting objects
When QuerySets are evaluated
Creating _model managers

Building list and detail views

Creating list and detail views
Using_the get object or 404 shortcut
Adding_URL patterns for your views

Creating templates for your views

Creating a base template
Creating_the post 1list template
Accessing _our application
Creating_the post detail template

The request/response cycle
Additional resources

Summary
Join us on Discord.

2.Enhancing_Your Blog_with Advanced Features




Using_canonical URLs for models
Creating SEO-friendly URLs for posts
Modifying_the URL patterns
Modifying_the views

Modifying the canonical URL for posts
Adding_pagination

Adding_pagination to the post list view
Creating a pagination template
Handling_pagination errors

Building_class-based views

Why use class-based views
Using_a class-based view to list posts

Recommending_posts by email

Creating forms with Django
Handling forms in views
Sending_emails with Django
Sending_emails in views
Rendering_ forms in templates

Creating_a comment system

Creating_a model for comments
Adding_comments to the administration site
Creating forms from models

Handling ModelForms in views

Creating templates for the comment form
Adding_comments to the post detail view
Adding_comments to the post detail template

Additional resources
Summary

3. Extending_Your Blog_Application

Adding_the tagging functionality
Retrieving_posts by similarity




Creating custom template tags and filters

Implementing custom template tags
Creating a simple template tag
Creating _an inclusion template tag
Creating a template tag that returns a
QuerysSet

Implementing custom template filters
Creating a template filter to support
Markdown syntax

Adding _a sitemap to the site
Creating feeds for blog_posts
Adding_full-text search to the blog

Installing PostgreSQL

Creating a PostgreSQL database
Dumping_the existing_data

Switching the database in the project
Loading_the data into the new database
Simple search lookups
Searching_against multiple fields
Building_a search view

Stemming_and ranking results
Stemming_and removing_stop words in
different languages

Weighting queries

Searching with trigram similarity

Additional resources
Summary

4.Building_a Social Website

Creating _a social website project

Starting the social website project

Using_the Django authentication framework

Creating _a login view



Using Django authentication views
Login and logout views

Change password views

Reset password views

User registration and user profiles

User registration

Extending_the user model

Installing Pillow and serving media files
Creating migrations for the profile model

Using_a custom user model
Using_the messages framework
Building_a custom authentication backend

Preventing_users from using an existing
email

Additional resources
Summary.
Join us on Discord.

5.Implementing_Social Authentication

Adding_social authentication to your site

Running_the development server through HTTPS
Authentication using Facebook

Authentication using Twitter

Authentication using Google

Creating a profile for users that register
with social authentication

Additional resources
Summary

6. Sharing_Content on Your Website

Creating _an image bookmarking_website

Building_the image model



Creating many-to-many relationships
Registering the image model in the
administration site

Posting_content from other websites

Cleaning_form fields

Installing_the Requests library
Overriding_the save()_method of a ModelForm
Building_a bookmarklet with JavaScript

Creating a detail view for images
Creating image thumbnails using_easy-thumbnails
Adding_asynchronous actions with JavaScript

Loading_JavaScript on the DOM

Cross-site request forgery for HTTP requests
in JavaScript

Performing HTTP requests with JavaScript

Adding_infinite scroll pagination to the image
list

Additional resources

Summary

7.Tracking_User Actions

Building_a follow system

Creating many-to-many relationships with an
intermediary model

Creating 1list and detail views for user
profiles

Adding_user follow/unfollow actions with
JavaScript

Building_a generic activity stream application

Using the contenttypes framework
Adding_generic relations to your models
Avoiding_duplicate actions in the activity
stream




Adding_user actions to the activity stream

Qjects o
Using_select related().
Using_prefetch_related().

Creating templates for actions

Using signals for denormalizing counts

Working with signals
Application configuration classes

Using_Django Debug_Toolbar

Installing_Django Debug_Toolbar

Django Debug_Toolbar panels
Django Debug_Toolbar commands

Counting_image views with Redis

Installing Docker
Installing_Redis

Using Redis with Python
Storing_image views in Redis
Storing_a ranking in Redis
Next steps with Redis

Additional resources
Summary

8.Building_an Online Shop

Creating_an online shop project

Creating_product catalog models

Registering catalog models on the
administration site

Building catalog_views
Creating catalog_templates




Building_a shopping_cart

Using Django sessions

Session settings

Session expiration
Storing_shopping_carts in sessions
Creating_shopping_cart views

Adding_items to the cart

Building _a template to display the cart
Adding_products to the cart
Updating_product quantities in the cart

Creating_a context processor for the current
cart

Context processors

Setting_the cart into the request
context

Registering_customer orders

Creating order models

Including_order models in the administration
site

Creating customer orders

Asynchronous tasks

Working with asynchronous tasks
Workers, message queues,_and message brokers

Using_Django with Celery and RabbitMQ
Monitoring Celery with Flower

Additional resources
Summary
Join us on Discord.

9.Managing_Payments and Orders

Integrating a payment gateway




Creating a Stripe account
Installing_the Stripe Python library
Adding_Stripe to your project
Building_the payment process

Integrating Stripe Checkout

Testing the checkout process

Using_test credit cards
Checking_the payment information in the
Stripe dashboard

Using_webhooks to receive payment
notifications

Creating_a webhook endpoint
Testing webhook notifications

Referencing Stripe payments in orders
Going_live

Exporting_orders to CSV files

Adding_custom actions to the administration
site

Extending_the administration site with custom
views
Generating PDF invoices dynamically

Installing WeasyPrint
Creating_a PDF template
Rendering PDF files
Sending PDF files by email

Additional resources
Summary.

10. Extending_Your Shop

Creating a coupon system

Building the coupon model




Applying_a coupon to the shopping_cart
Applying_coupons to orders
Creating_coupons for Stripe Checkout

Adding_coupons to orders on the
administration site and to PDF invoices

Building_a recommendation engine

Recommending_products based on previous
purchases

Additional resources
Summary.

11. Adding_Internationalization to Your Shop

Internationalization with Django

Internationalization and localization
settings

Internationalization management commands
Installing_the gettext toolkit

Preparing_your project for internationalization
Translating Python code

Standard translations

Lazy translations

Translations including_variables
Plural forms in translations
Translating_your own code

Translating_templates

The {% trans %} template tag
The {% blocktrans %} template tag
Translating_the shop templates

Using_the Rosetta translation interface
Fuzzy translations




URL patterns for internationalization

Adding_a language prefix to URL patterns
Translating URL patterns

Allowing_users to switch language
Translating models with django-parler

Installing_django-parler

Translating model fields
Integrating_translations into the
administration site

Creating migrations for model translations
Using translations with the ORM

Adapting views for translations

Format localization
Using_django-localflavor to validate form fields

Additional resources
Summary.

12.Building_an E-Learning Platform

Setting_up the e-learning_project
Serving _media files
Building_the course models

Registering the models in the administration

site
Using_fixtures to provide initjial data for
models

Creating _models for polymorphic content

Using_model inheritance

Abstract models
Multi-table model inheritance

Proxy_models

Creating_ the Content models
Creating custom model fields




Adding_ordering_to module and content
objects

Adding_authentication views

Adding_an authentication system
Creating_the authentication templates

Additional resources
Summary
Join us on Discord.

13. Creating_a Content Management System

Creating a CMS

Creating class-based views
Using_mixins for class-based views
Working with groups and permissions

Restricting access to class-based views

Managing_course modules and their contents

Using_formsets for course modules
Adding_content to course modules
Managing_modules and their contents
Reordering_modules and their contents

Using _mixins from django-braces

Additional resources
Summary

14. Rendering_and Caching_Content

Displaying_courses
Adding_student registration

Creating_a student registration view
Enrolling _on courses

Accessing_the course contents

Rendering_different types of content



Using_the cache framework

Available cache backends
Installing_Memcached

Installing_the Memcached Docker image
Installing the Memcached Python binding
Django cache settings

Adding_Memcached to your project

Cache levels

Using the low-level cache API
Checking_cache requests with Django Debug
Toolbar

Caching_based on dynamic data

Caching_template fragments
Caching_views

Using the per-site cache

Using_the Redis cache backend
Monitoring Redis with Django Redisboard

Additional resources
Summary

15.Building_an API
Building_a RESTful API

Installing _Django REST framework
Defining serializers
Understanding_parsers and renderers
Building_ list and detail views
Consuming_the API

Creating nested serjalizers
Building custom API views
Handling_authentication
Adding_permissions to views
Creating ViewSets and routers




Adding_additional actions to ViewSets
Creating custom permissions
Serializing course contents
Consuming_the RESTful API

Additional resources
Summary.

16.Building_a Chat Server

Creating_a chat application

Implementing_the chat room view

Real-time Django with Channels

Asynchronous applications using_ ASGI
The request/response cycle using_Channels

Installing_Channels

Writing a consumer

Routing

Implementing_ the WebSocket client
Enabling_a channel layer

Channels and groups

Setting_up a channel layer with Redis
Updating_the consumer to broadcast messages
Adding_context to the messages

Modifying the consumer to be fully asynchronous
Integrating the chat application with existing
views

Additional resources

Summary.

17.Going_Live

Creating_a production environment

Managing_settings for multiple environments

Local environment settings



Running_the local environment
Production environment settings

Using_Docker Compose

Installing_Docker Compose

Creating a Dockerfile

Adding_the Python requirements

Creating_a Docker Compose file

Configuring the PostgreSQL service
Applying_database migrations and creating_a
superuser

Configuring the Redis service

Serving_Django through WSGI and NGINX

Using_ uWSGI

Configuring uWSGI

Using NGINX

Configuring NGINX

Using_a hostname

Serving_static and media assets

Collecting static files
Serving_static files with NGINX

Securing_your site with SSL/TLS

Checking_your project for production
Configuring_your Django project for SSL/TLS
Creating_an SSL/TLS certificate

Configuring NGINX to use SSL/TLS
Redirecting HTTP traffic over to HTTPS

Using_Daphne for Django Channels

Using_secure connections for WebSockets
Including Daphne in the NGINX configuration

Creating a custom middleware

Creating a subdomain middleware




Serving multiple subdomains with NGINX

Implementing custom management commands
Additional resources
Summary.

Other Books You May_ Enjoy
Index




Preface

Django is an open-source Python web framework that encourages
rapid development and clean, pragmatic design. It takes care of
much of the hassle of web development and presents a relatively
shallow learning curve for beginner programmers. Django follows
Python’s “batteries included” philosophy, shipping with a rich and
versatile set of modules that solve common web-development
problems. The simplicity of Django, together with its powerful
features, makes it attractive to both novice and expert programmers.
Django has been designed for simplicity, flexibility, reliability, and
scalability.

Nowadays, Django is used by countless start-ups and large
organizations such as Instagram, Spotity, Pinterest, Udemy,
Robinhood, and Coursera. It is not by coincidence that, over the last
few years, Django has consistently been chosen by developers
worldwide as one of the most loved web frameworks in Stack

Overflow’s annual developer survey.

This book will guide you through the entire process of developing
professional web applications with Django. The book focuses on
explaining how the Django web framework works by building
multiple projects from the ground up. This book not only covers the
most relevant aspects of the framework but also explains how to

apply Django to very diverse real-world situations.



This book not only teaches Django but also presents other popular
technologies like PostgreSQL, Redis, Celery, RabbitMQ, and
Memcached. You will learn how to integrate these technologies into
your Django projects throughout the book to create advanced

functionalities and build complex web applications.

Django 4 By Example will walk you through the creation of real-world
applications, solving common problems, and implementing best

practices, using a step-by-step approach that is easy to follow.

After reading this book, you will have a good understanding of how
Django works and how to build full-fledged Python web
applications.



Who this book is for

This book should serve as a primer for programmers newly initiated
to Django. The book is intended for developers with Python
knowledge who wish to learn Django in a pragmatic manner.
Perhaps you are completely new to Django, or you already know a
little but you want to get the most out of it. This book will help you
to master the most relevant areas of the framework by building
practical projects from scratch. You need to have familiarity with
programming concepts in order to read this book. In addition to
basic Python knowledge, some previous knowledge of HTML and

JavaScript is assumed.



What this book covers

This book encompasses a range of topics of web application
development with Django. The book will guide you through
building four different fully-featured web applications, built over the
course of 17 chapters:

* A blog application (chapters 1 to 3)

* Animage bookmarking website (chapters 4 to 7)
* An online shop (chapters 8 to 11)

* An e-learning platform (chapters 12 to 17)

Each chapter covers several Django features:

Chapter 1, Building a Blog Application, will introduce you to the
framework through a blog application. You will create the basic blog
models, views, templates, and URLs to display blog posts. You will
learn how to build QuerySets with the Django object-relational
mapper (ORM), and you will configure the Django administration

site.

Chapter 2, Enhancing Your Blog with Advanced Features, will teach you
how to add pagination to your blog, and how to implement Django
class-based views. You will learn to send emails with Django, and
handle forms and model forms. You will also implement a comment

system for blog posts.

Chapter 3, Extending Your Blog Application, explores how to integrate
third-party applications. This chapter will guide you through the
process of creating a tagging system, and you will learn how to build

complex QuerySets to recommend similar posts. The chapter will



teach you how to create custom template tags and filters. You will
also learn how to use the sitemap framework and create an RSS feed
for your posts. You will complete your blog application by building

a search engine using PostgreSQL'’s full-text search capabilities.

Chapter 4, Building a Social Website, explains how to build a social
website. You will learn how to use the Django authentication
framework, and you will extend the user model with a custom
profile model. The chapter will teach you how to use the messages

framework and you will build a custom authentication backend.

Chapter 5, Implementing Social Authentication, covers implementing
social authentication with Google, Facebook, and Twitter using
OAuth 2 with Python Social Auth. You will learn how to use Django
Extensions to run the development server through HTTPS and
customize the social authentication pipeline to automate the user

profile creation.

Chapter 6, Sharing Content on Your Website, will teach you how to
transform your social application into an image bookmarking
website. You will define many-to-many relationships for models,
and you will create a JavaScript bookmarklet that integrates into
your project. The chapter will show you how to generate image
thumbnails. You will also learn how to implement asynchronous
HTTP requests using JavaScript and Django and you will implement

infinite scroll pagination.

Chapter 7, Tracking User Actions, will show you how to build a
follower system for users. You will complete your image
bookmarking website by creating a user activity stream application.

You will learn how to create generic relations between models and



optimize QuerySets. You will work with signals and implement
denormalization. You will use Django Debug Toolbar to obtain
relevant debug information. Finally, you will integrate Redis into
your project to count image views and you will create a ranking of

the most viewed images with Redis.

Chapter 8, Building an Online Shop, explores how to create an online
shop. You will build models for a product catalog, and you will
create a shopping cart using Django sessions. You will build a
context processor for the shopping cart and will learn how to
manage customer orders. The chapter will teach you how to send
asynchronous notifications using Celery and RabbitMQ. You will

also learn to monitor Celery using Flower.

Chapter 9, Managing Payments and Orders, explains how to integrate a
payment gateway into your shop. You will integrate Stripe Checkout
and receive asynchronous payment notifications in your application.
You will implement custom views in the administration site and you
will also customize the administration site to export orders to CSV

files. You will also learn how to generate PDF invoices dynamically.

Chapter 10, Extending Your Shop, will teach you how to create a
coupon system to apply discounts to the shopping cart. You will
update the Stripe Checkout integration to implement coupon
discounts and you will apply coupons to orders. You will use Redis
to store products that are usually bought together, and use this

information to build a product recommendation engine.

Chapter 11, Adding Internationalization to Your Shop, will show you
how to add internationalization to your project. You will learn how

to generate and manage translation files and translate strings in



Python code and Django templates. You will use Rosetta to manage
translations and implement per-language URLs. You will learn how
to translate model fields using django-parler and how to use
translations with the ORM. Finally, you will create a localized form
field using django-localflavor.

Chapter 12, Building an E-Learning Platform, will guide you through
creating an e-learning platform. You will add fixtures to your project,
and create initial models for the content management system. You
will use model inheritance to create data models for polymorphic
content. You will learn how to create custom model fields by
building a field to order objects. You will also implement
authentication views for the CMS.

Chapter 13, Creating a Content Management System, will teach you how
to create a CMS using class-based views and mixins. You will use the
Django groups and permissions system to restrict access to views
and implement formsets to edit the content of courses. You will also
create a drag-and-drop functionality to reorder course modules and

their content using JavaScript and Django.

Chapter 14, Rendering and Caching Content, will show you how to
implement the public views for the course catalog. You will create a
student registration system and manage student enrollment on
courses. You will create the functionality to render different types of
content for the course modules. You will learn how to cache content
using the Django cache framework and configure the Memcached
and Redis cache backends for your project. Finally, you will learn

how to monitor Redis using the administration site.



Chapter 15, Building an API, explores building a RESTful API for your
project using Django REST framework. You will learn how to create
serializers for your models and create custom API views. You will
handle API authentication and implement permissions for API
views. You will learn how to build API viewsets and routers. The
chapter will also teach you how to consume your API using the
Requests library.

Chapter 16, Building a Chat Server, explains how to use Django
Channels to create a real-time chat server for students. You will learn
how to implement functionalities that rely on asynchronous
communication through WebSockets. You will create a WebSocket
consumer with Python and implement a WebSocket client with
JavaScript. You will use Redis to set up a channel layer and you will

learn how to make your WebSocket consumer fully asynchronous.

Chapter 17, Going Live, will show you how to create settings for
multiple environments and how to set up a production environment
using PostgreSQL, Redis, uWSGI, NGINX, and Daphne with Docker
Compose. You will learn how to serve your project securely through
HTTPS and use the Django system check framework. The chapter
will also teach you how to build a custom middleware and create

custom management commands.

To get the most out of this book

* The reader must possess a good working knowledge of Python.
® The reader should be comfortable with HTML and JavaScript.

* [tis recommended that the reader goes through parts 1 to 3 of

the tutorial in the official Django documentation at



https://docs.djangoproject.com/en/4.1/intro/tutoria
101/.

Download the example code files

The code bundle for the book is hosted on GitHub at
https://github.com/PacktPublishing/Django-4-by-example.
We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/.
Check them out!

Download the color images
We also provide a PDF file that has color images of the

screenshots/diagrams used in this book. You can download it here:
https://static.packt-
cdn.com/downloads /9781801813051 ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names,
folder names, filenames, file extensions, pathnames, dummy URLs,
user input, and Twitter handles. For example: “Edit the models.py

file of the shop application.”

A block of code is set as follows:


https://docs.djangoproject.com/en/4.0/intro/tutorial01/
https://github.com/PacktPublishing/Django-4-by-example
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801813051_ColorImages.pdf

from django.contrib import admin
from .models import Post
admin.site.register(Post)

When we wish to draw your attention to a particular part of a code

block, the relevant lines or items are set in bold:

INSTALLED_APPS = [
‘django.contrib.admin’,
‘django.contrib.auth’,
"django.contrib.contenttypes’,
‘django.contrib.sessions’',
‘django.contrib.messages’',
'django.contrib.staticfiles’,
'blog.apps.BlogConfig’,

Any command-line input or output is written as follows:

python manage.py runserver

Bold: Indicates a new term, an important word, or words that you

see on the screen. For instance, words in menus or dialog boxes
appear in the text like this. For example: “Fill in the form and click
the Save button.”

@ Warnings or important notes appear like this.



‘,@: Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention
the book’s title in the subject of your message. If you have questions
about any aspect of this book, please email us at

questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of
our content, mistakes do happen. If you have found a mistake in this
book, we would be grateful if you reported this to us. Please visit
http://www.packtpub.com/submit-errata, click Submit Errata,
and fill in the form.

Piracy: If you come across any illegal copies of our works in any
form on the internet, we would be grateful if you would provide us
with the location address or website name. Please contact us at

copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that
you have expertise in and you are interested in either writing or
contributing to a book, please visit
http://authors.packtpub.com.

Share your thoughts


http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Once you've read Django 4 By Example, Fourth Edition, we'd love to
hear your thoughts! Please click here to go straight to the
Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will

help us make sure we're delivering excellent quality content.


https://packt.link/r/1801813051

Building a Blog Application

In this book, you will learn how to build professional Django
projects. This chapter will teach you how to build a Django
application using the main components of the framework. If you
haven’t installed Django yet, you will discover how to do so in the

first part of this chapter.

Before starting our first Django project, let’s take a moment to see
what you will learn. This chapter will give you a general overview of
the framework. The chapter will guide you through the different
major components to create a fully functional web application:
models, templates, views, and URLs. After reading it, you will have
a good understanding of how Django works and how the different

framework components interact.

In this chapter, you will learn the difference between Django projects
and applications, and you will learn the most important Django
settings. You will build a simple blog application that allows users to
navigate through all published posts and read single posts. You will
also create a simple administration interface to manage and publish
posts. In the next two chapters, you will extend the blog application

with more advanced functionalities.



This chapter should serve as a guide to build a complete Django
application and shall provide an insight into how the framework
works. Don’t be concerned if you don’t understand all the aspects of
the framework. The different framework components will be

explored in detail throughout this book.
This chapter will cover the following topics:

* Installing Python

® (Creating a Python virtual environment

¢ Installing Django

* Creating and configuring a Django project

* Building a Django application

* Designing data models

* Creating and applying model migrations

* Creating an administration site for your models
* Working with QuerySets and model managers
* Building views, templates, and URLs

* Understanding the Django request/response cycle

Installing Python

Django 4.1 supports Python 3.8, 3.9, and 3.10. In the examples in this
book, we will use Python 3.10.6.

If you're using Linux or macOS, you probably have Python installed.
If you're using Windows, you can download a Python installer from

https://www.python.org/downloads/windows/.



https://www.python.org/downloads/windows/

Open the command-line shell prompt of your machine. If you are
using macOS, open the /Applications/Utilities directory in the
Finder, then double-click Terminal. If you are using Windows, open
the Start menu and type cmd into the search box. Then click on the

Command Prompt application to open it.

Verity that Python is installed on your machine by typing the
following command in the shell prompt:

python

If you see something like the following, then Python is installed on

your computer:

Python 3.10.6 (v3.10.6:9c7b4bd164, Aug 1 2022, 17::

Type "help", "copyright", "credits" or "license" foi

If your installed Python version is lower than 3.10, or if Python is not
installed on your computer, download Python 3.10.6 from
https://www.python.org/downloads/ and follow the instructions

to install it. On the download site, you can find Python installers for

Windows, macOS, and Linux.

Throughout this book, when Python is referenced in the shell
prompt, we will be using python, though some systems may require
using python3. If you are using Linux or macOS and your system’s
Python is Python 2 you will need to use python3 to use the Python

3 version you installed.


https://www.python.org/downloads/

In Windows, python is the Python executable of your default
Python installation, whereas py is the Python launcher. The Python
launcher for Windows was introduced in Python 3.3. It detects what
Python versions are installed on your machine and it automatically
delegates to the latest version. If you use Windows, it’s
recommended that you replace python with the py command. You
can read more about the Windows Python launcher at
https://docs.python.org/3/using/windows.xhtml#launcher.

Creating a Python virtual
environment

When you write Python applications, you will usually use packages
and modules that are not included in the standard Python library.
You may have Python applications that require a different version of
the same module. However, only a specific version of a module can
be installed system-wide. If you upgrade a module version for an
application, you might end up breaking other applications that

require an older version of that module.

To address this issue, you can use Python virtual environments.
With virtual environments, you can install Python modules in an
isolated location rather than installing them globally. Each virtual
environment has its own Python binary and can have its own

independent set of installed Python packages in its site directories.

Since version 3.3, Python comes with the venv library, which
provides support for creating lightweight virtual environments. By

using the Python venv module to create isolated Python


https://docs.python.org/3/using/windows.xhtml#launcher

environments, you can use different package versions for different
projects. Another advantage of using venv is that you won’t need

any administration privileges to install Python packages.

If you are using Linux or macQOS, create an isolated environment

with the following command:

python -m venv my_env

Remember to use python3 instead of python if your system comes

with Python 2 and you installed Python 3.

If you are using Windows, use the following command instead:

py -m venv my_env

This will use the Python launcher in Windows.

The previous command will create a Python environment in a new
directory named my_env/. Any Python libraries you install while
your virtual environment is active will go into the
my_env/1ib/python3.10/site-packages directory.

If you are using Linux or macOS, run the following command to

activate your virtual environment:

source my_env/bin/activate

If you are using Windows, use the following command instead:



.\my_env\Scripts\activate

The shell prompt will include the name of the active virtual

environment enclosed in parentheses like this:

(my_env) zenx@pc:~ zenx$

You can deactivate your environment at any time with the
deactivate command. You can find more information about venv

at https://docs.python.org/3/library/venv.xhtml.

Installing Django
If you have already installed Django 4.1, you can skip this section

and jump directly to the Creating your first project section.

Django comes as a Python module and thus can be installed in any
Python environment. If you haven’t installed Django yet, the

following is a quick guide to installing it on your machine.

Installing Django with pip

The pip package management system is the preferred method of
installing Django. Python 3.10 comes with pip preinstalled, but you
can find pip installation instructions at
https://pip.pypa.io/en/stable/installing/.

Run the following command at the shell prompt to install Django
with pip:


https://docs.python.org/3/library/venv.xhtml
https://pip.pypa.io/en/stable/installing/

pip install Django~=4.1.0

This will install Django’s latest 4.1 version in the Python site-

packages/ directory of your virtual environment.

Now we will check whether Django has been successfully installed.

Run the following command in a shell prompt:

python -m django --version

If you get the output 4.1.X, Django has been successfully installed

on your machine. If you get the message No module named
Django, Django is not installed on your machine. If you have issues
installing Django, you can review the different installation options
described in
https://docs.djangoproject.com/en/4.1/intro/install/.

Django can be installed in different ways. You can find

@ the different installation options at
https://docs.djangoproject.com/en/4.1/topics
/install/.

All Python packages used in this chapter are included in the
requirements.txt file in the source code for the chapter. You can
follow the instructions to install each Python package in the
following sections, or you can install all requirements at once with
the command pip install -r requirements.txt.


https://docs.djangoproject.com/en/4.1/intro/install/
https://docs.djangoproject.com/en/4.1/topics/install/

New features in Django 4

Django 4 introduces a collection of new features, including some
backward-incompatible changes, while deprecating other features
and eliminating old functionalities. Being a time-based release, there
is no drastic change in Django 4, and it is easy to migrate Django 3
applications to the 4.1 release. While Django 3 included for the first
time Asynchronous Server Gateway Interface (ASGI) support,
Django 4.0 adds several features such as functional unique
constraints for Django models, built-in support for caching data with
Redis, a new default timezone implementation using the standard
Python package zoneinfo, anew scrypt password hasher,
template-based rendering for forms, as well as other new minor
features. Django 4.0 drops support for Python 3.6 and 3.7. It also
drops support for PostgreSQL 9.6, Oracle 12.2, and Oracle 18c.
Django 4.1 introduces asynchronous handlers for class-based views,
an asynchronous ORM interface, new validation of model
constraints and new templates for rendering forms. The 4.1 version
drops support for PostgreSQL 10 and MariaDB 10.2.

You can read the complete list of changes in the Django 4.0 release
notes at
https://docs.djangoproject.com/en/dev/releases/4.0/ and
the Django 4.1 release notes at
https://docs.djangoproject.com/en/4.1/releases/4.1/.

Django overview


https://docs.djangoproject.com/en/dev/releases/4.0/
https://docs.djangoproject.com/en/4.1/releases/4.1/

Django is a framework consisting of a set of components that solve
common web development problems. Django components are
loosely coupled, which means they can be managed independently.
This helps separate the responsibilities of the different layers of the
framework; the database layer knows nothing about how the data is
displayed, the template system knows nothing about web requests,

and so on.

Django offers maximum code reusability by following the DRY
(don’t repeat yourself) principle. Django also fosters rapid
development and allows you to use less code by taking advantage of

Python’s dynamic capabilities, such as introspection.

You can read more about Django’s design philosophies at

https://docs.djangoproject.com/en/4.1/misc/design-
philosophies/.

Main framework components

Django follows the MTV (Model-Template-View) pattern. It is a
slightly similar pattern to the well-known MVC (Model-View-
Controller) pattern, where the Template acts as View and the

framework itself acts as the Controller.

The responsibilities in the Django MTV pattern are divided as

follows:

* Model - Defines the logical data structure and is the data
handler between the database and the View.
* Template — Is the presentation layer. Django uses a plain-text

template system that keeps everything that the browser renders.


https://docs.djangoproject.com/en/4.1/misc/design-philosophies/

* View — Communicates with the database via the Model and
transfers the data to the Template for viewing.

The framework itself acts as the Controller. It sends a request to the

appropriate view, according to the Django URL configuration.

When developing any Django project, you will always work with
models, views, templates, and URLs. In this chapter, you will learn
how they fit together.

The Django architecture

Figure 1.1 shows how Django processes requests and how the
request/response cycle is managed with the different main Django

components: URLs, views, models, and templates:



WEB BROWSER

HTTP Request HTTP Response
JRISPRTRSR. E— DJIANGO ------f-ocoeeeo o ,
I L I
E URL DISPATCHER TEMPLATE :
VIEW
: MODEL |
4
DATABASE

Figure 1.1: The Django architecture
This is how Django handles HTTP requests and generates responses:

1. A web browser requests a page by its URL and the web server
passes the HTTP request to Django.

2. Django runs through its configured URL patterns and stops at
the first one that matches the requested URL.

3. Django executes the view that corresponds to the matched URL
pattern.

4. The view potentially uses data models to retrieve information

from the database.



5. Data models provide the data definition and behaviors. They
are used to query the database.
6. The view renders a template (usually HTML) to display the data

and returns it with an HTTP response.

We will get back to the Django request/response cycle at the end of
this chapter in the The request/response cycle section.

Django also includes hooks in the request/response process, wh