

Django 4 By Example

Fourth Edition

Build powerful and reliable Python web
applications from scratch

Antonio Melé

BIRMINGHAM—MUMBAI

Django 4 By Example

Fourth Edition

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in
a retrieval system, or transmi�ed in any form or by any means,
without the prior wri�en permission of the publisher, except in the
case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure
the accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information
about all of the companies and products mentioned in this book by
the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Senior Publishing Product Manager: Manish Nainani

Acquisition Editor – Peer Reviews: Suresh Jain

Project Editor: Amisha Vathare

Content Development Editor: Bhavesh Amin

Copy Editor: Safis Editing

Technical Editor: Aditya Sawant

Proofreader: Safis Editing

Indexer: Sejal Dsilva

Presentation Designer: Pranit Padwal

First published: November 2015

Second edition: May 2018

Third edition: March 2020

Fourth edition: August 2022

Production reference: 2230822

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80181-305-1

www.packt.com

http://www.packt.com/

To my sister Paloma.

Foreword

Django: The web framework for perfectionists with deadlines.

I like this tagline because it can be easy for developers to fall prey to
perfectionism when having to deliver workable code on time.

There are many great web frameworks out there, but sometimes
they assume too much of the developer, for example, how to
properly structure a project, find the right plugins and elegantly use
existing abstractions.

Django takes most of that decision fatigue away and provides you
with so much more. But it's also a big framework, so learning it from
scratch can be overwhelming.

I learned Django in 2017, head-on, out of necessity, when we decided
it would be our core technology for our Python coding platform
(CodeChalleng.es). I forced myself to learn the ins and outs by
building a major real-world solution that has served thousands of
aspiring and experienced Python developers since its inception.

Somewhere in this journey, I picked up an early edition of this book.
It turned out to be a treasure trove. Very close to our hearts at
Pybites, it teaches you Django by building interesting, real-world
applications. Not only that, Antonio brings a lot of real-world
experience and knowledge to the table, which shows in how he
implements those projects.

And Antonio never misses an opportunity to introduce lesser-known
features, for example, optimizing database queries with Postgres,
useful packages like django-taggit, social auth using various
platforms, (model) managers, inclusion template tags, and much
more.

In this new edition, he even added additional schemas, images, and
notes in several chapters and moved from jQuery to vanilla
JavaScript (nice!)

This book not only covers Django thoroughly, using clean code
examples that are well explained, it also explains related
technologies which are a must for any Django developer: Django
REST Framework, django-debug-toolbar, frontend / JS, and, last but
not least, Docker.

More importantly, you'll find many nuances that you'll encounter
and best practices you'll need to be an effective Django developer in
a professional se�ing.

Finding a multifaceted resource like this is hard, and I want to thank
Antonio for all the hard work he consistently puts into keeping it up
to date.

As a Python developer that uses Django a lot, Django by Example
has become my GO TO guide, an unmissable resource I want to
have close by my desk. Every time I come back to this book, I learn
new things, even after having read it multiple times and having used
Django for a solid five years now.

If you embark on this journey, be prepared to get your hands dirty.
It's a practical guide, so brew yourself a good coffee and expect to

sink your teeth into a lot of Django code! But that's how we best
learn, right? :)

- Bob Belderbos

Co-Founder of Pybites

Contributors

About the author
Antonio Melé is the co-founder and chief technology officer of
Nucoro, the fintech platform that allows financial institutions to
build, automate, and scale digital wealth management products.
Antonio is also CTO of Exo Investing, an AI-driven digital
investment platform for the UK market.

Antonio has been developing Django projects since 2006 for clients
across several industries. In 2009 Antonio founded Zenx IT, a
development company specialized in building digital products. He
has been working as a CTO and technology consultant for multiple
technology-based startups and he has managed development teams
building projects for large digital businesses. Antonio holds an MSc.
in Computer Science from ICAI - Universidad Pontificia Comillas,
where he mentors early-stage startups. His father inspired his
passion for computers and programming.

About the reviewer
Asif Saif Uddin is a software craftsman from Bangladesh. He has a
decade-long professional experience working with Python and
Django. Besides working for different start-ups and clients, Asif also
contributes to some frequently used Python and Django packages.
For his open-source contributions, he is now a core maintainer of
Celery, oAuthLib, PyJWT, and auditwheel. He is also co-maintainer
of several Django and Django REST framework extension packages.
He is a voting member of the Django Software Foundation (DSF)
and a contributing/managing member of the Python Software
Foundation (PSF). He has been mentoring many young people to
learn Python and Django, both professionally and personally.

A special thanks to Karen Stingel and Ismir Kullolli for reading
and providing feedback on the book to enhance the content further.
Your help is much appreciated!

Contents
Preface

Who this book is for
What this book covers
To get the most out of this book
Get in touch

1. Building a Blog Application
Installing Python
Creating a Python virtual environment
Installing Django

Installing Django with pip
New features in Django 4

Django overview
Main framework components
The Django architecture
Creating your first project

Applying initial database migrations
Running the development server
Project settings
Projects and applications
Creating an application

Creating the blog data models

Creating the Post model
Adding datetime fields
Defining a default sort order
Adding a database index
Activating the application
Adding a status field
Adding a many-to-one relationship

Creating and applying migrations

Creating an administration site for models

Creating a superuser
The Django administration site
Adding models to the administration site
Customizing how models are displayed

Working with QuerySets and managers

Creating objects
Updating objects
Retrieving objects

Using the filter() method
Using exclude()
Using order_by()

Deleting objects
When QuerySets are evaluated
Creating model managers

Building list and detail views

Creating list and detail views
Using the get_object_or_404 shortcut
Adding URL patterns for your views

Creating templates for your views

Creating a base template
Creating the post list template
Accessing our application
Creating the post detail template

The request/response cycle
Additional resources
Summary
Join us on Discord.

2. Enhancing Your Blog with Advanced Features

Using canonical URLs for models
Creating SEO-friendly URLs for posts
Modifying the URL patterns
Modifying the views
Modifying the canonical URL for posts
Adding pagination

Adding pagination to the post list view
Creating a pagination template
Handling pagination errors

Building class-based views

Why use class-based views
Using a class-based view to list posts

Recommending posts by email

Creating forms with Django
Handling forms in views
Sending emails with Django
Sending emails in views
Rendering forms in templates

Creating a comment system

Creating a model for comments
Adding comments to the administration site
Creating forms from models
Handling ModelForms in views
Creating templates for the comment form
Adding comments to the post detail view
Adding comments to the post detail template

Additional resources
Summary

3. Extending Your Blog Application
Adding the tagging functionality
Retrieving posts by similarity

Creating custom template tags and filters

Implementing custom template tags
Creating a simple template tag
Creating an inclusion template tag
Creating a template tag that returns a
QuerySet
Implementing custom template filters
Creating a template filter to support
Markdown syntax

Adding a sitemap to the site
Creating feeds for blog posts
Adding full-text search to the blog

Installing PostgreSQL
Creating a PostgreSQL database
Dumping the existing data
Switching the database in the project
Loading the data into the new database
Simple search lookups
Searching against multiple fields
Building a search view
Stemming and ranking results
Stemming and removing stop words in
different languages
Weighting queries
Searching with trigram similarity

Additional resources
Summary

4. Building a Social Website
Creating a social website project

Starting the social website project

Using the Django authentication framework

Creating a login view

Using Django authentication views
Login and logout views
Change password views
Reset password views

User registration and user profiles

User registration
Extending the user model
Installing Pillow and serving media files
Creating migrations for the profile model

Using a custom user model

Using the messages framework

Building a custom authentication backend

Preventing users from using an existing
email

Additional resources
Summary
Join us on Discord.

5. Implementing Social Authentication
Adding social authentication to your site

Running the development server through HTTPS
Authentication using Facebook
Authentication using Twitter
Authentication using Google
Creating a profile for users that register
with social authentication

Additional resources
Summary

6. Sharing Content on Your Website
Creating an image bookmarking website

Building the image model

Creating many-to-many relationships
Registering the image model in the
administration site

Posting content from other websites

Cleaning form fields
Installing the Requests library
Overriding the save() method of a ModelForm
Building a bookmarklet with JavaScript

Creating a detail view for images
Creating image thumbnails using easy-thumbnails
Adding asynchronous actions with JavaScript

Loading JavaScript on the DOM
Cross-site request forgery for HTTP requests
in JavaScript
Performing HTTP requests with JavaScript

Adding infinite scroll pagination to the image
list
Additional resources
Summary

7. Tracking User Actions
Building a follow system

Creating many-to-many relationships with an
intermediary model
Creating list and detail views for user
profiles
Adding user follow/unfollow actions with
JavaScript

Building a generic activity stream application

Using the contenttypes framework
Adding generic relations to your models
Avoiding duplicate actions in the activity
stream

Adding user actions to the activity stream
Displaying the activity stream
Optimizing QuerySets that involve related
objects

Using select_related()
Using prefetch_related()

Creating templates for actions

Using signals for denormalizing counts

Working with signals
Application configuration classes

Using Django Debug Toolbar

Installing Django Debug Toolbar
Django Debug Toolbar panels
Django Debug Toolbar commands

Counting image views with Redis

Installing Docker
Installing Redis
Using Redis with Python
Storing image views in Redis
Storing a ranking in Redis
Next steps with Redis

Additional resources
Summary

8. Building an Online Shop
Creating an online shop project

Creating product catalog models
Registering catalog models on the
administration site
Building catalog views
Creating catalog templates

Building a shopping cart

Using Django sessions
Session settings
Session expiration
Storing shopping carts in sessions
Creating shopping cart views

Adding items to the cart
Building a template to display the cart
Adding products to the cart
Updating product quantities in the cart

Creating a context processor for the current
cart

Context processors
Setting the cart into the request
context

Registering customer orders

Creating order models
Including order models in the administration
site
Creating customer orders

Asynchronous tasks

Working with asynchronous tasks
Workers, message queues, and message brokers

Using Django with Celery and RabbitMQ
Monitoring Celery with Flower

Additional resources
Summary
Join us on Discord.

9. Managing Payments and Orders
Integrating a payment gateway

Creating a Stripe account
Installing the Stripe Python library
Adding Stripe to your project
Building the payment process

Integrating Stripe Checkout

Testing the checkout process

Using test credit cards
Checking the payment information in the
Stripe dashboard

Using webhooks to receive payment
notifications

Creating a webhook endpoint
Testing webhook notifications

Referencing Stripe payments in orders
Going live

Exporting orders to CSV files

Adding custom actions to the administration
site

Extending the administration site with custom
views
Generating PDF invoices dynamically

Installing WeasyPrint
Creating a PDF template
Rendering PDF files
Sending PDF files by email

Additional resources
Summary

10. Extending Your Shop
Creating a coupon system

Building the coupon model

Applying a coupon to the shopping cart
Applying coupons to orders
Creating coupons for Stripe Checkout
Adding coupons to orders on the
administration site and to PDF invoices

Building a recommendation engine

Recommending products based on previous
purchases

Additional resources
Summary

11. Adding Internationalization to Your Shop
Internationalization with Django

Internationalization and localization
settings
Internationalization management commands
Installing the gettext toolkit
How to add translations to a Django project
How Django determines the current language

Preparing your project for internationalization
Translating Python code

Standard translations
Lazy translations
Translations including variables
Plural forms in translations
Translating your own code

Translating templates

The {% trans %} template tag
The {% blocktrans %} template tag
Translating the shop templates

Using the Rosetta translation interface
Fuzzy translations

URL patterns for internationalization

Adding a language prefix to URL patterns
Translating URL patterns

Allowing users to switch language
Translating models with django-parler

Installing django-parler
Translating model fields
Integrating translations into the
administration site
Creating migrations for model translations
Using translations with the ORM
Adapting views for translations

Format localization
Using django-localflavor to validate form fields
Additional resources
Summary

12. Building an E-Learning Platform
Setting up the e-learning project
Serving media files
Building the course models

Registering the models in the administration
site
Using fixtures to provide initial data for
models

Creating models for polymorphic content

Using model inheritance

Abstract models
Multi-table model inheritance
Proxy models

Creating the Content models
Creating custom model fields

Adding ordering to module and content
objects

Adding authentication views

Adding an authentication system
Creating the authentication templates

Additional resources
Summary
Join us on Discord.

13. Creating a Content Management System
Creating a CMS

Creating class-based views
Using mixins for class-based views
Working with groups and permissions

Restricting access to class-based views

Managing course modules and their contents

Using formsets for course modules
Adding content to course modules
Managing modules and their contents
Reordering modules and their contents

Using mixins from django-braces

Additional resources
Summary

14. Rendering and Caching Content
Displaying courses
Adding student registration

Creating a student registration view
Enrolling on courses

Accessing the course contents

Rendering different types of content

Using the cache framework

Available cache backends
Installing Memcached
Installing the Memcached Docker image
Installing the Memcached Python binding
Django cache settings
Adding Memcached to your project
Cache levels
Using the low-level cache API
Checking cache requests with Django Debug
Toolbar

Caching based on dynamic data

Caching template fragments
Caching views

Using the per-site cache

Using the Redis cache backend
Monitoring Redis with Django Redisboard

Additional resources
Summary

15. Building an API
Building a RESTful API

Installing Django REST framework
Defining serializers
Understanding parsers and renderers
Building list and detail views
Consuming the API
Creating nested serializers
Building custom API views
Handling authentication
Adding permissions to views
Creating ViewSets and routers

Adding additional actions to ViewSets
Creating custom permissions
Serializing course contents
Consuming the RESTful API

Additional resources
Summary

16. Building a Chat Server
Creating a chat application

Implementing the chat room view

Real-time Django with Channels

Asynchronous applications using ASGI
The request/response cycle using Channels

Installing Channels
Writing a consumer
Routing
Implementing the WebSocket client
Enabling a channel layer

Channels and groups
Setting up a channel layer with Redis
Updating the consumer to broadcast messages
Adding context to the messages

Modifying the consumer to be fully asynchronous
Integrating the chat application with existing
views
Additional resources
Summary

17. Going Live
Creating a production environment

Managing settings for multiple environments

Local environment settings

Running the local environment
Production environment settings

Using Docker Compose

Installing Docker Compose
Creating a Dockerfile
Adding the Python requirements
Creating a Docker Compose file
Configuring the PostgreSQL service
Applying database migrations and creating a
superuser
Configuring the Redis service

Serving Django through WSGI and NGINX

Using uWSGI
Configuring uWSGI
Using NGINX
Configuring NGINX
Using a hostname
Serving static and media assets

Collecting static files
Serving static files with NGINX

Securing your site with SSL/TLS

Checking your project for production
Configuring your Django project for SSL/TLS
Creating an SSL/TLS certificate
Configuring NGINX to use SSL/TLS
Redirecting HTTP traffic over to HTTPS

Using Daphne for Django Channels

Using secure connections for WebSockets
Including Daphne in the NGINX configuration

Creating a custom middleware

Creating a subdomain middleware

Serving multiple subdomains with NGINX

Implementing custom management commands
Additional resources
Summary

Other Books You May Enjoy
Index

Preface

Django is an open-source Python web framework that encourages
rapid development and clean, pragmatic design. It takes care of
much of the hassle of web development and presents a relatively
shallow learning curve for beginner programmers. Django follows
Python’s “ba�eries included” philosophy, shipping with a rich and
versatile set of modules that solve common web-development
problems. The simplicity of Django, together with its powerful
features, makes it a�ractive to both novice and expert programmers.
Django has been designed for simplicity, flexibility, reliability, and
scalability.

Nowadays, Django is used by countless start-ups and large
organizations such as Instagram, Spotify, Pinterest, Udemy,
Robinhood, and Coursera. It is not by coincidence that, over the last
few years, Django has consistently been chosen by developers
worldwide as one of the most loved web frameworks in Stack
Overflow’s annual developer survey.

This book will guide you through the entire process of developing
professional web applications with Django. The book focuses on
explaining how the Django web framework works by building
multiple projects from the ground up. This book not only covers the
most relevant aspects of the framework but also explains how to
apply Django to very diverse real-world situations.

This book not only teaches Django but also presents other popular
technologies like PostgreSQL, Redis, Celery, RabbitMQ, and
Memcached. You will learn how to integrate these technologies into
your Django projects throughout the book to create advanced
functionalities and build complex web applications.

Django 4 By Example will walk you through the creation of real-world
applications, solving common problems, and implementing best
practices, using a step-by-step approach that is easy to follow.

After reading this book, you will have a good understanding of how
Django works and how to build full-fledged Python web
applications.

Who this book is for
This book should serve as a primer for programmers newly initiated
to Django. The book is intended for developers with Python
knowledge who wish to learn Django in a pragmatic manner.
Perhaps you are completely new to Django, or you already know a
li�le but you want to get the most out of it. This book will help you
to master the most relevant areas of the framework by building
practical projects from scratch. You need to have familiarity with
programming concepts in order to read this book. In addition to
basic Python knowledge, some previous knowledge of HTML and
JavaScript is assumed.

What this book covers
This book encompasses a range of topics of web application
development with Django. The book will guide you through
building four different fully-featured web applications, built over the
course of 17 chapters:

A blog application (chapters 1 to 3)
An image bookmarking website (chapters 4 to 7)
An online shop (chapters 8 to 11)
An e-learning platform (chapters 12 to 17)

Each chapter covers several Django features:

Chapter 1, Building a Blog Application, will introduce you to the
framework through a blog application. You will create the basic blog
models, views, templates, and URLs to display blog posts. You will
learn how to build QuerySets with the Django object-relational
mapper (ORM), and you will configure the Django administration
site.

Chapter 2, Enhancing Your Blog with Advanced Features, will teach you
how to add pagination to your blog, and how to implement Django
class-based views. You will learn to send emails with Django, and
handle forms and model forms. You will also implement a comment
system for blog posts.

Chapter 3, Extending Your Blog Application, explores how to integrate
third-party applications. This chapter will guide you through the
process of creating a tagging system, and you will learn how to build
complex QuerySets to recommend similar posts. The chapter will

teach you how to create custom template tags and filters. You will
also learn how to use the sitemap framework and create an RSS feed
for your posts. You will complete your blog application by building
a search engine using PostgreSQL’s full-text search capabilities.

Chapter 4, Building a Social Website, explains how to build a social
website. You will learn how to use the Django authentication
framework, and you will extend the user model with a custom
profile model. The chapter will teach you how to use the messages
framework and you will build a custom authentication backend.

Chapter 5, Implementing Social Authentication, covers implementing
social authentication with Google, Facebook, and Twi�er using
OAuth 2 with Python Social Auth. You will learn how to use Django
Extensions to run the development server through HTTPS and
customize the social authentication pipeline to automate the user
profile creation.

Chapter 6, Sharing Content on Your Website, will teach you how to
transform your social application into an image bookmarking
website. You will define many-to-many relationships for models,
and you will create a JavaScript bookmarklet that integrates into
your project. The chapter will show you how to generate image
thumbnails. You will also learn how to implement asynchronous
HTTP requests using JavaScript and Django and you will implement
infinite scroll pagination.

Chapter 7, Tracking User Actions, will show you how to build a
follower system for users. You will complete your image
bookmarking website by creating a user activity stream application.
You will learn how to create generic relations between models and

optimize QuerySets. You will work with signals and implement
denormalization. You will use Django Debug Toolbar to obtain
relevant debug information. Finally, you will integrate Redis into
your project to count image views and you will create a ranking of
the most viewed images with Redis.

Chapter 8, Building an Online Shop, explores how to create an online
shop. You will build models for a product catalog, and you will
create a shopping cart using Django sessions. You will build a
context processor for the shopping cart and will learn how to
manage customer orders. The chapter will teach you how to send
asynchronous notifications using Celery and RabbitMQ. You will
also learn to monitor Celery using Flower.

Chapter 9, Managing Payments and Orders, explains how to integrate a
payment gateway into your shop. You will integrate Stripe Checkout
and receive asynchronous payment notifications in your application.
You will implement custom views in the administration site and you
will also customize the administration site to export orders to CSV
files. You will also learn how to generate PDF invoices dynamically.

Chapter 10, Extending Your Shop, will teach you how to create a
coupon system to apply discounts to the shopping cart. You will
update the Stripe Checkout integration to implement coupon
discounts and you will apply coupons to orders. You will use Redis
to store products that are usually bought together, and use this
information to build a product recommendation engine.

Chapter 11, Adding Internationalization to Your Shop, will show you
how to add internationalization to your project. You will learn how
to generate and manage translation files and translate strings in

Python code and Django templates. You will use Rose�a to manage
translations and implement per-language URLs. You will learn how
to translate model fields using django-parler and how to use
translations with the ORM. Finally, you will create a localized form
field using django-localflavor .

Chapter 12, Building an E-Learning Platform, will guide you through
creating an e-learning platform. You will add fixtures to your project,
and create initial models for the content management system. You
will use model inheritance to create data models for polymorphic
content. You will learn how to create custom model fields by
building a field to order objects. You will also implement
authentication views for the CMS.

Chapter 13, Creating a Content Management System, will teach you how
to create a CMS using class-based views and mixins. You will use the
Django groups and permissions system to restrict access to views
and implement formsets to edit the content of courses. You will also
create a drag-and-drop functionality to reorder course modules and
their content using JavaScript and Django.

Chapter 14, Rendering and Caching Content, will show you how to
implement the public views for the course catalog. You will create a
student registration system and manage student enrollment on
courses. You will create the functionality to render different types of
content for the course modules. You will learn how to cache content
using the Django cache framework and configure the Memcached
and Redis cache backends for your project. Finally, you will learn
how to monitor Redis using the administration site.

Chapter 15, Building an API, explores building a RESTful API for your
project using Django REST framework. You will learn how to create
serializers for your models and create custom API views. You will
handle API authentication and implement permissions for API
views. You will learn how to build API viewsets and routers. The
chapter will also teach you how to consume your API using the
Requests library.

Chapter 16, Building a Chat Server, explains how to use Django
Channels to create a real-time chat server for students. You will learn
how to implement functionalities that rely on asynchronous
communication through WebSockets. You will create a WebSocket
consumer with Python and implement a WebSocket client with
JavaScript. You will use Redis to set up a channel layer and you will
learn how to make your WebSocket consumer fully asynchronous.

Chapter 17, Going Live, will show you how to create se�ings for
multiple environments and how to set up a production environment
using PostgreSQL, Redis, uWSGI, NGINX, and Daphne with Docker
Compose. You will learn how to serve your project securely through
HTTPS and use the Django system check framework. The chapter
will also teach you how to build a custom middleware and create
custom management commands.

To get the most out of this book
The reader must possess a good working knowledge of Python.
The reader should be comfortable with HTML and JavaScript.
It is recommended that the reader goes through parts 1 to 3 of
the tutorial in the official Django documentation at

https://docs.djangoproject.com/en/4.1/intro/tutoria
l01/.

Download the example code files
The code bundle for the book is hosted on GitHub at
https://github.com/PacktPublishing/Django-4-by-example.
We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/.
Check them out!

Download the color images
We also provide a PDF file that has color images of the
screenshots/diagrams used in this book. You can download it here:
https://static.packt-
cdn.com/downloads/9781801813051_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText : Indicates code words in text, database table names,
folder names, filenames, file extensions, pathnames, dummy URLs,
user input, and Twi�er handles. For example: “Edit the models.py
file of the shop application.”

A block of code is set as follows:

https://docs.djangoproject.com/en/4.0/intro/tutorial01/
https://github.com/PacktPublishing/Django-4-by-example
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801813051_ColorImages.pdf

from django.contrib import admin
from .models import Post
admin.site.register(Post)

When we wish to draw your a�ention to a particular part of a code
block, the relevant lines or items are set in bold:

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'blog.apps.BlogConfig',
]

Any command-line input or output is wri�en as follows:

python manage.py runserver

Bold: Indicates a new term, an important word, or words that you
see on the screen. For instance, words in menus or dialog boxes
appear in the text like this. For example: “Fill in the form and click
the Save bu�on.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention
the book’s title in the subject of your message. If you have questions
about any aspect of this book, please email us at
questions@packtpub.com .

Errata: Although we have taken every care to ensure the accuracy of
our content, mistakes do happen. If you have found a mistake in this
book, we would be grateful if you reported this to us. Please visit
http://www.packtpub.com/submit-errata, click Submit Errata,
and fill in the form.

Piracy: If you come across any illegal copies of our works in any
form on the internet, we would be grateful if you would provide us
with the location address or website name. Please contact us at
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that
you have expertise in and you are interested in either writing or
contributing to a book, please visit
http://authors.packtpub.com.

Share your thoughts

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Once you’ve read Django 4 By Example, Fourth Edition, we’d love to
hear your thoughts! Please click here to go straight to the
Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will
help us make sure we’re delivering excellent quality content.

https://packt.link/r/1801813051

1

Building a Blog Application

In this book, you will learn how to build professional Django
projects. This chapter will teach you how to build a Django
application using the main components of the framework. If you
haven’t installed Django yet, you will discover how to do so in the
first part of this chapter.

Before starting our first Django project, let’s take a moment to see
what you will learn. This chapter will give you a general overview of
the framework. The chapter will guide you through the different
major components to create a fully functional web application:
models, templates, views, and URLs. After reading it, you will have
a good understanding of how Django works and how the different
framework components interact.

In this chapter, you will learn the difference between Django projects
and applications, and you will learn the most important Django
se�ings. You will build a simple blog application that allows users to
navigate through all published posts and read single posts. You will
also create a simple administration interface to manage and publish
posts. In the next two chapters, you will extend the blog application
with more advanced functionalities.

This chapter should serve as a guide to build a complete Django
application and shall provide an insight into how the framework
works. Don’t be concerned if you don’t understand all the aspects of
the framework. The different framework components will be
explored in detail throughout this book.

This chapter will cover the following topics:

Installing Python
Creating a Python virtual environment
Installing Django
Creating and configuring a Django project
Building a Django application
Designing data models
Creating and applying model migrations
Creating an administration site for your models
Working with QuerySets and model managers
Building views, templates, and URLs
Understanding the Django request/response cycle

Installing Python
Django 4.1 supports Python 3.8, 3.9, and 3.10. In the examples in this
book, we will use Python 3.10.6.

If you’re using Linux or macOS, you probably have Python installed.
If you’re using Windows, you can download a Python installer from
https://www.python.org/downloads/windows/.

https://www.python.org/downloads/windows/

Open the command-line shell prompt of your machine. If you are
using macOS, open the /Applications/Utilities directory in the
Finder, then double-click Terminal. If you are using Windows, open
the Start menu and type cmd into the search box. Then click on the
Command Prompt application to open it.

Verify that Python is installed on your machine by typing the
following command in the shell prompt:

python

If you see something like the following, then Python is installed on
your computer:

If your installed Python version is lower than 3.10, or if Python is not
installed on your computer, download Python 3.10.6 from
https://www.python.org/downloads/ and follow the instructions
to install it. On the download site, you can find Python installers for
Windows, macOS, and Linux.

Throughout this book, when Python is referenced in the shell
prompt, we will be using python , though some systems may require
using python3 . If you are using Linux or macOS and your system’s
Python is Python 2 you will need to use python3 to use the Python
3 version you installed.

Python 3.10.6 (v3.10.6:9c7b4bd164, Aug 1 2022, 17:1
Type "help", "copyright", "credits" or "license" for

https://www.python.org/downloads/

In Windows, python is the Python executable of your default
Python installation, whereas py is the Python launcher. The Python
launcher for Windows was introduced in Python 3.3. It detects what
Python versions are installed on your machine and it automatically
delegates to the latest version. If you use Windows, it’s
recommended that you replace python with the py command. You
can read more about the Windows Python launcher at
https://docs.python.org/3/using/windows.xhtml#launcher.

Creating a Python virtual
environment
When you write Python applications, you will usually use packages
and modules that are not included in the standard Python library.
You may have Python applications that require a different version of
the same module. However, only a specific version of a module can
be installed system-wide. If you upgrade a module version for an
application, you might end up breaking other applications that
require an older version of that module.

To address this issue, you can use Python virtual environments.
With virtual environments, you can install Python modules in an
isolated location rather than installing them globally. Each virtual
environment has its own Python binary and can have its own
independent set of installed Python packages in its site directories.

Since version 3.3, Python comes with the venv library, which
provides support for creating lightweight virtual environments. By
using the Python venv module to create isolated Python

https://docs.python.org/3/using/windows.xhtml#launcher

environments, you can use different package versions for different
projects. Another advantage of using venv is that you won’t need
any administration privileges to install Python packages.

If you are using Linux or macOS, create an isolated environment
with the following command:

python -m venv my_env

Remember to use python3 instead of python if your system comes
with Python 2 and you installed Python 3.

If you are using Windows, use the following command instead:

py -m venv my_env

This will use the Python launcher in Windows.

The previous command will create a Python environment in a new
directory named my_env/ . Any Python libraries you install while
your virtual environment is active will go into the
my_env/lib/python3.10/site-packages directory.

If you are using Linux or macOS, run the following command to
activate your virtual environment:

source my_env/bin/activate

If you are using Windows, use the following command instead:

.\my_env\Scripts\activate

The shell prompt will include the name of the active virtual
environment enclosed in parentheses like this:

(my_env) zenx@pc:~ zenx$

You can deactivate your environment at any time with the
deactivate command. You can find more information about venv
at https://docs.python.org/3/library/venv.xhtml.

Installing Django
If you have already installed Django 4.1, you can skip this section
and jump directly to the Creating your first project section.

Django comes as a Python module and thus can be installed in any
Python environment. If you haven’t installed Django yet, the
following is a quick guide to installing it on your machine.

Installing Django with pip
The pip package management system is the preferred method of
installing Django. Python 3.10 comes with pip preinstalled, but you
can find pip installation instructions at
https://pip.pypa.io/en/stable/installing/.

Run the following command at the shell prompt to install Django
with pip :

https://docs.python.org/3/library/venv.xhtml
https://pip.pypa.io/en/stable/installing/

pip install Django~=4.1.0

This will install Django’s latest 4.1 version in the Python site-
packages/ directory of your virtual environment.

Now we will check whether Django has been successfully installed.
Run the following command in a shell prompt:

python -m django --version

If you get the output 4.1.X , Django has been successfully installed
on your machine. If you get the message No module named
Django , Django is not installed on your machine. If you have issues
installing Django, you can review the different installation options
described in
https://docs.djangoproject.com/en/4.1/intro/install/.

Django can be installed in different ways. You can find
the different installation options at
https://docs.djangoproject.com/en/4.1/topics
/install/.

All Python packages used in this chapter are included in the
requirements.txt file in the source code for the chapter. You can
follow the instructions to install each Python package in the
following sections, or you can install all requirements at once with
the command pip install -r requirements.txt .

https://docs.djangoproject.com/en/4.1/intro/install/
https://docs.djangoproject.com/en/4.1/topics/install/

New features in Django 4
Django 4 introduces a collection of new features, including some
backward-incompatible changes, while deprecating other features
and eliminating old functionalities. Being a time-based release, there
is no drastic change in Django 4, and it is easy to migrate Django 3
applications to the 4.1 release. While Django 3 included for the first
time Asynchronous Server Gateway Interface (ASGI) support,
Django 4.0 adds several features such as functional unique
constraints for Django models, built-in support for caching data with
Redis, a new default timezone implementation using the standard
Python package zoneinfo , a new scrypt password hasher,
template-based rendering for forms, as well as other new minor
features. Django 4.0 drops support for Python 3.6 and 3.7. It also
drops support for PostgreSQL 9.6, Oracle 12.2, and Oracle 18c.
Django 4.1 introduces asynchronous handlers for class-based views,
an asynchronous ORM interface, new validation of model
constraints and new templates for rendering forms. The 4.1 version
drops support for PostgreSQL 10 and MariaDB 10.2.

You can read the complete list of changes in the Django 4.0 release
notes at
https://docs.djangoproject.com/en/dev/releases/4.0/ and
the Django 4.1 release notes at
https://docs.djangoproject.com/en/4.1/releases/4.1/.

Django overview

https://docs.djangoproject.com/en/dev/releases/4.0/
https://docs.djangoproject.com/en/4.1/releases/4.1/

Django is a framework consisting of a set of components that solve
common web development problems. Django components are
loosely coupled, which means they can be managed independently.
This helps separate the responsibilities of the different layers of the
framework; the database layer knows nothing about how the data is
displayed, the template system knows nothing about web requests,
and so on.

Django offers maximum code reusability by following the DRY
(don’t repeat yourself) principle. Django also fosters rapid
development and allows you to use less code by taking advantage of
Python’s dynamic capabilities, such as introspection.

You can read more about Django’s design philosophies at
https://docs.djangoproject.com/en/4.1/misc/design-
philosophies/.

Main framework components
Django follows the MTV (Model-Template-View) pa�ern. It is a
slightly similar pa�ern to the well-known MVC (Model-View-
Controller) pa�ern, where the Template acts as View and the
framework itself acts as the Controller.

The responsibilities in the Django MTV pa�ern are divided as
follows:

Model – Defines the logical data structure and is the data
handler between the database and the View.
Template – Is the presentation layer. Django uses a plain-text
template system that keeps everything that the browser renders.

https://docs.djangoproject.com/en/4.1/misc/design-philosophies/

View – Communicates with the database via the Model and
transfers the data to the Template for viewing.

The framework itself acts as the Controller. It sends a request to the
appropriate view, according to the Django URL configuration.

When developing any Django project, you will always work with
models, views, templates, and URLs. In this chapter, you will learn
how they fit together.

The Django architecture
Figure 1.1 shows how Django processes requests and how the
request/response cycle is managed with the different main Django
components: URLs, views, models, and templates:

Figure 1.1: The Django architecture

This is how Django handles HTTP requests and generates responses:

1. A web browser requests a page by its URL and the web server
passes the HTTP request to Django.

2. Django runs through its configured URL pa�erns and stops at
the first one that matches the requested URL.

3. Django executes the view that corresponds to the matched URL
pa�ern.

4. The view potentially uses data models to retrieve information
from the database.

5. Data models provide the data definition and behaviors. They
are used to query the database.

6. The view renders a template (usually HTML) to display the data
and returns it with an HTTP response.

We will get back to the Django request/response cycle at the end of
this chapter in the The request/response cycle section.

Django also includes hooks in the request/response process, which
are called middleware. Middleware has been intentionally left out of
this diagram for the sake of simplicity. You will use middleware in
different examples of this book, and you will learn how to create
custom middleware in Chapter 17, Going Live.

Creating your first project
Your first Django project will consist of a blog application. We will
start by creating the Django project and a Django application for the
blog. We will then create our data models and synchronize them to
the database.

Django provides a command that allows you to create an initial
project file structure. Run the following command in your shell
prompt:

django-admin startproject mysite

This will create a Django project with the name mysite .

Avoid naming projects after built-in Python or Django
modules in order to avoid conflicts.

Let’s take a look at the generated project structure:

mysite/
 manage.py
 mysite/
 __init__.py
 asgi.py
 settings.py
 urls.py
 wsgi.py

The outer mysite/ directory is the container for our project. It
contains the following files:

manage.py : This is a command-line utility used to interact with
your project. You don’t need to edit this file.
mysite/ : This is the Python package for your project, which
consists of the following files:

__init__.py : An empty file that tells Python to treat the
mysite directory as a Python module.
asgi.py : This is the configuration to run your project as an
Asynchronous Server Gateway Interface (ASGI)
application with ASGI-compatible web servers. ASGI is the
emerging Python standard for asynchronous web servers
and applications.

settings.py : This indicates se�ings and configuration for
your project and contains initial default se�ings.
urls.py : This is the place where your URL pa�erns live.
Each URL defined here is mapped to a view.
wsgi.py : This is the configuration to run your project as a
Web Server Gateway Interface (WSGI) application with
WSGI-compatible web servers.

Applying initial database migrations
Django applications require a database to store data. The
settings.py file contains the database configuration for your
project in the DATABASES se�ing. The default configuration is an
SQLite3 database. SQLite comes bundled with Python 3 and can be
used in any of your Python applications. SQLite is a lightweight
database that you can use with Django for development. If you plan
to deploy your application in a production environment, you should
use a full-featured database, such as PostgreSQL, MySQL, or Oracle.
You can find more information about how to get your database
running with Django at
https://docs.djangoproject.com/en/4.1/topics/install/#d
atabase-installation.

Your settings.py file also includes a list named INSTALLED_APPS
that contains common Django applications that are added to your
project by default. We will go through these applications later in the
Project se�ings section.

Django applications contain data models that are mapped to
database tables. You will create your own models in the Creating the

https://docs.djangoproject.com/en/4.1/topics/install/#database-installation

blog data models section. To complete the project setup, you need to
create the tables associated with the models of the default Django
applications included in the INSTALLED_APPS se�ing. Django comes
with a system that helps you manage database migrations.

Open the shell prompt and run the following commands:

cd mysite
python manage.py migrate

You will see an output that ends with the following lines:

Applying contenttypes.0001_initial... OK
Applying auth.0001_initial... OK
Applying admin.0001_initial... OK
Applying admin.0002_logentry_remove_auto_add... OK
Applying admin.0003_logentry_add_action_flag_choices
Applying contenttypes.0002_remove_content_type_name
Applying auth.0002_alter_permission_name_max_length
Applying auth.0003_alter_user_email_max_length... OK
Applying auth.0004_alter_user_username_opts... OK
Applying auth.0005_alter_user_last_login_null... OK
Applying auth.0006_require_contenttypes_0002... OK
Applying auth.0007_alter_validators_add_error_messag
Applying auth.0008_alter_user_username_max_length..
Applying auth.0009_alter_user_last_name_max_length.
Applying auth.0010_alter_group_name_max_length... OK
Applying auth.0011_update_proxy_permissions... OK
Applying auth.0012_alter_user_first_name_max_length
Applying sessions.0001_initial... OK

The preceding lines are the database migrations that are applied by
Django. By applying the initial migrations, the tables for the
applications listed in the INSTALLED_APPS se�ing are created in the
database.

You will learn more about the migrate management command in
the Creating and applying migrations section of this chapter.

Running the development server
Django comes with a lightweight web server to run your code
quickly, without needing to spend time configuring a production
server. When you run the Django development server, it keeps
checking for changes in your code. It reloads automatically, freeing
you from manually reloading it after code changes. However, it
might not notice some actions, such as adding new files to your
project, so you will have to restart the server manually in these cases.

Start the development server by typing the following command in
the shell prompt:

python manage.py runserver

You should see something like this:

Watching for file changes with StatReloader
Performing system checks...
System check identified no issues (0 silenced).
January 01, 2022 - 10:00:00

Now open http://127.0.0.1:8000/ in your browser. You should
see a page stating that the project is successfully running, as shown
in the Figure 1.2:

Figure 1.2: The default page of the Django development server

The preceding screenshot indicates that Django is running. If you
take a look at your console, you will see the GET request performed
by your browser:

[01/Jan/2022 17:20:30] "GET / HTTP/1.1" 200 16351

Django version 4.0, using settings 'mysite.settings
Starting development server at http://127.0.0.1:8000
Quit the server with CONTROL-C.

Each HTTP request is logged in the console by the development
server. Any error that occurs while running the development server
will also appear in the console.

You can run the Django development server on a custom host and
port or tell Django to load a specific se�ings file, as follows:

When you have to deal with multiple environments
that require different configurations, you can create a
different se�ings file for each environment.

This server is only intended for development and is not suitable for
production use. To deploy Django in a production environment, you
should run it as a WSGI application using a web server, such as
Apache, Gunicorn, or uWSGI, or as an ASGI application using a
server such as Daphne or Uvicorn. You can find more information on
how to deploy Django with different web servers at
https://docs.djangoproject.com/en/4.1/howto/deployment/
wsgi/.

Chapter 17, Going Live, explains how to set up a production
environment for your Django projects.

Project settings

python manage.py runserver 127.0.0.1:8001 --settings

https://docs.djangoproject.com/en/4.1/howto/deployment/wsgi/

Let’s open the settings.py file and take a look at the configuration
of the project. There are several se�ings that Django includes in this
file, but these are only part of all the available Django se�ings. You
can see all the se�ings and their default values at
https://docs.djangoproject.com/en/4.1/ref/settings/.

Let’s review some of the project se�ings:

DEBUG is a Boolean that turns the debug mode of the project on
and off. If it is set to True , Django will display detailed error
pages when an uncaught exception is thrown by your
application. When you move to a production environment,
remember that you have to set it to False . Never deploy a site
into production with DEBUG turned on because you will expose
sensitive project-related data.
ALLOWED_HOSTS is not applied while debug mode is on or when
the tests are run. Once you move your site to production and set
DEBUG to False , you will have to add your domain/host to this
se�ing to allow it to serve your Django site.
INSTALLED_APPS is a se�ing you will have to edit for all
projects. This se�ing tells Django which applications are active
for this site. By default, Django includes the following
applications:

django.contrib.admin : An administration site
django.contrib.auth : An authentication framework
django.contrib.contenttypes : A framework for
handling content types
django.contrib.sessions : A session framework
django.contrib.messages : A messaging framework

https://docs.djangoproject.com/en/4.1/ref/settings/

django.contrib.staticfiles : A framework for
managing static files

MIDDLEWARE is a list that contains middleware to be executed.
ROOT_URLCONF indicates the Python module where the root
URL pa�erns of your application are defined.
DATABASES is a dictionary that contains the se�ings for all the
databases to be used in the project. There must always be a
default database. The default configuration uses an SQLite3
database.
LANGUAGE_CODE defines the default language code for this
Django site.
USE_TZ tells Django to activate/deactivate timezone support.
Django comes with support for timezone-aware datetimes. This
se�ing is set to True when you create a new project using the
startproject management command.

Don’t worry if you don’t understand much about what you’re seeing
here. You will learn more about the different Django se�ings in the
following chapters.

Projects and applications
Throughout this book, you will encounter the terms project and
application over and over. In Django, a project is considered a
Django installation with some se�ings. An application is a group of
models, views, templates, and URLs. Applications interact with the
framework to provide specific functionalities and may be reused in
various projects. You can think of a project as your website, which

contains several applications, such as a blog, wiki, or forum, that can
also be used by other Django projects.

Figure 1.3 shows the structure of a Django project:

Figure 1.3: The Django project/application structure

Creating an application
Let’s create our first Django application. We will build a blog
application from scratch.

Run the following command in the shell prompt from the project’s
root directory:

python manage.py startapp blog

This will create the basic structure of the application, which will look
like this:

blog/
 __init__.py
 admin.py
 apps.py
 migrations/
 __init__.py
 models.py
 tests.py
 views.py

These files are as follows:

__init__.py : An empty file that tells Python to treat the blog
directory as a Python module.
admin.py : This is where you register models to include them in
the Django administration site—using this site is optional.
apps.py : This includes the main configuration of the blog
application.
migrations : This directory will contain database migrations of
the application. Migrations allow Django to track your model
changes and synchronize the database accordingly. This
directory contains an empty __init__.py file.
models.py : This includes the data models of your application;
all Django applications need to have a models.py file but it can
be left empty.
tests.py : This is where you can add tests for your application.

views.py : The logic of your application goes here; each view
receives an HTTP request, processes it, and returns a response.

With the application structure ready, we can start building the data
models for the blog.

Creating the blog data models
Remember that a Python object is a collection of data and methods.
Classes are the blueprint for bundling data and functionality
together. Creating a new class creates a new type of object, allowing
you to create instances of that type.

A Django model is a source of information and behaviors of your
data. It consists of a Python class that subclasses
django.db.models.Model . Each model maps to a single database
table, where each a�ribute of the class represents a database field.
When you create a model, Django will provide you with a practical
API to query objects in the database easily.

We will define the database models for our blog application. Then,
we will generate the database migrations for the models to create the
corresponding database tables. When applying the migrations,
Django will create a table for each model defined in the models.py
file of the application.

Creating the Post model
First, we will define a Post model that will allow us to store blog
posts in the database.

Add the following lines to the models.py file of the blog
application. The new lines are highlighted in bold:

from django.db import models
class Post(models.Model):
 title = models.CharField(max_length=250)
 slug = models.SlugField(max_length=250)
 body = models.TextField()
 def __str__(self):
 return self.title

This is the data model for blog posts. Posts will have a title, a short
label called slug , and a body. Let’s take a look at the fields of this
model:

title : This is the field for the post title. This is a CharField
field that translates into a VARCHAR column in the SQL database.
slug : This is a SlugField field that translates into a VARCHAR
column in the SQL database. A slug is a short label that contains
only le�ers, numbers, underscores, or hyphens. A post with the
title Django Reinhardt: A legend of Jazz could have a slug like
django-reinhardt-legend-jazz. We will use the slug field to build
beautiful, SEO-friendly URLs for blog posts in Chapter 2,
Enhancing Your Blog with Advanced Features.
body : This is the field for storing the body of the post. This is a
TextField field that translates into a TEXT column in the SQL
database.

We have also added a __str__() method to the model class. This is
the default Python method to return a string with the human-

readable representation of the object. Django will use this method to
display the name of the object in many places, such as the Django
administration site.

If you have been using Python 2.x, note that in Python
3, all strings are natively considered Unicode;
therefore, we only use the __str__() method. The
__unicode__() method from Python 2.x is obsolete.

Let’s take a look at how the model and its fields will be translated
into a database table and columns. The following diagram shows the
Post model and the corresponding database table that Django will
create when we synchronize the model to the database:

Figure 1.4: Initial Post model and database table correspondence

Django will create a database column for each of the model fields:
title , slug , and body . You can see how each field type
corresponds to a database data type.

By default, Django adds an auto-incrementing primary key field to
each model. The field type for this field is specified in each
application configuration or globally in the DEFAULT_AUTO_FIELD
se�ing. When creating an application with the startapp command,
the default value for DEFAULT_AUTO_FIELD is BigAutoField . This
is a 64-bit integer that automatically increments according to
available IDs. If you don’t specify a primary key for your model,
Django adds this field automatically. You can also define one of the
model fields to be the primary key by se�ing primary_key=True on
it.

We will expand the Post model with additional fields and
behaviors. Once complete, we will synchronize it to the database by
creating a database migration and applying it.

Adding datetime fields
We will continue by adding different datetime fields to the Post
model. Each post will be published at a specific date and time.
Therefore, we need a field to store the publication date and time. We
also want to store the date and time when the Post object was
created, and when it was last modified.

Edit the models.py file of the blog application to make it look like
this. The new lines are highlighted in bold:

from django.db import models
from django.utils import timezone
class Post(models.Model):
 title = models.CharField(max_length=250)

We have added the following fields to the Post model:

publish : This is a DateTimeField field that translates into a
DATETIME column in the SQL database. We will use it to store
the date and time when the post was published. We use
Django’s timezone.now method as the default value for the
field. Note that we imported the timezone module to use this
method. timezone.now returns the current datetime in a
timezone-aware format. You can think of it as a timezone-aware
version of the standard Python datetime.now method.
created : This is a DateTimeField field. We will use it to store
the date and time when the post was created. By using
auto_now_add , the date will be saved automatically when
creating an object.
updated : This is a DateTimeField field. We will use it to store
the last date and time when the post was updated. By using
auto_now , the date will be updated automatically when saving
an object.

Defining a default sort order

 slug = models.SlugField(max_length=250)
 body = models.TextField()
 publish = models.DateTimeField(default=timezone
 created = models.DateTimeField(auto_now_add=True
 updated = models.DateTimeField(auto_now=True)
 def __str__(self):
 return self.title

Blog posts are usually displayed in reverse chronological order
(from newest to oldest). We will define a default ordering for our
model. The default order will apply when obtaining objects from the
database when no order is specified in the query.

Edit the models.py file of the blog application to make it look like
this. The new lines are highlighted in bold:

We have added a Meta class inside the model. This class defines
metadata for the model. We use the ordering a�ribute to tell
Django that it should sort results by the publish field. This ordering
will apply by default for database queries when no specific order is
provided in the query. We indicate descending order by using a
hyphen before the field name, -publish . Posts will be returned in
reverse chronological order by default.

from django.db import models
from django.utils import timezone
class Post(models.Model):
 title = models.CharField(max_length=250)
 slug = models.SlugField(max_length=250)
 body = models.TextField()
 publish = models.DateTimeField(default=timezone
 created = models.DateTimeField(auto_now_add=True
 updated = models.DateTimeField(auto_now=True)
 class Meta:
 ordering = ['-publish']
 def __str__(self):
 return self.title

Adding a database index
Let’s define a database index for the publish field. This will
improve performance for queries filtering or ordering results by this
field. We expect many queries to take advantage of this index since
we are using the publish field to order results by default.

Edit the models.py file of the blog application and make it look
like this. The new lines are highlighted in bold:

We have added the indexes option to the model’s Meta class. This
option allows you to define database indexes for your model, which
could comprise one or multiple fields, in ascending or descending

from django.db import models
from django.utils import timezone
class Post(models.Model):
 title = models.CharField(max_length=250)
 slug = models.SlugField(max_length=250)
 body = models.TextField()
 publish = models.DateTimeField(default=timezone
 created = models.DateTimeField(auto_now_add=True
 updated = models.DateTimeField(auto_now=True)
 class Meta:
 ordering = ['-publish']
 indexes = [
 models.Index(fields=['-publish']),
]
 def __str__(self):
 return self.title

order, or functional expressions and database functions. We have
added an index for the publish field. We use a hyphen before the
field name to define the index in descending order. The creation of
this index will be included in the database migrations that we will
generate later for our blog models.

Index ordering is not supported on MySQL. If you use
MySQL for the database, a descending index will be
created as a normal index.

You can read more information about how to define indexes for
models at
https://docs.djangoproject.com/en/4.1/ref/models/indexe
s/.

Activating the application
We need to activate the blog application in the project, for Django to
keep track of the application and be able to create database tables for
its models.

Edit the settings.py file and add blog.apps.BlogConfig to the
INSTALLED_APPS se�ing. It should look like this. The new lines are
highlighted in bold:

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',

https://docs.djangoproject.com/en/4.1/ref/models/indexes/

 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'blog.apps.BlogConfig',
]

The BlogConfig class is the application configuration. Now Django
knows that the application is active for this project and will be able
to load the application models.

Adding a status field
A common functionality for blogs is to save posts as a draft until
ready for publication. We will add a status field to our model that
will allow us to manage the status of blog posts. We will be using
Draft and Published statuses for posts.

Edit the models.py file of the blog application to make it look as
follows. The new lines are highlighted in bold:

from django.db import models
from django.utils import timezone
class Post(models.Model):
 class Status(models.TextChoices):
 DRAFT = 'DF', 'Draft'
 PUBLISHED = 'PB', 'Published'
 title = models.CharField(max_length=250)
 slug = models.SlugField(max_length=250)
 body = models.TextField()
 publish = models.DateTimeField(default=timezone

We have defined the enumeration class Status by subclassing
models.TextChoices . The available choices for the post status are
DRAFT and PUBLISHED . Their respective values are DF and PB , and
their labels or readable names are Draft and Published.

Django provides enumeration types that you can subclass to define
choices simply. These are based on the enum object of Python’s
standard library. You can read more about enum at
https://docs.python.org/3/library/enum.xhtml.

Django enumeration types present some modifications over enum .
You can learn about those differences at
https://docs.djangoproject.com/en/4.1/ref/models/fields
/#enumeration-types.

We can access Post.Status.choices to obtain the available
choices, Post.Status.labels to obtain the human-readable names,
and Post.Status.values to obtain the actual values of the choices.

 created = models.DateTimeField(auto_now_add=True
 updated = models.DateTimeField(auto_now=True)
 status = models.CharField(max_length=2,
 choices=Status.choices
 default=Status.DRAFT)
 class Meta:
 ordering = ['-publish']
 indexes = [
 models.Index(fields=['-publish']),
]
 def __str__(self):
 return self.title

https://docs.python.org/3/library/enum.xhtml
https://docs.djangoproject.com/en/4.1/ref/models/fields/#enumeration-types

We have also added a new status field to the model that is an
instance of CharField . It includes a choices parameter to limit the
value of the field to the choices in Status.choices . We have also
set a default value for the field using the default parameter. We
use DRAFT as the default choice for this field.

It’s a good practice to define choices inside the model
class and use the enumeration types. This will allow
you to easily reference choice labels, values, or names
from anywhere in your code. You can import the Post
model and use Post.Status.DRAFT as a reference for
the Draft status anywhere in your code.

Let’s take a look at how to interact with the status choices.

Run the following command in the shell prompt to open the Python
shell:

python manage.py shell

Then, type the following lines:

>>> from blog.models import Post
>>> Post.Status.choices

You will obtain the enum choices with value-label pairs like this:

[('DF', 'Draft'), ('PB', 'Published')]

Type the following line:

>>> Post.Status.labels

You will get the human-readable names of the enum members as
follows:

['Draft', 'Published']

Type the following line:

>>> Post.Status.values

You will get the values of the enum members as follows. These are
the values that can be stored in the database for the status field:

['DF', 'PB']

Type the following line:

>>> Post.Status.names

You will get the names of the choices like this:

['DRAFT', 'PUBLISHED']

You can access a specific lookup enumeration member with
Post.Status.PUBLISHED and you can access its .name and
.value properties as well.

Adding a many-to-one relationship
Posts are always wri�en by an author. We will create a relationship
between users and posts that will indicate which user wrote which
posts. Django comes with an authentication framework that handles
user accounts. The Django authentication framework comes in the
django.contrib.auth package and contains a User model. We
will use the User model from the Django authentication framework
to create a relationship between users and posts.

Edit the models.py file of the blog application to make it look like
this. The new lines are highlighted in bold:

from django.db import models
from django.utils import timezone
from django.contrib.auth.models import User
class Post(models.Model):
 class Status(models.TextChoices):
 DRAFT = 'DF', 'Draft'
 PUBLISHED = 'PB', 'Published'
 title = models.CharField(max_length=250)
 slug = models.SlugField(max_length=250)
 author = models.ForeignKey(User,
 on_delete=models.CASC
 related_name='blog_po
 body = models.TextField()

We have imported the User model from the
django.contrib.auth.models module and we have added an
author field to the Post model. This field defines a many-to-one
relationship, meaning that each post is wri�en by a user, and a user
can write any number of posts. For this field, Django will create a
foreign key in the database using the primary key of the related
model.

The on_delete parameter specifies the behavior to adopt when the
referenced object is deleted. This is not specific to Django; it is an
SQL standard. Using CASCADE , you specify that when the referenced
user is deleted, the database will also delete all related blog posts.
You can take a look at all the possible options at
https://docs.djangoproject.com/en/4.1/ref/models/fields
/#django.db.models.ForeignKey.on_delete.

 publish = models.DateTimeField(default=timezone
 created = models.DateTimeField(auto_now_add=True
 updated = models.DateTimeField(auto_now=True)
 status = models.CharField(max_length=2,
 choices=Status.choices
 default=Status.DRAFT)
 class Meta:
 ordering = ['-publish']
 indexes = [
 models.Index(fields=['-publish']),
]
 def __str__(self):
 return self.title

https://docs.djangoproject.com/en/4.1/ref/models/fields/#django.db.models.ForeignKey.on_delete

We use related_name to specify the name of the reverse
relationship, from User to Post . This will allow us to access related
objects easily from a user object by using the user.blog_posts
notation. We will learn more about this later.

Django comes with different types of fields that you can use to
define your models. You can find all field types at
https://docs.djangoproject.com/en/4.1/ref/models/fields
/.

The Post model is now complete, and we can now synchronize it to
the database. But before that, we need to activate the blog
application in our Django project.

Creating and applying migrations
Now that we have a data model for blog posts, we need to create the
corresponding database table. Django comes with a migration
system that tracks the changes made to models and enables them to
propagate into the database.

The migrate command applies migrations for all applications listed
in INSTALLED_APPS . It synchronizes the database with the current
models and existing migrations.

First, we will need to create an initial migration for our Post model.

Run the following command in the shell prompt from the root
directory of your project:

python manage.py makemigrations blog

https://docs.djangoproject.com/en/4.1/ref/models/fields/

You should get an output similar to the following one:

Django just created the 0001_initial.py file inside the
migrations directory of the blog application. This migration
contains the SQL statements to create the database table for the Post
model and the definition of the database index for the publish
field.

You can take a look at the file contents to see how the migration is
defined. A migration specifies dependencies on other migrations and
operations to perform in the database to synchronize it with model
changes.

Let’s take a look at the SQL code that Django will execute in the
database to create the table for your model. The sqlmigrate
command takes the migration names and returns their SQL without
executing it.

Run the following command from the shell prompt to inspect the
SQL output of your first migration:

python manage.py sqlmigrate blog 0001

The output should look as follows:

Migrations for 'blog':
 blog/migrations/0001_initial.py
 - Create model Post
 - Create index blog_post_publish_bb7600_idx
 -publish of model post

The exact output depends on the database you are using. The
preceding output is generated for SQLite. As you can see in the
output, Django generates the table names by combining the
application name and the lowercase name of the model
(blog_post), but you can also specify a custom database name for
your model in the Meta class of the model using the db_table
a�ribute.

BEGIN;
--
-- Create model Post
--
CREATE TABLE "blog_post" (
 "id" integer NOT NULL PRIMARY KEY AUTOINCREMENT,
 "title" varchar(250) NOT NULL,
 "slug" varchar(250) NOT NULL,
 "body" text NOT NULL,
 "publish" datetime NOT NULL,
 "created" datetime NOT NULL,
 "updated" datetime NOT NULL,
 "status" varchar(10) NOT NULL,
 "author_id" integer NOT NULL REFERENCES "auth_user
--
-- Create blog_post_publish_bb7600_idx on field(s) -
--
CREATE INDEX "blog_post_publish_bb7600_idx" ON "blog
CREATE INDEX "blog_post_slug_b95473f2" ON "blog_post
CREATE INDEX "blog_post_author_id_dd7a8485" ON "blog
COMMIT;

Django creates an auto-incremental id column used as the primary
key for each model, but you can also override this by specifying
primary_key=True on one of your model fields. The default id
column consists of an integer that is incremented automatically. This
column corresponds to the id field that is automatically added to
your model.

The following three database indexes are created:

An index with descending order on the publish column. This
is the index we explicitly defined with the indexes option of
the model’s Meta class.
An index on the slug column because SlugField fields imply
an index by default.
An index on the author_id column because ForeignKey fields
imply an index by default.

Let’s compare the Post model with its corresponding database
blog_post table:

Figure 1.5: Complete Post model and database table correspondence

Figure 1.5 shows how the model fields correspond to database table
columns.

Let’s sync the database with the new model.

Execute the following command in the shell prompt to apply
existing migrations:

python manage.py migrate

You will get an output that ends with the following line:

Applying blog.0001_initial... OK

We just applied migrations for the applications listed in
INSTALLED_APPS , including the blog application. After applying
the migrations, the database reflects the current status of the models.

If you edit the models.py file in order to add, remove, or change the
fields of existing models, or if you add new models, you will have to
create a new migration using the makemigrations command. Each
migration allows Django to keep track of model changes. Then, you
will have to apply the migration using the migrate command to
keep the database in sync with your models.

Creating an administration site for
models
Now that the Post model is in sync with the database, we can create
a simple administration site to manage blog posts.

Django comes with a built-in administration interface that is very
useful for editing content. The Django site is built dynamically by
reading the model metadata and providing a production-ready
interface for editing content. You can use it out of the box,
configuring how you want your models to be displayed in it.

The django.contrib.admin application is already included in the
INSTALLED_APPS se�ing, so you don’t need to add it.

Creating a superuser
First, you will need to create a user to manage the administration
site. Run the following command:

python manage.py createsuperuser

You will see the following output. Enter your desired username,
email, and password, as follows:

Username (leave blank to use 'admin'): admin
Email address: admin@admin.com
Password: ********
Password (again): ********

Then you will see the following success message:

Superuser created successfully.

We just created an administrator user with the highest permissions.

The Django administration site
Start the development server with the following command:

python manage.py runserver

Open http://127.0.0.1:8000/admin/ in your browser. You
should see the administration login page, as shown in Figure 1.6:

Figure 1.6: The Django administration site login screen

Log in using the credentials of the user you created in the preceding
step. You will see the administration site index page, as shown in
Figure 1.7:

Figure 1.7: The Django administration site index page

The Group and User models that you can see in the preceding
screenshot are part of the Django authentication framework located

in django.contrib.auth . If you click on Users, you will see the
user you created previously.

Adding models to the administration
site
Let’s add your blog models to the administration site. Edit the
admin.py file of the blog application and make it look like this. The
new lines are highlighted in bold:

from django.contrib import admin
from .models import Post
admin.site.register(Post)

Now reload the administration site in your browser. You should see
your Post model on the site, as follows:

Figure 1.8: The Post model of the blog application included in the Django administration site index
page

That was easy, right? When you register a model in the Django
administration site, you get a user-friendly interface generated by
introspecting your models that allows you to list, edit, create, and
delete objects in a simple way.

Click on the Add link beside Posts to add a new post. You will note
the form that Django has generated dynamically for your model, as
shown in Figure 1.9:

Figure 1.9: The Django administration site edit form for the Post model

Django uses different form widgets for each type of field. Even
complex fields, such as the DateTimeField , are displayed with an
easy interface, such as a JavaScript date picker.

Fill in the form and click on the SAVE bu�on. You should be
redirected to the post list page with a success message and the post
you just created, as shown in Figure 1.10:

Figure 1.10: The Django administration site list view for the Post model with an added successfully
message

Customizing how models are displayed
Now, we will take a look at how to customize the administration
site.

Edit the admin.py file of your blog application and change it, as
follows. The new lines are highlighted in bold:

We are telling the Django administration site that the model is
registered in the site using a custom class that inherits from
ModelAdmin . In this class, we can include information about how to
display the model on the site and how to interact with it.

The list_display a�ribute allows you to set the fields of your
model that you want to display on the administration object list
page. The @admin.register() decorator performs the same
function as the admin.site.register() function that you
replaced, registering the ModelAdmin class that it decorates.

Let’s customize the admin model with some more options.

Edit the admin.py file of your blog application and change it, as
follows. The new lines are highlighted in bold:

from django.contrib import admin
from .models import Post
@admin.register(Post)
class PostAdmin(admin.ModelAdmin):
 list_display = ['title', 'slug', 'author', 'publ

from django.contrib import admin
from .models import Post
@admin.register(Post)
class PostAdmin(admin.ModelAdmin):
 list_display = ['title', 'slug', 'author', 'publ

Return to your browser and reload the post list page. Now, it will
look like this:

Figure 1.11: The Django administration site custom list view for the Post model

You can see that the fields displayed on the post list page are the
ones we specified in the list_display a�ribute. The list page now

 list_filter = ['status', 'created', 'publish',
 search_fields = ['title', 'body']
 prepopulated_fields = {'slug': ('title',)}
 raw_id_fields = ['author']
 date_hierarchy = 'publish'
 ordering = ['status', 'publish']

includes a right sidebar that allows you to filter the results by the
fields included in the list_filter a�ribute.

A search bar has appeared on the page. This is because we have
defined a list of searchable fields using the search_fields
a�ribute. Just below the search bar, there are navigation links to
navigate through a date hierarchy; this has been defined by the
date_hierarchy a�ribute. You can also see that the posts are
ordered by STATUS and PUBLISH columns by default. We have
specified the default sorting criteria using the ordering a�ribute.

Next, click on the ADD POST link. You will also note some changes
here. As you type the title of a new post, the slug field is filled in
automatically. You have told Django to prepopulate the slug field
with the input of the title field using the prepopulated_fields
a�ribute:

Figure 1.12: The slug model is now automatically prepopulated as you type in the title

Also, the author field is now displayed with a lookup widget,
which can be much be�er than a drop-down select input when you
have thousands of users. This is achieved with the raw_id_fields
a�ribute and it looks like this:

Figure 1.13: The widget to select related objects for the author field of the Post model

With a few lines of code, we have customized the way the model is
displayed on the administration site. There are plenty of ways to
customize and extend the Django administration site; you will learn
more about this later in this book.

You can find more information about the Django administration site
at
https://docs.djangoproject.com/en/4.1/ref/contrib/admin
/.

Working with QuerySets and
managers
Now that we have a fully functional administration site to manage
blog posts, it is a good time to learn how to read and write content to
the database programmatically.

The Django object-relational mapper (ORM) is a powerful database
abstraction API that lets you create, retrieve, update, and delete
objects easily. An ORM allows you to generate SQL queries using the
object-oriented paradigm of Python. You can think of it as a way to
interact with your database in pythonic fashion instead of writing
raw SQL queries.

The ORM maps your models to database tables and provides you
with a simple pythonic interface to interact with your database. The

https://docs.djangoproject.com/en/4.1/ref/contrib/admin/

ORM generates SQL queries and maps the results to model objects.
The Django ORM is compatible with MySQL, PostgreSQL, SQLite,
Oracle, and MariaDB.

Remember that you can define the database of your project in the
DATABASES se�ing of your project’s settings.py file. Django can
work with multiple databases at a time, and you can program
database routers to create custom data routing schemes.

Once you have created your data models, Django gives you a free
API to interact with them. You can find the data model reference of
the official documentation at
https://docs.djangoproject.com/en/4.1/ref/models/.

The Django ORM is based on QuerySets. A QuerySet is a collection
of database queries to retrieve objects from your database. You can
apply filters to QuerySets to narrow down the query results based
on given parameters.

Creating objects
Run the following command in the shell prompt to open the Python
shell:

python manage.py shell

Then, type the following lines:

>>> from django.contrib.auth.models import User
>>> from blog.models import Post

https://docs.djangoproject.com/en/4.1/ref/models/

>>> user = User.objects.get(username='admin')
>>> post = Post(title='Another post',
... slug='another-post',
... body='Post body.',
... author=user)
>>> post.save()

Let’s analyze what this code does.

First, we are retrieving the user object with the username admin :

user = User.objects.get(username='admin')

The get() method allows you to retrieve a single object from the
database. Note that this method expects a result that matches the
query. If no results are returned by the database, this method will
raise a DoesNotExist exception, and if the database returns more
than one result, it will raise a MultipleObjectsReturned
exception. Both exceptions are a�ributes of the model class that the
query is being performed on.

Then, we are creating a Post instance with a custom title, slug, and
body, and set the user that we previously retrieved as the author of
the post:

This object is in memory and not persisted to the database; we
created a Python object that can be used during runtime but that is

post = Post(title='Another post', slug='another-post

not saved into the database.

Finally, we are saving the Post object to the database using the
save() method:

post.save()

The preceding action performs an INSERT SQL statement behind the
scenes.

We created an object in memory first and then persisted it to the
database. You can also create the object and persist it into the
database in a single operation using the create() method, as
follows:

Post.objects.create(title='One more post',
 slug='one-more-post',
 body='Post body.',
 author=user)

Updating objects
Now, change the title of the post to something different and save the
object again:

>>> post.title = 'New title'
>>> post.save()

This time, the save() method performs an UPDATE SQL statement.

The changes you make to a model object are not
persisted to the database until you call the save()
method.

Retrieving objects
You already know how to retrieve a single object from the database
using the get() method. We accessed this method using
Post.objects.get() . Each Django model has at least one
manager, and the default manager is called objects . You get a
QuerySet object using your model manager.

To retrieve all objects from a table, we use the all() method on the
default objects manager, like this:

>>> all_posts = Post.objects.all()

This is how we create a QuerySet that returns all objects in the
database. Note that this QuerySet has not been executed yet.
Django QuerySets are lazy, which means they are only evaluated
when they are forced to. This behavior makes QuerySets very
efficient. If you don’t assign the QuerySet to a variable but instead
write it directly on the Python shell, the SQL statement of the
QuerySet is executed because you are forcing it to generate output:

>>> Post.objects.all()
<QuerySet [<Post: Who was Django Reinhardt?>, <Post

Using the filter() method
To filter a QuerySet , you can use the filter() method of the
manager. For example, you can retrieve all posts published in the
year 2022 using the following QuerySet :

>>> Post.objects.filter(publish__year=2022)

You can also filter by multiple fields. For example, you can retrieve
all posts published in 2022 by the author with the username admin :

This equates to building the same QuerySet chaining multiple
filters:

>>> Post.objects.filter(publish__year=2022) \
>>> .filter(author__username='admin')

Queries with field lookup methods are built using two
underscores, for example, publish__year , but the
same notation is also used for accessing fields of
related models, such as author__username .

Using exclude()

>>> Post.objects.filter(publish__year=2022, author__

You can exclude certain results from your QuerySet using the
exclude() method of the manager. For example, you can retrieve
all posts published in 2022 whose titles don’t start with Why :

>>> Post.objects.filter(publish__year=2022) \
>>> .exclude(title__startswith='Why')

Using order_by()
You can order results by different fields using the order_by()
method of the manager. For example, you can retrieve all objects
ordered by their title , as follows:

>>> Post.objects.order_by('title')

Ascending order is implied. You can indicate descending order with
a negative sign prefix, like this:

>>> Post.objects.order_by('-title')

Deleting objects
If you want to delete an object, you can do it from the object instance
using the delete() method:

>>> post = Post.objects.get(id=1)
>>> post.delete()

Note that deleting objects will also delete any dependent
relationships for ForeignKey objects defined with on_delete set to
CASCADE .

When QuerySets are evaluated
Creating a QuerySet doesn’t involve any database activity until it is
evaluated. QuerySets usually return another unevaluated QuerySet.
You can concatenate as many filters as you like to a QuerySet, and
you will not hit the database until the QuerySet is evaluated. When a
QuerySet is evaluated, it translates into an SQL query to the
database.

QuerySets are only evaluated in the following cases:

The first time you iterate over them
When you slice them, for instance, Post.objects.all()[:3]
When you pickle or cache them
When you call repr() or len() on them
When you explicitly call list() on them
When you test them in a statement, such as bool() , or , and , or
if

Creating model managers
The default manager for every model is the objects manager. This
manager retrieves all the objects in the database. However, we can
define custom managers for models.

Let’s create a custom manager to retrieve all posts that have a
PUBLISHED status.

There are two ways to add or customize managers for your models:
you can add extra manager methods to an existing manager or
create a new manager by modifying the initial QuerySet that the
manager returns. The first method provides you with a QuerySet
notation like Post.objects.my_manager() , and the la�er provides
you with a QuerySet notation like Post.my_manager.all() .

We will choose the second method to implement a manager that will
allow us to retrieve posts using the notation
Post.published.all() .

Edit the models.py file of your blog application to add the custom
manager as follows. The new lines are highlighted in bold:

class PublishedManager(models.Manager):
 def get_queryset(self):
 return super().get_queryset()\
 .filter(status=Post.Status.PUBL
class Post(models.Model):
 # model fields
 # ...
 objects = models.Manager() # The default manager
 published = PublishedManager() # Our custom mana
 class Meta:
 ordering = ['-publish']
 def __str__(self):
 return self.title

The first manager declared in a model becomes the default manager.
You can use the Meta a�ribute default_manager_name to specify a
different default manager. If no manager is defined in the model,
Django automatically creates the objects default manager for it. If
you declare any managers for your model, but you want to keep the
objects manager as well, you have to add it explicitly to your
model. In the preceding code, we have added the default objects
manager and the published custom manager to the Post model.

The get_queryset() method of a manager returns the QuerySet
that will be executed. We have overridden this method to build a
custom QuerySet that filters posts by their status and returns a
successive QuerySet that only includes posts with the PUBLISHED
status.

We have now defined a custom manager for the Post model. Let’s
test it!

Start the development server again with the following command in
the shell prompt:

python manage.py shell

Now, you can import the Post model and retrieve all published
posts whose title starts with Who , executing the following QuerySet :

>>> from blog.models import Post
>>> Post.published.filter(title__startswith='Who')

To obtain results for this QuerySet , make sure to set the status
field to PUBLISHED in the Post object whose title starts with the
string Who.

Building list and detail views
Now that you understand how to use the ORM, you are ready to
build the views of the blog application. A Django view is just a
Python function that receives a web request and returns a web
response. All the logic to return the desired response goes inside the
view.

First, you will create your application views, then you will define a
URL pa�ern for each view, and finally, you will create HTML
templates to render the data generated by the views. Each view will
render a template, passing variables to it, and will return an HTTP
response with the rendered output.

Creating list and detail views
Let’s start by creating a view to display the list of posts.

Edit the views.py file of the blog application and make it look like
this. The new lines are highlighted in bold:

from django.shortcuts import render
from .models import Post
def post_list(request):
 posts = Post.published.all()
 return render(request,

 'blog/post/list.xhtml',
 {'posts': posts})

This is our very first Django view. The post_list view takes the
request object as the only parameter. This parameter is required by
all views.

In this view, we retrieve all the posts with the PUBLISHED status
using the published manager that we created previously.

Finally, we use the render() shortcut provided by Django to render
the list of posts with the given template. This function takes the
request object, the template path, and the context variables to
render the given template. It returns an HttpResponse object with
the rendered text (normally HTML code).

The render() shortcut takes the request context into account, so
any variable set by the template context processors is accessible by
the given template. Template context processors are just callables
that set variables into the context. You will learn how to use context
processors in Chapter 4, Building a Social Website.

Let’s create a second view to display a single post. Add the following
function to the views.py file:

from django.http import Http404
def post_detail(request, id):
 try:
 post = Post.published.get(id=id)
 except Post.DoesNotExist:
 raise Http404("No Post found.")

 return render(request,
 'blog/post/detail.xhtml',
 {'post': post})

This is the post detail view. This view takes the id argument of a
post. In the view, we try to retrieve the Post object with the given
id by calling the get() method on the default objects manager.
We raise an Http404 exception to return an HTTP 404 error if the
model DoesNotExist exception is raised, because no result is
found.

Finally, we use the render() shortcut to render the retrieved post
using a template.

Using the get_object_or_404 shortcut
Django provides a shortcut to call get() on a given model manager
and raises an Http404 exception instead of a DoesNotExist
exception when no object is found.

Edit the views.py file to import the get_object_or_404 shortcut
and change the post_detail view as follows. The new code is
highlighted in bold:

from django.shortcuts import render, get_object_or_4
...
def post_detail(request, id):
 post = get_object_or_404(Post,
 id=id,
 status=Post.Status.PUBL

In the detail view, we now use the get_object_or_404() shortcut
to retrieve the desired post. This function retrieves the object that
matches the given parameters or an HTTP 404 (not found) exception
if no object is found.

Adding URL patterns for your views
URL pa�erns allow you to map URLs to views. A URL pa�ern is
composed of a string pa�ern, a view, and, optionally, a name that
allows you to name the URL project-wide. Django runs through each
URL pa�ern and stops at the first one that matches the requested
URL. Then, Django imports the view of the matching URL pa�ern
and executes it, passing an instance of the HttpRequest class and
the keyword or positional arguments.

Create a urls.py file in the directory of the blog application and
add the following lines to it:

 return render(request,
 'blog/post/detail.xhtml',
 {'post': post})

from django.urls import path
from . import views
app_name = 'blog'
urlpatterns = [
 # post views
 path('', views.post_list, name='post_list'),

In the preceding code, you define an application namespace with the
app_name variable. This allows you to organize URLs by application
and use the name when referring to them. You define two different
pa�erns using the path() function. The first URL pa�ern doesn’t
take any arguments and is mapped to the post_list view. The
second pa�ern is mapped to the post_detail view and takes only
one argument id , which matches an integer, set by the path
converter int .

You use angle brackets to capture the values from the URL. Any
value specified in the URL pa�ern as <parameter> is captured as a
string. You use path converters, such as <int:year> , to specifically
match and return an integer. For example <slug:post> would
specifically match a slug (a string that can only contain le�ers,
numbers, underscores, or hyphens). You can see all path converters
provided by Django at
https://docs.djangoproject.com/en/4.1/topics/http/urls/
#path-converters.

If using path() and converters isn’t sufficient for you, you can use
re_path() instead to define complex URL pa�erns with Python
regular expressions. You can learn more about defining URL
pa�erns with regular expressions at
https://docs.djangoproject.com/en/4.1/ref/urls/#django.
urls.re_path. If you haven’t worked with regular expressions
before, you might want to take a look at the Regular Expression

 path('<int:id>/', views.post_detail, name='post_
]

https://docs.djangoproject.com/en/4.1/topics/http/urls/#path-converters
https://docs.djangoproject.com/en/4.1/ref/urls/#django.urls.re_path

HOWTO located at
https://docs.python.org/3/howto/regex.xhtml first.

Creating a urls.py file for each application is the best
way to make your applications reusable by other
projects.

Next, you have to include the URL pa�erns of the blog application
in the main URL pa�erns of the project.

Edit the urls.py file located in the mysite directory of your project
and make it look like the following. The new code is highlighted in
bold:

The new URL pa�ern defined with include refers to the URL
pa�erns defined in the blog application so that they are included
under the blog/ path. You include these pa�erns under the
namespace blog . Namespaces have to be unique across your entire
project. Later, you will refer to your blog URLs easily by using the
namespace followed by a colon and the URL name, for example,
blog:post_list and blog:post_detail . You can learn more

from django.contrib import admin
from django.urls import path, include
urlpatterns = [
 path('admin/', admin.site.urls),
 path('blog/', include('blog.urls', namespace='bl
]

https://docs.python.org/3/howto/regex.xhtml

about URL namespaces at
https://docs.djangoproject.com/en/4.1/topics/http/urls/
#url-namespaces.

Creating templates for your views
You have created views and URL pa�erns for the blog application.
URL pa�erns map URLs to views, and views decide which data gets
returned to the user. Templates define how the data is displayed;
they are usually wri�en in HTML in combination with the Django
template language. You can find more information about the Django
template language at
https://docs.djangoproject.com/en/4.1/ref/templates/lan
guage/.

Let’s add templates to your application to display posts in a user-
friendly manner.

Create the following directories and files inside your blog
application directory:

templates/
 blog/
 base.xhtml
 post/
 list.xhtml
 detail.xhtml

The preceding structure will be the file structure for your templates.
The base.xhtml file will include the main HTML structure of the

https://docs.djangoproject.com/en/4.1/topics/http/urls/#url-namespaces
https://docs.djangoproject.com/en/4.1/ref/templates/language/

website and divide the content into the main content area and a
sidebar. The list.xhtml and detail.xhtml files will inherit from
the base.xhtml file to render the blog post list and detail views,
respectively.

Django has a powerful template language that allows you to specify
how data is displayed. It is based on template tags, template variables,
and template filters:

Template tags control the rendering of the template and look
like {% tag %}
Template variables get replaced with values when the template
is rendered and look like {{ variable }}
Template filters allow you to modify variables for display and
look like {{ variable|filter }}

You can see all built-in template tags and filters at
https://docs.djangoproject.com/en/4.1/ref/templates/bui
ltins/.

Creating a base template
Edit the base.xhtml file and add the following code:

{% load static %}
<!DOCTYPE html>
<html>
<head>
 <title>{% block title %}{% endblock %}</title>
 <link href="{% static "css/blog.css" %}" rel="styl
</head>

https://docs.djangoproject.com/en/4.1/ref/templates/builtins/

{% load static %} tells Django to load the static template tags
that are provided by the django.contrib.staticfiles
application, which is contained in the INSTALLED_APPS se�ing.
After loading them, you can use the {% static %} template tag
throughout this template. With this template tag, you can include
the static files, such as the blog.css file, which you will find in the
code of this example under the static/ directory of the blog
application. Copy the static/ directory from the code that comes
along with this chapter into the same location as your project to
apply the CSS styles to the templates. You can find the directory’s
contents at https://github.com/PacktPublishing/Django-4-
by-Example/tree/master/Chapter01/mysite/blog/static.

You can see that there are two {% block %} tags. These tell Django
that you want to define a block in that area. Templates that inherit
from this template can fill in the blocks with content. You have
defined a block called title and a block called content .

<body>
 <div id="content">
 {% block content %}
 {% endblock %}
 </div>
 <div id="sidebar">
 <h2>My blog</h2>
 <p>This is my blog.</p>
 </div>
</body>
</html>

https://github.com/PacktPublishing/Django-4-by-Example/tree/master/Chapter01/mysite/blog/static

Creating the post list template
Let’s edit the post/list.xhtml file and make it look like the
following:

With the {% extends %} template tag, you tell Django to inherit
from the blog/base.xhtml template. Then, you fill the title and
content blocks of the base template with content. You iterate
through the posts and display their title, date, author, and body,
including a link in the title to the detail URL of the post. We build
the URL using the {% url %} template tag provided by Django.

{% extends "blog/base.xhtml" %}
{% block title %}My Blog{% endblock %}
{% block content %}
 <h1>My Blog</h1>
 {% for post in posts %}
 <h2>
 <a href="{% url 'blog:post_detail' post.id %}"
 {{ post.title }}

 </h2>
 <p class="date">
 Published {{ post.publish }} by {{ post.author
 </p>
 {{ post.body|truncatewords:30|linebreaks }}
 {% endfor %}
{% endblock %}

This template tag allows you to build URLs dynamically by their
name. We use blog:post_detail to refer to the post_detail URL
in the blog namespace. We pass the required post.id parameter to
build the URL for each post.

Always use the {% url %} template tag to build
URLs in your templates instead of writing hardcoded
URLs. This will make your URLs more maintainable.

In the body of the post, we apply two template filters:
truncatewords truncates the value to the number of words
specified, and linebreaks converts the output into HTML line
breaks. You can concatenate as many template filters as you wish;
each one will be applied to the output generated by the preceding
one.

Accessing our application
Open the shell and execute the following command to start the
development server:

python manage.py runserver

Open http://127.0.0.1:8000/blog/ in your browser; you will
see everything running. Note that you need to have some posts with
the PUBLISHED status to show them here. You should see something
like this:

Figure 1.14: The page for the post list view

Creating the post detail template
Next, edit the post/detail.xhtml file:

{% extends "blog/base.xhtml" %}
{% block title %}{{ post.title }}{% endblock %}
{% block content %}
 <h1>{{ post.title }}</h1>
 <p class="date">
 Published {{ post.publish }} by {{ post.author }
 </p>
 {{ post.body|linebreaks }}
{% endblock %}

Next, you can return to your browser and click on one of the post
titles to take a look at the detail view of the post. You should see
something like this:

Figure 1.15: The page for the post’s detail view

Take a look at the URL—it should include the auto-generated post
ID like /blog/1/ .

The request/response cycle
Let’s review the request/response cycle of Django with the
application we built. The following schema shows a simplified
example of how Django processes HTTP requests and generates
HTTP responses:

Figure 1.16: The Django request/response cycle

Let’s review the Django request/response process:

1. A web browser requests a page by its URL, for example,
https://domain.com/blog/33/ . The web server receives the
HTTP request and passes it over to Django.

2. Django runs through each URL pa�ern defined in the URL
pa�erns configuration. The framework checks each pa�ern
against the given URL path, in order of appearance, and stops at
the first one that matches the requested URL. In this case, the
pa�ern /blog/<id>/ matches the path /blog/33/ .

3. Django imports the view of the matching URL pa�ern and
executes it, passing an instance of the HttpRequest class and
the keyword or positional arguments. The view uses the models
to retrieve information from the database. Using the Django
ORM QuerySets are translated into SQL and executed in the
database.

4. The view uses the render() function to render an HTML
template passing the Post object as a context variable.

5. The rendered content is returned as a HttpResponse object by
the view with the text/html content type by default.

You can always use this schema as the basic reference for how
Django processes requests. This schema doesn’t include Django
middleware for the sake of simplicity. You will use middleware in
different examples of this book, and you will learn how to create
custom middleware in Chapter 17, Going Live.

Additional resources

The following resources provide additional information related to
the topics covered in this chapter:

Source code for this chapter –
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter01

Python venv library for virtual environments –
https://docs.python.org/3/library/venv.xhtml

Django installation options –
https://docs.djangoproject.com/en/4.1/topics/instal
l/

Django 4.0 release notes –
https://docs.djangoproject.com/en/dev/releases/4.0/

Django 4.1 release notes –
https://docs.djangoproject.com/en/4.1/releases/4.1/

Django’s design philosophies –
https://docs.djangoproject.com/en/dev/misc/design-
philosophies/

Django model field reference –
https://docs.djangoproject.com/en/4.1/ref/models/fi
elds/

Model index reference –
https://docs.djangoproject.com/en/4.1/ref/models/in
dexes/

Python support for enumerations –
https://docs.python.org/3/library/enum.xhtml

Django model enumeration types –
https://docs.djangoproject.com/en/4.1/ref/models/fi

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter01
https://docs.python.org/3/library/venv.xhtml
https://docs.djangoproject.com/en/4.1/topics/install/
https://docs.djangoproject.com/en/dev/releases/4.0/
https://docs.djangoproject.com/en/4.1/releases/4.1/
https://docs.djangoproject.com/en/dev/misc/design-philosophies/
https://docs.djangoproject.com/en/4.1/ref/models/fields/
https://docs.djangoproject.com/en/4.1/ref/models/indexes/
https://docs.python.org/3/library/enum.xhtml
https://docs.djangoproject.com/en/4.1/ref/models/fields/#enumeration-types

elds/#enumeration-types

Django se�ings reference –
https://docs.djangoproject.com/en/4.1/ref/settings/

Django administration site –
https://docs.djangoproject.com/en/4.1/ref/contrib/a
dmin/

Making queries with the Django ORM –
https://docs.djangoproject.com/en/4.1/topics/db/que
ries/

Django URL dispatcher –
https://docs.djangoproject.com/en/4.1/topics/http/u
rls/

Django URL resolver utilities –
https://docs.djangoproject.com/en/4.1/ref/urlresolv
ers/

Django template language –
https://docs.djangoproject.com/en/4.1/ref/templates
/language/

Built-in template tags and filters –
https://docs.djangoproject.com/en/4.1/ref/templates
/builtins/

Static files for the code in this chapter –
https://github.com/PacktPublishing/Django-4-by-
Example/tree/master/Chapter01/mysite/blog/static

Summary

https://docs.djangoproject.com/en/4.1/ref/models/fields/#enumeration-types
https://docs.djangoproject.com/en/4.1/ref/settings/
https://docs.djangoproject.com/en/4.1/ref/contrib/admin/
https://docs.djangoproject.com/en/4.1/topics/db/queries/
https://docs.djangoproject.com/en/4.1/topics/http/urls/
https://docs.djangoproject.com/en/4.1/ref/urlresolvers/
https://docs.djangoproject.com/en/4.1/ref/templates/language/
https://docs.djangoproject.com/en/4.1/ref/templates/builtins/
https://github.com/PacktPublishing/Django-4-by-Example/tree/master/Chapter01/mysite/blog/static%20

In this chapter, you learned the basics of the Django web framework
by creating a simple blog application. You designed the data models
and applied migrations to the database. You also created the views,
templates, and URLs for your blog.

In the next chapter, you will learn how to create canonical URLs for
models and how to build SEO-friendly URLs for blog posts. You will
also learn how to implement object pagination and how to build
class-based views. You will also implement Django forms to let your
users recommend posts by email and comment on posts.

Join us on Discord
Read this book alongside other users and the author.

Ask questions, provide solutions to other readers, chat with the
author via Ask Me Anything sessions, and much more. Scan the QR
code or visit the link to join the book community.

https://packt.link/django

https://docs.djangoproject.com/en/4.0/ref/contrib/admin/

2

Enhancing Your Blog with
Advanced Features

In the preceding chapter, we learned the main components of
Django by developing a simple blog application. We created a
simple blog application using views, templates, and URLs. In this
chapter, we will extend the functionalities of the blog application
with features that can be found in many blogging platforms
nowadays. In this chapter, you will learn the following topics:

Using canonical URLs for models
Creating SEO-friendly URLs for posts
Adding pagination to the post list view
Building class-based views
Sending emails with Django
Using Django forms to share posts via email
Adding comments to posts using forms from models

The source code for this chapter can be found at
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter02.

All Python packages used in this chapter are included in the
requirements.txt file in the source code for the chapter. You can

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter02

follow the instructions to install each Python package in the
following sections, or you can install all the requirements at once
with the command pip install -r requirements.txt .

Using canonical URLs for models
A website might have different pages that display the same content.
In our application, the initial part of the content for each post is
displayed both on the post list page and the post detail page. A
canonical URL is the preferred URL for a resource. You can think of
it as the URL of the most representative page for specific content.
There might be different pages on your site that display posts, but
there is a single URL that you use as the main URL for a post.
Canonical URLs allow you to specify the URL for the master copy of
a page. Django allows you to implement the get_absolute_url()
method in your models to return the canonical URL for the object.

We will use the post_detail URL defined in the URL pa�erns of
the application to build the canonical URL for Post objects. Django
provides different URL resolver functions that allow you to build
URLs dynamically using their name and any required parameters.
We will use the reverse() utility function of the django.urls
module.

Edit the models.py file of the blog application to import the
reverse() function and add the get_absolute_url() method to
the Post model as follows. New code is highlighted in bold:

from django.db import models
from django.utils import timezone
from django.contrib.auth.models import User
from django.urls import reverse
class PublishedManager(models.Manager):
 def get_queryset(self):
 return super().get_queryset()\
 .filter(status=Post.Status.PUBL
class Post(models.Model):
 class Status(models.TextChoices):
 DRAFT = 'DF', 'Draft'
 PUBLISHED = 'PB', 'Published'
 title = models.CharField(max_length=250)
 slug = models.SlugField(max_length=250)
 author = models.ForeignKey(User,
 on_delete=models.CASC
 related_name='blog_po
 body = models.TextField()
 publish = models.DateTimeField(default=timezone
 created = models.DateTimeField(auto_now_add=True
 updated = models.DateTimeField(auto_now=True)
 status = models.CharField(max_length=2,
 choices=Status.choices
 default=Status.DRAFT)
 class Meta:
 ordering = ['-publish']
 indexes = [
 models.Index(fields=['-publish']),
]
 def __str__(self):
 return self.title

The reverse() function will build the URL dynamically using the
URL name defined in the URL pa�erns. We have used the blog
namespace followed by a colon and the URL name post_detail .
Remember that the blog namespace is defined in the main urls.py
file of the project when including the URL pa�erns from blog.urls .
The post_detail URL is defined in the urls.py file of the blog
application. The resulting string, blog:post_detail , can be used
globally in your project to refer to the post detail URL. This URL has
a required parameter that is the id of the blog post to retrieve. We
have included the id of the Post object as a positional argument by
using args=[self.id] .

You can learn more about the URL’s utility functions at
https://docs.djangoproject.com/en/4.1/ref/urlresolvers/.

Let’s replace the post detail URLs in the templates with the new
get_absolute_url() method.

Edit the blog/post/list.xhtml file and replace the line:

With the line:

 def get_absolute_url(self):
 return reverse('blog:post_detail',
 args=[self.id])

https://docs.djangoproject.com/en/4.1/ref/urlresolvers/

The blog/post/list.xhtml file should now look as follows:

Open the shell prompt and execute the following command to start
the development server:

python manage.py runserver

Open http://127.0.0.1:8000/blog/ in your browser. Links to
individual blog posts should still work. Django is now building
them using the get_absolute_url() method of the Post model.

{% extends "blog/base.xhtml" %}
{% block title %}My Blog{% endblock %}
{% block content %}
 <h1>My Blog</h1>
 {% for post in posts %}
 <h2>

 {{ post.title }}

 </h2>
 <p class="date">
 Published {{ post.publish }} by {{ post.author
 </p>
 {{ post.body|truncatewords:30|linebreaks }}
 {% endfor %}
{% endblock %}

Creating SEO-friendly URLs for
posts
The canonical URL for a blog post detail view currently looks like
/blog/1/ . We will change the URL pa�ern to create SEO-friendly
URLs for posts. We will be using both the publish date and slug
values to build the URLs for single posts. By combining dates, we
will make a post detail URL to look like /blog/2022/1/1/who-was-
django-reinhardt/ . We will provide search engines with friendly
URLs to index, containing both the title and date of the post.

To retrieve single posts with the combination of publication date and
slug, we need to ensure that no post can be stored in the database
with the same slug and publish date as an existing post. We will
prevent the Post model from storing duplicated posts by defining
slugs to be unique for the publication date of the post.

Edit the models.py file and add the following unique_for_date
parameter to the slug field of the Post model:

By using unique_for_date , the slug field is now required to be
unique for the date stored in the publish field. Note that the
publish field is an instance of DateTimeField , but the check for

class Post(models.Model):
 # ...
 slug = models.SlugField(max_length=250,
 unique_for_date='publish
 # ...

unique values will be done only against the date (not the time).
Django will prevent from saving a new post with the same slug as an
existing post for a given publication date. We have now ensured that
slugs are unique for the publication date, so we can now retrieve
single posts by the publish and slug fields.

We have changed our models, so let’s create migrations. Note that
unique_for_date is not enforced at the database level, so no
database migration is required. However, Django uses migrations to
keep track of all model changes. We will create a migration just to
keep migrations aligned with the current state of the model.

Run the following command in the shell prompt:

python manage.py makemigrations blog

You should get the following output:

Migrations for 'blog':
 blog/migrations/0002_alter_post_slug.py
 - Alter field slug on post

Django just created the 0002_alter_post_slug.py file inside the
migrations directory of the blog application.

Execute the following command in the shell prompt to
apply existing migrations:

python manage.py migrate

You will get an output that ends with the following line:

Applying blog.0002_alter_post_slug... OK

Django will consider that all migrations have been applied and the
models are in sync. No action will be done in the database because
unique_for_date is not enforced at the database level.

Modifying the URL patterns
Let’s modify the URL pa�erns to use the publication date and slug
for the post detail URL.

Edit the urls.py file of the blog application and replace the line:

With the lines:

The urls.py file should now look like this:

path('<int:id>/', views.post_detail, name='post_deta

path('<int:year>/<int:month>/<int:day>/<slug:post>/
 views.post_detail,
 name='post_detail'),

from django.urls import path
from . import views

The URL pa�ern for the post_detail view takes the following
arguments:

year : Requires an integer
month : Requires an integer
day : Requires an integer
post : Requires a slug (a string that contains only le�ers,
numbers, underscores, or hyphens)

The int path converter is used for the year , month , and day
parameters, whereas the slug path converter is used for the post
parameter. You learned about path converters in the previous
chapter. You can see all path converters provided by Django at
https://docs.djangoproject.com/en/4.1/topics/http/urls/
#path-converters.

Modifying the views
Now we have to change the parameters of the post_detail view to
match the new URL parameters and use them to retrieve the

app_name = 'blog'
urlpatterns = [
 # Post views
 path('', views.post_list, name='post_list'),
 path('<int:year>/<int:month>/<int:day>/<slug:pos
 views.post_detail,
 name='post_detail'),
]

https://docs.djangoproject.com/en/4.1/topics/http/urls/#path-converters

corresponding Post object.

Edit the views.py file and edit the post_detail view like this:

We have modified the post_detail view to take the year , month ,
day , and post arguments and retrieve a published post with the
given slug and publication date. By adding
unique_for_date='publish' to the slug field of the Post model
before, we ensured that there will be only one post with a slug for a
given date. Thus, you can retrieve single posts using the date and
slug.

Modifying the canonical URL for
posts
We also have to modify the parameters of the canonical URL for blog
posts to match the new URL parameters.

def post_detail(request, year, month, day, post):
 post = get_object_or_404(Post,
 status=Post.Status.PUBL
 slug=post,
 publish__year=year,
 publish__month=month,
 publish__day=day)
 return render(request,
 'blog/post/detail.xhtml',
 {'post': post})

Edit the models.py file of the blog application and edit the
get_absolute_url() method as follows:

class Post(models.Model):
 # ...
 def get_absolute_url(self):
 return reverse('blog:post_detail',
 args=[self.publish.year,
 self.publish.month,
 self.publish.day,
 self.slug])

Start the development server by typing the following command in
the shell prompt:

python manage.py runserver

Next, you can return to your browser and click on one of the post
titles to take a look at the detail view of the post. You should see
something like this:

Figure 2.1: The page for the post’s detail view

Take a look at the URL—it should look like /blog/2022/1/1/who-
was-django-reinhardt/ . You have designed SEO-friendly URLs
for the blog posts.

Adding pagination
When you start adding content to your blog, you can easily store
tens or hundreds of posts in your database. Instead of displaying all
the posts on a single page, you may want to split the list of posts
across several pages and include navigation links to the different
pages. This functionality is called pagination, and you can find it in
almost every web application that displays long lists of items.

For example, Google uses pagination to divide search results across
multiple pages. Figure 2.2 shows Google’s pagination links for search
result pages:

Figure 2.2: Google pagination links for search result pages

Django has a built-in pagination class that allows you to manage
paginated data easily. You can define the number of objects you
want to be returned per page and you can retrieve the posts that
correspond to the page requested by the user.

Adding pagination to the post list view
Edit the views.py file of the blog application to import the Django
Paginator class and modify the post_list view as follows:

Let’s review the new code we have added to the view:

1. We instantiate the Paginator class with the number of objects
to return per page. We will display three posts per page.

2. We retrieve the page GET HTTP parameter and store it in the
page_number variable. This parameter contains the requested
page number. If the page parameter is not in the GET
parameters of the request, we use the default value 1 to load the
first page of results.

3. We obtain the objects for the desired page by calling the page()
method of Paginator . This method returns a Page object that

from django.shortcuts import render, get_object_or_4
from .models import Post
from django.core.paginator import Paginator
def post_list(request):
 post_list = Post.published.all()
 # Pagination with 3 posts per page
 paginator = Paginator(post_list, 3)
 page_number = request.GET.get('page', 1)
 posts = paginator.page(page_number)
 return render(request,
 'blog/post/list.xhtml',
 {'posts': posts})

we store in the posts variable.
4. We pass the page number and the posts object to the template.

Creating a pagination template
We need to create a page navigation for users to browse through the
different pages. We will create a template to display the pagination
links. We will make it generic so that we can reuse the template for
any object pagination on our website.

In the templates/ directory, create a new file and name it
pagination.xhtml . Add the following HTML code to the file:

This is the generic pagination template. The template expects to have
a Page object in the context to render the previous and next links,

<div class="pagination">

 {% if page.has_previous %}
 <a href="?page={{ page.previous_page_number }}
 {% endif %}

 Page {{ page.number }} of {{ page.paginator.nu

 {% if page.has_next %}
 Ne
 {% endif %}

</div>

and to display the current page and total pages of results.

Let’s return to the blog/post/list.xhtml template and include
the pagination.xhtml template at the bo�om of the {% content
%} block, as follows:

The {% include %} template tag loads the given template and
renders it using the current template context. We use with to pass
additional context variables to the template. The pagination template
uses the page variable to render, while the Page object that we pass
from our view to the template is called posts . We use with
page=posts to pass the variable expected by the pagination

{% extends "blog/base.xhtml" %}
{% block title %}My Blog{% endblock %}
{% block content %}
 <h1>My Blog</h1>
 {% for post in posts %}
 <h2>

 {{ post.title }}

 </h2>
 <p class="date">
 Published {{ post.publish }} by {{ post.author
 </p>
 {{ post.body|truncatewords:30|linebreaks }}
 {% endfor %}
 {% include "pagination.xhtml" with page=posts %}
{% endblock %}

template. You can follow this method to use the pagination template
for any type of object.

Start the development server by typing the following command in
the shell prompt:

python manage.py runserver

Open http://127.0.0.1:8000/admin/blog/post/ in your
browser and use the administration site to create a total of four
different posts. Make sure to set the status to Published for all of
them.

Now, open http://127.0.0.1:8000/blog/ in your browser. You
should see the first three posts in reverse chronological order, and
then the navigation links at the bo�om of the post list like this:

Figure 2.3: The post list page including pagination

If you click on Next, you will see the last post. The URL for the
second page contains the ?page=2 GET parameter. This parameter is
used by the view to load the requested page of results using the
paginator.

Figure 2.4: The second page of results

Great! The pagination links are working as expected.

Handling pagination errors
Now that the pagination is working, we can add exception handling
for pagination errors in the view. The page parameter used by the
view to retrieve the given page could potentially be used with
wrong values, such as non-existing page numbers or a string value
that cannot be used as a page number. We will implement
appropriate error handling for those cases.

Open http://127.0.0.1:8000/blog/?page=3 in your browser.
You should see the following error page:

Figure 2.5: The EmptyPage error page

The Paginator object throws an EmptyPage exception when
retrieving page 3 because it’s out of range. There are no results to
display. Let’s handle this error in our view.

Edit the views.py file of the blog application to add the necessary
imports and modify the post_list view as follows:

from django.shortcuts import render, get_object_or_4
from .models import Post
from django.core.paginator import Paginator, EmptyPa
def post_list(request):
 post_list = Post.published.all()
 # Pagination with 3 posts per page
 paginator = Paginator(post_list, 3)
 page_number = request.GET.get('page', 1)
 try:
 posts = paginator.page(page_number)
 except EmptyPage:
 # If page_number is out of range deliver las

We have added a try and except block to manage the EmptyPage
exception when retrieving a page. If the page requested is out of
range, we return the last page of results. We get the total number of
pages with paginator.num_pages . The total number of pages is the
same as the last page number.

Open http://127.0.0.1:8000/blog/?page=3 in your browser
again. Now, the exception is managed by the view and the last page
of results is returned as follows:

Figure 2.6: The last page of results

Our view should also handle the case when something different than
an integer is passed in the page parameter.

 posts = paginator.page(paginator.num_pages)
 return render(request,
 'blog/post/list.xhtml',
 {'posts': posts})

Open http://127.0.0.1:8000/blog/?page=asdf in your
browser. You should see the following error page:

Figure 2.7: The PageNotAnInteger error page

In this case, the Paginator object throws a PageNotAnInteger
exception when retrieving the page asdf because page numbers can
only be an integer. Let’s handle this error in our view.

Edit the views.py file of the blog application to add the necessary
imports and modify the post_list view as follows:

from django.shortcuts import render, get_object_or_4
from .models import Post
from django.core.paginator import Paginator, EmptyPa
 PageNotAnInteger
def post_list(request):
 post_list = Post.published.all()
 # Pagination with 3 posts per page
 paginator = Paginator(post_list, 3)
 page_number = request.GET.get('page')

We have added a new except block to manage the
PageNotAnInteger exception when retrieving a page. If the page
requested is not an integer, we return the first page of results.

Open http://127.0.0.1:8000/blog/?page=asdf in your
browser again. Now the exception is managed by the view and the
first page of results is returned as follows:

 try:
 posts = paginator.page(page_number)
 except PageNotAnInteger:
 # If page_number is not an integer deliver t
 posts = paginator.page(1)
 except EmptyPage:
 # If page_number is out of range deliver las
 posts = paginator.page(paginator.num_pages)
 return render(request,
 'blog/post/list.xhtml',
 {'posts': posts})

Figure 2.8: The first page of results

The pagination for blog posts is now fully implemented.

You can learn more about the Paginator class at
https://docs.djangoproject.com/en/4.1/ref/paginator/.

https://docs.djangoproject.com/en/4.1/ref/paginator/

Building class-based views
We have built the blog application using function-based views.
Function-based views are simple and powerful, but Django also
allows you to build views using classes.

Class-based views are an alternative way to implement views as
Python objects instead of functions. Since a view is a function that
takes a web request and returns a web response, you can also define
your views as class methods. Django provides base view classes that
you can use to implement your own views. All of them inherit from
the View class, which handles HTTP method dispatching and other
common functionalities.

Why use class-based views
Class-based views offer some advantages over function-based views
that are useful for specific use cases. Class-based views allow you to:

Organize code related to HTTP methods, such as GET , POST , or
PUT , in separate methods, instead of using conditional
branching
Use multiple inheritance to create reusable view classes (also
known as mixins)

Using a class-based view to list posts
To understand how to write class-based views, we will create a new
class-based view that is equivalent to the post_list view. We will

create a class that will inherit from the generic ListView view
offered by Django. ListView allows you to list any type of object.

Edit the views.py file of the blog application and add the
following code to it:

from django.views.generic import ListView
class PostListView(ListView):
 """
 Alternative post list view
 """
 queryset = Post.published.all()
 context_object_name = 'posts'
 paginate_by = 3
 template_name = 'blog/post/list.xhtml'

The PostListView view is analogous to the post_list view we
built previously. We have implemented a class-based view that
inherits from the ListView class. We have defined a view with the
following a�ributes:

We use queryset to use a custom QuerySet instead of
retrieving all objects. Instead of defining a queryset a�ribute,
we could have specified model = Post and Django would have
built the generic Post.objects.all() QuerySet for us.
We use the context variable posts for the query results. The
default variable is object_list if you don’t specify any
context_object_name .
We define the pagination of results with paginate_by ,
returning three objects per page.

We use a custom template to render the page with
template_name . If you don’t set a default template, ListView
will use blog/post_list.xhtml by default.

Now, edit the urls.py file of the blog application, comment the
preceding post_list URL pa�ern, and add a new URL pa�ern
using the PostListView class, as follows:

In order to keep pagination working, we have to use the right page
object that is passed to the template. Django’s ListView generic
view passes the page requested in a variable called page_obj . We
have to edit the post/list.xhtml template accordingly to include
the paginator using the right variable, as follows:

urlpatterns = [
 # Post views
 # path('', views.post_list, name='post_list'),
 path('', views.PostListView.as_view(), name='pos
 path('<int:year>/<int:month>/<int:day>/<slug:pos
 views.post_detail,
 name='post_detail'),
]

{% extends "blog/base.xhtml" %}
{% block title %}My Blog{% endblock %}
{% block content %}
 <h1>My Blog</h1>
 {% for post in posts %}
 <h2>

Open http://127.0.0.1:8000/blog/ in your browser and verify
that the pagination links work as expected. The behavior of the
pagination links should be the same as with the previous
post_list view.

The exception handling in this case is a bit different. If you try to
load a page out of range or pass a non-integer value in the page
parameter, the view will return an HTTP response with the status
code 404 (page not found) like this:

 {{ post.title }}

 </h2>
 <p class="date">
 Published {{ post.publish }} by {{ post.author
 </p>
 {{ post.body|truncatewords:30|linebreaks }}
 {% endfor %}
 {% include "pagination.xhtml" with page=page_obj %
{% endblock %}

Figure 2.9: HTTP 404 Page not found response

The exception handling that returns the HTTP 404 status code is
provided by the ListView view.

This is a simple example of how to write class-based views. You will
learn more about class-based views in Chapter 13, Creating a Content
Management System, and successive chapters.

You can read an introduction to class-based views at
https://docs.djangoproject.com/en/4.1/topics/class-
based-views/intro/.

Recommending posts by email
Now, we will learn how to create forms and how to send emails with
Django. We will allow users to share blog posts with others by
sending post recommendations via email.

https://docs.djangoproject.com/en/4.1/topics/class-based-views/intro/

Take a minute to think about how you could use views, URLs, and
templates to create this functionality using what you learned in the
preceding chapter.

To allow users to share posts via email, we will need to:

Create a form for users to fill in their name, their email address,
the recipient email address, and optional comments
Create a view in the views.py file that handles the posted data
and sends the email
Add a URL pa�ern for the new view in the urls.py file of the
blog application
Create a template to display the form

Creating forms with Django
Let’s start by building the form to share posts. Django has a built-in
forms framework that allows you to create forms easily. The forms
framework makes it simple to define the fields of the form, specify
how they have to be displayed, and indicate how they have to
validate input data. The Django forms framework offers a flexible
way to render forms in HTML and handle data.

Django comes with two base classes to build forms:

Form : Allows you to build standard forms by defining fields
and validations.
ModelForm : Allows you to build forms tied to model instances.
It provides all the functionalities of the base Form class, but
form fields can be explicitly declared, or automatically

generated, from model fields. The form can be used to create or
edit model instances.

First, create a forms.py file inside the directory of your blog
application and add the following code to it:

We have defined our first Django form. The EmailPostForm form
inherits from the base Form class. We use different field types to
validate data accordingly.

Forms can reside anywhere in your Django project.
The convention is to place them inside a forms.py file
for each application.

The form contains the following fields:

name : An instance of CharField with a maximum length of 25
characters. We will use it for the name of the person sending the
post.
email : An instance of EmailField . We will use the email of the
person sending the post recommendation.

from django import forms
class EmailPostForm(forms.Form):
 name = forms.CharField(max_length=25)
 email = forms.EmailField()
 to = forms.EmailField()
 comments = forms.CharField(required=False,
 widget=forms.Textarea

to : An instance of EmailField . We will use the email of the
recipient, who will receive the email recommending the post
recommendation.
comments : An instance of CharField . We will use it for
comments to include in the post recommendation email. We
have made this field optional by se�ing required to False ,
and we have specified a custom widget to render the field.

Each field type has a default widget that determines how the field is
rendered in HTML. The name field is an instance of CharField .
This type of field is rendered as an <input type="text"> HTML
element. The default widget can be overridden with the widget
a�ribute. In the comments field, we use the Textarea widget to
display it as a <textarea> HTML element instead of the default
<input> element.

Field validation also depends on the field type. For example, the
email and to fields are EmailField fields. Both fields require a
valid email address; the field validation will otherwise raise a
forms.ValidationError exception and the form will not validate.
Other parameters are also taken into account for the form field
validation, such as the name field having a maximum length of 25
or the comments field being optional.

These are only some of the field types that Django provides for
forms. You can find a list of all field types available at
https://docs.djangoproject.com/en/4.1/ref/forms/fields/.

Handling forms in views

https://docs.djangoproject.com/en/4.1/ref/forms/fields/

We have defined the form to recommend posts via email. Now we
need a view to create an instance of the form and handle the form
submission.

Edit the views.py file of the blog application and add
the following code to it:

We have defined the post_share view that takes the request
object and the post_id variable as parameters. We use the
get_object_or_404() shortcut to retrieve a published post by its
id .

We use the same view both for displaying the initial form and
processing the submi�ed data. The HTTP request method allows

from .forms import EmailPostForm
def post_share(request, post_id):
 # Retrieve post by id
 post = get_object_or_404(Post, id=post_id, statu
 if request.method == 'POST':
 # Form was submitted
 form = EmailPostForm(request.POST)
 if form.is_valid():
 # Form fields passed validation
 cd = form.cleaned_data
 # ... send email
 else:
 form = EmailPostForm()
 return render(request, 'blog/post/share.xhtml',

us to differentiate whether the form is being submi�ed. A GET
request will indicate that an empty form has to be displayed to the
user and a POST request will indicate the form is being submi�ed.
We use request.method == 'POST' to differentiate between the
two scenarios.

This is the process to display the form and handle the form
submission:

1. When the page is loaded for the first time, the view receives a
GET request. In this case, a new EmailPostForm instance is
created and stored in the form variable. This form instance will
be used to display the empty form in the template:

form = EmailPostForm()

2. When the user fills in the form and submits it via POST , a form
instance is created using the submi�ed data contained in
request.POST :

if request.method == 'POST':
 # Form was submitted
 form = EmailPostForm(request.POST)

3. After this, the data submi�ed is validated using the form’s
is_valid() method. This method validates the data
introduced in the form and returns True if all fields contain
valid data. If any field contains invalid data, then is_valid()

returns False . The list of validation errors can be obtained with
form.errors .

4. If the form is not valid, the form is rendered in the template
again, including the data submi�ed. Validation errors will be
displayed in the template.

5. If the form is valid, the validated data is retrieved with
form.cleaned_data . This a�ribute is a dictionary of form
fields and their values.

If your form data does not validate, cleaned_data
will contain only the valid fields.

We have implemented the view to display the form and handle the
form submission. We will now learn how to send emails using
Django and then we will add that functionality to the post_share
view.

Sending emails with Django
Sending emails with Django is very straightforward. To send emails
with Django, you need to have a local Simple Mail Transfer
Protocol (SMTP) server, or you need to access an external SMTP
server, like your email service provider.

The following se�ings allow you to define the SMTP configuration
to send emails with Django:

EMAIL_HOST : The SMTP server host; the default is localhost
EMAIL_PORT : The SMTP port; the default is 25

EMAIL_HOST_USER : The username for the SMTP server
EMAIL_HOST_PASSWORD : The password for the SMTP server
EMAIL_USE_TLS : Whether to use a Transport Layer Security
(TLS) secure connection
EMAIL_USE_SSL : Whether to use an implicit TLS secure
connection

For this example, we will use Google’s SMTP server with a standard
Gmail account.

If you have a Gmail account, edit the settings.py file of your
project and add the following code to it:

Email server configuration
EMAIL_HOST = 'smtp.gmail.com'
EMAIL_HOST_USER = 'your_account@gmail.com'
EMAIL_HOST_PASSWORD = ''
EMAIL_PORT = 587
EMAIL_USE_TLS = True

Replace your_account@gmail.com with your actual Gmail account.
If you don’t have a Gmail account, you can use the SMTP server
configuration of your email service provider.

Instead of Gmail, you can also use a professional, scalable email
service that allows you to send emails via SMTP using your own
domain, such as SendGrid (https://sendgrid.com/) or Amazon
Simple Email Service (https://aws.amazon.com/ses/). Both
services will require you to verify your domain and sender email
accounts and will provide you with SMTP credentials to send

https://sendgrid.com/
https://aws.amazon.com/ses/

emails. The Django applications django-sengrid and django-ses
simplify the task of adding SendGrid or Amazon SES to your project.
You can find installation instructions for django-sengrid at
https://github.com/sklarsa/django-sendgrid-v5, and
installation instructions for django-ses at
https://github.com/django-ses/django-ses.

If you can’t use an SMTP server, you can tell Django to write emails
to the console by adding the following se�ing to the settings.py
file:

By using this se�ing, Django will output all emails to the shell
instead of sending them. This is very useful for testing your
application without an SMTP server.

To complete the Gmail configuration, we need to enter a password
for the SMTP server. Since Google uses a two-step verification
process and additional security measures, you cannot use your
Google account password directly. Instead, Google allows you to
create app-specific passwords for your account. An app password is
a 16-digit passcode that gives a less secure app or device permission
to access your Google account.

Open https://myaccount.google.com/ in your browser. On the
left menu, click on Security. You will see the following screen:

EMAIL_BACKEND = 'django.core.mail.backends.console.E

https://github.com/sklarsa/django-sendgrid-v5
https://github.com/django-ses/django-ses
https://myaccount.google.com/

Figure 2.10: The Signing in to Google page for Google accounts

Under the Signing in to Google block, click on App passwords. If
you cannot see App passwords, it might be that 2-step verification is
not set for your account, your account is an organization account
instead of a standard Gmail account, or you turned on Google’s
advanced protection. Make sure to use a standard Gmail account
and to activate 2-step verification for your Google account. You can
find more information at
https://support.google.com/accounts/answer/185833.

When you click on App passwords, you will see the following
screen:

https://support.google.com/accounts/answer/185833

Figure 2.11: Form to generate a new Google app password

In the Select app dropdown, select Other.

Then, enter the name Blog and click the GENERATE bu�on, as
follows:

Figure 2.12: Form to generate a new Google app password

A new password will be generated and displayed to you like this:

Figure 2.13: Generated Google app password

Copy the generated app password.

Edit the settings.py file of your project and add the app password
to the EMAIL_HOST_PASSWORD se�ing, as follows:

Email server configuration
EMAIL_HOST = 'smtp.gmail.com'
EMAIL_HOST_USER = 'your_account@gmail.com'
EMAIL_HOST_PASSWORD = 'xxxxxxxxxxxxxxxx'

EMAIL_PORT = 587
EMAIL_USE_TLS = True

Open the Python shell by running the following command in the
system shell prompt:

python manage.py shell

Execute the following code in the Python shell:

>>> from django.core.mail import send_mail
>>> send_mail('Django mail',
... 'This e-mail was sent with Django.',
... 'your_account@gmail.com',
... ['your_account@gmail.com'],
... fail_silently=False)

The send_mail() function takes the subject, message, sender, and
list of recipients as required arguments. By se�ing the optional
argument fail_silently=False , we are telling it to raise an
exception if the email cannot be sent. If the output you see is 1 , then
your email was successfully sent.

Check your inbox. You should have received the email:

Figure 2.14: Test email sent displayed in Gmail

You just sent your first email with Django! You can find more
information about sending emails with Django at
https://docs.djangoproject.com/en/4.1/topics/email/.

Let’s add this functionality to the post_share view.

Sending emails in views
Edit the post_share view in the views.py file of the blog
application, as follows:

from django.core.mail import send_mail
def post_share(request, post_id):
 # Retrieve post by id
 post = get_object_or_404(Post, id=post_id, statu
 sent = False
 if request.method == 'POST':
 # Form was submitted

https://docs.djangoproject.com/en/4.1/topics/email/

Replace your_account@gmail.com with your real email account if
you are using an SMTP server instead of console.EmailBackend .

In the preceding code, we have declared a sent variable with the
initial value True . We set this variable to True after the email is
sent. We will use the sent variable later in the template to display a
success message when the form is successfully submi�ed.

Since we have to include a link to the post in the email, we retrieve
the absolute path of the post using its get_absolute_url()
method. We use this path as an input for

 form = EmailPostForm(request.POST)
 if form.is_valid():
 # Form fields passed validation
 cd = form.cleaned_data
 post_url = request.build_absolute_uri(
 post.get_absolute_url())
 subject = f"{cd['name']} recommends you
 f"{post.title}"
 message = f"Read {post.title} at {post_u
 f"{cd['name']}\'s comments: {c
 send_mail(subject, message, 'your_accoun
 [cd['to']])
 sent = True
 else:
 form = EmailPostForm()
 return render(request, 'blog/post/share.xhtml',

request.build_absolute_uri() to build a complete URL,
including the HTTP schema and hostname.

We create the subject and the message body of the email using
the cleaned data of the validated form. Finally, we send the email to
the email address contained in the to field of the form.

Now that the view is complete, we have to add a new URL pa�ern
for it.

Open the urls.py file of your blog application and add the
post_share URL pa�ern, as follows:

Rendering forms in templates

from django.urls import path
from . import views
app_name = 'blog'
urlpatterns = [
 # Post views
 # path('', views.post_list, name='post_list'),
 path('', views.PostListView.as_view(), name='pos
 path('<int:year>/<int:month>/<int:day>/<slug:pos
 views.post_detail,
 name='post_detail'),
 path('<int:post_id>/share/',
 views.post_share, name='post_share'),
]

After creating the form, programming the view, and adding the URL
pa�ern, the only thing missing is the template for the view.

Create a new file in the blog/templates/blog/post/ directory
and name it share.xhtml .

Add the following code to the new share.xhtml template:

This is the template that is used to both display the form to share a
post via email, and to display a success message when the email has
been sent. We differentiate between both cases with {% if sent
%} .

{% extends "blog/base.xhtml" %}
{% block title %}Share a post{% endblock %}
{% block content %}
 {% if sent %}
 <h1>E-mail successfully sent</h1>
 <p>
 "{{ post.title }}" was successfully sent to {{
 </p>
 {% else %}
 <h1>Share "{{ post.title }}" by e-mail</h1>
 <form method="post">
 {{ form.as_p }}
 {% csrf_token %}
 <input type="submit" value="Send e-mail">
 </form>
 {% endif %}
{% endblock %}

To display the form, we have defined an HTML form element,
indicating that it has to be submi�ed by the POST method:

<form method="post">

We have included the form instance with {{ form.as_p }} . We tell
Django to render the form fields using HTML paragraph <p>
elements by using the as_p method. We could also render the form
as an unordered list with as_ul or as an HTML table with
as_table . Another option is to render each field by iterating
through the form fields, as in the following example:

{% for field in form %}
 <div>
 {{ field.errors }}
 {{ field.label_tag }} {{ field }}
 </div>
{% endfor %}

We have added a {% csrf_token %} template tag. This tag
introduces a hidden field with an autogenerated token to avoid
cross-site request forgery (CSRF) a�acks. These a�acks consist of a
malicious website or program performing an unwanted action for a
user on the site. You can find more information about CSRF at
https://owasp.org/www-community/attacks/csrf.

The {% csrf_token %} template tag generates a hidden field that is
rendered like this:

https://owasp.org/www-community/attacks/csrf

By default, Django checks for the CSRF token in all
POST requests. Remember to include the csrf_token
tag in all forms that are submi�ed via POST .

Edit the blog/post/detail.xhtml template and make it look like
this:

We have added a link to the post_share URL. The URL is built
dynamically with the {% url %} template tag provided by Django.

<input type='hidden' name='csrfmiddlewaretoken' valu

{% extends "blog/base.xhtml" %}
{% block title %}{{ post.title }}{% endblock %}
{% block content %}
 <h1>{{ post.title }}</h1>
 <p class="date">
 Published {{ post.publish }} by {{ post.author }
 </p>
 {{ post.body|linebreaks }}
 <p>

 Share this post

 </p>
{% endblock %}

We use the namespace called blog and the URL named
post_share . We pass the post id as a parameter to build the URL.

Open the shell prompt and execute the following command to start
the development server:

python manage.py runserver

Open http://127.0.0.1:8000/blog/ in your browser and click
on any post title to view the post detail page.

Under the post body, you should see the link that you just added, as
shown in Figure 2.15:

Figure 2.15: The post detail page, including a link to share the post

Click on Share this post, and you should see the page, including the
form to share this post by email, as follows:

Figure 2.16: The page to share a post via email

CSS styles for the form are included in the example code in the
static/css/blog.css file. When you click on the SEND E-MAIL
bu�on, the form is submi�ed and validated. If all fields contain valid
data, you get a success message, as follows:

Figure 2.17: A success message for a post shared via email

Send a post to your own email address and check your inbox. The
email you receive should look like this:

Figure 2.18: Test email sent displayed in Gmail

If you submit the form with invalid data, the form will be rendered
again, including all validation errors:

Figure 2.19: The share post form displaying invalid data errors

Most modern browsers will prevent you from submi�ing a form
with empty or erroneous fields. This is because the browser validates
the fields based on their a�ributes before submi�ing the form. In this
case, the form won’t be submi�ed, and the browser will display an
error message for the fields that are wrong. To test the Django form
validation using a modern browser, you can skip the browser form
validation by adding the novalidate a�ribute to the HTML

<form> element, like <form method="post" novalidate> . You
can add this a�ribute to prevent the browser from validating fields
and test your own form validation. After you are done testing,
remove the novalidate a�ribute to keep the browser form
validation.

The functionality for sharing posts by email is now complete. You
can find more information about working with forms at
https://docs.djangoproject.com/en/4.1/topics/forms/.

Creating a comment system
We will continue extending our blog application with a comment
system that will allow users to comment on posts. To build the
comment system, we will need the following:

A comment model to store user comments on posts
A form that allows users to submit comments and manages the
data validation
A view that processes the form and saves a new comment to the
database
A list of comments and a form to add a new comment that can
be included in the post detail template

Creating a model for comments
Let’s start by building a model to store user comments on posts.

Open the models.py file of your blog application and add the
following code:

https://docs.djangoproject.com/en/4.1/topics/forms/

This is the Comment model. We have added a ForeignKey field to
associate each comment with a single post. This many-to-one
relationship is defined in the Comment model because each comment
will be made on one post, and each post may have multiple
comments.

The related_name a�ribute allows you to name the a�ribute that
you use for the relationship from the related object back to this one.
We can retrieve the post of a comment object using comment.post
and retrieve all comments associated with a post object using
post.comments.all() . If you don’t define the related_name

class Comment(models.Model):
 post = models.ForeignKey(Post,
 on_delete=models.CASCAD
 related_name='comments
 name = models.CharField(max_length=80)
 email = models.EmailField()
 body = models.TextField()
 created = models.DateTimeField(auto_now_add=True
 updated = models.DateTimeField(auto_now=True)
 active = models.BooleanField(default=True)
 class Meta:
 ordering = ['created']
 indexes = [
 models.Index(fields=['created']),
]
 def __str__(self):
 return f'Comment by {self.name} on {self.pos

a�ribute, Django will use the name of the model in lowercase,
followed by _set (that is, comment_set) to name the relationship of
the related object to the object of the model, where this relationship
has been defined.

You can learn more about many-to-one relationships at
https://docs.djangoproject.com/en/4.1/topics/db/example
s/many_to_one/.

We have defined the active Boolean field to control the status of
the comments. This field will allow us to manually deactivate
inappropriate comments using the administration site. We use
default=True to indicate that all comments are active by default.

We have defined the created field to store the date and time when
the comment was created. By using auto_now_add , the date will be
saved automatically when creating an object. In the Meta class of the
model, we have added ordering = ['created'] to sort comments
in chronological order by default, and we have added an index for
the created field in ascending order. This will improve the
performance of database lookups or ordering results using the
created field.

The Comment model that we have built is not synchronized into the
database. We need to generate a new database migration to create
the corresponding database table.

Run the following command from the shell prompt:

python manage.py makemigrations blog

https://docs.djangoproject.com/en/4.1/topics/db/examples/many_to_one/

You should see the following output:

Migrations for 'blog':
 blog/migrations/0003_comment.py
 - Create model Comment

Django has generated a 0003_comment.py file inside the
migrations/ directory of the blog application. We need to create
the related database schema and apply the changes to the database.

Run the following command to apply existing migrations:

python manage.py migrate

You will get an output that includes the following line:

Applying blog.0003_comment... OK

The migration has been applied and the blog_comment table has
been created in the database.

Adding comments to the
administration site
Next, we will add the new model to the administration site to
manage comments through a simple interface.

Open the admin.py file of the blog application, import the
Comment model, and add the following ModelAdmin class:

Open the shell prompt and execute the following command to start
the development server:

python manage.py runserver

Open http://127.0.0.1:8000/admin/ in your browser. You
should see the new model included in the BLOG section, as shown
in Figure 2.20:

Figure 2.20: Blog application models on the Django administration index page

The model is now registered on the administration site.

In the Comments row, click on Add. You will see the form to add a
new comment:

from .models import Post, Comment
@admin.register(Comment)
class CommentAdmin(admin.ModelAdmin):
 list_display = ['name', 'email', 'post', 'create
 list_filter = ['active', 'created', 'updated']
 search_fields = ['name', 'email', 'body']

Figure 2.21: Blog application models on the Django administration index page

Now we can manage Comment instances using the administration
site.

Creating forms from models
We need to build a form to let users comment on blog posts.
Remember that Django has two base classes that can be used to
create forms: Form and ModelForm . We used the Form class to allow

users to share posts by email. Now we will use ModelForm to take
advantage of the existing Comment model and build a form
dynamically for it.

Edit the forms.py file of your blog application and
add the following lines:

from .models import Comment
class CommentForm(forms.ModelForm):
 class Meta:
 model = Comment
 fields = ['name', 'email', 'body']

To create a form from a model, we just indicate which model to
build the form for in the Meta class of the form. Django will
introspect the model and build the corresponding form dynamically.

Each model field type has a corresponding default form field type.
The a�ributes of model fields are taken into account for form
validation. By default, Django creates a form field for each field
contained in the model. However, we can explicitly tell Django
which fields to include in the form using the fields a�ribute or
define which fields to exclude using the exclude a�ribute. In the
CommentForm form, we have explicitly included the name , email ,
and body fields. These are the only fields that will be included in the
form.

You can find more information about creating forms from models at
https://docs.djangoproject.com/en/4.1/topics/forms/mode
lforms/.

https://docs.djangoproject.com/en/4.1/topics/forms/modelforms/

Handling ModelForms in views
For sharing posts by email, we used the same view to display the
form and manage its submission. We used the HTTP method to
differentiate between both cases; GET to display the form and POST
to submit it. In this case, we will add the comment form to the post
detail page, and we will build a separate view to handle the form
submission. The new view that processes the form will allow the
user to return to the post detail view once the comment has been
stored in the database.

Edit the views.py file of the blog application and add the
following code:

from django.shortcuts import render, get_object_or_4
from .models import Post, Comment
from django.core.paginator import Paginator, EmptyPa
 PageNotAnInteger
from django.views.generic import ListView
from .forms import EmailPostForm, CommentForm
from django.core.mail import send_mail
from django.views.decorators.http import require_POS
...
@require_POST
def post_comment(request, post_id):
 post = get_object_or_404(Post, id=post_id, statu
 comment = None
 # A comment was posted
 form = CommentForm(data=request.POST)
 if form.is_valid():
 # Create a Comment object without saving it

We have defined the post_comment view that takes the request
object and the post_id variable as parameters. We will be using this
view to manage the post submission. We expect the form to be
submi�ed using the HTTP POST method. We use the require_POST
decorator provided by Django to only allow POST requests for this
view. Django allows you to restrict the HTTP methods allowed for
views. Django will throw an HTTP 405 (method not allowed) error
if you try to access the view with any other HTTP method.

In this view, we have implemented the following actions:

1. We retrieve a published post by its id using the
get_object_or_404() shortcut.

2. We define a comment variable with the initial value None . This
variable will be used to store the comment object when it gets
created.

3. We instantiate the form using the submi�ed POST data and
validate it using the is_valid() method. If the form is invalid,
the template is rendered with the validation errors.

 comment = form.save(commit=False)
 # Assign the post to the comment
 comment.post = post
 # Save the comment to the database
 comment.save()
 return render(request, 'blog/post/comment.xhtml
 {'post': post,
 'form': form,
 'comment': comment})

4. If the form is valid, we create a new Comment object by calling
the form’s save() method and assign it to the new_comment
variable, as follows:

comment = form.save(commit=False)

5. The save() method creates an instance of the model that the
form is linked to and saves it to the database. If you call it using
commit=False , the model instance is created but not saved to
the database. This allows us to modify the object before finally
saving it.

The save() method is available for ModelForm
but not for Form instances since they are not
linked to any model.

6. We assign the post to the comment we created:

comment.post = post

7. We save the new comment to the database by calling its save()
method:

comment.save()

8. We render the template blog/post/comment.xhtml , passing
the post , form , and comment objects in the template context.
This template doesn’t exist yet; we will create it later.

Let’s create a URL pa�ern for this view.

Edit the urls.py file of the blog application and add the following
URL pa�ern to it:

We have implemented the view to manage the submission of
comments and their corresponding URL. Let’s create the necessary
templates.

Creating templates for the comment
form

from django.urls import path
from . import views
app_name = 'blog'
urlpatterns = [
 # Post views
 # path('', views.post_list, name='post_list'),
 path('', views.PostListView.as_view(), name='pos
 path('<int:year>/<int:month>/<int:day>/<slug:pos
 views.post_detail,
 name='post_detail'),
 path('<int:post_id>/share/',
 views.post_share, name='post_share'),
 path('<int:post_id>/comment/',
 views.post_comment, name='post_comment'),
]

We will create a template for the comment form that we will use in
two places:

In the post detail template associated with the post_detail
view to let users publish comments
In the post comment template associated with the
post_comment view to display the form again if there are any
form errors.

We will create the form template and use the {% include %}
template tag to include it in the two other templates.

In the templates/blog/post/ directory, create a new includes/
directory. Add a new file inside this directory and name it
comment_form.xhtml .

The file structure should look as follows:

templates/
 blog/
 post/
 includes/
 comment_form.xhtml
 detail.xhtml
 list.xhtml
 share.xhtml

Edit the new blog/post/includes/comment_form.xhtml
template and add the following code:

In this template, we build the action URL of the HTML <form>
element dynamically using the {% url %} template tag. We build
the URL of the post_comment view that will process the form. We
display the form rendered in paragraphs and we include {%
csrf_token %} for CSRF protection because this form will be
submi�ed with the POST method.

Create a new file in the templates/blog/post/ directory of the
blog application and name it comment.xhtml .

The file structure should now look as follows:

templates/
 blog/
 post/
 includes/
 comment_form.xhtml
 comment.xhtml
 detail.xhtml
 list.xhtml
 share.xhtml

<h2>Add a new comment</h2>
<form action="{% url "blog:post_comment" post.id %}"
 {{ form.as_p }}
 {% csrf_token %}
 <p><input type="submit" value="Add comment"></p>
</form>

Edit the new blog/post/comment.xhtml template and add the
following code:

This is the template for the post comment view. In this view, we
expect the form to be submi�ed via the POST method. The template
covers two different scenarios:

If the form data submi�ed is valid, the comment variable will
contain the comment object that was created, and a success
message will be displayed.
If the form data submi�ed is not valid, the comment variable
will be None . In this case, we will display the comment form.
We use the {% include %} template tag to include the
comment_form.xhtml template that we have previously
created.

{% extends "blog/base.xhtml" %}
{% block title %}Add a comment{% endblock %}
{% block content %}
 {% if comment %}
 <h2>Your comment has been added.</h2>
 <p>Back to
 {% else %}
 {% include "blog/post/includes/comment_form.xhtm
 {% endif %}
{% endblock %}

Adding comments to the post detail
view
Edit the views.py file of the blog application and edit the
post_detail view as follows:

Let’s review the code we have added to the post_detail view:

We have added a QuerySet to retrieve all active comments for
the post, as follows:

comments = post.comments.filter(active=True)

def post_detail(request, year, month, day, post):
 post = get_object_or_404(Post,
 status=Post.Status.PUBL
 slug=post,
 publish__year=year,
 publish__month=month,
 publish__day=day)
 # List of active comments for this post
 comments = post.comments.filter(active=True)
 # Form for users to comment
 form = CommentForm()
 return render(request,
 'blog/post/detail.xhtml',
 {'post': post,
 'comments': comments,
 'form': form})

This QuerySet is built using the post object. Instead of building
a QuerySet for the Comment model directly, we leverage the
post object to retrieve the related Comment objects. We use the
comments manager for the related Comment objects that we
previously defined in the Comment model, using the
related_name a�ribute of the ForeignKey field to the Post
model.
We have also created an instance of the comment form with
form = CommentForm() .

Adding comments to the post detail
template
We need to edit the blog/post/detail.xhtml template to
implement the following:

Display the total number of comments for a post
Display the list of comments
Display the form for users to add a new comment

We will start by adding the total number of comments for a post.

Edit the blog/post/detail.xhtml template and change it as
follows:

{% extends "blog/base.xhtml" %}
{% block title %}{{ post.title }}{% endblock %}
{% block content %}
 <h1>{{ post.title }}</h1>
 <p class="date">

We use the Django ORM in the template, executing the
comments.count() QuerySet. Note that the Django template
language doesn’t use parentheses for calling methods. The {% with
%} tag allows you to assign a value to a new variable that will be
available in the template until the {% endwith %} tag.

The {% with %} template tag is useful for avoiding
hi�ing the database or accessing expensive methods
multiple times.

We use the pluralize template filter to display a plural suffix for
the word “comment,” depending on the total_comments value.
Template filters take the value of the variable they are applied to as

 Published {{ post.publish }} by {{ post.author }
 </p>
 {{ post.body|linebreaks }}
 <p>

 Share this post

 </p>
 {% with comments.count as total_comments %}
 <h2>
 {{ total_comments }} comment{{ total_comments
 </h2>
 {% endwith %}
{% endblock %}

their input and return a computed value. We will learn more about
template filters in Chapter 3, Extending Your Blog Application.

The pluralize template filter returns a string with the le�er “s” if
the value is different from 1 . The preceding text will be rendered as
0 comments, 1 comment, or N comments, depending on the number of
active comments for the post.

Now, let’s add the list of active comments to the post detail template.

Edit the blog/post/detail.xhtml template and implement the
following changes:

{% extends "blog/base.xhtml" %}
{% block title %}{{ post.title }}{% endblock %}
{% block content %}
 <h1>{{ post.title }}</h1>
 <p class="date">
 Published {{ post.publish }} by {{ post.author }
 </p>
 {{ post.body|linebreaks }}
 <p>

 Share this post

 </p>
 {% with comments.count as total_comments %}
 <h2>
 {{ total_comments }} comment{{ total_comments
 </h2>
 {% endwith %}
 {% for comment in comments %}

We have added a {% for %} template tag to loop through the post
comments. If the comments list is empty, we display a message that
informs users that there are no comments for this post. We
enumerate comments with the {{ forloop.counter }} variable,
which contains the loop counter in each iteration. For each post, we
display the name of the user who posted it, the date, and the body of
the comment.

Finally, let’s add the comment form to the template.

Edit the blog/post/detail.xhtml template and include the
comment form template as follows:

 <div class="comment">
 <p class="info">
 Comment {{ forloop.counter }} by {{ comment
 {{ comment.created }}
 </p>
 {{ comment.body|linebreaks }}
 </div>
 {% empty %}
 <p>There are no comments.</p>
 {% endfor %}
{% endblock %}

{% extends "blog/base.xhtml" %}
{% block title %}{{ post.title }}{% endblock %}
{% block content %}
 <h1>{{ post.title }}</h1>
 <p class="date">

Open http://127.0.0.1:8000/blog/ in your browser and click
on a post title to take a look at the post detail page. You will see
something like Figure 2.22:

 Published {{ post.publish }} by {{ post.author }
 </p>
 {{ post.body|linebreaks }}
 <p>

 Share this post

 </p>
 {% with comments.count as total_comments %}
 <h2>
 {{ total_comments }} comment{{ total_comments
 </h2>
 {% endwith %}
 {% for comment in comments %}
 <div class="comment">
 <p class="info">
 Comment {{ forloop.counter }} by {{ comment
 {{ comment.created }}
 </p>
 {{ comment.body|linebreaks }}
 </div>
 {% empty %}
 <p>There are no comments.</p>
 {% endfor %}
 {% include "blog/post/includes/comment_form.xhtml"
{% endblock %}

Figure 2.22: The post detail page, including the form to add a comment

Fill in the comment form with valid data and click on Add comment.
You should see the following page:

Figure 2.23: The comment added success page

Click on the Back to the post link. You should be redirected back to
the post detail page, and you should be able to see the comment that
you just added, as follows:

Figure 2.24: The post detail page, including a comment

Add one more comment to the post. The comments should appear
below the post contents in chronological order, as follows:

Figure 2.25: The comment list on the post detail page

Open http://127.0.0.1:8000/admin/blog/comment/ in your
browser. You will see the administration page with the list of
comments you created, like this:

Figure 2.26: List of comments on the administration site

Click on the name of one of the posts to edit it. Uncheck the Active
checkbox as follows and click on the Save bu�on:

Figure 2.27: Editing a comment on the administration site

You will be redirected to the list of comments. The Active column
will display an inactive icon for the comment, as shown in Figure
2.28:

Figure 2.28: Active/inactive comments on the administration site

If you return to the post detail view, you will note that the inactive
comment is no longer displayed, neither is it counted for the total
number of active comments for the post:

Figure 2.29: A single active comment displayed on the post detail page

Thanks to the active field, you can deactivate inappropriate
comments and avoid showing them on your posts.

Additional resources
The following resources provide additional information related to
the topics covered in this chapter:

Source code for this chapter –
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter02

URLs utility functions –
https://docs.djangoproject.com/en/4.1/ref/urlresolv
ers/

URL path converters –
https://docs.djangoproject.com/en/4.1/topics/http/u
rls/#path-converters

Django paginator class –
https://docs.djangoproject.com/en/4.1/ref/paginator
/

Introduction to class-based views –
https://docs.djangoproject.com/en/4.1/topics/class-
based-views/intro/

Sending emails with Django –
https://docs.djangoproject.com/en/4.1/topics/email/

Django form field types –
https://docs.djangoproject.com/en/4.1/ref/forms/fie
lds/

Working with forms –
https://docs.djangoproject.com/en/4.1/topics/forms/

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter02
https://docs.djangoproject.com/en/4.1/ref/urlresolvers/
https://docs.djangoproject.com/en/4.1/topics/http/urls/#path-converters
https://docs.djangoproject.com/en/4.1/ref/paginator/
https://docs.djangoproject.com/en/4.1/topics/class-based-views/intro/
https://docs.djangoproject.com/en/4.1/topics/email/
https://docs.djangoproject.com/en/4.1/ref/forms/fields/
https://docs.djangoproject.com/en/4.1/topics/forms/

Creating forms from models –
https://docs.djangoproject.com/en/4.1/topics/forms/
modelforms/

Many-to-one model relationships –
https://docs.djangoproject.com/en/4.1/topics/db/exa
mples/many_to_one/

Summary
In this chapter, you learned how to define canonical URLs for
models. You created SEO-friendly URLs for blog posts, and you
implemented object pagination for your post list. You also learned
how to work with Django forms and model forms. You created a
system to recommend posts by email and created a comment system
for your blog.

In the next chapter, you will create a tagging system for the blog.
You will learn how to build complex QuerySets to retrieve objects by
similarity. You will learn how to create custom template tags and
filters. You will also build a custom sitemap and feed for your blog
posts and implement a full-text search functionality for your posts.

https://docs.djangoproject.com/en/4.1/topics/forms/modelforms/
https://docs.djangoproject.com/en/4.1/topics/db/examples/many_to_one/

3

Extending Your Blog Application

The previous chapter went through the basics of forms and the
creation of a comment system. You also learned how to send emails
with Django. In this chapter, you will extend your blog application
with other popular features used on blogging platforms, such as
tagging, recommending similar posts, providing an RSS feed to
readers, and allowing them to search posts. You will learn about new
components and functionalities with Django by building these
functionalities.

The chapter will cover the following topics:

Integrating third-party applications
Using django-taggit to implement a tagging system
Building complex QuerySets to recommend similar posts
Creating custom template tags and filters to show a list of the
latest posts and most commented posts in the sidebar
Creating a sitemap using the sitemap framework
Building an RSS feed using the syndication framework
Installing PostgreSQL
Implementing a full-text search engine with Django and
PostgreSQL

The source code for this chapter can be found at
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter03.

All Python packages used in this chapter are included in the
requirements.txt file in the source code for the chapter. You can
follow the instructions to install each Python package in the
following sections, or you can install all the requirements at once
with the command pip install -r requirements.txt .

Adding the tagging functionality
A very common functionality in blogs is to categorize posts using
tags. Tags allow you to categorize content in a non-hierarchical
manner, using simple keywords. A tag is simply a label or keyword
that can be assigned to posts. We will create a tagging system by
integrating a third-party Django tagging application into the project.

django-taggit is a reusable application that primarily offers you a
Tag model and a manager to easily add tags to any model. You can
take a look at its source code at
https://github.com/jazzband/django-taggit.

First, you need to install django-taggit via pip by running the
following command:

pip install django-taggit==3.0.0

Then, open the settings.py file of the mysite project and add
taggit to your INSTALLED_APPS se�ing, as follows:

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter03
https://github.com/jazzband/django-taggit

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'blog.apps.BlogConfig',
 'taggit',
]

Open the models.py file of your blog application and add the
TaggableManager manager provided by django-taggit to the
Post model using the following code:

from taggit.managers import TaggableManager
class Post(models.Model):
 # ...
 tags = TaggableManager()

The tags manager will allow you to add, retrieve, and remove tags
from Post objects.

The following schema shows the data models defined by django-
taggit to create tags and store related tagged objects:

Figure 3.1: Tag models of django-taggit

The Tag model is used to store tags. It contains a name and a slug
field.

The TaggedItem model is used to store the related tagged objects. It
has a ForeignKey field for the related Tag object. It contains a
ForeignKey to a ContentType object and an IntegerField to
store the related id of the tagged object. The content_type and
object_id fields combined form a generic relationship with any
model in your project. This allows you to create relationships
between a Tag instance and any other model instance of your
applications. You will learn about generic relations in Chapter 7,
Tracking User Actions.

Run the following command in the shell prompt to create a
migration for your model changes:

python manage.py makemigrations blog

You should get the following output:

Migrations for 'blog':
 blog/migrations/0004_post_tags.py
 - Add field tags to post

Now, run the following command to create the required database
tables for django-taggit models and to synchronize your model
changes:

python manage.py migrate

You will see an output indicating that migrations have been applied,
as follows:

The database is now in sync with the taggit models and we can
start using the functionalities of django-taggit .

Let’s now explore how to use the tags manager.

Open the Django shell by running the following command in the
system shell prompt:

python manage.py shell

Applying taggit.0001_initial... OK
Applying taggit.0002_auto_20150616_2121... OK
Applying taggit.0003_taggeditem_add_unique_index...
Applying taggit.0004_alter_taggeditem_content_type_a
Applying taggit.0005_auto_20220424_2025... OK
Applying blog.0004_post_tags... OK

Run the following code to retrieve one of the posts (the one with the
1 ID):

>>> from blog.models import Post
>>> post = Post.objects.get(id=1)

Then, add some tags to it and retrieve its tags to check whether they
were successfully added:

Finally, remove a tag and check the list of tags again:

>>> post.tags.remove('django')
>>> post.tags.all()
<QuerySet [<Tag: jazz>, <Tag: music>]>

It’s really easy to add, retrieve, or remove tags from a model using
the manager we have defined.

Start the development server from the shell prompt with the
following command:

python manage.py runserver

>>> post.tags.add('music', 'jazz', 'django')
>>> post.tags.all()
<QuerySet [<Tag: jazz>, <Tag: music>, <Tag: django>]

Open http://127.0.0.1:8000/admin/taggit/tag/ in your
browser.

You will see the administration page with the list of Tag objects of
the taggit application:

Figure 3.2: The tag change list view on the Django administration site

Click on the jazz tag. You will see the following:

Figure 3.3: The related tags field of a Post object

Navigate to
http://127.0.0.1:8000/admin/blog/post/1/change/ to edit
the post with ID 1 .

You will see that posts now include a new Tags field, as follows,
where you can easily edit tags:

Figure 3.4: The related tags field of a Post object

Now, you need to edit your blog posts to display tags.

Open the blog/post/list.xhtml template and add the following
HTML code highlighted in bold:

The join template filter works the same as the Python string
join() method to concatenate elements with the given string.

Open http://127.0.0.1:8000/blog/ in your browser. You
should be able to see the list of tags under each post title:

{% extends "blog/base.xhtml" %}
{% block title %}My Blog{% endblock %}
{% block content %}
 <h1>My Blog</h1>
 {% for post in posts %}
 <h2>

 {{ post.title }}

 </h2>
 <p class="tags">Tags: {{ post.tags.all|join:", "
 <p class="date">
 Published {{ post.publish }} by {{ post.author
 </p>
 {{ post.body|truncatewords:30|linebreaks }}
 {% endfor %}
 {% include "pagination.xhtml" with page=page_obj %
{% endblock %}

Figure 3.5: The Post list item, including related tags

Next, we will edit the post_list view to let users list all posts
tagged with a specific tag.

Open the views.py file of your blog application, import the Tag
model from django-taggit , and change the post_list view to
optionally filter posts by a tag, as follows. New code is highlighted
in bold:

from taggit.models import Tag
def post_list(request, tag_slug=None):
 post_list = Post.published.all()
 tag = None
 if tag_slug:
 tag = get_object_or_404(Tag, slug=tag_slug)
 post_list = post_list.filter(tags__in=[tag])
 # Pagination with 3 posts per page
 paginator = Paginator(post_list, 3)
 page_number = request.GET.get('page', 1)
 try:
 posts = paginator.page(page_number)
 except PageNotAnInteger:

The post_list view now works as follows:

1. It takes an optional tag_slug parameter that has a None
default value. This parameter will be passed in the URL.

2. Inside the view, we build the initial QuerySet, retrieving all
published posts, and if there is a given tag slug, we get the Tag
object with the given slug using the get_object_or_404()
shortcut.

3. Then, we filter the list of posts by the ones that contain the given
tag. Since this is a many-to-many relationship, we have to filter
posts by tags contained in a given list, which, in this case,
contains only one element. We use the __in field lookup.
Many-to-many relationships occur when multiple objects of a
model are associated with multiple objects of another model. In
our application, a post can have multiple tags and a tag can be
related to multiple posts. You will learn how to create many-to-
many relationships in Chapter 6, Sharing Content on Your Website.
You can discover more about many-to-many relationships at

 # If page_number is not an integer deliver t
 posts = paginator.page(1)
 except EmptyPage:
 # If page_number is out of range deliver las
 posts = paginator.page(paginator.num_pages)
 return render(request,
 'blog/post/list.xhtml',
 {'posts': posts,
 'tag': tag})

https://docs.djangoproject.com/en/4.1/topics/db/exa
mples/many_to_many/.

4. Finally, the render() function now passes the new tag
variable to the template.

Remember that QuerySets are lazy. The QuerySets to retrieve posts
will only be evaluated when you loop over the post list when
rendering the template.

Open the urls.py file of your blog application, comment out the
class-based PostListView URL pa�ern, and uncomment the
post_list view, like this:

Add the following additional URL pa�ern to list posts by tag:

path('tag/<slug:tag_slug>/',
 views.post_list, name='post_list_by_tag'),

As you can see, both pa�erns point to the same view, but they have
different names. The first pa�ern will call the post_list view
without any optional parameters, whereas the second pa�ern will
call the view with the tag_slug parameter. You use a slug path
converter to match the parameter as a lowercase string with ASCII
le�ers or numbers, plus the hyphen and underscore characters.

The urls.py file of the blog application should now look like this:

path('', views.post_list, name='post_list'),
path('', views.PostListView.as_view(), name='post_

https://docs.djangoproject.com/en/4.1/topics/db/examples/many_to_many/

Since you are using the post_list view, edit the
blog/post/list.xhtml template and modify the pagination to use
the posts object:

{% include "pagination.xhtml" with page=posts %}

Add the following lines highlighted in bold to the
blog/post/list.xhtml template:

from django.urls import path
from . import views
app_name = 'blog'
urlpatterns = [
 # Post views
 path('', views.post_list, name='post_list'),
 # path('', views.PostListView.as_view(), name='p
 path('tag/<slug:tag_slug>/',
 views.post_list, name='post_list_by_tag'),
 path('<int:year>/<int:month>/<int:day>/<slug:pos
 views.post_detail,
 name='post_detail'),
 path('<int:post_id>/share/',
 views.post_share, name='post_share'),
 path('<int:post_id>/comment/',
 views.post_comment, name='post_comment'),
]

If a user is accessing the blog, they will see the list of all posts. If they
filter by posts tagged with a specific tag, they will see the tag that
they are filtering by.

Now, edit the blog/post/list.xhtml template and change the
way tags are displayed, as follows. New lines are highlighted in
bold:

{% extends "blog/base.xhtml" %}
{% block title %}My Blog{% endblock %}
{% block content %}
 <h1>My Blog</h1>
 {% if tag %}
 <h2>Posts tagged with "{{ tag.name }}"</h2>
 {% endif %}
 {% for post in posts %}
 <h2>

 {{ post.title }}

 </h2>
 <p class="tags">Tags: {{ post.tags.all|join:", "
 <p class="date">
 Published {{ post.publish }} by {{ post.author
 </p>
 {{ post.body|truncatewords:30|linebreaks }}
 {% endfor %}
 {% include "pagination.xhtml" with page=posts %}
{% endblock %}

{% extends "blog/base.xhtml" %}
{% block title %}My Blog{% endblock %}
{% block content %}
 <h1>My Blog</h1>
 {% if tag %}
 <h2>Posts tagged with "{{ tag.name }}"</h2>
 {% endif %}
 {% for post in posts %}
 <h2>

 {{ post.title }}

 </h2>
 <p class="tags">
 Tags:
 {% for tag in post.tags.all %}
 <a href="{% url "blog:post_list_by_tag" tag.
 {{ tag.name }}

 {% if not forloop.last %}, {% endif %}
 {% endfor %}
 </p>
 <p class="date">
 Published {{ post.publish }} by {{ post.author
 </p>
 {{ post.body|truncatewords:30|linebreaks }}
 {% endfor %}
 {% include "pagination.xhtml" with page=posts %}
{% endblock %}

In the preceding code, we loop through all the tags of a post
displaying a custom link to the URL to filter posts by that tag. We
build the URL with {% url "blog:post_list_by_tag" tag.slug
%} , using the name of the URL and the slug tag as its parameter.
You separate the tags by commas.

Open http://127.0.0.1:8000/blog/tag/jazz/ in your browser.
You will see the list of posts filtered by that tag, like this:

Figure 3.6: A post filtered by the tag “jazz”

Retrieving posts by similarity
Now that we have implemented tagging for blog posts, you can do
many interesting things with tags. Tags allow you to categorize posts

in a non-hierarchical manner. Posts about similar topics will have
several tags in common. We will build a functionality to display
similar posts by the number of tags they share. In this way, when a
user reads a post, we can suggest to them that they read other
related posts.

In order to retrieve similar posts for a specific post, you need to
perform the following steps:

1. Retrieve all tags for the current post
2. Get all posts that are tagged with any of those tags
3. Exclude the current post from that list to avoid recommending

the same post
4. Order the results by the number of tags shared with the current

post
5. In the case of two or more posts with the same number of tags,

recommend the most recent post
6. Limit the query to the number of posts you want to recommend

These steps are translated into a complex QuerySet that you will
include in your post_detail view.

Open the views.py file of your blog application and add the
following import at the top of it:

from django.db.models import Count

This is the Count aggregation function of the Django ORM. This
function will allow you to perform aggregated counts of tags.
django.db.models includes the following aggregation functions:

Avg : The mean value
Max : The maximum value
Min : The minimum value
Count : The total number of objects

You can learn about aggregation at
https://docs.djangoproject.com/en/4.1/topics/db/aggrega
tion/.

Open the views.py file of your blog application and add the
following lines to the post_detail view. New lines are highlighted
in bold:

def post_detail(request, year, month, day, post):
 post = get_object_or_404(Post,
 status=Post.Status.PUBL
 slug=post,
 publish__year=year,
 publish__month=month,
 publish__day=day)
 # List of active comments for this post
 comments = post.comments.filter(active=True)
 # Form for users to comment
 form = CommentForm()
 # List of similar posts
 post_tags_ids = post.tags.values_list('id', flat
 similar_posts = Post.published.filter(tags__in=p
 .exclude(id=post.i
 similar_posts = similar_posts.annotate(same_tags
 .order_by('-same_ta
 return render(request,

https://docs.djangoproject.com/en/4.1/topics/db/aggregation/

The preceding code is as follows:

1. You retrieve a Python list of IDs for the tags of the current post.
The values_list() QuerySet returns tuples with the values
for the given fields. You pass flat=True to it to get single
values such as [1, 2, 3, ...] instead of one-tuples such as
[(1,), (2,), (3,) ...].

2. You get all posts that contain any of these tags, excluding the
current post itself.

3. You use the Count aggregation function to generate a calculated
field—same_tags—that contains the number of tags shared
with all the tags queried.

4. You order the result by the number of shared tags (descending
order) and by publish to display recent posts first for the posts
with the same number of shared tags. You slice the result to
retrieve only the first four posts.

5. We pass the similar_posts object to the context dictionary for
the render() function.

Now, edit the blog/post/detail.xhtml template and add the
following code highlighted in bold:

 'blog/post/detail.xhtml',
 {'post': post,
 'comments': comments,
 'form': form,
 'similar_posts': similar_posts})

{% extends "blog/base.xhtml" %}
{% block title %}{{ post.title }}{% endblock %}
{% block content %}
 <h1>{{ post.title }}</h1>
 <p class="date">
 Published {{ post.publish }} by {{ post.author }
 </p>
 {{ post.body|linebreaks }}
 <p>

 Share this post

 </p>
 <h2>Similar posts</h2>
 {% for post in similar_posts %}
 <p>
 {{ post.
 </p>
 {% empty %}
 There are no similar posts yet.
 {% endfor %}
 {% with comments.count as total_comments %}
 <h2>
 {{ total_comments }} comment{{ total_comments
 </h2>
 {% endwith %}
 {% for comment in comments %}
 <div class="comment">
 <p class="info">
 Comment {{ forloop.counter }} by {{ comment
 {{ comment.created }}

The post detail page should look like this:

Figure 3.7: The post detail page, including a list of similar posts

Open http://127.0.0.1:8000/admin/blog/post/ in your
browser, edit a post that has no tags, and add the music and jazz
tags as follows:

 </p>
 {{ comment.body|linebreaks }}
 </div>
 {% empty %}
 <p>There are no comments yet.</p>
 {% endfor %}
 {% include "blog/post/includes/comment_form.xhtml"
{% endblock %}

Figure 3.8: Adding the “jazz” and “music” tags to a post

Edit another post and add the jazz tag as follows:

Figure 3.9: Adding the “jazz” tag to a post

The post detail page for the first post should now look like this:

Figure 3.10: The post detail page, including a list of similar posts

The posts recommended in the Similar posts section of the page
appear in descending order based on the number of shared tags with
the original post.

We are now able to successfully recommend similar posts to the
readers. django-taggit also includes a similar_objects()
manager that you can use to retrieve objects by shared tags. You can
take a look at all django-taggit managers at https://django-
taggit.readthedocs.io/en/latest/api.xhtml.

You can also add the list of tags to your post detail template in the
same way as you did in the blog/post/list.xhtml template.

https://django-taggit.readthedocs.io/en/latest/api.xhtml

Creating custom template tags and
filters
Django offers a variety of built-in template tags, such as {% if %}
or {% block %} . You used different template tags in Chapter 1,
Building a Blog Application, and Chapter 2, Enhancing Your Blog with
Advanced Features. You can find a complete reference of built-in
template tags and filters at
https://docs.djangoproject.com/en/4.1/ref/templates/bui
ltins/.

Django also allows you to create your own template tags to perform
custom actions. Custom template tags come in very handy when you
need to add a functionality to your templates that is not covered by
the core set of Django template tags. This can be a tag to execute a
QuerySet or any server-side processing that you want to reuse across
templates. For example, we could build a template tag to display the
list of latest posts published on the blog. We could include this list in
the sidebar, so that it is always visible, regardless of the view that
processes the request.

Implementing custom template tags
Django provides the following helper functions that allow you to
easily create template tags:

simple_tag : Processes the given data and returns a string
inclusion_tag : Processes the given data and returns a
rendered template

https://docs.djangoproject.com/en/4.1/ref/templates/builtins/

Template tags must live inside Django applications.

Inside your blog application directory, create a new directory, name
it templatetags , and add an empty __init__.py file to it. Create
another file in the same folder and name it blog_tags.py . The file
structure of the blog application should look like the following:

blog/
 __init__.py
 models.py
 ...

templatetags/

__init__.py

blog_tags.py

The way you name the file is important. You will use the name of
this module to load tags in templates.

Creating a simple template tag
Let’s start by creating a simple tag to retrieve the total posts that
have been published on the blog.

Edit the templatetags/blog_tags.py file you just created and add
the following code:

from django import template
from ..models import Post
register = template.Library()
@register.simple_tag
def total_posts():
 return Post.published.count()

We have created a simple template tag that returns the number of
posts published in the blog.

Each module that contains template tags needs to define a variable
called register to be a valid tag library. This variable is an instance
of template.Library , and it’s used to register the template tags
and filters of the application.

In the preceding code, we have defined a tag called total_posts
with a simple Python function. We have added the
@register.simple_tag decorator to the function, to register it as a
simple tag. Django will use the function’s name as the tag name. If
you want to register it using a different name, you can do so by
specifying a name a�ribute, such as
@register.simple_tag(name='my_tag') .

After adding a new template tags module, you will
need to restart the Django development server in
order to use the new tags and filters in templates.

Before using custom template tags, we have to make them available
for the template using the {% load %} tag. As mentioned before, we

need to use the name of the Python module containing your
template tags and filters.

Edit the blog/templates/base.xhtml template and add {% load
blog_tags %} at the top of it to load your template tags module.
Then, use the tag you created to display your total posts, as follows.
The new lines are highlighted in bold:

{% load blog_tags %}
{% load static %}
<!DOCTYPE html>
<html>
<head>
 <title>{% block title %}{% endblock %}</title>
 <link href="{% static "css/blog.css" %}" rel="styl
</head>
<body>
 <div id="content">
 {% block content %}
 {% endblock %}
 </div>
 <div id="sidebar">
 <h2>My blog</h2>
 <p>
 This is my blog.
 I've written {% total_posts %} posts so far.
 </p>
 </div>
</body>
</html>

You will need to restart the server to keep track of the new files
added to the project. Stop the development server with Ctrl + C and
run it again using the following command:

python manage.py runserver

Open http://127.0.0.1:8000/blog/ in your browser. You
should see the total number of posts in the sidebar of the site, as
follows:

Figure 3.11: The total posts published included in the sidebar

If you see the following error message, it’s very likely you didn’t
restart the development server:

Figure 3.12: The error message when a template tag library is not registered

Template tags allow you to process any data and add it to any
template regardless of the view executed. You can perform
QuerySets or process any data to display results in your templates.

Creating an inclusion template tag
We will create another tag to display the latest posts in the sidebar of
the blog. This time, we will implement an inclusion tag. Using an
inclusion tag, you can render a template with context variables
returned by your template tag.

Edit the templatetags/blog_tags.py file and add the following
code:

In the preceding code, we have registered the template tag using the
@register.inclusion_tag decorator. We have specified the
template that will be rendered with the returned values using
blog/post/latest_posts.xhtml . The template tag will accept an
optional count parameter that defaults to 5 . This parameter will
allow us to specify the number of posts to display. We use this
variable to limit the results of the query
Post.published.order_by('-publish')[:count] .

@register.inclusion_tag('blog/post/latest_posts.xhtm
def show_latest_posts(count=5):
 latest_posts = Post.published.order_by('-publish
 return {'latest_posts': latest_posts}

Note that the function returns a dictionary of variables instead of a
simple value. Inclusion tags have to return a dictionary of values,
which is used as the context to render the specified template. The
template tag we just created allows us to specify the optional
number of posts to display as {% show_latest_posts 3 %} .

Now, create a new template file under blog/post/ and name it
latest_posts.xhtml .

Edit the new blog/post/latest_posts.xhtml template and add
the following code to it:

In the preceding code, you display an unordered list of posts using
the latest_posts variable returned by your template tag. Now,
edit the blog/base.xhtml template and add the new template tag
to display the last three posts, as follows. The new lines are
highlighted in bold:

 {% for post in latest_posts %}

 {{ post

 {% endfor %}

{% load blog_tags %}
{% load static %}
<!DOCTYPE html>

The template tag is called, passing the number of posts to display,
and the template is rendered in place with the given context.

Next, return to your browser and refresh the page. The sidebar
should now look like this:

<html>
<head>
 <title>{% block title %}{% endblock %}</title>
 <link href="{% static "css/blog.css" %}" rel="styl
</head>
<body>
 <div id="content">
 {% block content %}
 {% endblock %}
 </div>
 <div id="sidebar">
 <h2>My blog</h2>
 <p>
 This is my blog.
 I've written {% total_posts %} posts so far.
 </p>
 <h3>Latest posts</h3>
 {% show_latest_posts 3 %}
 </div>
</body>
</html>

Figure 3.13: The blog sidebar, including the latest published posts

Creating a template tag that returns a
QuerySet
Finally, we will create a simple template tag that returns a value. We
will store the result in a variable that can be reused, rather than
outpu�ing it directly. We will create a tag to display the most
commented posts.

Edit the templatetags/blog_tags.py file and add the following
import and template tag to it:

from django.db.models import Count
@register.simple_tag
def get_most_commented_posts(count=5):
 return Post.published.annotate(
 total_comments=Count('comments')
).order_by('-total_comments')[:count]

In the preceding template tag, you build a QuerySet using the
annotate() function to aggregate the total number of comments for

each post. You use the Count aggregation function to store the
number of comments in the computed total_comments field for
each Post object. You order the QuerySet by the computed field in
descending order. You also provide an optional count variable to
limit the total number of objects returned.

In addition to Count , Django offers the aggregation functions Avg ,
Max , Min , and Sum . You can read more about aggregation functions
at
https://docs.djangoproject.com/en/4.1/topics/db/aggrega
tion/.

Next, edit the blog/base.xhtml template and add the following
code highlighted in bold:

{% load blog_tags %}
{% load static %}
<!DOCTYPE html>
<html>
<head>
 <title>{% block title %}{% endblock %}</title>
 <link href="{% static "css/blog.css" %}" rel="styl
</head>
<body>
 <div id="content">
 {% block content %}
 {% endblock %}
 </div>
 <div id="sidebar">
 <h2>My blog</h2>
 <p>

https://docs.djangoproject.com/en/4.1/topics/db/aggregation/

In the preceding code, we store the result in a custom variable using
the as argument followed by the variable name. For the template
tag, we use {% get_most_commented_posts as
most_commented_posts %} to store the result of the template tag in
a new variable named most_commented_posts . Then, we display
the returned posts using an HTML unordered list element.

Now open your browser and refresh the page to see the final result.
It should look like the following:

 This is my blog.
 I've written {% total_posts %} posts so far.
 </p>
 <h3>Latest posts</h3>
 {% show_latest_posts 3 %}
 <h3>Most commented posts</h3>
 {% get_most_commented_posts as most_commented_po

 {% for post in most_commented_posts %}

 {{ p

 {% endfor %}

 </div>
</body>
</html>

Figure 3.14: The post list view, including the complete sidebar with the latest and most commented
posts

You have now a clear idea about how to build custom template tags.
You can read more about them at
https://docs.djangoproject.com/en/4.1/howto/custom-
template-tags/.

Implementing custom template filters

https://docs.djangoproject.com/en/4.1/howto/custom-template-tags/

Django has a variety of built-in template filters that allow you to
alter variables in templates. These are Python functions that take one
or two parameters, the value of the variable that the filter is applied
to, and an optional argument. They return a value that can be
displayed or treated by another filter.

A filter is wri�en like {{ variable |my_filter }} . Filters with an
argument are wri�en like {{ variable |my_filter:"foo" }} .
For example, you can use the capfirst filter to capitalize the first
character of the value, like {{ value |capfirst }} . If value is
django , the output will be Django . You can apply as many filters as
you like to a variable, for example, {{
variable |filter1|filter2 }} , and each filter will be applied to
the output generated by the preceding filter.

You can find the list of Django’s built-in template filters at
https://docs.djangoproject.com/en/4.1/ref/templates/bui
ltins/#built-in-filter-reference.

Creating a template filter to support
Markdown syntax
We will create a custom filter to enable you to use Markdown syntax
in your blog posts and then convert the post body to HTML in the
templates.

Markdown is a plain text forma�ing syntax that is very simple to
use, and it’s intended to be converted into HTML. You can write
posts using simple Markdown syntax and get the content
automatically converted into HTML code. Learning Markdown

https://docs.djangoproject.com/en/4.1/ref/templates/builtins/#built-in-filter-reference

syntax is much easier than learning HTML. By using Markdown,
you can get other non-tech savvy contributors to easily write posts
for your blog. You can learn the basics of the Markdown format at
https://daringfireball.net/projects/markdown/basics.

First, install the Python markdown module via pip using the
following command in the shell prompt:

pip install markdown==3.4.1

Then, edit the templatetags/blog_tags.py file and include the
following code:

from django.utils.safestring import mark_safe
import markdown
@register.filter(name='markdown')
def markdown_format(text):
 return mark_safe(markdown.markdown(text))

We register template filters in the same way as template tags. To
prevent a name clash between the function name and the markdown
module, we have named the function markdown_format and we
have named the filter markdown for use in templates, such as {{
variable |markdown }} .

Django escapes the HTML code generated by filters; characters of
HTML entities are replaced with their HTML encoded characters.
For example, <p> is converted to <p> (less than symbol, p
character, greater than symbol).

https://daringfireball.net/projects/markdown/basics

We use the mark_safe function provided by Django to mark the
result as safe HTML to be rendered in the template. By default,
Django will not trust any HTML code and will escape it before
placing it in the output. The only exceptions are variables that are
marked as safe from escaping. This behavior prevents Django from
outpu�ing potentially dangerous HTML and allows you to create
exceptions for returning safe HTML.

Edit the blog/post/detail.xhtml template and add the following
new code highlighted in bold:

{% extends "blog/base.xhtml" %}
{% load blog_tags %}
{% block title %}{{ post.title }}{% endblock %}
{% block content %}
 <h1>{{ post.title }}</h1>
 <p class="date">
 Published {{ post.publish }} by {{ post.author }
 </p>
 {{ post.body|markdown }}
 <p>

 Share this post

 </p>
 <h2>Similar posts</h2>
 {% for post in similar_posts %}
 <p>
 {{ post
 </p>
 {% empty %}

We have replaced the linebreaks filter of the {{ post.body }}
template variable with the markdown filter. This filter will not only
transform line breaks into <p> tags; it will also transform Markdown
forma�ing into HTML.

Edit the blog/post/list.xhtml template and add the following
new code highlighted in bold:

 There are no similar posts yet.
 {% endfor %}
 {% with comments.count as total_comments %}
 <h2>
 {{ total_comments }} comment{{ total_comments
 </h2>
 {% endwith %}
 {% for comment in comments %}
 <div class="comment">
 <p class="info">
 Comment {{ forloop.counter }} by {{ comment
 {{ comment.created }}
 </p>
 {{ comment.body|linebreaks }}
 </div>
 {% empty %}
 <p>There are no comments yet.</p>
 {% endfor %}
 {% include "blog/post/includes/comment_form.xhtml"
{% endblock %}

{% extends "blog/base.xhtml" %}
{% load blog_tags %}
{% block title %}My Blog{% endblock %}
{% block content %}
 <h1>My Blog</h1>
 {% if tag %}
 <h2>Posts tagged with "{{ tag.name }}"</h2>
 {% endif %}
 {% for post in posts %}
 <h2>

 {{ post.title }}

 </h2>
 <p class="tags">
 Tags:
 {% for tag in post.tags.all %}
 <a href="{% url "blog:post_list_by_tag" tag
 {{ tag.name }}

 {% if not forloop.last %}, {% endif %}
 {% endfor %}
 </p>
 <p class="date">
 Published {{ post.publish }} by {{ post.author
 </p>
 {{ post.body|markdown|truncatewords_html:30 }}
 {% endfor %}
 {% include "pagination.xhtml" with page=posts %}
{% endblock %}

We have added the new markdown filter to the {{ post.body }}
template variable. This filter will transform the Markdown content
into HTML. Therefore, we have replaced the previous
truncatewords filter with the truncatewords_html filter. This
filter truncates a string after a certain number of words avoiding
unclosed HTML tags.

Now open http://127.0.0.1:8000/admin/blog/post/add/ in
your browser and create a new post with the following body:

The form should look like this:

This is a post formatted with markdown

This is emphasized and **this is more emphasized**
Here is a list:
* One
* Two
* Three
And a [link to the Django website](https://www.djang

Figure 3.15: The post with Markdown content rendered as HTML

Open http://127.0.0.1:8000/blog/ in your browser and take a
look at how the new post is rendered. You should see the following
output:

Figure 3.16: The post with Markdown content rendered as HTML

As you can see in Figure 3.16, custom template filters are very useful
for customizing forma�ing. You can find more information about
custom filters at
https://docs.djangoproject.com/en/4.1/howto/custom-
template-tags/#writing-custom-template-filters.

Adding a sitemap to the site
Django comes with a sitemap framework, which allows you to
generate sitemaps for your site dynamically. A sitemap is an XML
file that tells search engines the pages of your website, their
relevance, and how frequently they are updated. Using a sitemap
will make your site more visible in search engine rankings because it
helps crawlers to index your website’s content.

The Django sitemap framework depends on
django.contrib.sites , which allows you to associate objects to
particular websites that are running with your project. This comes in
handy when you want to run multiple sites using a single Django
project. To install the sitemap framework, we will need to activate
both the sites and the sitemap applications in your project.

Edit the settings.py file of the project and add
django.contrib.sites and django.contrib.sitemaps to the
INSTALLED_APPS se�ing. Also, define a new se�ing for the site ID,
as follows. New code is highlighted in bold:

...
SITE_ID = 1
Application definition

https://docs.djangoproject.com/en/4.1/howto/custom-template-tags/#writing-custom-template-filters

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'blog.apps.BlogConfig',
 'taggit',
 'django.contrib.sites',
 'django.contrib.sitemaps',
]

Now, run the following command from the shell prompt to create
the tables of the Django site application in the database:

python manage.py migrate

You should see an output that contains the following lines:

Applying sites.0001_initial... OK
Applying sites.0002_alter_domain_unique... OK

The sites application is now synced with the database.

Next, create a new file inside your blog application directory and
name it sitemaps.py . Open the file and add the following code to
it:

from django.contrib.sitemaps import Sitemap
from .models import Post
class PostSitemap(Sitemap):
 changefreq = 'weekly'
 priority = 0.9
 def items(self):
 return Post.published.all()
 def lastmod(self, obj):
 return obj.updated

We have defined a custom sitemap by inheriting the Sitemap class
of the sitemaps module. The changefreq and priority a�ributes
indicate the change frequency of your post pages and their relevance
in your website (the maximum value is 1).

The items() method returns the QuerySet of objects to include in
this sitemap. By default, Django calls the get_absolute_url()
method on each object to retrieve its URL. Remember that we
implemented this method in Chapter 2, Enhancing Your Blog with
Advanced Features, to define the canonical URL for posts. If you want
to specify the URL for each object, you can add a location method
to your sitemap class.

The lastmod method receives each object returned by items() and
returns the last time the object was modified.

Both the changefreq and priority a�ributes can be either
methods or a�ributes. You can take a look at the complete sitemap
reference in the official Django documentation located at

https://docs.djangoproject.com/en/4.1/ref/contrib/sitem
aps/.

We have created the sitemap. Now we just need to create an URL for
it.

Edit the main urls.py file of the mysite project and add the
sitemap, as follows. New lines are highlighted in bold:

In the preceding code, we have included the required imports and
have defined a sitemaps dictionary. Multiple sitemaps can be
defined for the site. We have defined a URL pa�ern that matches
with the sitemap.xml pa�ern and uses the sitemap view provided
by Django. The sitemaps dictionary is passed to the sitemap view.

Start the development from the shell prompt with the following
command:

from django.urls import path, include
from django.contrib import admin
from django.contrib.sitemaps.views import sitemap
from blog.sitemaps import PostSitemap
sitemaps = {
 'posts': PostSitemap,
}
urlpatterns = [
 path('admin/', admin.site.urls),
 path('blog/', include('blog.urls', namespace='bl
 path('sitemap.xml', sitemap, {'sitemaps': sitema
 name='django.contrib.sitemaps.views.sitemap
]

https://docs.djangoproject.com/en/4.1/ref/contrib/sitemaps/

python manage.py runserver

Open http://127.0.0.1:8000/sitemap.xml in your browser.
You will see an XML output including all of the published posts like
this:

<urlset xmlns="http://www.sitemaps.org/schemas/sitem
 <url>
 <loc>http://example.com/blog/2022/1/22/markdown-
 <lastmod>2022-01-22</lastmod>
 <changefreq>weekly</changefreq>
 <priority>0.9</priority>
 </url>
 <url>
 <loc>http://example.com/blog/2022/1/3/notes-on-d
 <lastmod>2022-01-03</lastmod>
 <changefreq>weekly</changefreqa>
 <priority>0.9</priority>
 </url>
 <url>
 <loc>http://example.com/blog/2022/1/2/who-was-mi
 <lastmod>2022-01-03</lastmod>
 <changefreq>weekly</changefreq>
 <priority>0.9</priority>
 </url>
 <url>
 <loc>http://example.com/blog/2022/1/1/who-was-dj
 <lastmod>2022-01-03</lastmod>
 <changefreq>weekly</changefreq>
 <priority>0.9</priority>

The URL for each Post object is built by calling its
get_absolute_url() method.

The lastmod a�ribute corresponds to the post updated date field,
as you specified in your sitemap, and the changefreq and
priority a�ributes are also taken from the PostSitemap class.

The domain used to build the URLs is example.com . This domain
comes from a Site object stored in the database. This default object
was created when you synced the site’s framework with your
database. You can read more about the sites framework at
https://docs.djangoproject.com/en/4.1/ref/contrib/sites
/.

Open http://127.0.0.1:8000/admin/sites/site/ in your
browser. You should see something like this:

 </url>
 <url>
 <loc>http://example.com/blog/2022/1/1/another-po
 <lastmod>2022-01-03</lastmod>
 <changefreq>weekly</changefreq>
 <priority>0.9</priority>
 </url>
</urlset>

https://docs.djangoproject.com/en/4.1/ref/contrib/sites/

Figure 3.17: The Django administration list view for the Site model of the site’s framework

Figure 3.17 contains the list display administration view for the site’s
framework. Here, you can set the domain or host to be used by the
site’s framework and the applications that depend on it. To generate
URLs that exist in your local environment, change the domain name
to localhost:8000 , as shown in Figure 3.18, and save it:

Figure 3.18: The Django administration edit view for the Site model of the site’s framework

Open http://127.0.0.1:8000/sitemap.xml in your browser
again. The URLs displayed in your feed will now use the new
hostname and look like
http://localhost:8000/blog/2022/1/22/markdown-post/ .
Links are now accessible in your local environment. In a production
environment, you will have to use your website’s domain to
generate absolute URLs.

Creating feeds for blog posts
Django has a built-in syndication feed framework that you can use
to dynamically generate RSS or Atom feeds in a similar manner to
creating sitemaps using the site’s framework. A web feed is a data
format (usually XML) that provides users with the most recently
updated content. Users can subscribe to the feed using a feed
aggregator, a software that is used to read feeds and get new content
notifications.

Create a new file in your blog application directory and name it
feeds.py . Add the following lines to it:

import markdown
from django.contrib.syndication.views import Feed
from django.template.defaultfilters import truncatew
from django.urls import reverse_lazy
from .models import Post
class LatestPostsFeed(Feed):
 title = 'My blog'

In the preceding code, we have defined a feed by subclassing the
Feed class of the syndication framework. The title , link , and
description a�ributes correspond to the <title> , <link> , and
<description> RSS elements, respectively.

We use reverse_lazy() to generate the URL for the link a�ribute.
The reverse() method allows you to build URLs by their name
and pass optional parameters. We used reverse() in Chapter 2,
Enhancing Your Blog with Advanced Features.

The reverse_lazy() utility function is a lazily evaluated version of
reverse() . It allows you to use a URL reversal before the project’s
URL configuration is loaded.

The items() method retrieves the objects to be included in the feed.
We retrieve the last five published posts to include them in the feed.

The item_title() , item_description() , and item_pubdate()
methods will receive each object returned by items() and return
the title, description and publication date for each item.

 link = reverse_lazy('blog:post_list')
 description = 'New posts of my blog.'
 def items(self):
 return Post.published.all()[:5]
 def item_title(self, item):
 return item.title
 def item_description(self, item):
 return truncatewords_html(markdown.markdown(
 def item_pubdate(self, item):
 return item.publish

In the item_description() method, we use the markdown()
function to convert Markdown content to HTML and the
truncatewords_html() template filter function to cut the
description of posts after 30 words, avoiding unclosed HTML tags.

Now, edit the blog/urls.py file, import the LatestPostsFeed
class, and instantiate the feed in a new URL pa�ern, as follows. New
lines are highlighted in bold:

from django.urls import path
from . import views
from .feeds import LatestPostsFeed
app_name = 'blog'
urlpatterns = [
 # Post views
 path('', views.post_list, name='post_list'),
 # path('', views.PostListView.as_view(), name='p
 path('tag/<slug:tag_slug>/',
 views.post_list, name='post_list_by_tag'),
 path('<int:year>/<int:month>/<int:day>/<slug:pos
 views.post_detail,
 name='post_detail'),
 path('<int:post_id>/share/',
 views.post_share, name='post_share'),
 path('<int:post_id>/comment/',
 views.post_comment, name='post_comment'),
 path('feed/', LatestPostsFeed(), name='post_feed
]

Navigate to http://127.0.0.1:8000/blog/feed/ in your
browser. You should now see the RSS feed, including the last five
blog posts:

If you use Chrome, you will see the XML code. If you use Safari, it
will ask you to install an RSS feed reader.

Let’s install an RSS desktop client to view the RSS feed with a user-
friendly interface. We will use Fluent Reader, which is a multi-

<?xml version="1.0" encoding="utf-8"?>
<rss xmlns:atom="http://www.w3.org/2005/Atom" versio
 <channel>
 <title>My blog</title>
 <link>http://localhost:8000/blog/</link>
 <description>New posts of my blog.</description>
 <atom:link href="http://localhost:8000/blog/feed
 <language>en-us</language>
 <lastBuildDate>Fri, 2 Jan 2020 09:56:40 +0000</l
 <item>
 <title>Who was Django Reinhardt?</title>
 <link>http://localhost:8000/blog/2020/1/2/who-
 reinhardt/</link>
 <description>Who was Django Reinhardt.</descri
 <guid>http://localhost:8000/blog/2020/1/2/who-
 reinhardt/</guid>
 </item>
 ...
 </channel>
</rss>

platform RSS reader.

Download Fluent Reader for Linux, macOS, or Windows from
https://github.com/yang991178/fluent-reader/releases.

Install Fluent Reader and open it. You will see the following screen:

Figure 3.19: Fluent Reader with no RSS feed sources

Click on the se�ings icon on the top right of the window. You will
see a screen to add RSS feed sources like the following one:

https://github.com/yang991178/fluent-reader/releases

Figure 3.20: Adding an RSS feed in Fluent Reader

Enter http://127.0.0.1:8000/blog/feed/ in the Add source
field and click on the Add bu�on.

You will see a new entry with the RSS feed of the blog in the table
below the form, like this:

Figure 3.21: RSS feed sources in Fluent Reader

Now, go back to the main screen of Fluent Reader. You should be
able to see the posts included in the blog RSS feed, as follows:

Figure 3.22: RSS feed of the blog in Fluent Reader

Click on a post to see a description:

Figure 3.23: The post description in Fluent Reader

Click on the third icon at the top right of the window to load the full
content of the post page:

Figure 3.24: The full content of a post in Fluent Reader

The final step is to add an RSS feed subscription link to the blog’s
sidebar.

Open the blog/base.xhtml template and add the following code
highlighted in bold:

{% load blog_tags %}
{% load static %}
<!DOCTYPE html>
<html>
<head>
 <title>{% block title %}{% endblock %}</title>
 <link href="{% static "css/blog.css" %}" rel="styl
</head>
<body>
 <div id="content">
 {% block content %}
 {% endblock %}
 </div>
 <div id="sidebar">
 <h2>My blog</h2>
 <p>
 This is my blog.
 I've written {% total_posts %} posts so far.
 </p>
 <p>

 Subscribe to my RSS feed

 </p>
 <h3>Latest posts</h3>
 {% show_latest_posts 3 %}
 <h3>Most commented posts</h3>
 {% get_most_commented_posts as most_commented_po

Now open http://127.0.0.1:8000/blog/ in your browser and
take a look at the sidebar. The new link will take users to the blog’s
feed:

 {% for post in most_commented_posts %}

 {{ p

 {% endfor %}

 </div>
</body>
</html>

Figure 3.25: The RSS feed subscription link added to the sidebar

You can read more about the Django syndication feed framework at
https://docs.djangoproject.com/en/4.1/ref/contrib/syndi
cation/.

Adding full-text search to the blog
Next, we will add search capabilities to the blog. Searching for data
in the database with user input is a common task for web
applications. The Django ORM allows you to perform simple
matching operations using, for example, the contains filter (or its

https://docs.djangoproject.com/en/4.1/ref/contrib/syndication/

case-insensitive version, icontains). You can use the following
query to find posts that contain the word framework in their body:

from blog.models import Post
Post.objects.filter(body__contains='framework')

However, if you want to perform complex search lookups, retrieving
results by similarity, or by weighting terms based on how frequently
they appear in the text or by how important different fields are (for
example, relevancy of the term appearing in the title versus in the
body), you will need to use a full-text search engine. When you
consider large blocks of text, building queries with operations on a
string of characters is not enough. A full-text search examines the
actual words against stored content as it tries to match search
criteria.

Django provides a powerful search functionality built on top of
PostgreSQL’s full-text search features. The
django.contrib.postgres module provides functionalities
offered by PostgreSQL that are not shared by the other databases
that Django supports. You can learn about PostgreSQL’s full-text
search support at
https://www.postgresql.org/docs/14/textsearch.xhtml.

Although Django is a database-agnostic web
framework, it provides a module that supports part of
the rich feature set offered by PostgreSQL, which is
not offered by other databases that Django supports.

https://www.postgresql.org/docs/14/textsearch.xhtml

Installing PostgreSQL
We are currently using an SQLite database for the mysite project.
SQLite support for full-text search is limited and Django doesn’t
support it out of the box. However, PostgreSQL is much be�er
suited for full-text search and we can use the
django.contrib.postgres module to use PostgreSQL’s full-text
search capabilities. We will migrate our data from SQLite to
PostgreSQL to benefit from its full-text search features.

SQLite is sufficient for development purposes.
However, for a production environment, you will
need a more powerful database, such as PostgreSQL,
MariaDB, MySQL, or Oracle.

Download the PostgreSQL installer for macOS or Windows at
https://www.postgresql.org/download/. On the same page, you
can find instructions to install PostgreSQL on different Linux
distributions. Follow the instructions on the website to install and
run PostgreSQL.

If you are using macOS and you choose to install PostgreSQL using
Postgres.app , you will need to configure the $PATH variable to use
the command line tools, as explained in
https://postgresapp.com/documentation/cli-tools.xhtml.

You also need to install the psycopg2 PostgreSQL adapter for
Python. Run the following command in the shell prompt to install it:

pip install psycopg2-binary==2.9.3

https://www.postgresql.org/download/
https://postgresapp.com/documentation/cli-tools.xhtml

Creating a PostgreSQL database
Let’s create a user for the PostgreSQL database. We will use psql ,
which is a terminal-based frontend to PostgreSQL. Enter the
PostgreSQL terminal by running the following command in the shell
prompt:

psql

You will see the following output:

psql (14.2)
Type "help" for help.

Enter the following command to create a user that can create
databases:

CREATE USER blog WITH PASSWORD 'xxxxxx';

Replace xxxxxx with your desired password and execute the
command. You will see the following output:

CREATE ROLE

The user has been created. Let’s now create a blog database and
give ownership to the blog user you just created.

Execute the following command:

CREATE DATABASE blog OWNER blog ENCODING 'UTF8';

With this command we tell PostgreSQL to create a database named
blog , we give the ownership of the database to the blog user we
created before, and we indicate that the UTF8 encoding has to be
used for the new database. You will see the following output:

CREATE DATABASE

We have successfully created the PostgreSQL user and database.

Dumping the existing data
Before switching the database in the Django project, we need to
dump the existing data from the SQLite database. We will export the
data, switch the project’s database to PostgreSQL, and import the
data into the new database.

Django comes with a simple way to load and dump data from the
database into files that are called fixtures. Django supports fixtures
in JSON, XML, or YAML formats. We are going to create a fixture
with all data contained in the database.

The dumpdata command dumps data from the database into the
standard output, serialized in JSON format by default. The resulting
data structure includes information about the model and its fields
for Django to be able to load it into the database.

You can limit the output to the models of an application by
providing the application names to the command, or specifying
single models for outpu�ing data using the app.Model format. You
can also specify the format using the --format flag. By default,
dumpdata outputs the serialized data to the standard output.
However, you can indicate an output file using the --output flag.
The --indent flag allows you to specify indentation. For more
information on dumpdata parameters, run python manage.py
dumpdata --help .

Execute the following command from the shell prompt:

You will see an output similar to the following:

All existing data has been exported in JSON format to a new file
named mysite_data.json . You can view the file contents to see the
JSON structure that includes all the different data objects for the
different models of your installed applications. If you get an
encoding error when running the command, include the -Xutf8
flag as follows to activate Python UTF-8 mode:

python manage.py dumpdata --indent=2 --output=mysite

[..]

python -Xutf8 manage.py dumpdata --indent=2 --output

We will now switch the database in the Django project and then we
will import the data into the new database.

Switching the database in the project
Edit the settings.py file of your project and modify the
DATABASES se�ing to make it look as follows. New code is
highlighted in bold:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql',
 'NAME': 'blog',
 'USER': 'blog',
 'PASSWORD': 'xxxxxx',
 }
}

Replace xxxxxx with the password you used when creating the
PostgreSQL user. The new database is empty.

Run the following command to apply all database migrations to the
new PostgreSQL database:

python manage.py migrate

You will see an output, including all the migrations that have been
applied, like this:

Operations to perform:
 Apply all migrations: admin, auth, blog, contentty
Running migrations:
 Applying contenttypes.0001_initial... OK
 Applying auth.0001_initial... OK
 Applying admin.0001_initial... OK
 Applying admin.0002_logentry_remove_auto_add... OK
 Applying admin.0003_logentry_add_action_flag_choic
 Applying contenttypes.0002_remove_content_type_nam
 Applying auth.0002_alter_permission_name_max_lengt
 Applying auth.0003_alter_user_email_max_length...
 Applying auth.0004_alter_user_username_opts... OK
 Applying auth.0005_alter_user_last_login_null... O
 Applying auth.0006_require_contenttypes_0002... OK
 Applying auth.0007_alter_validators_add_error_mess
 Applying auth.0008_alter_user_username_max_length
 Applying auth.0009_alter_user_last_name_max_length
 Applying auth.0010_alter_group_name_max_length...
 Applying auth.0011_update_proxy_permissions... OK
 Applying auth.0012_alter_user_first_name_max_lengt
 Applying taggit.0001_initial... OK
 Applying taggit.0002_auto_20150616_2121... OK
 Applying taggit.0003_taggeditem_add_unique_index.
 Applying blog.0001_initial... OK
 Applying blog.0002_alter_post_slug... OK
 Applying blog.0003_comment... OK
 Applying blog.0004_post_tags... OK
 Applying sessions.0001_initial... OK
 Applying sites.0001_initial... OK
 Applying sites.0002_alter_domain_unique... OK

Loading the data into the new
database
Run the following command to load the data into the PostgreSQL
database:

python manage.py loaddata mysite_data.json

You will see the following output:

Installed 104 object(s) from 1 fixture(s)

The number of objects might differ, depending on the users, posts,
comments, and other objects that have been created in the database.

Start the development server from the shell prompt with the
following command:

python manage.py runserver

Open http://127.0.0.1:8000/admin/blog/post/ in your
browser to verify that all posts have been loaded into the new
database. You should see all the posts, as follows:

 Applying taggit.0004_alter_taggeditem_content_type
 Applying taggit.0005_auto_20220424_2025... OK

Figure 3.26: The list of posts on the administration site

Simple search lookups
Edit the settings.py file of your project and add
django.contrib.postgres to the INSTALLED_APPS se�ing, as
follows:

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',

 'django.contrib.messages',
 'django.contrib.staticfiles',
 'blog.apps.BlogConfig',
 'taggit',
 'django.contrib.sites',
 'django.contrib.sitemaps',
 'django.contrib.postgres',
]

Open the Django shell by running the following command in the
system shell prompt:

python manage.py shell

Now you can search against a single field using the search
QuerySet lookup.

Run the following code in the Python shell:

>>> from blog.models import Post
>>> Post.objects.filter(title__search='django')
<QuerySet [<Post: Who was Django Reinhardt?>]>

This query uses PostgreSQL to create a search vector for the body
field and a search query from the term django . Results are obtained
by matching the query with the vector.

Searching against multiple fields

You might want to search against multiple fields. In this case, you
will need to define a SearchVector object. Let’s build a vector that
allows you to search against the title and body fields of the Post
model.

Run the following code in the Python shell:

Using annotate and defining SearchVector with both fields, you
provide a functionality to match the query against both the title
and body of the posts.

Full-text search is an intensive process. If you are
searching for more than a few hundred rows, you
should define a functional index that matches the
search vector you are using. Django provides a
SearchVectorField field for your models. You can
read more about this at
https://docs.djangoproject.com/en/4.1/ref/co
ntrib/postgres/search/#performance.

>>> from django.contrib.postgres.search import Searc
>>> from blog.models import Post
>>>
>>> Post.objects.annotate(
... search=SearchVector('title', 'body'),
...).filter(search='django')
<QuerySet [<Post: Markdown post>, <Post: Who was Dja

https://docs.djangoproject.com/en/4.1/ref/contrib/postgres/search/#performance

Building a search view
Now, you will create a custom view to allow your users to search
posts. First, you will need a search form. Edit the forms.py file of
the blog application and add the following form:

class SearchForm(forms.Form):
 query = forms.CharField()

You will use the query field to let users introduce search terms. Edit
the views.py file of the blog application and add the following
code to it:

...
from django.contrib.postgres.search import SearchVec
from .forms import EmailPostForm, CommentForm, Searc
...
def post_search(request):
 form = SearchForm()
 query = None
 results = []
 if 'query' in request.GET:
 form = SearchForm(request.GET)
 if form.is_valid():
 query = form.cleaned_data['query']
 results = Post.published.annotate(
 search=SearchVector('title', 'body')
).filter(search=query)
 return render(request,
 'blog/post/search.xhtml',

In the preceding view, first, we instantiate the SearchForm form. To
check whether the form is submi�ed, we look for the query
parameter in the request.GET dictionary. We send the form using
the GET method instead of POST so that the resulting URL includes
the query parameter and is easy to share. When the form is
submi�ed, we instantiate it with the submi�ed GET data, and verify
that the form data is valid. If the form is valid, we search for
published posts with a custom SearchVector instance built with
the title and body fields.

The search view is now ready. We need to create a template to
display the form and the results when the user performs a search.

Create a new file inside the templates/blog/post/ directory,
name it search.xhtml , and add the following code to it:

 {'form': form,
 'query': query,
 'results': results})

{% extends "blog/base.xhtml" %}
{% load blog_tags %}
{% block title %}Search{% endblock %}
{% block content %}
 {% if query %}
 <h1>Posts containing "{{ query }}"</h1>
 <h3>
 {% with results.count as total_results %}
 Found {{ total_results }} result{{ total_res
 {% endwith %}

As in the search view, we distinguish whether the form has been
submi�ed by the presence of the query parameter. Before the query
is submi�ed, we display the form and a submit bu�on. When the
search form is submi�ed, we display the query performed, the total
number of results, and the list of posts that match the search query.

Finally, edit the urls.py file of the blog application and add the
following URL pa�ern highlighted in bold:

 </h3>
 {% for post in results %}
 <h4>

 {{ post.title }}

 </h4>
 {{ post.body|markdown|truncatewords_html:12 }}
 {% empty %}
 <p>There are no results for your query.</p>
 {% endfor %}
 <p>Search
 {% else %}
 <h1>Search for posts</h1>
 <form method="get">
 {{ form.as_p }}
 <input type="submit" value="Search">
 </form>
 {% endif %}
{% endblock %}

Next, open http://127.0.0.1:8000/blog/search/ in your
browser. You should see the following search form:

urlpatterns = [
 # Post views
 path('', views.post_list, name='post_list'),
 # path('', views.PostListView.as_view(), name='p
 path('tag/<slug:tag_slug>/',
 views.post_list, name='post_list_by_tag'),
 path('<int:year>/<int:month>/<int:day>/<slug:pos
 views.post_detail,
 name='post_detail'),
 path('<int:post_id>/share/',
 views.post_share, name='post_share'),
 path('<int:post_id>/comment/',
 views.post_comment, name='post_comment'),
 path('feed/', LatestPostsFeed(), name='post_feed
 path('search/', views.post_search, name='post_se
]

Figure 3.27: The form with the query field to search for posts

Enter a query and click on the SEARCH bu�on. You will see the
results of the search query, as follows:

Figure 3.28: Search results for the term “jazz”

Congratulations! You have created a basic search engine for your
blog.

Stemming and ranking results
Stemming is the process of reducing words to their word stem, base,
or root form. Stemming is used by search engines to reduce indexed
words to their stem, and to be able to match inflected or derived
words. For example, the words “music”, “musical” and “musicality”
can be considered similar words by a search engine. The stemming
process normalizes each search token into a lexeme, a unit of lexical
meaning that underlies a set of words that are related through
inflection. The words “music”, “musical” and “musicality” would
convert to “music” when creating a search query.

Django provides a SearchQuery class to translate terms into a
search query object. By default, the terms are passed through
stemming algorithms, which helps you to obtain be�er matches.

The PostgreSQL search engine also removes stop words, such as “a”,
“the”, “on”, and “of”. Stop words are a set of commonly used words
in a language. They are removed when creating a search query
because they appear too frequently to be relevant to searches. You
can find the list of stop words used by PostgreSQL for the English
language at
https://github.com/postgres/postgres/blob/master/src/ba
ckend/snowball/stopwords/english.stop.

We also want to order results by relevancy. PostgreSQL provides a
ranking function that orders results based on how often the query
terms appear and how close together they are.

Edit the views.py file of the blog application and add the
following imports:

Then, edit the post_search view, as follows. New code is
highlighted in bold:

from django.contrib.postgres.search import SearchVec
 SearchQue

def post_search(request):
 form = SearchForm()
 query = None
 results = []

https://github.com/postgres/postgres/blob/master/src/backend/snowball/stopwords/english.stop

In the preceding code, we create a SearchQuery object, filter results
by it, and use SearchRank to order the results by relevancy.

You can open http://127.0.0.1:8000/blog/search/ in your
browser and test different searches to test stemming and ranking.
The following is an example of ranking by the number of
occurrences of the word django in the title and body of the posts:

 if 'query' in request.GET:
 form = SearchForm(request.GET)
 if form.is_valid():
 query = form.cleaned_data['query']
 search_vector = SearchVector('title', 'b
 search_query = SearchQuery(query)
 results = Post.published.annotate(
 search=search_vector,
 rank=SearchRank(search_vector, searc
).filter(search=search_query).order_by(
 return render(request,
 'blog/post/search.xhtml',
 {'form': form,
 'query': query,
 'results': results})

Figure 3.29: Search results for the term “django”

Stemming and removing stop words in
different languages
We can set up SearchVector and SearchQuery to execute
stemming and remove stop words in any language. We can pass a
config a�ribute to SearchVector and SearchQuery to use a
different search configuration. This allows us to use different
language parsers and dictionaries. The following example executes
stemming and removes stops in Spanish:

search_vector = SearchVector('title', 'body', config
search_query = SearchQuery(query, config='spanish')
results = Post.published.annotate(
 search=search_vector,

You can find the Spanish stop words dictionary used by PostgreSQL
at
https://github.com/postgres/postgres/blob/master/src/ba
ckend/snowball/stopwords/spanish.stop.

Weighting queries
We can boost specific vectors so that more weight is a�ributed to
them when ordering results by relevancy. For example, we can use
this to give more relevance to posts that are matched by title rather
than by content.

Edit the views.py file of the blog application and modify the
post_search view as follows. New code is highlighted in bold:

 rank=SearchRank(search_vector, search_query)
).filter(search=search_query).order_by('-rank')

def post_search(request):
 form = SearchForm()
 query = None
 results = []
 if 'query' in request.GET:
 form = SearchForm(request.GET)
 if form.is_valid():
 query = form.cleaned_data['query']
 search_vector = SearchVector('title', we
 SearchVector('body', wei
 search_query = SearchQuery(query)
 results = Post.published.annotate(

https://github.com/postgres/postgres/blob/master/src/backend/snowball/stopwords/spanish.stop

In the preceding code, we apply different weights to the search
vectors built using the title and body fields. The default weights
are D , C , B , and A , and they refer to the numbers 0.1 , 0.2 , 0.4 ,
and 1.0 , respectively. We apply a weight of 1.0 to the title
search vector (A) and a weight of 0.4 to the body vector (B). Title
matches will prevail over body content matches. We filter the results
to display only the ones with a rank higher than 0.3 .

Searching with trigram similarity
Another search approach is trigram similarity. A trigram is a group
of three consecutive characters. You can measure the similarity of
two strings by counting the number of trigrams that they share. This
approach turns out to be very effective for measuring the similarity
of words in many languages.

To use trigrams in PostgreSQL, you will need to install the pg_trgm
extension first. Execute the following command in the shell prompt
to connect to your database:

 search=search_vector,
 rank=SearchRank(search_vector, searc
).filter(rank__gte=0.3).order_by('-rank
 return render(request,
 'blog/post/search.xhtml',
 {'form': form,
 'query': query,
 'results': results})

psql blog

Then, execute the following command to install the pg_trgm
extension:

CREATE EXTENSION pg_trgm;

You will get the following output:

CREATE EXTENSION

Let’s edit the view and modify it to search for trigrams.

Edit the views.py file of your blog application and add the
following import:

Then, modify the post_search view as follows. New code is
highlighted in bold:

from django.contrib.postgres.search import TrigramSi

def post_search(request):
 form = SearchForm()
 query = None
 results = []
 if 'query' in request.GET:
 form = SearchForm(request.GET)

Open http://127.0.0.1:8000/blog/search/ in your browser
and test different searches for trigrams. The following example
displays a hypothetical typo in the django term, showing search
results for yango :

 if form.is_valid():
 query = form.cleaned_data['query']
 results = Post.published.annotate(
 similarity=TrigramSimilarity('title
).filter(similarity__gt=0.1).order_by('-
 return render(request,
 'blog/post/search.xhtml',
 {'form': form,
 'query': query,
 'results': results})

Figure 3.30: Search results for the term “yango”

We have added a powerful search engine to the blog application.

You can find more information about full-text search at
https://docs.djangoproject.com/en/4.1/ref/contrib/postg
res/search/.

Additional resources
The following resources provide additional information related to
the topics covered in this chapter:

Source code for this chapter –
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter03

Django-taggit – https://github.com/jazzband/django-
taggit

Django-taggit ORM managers – https://django-
taggit.readthedocs.io/en/latest/api.xhtml

Many-to-many relationships –
https://docs.djangoproject.com/en/4.1/topics/db/exa
mples/many_to_many/

Django aggregation functions –
https://docs.djangoproject.com/en/4.1/topics/db/agg
regation/

Built-in template tags and filters –
https://docs.djangoproject.com/en/4.1/ref/templates
/builtins/

https://docs.djangoproject.com/en/4.1/ref/contrib/postgres/search/
https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter03
https://github.com/jazzband/django-taggit
https://django-taggit.readthedocs.io/en/latest/api.xhtml
https://docs.djangoproject.com/en/4.1/topics/db/examples/many_to_many/
https://docs.djangoproject.com/en/4.1/topics/db/aggregation/
https://docs.djangoproject.com/en/4.1/ref/templates/builtins/

Writing custom template tags –
https://docs.djangoproject.com/en/4.1/howto/custom-
template-tags/

Markdown format reference –
https://daringfireball.net/projects/markdown/basics

Django Sitemap framework –
https://docs.djangoproject.com/en/4.1/ref/contrib/s
itemaps/

Django Sites framework –
https://docs.djangoproject.com/en/4.1/ref/contrib/s
ites/

Django syndication feed framework –
https://docs.djangoproject.com/en/4.1/ref/contrib/s
yndication/

PostgreSQL downloads –
https://www.postgresql.org/download/

PostgreSQL full-text search capabilities –
https://www.postgresql.org/docs/14/textsearch.xhtml

Django support for PostgreSQL full-text search –
https://docs.djangoproject.com/en/4.1/ref/contrib/p
ostgres/search/

Summary
In this chapter, you implemented a tagging system by integrating a
third-party application with your project. You generated post
recommendations using complex QuerySets. You also learned how
to create custom Django template tags and filters to provide

https://docs.djangoproject.com/en/4.1/howto/custom-template-tags/
https://daringfireball.net/projects/markdown/basics
https://docs.djangoproject.com/en/4.1/ref/contrib/sitemaps/
https://docs.djangoproject.com/en/4.1/ref/contrib/sites/
https://docs.djangoproject.com/en/4.1/ref/contrib/syndication/
https://www.postgresql.org/download/
https://www.postgresql.org/docs/14/textsearch.xhtml
https://docs.djangoproject.com/en/4.1/ref/contrib/postgres/search/

templates with custom functionalities. You also created a sitemap for
search engines to crawl your site and an RSS feed for users to
subscribe to your blog. You then built a search engine for your blog
using the full-text search engine of PostgreSQL.

In the next chapter, you will learn how to build a social website
using the Django authentication framework and how to implement
user account functionalities and custom user profiles.

4

Building a Social Website

In the preceding chapter, you learned how to implement a tagging
system and how to recommend similar posts. You implemented
custom template tags and filters. You also learned how to create
sitemaps and feeds for your site, and you built a full-text search
engine using PostgreSQL.

In this chapter, you will learn how to develop user account
functionalities to create a social website, including user registration,
password management, profile editing, and authentication. We will
implement social features into this site in the next few chapters, to let
users share images and interact with each other. Users will be able to
bookmark any image on the internet and share it with other users.
They will also be able to see activity on the platform from the users
they follow and like/unlike the images shared by them.

This chapter will cover the following topics:

Creating a login view
Using the Django authentication framework
Creating templates for Django login, logout, password change,
and password reset views
Extending the user model with a custom profile model
Creating user registration views

Configuring the project for media file uploads
Using the messages framework
Building a custom authentication backend
Preventing users from using an existing email

Let’s start by creating a new project.

The source code for this chapter can be found at
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter04.

All Python packages used in this chapter are included in the
requirements.txt file in the source code for the chapter. You can
follow the instructions to install each Python package in the
following sections, or you can install all requirements at once with
the command pip install -r requirements.txt .

Creating a social website project
We are going to create a social application that will allow users to
share images that they find on the internet. We will need to build the
following elements for this project:

An authentication system for users to register, log in, edit their
profile, and change or reset their password
A follow system to allow users to follow each other on the
website
Functionality to display shared images and a system for users to
share images from any website
An activity stream that allows users to see the content uploaded
by the people that they follow

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter04

This chapter will address the first point on the list.

Starting the social website project
Open the terminal and use the following commands to create a
virtual environment for your project:

mkdir env
python -m venv env/bookmarks

If you are using Linux or macOS, run the following command to
activate your virtual environment:

source env/bookmarks/bin/activate

If you are using Windows, use the following command instead:

.\env\bookmarks\Scripts\activate

The shell prompt will display your active virtual environment, as
follows:

(bookmarks)laptop:~ zenx$

Install Django in your virtual environment with the following
command:

pip install Django~=4.1.0

Run the following command to create a new project:

django-admin startproject bookmarks

The initial project structure has been created. Use the following
commands to get into your project directory and create a new
application named account :

cd bookmarks/
django-admin startapp account

Remember that you should add the new application to your project
by adding the application’s name to the INSTALLED_APPS se�ing in
the settings.py file.

Edit settings.py and add the following line highlighted in bold to
the INSTALLED_APPS list before any of the other installed apps:

INSTALLED_APPS = [
 'account.apps.AccountConfig',
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
]

Django looks for templates in the application template directories by
order of appearance in the INSTALLED_APPS se�ing. The
django.contrib.admin app includes standard authentication
templates that we will override in the account application. By
placing the application first in the INSTALLED_APPS se�ing, we
ensure that the custom authentication templates will be used by
default instead of the authentication templates contained in
django.contrib.admin .

Run the following command to sync the database with the models of
the default applications included in the INSTALLED_APPS se�ing:

python manage.py migrate

You will see that all initial Django database migrations get applied.
Next, we will build an authentication system into our project using
the Django authentication framework.

Using the Django authentication
framework
Django comes with a built-in authentication framework that can
handle user authentication, sessions, permissions, and user groups.
The authentication system includes views for common user actions
such as logging in, logging out, password change, and password
reset.

The authentication framework is located at django.contrib.auth
and is used by other Django contrib packages. Remember that we

already used the authentication framework in Chapter 1, Building a
Blog Application, to create a superuser for the blog application to
access the administration site.

When we create a new Django project using the startproject
command, the authentication framework is included in the default
se�ings of our project. It consists of the django.contrib.auth
application and the following two middleware classes found in the
MIDDLEWARE se�ing of our project:

AuthenticationMiddleware : Associates users with requests
using sessions
SessionMiddleware : Handles the current session across
requests

Middleware is classes with methods that are globally executed
during the request or response phase. You will use middleware
classes on several occasions throughout this book, and you will learn
how to create custom middleware in Chapter 17, Going Live.

The authentication framework also includes the following models
that are defined in django.contrib.auth.models :

User : A user model with basic fields; the main fields of this
model are username , password , email , first_name ,
last_name , and is_active
Group : A group model to categorize users
Permission : Flags for users or groups to perform certain
actions

The framework also includes default authentication views and
forms, which you will use later.

Creating a login view
We will start this section by using the Django authentication
framework to allow users to log into the website. We will create a
view that will perform the following actions to log in a user:

Present the user with a login form
Get the username and password provided by the user when
they submit the form
Authenticate the user against the data stored in the database
Check whether the user is active
Log the user into the website and start an authenticated session

We will start by creating the login form.

Create a new forms.py file in the account application directory
and add the following lines to it:

This form will be used to authenticate users against the database.
Note that you use the PasswordInput widget to render the
password HTML element. This will include type="password" in
the HTML so that the browser treats it as a password input.

Edit the views.py file of the account application and add the
following code to it:

from django import forms
class LoginForm(forms.Form):
 username = forms.CharField()
 password = forms.CharField(widget=forms.Password

This is what the basic login view does:

When the user_login view is called with a GET request, a new
login form is instantiated with form = LoginForm() . The form is
then passed to the template.

from django.http import HttpResponse
from django.shortcuts import render
from django.contrib.auth import authenticate, login
from .forms import LoginForm
def user_login(request):
 if request.method == 'POST':
 form = LoginForm(request.POST)
 if form.is_valid():
 cd = form.cleaned_data
 user = authenticate(request,
 username=cd['usernam
 password=cd['passwor
 if user is not None:
 if user.is_active:
 login(request, user)
 return HttpResponse('Authenticat
 else:
 return HttpResponse('Disabled ac
 else:
 return HttpResponse('Invalid login')
 else:
 form = LoginForm()
 return render(request, 'account/login.xhtml', {

When the user submits the form via POST , the following actions are
performed:

The form is instantiated with the submi�ed data with form =
LoginForm(request.POST) .
The form is validated with form.is_valid() . If it is not valid,
the form errors will be displayed later in the template (for
example, if the user didn’t fill in one of the fields).
If the submi�ed data is valid, the user gets authenticated against
the database using the authenticate() method. This method
takes the request object, the username , and the password
parameters and returns the User object if the user has been
successfully authenticated, or None otherwise. If the user has
not been successfully authenticated, a raw HttpResponse is
returned with an Invalid login message.
If the user is successfully authenticated, the user status is
checked by accessing the is_active a�ribute. This is an
a�ribute of Django’s User model. If the user is not active, an
HttpResponse is returned with a Disabled account message.
If the user is active, the user is logged into the site. The user is
set in the session by calling the login() method. An
Authenticated successfully message is returned.

Note the difference between authenticate() and
login() : authenticate() checks user credentials
and returns a User object if they are correct; login()
sets the user in the current session.

Now we will create a URL pa�ern for this view.

Create a new urls.py file in the account application directory and
add the following code to it:

Edit the main urls.py file located in your bookmarks project
directory, import include , and add the URL pa�erns of the
account application, as follows. New code is highlighted in bold:

from django.contrib import admin
from django.urls import path, include
urlpatterns = [
 path('admin/', admin.site.urls),
 path('account/', include('account.urls')),
]

The login view can now be accessed by a URL.

Let’s create a template for this view. Since there are no templates in
the project yet, we will start by creating a base template that will be
extended by the login template.

Create the following files and directories inside the account
application directory:

from django.urls import path
from . import views
urlpatterns = [
 path('login/', views.user_login, name='login'),
]

templates/
 account/
 login.xhtml
 base.xhtml

Edit the base.xhtml template and add the following code to it:

This will be the base template for the website. As you did in your
previous project, include the CSS styles in the main template. You
can find these static files in the code that comes with this chapter.
Copy the static/ directory of the account application from the

{% load static %}
<!DOCTYPE html>
<html>
<head>
 <title>{% block title %}{% endblock %}</title>
 <link href="{% static "css/base.css" %}" rel="styl
</head>
<body>
 <div id="header">
 Bookmarks
 </div>
 <div id="content">
 {% block content %}
 {% endblock %}
 </div>
</body>
</html>

chapter’s source code to the same location in your project so that you
can use the static files. You can find the directory’s contents at
https://github.com/PacktPublishing/Django-4-by-
Example/tree/master/Chapter04/bookmarks/account/static.

The base template defines a title block and a content block that
can be filled with content by the templates that extend from it.

Let’s fill in the template for your login form.

Open the account/login.xhtml template and add the following
code to it:

{% extends "base.xhtml" %}
{% block title %}Log-in{% endblock %}
{% block content %}
 <h1>Log-in</h1>
 <p>Please, use the following form to log-in:</p>
 <form method="post">
 {{ form.as_p }}
 {% csrf_token %}
 <p><input type="submit" value="Log in"></p>
 </form>
{% endblock %}

This template includes the form that is instantiated in the view. Since
your form will be submi�ed via POST , you will include the {%
csrf_token %} template tag for cross-site request forgery (CSRF)
protection. You learned about CSRF protection in Chapter 2,
Enhancing Your Blog with Advanced Features.

https://github.com/PacktPublishing/Django-4-by-Example/tree/master/Chapter04/bookmarks/account/static

There are no users in the database yet. You will need to create a
superuser first to access the administration site to manage other
users.

Execute the following command in the shell prompt:

python manage.py createsuperuser

You will see the following output. Enter your desired username,
email, and password, as follows:

Username (leave blank to use 'admin'): admin
Email address: admin@admin.com
Password: ********
Password (again): ********

Then you will see the following success message:

Superuser created successfully.

Run the development server using the following command:

python manage.py runserver

Open http://127.0.0.1:8000/admin/ in your browser. Access
the administration site using the credentials of the user you just
created. You will see the Django administration site, including the
User and Group models of the Django authentication framework.

It will look as follows:

Figure 4.1: The Django administration site index page including Users and Groups

In the Users row, click on the Add link.

Create a new user using the administration site as follows:

Figure 4.2: The Add user form on the Django administration site

Enter the user details and click on the SAVE bu�on to save the new
user in the database.

Then, in Personal info, fill in the First name, Last name, and Email
address fields as follows and click on the Save bu�on to save the
changes:

Figure 4.3: The user editing form in the Django administration site

Open http://127.0.0.1:8000/account/login/ in your browser.
You should see the rendered template, including the login form:

Figure 4.4: The user Log-in page

Enter invalid credentials and submit the form. You should get the
following Invalid login response:

Figure 4.5: The invalid login plain text response

Enter valid credentials; you will get the following Authenticated
successfully response:

Figure 4.6: The successful authentication plain text response

You have learned how to authenticate users and create your own
authentication view. You can build your own auth views but Django
ships with ready-to-use authentication views that you can leverage.

Using Django authentication views
Django includes several forms and views in the authentication
framework that you can use right away. The login view we have
created is a good exercise to understand the process of user
authentication in Django. However, you can use the default Django
authentication views in most cases.

Django provides the following class-based views to deal with
authentication. All of them are located in
django.contrib.auth.views :

LoginView : Handles a login form and logs in a user
LogoutView : Logs out a user

Django provides the following views to handle password changes:

PasswordChangeView : Handles a form to change the user’s
password

PasswordChangeDoneView : The success view that the user is
redirected to after a successful password change

Django also includes the following views to allow users to reset their
password:

PasswordResetView : Allows users to reset their password. It
generates a one-time-use link with a token and sends it to a
user’s email account
PasswordResetDoneView : Tells users that an email—including
a link to reset their password—has been sent to them
PasswordResetConfirmView : Allows users to set a new
password
PasswordResetCompleteView : The success view that the user
is redirected to after successfully rese�ing their password

These views can save you a lot of time when building any web
application with user accounts. The views use default values that
can be overridden, such as the location of the template to be
rendered, or the form to be used by the view.

You can get more information about the built-in authentication
views at
https://docs.djangoproject.com/en/4.1/topics/auth/defau
lt/#all-authentication-views.

Login and logout views
Edit the urls.py file of the account application and add the code
highlighted in bold:

https://docs.djangoproject.com/en/4.1/topics/auth/default/#all-authentication-views

In the preceding code, we have commented out the URL pa�ern for
the user_login view that we created previously. We’ll now use the
LoginView view of Django’s authentication framework. We have
also added a URL pa�ern for the LogoutView view.

Create a new directory inside the templates/ directory of the
account application and name it registration . This is the default
path where the Django authentication views expect your
authentication templates to be.

The django.contrib.admin module includes authentication
templates that are used for the administration site, like the login
template. By placing the account application at the top of the
INSTALLED_APPS se�ing when configuring the project, we ensured
that Django would use our authentication templates instead of the
ones defined in any other application.

Create a new file inside the templates/registration/ directory,
name it login.xhtml , and add the following code to it:

from django.urls import path
from django.contrib.auth import views as auth_views
from . import views
urlpatterns = [
 # previous login url
 # path('login/', views.user_login, name='login')
 # login / logout urls
 path('login/', auth_views.LoginView.as_view(), n
 path('logout/', auth_views.LogoutView.as_view(),
]

This login template is quite similar to the one we created before.
Django uses the AuthenticationForm form located at
django.contrib.auth.forms by default. This form tries to
authenticate the user and raises a validation error if the login is
unsuccessful. We use {% if form.errors %} in the template to
check whether the credentials provided are wrong.

{% extends "base.xhtml" %}
{% block title %}Log-in{% endblock %}
{% block content %}
 <h1>Log-in</h1>
 {% if form.errors %}
 <p>
 Your username and password didn't match.
 Please try again.
 </p>
 {% else %}
 <p>Please, use the following form to log-in:</p>
 {% endif %}
 <div class="login-form">
 <form action="{% url 'login' %}" method="post">
 {{ form.as_p }}
 {% csrf_token %}
 <input type="hidden" name="next" value="{{ nex
 <p><input type="submit" value="Log-in"></p>
 </form>
 </div>
{% endblock %}

We have added a hidden HTML <input> element to submit the
value of a variable called next . This variable is provided to the login
view if you pass a parameter named next to the request, for
example, by accessing http://127.0.0.1:8000/account/login/?
next=/account/ .

The next parameter has to be a URL. If this parameter is given, the
Django login view will redirect the user to the given URL after a
successful login.

Now, create a logged_out.xhtml template inside the
templates/registration/ directory and make it look like this:

This is the template that Django will display after the user logs out.

We have added the URL pa�erns and templates for the login and
logout views. Users can now log in and out using Django’s
authentication views.

Now, we will create a new view to display a dashboard when users
log into their accounts.

{% extends "base.xhtml" %}
{% block title %}Logged out{% endblock %}
{% block content %}
 <h1>Logged out</h1>
 <p>
 You have been successfully logged out.
 You can log-in again
 </p>
{% endblock %}

Edit the views.py file of the account application and add the
following code to it:

We have created the dashboard view, and we have applied to it the
login_required decorator of the authentication framework. The
login_required decorator checks whether the current user is
authenticated.

If the user is authenticated, it executes the decorated view; if the user
is not authenticated, it redirects the user to the login URL with the
originally requested URL as a GET parameter named next .

By doing this, the login view redirects users to the URL that they
were trying to access after they successfully log in. Remember that
we added a hidden <input> HTML element named next in the
login template for this purpose.

We have also defined a section variable. We will use this variable
to highlight the current section in the main menu of the site.

Next, we need to create a template for the dashboard view.

Create a new file inside the templates/account/ directory and
name it dashboard.xhtml . Add the following code to it:

from django.contrib.auth.decorators import login_req
@login_required
def dashboard(request):
 return render(request,
 'account/dashboard.xhtml',
 {'section': 'dashboard'})

{% extends "base.xhtml" %}
{% block title %}Dashboard{% endblock %}
{% block content %}
 <h1>Dashboard</h1>
 <p>Welcome to your dashboard.</p>
{% endblock %}

Edit the urls.py file of the account application and add the
following URL pa�ern for the view. The new code is highlighted in
bold:

Edit the settings.py file of the project and add the following code
to it:

LOGIN_REDIRECT_URL = 'dashboard'
LOGIN_URL = 'login'
LOGOUT_URL = 'logout'

We have defined the following se�ings:

urlpatterns = [
 # previous login url
 # path('login/', views.user_login, name='login')
 # login / logout urls
 path('login/', auth_views.LoginView.as_view(), n
 path('logout/', auth_views.LogoutView.as_view(),
 path('', views.dashboard, name='dashboard'),
]

LOGIN_REDIRECT_URL : Tells Django which URL to redirect the
user to after a successful login if no next parameter is present
in the request
LOGIN_URL : The URL to redirect the user to log in (for example,
views using the login_required decorator)
LOGOUT_URL : The URL to redirect the user to log out

We have used the names of the URLs that we previously defined
with the name a�ribute of the path() function in the URL pa�erns.
Hardcoded URLs instead of URL names can also be used for these
se�ings.

Let’s summarize what we have done so far:

We have added the built-in Django authentication login and
logout views to the project.
We have created custom templates for both views and defined a
simple dashboard view to redirect users after they log in.
Finally, we have added se�ings for Django to use these URLs by
default.

Now, we will add login and logout links to the base template. In
order to do this, we have to determine whether the current user is
logged in or not in order to display the appropriate link for each
case. The current user is set in the HttpRequest object by the
authentication middleware. You can access it with request.user .
You will find a User object in the request even if the user is not
authenticated. A non-authenticated user is set in the request as an
instance of AnonymousUser . The best way to check whether the

current user is authenticated is by accessing the read-only a�ribute
is_authenticated .

Edit the templates/base.xhtml template by adding the following
lines highlighted in bold:

{% load static %}
<!DOCTYPE html>
<html>
<head>
 <title>{% block title %}{% endblock %}</title>
 <link href="{% static "css/base.css" %}" rel="styl
</head>
<body>
 <div id="header">
 Bookmarks
 {% if request.user.is_authenticated %}
 <ul class="menu">
 <li {% if section == "dashboard" %}class="se
 My dashboa

 <li {% if section == "images" %}class="selec
 Images

 <li {% if section == "people" %}class="selec
 People

 {% endif %}

 {% if request.user.is_authenticated %}

|

The site’s menu is only displayed to authenticated users. The
section variable is checked to add a selected class a�ribute to the
menu list item of the current section. By doing so, the menu
item that corresponds to the current section will be highlighted
using CSS. The user’s first name and a link to log out are displayed if
the user is authenticated; a link to log in is displayed otherwise. If
the user’s name is empty, the username is displayed instead by
using
request.user.first_name|default:request.user.username .

Open http://127.0.0.1:8000/account/login/ in your browser.
You should see the Log-in page. Enter a valid username and
password and click on the Log-in bu�on. You should see the
following screen:

 Hello {{ request.user.first_name|default:req
 Logout
 {% else %}
 Log-in
 {% endif %}

 </div>
 <div id="content">
 {% block content %}
 {% endblock %}
 </div>
</body>
</html>

Figure 4.7: The Dashboard page

The My dashboard menu item is highlighted with CSS because it
has a selected class. Since the user is authenticated, the first name
of the user is displayed on the right side of the header. Click on the
Logout link. You should see the following page:

Figure 4.8: The Logged out page

On this page, you can see that the user is logged out, and, therefore,
the menu of the website is not displayed. The link displayed on the
right side of the header is now Log-in.

If you see the Logged out page of the Django
administration site instead of your own Logged out
page, check the INSTALLED_APPS se�ing of your
project and make sure that django.contrib.admin
comes after the account application. Both
applications contain logged-out templates located in
the same relative path. The Django template loader
will go through the different applications in the
INSTALLED_APPS list and use the first template it
finds.

Change password views
We need users to be able to change their password after they log into
the site. We will integrate the Django authentication views for
changing passwords.

Open the urls.py file of the account application and add the
following URL pa�erns highlighted in bold:

urlpatterns = [
 # previous login url
 # path('login/', views.user_login, name='login')
 # login / logout urls
 path('login/', auth_views.LoginView.as_view(), n
 path('logout/', auth_views.LogoutView.as_view(),
 # change password urls
 path('password-change/',
 auth_views.PasswordChangeView.as_view(),

The PasswordChangeView view will handle the form to change the
password, and the PasswordChangeDoneView view will display a
success message after the user has successfully changed their
password. Let’s create a template for each view.

Add a new file inside the templates/registration/ directory of
the account application and name it
password_change_form.xhtml . Add the following code to it:

 name='password_change'),
 path('password-change/done/',
 auth_views.PasswordChangeDoneView.as_view(
 name='password_change_done'),
 path('', views.dashboard, name='dashboard'),
]

{% extends "base.xhtml" %}
{% block title %}Change your password{% endblock %}
{% block content %}
 <h1>Change your password</h1>
 <p>Use the form below to change your password.</p>
 <form method="post">
 {{ form.as_p }}
 <p><input type="submit" value="Change"></p>
 {% csrf_token %}
 </form>
{% endblock %}

The password_change_form.xhtml template includes the form to
change the password.

Now create another file in the same directory and name it
password_change_done.xhtml . Add the following code to it:

The password_change_done.xhtml template only contains the
success message to be displayed when the user has successfully
changed their password.

Open http://127.0.0.1:8000/account/password-change/ in
your browser. If you are not logged in, the browser will redirect you
to the Log-in page. After you are successfully authenticated, you will
see the following change password page:

{% extends "base.xhtml" %}
{% block title %}Password changed{% endblock %}
{% block content %}
 <h1>Password changed</h1>
 <p>Your password has been successfully changed.</p
{% endblock %}

Figure 4.9: The change password form

Fill in the form with your current password and your new password
and click on the CHANGE bu�on. You will see the following success
page:

Figure 4.10: The successful password change page

Log out and log in again using your new password to verify that
everything works as expected.

Reset password views
Edit the urls.py file of the account application and add the
following URL pa�erns highlighted in bold:

urlpatterns = [
 # previous login url
 # path('login/', views.user_login, name='login')
 # login / logout urls
 path('login/', auth_views.LoginView.as_view(), n
 path('logout/', auth_views.LogoutView.as_view(),

 # change password urls

Add a new file in the templates/registration/ directory of the
account application and name it password_reset_form.xhtml .
Add the following code to it:

 path('password-change/',
 auth_views.PasswordChangeView.as_view(),
 name='password_change'),
 path('password-change/done/',
 auth_views.PasswordChangeDoneView.as_view(
 name='password_change_done'),
 # reset password urls
 path('password-reset/',
 auth_views.PasswordResetView.as_view(),
 name='password_reset'),
 path('password-reset/done/',
 auth_views.PasswordResetDoneView.as_view(),
 name='password_reset_done'),
 path('password-reset/<uidb64>/<token>/',
 auth_views.PasswordResetConfirmView.as_view
 name='password_reset_confirm'),
 path('password-reset/complete/',
 auth_views.PasswordResetCompleteView.as_vie
 name='password_reset_complete'),
 path('', views.dashboard, name='dashboard'),
]

{% extends "base.xhtml" %}
{% block title %}Reset your password{% endblock %}
{% block content %}
 <h1>Forgotten your password?</h1>

Now create another file in the same directory and name it
password_reset_email.xhtml . Add the following code to it:

The password_reset_email.xhtml template will be used to render
the email sent to users to reset their password. It includes a reset
token that is generated by the view.

Create another file in the same directory and name it
password_reset_done.xhtml . Add the following code to it:

 <p>Enter your e-mail address to obtain a new passw
 <form method="post">
 {{ form.as_p }}
 <p><input type="submit" value="Send e-mail"></p>
 {% csrf_token %}
 </form>
{% endblock %}

Someone asked for password reset for email {{ email
{{ protocol }}://{{ domain }}{% url "password_reset_
Your username, in case you've forgotten: {{ user.get

{% extends "base.xhtml" %}
{% block title %}Reset your password{% endblock %}
{% block content %}
 <h1>Reset your password</h1>
 <p>We've emailed you instructions for setting your
 <p>If you don't receive an email, please make sure
{% endblock %}

Create another template in the same directory and name it
password_reset_confirm.xhtml . Add the following code to it:

In this template, we confirm whether the link for rese�ing the
password is valid by checking the validlink variable. The view
PasswordResetConfirmView checks the validity of the token
provided in the URL and passes the validlink variable to the
template. If the link is valid, the user password reset form is
displayed. Users can only set a new password if they have a valid
reset password link.

{% extends "base.xhtml" %}
{% block title %}Reset your password{% endblock %}
{% block content %}
 <h1>Reset your password</h1>
 {% if validlink %}
 <p>Please enter your new password twice:</p>
 <form method="post">
 {{ form.as_p }}
 {% csrf_token %}
 <p><input type="submit" value="Change my passw
 </form>
 {% else %}
 <p>The password reset link was invalid, possibly
 {% endif %}
{% endblock %}

Create another template and name it
password_reset_complete.xhtml . Enter the following code into
it:

Finally, edit the registration/login.xhtml template of the
account application, and add the following lines highlighted in
bold:

{% extends "base.xhtml" %}
{% block title %}Password reset{% endblock %}
{% block content %}
 <h1>Password set</h1>
 <p>Your password has been set. You can <a href="{%
{% endblock %}

{% extends "base.xhtml" %}
{% block title %}Log-in{% endblock %}
{% block content %}
 <h1>Log-in</h1>
 {% if form.errors %}
 <p>
 Your username and password didn't match.
 Please try again.
 </p>
 {% else %}
 <p>Please, use the following form to log-in:</p>
 {% endif %}
 <div class="login-form">
 <form action="{% url 'login' %}" method="post">

Now, open http://127.0.0.1:8000/account/login/ in your
browser. The Log-in page should now include a link to the reset
password page, as follows:

 {{ form.as_p }}
 {% csrf_token %}
 <input type="hidden" name="next" value="{{ nex
 <p><input type="submit" value="Log-in"></p>
 </form>
 <p>

 Forgotten your password?

 </p>
 </div>
{% endblock %}

Figure 4.11: The Log-in page including a link to the reset password page

Click on the Forgo�en your password? link. You should see the
following page:

Figure 4.12: The restore password form

At this point, we need to add a Simple Mail Transfer Protocol
(SMTP) configuration to the settings.py file of your project so
that Django is able to send emails. You learned how to add email
se�ings to your project in Chapter 2, Enhancing Your Blog with
Advanced Features. However, during development, you can configure
Django to write emails to the standard output instead of sending
them through an SMTP server. Django provides an email backend to
write emails to the console.

Edit the settings.py file of your project, and add the following
line to it:

EMAIL_BACKEND = 'django.core.mail.backends.console.E

The EMAIL_BACKEND se�ing indicates the class that will be used to
send emails.

Return to your browser, enter the email address of an existing user,
and click on the SEND E-MAIL bu�on. You should see the
following page:

Figure 4.13: The reset password email sent page

Take a look at the shell prompt, where you are running the
development server. You will see the generated email, as follows:

Content-Type: text/plain; charset="utf-8"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Subject: Password reset on 127.0.0.1:8000
From: webmaster@localhost
To: test@gmail.com
Date: Mon, 10 Jan 2022 19:05:18 -0000
Message-ID: <162896791878.58862.14771487060402279558
Someone asked for password reset for email test@gmai

The email is rendered using the password_reset_email.xhtml
template that you created earlier. The URL to reset the password
includes a token that was generated dynamically by Django.

Copy the URL from the email, which should look similar to
http://127.0.0.1:8000/account/password-reset/MQ/ardx0u-
b4973cfa2c70d652a190e79054bc479a/ , and open it in your
browser. You should see the following page:

http://127.0.0.1:8000/account/password-reset/MQ/ardx
Your username, in case you've forgotten: test

Figure 4.14: The reset password form

The page to set a new password uses the
password_reset_confirm.xhtml template. Fill in a new password
and click on the CHANGE MY PASSWORD bu�on. Django will
create a new hashed password and save it into the database. You will
see the following success page:

Figure 4.15: The successful password reset page

Now you can log back into the user account using the new
password.

Each token to set a new password can be used only once. If you open
the link you received again, you will get a message stating that the
token is invalid.

We have now integrated the views of the Django authentication
framework into the project. These views are suitable for most cases.
However, you can create your own views if you need different
behavior.

Django provides URL pa�erns for the authentication views that are
equivalent to the ones we just created. We will replace the
authentication URL pa�erns with the ones provided by Django.

Comment out the authentication URL pa�erns that you added to the
urls.py file of the account application and include
django.contrib.auth.urls instead, as follows. New code is
highlighted in bold:

from django.urls import path, include
from django.contrib.auth import views as auth_views
from . import views
urlpatterns = [
 # previous login view
 # path('login/', views.user_login, name='login')
 # path('login/', auth_views.LoginView.as_view(),
 # path('logout/', auth_views.LogoutView.as_view(
 # change password urls
 # path('password-change/',
 # auth_views.PasswordChangeView.as_view(),
 # name='password_change'),
 # path('password-change/done/',
 # auth_views.PasswordChangeDoneView.as_vie
 # name='password_change_done'),
 # reset password urls
 # path('password-reset/',
 # auth_views.PasswordResetView.as_view(),
 # name='password_reset'),
 # path('password-reset/done/',
 # auth_views.PasswordResetDoneView.as_view(
 # name='password_reset_done'),
 # path('password-reset/<uidb64>/<token>/',
 # auth_views.PasswordResetConfirmView.as_vi
 # name='password_reset_confirm'),
 # path('password-reset/complete/',
 # auth_views.PasswordResetCompleteView.as_v
 # name='password_reset_complete'),
 path('', include('django.contrib.auth.urls')),
 path('', views.dashboard, name='dashboard'),
]

You can see the authentication URL pa�erns included at
https://github.com/django/django/blob/stable/4.0.x/djan
go/contrib/auth/urls.py.

We have now added all the necessary authentication views to our
project. Next, we will implement user registration.

User registration and user profiles
Site users can now log in, log out, change their password, and reset
their password. However, we need to build a view to allow visitors
to create a user account.

User registration
Let’s create a simple view to allow user registration on your website.
Initially, you have to create a form to let the user enter a username,
their real name, and a password.

Edit the forms.py file located inside the account application
directory and add the following lines highlighted in bold:

from django import forms
from django.contrib.auth.models import User
class LoginForm(forms.Form):
 username = forms.CharField()
 password = forms.CharField(widget=forms.Password
class UserRegistrationForm(forms.ModelForm):
 password = forms.CharField(label='Password',

https://github.com/django/django/blob/stable/4.0.x/django/contrib/auth/urls.py

We have created a model form for the user model. This form
includes the fields username , first_name , and email of the User
model. These fields will be validated according to the validations of
their corresponding model fields. For example, if the user chooses a
username that already exists, they will get a validation error because
username is a field defined with unique=True .

We have added two additional fields—password and password2—
for users to set a password and to repeat it. Let’s add the field
validation to check both passwords are the same.

Edit the forms.py file in the account application and add the
following clean_password2() method to the
UserRegistrationForm class. New code is highlighted in bold:

 widget=forms.Password
 password2 = forms.CharField(label='Repeat passwo
 widget=forms.Passwor
 class Meta:
 model = User
 fields = ['username', 'first_name', 'email']

class UserRegistrationForm(forms.ModelForm):
 password = forms.CharField(label='Password',
 widget=forms.Password
 password2 = forms.CharField(label='Repeat passwo
 widget=forms.Passwor
 class Meta:
 model = User
 fields = ['username', 'first_name', 'email']

We have defined a clean_password2() method to compare the
second password against the first one and raise a validation error if
the passwords don’t match. This method is executed when the form
is validated by calling its is_valid() method. You can provide a
clean_<fieldname>() method to any of your form fields in order
to clean the value or raise form validation errors for a specific field.
Forms also include a general clean() method to validate the entire
form, which is useful to validate fields that depend on each other. In
this case, we use the field-specific clean_password2() validation
instead of overriding the clean() method of the form. This avoids
overriding other field-specific checks that the ModelForm gets from
the restrictions set in the model (for example, validating that the
username is unique).

Django also provides a UserCreationForm form that resides in
django.contrib.auth.forms and is very similar to the one we
have created.

Edit the views.py file of the account application and add the
following code highlighted in bold:

 def clean_password2(self):
 cd = self.cleaned_data
 if cd['password'] != cd['password2']:
 raise forms.ValidationError('Passwords d
 return cd['password2']

from django.http import HttpResponse
from django.shortcuts import render

The view for creating user accounts is quite simple. For security
reasons, instead of saving the raw password entered by the user, we
use the set_password() method of the User model. This method
handles password hashing before storing the password in the
database.

from django.contrib.auth import authenticate, login
from django.contrib.auth.decorators import login_req
from .forms import LoginForm, UserRegistrationForm
...
def register(request):
 if request.method == 'POST':
 user_form = UserRegistrationForm(request.POS
 if user_form.is_valid():
 # Create a new user object but avoid sav
 new_user = user_form.save(commit=False)
 # Set the chosen password
 new_user.set_password(
 user_form.cleaned_data['password'])
 # Save the User object
 new_user.save()
 return render(request,
 'account/register_done.xht
 {'new_user': new_user})
 else:
 user_form = UserRegistrationForm()
 return render(request,
 'account/register.xhtml',
 {'user_form': user_form})

Django doesn’t store clear text passwords; it stores hashed
passwords instead. Hashing is the process of transforming a given
key into another value. A hash function is used to generate a fixed-
length value according to a mathematical algorithm. By hashing
passwords with secure algorithms, Django ensures that user
passwords stored in the database require massive amounts of
computing time to break.

By default, Django uses the PBKDF2 hashing algorithm with a
SHA256 hash to store all passwords. However, Django not only
supports checking existing passwords hashed with PBKDF2 , but also
supports checking stored passwords hashed with other algorithms
such as PBKDF2SHA1 , argon2 , bcrypt , and scrypt .

The PASSWORD_HASHERS se�ing defines the password hashers that
the Django project supports. The following is the default
PASSWORD_HASHERS list:

Django uses the first entry of the list, in this case
PBKDF2PasswordHasher , to hash all passwords. The rest of the
hashers can be used by Django to check existing passwords.

PASSWORD_HASHERS = [
 'django.contrib.auth.hashers.PBKDF2PasswordHashe
 'django.contrib.auth.hashers.PBKDF2SHA1PasswordH
 'django.contrib.auth.hashers.Argon2PasswordHashe
 'django.contrib.auth.hashers.BCryptSHA256Passwor
 'django.contrib.auth.hashers.ScryptPasswordHashe
]

The scrypt hasher has been introduced in Django 4.0.
It is more secure and recommended over PBKDF2 .
However, PBKDF2 is still the default hasher, as
scrypt requires OpenSSL 1.1+ and more memory.

You can learn more about how Django stores passwords and about
the password hashers included at
https://docs.djangoproject.com/en/4.1/topics/auth/passw
ords/.

Now, edit the urls.py file of the account application and add the
following URL pa�ern highlighted in bold:

Finally, create a new template in the templates/account/ template
directory of the account application, name it register.xhtml , and
make it look as follows:

urlpatterns = [
 # ...
 path('', include('django.contrib.auth.urls')),
 path('', views.dashboard, name='dashboard'),
 path('register/', views.register, name='register
]

{% extends "base.xhtml" %}
{% block title %}Create an account{% endblock %}
{% block content %}
 <h1>Create an account</h1>

https://docs.djangoproject.com/en/4.1/topics/auth/passwords/

Create an additional template file in the same directory and name it
register_done.xhtml . Add the following code to it:

Open http://127.0.0.1:8000/account/register/ in your
browser. You will see the registration page you have created:

 <p>Please, sign up using the following form:</p>
 <form method="post">
 {{ user_form.as_p }}
 {% csrf_token %}
 <p><input type="submit" value="Create my account
 </form>
{% endblock %}

{% extends "base.xhtml" %}
{% block title %}Welcome{% endblock %}
{% block content %}
 <h1>Welcome {{ new_user.first_name }}!</h1>
 <p>
 Your account has been successfully created.
 Now you can log in</
 </p>
{% endblock %}

Figure 4.16: The account creation form

Fill in the details for a new user and click on the CREATE MY
ACCOUNT bu�on.

If all fields are valid, the user will be created, and you will see the
following success message:

Figure 4.17: The account is successfully created page

Click on the log in link and enter your username and password to
verify that you can access your newly created account.

Let’s add a link to register on the login template. Edit the
registration/login.xhtml template and find the following line:

<p>Please, use the following form to log-in:</p>

Replace it with the following lines:

<p>
 Please, use the following form to log-in.
 If you don't have an account <a href="{% url "regi
</p>

Open http://127.0.0.1:8000/account/login/ in your browser.
The page should now look as follows:

Figure 4.18: The Log-in page including a link to register

We have made the registration page accessible from the Log-in page.

Extending the user model
When dealing with user accounts, you will find that the User model
of the Django authentication framework is suitable for most common
cases. However, the standard User model comes with a limited set
of fields. You may want to extend it with additional information that
is relevant to your application.

A simple way to extend the User model is by creating a profile
model that contains a one-to-one relationship with the Django User
model, and any additional fields. A one-to-one relationship is similar
to a ForeignKey field with the parameter unique=True . The
reverse side of the relationship is an implicit one-to-one relationship
with the related model instead of a manager for multiple elements.
From each side of the relationship, you access a single related object.

Edit the models.py file of your account application and add the
following code highlighted in bold:

from django.db import models
from django.conf import settings
class Profile(models.Model):
 user = models.OneToOneField(settings.AUTH_USER_M
 on_delete=models.CAS
 date_of_birth = models.DateField(blank=True, nul
 photo = models.ImageField(upload_to='users/%Y/%m
 blank=True)

In order to keep your code generic, use the
get_user_model() method to retrieve the user
model and the AUTH_USER_MODEL se�ing to refer to it
when defining a model’s relationship with the user
model, instead of referring to the auth user model
directly. You can read more information about this at
https://docs.djangoproject.com/en/4.1/topics
/auth/customizing/#django.contrib.auth.get_u
ser_model.

Our user profile will include the user’s date of birth and an image of
the user.

The one-to-one field user will be used to associate profiles with
users. With on_delete=models.CASCADE , we force the deletion of
the related Profile object when a User object gets deleted.

The date_of_birth field is a DateField . We have made this field
optional with blank=True , and we allow null values with
null=True .

The photo field is an ImageField . We have made this field optional
with blank=True . An ImageField field manages the storage of
image files. It validates the file provided is a valid image, stores the
image file in the directory indicated with the upload_to parameter,
and stores the relative path to the file in the related database field.

 def __str__(self):
 return f'Profile of {self.user.username}'

https://docs.djangoproject.com/en/4.1/topics/auth/customizing/#django.contrib.auth.get_user_model

An ImageField field is translated to a VARHAR(100) column in the
database by default. A blank string will be stored if the value is left
empty.

Installing Pillow and serving media
files
We need to install the Pillow library to manage images. Pillow is the
de facto standard library for image processing in Python. It supports
multiple image formats and provides powerful image processing
functions. Pillow is required by Django to handle images with
ImageField .

Install Pillow by running the following command from the shell
prompt:

pip install Pillow==9.2.0

Edit the settings.py file of the project and add the following lines:

MEDIA_URL = 'media/'
MEDIA_ROOT = BASE_DIR / 'media'

This will enable Django to manage file uploads and serve media
files. MEDIA_URL is the base URL used to serve the media files
uploaded by users. MEDIA_ROOT is the local path where they reside.
Paths and URLs for files are built dynamically by prepending the
project path or the media URL to them for portability.

Now, edit the main urls.py file of the bookmarks project and
modify the code, as follows. New lines are highlighted in bold:

We have added the static() helper function to serve media files
with the Django development server during development (that is
when the DEBUG se�ing is set to True).

The static() helper function is suitable for
development but not for production use. Django is
very inefficient at serving static files. Never serve your
static files with Django in a production environment.
You will learn how to serve static files in a production
environment in Chapter 17, Going Live.

from django.contrib import admin
from django.urls import path, include
from django.conf import settings
from django.conf.urls.static import static
urlpatterns = [
 path('admin/', admin.site.urls),
 path('account/', include('account.urls')),
]
if settings.DEBUG:
 urlpatterns += static(settings.MEDIA_URL,
 document_root=settings.MED

Creating migrations for the profile
model
Open the shell and run the following command to create the
database migration for the new model:

python manage.py makemigrations

You will get the following output:

Migrations for 'account':
 account/migrations/0001_initial.py
 - Create model Profile

Next, sync the database with the following command in the shell
prompt:

python manage.py migrate

You will see an output that includes the following line:

Applying account.0001_initial... OK

Edit the admin.py file of the account application and register the
Profile model in the administration site by adding the code in
bold:

Run the development server using the following command from the
shell prompt:

python manage.py runserver

Open http://127.0.0.1:8000/admin/ in your browser. Now you
should be able to see the Profile model on the administration site
of your project, as follows:

Figure 4.19: The ACCOUNT block on the administration site index page

Click on the Add link of the Profiles row. You will see the following
form to add a new profile:

from django.contrib import admin
from .models import Profile
@admin.register(Profile)
class ProfileAdmin(admin.ModelAdmin):
 list_display = ['user', 'date_of_birth', 'photo
 raw_id_fields = ['user']

Figure 4.20: The Add profile form

Create a Profile object manually for each of the existing users in
the database.

Next, we will let users edit their profiles on the website.

Edit the forms.py file of the account application and add the
following lines highlighted in bold:

...
from .models import Profile
...
class UserEditForm(forms.ModelForm):
 class Meta:
 model = User
 fields = ['first_name', 'last_name', 'email
class ProfileEditForm(forms.ModelForm):

These forms are as follows:

UserEditForm : This will allow users to edit their first name,
last name, and email, which are a�ributes of the built-in Django
User model.
ProfileEditForm : This will allow users to edit the profile data
that is saved in the custom Profile model. Users will be able
to edit their date of birth and upload an image for their profile
picture.

Edit the views.py file of the account application and add the
following lines highlighted in bold:

 class Meta:
 model = Profile
 fields = ['date_of_birth', 'photo']

...
from .models import Profile
...
def register(request):
 if request.method == 'POST':
 user_form = UserRegistrationForm(request.POS
 if user_form.is_valid():
 # Create a new user object but avoid sav
 new_user = user_form.save(commit=False)
 # Set the chosen password
 new_user.set_password(
 user_form.cleaned_data['password'])
 # Save the User object

When users register on the site, a Profile object will be created and
associated with the User object created.

Now, we will let users edit their profiles.

Edit the views.py file of the account application and add the
following code highlighted in bold:

 new_user.save()
 # Create the user profile
 Profile.objects.create(user=new_user)
 return render(request,
 'account/register_done.xht
 {'new_user': new_user})
 else:
 user_form = UserRegistrationForm()
 return render(request,
 'account/register.xhtml',
 {'user_form': user_form})

from django.http import HttpResponse
from django.shortcuts import render
from django.contrib.auth import authenticate, login
from django.contrib.auth.decorators import login_req
from .forms import LoginForm, UserRegistrationForm,
 UserEditForm, ProfileEditForm
from .models import Profile
...
@login_required
def edit(request):
 if request.method == 'POST':

We have added the new edit view to allow users to edit their
personal information. We have added the login_required
decorator to the view because only authenticated users will be able
to edit their profiles. For this view, we use two model forms:
UserEditForm to store the data of the built-in User model and
ProfileEditForm to store the additional personal data in the
custom Profile model. To validate the data submi�ed, we call the
is_valid() method of both forms. If both forms contain valid data,
we save both forms by calling the save() method to update the
corresponding objects in the database.

 user_form = UserEditForm(instance=request.us
 data=request.POST)
 profile_form = ProfileEditForm(
 instance=request
 data=request.POS
 files=request.FI
 if user_form.is_valid() and profile_form.is_
 user_form.save()
 profile_form.save()
 else:
 user_form = UserEditForm(instance=request.us
 profile_form = ProfileEditForm(
 instance=request
 return render(request,
 'account/edit.xhtml',
 {'user_form': user_form,
 'profile_form': profile_form})

Add the following URL pa�ern to the urls.py file of the account
application:

Finally, create a template for this view in the templates/account/
directory and name it edit.xhtml . Add the following code to it:

urlpatterns = [
 #...
 path('', include('django.contrib.auth.urls')),
 path('', views.dashboard, name='dashboard'),
 path('register/', views.register, name='register
 path('edit/', views.edit, name='edit'),
]

{% extends "base.xhtml" %}
{% block title %}Edit your account{% endblock %}
{% block content %}
 <h1>Edit your account</h1>
 <p>You can edit your account using the following f
 <form method="post" enctype="multipart/form-data">
 {{ user_form.as_p }}
 {{ profile_form.as_p }}
 {% csrf_token %}
 <p><input type="submit" value="Save changes"></p
 </form>
{% endblock %}

In the preceding code, we have added enctype="multipart/form-
data" to the <form> HTML element to enable file uploads. We use
an HTML form to submit both the user_form and profile_form
forms.

Open the URL http://127.0.0.1:8000/account/register/ and
register a new user. Then, log in with the new user and open the
URL http://127.0.0.1:8000/account/edit/ . You should see
the following page:

Figure 4.21: The profile edit form

You can now add the profile information and save the changes.

We will edit the dashboard template to include links to the edit
profile and change password pages.

Open the templates/account/dashboard.xhtml template and
add the following lines highlighted in bold:

Users can now access the form to edit their profile from the
dashboard. Open http://127.0.0.1:8000/account/ in your
browser and test the new link to edit a user’s profile. The dashboard
should now look like this:

Figure 4.22: Dashboard page content, including links to edit a profile and change a password

Using a custom user model

{% extends "base.xhtml" %}
{% block title %}Dashboard{% endblock %}
{% block content %}
 <h1>Dashboard</h1>
 <p>
 Welcome to your dashboard. You can <a href="{% u
 </p>
{% endblock %}

Django also offers a way to substitute the User model with a custom
model. The User class should inherit from Django’s AbstractUser
class, which provides the full implementation of the default user as
an abstract model. You can read more about this method at
https://docs.djangoproject.com/en/4.1/topics/auth/custo
mizing/#substituting-a-custom-user-model.

Using a custom user model will give you more flexibility, but it
might also result in more difficult integration with pluggable
applications that interact directly with Django’s auth user model.

Using the messages framework
When users are interacting with the platform, there are many cases
where you might want to inform them about the result of specific
actions. Django has a built-in messages framework that allows you
to display one-time notifications to your users.

The messages framework is located at django.contrib.messages
and is included in the default INSTALLED_APPS list of the
settings.py file when you create new projects using python
manage.py startproject . The se�ings file also contains the
middleware
django.contrib.messages.middleware.MessageMiddleware in
the MIDDLEWARE se�ing.

The messages framework provides a simple way to add messages to
users. Messages are stored in a cookie by default (falling back to
session storage), and they are displayed and cleared in the next
request from the user. You can use the messages framework in your

https://docs.djangoproject.com/en/4.1/topics/auth/customizing/#substituting-a-custom-user-model

views by importing the messages module and adding new
messages with simple shortcuts, as follows:

from django.contrib import messages
messages.error(request, 'Something went wrong')

You can create new messages using the add_message() method or
any of the following shortcut methods:

success() : Success messages to display when an action was
successful
info() : Informational messages
warning() : A failure has not yet occurred but it may be
imminent
error() : An action was not successful or a failure occurred
debug() : Debug messages that will be removed or ignored in a
production environment

Let’s add messages to the project. The messages framework applies
globally to the project. We will use the base template to display any
available messages to the client. This will allow us to notify the client
with the results of any action on any page.

Open the templates/base.xhtml template of the account
application and add the following code highlighted in bold:

{% load static %}
<!DOCTYPE html>
<html>
<head>

The messages framework includes the context processor
django.contrib.messages.context_processors.messages ,
which adds a messages variable to the request context. You can find
it in the context_processors list in the TEMPLATES se�ing of your
project. You can use the messages variable in templates to display
all existing messages to the user.

 <title>{% block title %}{% endblock %}</title>
 <link href="{% static "css/base.css" %}" rel="styl
</head>
<body>
 <div id="header">
 ...
 </div>
 {% if messages %}
 <ul class="messages">
 {% for message in messages %}
 <li class="{{ message.tags }}">
 {{ message|safe }}
 x

 {% endfor %}

 {% endif %}
 <div id="content">
 {% block content %}
 {% endblock %}
 </div>
</body>
</html>

A context processor is a Python function that takes the
request object as an argument and returns a
dictionary that gets added to the request context. You
will learn how to create your own context processors
in Chapter 8, Building an Online Shop.

Let’s modify the edit view to use the messages framework.

Edit the views.py file of the account application and add the
following lines highlighted in bold:

...
from django.contrib import messages
...
@login_required
def edit(request):
 if request.method == 'POST':
 user_form = UserEditForm(instance=request.us
 data=request.POST)
 profile_form = ProfileEditForm(
 instance=request
 data=request.POS
 files=request.FI
 if user_form.is_valid() and profile_form.is_
 user_form.save()
 profile_form.save()
 messages.success(request, 'Profile updat
 'successfully
 else:
 messages.error(request, 'Error updating

A success message is generated when users successfully update their
profile. If any of the forms contain invalid data, an error message is
generated instead.

Open http://127.0.0.1:8000/account/edit/ in your browser
and edit the profile of the user. You should see the following
message when the profile is successfully updated:

Figure 4.23: The successfully edited profile message

Enter an invalid date in the Date of birth field and submit the form
again. You should see the following message:

 else:
 user_form = UserEditForm(instance=request.us
 profile_form = ProfileEditForm(
 instance=request
 return render(request,
 'account/edit.xhtml',
 {'user_form': user_form,
 'profile_form': profile_form})

Figure 4.24: The error updating profile message

Generating messages to inform your users about the results of their
actions is really straightforward. You can easily add messages to
other views as well.

You can learn more about the messages framework at
https://docs.djangoproject.com/en/4.1/ref/contrib/messa
ges/.

Now that we’ve built all the functionality related to user
authentication and profile editing, we will dig deeper into
customizing authentication. We will learn how to build custom
backend authentication so that users can log into the site using their
email address.

Building a custom authentication
backend
Django allows you to authenticate users against different sources.
The AUTHENTICATION_BACKENDS se�ing includes a list of
authentication backends available in the project. The default value of
this se�ing is the following:

['django.contrib.auth.backends.ModelBackend']

https://docs.djangoproject.com/en/4.1/ref/contrib/messages/

The default ModelBackend authenticates users against the database
using the User model of django.contrib.auth . This is suitable for
most web projects. However, you can create custom backends to
authenticate your users against other sources, such as a Lightweight
Directory Access Protocol (LDAP) directory or any other system.

You can read more information about customizing authentication at
https://docs.djangoproject.com/en/4.1/topics/auth/custo
mizing/#other-authentication-sources.

Whenever the authenticate() function of django.contrib.auth
is used, Django tries to authenticate the user against each of the
backends defined in AUTHENTICATION_BACKENDS one by one, until
one of them successfully authenticates the user. Only if all of the
backends fail to authenticate will the user not be authenticated.

Django provides a simple way to define your own authentication
backends. An authentication backend is a class that provides the
following two methods:

authenticate() : It takes the request object and user
credentials as parameters. It has to return a user object that
matches those credentials if the credentials are valid, or None
otherwise. The request parameter is an HttpRequest object,
or None if it’s not provided to the authenticate() function.
get_user() : It takes a user ID parameter and has to return a
user object.

Creating a custom authentication backend is as simple as writing a
Python class that implements both methods. Let’s create an

https://docs.djangoproject.com/en/4.1/topics/auth/customizing/#other-authentication-sources

authentication backend to allow users to authenticate on the site
using their email address instead of their username.

Create a new file inside the account application directory and name
it authentication.py . Add the following code to it:

The preceding code is a simple authentication backend. The
authenticate() method receives a request object and the
username and password optional parameters. We could use
different parameters, but we use username and password to make

from django.contrib.auth.models import User
class EmailAuthBackend:
 """
 Authenticate using an e-mail address.
 """
 def authenticate(self, request, username=None, p
 try:
 user = User.objects.get(email=username)
 if user.check_password(password):
 return user
 return None
 except (User.DoesNotExist, User.MultipleObje
 return None
 def get_user(self, user_id):
 try:
 return User.objects.get(pk=user_id)
 except User.DoesNotExist:
 return None

our backend work with the authentication framework views right
away. The preceding code works as follows:

authenticate() : The user with the given email address is
retrieved, and the password is checked using the built-in
check_password() method of the user model. This method
handles the password hashing to compare the given password
with the password stored in the database. Two different
QuerySet exceptions are captured: DoesNotExist and
MultipleObjectsReturned . The DoesNotExist exception is
raised if no user is found with the given email address. The
MultipleObjectsReturned exception is raised if multiple
users are found with the same email address. We will modify
the registration and edit views later to prevent users from using
an existing email address.
get_user() : You get a user through the ID provided in the
user_id parameter. Django uses the backend that
authenticated the user to retrieve the User object for the
duration of the user session. pk is a short for primary key,
which is a unique identifier for each record in the database.
Every Django model has a field that serves as its primary key.
By default, the primary key is the automatically generated id
field. The primary key can be also referred to as pk in the
Django ORM. You can find more information about automatic
primary key fields at
https://docs.djangoproject.com/en/4.1/topics/db/mod
els/#automatic-primary-key-fields.

https://docs.djangoproject.com/en/4.1/topics/db/models/#automatic-primary-key-fields

Edit the settings.py file of your project and add the following
code:

AUTHENTICATION_BACKENDS = [
 'django.contrib.auth.backends.ModelBackend',
 'account.authentication.EmailAuthBackend',
]

In the preceding se�ing, we keep the default ModelBackend that is
used to authenticate with the username and password and include
our own email-based authentication backend EmailAuthBackend .

Open http://127.0.0.1:8000/account/login/ in your browser.
Remember that Django will try to authenticate the user against each
of the backends, so now you should be able to log in seamlessly
using your username or email account.

The user credentials will be checked using ModelBackend , and if no
user is returned, the credentials will be checked using
EmailAuthBackend .

The order of the backends listed in the
AUTHENTICATION_BACKENDS se�ing ma�ers. If the
same credentials are valid for multiple backends,
Django will stop at the first backend that successfully
authenticates the user.

Preventing users from using an
existing email
The User model of the authentication framework does not prevent
creating users with the same email address. If two or more user
accounts share the same email address, we won’t be able to discern
which user is authenticating. Now that users can log in using their
email address, we have to prevent users from registering with an
existing email address.

We will now change the user registration form, to prevent multiple
users from registering with the same email address.

Edit the forms.py file of the account application and add the
following lines highlighted in bold to the UserRegistrationForm
class:

class UserRegistrationForm(forms.ModelForm):
 password = forms.CharField(label='Password',
 widget=forms.Password
 password2 = forms.CharField(label='Repeat passwo
 widget=forms.Passwor
 class Meta:
 model = User
 fields = ['username', 'first_name', 'email']
 def clean_password2(self):
 cd = self.cleaned_data
 if cd['password'] != cd['password2']:
 raise forms.ValidationError('Passwords d
 return cd['password2']
 def clean_email(self):

We have added validation for the email field that prevents users
from registering with an existing email address. We build a
QuerySet to look up existing users with the same email address. We
check whether there are any results with the exists() method. The
exists() method returns True if the QuerySet contains any
results, and False otherwise.

Now, add the following lines highlighted in bold to the
UserEditForm class:

In this case, we have added validation for the email field that
prevents users from changing their existing email address to an

 data = self.cleaned_data['email']
 if User.objects.filter(email=data).exists()
 raise forms.ValidationError('Email alrea
 return data

class UserEditForm(forms.ModelForm):
 class Meta:
 model = User
 fields = ['first_name', 'last_name', 'email
 def clean_email(self):
 data = self.cleaned_data['email']
 qs = User.objects.exclude(id=self.instance.i
 .filter(email=data)
 if qs.exists():
 raise forms.ValidationError(' Email alre
 return data

existing email address of another user. We exclude the current user
from the QuerySet. Otherwise, the current email address of the user
would be considered an existing email address, and the form won’t
validate.

Additional resources
The following resources provide additional information related to
the topics covered in this chapter:

Source code for this chapter –
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter04

Built-in authentication views –
https://docs.djangoproject.com/en/4.1/topics/auth/d
efault/#all-authentication-views

Authentication URL pa�erns –
https://github.com/django/django/blob/stable/3.0.x/
django/contrib/auth/urls.py

How Django manages passwords and available password
hashers –
https://docs.djangoproject.com/en/4.1/topics/auth/p
asswords/

Generic user model and the get_user_model() method –
https://docs.djangoproject.com/en/4.1/topics/auth/c
ustomizing/#django.contrib.auth.get_user_model

Using a custom user model –
https://docs.djangoproject.com/en/4.1/topics/auth/c

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter04
https://docs.djangoproject.com/en/4.1/topics/auth/default/#all-authentication-views
https://github.com/django/django/blob/stable/3.0.x/django/contrib/auth/urls.py
https://docs.djangoproject.com/en/4.1/topics/auth/passwords/
https://docs.djangoproject.com/en/4.1/topics/auth/customizing/#django.contrib.auth.get_user_model
https://docs.djangoproject.com/en/4.1/topics/auth/customizing/#substituting-a-custom-user-model

ustomizing/#substituting-a-custom-user-model

The Django messages framework –
https://docs.djangoproject.com/en/4.1/ref/contrib/m
essages/

Custom authentication sources –
https://docs.djangoproject.com/en/4.1/topics/auth/c
ustomizing/#other-authentication-sources

Automatic primary key fields –
https://docs.djangoproject.com/en/4.1/topics/db/mod
els/#automatic-primary-key-fields

Summary
In this chapter, you learned how to build an authentication system
for your site. You implemented all the necessary views for users to
register, log in, log out, edit their password, and reset their
password. You built a model for custom user profiles, and you
created a custom authentication backend to let users log into your
site using their email address.

In the next chapter, you will learn how to implement social
authentication on your site using Python Social Auth. Users will be
able to authenticate with their Google, Facebook, or Twi�er
accounts. You will also learn how to serve the development server
over HTTPS using Django Extensions. You will customize the
authentication pipeline to create user profiles automatically.

Join us on Discord

https://docs.djangoproject.com/en/4.1/topics/auth/customizing/#substituting-a-custom-user-model
https://docs.djangoproject.com/en/4.1/ref/contrib/messages/
https://docs.djangoproject.com/en/4.1/topics/auth/customizing/#other-authentication-sources
https://docs.djangoproject.com/en/4.1/topics/db/models/#automatic-primary-key-fields

Read this book alongside other users and the author.

Ask questions, provide solutions to other readers, chat with the
author via Ask Me Anything sessions, and much more. Scan the QR
code or visit the link to join the book community.

https://packt.link/django

5

Implementing Social
Authentication

In the previous chapter, you built user registration and
authentication into your website. You implemented password
change, reset, and recovery functionalities, and you learned how to
create a custom profile model for your users.

In this chapter, you will add social authentication to your site using
Facebook, Google, and Twi�er. You will use Django Social Auth to
implement social authentication using OAuth 2.0, the industry-
standard protocol for authorization. You will also modify the social
authentication pipeline to create a user profile for new users
automatically.

This chapter will cover the following points:

Adding social authentication with Python Social Auth
Installing Django Extensions
Running the development server through HTTPS
Adding authentication using Facebook
Adding authentication using Twi�er
Adding authentication using Google

Creating a profile for users that register with social
authentication

The source code for this chapter can be found at
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter05.

All Python packages used in this chapter are included in the
requirements.txt file in the source code for the chapter. You can
follow the instructions to install each Python package in the
following sections, or you can install all requirements at once with
the command pip install -r requirements.txt .

Adding social authentication to
your site
Social authentication is a widely used feature that allows users to
authenticate using their existing account of a service provider using
Single Sign-on (SSO). The authentication process allows users to
authenticate into the site using their existing account from social
services like Google. In this section, we will add social authentication
to the site using Facebook, Twi�er, and Google.

To implement social authentication, we will use the OAuth 2.0
industry-standard protocol for authorization. OAuth stands for Open
Authorization. OAuth 2.0 is a standard designed to allow a website or
application to access resources hosted by other web apps on behalf
of a user. Facebook, Twi�er, and Google use the OAuth 2.0 protocol
for authentication and authorization.

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter05

Python Social Auth is a Python module that simplifies the process of
adding social authentication to your website. Using this module, you
can let your users log in to your website using their accounts from
other services. You can find the code for this module at
https://github.com/python-social-auth/social-app-django.

This module comes with authentication backends for different
Python frameworks, including Django. To install the Django
package from the Git repository of the project, open the console and
run the following command:

This will install Python Social Auth from a GitHub commit that
works with Django 4.1. At the writing of this book the latest Python
Social Auth release is not compatible with Django 4.1 but a newer
compatible release might have been published.

Then add social_django to the INSTALLED_APPS se�ing in the
settings.py file of the project as follows:

INSTALLED_APPS = [
 # ...
 'social_django',
]

This is the default application to add Python Social Auth to Django
projects. Now run the following command to sync Python Social
Auth models with your database:

git+https://github.com/python-social-auth/social-app

https://github.com/python-social-auth/social-app-django

python manage.py migrate

You should see that the migrations for the default application are
applied as follows:

Applying social_django.0001_initial... OK
Applying social_django.0002_add_related_name... OK
...
Applying social_django.0011_alter_id_fields... OK

Python Social Auth includes authentication backends for multiple
services. You can find the list with all available backends at
https://python-social-
auth.readthedocs.io/en/latest/backends/index.xhtml#supp
orted-backends.

We will add social authentication to our project, allowing our users
to authenticate with the Facebook, Twi�er, and Google backends.

First, we need to add the social login URL pa�erns to the project.

Open the main urls.py file of the bookmarks project and include
the social_django URL pa�erns as follows. New lines are
highlighted in bold:

urlpatterns = [
 path('admin/', admin.site.urls),
 path('account/', include('account.urls')),
 path('social-auth/',

https://python-social-auth.readthedocs.io/en/latest/backends/index.xhtml#supported-backends

Our web application is currently accessible via the localhost IP to
127.0.0.1 or using the localhost hostname. Several social
services will not allow redirecting users to 127.0.0.1 or
localhost after successful authentication; they expect a domain
name for the URL redirect. First, we need to use a domain name to
make social authentication work. Fortunately, we can simulate
serving our site under a domain name in our local machine.

Locate the hosts file of your machine. If you are using Linux or
macOS, the hosts file is located at /etc/hosts . If you are using
Windows, the hosts file is located at
C:\Windows\System32\Drivers\etc\hosts .

Edit the hosts file of your machine and add the following line to it:

127.0.0.1 mysite.com

This will tell your computer to point the mysite.com hostname to
your own machine.

Let’s verify that the hostname association worked. Run the
development server using the following command from the shell
prompt:

python manage.py runserver

 include('social_django.urls', namespace='so
]

Open http://mysite.com:8000/account/login/ in your
browser. You will see the following error:

Figure 5.1: The invalid host header message

Django controls the hosts that can serve the application using the
ALLOWED_HOSTS se�ing. This is a security measure to prevent HTTP
host header a�acks. Django will only allow the hosts included in this
list to serve the application.

You can learn more about the ALLOWED_HOSTS se�ing at
https://docs.djangoproject.com/en/4.1/ref/settings/#all
owed-hosts.

Edit the settings.py file of the project and modify the
ALLOWED_HOSTS se�ing as follows. New code is highlighted in bold:

Besides the mysite.com host, we have explicitly included
localhost and 127.0.0.1 . This allows access to the site through
localhost and 127.0.0.1 , which is the default Django behavior
when DEBUG is True and ALLOWED_HOSTS is empty.

Open http://mysite.com:8000/account/login/ again in your
browser. Now, you should see the login page of the site instead of an
error.

ALLOWED_HOSTS = ['mysite.com', 'localhost', '127.0.0

https://docs.djangoproject.com/en/4.1/ref/settings/#allowed-hosts

Running the development server
through HTTPS
Some of the social authentication methods we are going to use
require an HTTPS connection. The Transport Layer Security (TLS)
protocol is the standard for serving websites through a secure
connection. The TLS predecessor is the Secure Sockets Layer (SSL).

Although SSL is now deprecated, in multiple libraries and online
documentation you will find references to both the terms TLS and
SSL. The Django development server is not able to serve your site
through HTTPS, since that is not its intended use. To test the social
authentication functionality serving the site through HTTPS, we are
going to use the RunServerPlus extension of the package Django
Extensions. Django Extensions is a third-party collection of custom
extensions for Django. Please note that you should never use this to
serve your site in a real environment; this is only a development
server.

Use the following command to install Django Extensions:

This will install Django Extensions from a GitHub commit that
includes support for Django 4.1. At the writing of this book the latest
Django Extensions release is not compatible with Django 4.1 but a
newer compatible release might have been published.

pip install git+https://github.com/django-extensions

You will need to install Werkzeug, which contains a debugger layer
required by the RunServerPlus extension of Django Extensions. Use
the following command to install Werkzeug:

pip install werkzeug==2.2.2

Finally, use the following command to install pyOpenSSL, which is
required to use the SSL/TLS functionality of RunServerPlus:

pip install pyOpenSSL==22.0.0

Edit the settings.py file of your project and add Django
Extensions to the INSTALLED_APPS se�ing, as follows:

INSTALLED_APPS = [
 # ...
 'django_extensions',
]

Now, use the management command runserver_plus provided by
Django Extensions to run the development server, as follows:

We have provided a file name to the runserver_plus command for
the SSL/TLS certificate. Django Extensions will generate a key and
certificate automatically.

python manage.py runserver_plus --cert-file cert.crt

Open https://mysite.com:8000/account/login/ in your
browser. Now you are accessing your site through HTTPS. Note we
are now using https:// instead of http:// .

Your browser will show a security warning because you are using a
self-generated certificate instead of a certificate trusted by a
Certification Authority (CA).

If you are using Google Chrome, you will see the following screen:

Figure 5.2: The safety error in Google Chrome

In this case, click on Advanced and then click on Proceed to 127.0.0.1
(unsafe).

If you are using Safari, you will see the following screen:

Figure 5.3: The safety error in Safari

In this case, click on Show details and then click on visit this
website.

If you are using Microsoft Edge, you will see the following screen:

Figure 5.4: The safety error in Microsoft Edge

In this case, click on Advanced and then on Continue to mysite.com
(unsafe).

If you are using any other browser, access the advanced information
displayed by your browser and accept the self-signed certificate so
that your browser trusts the certificate.

You will see that the URL starts with https:// and in some cases a
lock icon that indicates that the connection is secure. Some browsers
might display a broken lock icon because you are using a self-signed
certificate instead of a trusted one. That won’t be a problem for our
tests:

Figure 5.5: The URL with the secured connection icon

Django Extensions includes many other interesting
tools and features. You can find more information
about this package at https://django-
extensions.readthedocs.io/en/latest/.

You can now serve your site through HTTPS during development to
test social authentication with Facebook, Twi�er, and Google.

Authentication using Facebook
To use Facebook authentication to log in to your site, add the
following line highlighted in bold to the
AUTHENTICATION_BACKENDS se�ing in the settings.py file of your
project:

AUTHENTICATION_BACKENDS = [
 'django.contrib.auth.backends.ModelBackend',
 'account.authentication.EmailAuthBackend',

https://django-extensions.readthedocs.io/en/latest/

You will need a Facebook developer account and you will need to
create a new Facebook application.

Open https://developers.facebook.com/apps/ in your
browser. After creating a Facebook developer account, you will see a
site with the following header:

Figure 5.6: The Facebook developer portal header

Click on Create App.

You will see the following form to choose an application type:

 'social_core.backends.facebook.FacebookOAuth2',
]

https://developers.facebook.com/apps/

Figure 5.7: The Facebook create app form to select an application type

Under Select an app type, choose Consumer and click on Next.

You will see the following form to create a new application:

Figure 5.8: The Facebook form for application details

Enter Bookmarks as the Display name, add a contact email address,
and click on Create App.

You will see the dashboard for your new application that displays
different services that you can configure for the app. Look for the
following Facebook Login box and click on Set Up:

Figure 5.9: The Facebook login product block

You will be asked to choose the platform, as follows:

Figure 5.10: Platform selection for Facebook login

Select the Web platform. You will see the following form:

Figure 5.11: Web platform configuration for Facebook login

Enter https://mysite.com:8000/ under Site URL and click the
Save bu�on. Then click Continue. You can skip the rest of the quick
start process.

In the left-hand menu, click on Se�ings and then on Basic, as
follows:

Figure 5.12: Facebook developer portal sidebar menu

You will see a form with data similar to the following one:

Figure 5.13: Application details for the Facebook application

Copy the App ID and App Secret keys and add them to the
settings.py file of your project, as follows:

Optionally, you can define a SOCIAL_AUTH_FACEBOOK_SCOPE se�ing
with the extra permissions you want to ask Facebook users for:

SOCIAL_AUTH_FACEBOOK_SCOPE = ['email']

SOCIAL_AUTH_FACEBOOK_KEY = 'XXX' # Facebook App ID
SOCIAL_AUTH_FACEBOOK_SECRET = 'XXX' # Facebook App S

Now, go back to the Facebook developer portal and click on
Se�ings. Add mysite.com under App Domains, as follows:

Figure 5.14: Allowed domains for the Facebook application

You have to enter a public URL for the Privacy Policy URL and
another one for the User Data Deletion Instructions URL. The
following is an example using the Wikipedia page URL for Privacy
Policy. Please note that you should use a valid URL:

Figure 5.15: Privacy policy and user data deletion instructions URLs for the Facebook application

Click on Save Changes. Then, in the left-hand menu under Products,
click on Facebook Login and then Se�ings, as shown here:

Figure 5.16: The Facebook login menu

Ensure that only the following se�ings are active:

Client OAuth Login
Web OAuth Login
Enforce HTTPS
Embedded Browser OAuth Login
Used Strict Mode for Redirect URIs

Enter https://mysite.com:8000/social-
auth/complete/facebook/ under Valid OAuth Redirect URIs.
The selection should look like this:

Figure 5.17: Client OAuth se�ings for Facebook login

Open the registration/login.xhtml template of the account
application and append the following code highlighted in bold at the
bo�om of the content block:

{% block content %}
 ...
 <div class="social">

Use the management command runserver_plus provided by
Django Extensions to run the development server, as follows:

Open https://mysite.com:8000/account/login/ in your
browser. The login page will look now as follows:

 <li class="facebook">
 <a href="{% url "social:begin" "facebook" %}
 Sign in with Facebook

 </div>
{% endblock %}

python manage.py runserver_plus --cert-file cert.crt

Figure 5.18: The login page including the bu�on for Facebook authentication

Click on the Sign in with Facebook bu�on. You will be redirected to
Facebook, and you will see a modal dialog asking for your
permission to let the Bookmarks application access your public
Facebook profile:

Figure 5.19: The Facebook modal dialog to grant application permissions

You will see a warning indicating that you need to submit the
application for login review. Click on the Continue as … bu�on.

You will be logged in and redirected to the dashboard page of your
site. Remember that you have set this URL in the
LOGIN_REDIRECT_URL se�ing. As you can see, adding social
authentication to your site is pre�y straightforward.

Authentication using Twitter
For social authentication using Twi�er, add the following line
highlighted in bold to the AUTHENTICATION_BACKENDS se�ing in the
settings.py file of your project:

You need a Twi�er developer account. Open
https://developer.twitter.com/ in your browser and click on
Sign up.

After creating a Twi�er developer account, access the Developer
Portal Dashboard at
https://developer.twitter.com/en/portal/dashboard. The
dashboard should look as follows:

AUTHENTICATION_BACKENDS = [
 'django.contrib.auth.backends.ModelBackend',
 'account.authentication.EmailAuthBackend',
 'social_core.backends.facebook.FacebookOAuth2',
 'social_core.backends.twitter.TwitterOAuth',
]

https://developer.twitter.com/
https://developer.twitter.com/en/portal/dashboard

Figure 5.20: Twi�er developer portal dashboard

Click on the Create Project bu�on. You will see the following screen:

Figure 5.21: Twi�er create project screen – Project name

Enter Bookmarks for the Project name and click on Next. You will
see the following screen:

Figure 5.22: Twi�er create project screen – Use case

Under Use case, select Exploring the API and click on Next. You can
choose any other use case; it won’t affect the configuration. Then you
will see the following screen:

Figure 5.23: Twi�er create project screen – Project description

Enter a short description for your project and click on Next. The
project is now created, and you will see the following screen:

Figure 5.24: Twi�er application configuration

We will create a new application. Click on Create new. You will see
the following screen to configure the new application:

Figure 5.25: Twi�er application configuration - environment selection

Under App Environment, select Development and click on Next.
We are creating a development environment for the application. You
will see the following screen:

Figure 5.26: Twi�er application configuration – App name

Under App name, enter Bookmarks followed by a suffix. Twi�er
won’t allow you to use the name of an existing developer app within
Twi�er, so you need to enter a name that might be available. Click
Next. Twi�er will show you an error if the name you try to use for
your app is already taken.

After choosing a name that is available, you will see the following
screen:

Figure 5.27: Twi�er application configuration – generated API keys

Copy the API Key and API Key Secret into the following se�ings in
the settings.py file of your project:

Then click on App se�ings. You will see a screen that includes the
following section:

Figure 5.28: Twi�er application user authentication setup

Under User authentication se�ings, click on Set up. You will see the
following screen:

SOCIAL_AUTH_TWITTER_KEY = 'XXX' # Twitter API Key
SOCIAL_AUTH_TWITTER_SECRET = 'XXX' # Twitter API Sec

Figure 5.29: Twi�er application OAuth 2.0 activation

Activate the OAuth 2.0 option. This is the OAuth version that we
will use. Then, under OAuth 2.0 Se�ings, select Web App for Type
of App as follows:

Figure 5.30: Twi�er application OAuth 2.0 se�ings

Under General Authentication Se�ings, enter the following details
of your application:

Callback URI / Redirect URL:
https://mysite.com:8000/social-
auth/complete/twitter/

Website URL: https://mysite.com:8000/

The se�ings should look as follows:

Figure 5.31: Twi�er authentication URL configuration

Click on Save. Now, you will see the following screen including the
Client ID and Client Secret:

Figure 5.32: Twi�er application Client ID and Client Secret

You won’t need them for client authentication because you will be
using the API Key and API Key Secret instead. However, you can
copy them and store the Client Secret in a safe place. Click on Done.

You will see another reminder to save the Client Secret:

Figure 5.33: Twi�er Client Secret reminder

Click on Yes, I saved it. Now you will see that OAuth 2.0
authentication has been turned on like in the following screen:

Figure 5.34: Twi�er application authentication se�ings

Now edit the registration/login.xhtml template and add the
following code highlighted in bold to the element:

 <li class="facebook">

 Sign in with Facebook

 <li class="twitter">

 Sign in with Twitter

Use the management command runserver_plus provided by
Django Extensions to run the development server, as follows:

Open https://mysite.com:8000/account/login/ in your
browser. Now, the login page will look as follows:

Figure 5.35: The login page including the bu�on for Twi�er authentication

Click on the Sign in with Twi�er link. You will be redirected to
Twi�er, where you will be asked to authorize the application as
follows:

python manage.py runserver_plus --cert-file cert.crt

Figure 5.36: Twi�er user authorization screen

Click on Authorize app. You will briefly see the following page
while you are redirected to the dashboard page:

Figure 5.37: Twi�er user authentication redirect page

You will then be redirected to the dashboard page of your
application.

Authentication using Google
Google offers social authentication using OAuth2. You can read
about Google’s OAuth2 implementation at
https://developers.google.com/identity/protocols/OAuth2.

To implement authentication using Google, add the following line
highlighted in bold to the AUTHENTICATION_BACKENDS se�ing in the
settings.py file of your project:

AUTHENTICATION_BACKENDS = [
 'django.contrib.auth.backends.ModelBackend',

https://developers.google.com/identity/protocols/OAuth2

First, you will need to create an API key in your Google Developer
Console. Open
https://console.cloud.google.com/projectcreate in your
browser. You will see the following screen:

Figure 5.38: The Google project creation form

 'account.authentication.EmailAuthBackend',
 'social_core.backends.facebook.FacebookOAuth2',
 'social_core.backends.twitter.TwitterOAuth',
 'social_core.backends.google.GoogleOAuth2',
]

https://console.cloud.google.com/projectcreate

Under Project name enter Bookmarks and click the CREATE bu�on.

When the new project is ready, make sure the project is selected in
the top navigation bar as follows:

Figure 5.39: The Google Developer Console top navigation bar

After the project is created, under APIs and services, click on
Credentials as follows:

Figure 5.40: Google APIs and services menu

You will see the following screen:

Figure 5.41: Google API creation of API credentials

Then click on CREATE CREDENTIALS and click on OAuth client
ID.

Google will ask you to configure the consent screen first, like this:

Figure 5.42: The alert to configure the OAuth consent screen

We will configure the page that will be shown to users to give their
consent to access your site with their Google account. Click on the
CONFIGURE CONSENT SCREEN bu�on. You will be redirected to
the following screen:

Figure 5.43: User type selection in the Google OAuth consent screen setup

Choose External for User Type and click the CREATE bu�on. You
will see the following screen:

Figure 5.44: Google OAuth consent screen setup

Under App name, enter Bookmarks and select your email for User
support email.

Under Authorised domains, enter mysite.com as follows:

Figure 5.45: Google OAuth authorized domains

Enter your email under Developer contact information and click on
SAVE AND CONTINUE.

In step 2. Scopes, don’t change anything and click on SAVE AND
CONTINUE.

In step 3. Test users, add your Google user to Test users and click on
SAVE AND CONTINUE as follows:

Figure 5.46: Google OAuth test users

You will see a summary of your consent screen configuration. Click
on Back to dashboard.

In the menu on the left sidebar, click on Credentials and click again
on Create credentials and then on OAuth client ID.

As the next step, enter the following information:

Application type: Select Web application
Name: Enter Bookmarks

Authorised JavaScript origins: Add
https://mysite.com:8000/

Authorised redirect URIs: Add
https://mysite.com:8000/social-
auth/complete/google-oauth2/

The form should look like this:

Figure 5.47: The Google OAuth client ID creation form

Click the CREATE bu�on. You will get Your Client ID and Your
Client Secret keys:

Figure 5.48: Google OAuth Client ID and Client Secret

Add both keys to your settings.py file, like this:

Edit the registration/login.xhtml template and add the
following code highlighted in bold to the element:

Use the management command runserver_plus provided by
Django Extensions to run the development server, as follows:

SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = 'XXX' # Google Clien
SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = 'XXX' # Google Cl

 <li class="facebook">

 Sign in with Facebook

 <li class="twitter">

 Sign in with Twitter

 <li class="google">
 <a href="{% url "social:begin" "google-oauth2" %
 Sign in with Google

python manage.py runserver_plus --cert-file cert.crt

Open https://mysite.com:8000/account/login/ in your
browser. The login page should now look as follows:

Figure 5.49: The login page including bu�ons for Facebook, Twi�er, and Google authentication

Click on the Sign in with Google bu�on. You will see the following
screen:

Figure 5.50: The Google application authorization screen

Click on your Google account to authorize the application. You will
be logged in and redirected to the dashboard page of your website.

You have now added social authentication to your project with some
of the most popular social platforms. You can easily implement

social authentication with other online services using Python Social
Auth.

Creating a profile for users that
register with social authentication
When a user authenticates using social authentication, a new User
object is created if there isn’t an existing user associated with that
social profile. Python Social Auth uses a pipeline consisting of a set
of functions that are executed in a specific order executed during the
authentication flow. These functions take care of retrieving any user
details, creating a social profile in the database, and associating it to
an existing user or creating a new one.

Currently, a no Profile object is created when new users are
created via social authentication. We will add a new step to the
pipeline, to automatically create a Profile object in the database
when a new user is created.

Add the following SOCIAL_AUTH_PIPELINE se�ing to the
settings.py file of your project:

SOCIAL_AUTH_PIPELINE = [
 'social_core.pipeline.social_auth.social_details
 'social_core.pipeline.social_auth.social_uid',
 'social_core.pipeline.social_auth.auth_allowed',
 'social_core.pipeline.social_auth.social_user',
 'social_core.pipeline.user.get_username',
 'social_core.pipeline.user.create_user',
 'social_core.pipeline.social_auth.associate_user

This is the default authentication pipeline used by Python Social
Auth. It consists of several functions that perform different tasks
when authenticating a user. You can find more details about the
default authentication pipeline at https://python-social-
auth.readthedocs.io/en/latest/pipeline.xhtml.

Let’s build a function that creates a Profile object in the database
whenever a new user is created. We will then add this function to the
social authentication pipeline.

Edit the account/authentication.py file and add the following
code to it:

The create_profile function takes two required arguments:

backend : The social auth backend used for the user
authentication. Remember you added the social authentication

 'social_core.pipeline.social_auth.load_extra_dat
 'social_core.pipeline.user.user_details',
]

from account.models import Profile
def create_profile(backend, user, *args, **kwargs):
 """
 Create user profile for social authentication
 """
 Profile.objects.get_or_create(user=user)

https://python-social-auth.readthedocs.io/en/latest/pipeline.xhtml

backends to the AUTHENTICATION_BACKENDS se�ing in your
project.
user : The User instance of the new or existing user
authenticated.

You can check the different arguments that are passed to the pipeline
functions at https://python-social-
auth.readthedocs.io/en/latest/pipeline.xhtml#extending-
the-pipeline.

In the create_profile function, we check that a user object is
present and we use the get_or_create() method to look up a
Profile object for the given user, creating one if necessary.

Now, we need to add the new function to the authentication
pipeline. Add the following line highlighted in bold to the
SOCIAL_AUTH_PIPELINE se�ing in your settings.py file:

SOCIAL_AUTH_PIPELINE = [
 'social_core.pipeline.social_auth.social_details
 'social_core.pipeline.social_auth.social_uid',
 'social_core.pipeline.social_auth.auth_allowed',
 'social_core.pipeline.social_auth.social_user',
 'social_core.pipeline.user.get_username',
 'social_core.pipeline.user.create_user',
 'account.authentication.create_profile',
 'social_core.pipeline.social_auth.associate_user
 'social_core.pipeline.social_auth.load_extra_dat
 'social_core.pipeline.user.user_details',
]

https://python-social-auth.readthedocs.io/en/latest/pipeline.xhtml#extending-the-pipeline

We have added the create_profile function after
social_core.pipeline.create_user . At this point, a User
instance is available. The user can be an existing user or a new one
created in this step of the pipeline. The create_profile function
uses the User instance to look up the related Profile object and
create a new one if necessary.

Access the user list in the administration site at
https://mysite.com:8000/admin/auth/user/ . Remove any
users created through social authentication.

Then open https://mysite.com:8000/account/login/ and
perform social authentication for the user you deleted. A new user
will be created and now a Profile object will be created as well.
Access https://mysite.com:8000/admin/account/profile/ to
verify that a profile has been created for the new user.

We have successfully added the functionality to create the user
profile automatically for social authentication.

Python Social Auth also offers a pipeline mechanism for the
disconnection flow. You can find more details at https://python-
social-
auth.readthedocs.io/en/latest/pipeline.xhtml#disconnect
ion-pipeline.

Additional resources
The following resources provide additional information related to
the topics covered in this chapter:

https://python-social-auth.readthedocs.io/en/latest/pipeline.xhtml#disconnection-pipeline

Source code for this chapter –
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter05

Python Social Auth – https://github.com/python-social-
auth

Python Social Auth’s authentication backends –
https://python-social-
auth.readthedocs.io/en/latest/backends/index.xhtml#
supported-backends

Django allowed hosts se�ing –
https://docs.djangoproject.com/en/4.1/ref/settings/
#allowed-hosts

Django Extensions documentation – https://django-
extensions.readthedocs.io/en/latest/

Facebook developer portal –
https://developers.facebook.com/apps/

Twi�er apps –
https://developer.twitter.com/en/apps/create

Google’s OAuth2 implementation –
https://developers.google.com/identity/protocols/OA
uth2

Google APIs credentials –
https://console.developers.google.com/apis/credenti
als

Python Social Auth pipeline – https://python-social-
auth.readthedocs.io/en/latest/pipeline.xhtml

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter05
https://github.com/python-social-auth
https://python-social-auth.readthedocs.io/en/latest/backends/index.xhtml#supported-backends
https://docs.djangoproject.com/en/4.1/ref/settings/#allowed-hosts
https://django-extensions.readthedocs.io/en/latest/
https://developers.facebook.com/apps/
https://developer.twitter.com/en/apps/create
https://developers.google.com/identity/protocols/OAuth2
https://console.developers.google.com/apis/credentials
https://python-social-auth.readthedocs.io/en/latest/pipeline.xhtml

Extending the Python Social Auth pipeline – https://python-
social-
auth.readthedocs.io/en/latest/pipeline.xhtml#extend
ing-the-pipeline

Python Social Auth pipeline for disconnection –
https://python-social-
auth.readthedocs.io/en/latest/pipeline.xhtml#discon
nection-pipeline

Summary
In this chapter, you added social authentication to your site so that
users can use their existing Facebook, Twi�er, or Google accounts to
log in. You used Python Social Auth and implemented social
authentication using OAuth 2.0, the industry-standard protocol for
authorization. You also learned how to serve your development
server through HTTPS using Django Extensions. Finally, you
customized the authentication pipeline to create user profiles for
new users automatically.

In the next chapter, you will create an image bookmarking system.
You will create models with many-to-many relationships and
customize the behavior of forms. You will learn how to generate
image thumbnails and how to build AJAX functionalities using
JavaScript and Django.

https://python-social-auth.readthedocs.io/en/latest/pipeline.xhtml#extending-the-pipeline
https://python-social-auth.readthedocs.io/en/latest/pipeline.xhtml#disconnection-pipeline

6

Sharing Content on Your
Website

In the previous chapter, you used Django Social Auth to add social
authentication to your site using Facebook, Google, and Twi�er. You
learned how to run your development server with HTTPS on your
local machine using Django Extensions. You customized the social
authentication pipeline to create a user profile for new users
automatically.

In this chapter, you will learn how to create a JavaScript
bookmarklet to share content from other sites on your website, and
you will implement AJAX features in your project using JavaScript
and Django.

This chapter will cover the following points:

Creating many-to-many relationships
Customizing behavior for forms
Using JavaScript with Django
Building a JavaScript bookmarklet
Generating image thumbnails using easy-thumbnails
Implementing asynchronous HTTP requests with JavaScript and
Django

Building infinite scroll pagination

The source code for this chapter can be found at
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter06.

All Python packages used in this chapter are included in the
requirements.txt file in the source code for the chapter. You can
follow the instructions to install each Python package in the
following sections, or you can install all requirements at once with
the command pip install -r requirements.txt .

Creating an image bookmarking
website
We will now learn how to allow users to bookmark images that they
find on other websites and share them on our site. To build this
functionality, we will need the following elements:

1. A data model to store images and related information
2. A form and a view to handle image uploads
3. JavaScript bookmarklet code that can be executed on any

website. This code will find images across the page and allow
users to select the image they want to bookmark

First, create a new application inside your bookmarks project
directory by running the following command in the shell prompt:

django-admin startapp images

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter06

Add the new application to the INSTALLED_APPS se�ing in the
settings.py file of the project, as follows:

INSTALLED_APPS = [
 # ...
 'images.apps.ImagesConfig',
]

We have activated the images application in the project.

Building the image model
Edit the models.py file of the images application and add the
following code to it:

from django.db import models
from django.conf import settings
class Image(models.Model):
 user = models.ForeignKey(settings.AUTH_USER_MODE
 related_name='images_cre
 on_delete=models.CASCADE
 title = models.CharField(max_length=200)
 slug = models.SlugField(max_length=200,
 blank=True)
 url = models.URLField(max_length=2000)
 image = models.ImageField(upload_to='images/%Y/%
 description = models.TextField(blank=True)
 created = models.DateField(auto_now_add=True)
 class Meta:
 indexes = [

This is the model that we will use to store images in the platform.
Let’s take a look at the fields of this model:

user : This indicates the User object that bookmarked this
image. This is a foreign key field because it specifies a one-to-
many relationship: a user can post multiple images, but each
image is posted by a single user. We have used CASCADE for the
on_delete parameter so that related images are deleted when a
user is deleted.
title : A title for the image.
slug : A short label that contains only le�ers, numbers,
underscores, or hyphens to be used for building beautiful SEO-
friendly URLs.
url : The original URL for this image. We use max_length to
define a maximum length of 2000 characters.
image : The image file.
description : An optional description for the image.
created : The date and time that indicate when the object was
created in the database. We have added auto_now_add to
automatically set the current datetime when the object is
created.

 models.Index(fields=['-created']),
]
 ordering = ['-created']
 def __str__(self):
 return self.title

In the Meta class of the model, we have defined a database index in
descending order for the created field. We have also added the
ordering a�ribute to tell Django that it should sort results by the
created field by default. We indicate descending order by using a
hyphen before the field name, such as -created , so that new
images will be displayed first.

Database indexes improve query performance.
Consider creating indexes for fields that you
frequently query using filter() , exclude() , or
order_by() . ForeignKey fields or fields with
unique=True imply the creation of an index. You can
learn more about database indexes at
https://docs.djangoproject.com/en/4.1/ref/mo
dels/options/#django.db.models.Options.index
es.

We will override the save() method of the Image model to
automatically generate the slug field based on the value of the
title field. Import the slugify() function and add a save()
method to the Image model, as follows. New lines are highlighted in
bold:

from django.utils.text import slugify
class Image(models.Model):
 # ...
 def save(self, *args, **kwargs):
 if not self.slug:

https://docs.djangoproject.com/en/4.1/ref/models/options/#django.db.models.Options.indexes

 self.slug = slugify(self.title)
 super().save(*args, **kwargs)

When an Image object is saved, if the slug field doesn’t have a
value, the slugify() function is used to automatically generate a
slug from the title field of the image. The object is then saved. By
generating slugs automatically from the title, users won’t have to
provide a slug when they share images on our website.

Creating many-to-many relationships
Next, we will add another field to the Image model to store the
users who like an image. We will need a many-to-many relationship
in this case because a user might like multiple images and each
image can be liked by multiple users.

Add the following field to the Image model:

When we define a ManyToManyField field, Django creates an
intermediary join table using the primary keys of both models.
Figure 6.1 shows the database table that will be created for this
relationship:

users_like = models.ManyToManyField(settings.AUTH_US
 related_name='images_liked',
 blank=True)

Figure 6.1: Intermediary database table for the many-to-many relationship

The images_image_users_like table is created by Django as an
intermediary table that has references to the images_image table
(Image model) and auth_user table (User model). The
ManyToManyField field can be defined in either of the two related
models.

As with ForeignKey fields, the related_name a�ribute of
ManyToManyField allows you to name the relationship from the
related object back to this one. ManyToManyField fields provide a
many-to-many manager that allows you to retrieve related objects,
such as image.users_like.all() , or get them from a user object,
such as user.images_liked.all() .

You can learn more about many-to-many relationships at
https://docs.djangoproject.com/en/4.1/topics/db/example
s/many_to_many/.

Open the shell prompt and run the following command to create an
initial migration:

python manage.py makemigrations images

The output should be similar to the following one:

https://docs.djangoproject.com/en/4.1/topics/db/examples/many_to_many/

Now run the following command to apply your migration:

python manage.py migrate images

You will get an output that includes the following line:

Applying images.0001_initial... OK

The Image model is now synced to the database.

Registering the image model in the
administration site
Edit the admin.py file of the images application and register the
Image model into the administration site, as follows:

Migrations for 'images':
 images/migrations/0001_initial.py
 - Create model Image
 - Create index images_imag_created_d57897_idx on

from django.contrib import admin
from .models import Image
@admin.register(Image)
class ImageAdmin(admin.ModelAdmin):
 list_display = ['title', 'slug', 'image', 'creat
 list_filter = ['created']

Start the development server with the following command:

Open https://127.0.0.1:8000/admin/ in your browser, and you
will see the Image model in the administration site, like this:

Figure 6.2: The Images block on the Django administration site index page

You have completed the model to store images. Now you will learn
how to implement a form to retrieve images by their URL and store
them using the Image model.

Posting content from other
websites
We will allow users to bookmark images from external websites and
share them on our site. Users will provide the URL of the image, a
title, and an optional description. We will create a form and a view
to download the image and create a new Image object in the
database.

Let’s start by building a form to submit new images.

python manage.py runserver_plus --cert-file cert.crt

Create a new forms.py file inside the images application directory
and add the following code to it:

from django import forms
from .models import Image
class ImageCreateForm(forms.ModelForm):
 class Meta:
 model = Image
 fields = ['title', 'url', 'description']
 widgets = {
 'url': forms.HiddenInput,
 }

We have defined a ModelForm form from the Image model,
including only the title , url , and description fields. Users will
not enter the image URL directly in the form. Instead, we will
provide them with a JavaScript tool to choose an image from an
external site, and the form will receive the image’s URL as a
parameter. We have overridden the default widget of the url field
to use a HiddenInput widget. This widget is rendered as an HTML
input element with a type="hidden" a�ribute. We use this widget
because we don’t want this field to be visible to users.

Cleaning form fields
In order to verify that the provided image URL is valid, we will
check that the filename ends with a .jpg , .jpeg , or .png extension
to allow sharing JPEG and PNG files only. In the previous chapter,
we used the clean_<fieldname>() convention to implement field

validation. This method is executed for each field, if present, when
we call is_valid() on a form instance. In the clean method, you
can alter the field’s value or raise any validation errors for the field.

In the forms.py file of the images application, add the following
method to the ImageCreateForm class:

In the preceding code, we have defined a clean_url() method to
clean the url field. The code works as follows:

1. The value of the url field is retrieved by accessing the
cleaned_data dictionary of the form instance.

2. The URL is split to check whether the file has a valid extension.
If the extension is invalid, a ValidationError is raised, and
the form instance is not validated.

In addition to validating the given URL, we also need to download
the image file and save it. We could, for example, use the view that
handles the form to download the image file. Instead, let’s take a
more general approach by overriding the save() method of the
model form to perform this task when the form is saved.

def clean_url(self):
 url = self.cleaned_data['url']
 valid_extensions = ['jpg', 'jpeg', 'png']
 extension = url.rsplit('.', 1)[1].lower()
 if extension not in valid_extensions:
 raise forms.ValidationError('The given URL d
 'match valid ima
 return url

Installing the Requests library
When a user bookmarks an image, we will need to download the
image file by its URL. We will use the Requests Python library for
this purpose. Requests is the most popular HTTP library for Python.
It abstracts the complexity of dealing with HTTP requests and
provides a very simple interface to consume HTTP services. You can
find the documentation for the Requests library at
https://requests.readthedocs.io/en/master/.

Open the shell and install the Requests library with the following
command:

pip install requests==2.28.1

We will now override the save() method of ImageCreateForm and
use the Requests library to retrieve the image by its URL.

Overriding the save() method of a
ModelForm
As you know, ModelForm provides a save() method to save the
current model instance to the database and return the object. This
method receives a Boolean commit parameter, which allows you to
specify whether the object has to be persisted to the database. If
commit is False , the save() method will return a model instance
but will not save it to the database. We will override the form’s
save() method in order to retrieve the image file by the given URL
and save it to the file system.

https://requests.readthedocs.io/en/master/

Add the following imports at the top of the forms.py file:

from django.core.files.base import ContentFile
from django.utils.text import slugify
import requests

Then, add the following save() method to the ImageCreateForm
form:

We have overridden the save() method, keeping the parameters
required by ModelForm . The preceding code can be explained as
follows:

def save(self, force_insert=False,
 force_update=False,
 commit=True):
 image = super().save(commit=False)
 image_url = self.cleaned_data['url']
 name = slugify(image.title)
 extension = image_url.rsplit('.', 1)[1].lower()
 image_name = f'{name}.{extension}'
 # download image from the given URL
 response = requests.get(image_url)
 image.image.save(image_name,
 ContentFile(response.content),
 save=False)
 if commit:
 image.save()
 return image

1. A new image instance is created by calling the save() method
of the form with commit=False .

2. The URL of the image is retrieved from the cleaned_data
dictionary of the form.

3. An image name is generated by combining the image title slug
with the original file extension of the image.

4. The Requests Python library is used to download the image by
sending an HTTP GET request using the image URL. The
response is stored in the response object.

5. The save() method of the image field is called, passing it a
ContentFile object that is instantiated with the downloaded
file content. In this way, the file is saved to the media directory
of the project. The save=False parameter is passed to avoid
saving the object to the database yet.

6. To maintain the same behavior as the original save() method
of the model form, the form is only saved to the database if the
commit parameter is True .

We will need a view to create an instance of the form and handle its
submission.

Edit the views.py file of the images application and add the
following code to it. New code is highlighted in bold:

from django.shortcuts import render, redirect
from django.contrib.auth.decorators import login_req
from django.contrib import messages
from .forms import ImageCreateForm
@login_required

In the preceding code, we have created a view to store images on the
site. We have added the login_required decorator to the
image_create view to prevent access to unauthenticated users.
This is how this view works:

1. Initial data has to be provided through a GET HTTP request in
order to create an instance of the form. This data will consist of

def image_create(request):
 if request.method == 'POST':
 # form is sent
 form = ImageCreateForm(data=request.POST)
 if form.is_valid():
 # form data is valid
 cd = form.cleaned_data
 new_image = form.save(commit=False)
 # assign current user to the item
 new_image.user = request.user
 new_image.save()
 messages.success(request,
 'Image added successful
 # redirect to new created item detail vi
 return redirect(new_image.get_absolute_u
 else:
 # build form with data provided by the bookm
 form = ImageCreateForm(data=request.GET)
 return render(request,
 'images/image/create.xhtml',
 {'section': 'images',
 'form': form})

the url and title a�ributes of an image from an external
website. Both parameters will be set in the GET request by the
JavaScript bookmarklet that we will create later. For now, we
can assume that this data will be available in the request.

2. When the form is submi�ed with a POST HTTP request, it is
validated with form.is_valid() . If the form data is valid, a
new Image instance is created by saving the form with
form.save(commit=False) . The new instance is not saved to
the database because of commit=False .

3. A relationship to the current user performing the request is
added to the new Image instance with new_image.user =
request.user . This is how we will know who uploaded each
image.

4. The Image object is saved to the database.
5. Finally, a success message is created using the Django

messaging framework and the user is redirected to the canonical
URL of the new image. We haven’t yet implemented the
get_absolute_url() method of the Image model; we will do
that later.

Create a new urls.py file inside the images application and add
the following code to it:

from django.urls import path
from . import views
app_name = 'images'
urlpatterns = [
 path('create/', views.image_create, name='create
]

Edit the main urls.py file of the bookmarks project to include the
pa�erns for the images application, as follows. The new code is
highlighted in bold:

Finally, we need to create a template to render the form. Create the
following directory structure inside the images application
directory:

templates/
 images/
 image/
 create.xhtml

Edit the new create.xhtml template and add the following code to
it:

urlpatterns = [
 path('admin/', admin.site.urls),
 path('account/', include('account.urls')),
 path('social-auth/',
 include('social_django.urls', namespace='so
 path('images/', include('images.urls', namespace
]

{% extends "base.xhtml" %}
{% block title %}Bookmark an image{% endblock %}

Run the development server with the following command in the
shell prompt:

Open https://127.0.0.1:8000/images/create/?
title=...&url=... in your browser, including the title and url
GET parameters, providing an existing JPEG image URL in the
la�er. For example, you can use the following URL:
https://127.0.0.1:8000/images/create/?
title=%20Django%20and%20Duke&url=https://upload.wikimed
ia.org/wikipedia/commons/8/85/Django_Reinhardt_and_Duke
Ellington%28Gottlieb%29.jpg .

You will see the form with an image preview, like the following:

{% block content %}
 <h1>Bookmark an image</h1>
 <img src="{{ request.GET.url }}" class="image-prev
 <form method="post">
 {{ form.as_p }}
 {% csrf_token %}
 <input type="submit" value="Bookmark it!">
 </form>
{% endblock %}

python manage.py runserver_plus --cert-file cert.crt

Figure 6.3: The create a new image bookmark page

Add a description and click on the BOOKMARK IT! bu�on. A new
Image object will be saved in your database. However, you will get
an error that indicates that the Image model has no
get_absolute_url() method, as follows:

Figure 6.4: An error showing that the Image object has no a�ribute get_absolute_url

Don’t worry about this error for now; we are going to implement the
get_absolute_url method in the Image model later.

Open https://127.0.0.1:8000/admin/images/image/ in your
browser and verify that the new image object has been saved, like
this:

Figure 6.5: The administration site image list page showing the Image object created

Building a bookmarklet with JavaScript
A bookmarklet is a bookmark stored in a web browser that contains
JavaScript code to extend the browser’s functionality. When you
click on the bookmark in the bookmarks or favorites bar of your
browser, the JavaScript code is executed on the website being

displayed in the browser. This is very useful for building tools that
interact with other websites.

Some online services, such as Pinterest, implement their own
bookmarklet to let users share content from other sites onto their
platform. The Pinterest bookmarklet, named browser bu�on, is
available at https://about.pinterest.com/en/browser-button.
The Pinterest bookmarklet is provided as a Google Chrome
extension, a Microsoft Edge add-on, or a plain JavaScript
bookmarklet for Safari and other browsers that you can drag and
drop to the bookmarks bar of your browser. The bookmarklet allows
users to save images or websites to their Pinterest account.

Figure 6.6: The Pin it bookmarklet from Pinterest

https://about.pinterest.com/en/browser-button

Let’s create a bookmarklet in a similar way for your website. For
that, we will be using JavaScript.

This is how your users will add the bookmarklet to their browser
and use it:

1. The user drags a link from your site to their browser’s
bookmarks bar. The link contains JavaScript code in its href
a�ribute. This code will be stored in the bookmark.

2. The user navigates to any website and clicks on the bookmark in
the bookmarks or favorites bar. The JavaScript code of the
bookmark is executed.

Since the JavaScript code will be stored as a bookmark, we will not
be able to update it after the user has added it to their bookmarks
bar. This is an important drawback that you can solve by
implementing a launcher script. Users will save the launcher script
as a bookmark, and the launcher script will load the actual
JavaScript bookmarklet from a URL. By doing this, you will be able
to update the code of the bookmarklet at any time. This is the
approach that we will take to build the bookmarklet. Let’s start!

Create a new template under images/templates/ and name it
bookmarklet_launcher.js . This will be the launcher script. Add
the following JavaScript code to the new file:

(function(){
 if(!window.bookmarklet) {
 bookmarklet_js = document.body.appendChild(docum
 bookmarklet_js.src = '//127.0.0.1:8000/static/js
 window.bookmarklet = true;

The preceding script checks whether the bookmarklet has already
been loaded by checking the value of the bookmarklet window
variable with if(!window.bookmarklet) :

If window.bookmarklet is not defined or doesn’t have a truthy
value (considered true in a Boolean context), a JavaScript file is
loaded by appending a <script> element to the body of the
HTML document loaded in the browser. The src a�ribute is
used to load the URL of the bookmarklet.js script with a
random 16-digit integer parameter generated with
Math.random()*9999999999999999 . Using a random number,
we prevent the browser from loading the file from the browser’s
cache. If the bookmarklet JavaScript has been previously loaded,
the different parameter value will force the browser to load the
script from the source URL again. This way, we make sure the
bookmarklet always runs the most up-to-date JavaScript code.
If window.bookmarklet is defined and has a truthy value, the
function bookmarkletLaunch() is executed. We will define
bookmarkletLaunch() as a global function in the
bookmarklet.js script.

By checking the bookmarklet window variable, we prevent the
bookmarklet JavaScript code from being loaded more than once if

 }
 else {
 bookmarkletLaunch();
 }
})();

users click on the bookmarklet repeatedly.

You created the bookmarklet launcher code. The actual bookmarklet
code will reside in the bookmarklet.js static file. Using launcher
code allows you to update the bookmarklet code at any time without
requiring users to change the bookmark they previously added to
their browser.

Let’s add the bookmarklet launcher to the dashboard pages so that
users can add it to the bookmarks bar of their browser.

Edit the account/dashboard.xhtml template of the account
application and make it look like the following. New lines are
highlighted in bold:

Make sure that no template tag is split into multiple lines; Django
doesn’t support multiple-line tags.

The dashboard now displays the total number of images
bookmarked by the user. We have added a {% with %} template

{% extends "base.xhtml" %}
{% block title %}Dashboard{% endblock %}
{% block content %}
 <h1>Dashboard</h1>
 {% with total_images_created=request.user.images_c
 <p>Welcome to your dashboard. You have bookmarke
 {% endwith %}
 <p>Drag the following button to your bookmarks too
 <p>You can also edit yo
{% endblock %}

tag to create a variable with the total number of images bookmarked
by the current user. We have included a link with an href a�ribute
that contains the bookmarklet launcher script. This JavaScript code is
loaded from the bookmarklet_launcher.js template.

Open https://127.0.0.1:8000/account/ in your browser. You
should see the following page:

Figure 6.7: The dashboard page, including the total images bookmarked and the bu�on for the
bookmarklet

Now create the following directories and files inside the images
application directory:

static/
 js/
 bookmarklet.js

You will find a static/css/ directory under the images
application directory in the code that comes along with this chapter.

Copy the css/ directory into the static/ directory of your code.
You can find the contents of the directory at
https://github.com/PacktPublishing/Django-4-by-
Example/tree/main/Chapter06/bookmarks/images/static.

The css/bookmarklet.css file provides the styles for the
JavaScript bookmarklet. The static/ directory should contain the
following file structure now:

 css/
 bookmarklet.css
 js/
 bookmarklet.js

Edit the bookmarklet.js static file and add the following
JavaScript code to it:

You have declared four different constants that will be used by the
bookmarklet. These constants are:

siteUrl and staticUrl : The base URL for the website and the
base URL for static files.
minWidth and minHeight : The minimum width and height in
pixels for the images that the bookmarklet will collect from the

const siteUrl = '//127.0.0.1:8000/';
const styleUrl = siteUrl + 'static/css/bookmarklet.c
const minWidth = 250;
const minHeight = 250;

https://github.com/PacktPublishing/Django-4-by-Example/tree/main/Chapter06/bookmarks/images/static

site. The bookmarklet will identify images that have at least
250px width and 250px height.

Edit the bookmarklet.js static file and add the following code
highlighted in bold:

This section loads the CSS stylesheet for the bookmarklet. We use
JavaScript to manipulate the Document Object Model (DOM). The
DOM represents an HTML document in memory and it is created by
the browser when a web page is loaded. The DOM is constructed as
a tree of objects that comprise the structure and content of the HTML
document.

The previous code generates an object equivalent to the following
JavaScript code and appends it to the <head> element of the HTML
page:

const siteUrl = '//127.0.0.1:8000/';
const styleUrl = siteUrl + 'static/css/bookmarklet.c
const minWidth = 250;
const minHeight = 250;
// load CSS
var head = document.getElementsByTagName('head')[0];
var link = document.createElement('link');
link.rel = 'stylesheet';
link.type = 'text/css';
link.href = styleUrl + '?r=' + Math.floor(Math.rando
head.appendChild(link);

Let’s review how this is done:

1. The <head> element of the site is retrieved with
document.getElementsByTagName() . This function retrieves
all HTML elements of the page with the given tag. By using [0]
we access the first instance found. We access the first element
because all HTML documents should have a single <head>
element.

2. A <link> element is created with
document.createElement('link') .

3. The rel and type a�ributes of the <link> element are set.
This is equivalent to the HTML <link rel="stylesheet"
type="text/css"> .

4. The href a�ribute of the <link> element is set with the URL of
the bookmarklet.css stylesheet. A 16-digit random number is
used as a URL parameter to prevent the browser from loading
the file from the cache.

5. The new <link> element is added to the <head> element of the
HTML page using head.appendChild(link) .

Now we will create the HTML element to display a container on the
website where the bookmarklet is executed. The HTML container
will be used to display all images found on the site and let users
choose the image they want to share. It will use the CSS styles
defined in the bookmarklet.css stylesheet.

<link rel="stylesheet" type="text/css" href= "//127

Edit the bookmarklet.js static file and add the following code
highlighted in bold:

With this code the <body> element of the DOM is retrieved and new
HTML is added to it by modifying its property innerHTML . A new
<div> element is added to the body of the page. The <div>
container consists of the following elements:

const siteUrl = '//127.0.0.1:8000/';
const styleUrl = siteUrl + 'static/css/bookmarklet.c
const minWidth = 250;
const minHeight = 250;
// load CSS
var head = document.getElementsByTagName('head')[0];
var link = document.createElement('link');
link.rel = 'stylesheet';
link.type = 'text/css';
link.href = styleUrl + '?r=' + Math.floor(Math.rando
head.appendChild(link);
// load HTML
var body = document.getElementsByTagName('body')[0];
boxHtml = '
 <div id="bookmarklet">
 ×
 <h1>Select an image to bookmark:</h1>
 <div class="images"></div>
 </div>';
body.innerHTML += boxHtml;

A link to close the container defined with <a href="#"
id="close">× .
A title defined with <h1>Select an image to bookmark:
</h1> .
An <div> element to list the images found on the site defined
with <div class="images"></div> . This container is initially
empty and will be filled with the images found on the site.

The HTML container, including the previously loaded CSS styles,
will look like Figure 6.8:

Figure 6.8: The image selection container

Now let’s implement a function to launch the bookmarklet. Edit the
bookmarklet.js static file and add the following code at the
bo�om:

function bookmarkletLaunch() {
 bookmarklet = document.getElementById('bookmarklet
 var imagesFound = bookmarklet.querySelector('.imag

This is the bookmarkletLaunch() function. Before the definition of
this function, the CSS for the bookmarklet is loaded and the HTML
container is added to the DOM of the page. The
bookmarkletLaunch() function works as follows:

1. The bookmarklet main container is retrieved by ge�ing the
DOM element with the ID bookmarklet with
document.getElementById() .

2. The bookmarklet element is used to retrieve the child element
with the class images . The querySelector() method allows
you to retrieve DOM elements using CSS selectors. Selectors
allow you to find DOM elements to which a set of CSS rules
applies. You can find a list of CSS selectors at
https://developer.mozilla.org/en-
US/docs/Web/CSS/CSS_Selectors and you can read more
information about how to locate DOM elements using selectors

 // clear images found
 imagesFound.innerHTML = '';
 // display bookmarklet
 bookmarklet.style.display = 'block';
 // close event
 bookmarklet.querySelector('#close')
 .addEventListener('click', function(){
 bookmarklet.style.display = 'none'
 });
}
// launch the bookmkarklet
bookmarkletLaunch();

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors

at https://developer.mozilla.org/en-
US/docs/Web/API/Document_object_model/Locating_DOM_
elements_using_selectors.

3. The images container is cleared by se�ing its innerHTML
a�ribute to an empty string and the bookmarklet is displayed by
se�ing the display CSS property to block .

4. The #close selector is used to find the DOM element with the
ID close . A click event is a�ached to the element with the
addEventListener() method. When users click the element,
the bookmarklet main container is hidden by se�ing its
display property to none .

The bookmarkletLaunch() function is executed after its definition.

After loading the CSS styles and the HTML container of the
bookmarklet, you have to find image elements in the DOM of the
current website. Images that have the minimum required dimension
have to be added to the HTML container of the bookmarklet. Edit
the bookmarklet.js static file and add the following code
highlighted in bold to the bo�om of the bookmarklet() function:

function bookmarkletLaunch() {
 bookmarklet = document.getElementById('bookmarklet
 var imagesFound = bookmarklet.querySelector('.imag
 // clear images found
 imagesFound.innerHTML = '';
 // display bookmarklet
 bookmarklet.style.display = 'block';
 // close event
 bookmarklet.querySelector('#close')

https://developer.mozilla.org/en-US/docs/Web/API/Document_object_model/Locating_DOM_elements_using_selectors

The preceding code uses the img[src$=".jpg"] ,
img[src$=".jpeg"] , and img[src$=".png"] selectors to find all
 DOM elements whose src a�ribute finishes with .jpg ,
.jpeg , or, .png respectively. Using these selectors with
document.querySelectorAll() allows you to find all images with
the JPEG and PNG format displayed on the website. Iteration over
the results is performed with the forEach() method. Small images
are filtered out because we don’t consider them to be relevant. Only
images with a size larger than the one specified with the minWidth
and minHeight variables are used for the results. A new
element is created for each image found, where the src source URL

 .addEventListener('click', function(){
 bookmarklet.style.display = 'none'
 });
 // find images in the DOM with the minimum dimensi
 images = document.querySelectorAll('img[src$=".jpg
 images.forEach(image => {
 if(image.naturalWidth >= minWidth
 && image.naturalHeight >= minHeight)
 {
 var imageFound = document.createElement('img')
 imageFound.src = image.src;
 imagesFound.append(imageFound);
 }
 })
}
// launch the bookmkarklet
bookmarkletLaunch();

a�ribute is copied from the original image and added to the
imagesFound container.

For security reasons, your browser will prevent you from running
the bookmarklet over HTTP on a site served through HTTPS. That’s
the reason we keep using RunServerPlus to run the development
server using an auto-generated TLS/SSL certificate. Remember that
you learned how to run the development server through HTTPS in
Chapter 5, Implementing Social Authentication.

In a production environment, a valid TLS/SSL certificate will be
required. When you own a domain name, you can apply for a
trusted Certification Authority (CA) to issue a TLS/SSL certificate for
it, so that browsers can verify its identity. If you want to obtain a
trusted certificate for a real domain, you can use the Let’s Encrypt
service. Let’s Encrypt is a nonprofit CA that simplifies obtaining and
renewing trusted TLS/SSL certificates for free. You can find more
information at https://letsencrypt.org.

Run the development server with the following command from the
shell prompt:

Open https://127.0.0.1:8000/account/ in your browser. Log
in with an existing user, then click and drag the BOOKMARK IT
bu�on to the bookmarks bar of your browser, as follows:

python manage.py runserver_plus --cert-file cert.crt

https://letsencrypt.org/

Figure 6.9: Adding the BOOKMARK IT bu�on to the bookmarks bar

Open a website of your own choice in your browser and click on the
Bookmark it bookmarklet in the bookmarks bar. You will see that a
new white overlay appears on the website, displaying all JPEG and
PNG images found with dimensions higher than 250×250 pixels.
Figure 6.10 shows the bookmarklet running on
https://amazon.com/:

https://amazon.com/

Figure 6.10: The bookmarklet loaded on amazon.com

If the HTML container doesn’t appear, check the RunServer shell
console log. If you see a MIME type error, it is most likely that your
MIME map files are incorrect or need to be updated. You can apply
the correct mapping for JavaScript and CSS files by adding the
following lines to the settings.py file:

if DEBUG:
 import mimetypes

The HTML container includes the images that can be bookmarked.
We will now implement the functionality for users to click on the
desired image to bookmark it.

Edit the js/bookmarklet.js static file and add the following code
at the bo�om of the bookmarklet() function:

 mimetypes.add_type('application/javascript', '.j
 mimetypes.add_type('text/css', '.css', True)

function bookmarkletLaunch() {
 bookmarklet = document.getElementById('bookmarklet
 var imagesFound = bookmarklet.querySelector('.imag
 // clear images found
 imagesFound.innerHTML = '';
 // display bookmarklet
 bookmarklet.style.display = 'block';
 // close event
 bookmarklet.querySelector('#close')
 .addEventListener('click', function(){
 bookmarklet.style.display = 'none'
 });
 // find images in the DOM with the minimum dimensi
 images = document.querySelectorAll('img[src$=".jpg
 images.forEach(image => {
 if(image.naturalWidth >= minWidth
 && image.naturalHeight >= minHeight)
 {
 var imageFound = document.createElement('img')
 imageFound.src = image.src;

The preceding code works as follows:

1. A click() event is a�ached to each image element within the
imagesFound container.

2. When the user clicks on any of the images, the image element
clicked is stored in the variable imageSelected .

3. The bookmarklet is then hidden by se�ing its display property
to none .

4. A new browser window is opened with the URL to bookmark a
new image on the site. The content of the <title> element of

 imagesFound.append(imageFound);
 }
 })
 // select image event
 imagesFound.querySelectorAll('img').forEach(image
 image.addEventListener('click', function(event){
 imageSelected = event.target;
 bookmarklet.style.display = 'none';
 window.open(siteUrl + 'images/create/?url='
 + encodeURIComponent(imageSelected
 + '&title='
 + encodeURIComponent(document.titl
 '_blank');
 })
 })
}
// launch the bookmkarklet
bookmarkletLaunch();

the website is passed to the URL in the title GET parameter
and the selected image URL is passed in the url parameter.

Open a new URL with your browser, for example,
https://commons.wikimedia.org/, as follows:

Figure 6.11: The Wikimedia Commons website

Figures 6.11 to 6.14 image: A flock of cranes (Grus grus)
in Hula Valley, Northern Israel by Tomere (Licence:
Creative Commons A�ribution-Share Alike 4.0
International:

https://commons.wikimedia.org/

https://creativecommons.org/licenses/by-
sa/4.0/deed.en)

Click on the Bookmark it bookmarklet to display the image selection
overlay. You will see the image selection overlay like this:

Figure 6.12: The bookmarklet loaded on an external website

If you click on an image, you will be redirected to the image creation
page, passing the title of the website and the URL of the selected
image as GET parameters. The page will look as follows:

https://creativecommons.org/licenses/by-sa/4.0/deed.en

Figure 6.13: The form to bookmark an image

Congratulations! This is your first JavaScript bookmarklet, and it is
fully integrated into your Django project. Next, we will create the
detail view for images and implement the canonical URL for images.

Creating a detail view for images
Let’s now create a simple detail view to display images that have
been bookmarked on the site. Open the views.py file of the images
application and add the following code to it:

This is a simple view to display an image. Edit the urls.py file of
the images application and add the following URL pa�ern
highlighted in bold:

Edit the models.py file of the images application and add the
get_absolute_url() method to the Image model, as follows:

from django.shortcuts import get_object_or_404
from .models import Image
def image_detail(request, id, slug):
 image = get_object_or_404(Image, id=id, slug=slu
 return render(request,
 'images/image/detail.xhtml',
 {'section': 'images',
 'image': image})

urlpatterns = [
 path('create/', views.image_create, name='create
 path('detail/<int:id>/<slug:slug>/',
 views.image_detail, name='detail'),
]

from django.urls import reverse
class Image(models.Model):
 # ...
 def get_absolute_url(self):
 return reverse('images:detail', args=[self.i
 self.s

Remember that the common pa�ern for providing canonical URLs
for objects is to define a get_absolute_url() method in the model.

Finally, create a template inside the /templates/images/image/
template directory for the images application and name it
detail.xhtml . Add the following code to it:

{% extends "base.xhtml" %}
{% block title %}{{ image.title }}{% endblock %}
{% block content %}
 <h1>{{ image.title }}</h1>
 <img src="{{ image.image.url }}" class="image-deta
 {% with total_likes=image.users_like.count %}
 <div class="image-info">
 <div>

 {{ total_likes }} like{{ total_likes|plura

 </div>
 {{ image.description|linebreaks }}
 </div>
 <div class="image-likes">
 {% for user in image.users_like.all %}
 <div>
 {% if user.profile.photo %}

 {% endif %}
 <p>{{ user.first_name }}</p>
 </div>
 {% empty %}

This is the template to display the detail view of a bookmarked
image. We have used the {% with %} tag to create the
total_likes variable with the result of a QuerySet that counts all
user likes. By doing so, we avoid evaluating the same QuerySet
twice (first to display the total number of likes, then to use the
pluralize template filter). We have also included the image
description and we have added a {% for %} loop to iterate over
image.users_like.all to display all the users who like this
image.

Whenever you need to repeat a query in your
template, use the {% with %} template tag to avoid
additional database queries.

Now, open an external URL in your browser and use the
bookmarklet to bookmark a new image. You will be redirected to the
image detail page after you post the image. The page will include a
success message, as follows:

 Nobody likes this image yet.
 {% endfor %}
 </div>
 {% endwith %}
{% endblock %}

Figure 6.14: The image detail page for the image bookmark

Great! You completed the bookmarklet functionality. Next, you will
learn how to create thumbnails for images.

Creating image thumbnails using
easy-thumbnails
We are displaying the original image on the detail page, but
dimensions for different images may vary considerably. The file size

for some images may be very large, and loading them might take too
long. The best way to display optimized images in a uniform manner
is to generate thumbnails. A thumbnail is a small image
representation of a larger image. Thumbnails will load faster in the
browser and are a great way to homogenize images of very different
sizes. We will use a Django application called easy-thumbnails to
generate thumbnails for the images bookmarked by users.

Open the terminal and install easy-thumbnails using the
following command:

pip install easy-thumbnails==2.8.1

Edit the settings.py file of the bookmarks project and add
easy_thumbnails to the INSTALLED_APPS se�ing, as follows:

INSTALLED_APPS = [
 # ...
 'easy_thumbnails',
]

Then, run the following command to sync the application with your
database:

python manage.py migrate

You will see an output that includes the following lines:

The easy-thumbnails application offers you different ways to
define image thumbnails. The application provides a {% thumbnail
%} template tag to generate thumbnails in templates and a custom
ImageField if you want to define thumbnails in your models. Let’s
use the template tag approach.

Edit the images/image/detail.xhtml template and consider the
following line:

The following lines should replace the preceding one:

We have defined a thumbnail with a fixed width of 300 pixels and a
flexible height to maintain the aspect ratio by using the value 0 . The
first time a user loads this page, a thumbnail image will be created.
The thumbnail is stored in the same directory as the original file. The
location is defined by the MEDIA_ROOT se�ing and the upload_to

Applying easy_thumbnails.0001_initial... OK
Applying easy_thumbnails.0002_thumbnaildimensions..

<img src="{{ image.image.url }}" class="image-detail

{% load thumbnail %}

 <img src="{% thumbnail image.image 300x0 %}" class

a�ribute of the image field of the Image model. The generated
thumbnail will then be served in the following requests.

Run the development server with the following command from the
shell prompt:

Access the image detail page for an existing image. The thumbnail
will be generated and displayed on the site. Right-click on the image
and open it in a new browser tab as follows:

python manage.py runserver_plus --cert-file cert.crt

Figure 6.15: Open the image in a new browser tab

Check the URL of the generated image in your browser. It should
look as follows:

Figure 6.16: The URL of the generated image

The original filename is followed by additional details of the se�ings
used to create the thumbnail. For a JPEG image, you will see a
filename like filename.jpg.300x0_q85.jpg , where 300x0 are the
size parameters used to generate the thumbnail, and 85 is the value
for the default JPEG quality used by the library to generate the
thumbnail.

You can use a different quality value using the quality parameter.
To set the highest JPEG quality, you can use the value 100 , like this:
{% thumbnail image.image 300x0 quality=100 %} . A higher
quality will imply a larger file size.

The easy-thumbnails application offers several options to
customize your thumbnails, including cropping algorithms and
different effects that can be applied. If you run into any issues
generating thumbnails, you can add THUMBNAIL_DEBUG = True to
the settings.py file to obtain the debug information. You can read
the full documentation of easy-thumbnails at https://easy-
thumbnails.readthedocs.io/.

https://easy-thumbnails.readthedocs.io/

Adding asynchronous actions with
JavaScript
We are going to add a like bu�on to the image detail page to let users
click on it to like an image. When users click the like bu�on, we will
send an HTTP request to the web server using JavaScript. This will
perform the like action without reloading the whole page. For this
functionality, we will implement a view that allows users to
like/unlike images.

The JavaScript Fetch API is the built-in way to make asynchronous
HTTP requests to web servers from web browsers. By using the
Fetch API, you can send and retrieve data from the web server
without the need for a whole page refresh. The Fetch API was
launched as a modern successor to the browser built-in
XMLHttpRequest (XHR) object, used to make HTTP requests
without reloading the page. The set of web development techniques
to send and retrieve data from a web server asynchronously without
reloading the page is also known as AJAX, which stands for
Asynchronous JavaScript and XML. AJAX is a misleading name
because AJAX requests can exchange data not only in XML format
but also in formats such as JSON, HTML, and plain text. You might
find references to the Fetch API and AJAX indistinctively on the
Internet.

You can find information about the Fetch API at
https://developer.mozilla.org/en-
US/docs/Web/API/Fetch_API/Using_Fetch.

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

We will start by implementing the view to perform the like and unlike
actions, and then we will add the JavaScript code to the related
template to perform asynchronous HTTP requests.

Edit the views.py file of the images application and add the
following code to it:

We have used two decorators for the new view. The
login_required decorator prevents users who are not logged in
from accessing this view. The require_POST decorator returns an
HttpResponseNotAllowed object (status code 405) if the HTTP

from django.http import JsonResponse
from django.views.decorators.http import require_POS
@login_required
@require_POST
def image_like(request):
 image_id = request.POST.get('id')
 action = request.POST.get('action')
 if image_id and action:
 try:
 image = Image.objects.get(id=image_id)
 if action == 'like':
 image.users_like.add(request.user)
 else:
 image.users_like.remove(request.user
 return JsonResponse({'status': 'ok'})
 except Image.DoesNotExist:
 pass
 return JsonResponse({'status': 'error'})

request is not done via POST . This way, you only allow POST
requests for this view.

Django also provides a require_GET decorator to only allow GET
requests and a require_http_methods decorator to which you can
pass a list of allowed methods as an argument.

This view expects the following POST parameters:

image_id : The ID of the image object on which the user is
performing the action
action : The action that the user wants to perform, which
should be a string with the value like or unlike

We have used the manager provided by Django for the users_like
many-to-many field of the Image model in order to add or remove
objects from the relationship using the add() or remove()
methods. If the add() method is called passing an object that is
already present in the related object set, it will not be duplicated. If
the remove() method is called with an object that is not in the
related object set, nothing will happen. Another useful method of
many-to-many managers is clear() , which removes all objects
from the related object set.

To generate the view response, we have used the JsonResponse
class provided by Django, which returns an HTTP response with an
application/json content type, converting the given object into a
JSON output.

Edit the urls.py file of the images application and add the
following URL pa�ern highlighted in bold:

Loading JavaScript on the DOM
We need to add JavaScript code to the image detail template. To use
JavaScript in our templates, we will add a base wrapper in the
base.xhtml template of the project first.

Edit the base.xhtml template of the account application and
include the following code highlighted in bold before the closing
</body> HTML tag:

urlpatterns = [
 path('create/', views.image_create, name='create
 path('detail/<int:id>/<slug:slug>/',
 views.image_detail, name='detail'),
 path('like/', views.image_like, name='like'),
]

<!DOCTYPE html>
<html>
<head>
 ...
</head>
<body>
 ...
 <script>
 document.addEventListener('DOMContentLoaded', (e
 // DOM loaded
 {% block domready %}
 {% endblock %}

We have added a <script> tag to include JavaScript code. The
document.addEventListener() method is used to define a
function that will be called when the given event is triggered. We
pass the event name DOMContentLoaded , which fires when the
initial HTML document has been completely loaded and the
Document Object Model (DOM) hierarchy has been fully
constructed. By using this event, we make sure the DOM is fully
constructed before we interact with any HTML elements and we
manipulate the DOM. The code within the function will only be
executed once the DOM is ready.

Inside the document-ready handler, we have included a Django
template block called domready . Any template that extends the
base.xhtml template can use this block to include specific
JavaScript code to execute when the DOM is ready.

Don’t get confused by the JavaScript code and Django template tags.
The Django template language is rendered on the server side to
generate the HTML document, and JavaScript is executed in the
browser on the client side. In some cases, it is useful to generate
JavaScript code dynamically using Django, to be able to use the
results of QuerySets or server-side calculations to define variables in
JavaScript.

 })
 </script>
</body>
</html>

The examples in this chapter include JavaScript code in Django
templates. The preferred method to add JavaScript code to your
templates is by loading .js files, which are served as static files,
especially if you are using large scripts.

Cross-site request forgery for HTTP
requests in JavaScript
You learned about cross-site request forgery (CSRF) in Chapter 2,
Enhancing Your Blog with Advanced Features. With CSRF protection
active, Django looks for a CSRF token in all POST requests. When
you submit forms, you can use the {% csrf_token %} template tag
to send the token along with the form. HTTP requests made in
JavaScript have to pass the CSRF token as well in every POST
request.

Django allows you to set a custom X-CSRFToken header in your
HTTP requests with the value of the CSRF token.

To include the token in HTTP requests that originate from
JavaScript, we will need to retrieve the CSRF token from the
csrftoken cookie, which is set by Django if the CSRF protection is
active. To handle cookies, we will use the JavaScript Cookie library.
JavaScript Cookie is a lightweight JavaScript API for handling
cookies. You can learn more about it at https://github.com/js-
cookie/js-cookie.

Edit the base.xhtml template of the account application and add
the following code highlighted in bold at the bo�om of the <body>
element like this:

https://github.com/js-cookie/js-cookie

We have implemented the following functionality:

1. The JS Cookie plugin is loaded from a public Content Delivery
Network (CDN).

2. The value of the csrftoken cookie is retrieved with
Cookies.get() and stored in the JavaScript constant
csrftoken .

We have to include the CSRF token in all JavaScript fetch requests
that use unsafe HTTP methods, such as POST or PUT . We will later

<!DOCTYPE html>
<html>
<head>
 ...
</head>
<body>
 ...
 <script src="//cdn.jsdelivr.net/npm/js-cookie@3.0.
 <script>
 const csrftoken = Cookies.get('csrftoken');
 document.addEventListener('DOMContentLoaded', (e
 // DOM loaded
 {% block domready %}
 {% endblock %}
 })
 </script>
</body>
</html>

include the csrftoken constant in a custom HTTP header named
X-CSRFToken when sending HTTP POST requests.

You can find more information about Django’s CSRF protection and
AJAX at
https://docs.djangoproject.com/en/4.1/ref/csrf/#ajax.

Next, we will implement the HTML and JavaScript code for users to
like/unlike images.

Performing HTTP requests with
JavaScript
Edit the images/image/detail.xhtml template and add the
following code highlighted in bold:

{% extends "base.xhtml" %}
{% block title %}{{ image.title }}{% endblock %}
{% block content %}
 <h1>{{ image.title }}</h1>
 {% load thumbnail %}

 <img src="{% thumbnail image.image 300x0 %}" cla

 {% with total_likes=image.users_like.count users_l
 <div class="image-info">
 <div>

 {{ total_likes }}
 like{{ total_likes|pluralize }}

https://docs.djangoproject.com/en/4.1/ref/csrf/#ajax

In the preceding code, we have added another variable to the {%
with %} template tag to store the results of the
image.users_like.all query and avoid executing the query
against the database multiple times. This variable is used to check if

 <a href="#" data-id="{{ image.id }}" data-ac
 class="like button">
 {% if request.user not in users_like %}
 Like
 {% else %}
 Unlike
 {% endif %}

 </div>
 {{ image.description|linebreaks }}
 </div>
 <div class="image-likes">
 {% for user in users_like %}
 <div>
 {% if user.profile.photo %}

 {% endif %}
 <p>{{ user.first_name }}</p>
 </div>
 {% empty %}
 Nobody likes this image yet.
 {% endfor %}
 </div>
 {% endwith %}
{% endblock %}

the current user is in this list with {% if request.user in
users_like %} and then with {% if request.user not in
users_like %} . The same variable is then used to iterate over the
users that like this image with {% for user in users_like %} .

We have added to this page the total number of users who like the
image and have included a link for the user to like/unlike the image.
The related object set, users_like , is used to check whether
request.user is contained in the related object set, to display the
text Like or Unlike based on the current relationship between the user
and this image. We have added the following a�ributes to the <a>
HTML link element:

data-id : The ID of the image displayed.
data-action : The action to perform when the user clicks on
the link. This can be either like or unlike .

Any a�ribute on any HTML element with a name that
starts with data- is a data a�ribute. Data a�ributes
are used to store custom data for your application.

We will send the value of the data-id and data-action a�ributes
in the HTTP request to the image_like view. When a user clicks on
the like/unlike link, we will need to perform the following actions
in the browser:

1. Send an HTTP POST request to the image_like view, passing
the image id and the action parameters to it.

2. If the HTTP request is successful, update the data-action
a�ribute of the <a> HTML element with the opposite action
(like / unlike), and modify its display text accordingly.

3. Update the total number of likes displayed on the page.

Add the following domready block at the bo�om of the
images/image/detail.xhtml template:

{% block domready %}
 const url = '{% url "images:like" %}';
 var options = {
 method: 'POST',
 headers: {'X-CSRFToken': csrftoken},
 mode: 'same-origin'
 }
 document.querySelector('a.like')
 .addEventListener('click', function(e){
 e.preventDefault();
 var likeButton = this;
 });
{% endblock %}

The preceding code works as follows:

1. The {% url %} template tag is used to build the images:like
URL. The generated URL is stored in the url JavaScript
constant.

2. An options object is created with the options that will be
passed to the HTTP request with the Fetch API. These are:

method : The HTTP method to use. In this case, it’s POST .

headers : Additional HTTP headers to include in the
request. We include the X-CSRFToken header with the
value of the csrftoken constant that we defined in the
base.xhtml template.
mode : The mode of the HTTP request. We use same-
origin to indicate the request is made to the same origin.
You can find more information about modes at
https://developer.mozilla.org/en-
US/docs/Web/API/Request/mode.

3. The a.like selector is used to find all <a> elements of the
HTML document with the like class using
document.querySelector() .

4. An event listener is defined for the click event on the elements
targeted with the selector. This function is executed every time
the user clicks on the like/unlike link.

5. Inside the handler function, e.preventDefault() is used to
avoid the default behavior of the <a> element. This will prevent
the default behavior of the link element, stopping the event
propagation, and preventing the link from following the URL.

6. A variable likeButton is used to store the reference to this ,
the element on which the event was triggered.

Now we need to send the HTTP request using the Fetch API. Edit
the domready block of the images/image/detail.xhtml template
and add the following code highlighted in bold:

{% block domready %}
 const url = '{% url "images:like" %}';

https://developer.mozilla.org/en-US/docs/Web/API/Request/mode

The new code works as follows:

1. A FormData object is created to construct a set of key/value
pairs representing form fields and their values. The object is
stored in the formData variable.

 var options = {
 method: 'POST',
 headers: {'X-CSRFToken': csrftoken},
 mode: 'same-origin'
 }
 document.querySelector('a.like')
 .addEventListener('click', function(e){
 e.preventDefault();
 var likeButton = this;
 // add request body
 var formData = new FormData();
 formData.append('id', likeButton.dataset.id);
 formData.append('action', likeButton.dataset.act
 options['body'] = formData;
 // send HTTP request
 fetch(url, options)
 .then(response => response.json())
 .then(data => {
 if (data['status'] === 'ok')
 {
 }
 })
 });
{% endblock %}

2. The id and action parameters expected by the image_like
Django view are added to the formData object. The values for
these parameters are retrieved from the likeButton element
clicked. The data-id and data-action a�ributes are accessed
with dataset.id and dataset.action .

3. A new body key is added to the options object that will be
used for the HTTP request. The value for this key is the
formData object.

4. The Fetch API is used by calling the fetch() function. The url
variable defined previously is passed as the URL for the request,
and the options object is passed as the options for the request.

5. The fetch() function returns a promise that resolves with a
Response object, which is a representation of the HTTP
response. The .then() method is used to define a handler for
the promise. To extract the JSON body content we use
response.json() . You can learn more about the Response
object at https://developer.mozilla.org/en-
US/docs/Web/API/Response.

6. The .then() method is used again to define a handler for the
data extracted to JSON. In this handler, the status a�ribute of
the data received is used to check whether its value is ok .

You added the functionality to send the HTTP request and handle
the response. After a successful request, you need to change the
bu�on and its related action to the opposite: from like to unlike, or
from unlike to like. By doing so, users are able to undo their action.

Edit the domready block of the images/image/detail.xhtml
template and add the following code highlighted in bold:

https://developer.mozilla.org/en-US/docs/Web/API/Response

{% block domready %}
 var url = '{% url "images:like" %}';
 var options = {
 method: 'POST',
 headers: {'X-CSRFToken': csrftoken},
 mode: 'same-origin'
 }
 document.querySelector('a.like')
 .addEventListener('click', function(e){
 e.preventDefault();
 var likeButton = this;
 // add request body
 var formData = new FormData();
 formData.append('id', likeButton.dataset.id);
 formData.append('action', likeButton.dataset.act
 options['body'] = formData;
 // send HTTP request
 fetch(url, options)
 .then(response => response.json())
 .then(data => {
 if (data['status'] === 'ok')
 {
 var previousAction = likeButton.dataset.acti
 // toggle button text and data-action
 var action = previousAction === 'like' ? 'un
 likeButton.dataset.action = action;
 likeButton.innerHTML = action;
 // update like count
 var likeCount = document.querySelector('span
 var totalLikes = parseInt(likeCount.innerHTM
 likeCount.innerHTML = previousAction === 'li

The preceding code works as follows:

1. The previous action of the bu�on is retrieved from the data-
action a�ribute of the link and it is stored in the
previousAction variable.

2. The data-action a�ribute of the link and the link text are
toggled. This allows users to undo their action.

3. The total like count is retrieved from the DOM by using the
selector span.count.total and the value is parsed to an
integer with parseInt() . The total like count is increased or
decreased according to the action performed (like or unlike).

Open the image detail page in your browser for an image that you
have uploaded. You should be able to see the following initial likes
count and the LIKE bu�on, as follows:

Figure 6.17: The likes count and LIKE bu�on in the image detail template

Click on the LIKE bu�on. You will note that the total likes count
increases by one and the bu�on text changes to UNLIKE, as follows:

 }
 })
 });
{% endblock %}

Figure 6.18: The likes count and bu�on after clicking the LIKE bu�on

If you click on the UNLIKE bu�on, the action is performed, and then
the bu�on’s text changes back to LIKE and the total count changes
accordingly.

When programming JavaScript, especially when performing AJAX
requests, it is recommended to use a tool for debugging JavaScript
and HTTP requests. Most modern browsers include developer tools
to debug JavaScript. Usually, you can right-click anywhere on the
website to open the contextual menu and click on Inspect or Inspect
Element to access the web developer tools of your browser.

In the next section, you will learn how to use asynchronous HTTP
requests with JavaScript and Django to implement infinite scroll
pagination.

Adding infinite scroll pagination to
the image list
Next, we need to list all bookmarked images on the website. We will
use JavaScript requests to build an infinite scroll functionality.
Infinite scroll is achieved by loading the next results automatically
when the user scrolls to the bo�om of the page.

Let’s implement an image list view that will handle both standard
browser requests and requests originating from JavaScript. When the
user initially loads the image list page, we will display the first page

of images. When they scroll to the bo�om of the page, we will
retrieve the following page of items with JavaScript and append it to
the bo�om of the main page.

The same view will handle both standard and AJAX infinite scroll
pagination. Edit the views.py file of the images application and
add the following code highlighted in bold:

from django.http import HttpResponse
from django.core.paginator import Paginator, EmptyPa
 PageNotAnInteger
...
@login_required
def image_list(request):
 images = Image.objects.all()
 paginator = Paginator(images, 8)
 page = request.GET.get('page')
 images_only = request.GET.get('images_only')
 try:
 images = paginator.page(page)
 except PageNotAnInteger:
 # If page is not an integer deliver the firs
 images = paginator.page(1)
 except EmptyPage:
 if images_only:
 # If AJAX request and page out of range
 # return an empty page
 return HttpResponse('')
 # If page out of range return last page of r
 images = paginator.page(paginator.num_pages)
 if images_only:

In this view, a QuerySet is created to retrieve all images from the
database. Then, a Paginator object is created to paginate over the
results, retrieving eight images per page. The page HTTP GET
parameter is retrieved to get the requested page number. The
images_only HTTP GET parameter is retrieved to know if the
whole page has to be rendered or only the new images. We will
render the whole page when it is requested by the browser.
However, we will only render the HTML with new images for Fetch
API requests, since we will be appending them to the existing HTML
page.

An EmptyPage exception will be triggered if the requested page is
out of range. If this is the case and only images have to be rendered,
an empty HttpResponse will be returned. This will allow you to
stop the AJAX pagination on the client side when reaching the last
page. The results are rendered using two different templates:

For JavaScript HTTP requests, that will include the
images_only parameter, the list_images.xhtml template
will be rendered. This template will only contain the images of
the requested page.

 return render(request,
 'images/image/list_images.xhtm
 {'section': 'images',
 'images': images})
 return render(request,
 'images/image/list.xhtml',
 {'section': 'images',
 'images': images})

For browser requests, the list.xhtml template will be
rendered. This template will extend the base.xhtml template
to display the whole page and will include the
list_images.xhtml template to include the list of images.

Edit the urls.py file of the images application and add the
following URL pa�ern highlighted in bold:

Finally, you need to create the templates mentioned here. Inside the
images/image/ template directory, create a new template and
name it list_images.xhtml . Add the following code to it:

urlpatterns = [
 path('create/', views.image_create, name='create
 path('detail/<int:id>/<slug:slug>/',
 views.image_detail, name='detail'),
 path('like/', views.image_like, name='like'),
 path('', views.image_list, name='list'),
]

{% load thumbnail %}
{% for image in images %}
 <div class="image">

 {% thumbnail image.image 300x300 crop="smart"

The preceding template displays the list of images. You will use it to
return results for AJAX requests. In this code, you iterate over
images and generate a square thumbnail for each image. You
normalize the size of the thumbnails to 300x300 pixels. You also use
the smart cropping option. This option indicates that the image has
to be incrementally cropped down to the requested size by removing
slices from the edges with the least entropy.

Create another template in the same directory and name it
images/image/list.xhtml . Add the following code to it:

{% extends "base.xhtml" %}
{% block title %}Images bookmarked{% endblock %}
{% block content %}
 <h1>Images bookmarked</h1>
 <div id="image-list">
 {% include "images/image/list_images.xhtml" %}
 </div>
{% endblock %}

 <div class="info">
 <a href="{{ image.get_absolute_url }}" class="
 {{ image.title }}

 </div>
 </div>
{% endfor %}

The list template extends the base.xhtml template. To avoid
repeating code, you include the
images/image/list_images.xhtml template for displaying
images. The images/image/list.xhtml template will hold the
JavaScript code for loading additional pages when scrolling to the
bo�om of the page.

Edit the images/image/list.xhtml template and add the
following code highlighted in bold:

{% extends "base.xhtml" %}
{% block title %}Images bookmarked{% endblock %}
{% block content %}
 <h1>Images bookmarked</h1>
 <div id="image-list">
 {% include "images/image/list_images.xhtml" %}
 </div>
{% endblock %}
{% block domready %}
 var page = 1;
 var emptyPage = false;
 var blockRequest = false;
 window.addEventListener('scroll', function(e) {
 var margin = document.body.clientHeight - window
 if(window.pageYOffset > margin && !emptyPage &&
 blockRequest = true;
 page += 1;
 fetch('?images_only=1&page=' + page)
 .then(response => response.text())
 .then(html => {
 if (html === '') {

The preceding code provides the infinite scroll functionality. You
include the JavaScript code in the domready block that you defined
in the base.xhtml template. The code is as follows:

1. You define the following variables:
page : Stores the current page number.
empty_page : Allows you to know whether the user is on
the last page and retrieves an empty page. As soon as you
get an empty page, you will stop sending additional HTTP
requests because you will assume that there are no more
results.
block_request : Prevents you from sending additional
requests while an HTTP request is in progress.

 emptyPage = true;
 }
 else {
 var imageList = document.getElementById('i
 imageList.insertAdjacentHTML('beforeEnd',
 blockRequest = false;
 }
 })
 }
 });
 // Launch scroll event
 const scrollEvent = new Event('scroll');
 window.dispatchEvent(scrollEvent);
{% endblock %}

2. You use window.addEventListener() to capture the scroll
event and to define a handler function for it.

3. You calculate the margin variable to get the difference between
the total document height and the window inner height,
because that’s the height of the remaining content for the user to
scroll. You subtract a value of 200 from the result so that you
load the next page when the user is closer than 200 pixels to the
bo�om of the page.

4. Before sending an HTTP request, you check that:
The offset window.pageYOffset is higher than the
calculated margin.
The user didn’t get to the last page of results (emptyPage
has to be false).
There is no other ongoing HTTP request (blockRequest
has to be false).

5. If the previous conditions are met, you set blockRequest to
true to prevent the scroll event from triggering additional
HTTP requests, and you increase the page counter by 1 to
retrieve the next page.

6. You use fetch() to send an HTTP GET request, se�ing the URL
parameters image_only=1 to retrieve only the HTML for
images instead of the whole HTML page, and page for the
requested page number.

7. The body content is extracted from the HTTP response with
response.text() and the HTML returned is treated
accordingly:

If the response has no content: You got to the end of the
results, and there are no more pages to load. You set
emptyPage to true to prevent additional HTTP requests.
If the response contains data: You append the data to the
HTML element with the image-list ID. The page content
expands vertically, appending results when the user
approaches the bo�om of the page. You remove the lock for
additional HTTP requests by se�ing blockRequest to
false .

8. Below the event listener, you simulate an initial scroll event
when the page is loaded. You create the event by creating a new
Event object, and then you launch it with
window.dispatchEvent() . By doing this, you ensure that the
event is triggered if the initial content fits the window and has
no scroll.

Open https://127.0.0.1:8000/images/ in your browser. You
will see the list of images that you have bookmarked so far. It should
look similar to this:

Figure 6.19: The image list page with infinite scroll pagination

Figure 6.19 image a�ributions:

Chick Corea by ataelw (license: Creative Commons
A�ribution 2.0 Generic:

https://creativecommons.org/licenses/by/
2.0/)
Al Jarreau – Düsseldorf 1981 by Eddi Laumanns
aka RX-Guru (license: Creative Commons
A�ribution 3.0 Unported:
https://creativecommons.org/licenses/by/
3.0/)
Al Jarreau by Kingkongphoto & www.celebrity-
photos.com (license: Creative Commons
A�ribution-ShareAlike 2.0 Generic:
https://creativecommons.org/licenses/by-
sa/2.0/)

Scroll to the bo�om of the page to load additional pages. Ensure that
you have bookmarked more than eight images using the
bookmarklet, because that’s the number of images you are
displaying per page.

You can use your browser developer tools to track the AJAX
requests. Usually, you can right-click anywhere on the website to
open the contextual menu and click on Inspect or Inspect Element
to access the web developer tools of your browser. Look for the
panel for network requests. Reload the page and scroll to the bo�om
of the page to load new pages. You will see the request for the first
page and the AJAX requests for additional pages, like in Figure 6.20:

https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by-sa/2.0/

Figure 6.20: HTTP requests registered in the developer tools of the browser

In the shell where you are running Django, you will see the requests
as well like this:

Finally, edit the base.xhtml template of the account application
and add the URL for the images item highlighted in bold:

[08/Aug/2022 08:14:20] "GET /images/ HTTP/1.1" 200
[08/Aug/2022 08:14:25] "GET /images/?images_only=1&p
[08/Aug/2022 08:14:26] "GET /images/?images_only=1&p
[08/Aug/2022 08:14:26] "GET /images/?images_only=1&p

Now you can access the image list from the main menu.

Additional resources
The following resources provide additional information related to
the topics covered in this chapter:

Source code for this chapter –
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter06

Database indexes –
https://docs.djangoproject.com/en/4.1/ref/models/op
tions/#django.db.models.Options.indexes

Many-to-many relationships –
https://docs.djangoproject.com/en/4.1/topics/db/exa
mples/many_to_many/

Requests HTTP library for Python –
https://docs.djangoproject.com/en/4.1/topics/db/exa
mples/many_to_many/

<ul class="menu">
 ...
 <li {% if section == "images" %}class="selected"{%
 Images

 ...

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter06
https://docs.djangoproject.com/en/4.1/ref/models/options/#django.db.models.Options.indexes
https://docs.djangoproject.com/en/4.1/topics/db/examples/many_to_many/
https://docs.djangoproject.com/en/4.1/topics/db/examples/many_to_many/

Pinterest browser bu�on –
https://about.pinterest.com/en/browser-button

Static content for the account application –
https://github.com/PacktPublishing/Django-4-by-
Example/tree/main/Chapter06/bookmarks/images/static

CSS selectors – https://developer.mozilla.org/en-
US/docs/Web/CSS/CSS_Selectors

Locate DOM elements using CSS selectors –
https://developer.mozilla.org/en-
US/docs/Web/API/Document_object_model/Locating_DOM_
elements_using_selectors

Let’s Encrypt free automated certificate authority –
https://letsencrypt.org

Django easy-thumbnails app – https://easy-
thumbnails.readthedocs.io/

JavaScript Fetch API usage –
https://developer.mozilla.org/en-
US/docs/Web/API/Fetch_API/Using_Fetch

JavaScript Cookie library – https://github.com/js-
cookie/js-cookie

Django’s CSRF protection and AJAX –
https://docs.djangoproject.com/en/4.1/ref/csrf/#aja
x

JavaScript Fetch API Request mode –
https://developer.mozilla.org/en-
US/docs/Web/API/Request/mode

https://about.pinterest.com/en/browser-button
https://github.com/PacktPublishing/Django-4-by-Example/tree/main/Chapter06/bookmarks/images/static
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/API/Document_object_model/Locating_DOM_elements_using_selectors
https://letsencrypt.org/
https://easy-thumbnails.readthedocs.io/
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://github.com/js-cookie/js-cookie
https://docs.djangoproject.com/en/4.1/ref/csrf/#ajax
https://developer.mozilla.org/en-US/docs/Web/API/Request/mode

JavaScript Fetch API Response –
https://developer.mozilla.org/en-
US/docs/Web/API/Response

Summary
In this chapter, you created models with many-to-many
relationships and learned how to customize the behavior of forms.
You built a JavaScript bookmarklet to share images from other
websites on your site. This chapter has also covered the creation of
image thumbnails using the easy-thumbnails application. Finally,
you implemented AJAX views using the JavaScript Fetch API and
added infinite scroll pagination to the image list view.

In the next chapter, you will learn how to build a follow system and
an activity stream. You will work with generic relations, signals, and
denormalization. You will also learn how to use Redis with Django
to count image views and generate an image ranking.

https://developer.mozilla.org/en-US/docs/Web/API/Response

7

Tracking User Actions

In the previous chapter, you built a JavaScript bookmarklet to share
content from other websites on your platform. You also
implemented asynchronous actions with JavaScript in your project
and created an infinite scroll.

In this chapter, you will learn how to build a follow system and
create a user activity stream. You will also discover how Django
signals work and integrate Redis’s fast I/O storage into your project
to store item views.

This chapter will cover the following points:

Building a follow system
Creating many-to-many relationships with an intermediary
model
Creating an activity stream application
Adding generic relations to models
Optimizing QuerySets for related objects
Using signals for denormalizing counts
Using Django Debug Toolbar to obtain relevant debug
information
Counting image views with Redis

Creating a ranking of the most viewed images with Redis

The source code for this chapter can be found at
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter07.

All Python packages used in this chapter are included in the
requirements.txt file in the source code for the chapter. You can
follow the instructions to install each Python package in the
following sections, or you can install all requirements at once with
the command pip install -r requirements.txt .

Building a follow system
Let’s build a follow system in your project. This means that your
users will be able to follow each other and track what other users
share on the platform. The relationship between users is a many-to-
many relationship: a user can follow multiple users and they, in
turn, can be followed by multiple users.

Creating many-to-many relationships
with an intermediary model
In previous chapters, you created many-to-many relationships by
adding the ManyToManyField to one of the related models and
le�ing Django create the database table for the relationship. This is
suitable for most cases, but sometimes you may need to create an
intermediary model for the relationship. Creating an intermediary
model is necessary when you want to store additional information

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter07

about the relationship, for example, the date when the relationship
was created, or a field that describes the nature of the relationship.

Let’s create an intermediary model to build relationships between
users. There are two reasons for using an intermediary model:

You are using the User model provided by Django and you
want to avoid altering it
You want to store the time when the relationship was created

Edit the models.py file of the account application and add the
following code to it:

The preceding code shows the Contact model that you will use for
user relationships. It contains the following fields:

class Contact(models.Model):
 user_from = models.ForeignKey('auth.User',
 related_name='rel_
 on_delete=models.C
 user_to = models.ForeignKey('auth.User',
 related_name='rel_to
 on_delete=models.CAS
 created = models.DateTimeField(auto_now_add=True
 class Meta:
 indexes = [
 models.Index(fields=['-created']),
]
 ordering = ['-created']
 def __str__(self):
 return f'{self.user_from} follows {self.user

user_from : A ForeignKey for the user who creates the
relationship
user_to : A ForeignKey for the user being followed
created : A DateTimeField field with auto_now_add=True to
store the time when the relationship was created

A database index is automatically created on the ForeignKey fields.
In the Meta class of the model, we have defined a database index in
descending order for the created field. We have also added the
ordering a�ribute to tell Django that it should sort results by the
created field by default. We indicate descending order by using a
hyphen before the field name, like -created .

Using the ORM, you could create a relationship for a user, user1 ,
following another user, user2 , like this:

The related managers, rel_from_set and rel_to_set , will return
a QuerySet for the Contact model. In order to access the end side of
the relationship from the User model, it would be desirable for
User to contain a ManyToManyField , as follows:

user1 = User.objects.get(id=1)
user2 = User.objects.get(id=2)
Contact.objects.create(user_from=user1, user_to=user

following = models.ManyToManyField('self',
 through=Contact,

In the preceding example, you tell Django to use your custom
intermediary model for the relationship by adding
through=Contact to the ManyToManyField . This is a many-to-
many relationship from the User model to itself; you refer to
'self' in the ManyToManyField field to create a relationship to the
same model.

When you need additional fields in a many-to-many
relationship, create a custom model with a
ForeignKey for each side of the relationship. Add a
ManyToManyField in one of the related models and
indicate to Django that your intermediary model
should be used by including it in the through
parameter.

If the User model was part of your application, you could add the
previous field to the model. However, you can’t alter the User class
directly because it belongs to the django.contrib.auth
application. Let’s take a slightly different approach by adding this
field dynamically to the User model.

Edit the models.py file of the account application and add the
following lines highlighted in bold:

 related_name='fol
 symmetrical=False

In the preceding code, you retrieve the user model by using the
generic function get_user_model() , which is provided by Django.
You use the add_to_class() method of Django models to monkey
patch the User model.

Be aware that using add_to_class() is not the recommended way
of adding fields to models. However, you take advantage of using it
in this case to avoid creating a custom user model, keeping all the
advantages of Django’s built-in User model.

You also simplify the way that you retrieve related objects using the
Django ORM with user.followers.all() and
user.following.all() . You use the intermediary Contact model
and avoid complex queries that would involve additional database
joins, as would have been the case had you defined the relationship
in your custom Profile model. The table for this many-to-many
relationship will be created using the Contact model. Thus, the
ManyToManyField , added dynamically, will not imply any database
changes for the Django User model.

from django.contrib.auth import get_user_model
...
Add following field to User dynamically
user_model = get_user_model()
user_model.add_to_class('following',
 models.ManyToManyField('self
 through=Contact,
 related_name='followers
 symmetrical=False))

Keep in mind that, in most cases, it is preferable to add fields to the
Profile model you created before, instead of monkey patching the
User model. Ideally, you shouldn’t alter the existing Django User
model. Django allows you to use custom user models. If you want to
use a custom user model, take a look at the documentation at
https://docs.djangoproject.com/en/4.1/topics/auth/custo
mizing/#specifying-a-custom-user-model.

Note that the relationship includes symmetrical=False . When you
define a ManyToManyField in the model creating a relationship with
itself, Django forces the relationship to be symmetrical. In this case,
you are se�ing symmetrical=False to define a non-symmetrical
relationship (if I follow you, it doesn’t mean that you automatically
follow me).

When you use an intermediary model for many-to-
many relationships, some of the related manager’s
methods are disabled, such as add() , create() , or
remove() . You need to create or delete instances of
the intermediary model instead.

Run the following command to generate the initial migrations for
the account application:

python manage.py makemigrations account

You will obtain an output like the following one:

https://docs.djangoproject.com/en/4.1/topics/auth/customizing/#specifying-a-custom-user-model

Now, run the following command to sync the application with the
database:

python manage.py migrate account

You should see an output that includes the following line:

Applying account.0002_auto_20220124_1106... OK

The Contact model is now synced to the database, and you are able
to create relationships between users. However, your site doesn’t
offer a way to browse users or see a particular user’s profile yet. Let’s
build list and detail views for the User model.

Creating list and detail views for user
profiles
Open the views.py file of the account application and add the
following code highlighted in bold:

from django.shortcuts import get_object_or_404
from django.contrib.auth.models import User

Migrations for 'account':
 account/migrations/0002_auto_20220124_1106.py
 - Create model Contact
 - Create index account_con_created_8bdae6_idx on

...
@login_required
def user_list(request):
 users = User.objects.filter(is_active=True)
 return render(request,
 'account/user/list.xhtml',
 {'section': 'people',
 'users': users})
@login_required
def user_detail(request, username):
 user = get_object_or_404(User,
 username=username,
 is_active=True)
 return render(request,
 'account/user/detail.xhtml',
 {'section': 'people',
 'user': user})

These are simple list and detail views for User objects. The
user_list view gets all active users. The Django User model
contains an is_active flag to designate whether the user account is
considered active. You filter the query by is_active=True to return
only active users. This view returns all results, but you can improve
it by adding pagination in the same way as you did for the
image_list view.

The user_detail view uses the get_object_or_404() shortcut to
retrieve the active user with the given username. The view returns
an HTTP 404 response if no active user with the given username is
found.

Edit the urls.py file of the account application, and add a URL
pa�ern for each view, as follows. New code is highlighted in bold:

You will use the user_detail URL pa�ern to generate the
canonical URL for users. You have already defined a
get_absolute_url() method in a model to return the canonical
URL for each object. Another way to specify the URL for a model is
by adding the ABSOLUTE_URL_OVERRIDES se�ing to your project.

Edit the settings.py file of your project and add the following
code highlighted in bold:

urlpatterns = [
 # ...
 path('', include('django.contrib.auth.urls')),
 path('', views.dashboard, name='dashboard'),
 path('register/', views.register, name='register
 path('edit/', views.edit, name='edit'),
 path('users/', views.user_list, name='user_list
 path('users/<username>/', views.user_detail, nam
]

from django.urls import reverse_lazy
...
ABSOLUTE_URL_OVERRIDES = {
 'auth.user': lambda u: reverse_lazy('user_detail
 args=[u.user
}

Django adds a get_absolute_url() method dynamically to any
models that appear in the ABSOLUTE_URL_OVERRIDES se�ing. This
method returns the corresponding URL for the given model
specified in the se�ing. You return the user_detail URL for the
given user. Now, you can use get_absolute_url() on a User
instance to retrieve its corresponding URL.

Open the Python shell with the following command:

python manage.py shell

Then run the following code to test it:

>>> from django.contrib.auth.models import User
>>> user = User.objects.latest('id')
>>> str(user.get_absolute_url())
'/account/users/ellington/'

The returned URL follows the expected format
/account/users/<username>/ .

You will need to create templates for the views that you just built.
Add the following directory and files to the templates/account/
directory of the account application:

/user/
 detail.xhtml
 list.xhtml

Edit the account/user/list.xhtml template and add the
following code to it:

The preceding template allows you to list all the active users on the
site. You iterate over the given users and use the {% thumbnail %}
template tag from easy-thumbnails to generate profile image
thumbnails.

{% extends "base.xhtml" %}
{% load thumbnail %}
{% block title %}People{% endblock %}
{% block content %}
 <h1>People</h1>
 <div id="people-list">
 {% for user in users %}
 <div class="user">

 <img src="{% thumbnail user.profile.photo

 <div class="info">
 <a href="{{ user.get_absolute_url }}" clas
 {{ user.get_full_name }}

 </div>
 </div>
 {% endfor %}
 </div>
{% endblock %}

Note that the users need to have a profile image. To use a default
image for users that don’t have a profile image, you can add an
if /else statement to check whether the user has a profile photo,
like {% if user.profile.photo %} {# photo thumbnail #}
{% else %} {# default image #} {% endif %} .

Open the base.xhtml template of your project and include the
user_list URL in the href a�ribute of the following menu item.
New code is highlighted in bold:

Start the development server with the following command:

python manage.py runserver

Open http://127.0.0.1:8000/account/users/ in your browser.
You should see a list of users like the following one:

<ul class="menu">
 ...
 <li {% if section == "people" %}class="selected"{%
 People

Figure 7.1: The user list page with profile image thumbnails

Remember that if you have any difficulty generating thumbnails,
you can add THUMBNAIL_DEBUG = True to your settings.py file
in order to obtain debug information in the shell.

Edit the account/user/detail.xhtml template of the account
application and add the following code to it:

{% extends "base.xhtml" %}
{% load thumbnail %}
{% block title %}{{ user.get_full_name }}{% endblock
{% block content %}

Make sure that no template tag is split onto multiple lines; Django
doesn’t support multiple-line tags.

In the detail template, the user profile is displayed and the {%
thumbnail %} template tag is used to show the profile image. The
total number of followers is presented and a link to follow or
unfollow the user. This link will be used to follow/unfollow a
particular user. The data-id and data-action a�ributes of the

 <h1>{{ user.get_full_name }}</h1>
 <div class="profile-info">
 <img src="{% thumbnail user.profile.photo 180x18
 </div>
 {% with total_followers=user.followers.count %}

 {{ total_followers }}</spa
 follower{{ total_followers|pluralize }}

 <a href="#" data-id="{{ user.id }}" data-action=
 {% if request.user not in user.followers.all %
 Follow
 {% else %}
 Unfollow
 {% endif %}

 <div id="image-list" class="image-container">
 {% include "images/image/list_images.xhtml" wi
 </div>
 {% endwith %}
{% endblock %}

<a> HTML element contain the user ID and the initial action to
perform when the link element is clicked – follow or unfollow .
The initial action (follow or unfollow) depends on whether the user
requesting the page is already a follower of the user. The images
bookmarked by the user are displayed by including the
images/image/list_images.xhtml template.

Open your browser again and click on a user who has bookmarked
some images. The user page will look as follows:

Figure 7.2: The user detail page

Image of Chick Corea by ataelw (license: Creative
Commons A�ribution 2.0 Generic:
https://creativecommons.org/licenses/by/2.0/
)

Adding user follow/unfollow actions
with JavaScript
Let’s add functionality to follow/unfollow users. We will create a
new view to follow/unfollow users and implement an asynchronous
HTTP request with JavaScript for the follow/unfollow action.

Edit the views.py file of the account application and add the
following code highlighted in bold:

from django.http import JsonResponse
from django.views.decorators.http import require_POS
from .models import Contact
...
@require_POST
@login_required
def user_follow(request):
 user_id = request.POST.get('id')
 action = request.POST.get('action')
 if user_id and action:
 try:
 user = User.objects.get(id=user_id)
 if action == 'follow':
 Contact.objects.get_or_create(

https://creativecommons.org/licenses/by/2.0/

The user_follow view is quite similar to the image_like view that
you created in Chapter 6, Sharing Content on Your Website. Since you
are using a custom intermediary model for the user’s many-to-many
relationship, the default add() and remove() methods of the
automatic manager of ManyToManyField are not available. Instead,
the intermediary Contact model is used to create or delete user
relationships.

Edit the urls.py file of the account application and add the
following URL pa�ern highlighted in bold:

 user_from=request.user,
 user_to=user)
 else:
 Contact.objects.filter(user_from=req
 user_to=user)
 return JsonResponse({'status':'ok'})
 except User.DoesNotExist:
 return JsonResponse({'status':'error'})
 return JsonResponse({'status':'error'})

urlpatterns = [
 path('', include('django.contrib.auth.urls')),
 path('', views.dashboard, name='dashboard'),
 path('register/', views.register, name='register
 path('edit/', views.edit, name='edit'),
 path('users/', views.user_list, name='user_list
 path('users/follow/', views.user_follow, name='u
 path('users/<username>/', views.user_detail, nam
]

Ensure that you place the preceding pa�ern before the user_detail
URL pa�ern. Otherwise, any requests to /users/follow/ will
match the regular expression of the user_detail pa�ern and that
view will be executed instead. Remember that in every HTTP
request, Django checks the requested URL against each pa�ern in
order of appearance and stops at the first match.

Edit the user/detail.xhtml template of the account application
and append the following code to it:

{% block domready %}
 var const = '{% url "user_follow" %}';
 var options = {
 method: 'POST',
 headers: {'X-CSRFToken': csrftoken},
 mode: 'same-origin'
 }
 document.querySelector('a.follow')
 .addEventListener('click', function(e){
 e.preventDefault();
 var followButton = this;
 // add request body
 var formData = new FormData();
 formData.append('id', followButton.dataset.id);
 formData.append('action', followButton.dataset.a
 options['body'] = formData;
 // send HTTP request
 fetch(url, options)
 .then(response => response.json())

The preceding template block contains the JavaScript code to
perform the asynchronous HTTP request to follow or unfollow a
particular user and also to toggle the follow/unfollow link. The Fetch
API is used to perform the AJAX request and set both the data-
action a�ribute and the text of the HTML <a> element based on its
previous value. When the action is completed, the total number of
followers displayed on the page is updated as well.

Open the user detail page of an existing user and click on the
FOLLOW link to test the functionality you just built. You will see
that the followers count is increased:

 .then(data => {
 if (data['status'] === 'ok')
 {
 var previousAction = followButton.dataset.ac
 // toggle button text and data-action
 var action = previousAction === 'follow' ?
 followButton.dataset.action = action;
 followButton.innerHTML = action;
 // update follower count
 var followerCount = document.querySelector(
 var totalFollowers = parseInt(followerCount
 followerCount.innerHTML = previousAction ===
 }
 })
 });
{% endblock %}

Figure 7.3: The followers count and follow/unfollow bu�on

The follow system is now complete, and users can follow each other.
Next, we will build an activity stream creating relevant content for
each user that is based on the people they follow.

Building a generic activity stream
application
Many social websites display an activity stream to their users so that
they can track what other users do on the platform. An activity
stream is a list of recent activities performed by a user or a group of
users. For example, Facebook’s News Feed is an activity stream.
Sample actions can be user X bookmarked image Y or user X is now
following user Y.

You are going to build an activity stream application so that every
user can see the recent interactions of the users they follow. To do so,
you will need a model to save the actions performed by users on the
website and a simple way to add actions to the feed.

Create a new application named actions inside your project with
the following command:

python manage.py startapp actions

Add the new application to INSTALLED_APPS in the settings.py
file of your project to activate the application in your project. The
new line is highlighted in bold:

INSTALLED_APPS = [
 # ...
 'actions.apps.ActionsConfig',
]

Edit the models.py file of the actions application and add the
following code to it:

The preceding code shows the Action model that will be used to
store user activities. The fields of this model are as follows:

from django.db import models
class Action(models.Model):
 user = models.ForeignKey('auth.User',
 related_name='actions',
 on_delete=models.CASCAD
 verb = models.CharField(max_length=255)
 created = models.DateTimeField(auto_now_add=True
 class Meta:
 indexes = [
 models.Index(fields=['-created']),
]
 ordering = ['-created']

user : The user who performed the action; this is a ForeignKey
to the Django User model.
verb : The verb describing the action that the user has
performed.
created : The date and time when this action was created. We
use auto_now_add=True to automatically set this to the current
datetime when the object is saved for the first time in the
database.

In the Meta class of the model, we have defined a database index in
descending order for the created field. We have also added the
ordering a�ribute to tell Django that it should sort results by the
created field in descending order by default.

With this basic model, you can only store actions such as user X did
something. You need an extra ForeignKey field to save actions that
involve a target object, such as user X bookmarked image Y or user X
is now following user Y. As you already know, a normal ForeignKey
can point to only one model. Instead, you will need a way for the
action’s target object to be an instance of an existing model. This is
what the Django contenttypes framework will help you to do.

Using the contenttypes framework
Django includes a contenttypes framework located at
django.contrib.contenttypes . This application can track all
models installed in your project and provides a generic interface to
interact with your models.

The django.contrib.contenttypes application is included in the
INSTALLED_APPS se�ing by default when you create a new project
using the startproject command. It is used by other contrib
packages, such as the authentication framework and the
administration application.

The contenttypes application contains a ContentType model.
Instances of this model represent the actual models of your
application, and new instances of ContentType are automatically
created when new models are installed in your project. The
ContentType model has the following fields:

app_label : This indicates the name of the application that the
model belongs to. This is automatically taken from the
app_label a�ribute of the model Meta options. For example,
your Image model belongs to the images application.
model : The name of the model class.
name : This indicates the human-readable name of the model.
This is automatically taken from the verbose_name a�ribute of
the model Meta options.

Let’s take a look at how you can interact with ContentType objects.
Open the shell using the following command:

python manage.py shell

You can obtain the ContentType object corresponding to a specific
model by performing a query with the app_label and model
a�ributes, as follows:

You can also retrieve the model class from a ContentType object by
calling its model_class() method:

>>> image_type.model_class()
<class 'images.models.Image'>

It’s also common to obtain the ContentType object for a particular
model class, as follows:

>>> from images.models import Image
>>> ContentType.objects.get_for_model(Image)
<ContentType: images | image>

These are just some examples of using contenttypes . Django offers
more ways to work with them. You can find the official
documentation for the contenttypes framework at
https://docs.djangoproject.com/en/4.1/ref/contrib/conte
nttypes/.

Adding generic relations to your
models

>>> from django.contrib.contenttypes.models import C
>>> image_type = ContentType.objects.get(app_label=
>>> image_type
<ContentType: images | image>

https://docs.djangoproject.com/en/4.1/ref/contrib/contenttypes/

In generic relations, ContentType objects play the role of pointing
to the model used for the relationship. You will need three fields to
set up a generic relation in a model:

A ForeignKey field to ContentType : This will tell you the
model for the relationship
A field to store the primary key of the related object: This will
usually be a PositiveIntegerField to match Django’s
automatic primary key fields
A field to define and manage the generic relation using the two
previous fields: The contenttypes framework offers a
GenericForeignKey field for this purpose

Edit the models.py file of the actions application and add the
following code highlighted in bold:

from django.db import models
from django.contrib.contenttypes.models import Conte
from django.contrib.contenttypes.fields import Gener
class Action(models.Model):
 user = models.ForeignKey('auth.User',
 related_name='actions',
 on_delete=models.CASCAD
 verb = models.CharField(max_length=255)
 created = models.DateTimeField(auto_now_add=True)
 target_ct = models.ForeignKey(ContentType,
 blank=True,
 null=True,
 related_name='targ
 on_delete=models.C

We have added the following fields to the Action model:

target_ct : A ForeignKey field that points to the
ContentType model
target_id : A PositiveIntegerField for storing the primary
key of the related object
target : A GenericForeignKey field to the related object based
on the combination of the two previous fields

We have also added a multiple-field index including the target_ct
and target_id fields.

Django does not create GenericForeignKey fields in the database.
The only fields that are mapped to database fields are target_ct
and target_id . Both fields have blank=True and null=True
a�ributes, so that a target object is not required when saving
Action objects.

You can make your applications more flexible by
using generic relations instead of foreign keys.

 target_id = models.PositiveIntegerField(null=Tru
 blank=Tr
 target = GenericForeignKey('target_ct', 'target_
 class Meta:
 indexes = [
 models.Index(fields=['-created']),
 models.Index(fields=['target_ct', 'targe
]
 ordering = ['-created']

Run the following command to create initial migrations for this
application:

python manage.py makemigrations actions

You should see the following output:

Then, run the next command to sync the application with the
database:

python manage.py migrate

The output of the command should indicate that the new migrations
have been applied, as follows:

Applying actions.0001_initial... OK

Let’s add the Action model to the administration site. Edit the
admin.py file of the actions application and add the following
code to it:

Migrations for 'actions':
 actions/migrations/0001_initial.py
 - Create model Action
 - Create index actions_act_created_64f10d_idx on
 - Create index actions_act_target__f20513_idx on

You just registered the Action model on the administration site.

Start the development server with the following command:

python manage.py runserver

Open http://127.0.0.1:8000/admin/actions/action/add/ in
your browser. You should see the page for creating a new Action
object, as follows:

from django.contrib import admin
from .models import Action
@admin.register(Action)
class ActionAdmin(admin.ModelAdmin):
 list_display = ['user', 'verb', 'target', 'creat
 list_filter = ['created']
 search_fields = ['verb']

Figure 7.4: The Add action page on the Django administration site

As you will notice in the preceding screenshot, only the target_ct
and target_id fields that are mapped to actual database fields are
shown. The GenericForeignKey field does not appear in the form.
The target_ct field allows you to select any of the registered
models of your Django project. You can restrict the content types to
choose from a limited set of models using the limit_choices_to
a�ribute in the target_ct field; the limit_choices_to a�ribute
allows you to restrict the content of ForeignKey fields to a specific
set of values.

Create a new file inside the actions application directory and name
it utils.py . You need to define a shortcut function that will allow

you to create new Action objects in a simple way. Edit the new
utils.py file and add the following code to it:

The create_action() function allows you to create actions that
optionally include a target object. You can use this function
anywhere in your code as a shortcut to add new actions to the
activity stream.

Avoiding duplicate actions in the
activity stream
Sometimes, your users might click several times on the Like or
Unlike bu�on or perform the same action multiple times in a short
period of time. This will easily lead to storing and displaying
duplicate actions. To avoid this, let’s improve the create_action()
function to skip obvious duplicated actions.

Edit the utils.py file of the actions application, as follows:

from django.contrib.contenttypes.models import Conte
from .models import Action
def create_action(user, verb, target=None):
 action = Action(user=user, verb=verb, target=tar
 action.save()

import datetime
from django.utils import timezone
from django.contrib.contenttypes.models import Conte

You have changed the create_action() function to avoid saving
duplicate actions and return a Boolean to tell you whether the action
was saved. This is how you avoid duplicates:

1. First, you get the current time using the timezone.now()
method provided by Django. This method does the same as
datetime.datetime.now() but returns a timezone-aware
object. Django provides a se�ing called USE_TZ to enable or
disable timezone support. The default settings.py file created
using the startproject command includes USE_TZ=True .

from .models import Action
def create_action(user, verb, target=None):
 # check for any similar action made in the last
 now = timezone.now()
 last_minute = now - datetime.timedelta(seconds=6
 similar_actions = Action.objects.filter(user_id=
 verb= verb,
 created__gte=
 if target:
 target_ct = ContentType.objects.get_for_mode
 similar_actions = similar_actions.filter(
 target_
 target_
 if not similar_actions:
 # no existing actions found
 action = Action(user=user, verb=verb, target
 action.save()
 return True
 return False

2. You use the last_minute variable to store the datetime from
one minute ago and retrieve any identical actions performed by
the user since then.

3. You create an Action object if no identical action already exists
in the last minute. You return True if an Action object was
created, or False otherwise.

Adding user actions to the activity
stream
It’s time to add some actions to your views to build the activity
stream for your users. You will store an action for each of the
following interactions:

A user bookmarks an image
A user likes an image
A user creates an account
A user starts following another user

Edit the views.py file of the images application and add the
following import:

from actions.utils import create_action

In the image_create view, add create_action() after saving the
image, like this. The new line is highlighted in bold:

@login_required
def image_create(request):

In the image_like view, add create_action() after adding the
user to the users_like relationship, as follows. The new line is
highlighted in bold:

 if request.method == 'POST':
 # form is sent
 form = ImageCreateForm(data=request.POST)
 if form.is_valid():
 # form data is valid
 cd = form.cleaned_data
 new_image = form.save(commit=False)
 # assign current user to the item
 new_image.user = request.user
 new_image.save()
 create_action(request.user, 'bookmarked
 messages.success(request, 'Image added s
 # redirect to new created image detail v
 return redirect(new_image.get_absolute_u
 else:
 # build form with data provided by the bookm
 form = ImageCreateForm(data=request.GET)
 return render(request,
 'images/image/create.xhtml',
 {'section': 'images',
 'form': form})

@login_required
@require_POST
def image_like(request):
 image_id = request.POST.get('id')

Now, edit the views.py file of the account application and add the
following import:

from actions.utils import create_action

In the register view, add create_action() after creating the
Profile object, as follows. The new line is highlighted in bold:

 action = request.POST.get('action')
 if image_id and action:
 try:
 image = Image.objects.get(id=image_id)
 if action == 'like':
 image.users_like.add(request.user)
 create_action(request.user, 'likes',
 else:
 image.users_like.remove(request.user
 return JsonResponse({'status':'ok'})
 except Image.DoesNotExist:
 pass
 return JsonResponse({'status':'error'})

def register(request):
 if request.method == 'POST':
 user_form = UserRegistrationForm(request.POS
 if user_form.is_valid():
 # Create a new user object but avoid sav
 new_user = user_form.save(commit=False)
 # Set the chosen password

In the user_follow view, add create_action() as follows. The
new line is highlighted in bold:

 new_user.set_password(
 user_form.cleaned_data['password'])
 # Save the User object
 new_user.save()
 # Create the user profile
 Profile.objects.create(user=new_user)
 create_action(new_user, 'has created an
 return render(request,
 'account/register_done.xht
 {'new_user': new_user})
 else:
 user_form = UserRegistrationForm()
 return render(request,
 'account/register.xhtml',
 {'user_form': user_form})

@require_POST
@login_required
def user_follow(request):
 user_id = request.POST.get('id')
 action = request.POST.get('action')
 if user_id and action:
 try:
 user = User.objects.get(id=user_id)
 if action == 'follow':
 Contact.objects.get_or_create(
 user_from=request.user,

As you can see in the preceding code, thanks to the Action model
and the helper function, it’s very easy to save new actions to the
activity stream.

Displaying the activity stream
Finally, you need a way to display the activity stream for each user.
You will include the activity stream on the user’s dashboard. Edit the
views.py file of the account application. Import the Action
model and modify the dashboard view, as follows. New code is
highlighted in bold:

 user_to=user)
 create_action(request.user, 'is foll
 else:
 Contact.objects.filter(user_from=req
 user_to=user)
 return JsonResponse({'status':'ok'})
 except User.DoesNotExist:
 return JsonResponse({'status':'error'})
 return JsonResponse({'status':'error'})

from actions.models import Action
...
@login_required
def dashboard(request):
 # Display all actions by default
 actions = Action.objects.exclude(user=request.us
 following_ids = request.user.following.values_li

In the preceding view, you retrieve all actions from the database,
excluding the ones performed by the current user. By default, you
retrieve the latest actions performed by all users on the platform. If
the user is following other users, you restrict the query to retrieve
only the actions performed by the users they follow. Finally, you
limit the result to the first 10 actions returned. You don’t use
order_by() in the QuerySet because you rely on the default
ordering that you provided in the Meta options of the Action
model. Recent actions will come first since you set ordering = ['-
created'] in the Action model.

Optimizing QuerySets that involve
related objects
Every time you retrieve an Action object, you will usually access its
related User object and the user’s related Profile object. The
Django ORM offers a simple way to retrieve related objects at the
same time, thereby avoiding additional queries to the database.

 if following_ids:
 # If user is following others, retrieve only
 actions = actions.filter(user_id__in=followi
 actions = actions[:10]
 return render(request,
 'account/dashboard.xhtml',
 {'section': 'dashboard',
 'actions': actions})

Using select_related()
Django offers a QuerySet method called select_related() that
allows you to retrieve related objects for one-to-many relationships.
This translates to a single, more complex QuerySet, but you avoid
additional queries when accessing the related objects. The
select_related method is for ForeignKey and OneToOne fields.
It works by performing a SQL JOIN and including the fields of the
related object in the SELECT statement.

To take advantage of select_related() , edit the following line of
the preceding code in the views.py file of the account application to
add select_related , including the fields that you will use, like
this. Edit the views.py file of the account application. New code is
highlighted in bold:

@login_required
def dashboard(request):
 # Display all actions by default
 actions = Action.objects.exclude(user=request.us
 following_ids = request.user.following.values_li

 if following_ids:
 # If user is following others, retrieve only
 actions = actions.filter(user_id__in=followi
 actions = actions.select_related('user', 'user__
 return render(request,
 'account/dashboard.xhtml',
 {'section': 'dashboard',
 'actions': actions})

You use user__profile to join the Profile table in a single SQL
query. If you call select_related() without passing any
arguments to it, it will retrieve objects from all ForeignKey
relationships. Always limit select_related() to the relationships
that will be accessed afterward.

Using select_related() carefully can vastly
improve execution time.

Using prefetch_related()
select_related() will help you boost the performance for
retrieving related objects in one-to-many relationships. However,
select_related() doesn’t work for many-to-many or many-to-one
relationships (ManyToMany or reverse ForeignKey fields). Django
offers a different QuerySet method called prefetch_related that
works for many-to-many and many-to-one relationships in addition
to the relationships supported by select_related() . The
prefetch_related() method performs a separate lookup for each
relationship and joins the results using Python. This method also
supports the prefetching of GenericRelation and
GenericForeignKey .

Edit the views.py file of the account application and complete
your query by adding prefetch_related() to it for the target
GenericForeignKey field, as follows. The new code is highlighted
in bold:

This query is now optimized for retrieving the user actions,
including related objects.

Creating templates for actions
Let’s now create the template to display a particular Action object.
Create a new directory inside the actions application directory and
name it templates . Add the following file structure to it:

actions/
 action/
 detail.xhtml

@login_required
def dashboard(request):
 # Display all actions by default
 actions = Action.objects.exclude(user=request.us
 following_ids = request.user.following.values_li

 if following_ids:
 # If user is following others, retrieve only
 actions = actions.filter(user_id__in=followi
 actions = actions.select_related('user', 'user__
 .prefetch_related('target')[:10
 return render(request,
 'account/dashboard.xhtml',
 {'section': 'dashboard',
 'actions': actions})
actions = actions.select_related('user', 'user__prof

Edit the actions/action/detail.xhtml template file and add the
following lines to it:

{% load thumbnail %}
{% with user=action.user profile=action.user.profile
<div class="action">
 <div class="images">
 {% if profile.photo %}
 {% thumbnail user.profile.photo "80x80" crop="

 <img src="{{ im.url }}" alt="{{ user.get_ful
 class="item-img">

 {% endif %}
 {% if action.target %}
 {% with target=action.target %}
 {% if target.image %}
 {% thumbnail target.image "80x80" crop="10

 <img src="{{ im.url }}" class="item-img"

 {% endif %}
 {% endwith %}
 {% endif %}
 </div>
 <div class="info">
 <p>
 {{ action.created|timesince

 {{ user.first_name }}

This is the template used to display an Action object. First, you use
the {% with %} template tag to retrieve the user performing the
action and the related Profile object. Then, you display the image
of the target object if the Action object has a related target
object. Finally, you display the link to the user who performed the
action, the verb, and the target object, if any.

Edit the account/dashboard.xhtml template of the account
application and append the following code highlighted in bold to
the bo�om of the content block:

{% extends "base.xhtml" %}
{% block title %}Dashboard{% endblock %}
{% block content %}
 ...
 <h2>What's happening</h2>
 <div id="action-list">
 {% for action in actions %}

 {{ action.verb }}
 {% if action.target %}
 {% with target=action.target %}
 {{
 {% endwith %}
 {% endif %}
 </p>
 </div>
</div>
{% endwith %}

 {% include "actions/action/detail.xhtml" %}
 {% endfor %}
 </div>
{% endblock %}

Open http://127.0.0.1:8000/account/ in your browser. Log in
as an existing user and perform several actions so that they get
stored in the database. Then, log in using another user, follow the
previous user, and take a look at the generated action stream on the
dashboard page.

It should look like the following:

Figure 7.5: The activity stream for the current user

Figure 7.5 image a�ributions:

Tesla’s induction motor by Ctac (license: Creative
Commons A�ribution Share-Alike 3.0 Unported:
https://creativecommons.org/licenses/by-
sa/3.0/)
Turing Machine Model Davey 2012 by Rocky Acosta
(license: Creative Commons A�ribution 3.0 Unported:
https://creativecommons.org/licenses/by/
3.0/)
Chick Corea by ataelw (license: Creative Commons
A�ribution 2.0 Generic:
https://creativecommons.org/licenses/by/
2.0/)

You just created a complete activity stream for your users, and you
can easily add new user actions to it. You can also add infinite scroll
functionality to the activity stream by implementing the same AJAX
paginator that you used for the image_list view. Next, you will
learn how to use Django signals to denormalize action counts.

Using signals for denormalizing
counts
There are some cases when you may want to denormalize your data.
Denormalization is making data redundant in such a way that it
optimizes read performance. For example, you might be copying
related data to an object to avoid expensive read queries to the
database when retrieving the related data. You have to be careful

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/2.0/

about denormalization and only start using it when you really need
it. The biggest issue you will find with denormalization is that it’s
difficult to keep your denormalized data updated.

Let’s take a look at an example of how to improve your queries by
denormalizing counts. You will denormalize data from your Image
model and use Django signals to keep the data updated.

Working with signals
Django comes with a signal dispatcher that allows receiver functions
to get notified when certain actions occur. Signals are very useful
when you need your code to do something every time something
else happens. Signals allow you to decouple logic: you can capture a
certain action, regardless of the application or code that triggered
that action, and implement logic that gets executed whenever that
action occurs. For example, you can build a signal receiver function
that gets executed every time a User object is saved. You can also
create your own signals so that others can get notified when an event
happens.

Django provides several signals for models located at
django.db.models.signals . Some of these signals are as follows:

pre_save and post_save are sent before or after calling the
save() method of a model
pre_delete and post_delete are sent before or after calling
the delete() method of a model or QuerySet
m2m_changed is sent when a ManyToManyField on a model is
changed

These are just a subset of the signals provided by Django. You can
find a list of all built-in signals at
https://docs.djangoproject.com/en/4.1/ref/signals/.

Let’s say you want to retrieve images by popularity. You can use the
Django aggregation functions to retrieve images ordered by the
number of users who like them. Remember that you used Django
aggregation functions in Chapter 3, Extending Your Blog Application.
The following code example will retrieve images according to their
number of likes:

However, ordering images by counting their total likes is more
expensive in terms of performance than ordering them by a field that
stores total counts. You can add a field to the Image model to
denormalize the total number of likes to boost performance in
queries that involve this field. The issue is how to keep this field
updated.

Edit the models.py file of the images application and add the
following total_likes field to the Image model. The new code is
highlighted in bold:

from django.db.models import Count
from images.models import Image
images_by_popularity = Image.objects.annotate(
 total_likes=Count('users_like')).order_by('-tota

class Image(models.Model):
 # ...

https://docs.djangoproject.com/en/4.1/ref/signals/

The total_likes field will allow you to store the total count of
users who like each image. Denormalizing counts is useful when
you want to filter or order QuerySets by them. We have added a
database index for the total_likes field in descending order
because we plan to retrieve images ordered by their total likes in
descending order.

There are several ways to improve performance that
you have to take into account before denormalizing
fields. Consider database indexes, query optimization,
and caching before starting to denormalize your data.

Run the following command to create the migrations for adding the
new field to the database table:

python manage.py makemigrations images

You should see the following output:

 total_likes = models.PositiveIntegerField(defaul
 class Meta:
 indexes = [
 models.Index(fields=['-created']),
 models.Index(fields=['-total_likes']),
]
 ordering = ['-created']

Then, run the following command to apply the migration:

python manage.py migrate images

The output should include the following line:

Applying images.0002_auto_20220124_1757... OK

You need to a�ach a receiver function to the m2m_changed signal.

Create a new file inside the images application directory and name
it signals.py . Add the following code to it:

Migrations for 'images':
 images/migrations/0002_auto_20220124_1757.py
 - Add field total_likes to image
 - Create index images_imag_total_l_0bcd7e_idx on

from django.db.models.signals import m2m_changed
from django.dispatch import receiver
from .models import Image
@receiver(m2m_changed, sender=Image.users_like.throu
def users_like_changed(sender, instance, **kwargs):
 instance.total_likes = instance.users_like.count
 instance.save()

First, you register the users_like_changed function as a receiver
function using the receiver() decorator. You a�ach it to the
m2m_changed signal. Then, you connect the function to
Image.users_like.through so that the function is only called if
the m2m_changed signal has been launched by this sender. There is
an alternate method for registering a receiver function; it consists of
using the connect() method of the Signal object.

Django signals are synchronous and blocking. Don’t
confuse signals with asynchronous tasks. However,
you can combine both to launch asynchronous tasks
when your code gets notified by a signal. You will
learn how to create asynchronous tasks with Celery in
Chapter 8, Building an Online Shop.

You have to connect your receiver function to a signal so that it gets
called every time the signal is sent. The recommended method for
registering your signals is by importing them into the ready()
method of your application configuration class. Django provides an
application registry that allows you to configure and intropect your
applications.

Application configuration classes
Django allows you to specify configuration classes for your
applications. When you create an application using the startapp
command, Django adds an apps.py file to the application directory,

including a basic application configuration that inherits from the
AppConfig class.

The application configuration class allows you to store metadata and
the configuration for the application, and it provides introspection
for the application. You can find more information about application
configurations at
https://docs.djangoproject.com/en/4.1/ref/applications/.

In order to register your signal receiver functions, when you use
the receiver() decorator, you just need to import the signals
module of your application inside the ready() method of the
application configuration class. This method is called as soon as the
application registry is fully populated. Any other initializations for
your application should also be included in this method.

Edit the apps.py file of the images application and add the
following code highlighted in bold:

You import the signals for this application in the ready() method
so that they are imported when the images application is loaded.

Run the development server with the following command:

from django.apps import AppConfig
class ImagesConfig(AppConfig):
 default_auto_field = 'django.db.models.BigAutoFi
 name = 'images'
 def ready(self):
 # import signal handlers
 import images.signals

https://docs.djangoproject.com/en/4.1/ref/applications/

python manage.py runserver

Open your browser to view an image detail page and click on the
Like bu�on.

Go to the administration site, navigate to the edit image URL, such
as http://127.0.0.1:8000/admin/images/image/1/change/ ,
and take a look at the total_likes a�ribute. You should see that
the total_likes a�ribute is updated with the total number of users
who like the image, as follows:

Figure 7.6: The image edit page on the administration site, including denormalization for total likes

Now, you can use the total_likes a�ribute to order images by
popularity or display the value anywhere, avoiding using complex
queries to calculate it.

Consider the following query to get images ordered by their likes
count in descending order:

from django.db.models import Count
images_by_popularity = Image.objects.annotate(
 likes=Count('users_like')).order_by('-likes')

The preceding query can now be wri�en as follows:

This results in a less expensive SQL query thanks to denormalizing
the total likes for images. You have also learned how you can use
Django signals.

Use signals with caution since they make it difficult to
know the control flow. In many cases, you can avoid
using signals if you know which receivers need to be
notified.

You will need to set initial counts for the rest of the Image objects to
match the current status of the database.

Open the shell with the following command:

python manage.py shell

Execute the following code in the shell:

images_by_popularity = Image.objects.order_by('-tota

You have manually updated the likes count for the existing images
in the database. From now on, the users_like_changed signal
receiver function will handle updating the total_likes field
whenever the many-to-many related objects change.

Next, you will learn how to use Django Debug Toolbar to obtain
relevant debug information for requests, including execution time,
SQL queries executed, templates rendered, signals registered, and
much more.

Using Django Debug Toolbar
At this point, you will already be familiar with Django’s debug page.
Throughout the previous chapters, you have seen the distinctive
yellow and grey Django debug page several times. For example, in
Chapter 2, Enhancing Your Blog with Advanced Features, in the Handling
pagination errors section, the debug page showed information related
to unhandled exceptions when implementing object pagination.

The Django debug page provides useful debug information.
However, there is a Django application that includes more detailed
debug information and can be really helpful when developing.

Django Debug Toolbar is an external Django application that allows
you to see relevant debug information about the current

>>> from images.models import Image
>>> for image in Image.objects.all():
... image.total_likes = image.users_like.count()
... image.save()

request/response cycle. The information is divided into multiple
panels that show different information, including request/response
data, Python package versions used, execution time, se�ings,
headers, SQL queries, templates used, cache, signals, and logging.

You can find the documentation for Django Debug Toolbar at
https://django-debug-toolbar.readthedocs.io/.

Installing Django Debug Toolbar
Install django-debug-toolbar via pip using the following
command:

pip install django-debug-toolbar==3.6.0

Edit the settings.py file of your project and add debug_toolbar
to the INSTALLED_APPS se�ing, as follows. The new line is
highlighted in bold:

INSTALLED_APPS = [
 # ...
 'debug_toolbar',
]

In the same file, add the following line highlighted in bold to the
MIDDLEWARE se�ing:

MIDDLEWARE = [
 'debug_toolbar.middleware.DebugToolbarMiddleware

https://django-debug-toolbar.readthedocs.io/

Django Debug Toolbar is mostly implemented as middleware. The
order of MIDDLEWARE is important. DebugToolbarMiddleware has
to be placed before any other middleware, except for middleware
that encodes the response’s content, such as GZipMiddleware ,
which, if present, should come first.

Add the following lines at the end of the settings.py file:

INTERNAL_IPS = [
 '127.0.0.1',
]

Django Debug Toolbar will only display if your IP address matches
an entry in the INTERNAL_IPS se�ing. To prevent showing debug
information in production, Django Debug Toolbar checks that the
DEBUG se�ing is True .

Edit the main urls.py file of your project and add the following
URL pa�ern highlighted in bold to the urlpatterns :

 'django.middleware.security.SecurityMiddleware',
 'django.contrib.sessions.middleware.SessionMiddl
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMi
 'django.contrib.messages.middleware.MessageMiddl
 'django.middleware.clickjacking.XFrameOptionsMid
]

Django Debug Toolbar is now installed in your project. Let’s try it
out!

Run the development server with the following command:

python manage.py runserver

Open http://127.0.0.1:8000/images/ with your browser. You
should now see a collapsible sidebar on the right. It should look as
follows:

urlpatterns = [
 path('admin/', admin.site.urls),
 path('account/', include('account.urls')),
 path('social-auth/',
 include('social_django.urls', namespace='so
 path('images/', include('images.urls', namespace
 path('__debug__/', include('debug_toolbar.urls')
]

Figure 7.7: The Django Debug Toolbar sidebar

Figure 7.7 image a�ributions:

Chick Corea by ataelw (license: Creative Commons
A�ribution 2.0 Generic:
https://creativecommons.org/licenses/by/
2.0/)
Al Jarreau – Düsseldorf 1981 by Eddi Laumanns
aka RX-Guru (license: Creative Commons
A�ribution 3.0 Unported:
https://creativecommons.org/licenses/by/
3.0/)
Al Jarreau by Kingkongphoto & www.celebrity-
photos.com (license: Creative Commons
A�ribution-ShareAlike 2.0 Generic:
https://creativecommons.org/licenses/by-
sa/2.0/)

If the debug toolbar doesn’t appear, check the RunServer shell
console log. If you see a MIME type error, it is most likely that your
MIME map files are incorrect or need to be updated.

You can apply the correct mapping for JavaScript and CSS files by
adding the following lines to the settings.py file:

if DEBUG:
 import mimetypes
 mimetypes.add_type('application/javascript', '.j
 mimetypes.add_type('text/css', '.css', True)

https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by-sa/2.0/

Django Debug Toolbar panels
Django Debug Toolbar features multiple panels that organize the
debug information for the request/response cycle. The sidebar
contains links to each panel, and you can use the checkbox of any
panel to activate or deactivate it. The change will be applied to the
next request. This is useful when we are not interested in a specific
panel, but the calculation adds too much overhead to the request.

Click on Time in the sidebar menu. You will see the following panel:

Figure 7.8: Time panel – Django Debug Toolbar

The Time panel includes a timer for the different phases of the
request/response cycle. It also shows CPU, elapsed time, and the
number of context switches. If you are using WIndows, you won’t be
able to see the Time panel. In Windows, only the total time is
available and displayed in the toolbar.

Click on SQL in the sidebar menu. You will see the following panel:

Figure 7.9: SQL panel – Django Debug Toolbar

Here you can see the different SQL queries that have been executed.
This information can help you identify unnecessary queries,
duplicated queries that can be reused, or long-running queries that
can be optimized. Based on your findings, you can improve
QuerySets in your views, create new indexes on model fields if
necessary, or cache information when needed. In this chapter, you
learned how to optimize queries that involve relationships using
select_related() and prefetch_related() . You will learn how
to cache data in Chapter 14, Rendering and Caching Content.

Click on Templates in the sidebar menu. You will see the following
panel:

Figure 7.10: Templates panel – Django Debug Toolbar

This panel shows the different templates used when rendering the
content, the template paths, and the context used. You can also see
the different context processors used. You will learn about context
processors in Chapter 8, Building an Online Shop.

Click on Signals in the sidebar menu. You will see the following
panel:

Figure 7.11: Signals panel – Django Debug Toolbar

In this panel, you can see all the signals that are registered in your
project and the receiver functions a�ached to each signal. For
example, you can find the users_like_changed receiver function
you created before, a�ached to the m2m_changed signal. The other
signals and receivers are part of the different Django applications.

We have reviewed some of the panels that ship with Django Debug
Toolbar. Besides the built-in panels, you can find additional third-

party panels that you can download and use at https://django-
debug-
toolbar.readthedocs.io/en/latest/panels.xhtml#third-
party-panels.

Django Debug Toolbar commands
Besides the request/response debug panels, Django Debug Toolbar
provides a management command to debug SQL for ORM calls. The
management command debugsqlshell replicates the Django
shell command but it outputs SQL statements for queries
performed with the Django ORM.

Open the shell with the following command:

python manage.py debugsqlshell

Execute the following code:

>>> from images.models import Image
>>> Image.objects.get(id=1)

You will see the following output:

SELECT "images_image"."id",
 "images_image"."user_id",
 "images_image"."title",
 "images_image"."slug",
 "images_image"."url",

https://django-debug-toolbar.readthedocs.io/en/latest/panels.xhtml#third-party-panels

 "images_image"."image",
 "images_image"."description",
 "images_image"."created",
 "images_image"."total_likes"
FROM "images_image"
WHERE "images_image"."id" = 1
LIMIT 21 [0.44ms]
<Image: Django and Duke>

You can use this command to test ORM queries before adding them
to your views. You can check the resulting SQL statement and the
execution time for each ORM call.

In the next section, you will learn how to count image views using
Redis, an in-memory database that provides low latency and high-
throughput data access.

Counting image views with Redis
Redis is an advanced key/value database that allows you to save
different types of data. It also has extremely fast I/O operations.
Redis stores everything in memory, but the data can be persisted by
dumping the dataset to disk every once in a while, or by adding each
command to a log. Redis is very versatile compared to other
key/value stores: it provides a set of powerful commands and
supports diverse data structures, such as strings, hashes, lists, sets,
ordered sets, and even bitmaps or HyperLogLogs.

Although SQL is best suited to schema-defined persistent data
storage, Redis offers numerous advantages when dealing with

rapidly changing data, volatile storage, or when a quick cache is
needed. Let’s take a look at how Redis can be used to build new
functionality into your project.

You can find more information about Redis on its homepage at
https://redis.io/.

Redis provides a Docker image that makes it very easy to deploy a
Redis server with a standard configuration.

Installing Docker
Docker is a popular open-source containerization platform. It
enables developers to package applications into containers,
simplifying the process of building, running, managing, and
distributing applications.

First, download and install Docker for your OS. You will find
instructions for downloading and installing Docker on Linux,
macOS, and Windows at https://docs.docker.com/get-
docker/.

Installing Redis
After installing Docker on your Linux, macOS, or Windows
machine, you can easily pull the Redis Docker image. Run the
following command from the shell:

docker pull redis

https://redis.io/
https://docs.docker.com/get-docker/

This will download the Redis Docker image to your local machine.
You can find information about the official Redis Docker image at
https://hub.docker.com/_/redis. You can find other alternative
methods to install Redis at https://redis.io/download/.

Execute the following command in the shell to start the Redis
Docker container:

With this command, we run Redis in a Docker container. The -it
option tells Docker to take you straight inside the container for
interactive input. The --rm option tells Docker to automatically
clean up the container and remove the file system when the
container exits. The --name option is used to assign a name to the
container. The -p option is used to publish the 6379 port, on which
Redis runs, to the same host interface port. 6379 is the default port
for Redis.

You should see an output that ends with the following lines:

Server initialized
* Ready to accept connections

Keep the Redis server running on port 6379 and open another shell.
Start the Redis client with the following command:

docker exec -it redis sh

docker run -it --rm --name redis -p 6379:6379 redis

https://hub.docker.com/_/redis
https://redis.io/download/

You will see a line with the hash symbol:

#

Start the Redis client with the following command:

redis-cli

You will see the Redis client shell prompt, like this:

127.0.0.1:6379>

The Redis client allows you to execute Redis commands directly
from the shell. Let’s try some commands. Enter the SET command in
the Redis shell to store a value in a key:

127.0.0.1:6379> SET name "Peter"
OK

The preceding command creates a name key with the string value
"Peter" in the Redis database. The OK output indicates that the key
has been saved successfully.

Next, retrieve the value using the GET command, as follows:

127.0.0.1:6379> GET name
"Peter"

You can also check whether a key exists using the EXISTS
command. This command returns 1 if the given key exists, and 0
otherwise:

127.0.0.1:6379> EXISTS name
(integer) 1

You can set the time for a key to expire using the EXPIRE command,
which allows you to set the time-to-live in seconds. Another option
is using the EXPIREAT command, which expects a Unix timestamp.
Key expiration is useful for using Redis as a cache or to store volatile
data:

127.0.0.1:6379> GET name
"Peter"
127.0.0.1:6379> EXPIRE name 2
(integer) 1

Wait for more than two seconds and try to get the same key again:

127.0.0.1:6379> GET name
(nil)

The (nil) response is a null response and means that no key has
been found. You can also delete any key using the DEL command, as
follows:

127.0.0.1:6379> SET total 1
OK
127.0.0.1:6379> DEL total
(integer) 1
127.0.0.1:6379> GET total
(nil)

These are just basic commands for key operations. You can find all
Redis commands at https://redis.io/commands/ and all Redis
data types at https://redis.io/docs/manual/data-types/.

Using Redis with Python
You will need Python bindings for Redis. Install redis-py via pip
using the following command:

pip install redis==4.3.4

You can find the redis-py documentation at https://redis-
py.readthedocs.io/.

The redis-py package interacts with Redis, providing a Python
interface that follows the Redis command syntax. Open the Python
shell with the following command:

python manage.py shell

Execute the following code:

https://redis.io/commands/
https://redis.io/docs/manual/data-types/
https://redis-py.readthedocs.io/

The preceding code creates a connection with the Redis database. In
Redis, databases are identified by an integer index instead of a
database name. By default, a client is connected to database 0 . The
number of available Redis databases is set to 16 , but you can change
this in the redis.conf configuration file.

Next, set a key using the Python shell:

>>> r.set('foo', 'bar')
True

The command returns True , indicating that the key has been
successfully created. Now you can retrieve the key using the get()
command:

>>> r.get('foo')
b'bar'

As you will note from the preceding code, the methods of Redis
follow the Redis command syntax.

Let’s integrate Redis into your project. Edit the settings.py file of
the bookmarks project and add the following se�ings to it:

>>> import redis
>>> r = redis.Redis(host='localhost', port=6379, db=

REDIS_HOST = 'localhost'
REDIS_PORT = 6379
REDIS_DB = 0

These are the se�ings for the Redis server and the database that you
will use for your project.

Storing image views in Redis
Let’s find a way to store the total number of times an image has been
viewed. If you implement this using the Django ORM, it will involve
a SQL UPDATE query every time an image is displayed.

If you use Redis instead, you just need to increment a counter stored
in memory, resulting in much be�er performance and less overhead.

Edit the views.py file of the images application and add the
following code to it after the existing import statements:

import redis
from django.conf import settings
connect to redis
r = redis.Redis(host=settings.REDIS_HOST,
 port=settings.REDIS_PORT,
 db=settings.REDIS_DB)

With the preceding code, you establish the Redis connection in order
to use it in your views. Edit the views.py file of the images
application and modify the image_detail view, like this. The new
code is highlighted in bold:

In this view, you use the incr command, which increments the
value of a given key by 1 . If the key doesn’t exist, the incr
command creates it. The incr() method returns the final value of
the key after performing the operation. You store the value in the
total_views variable and pass it into the template context. You
build the Redis key using a notation such as object-
type:id:field (for example, image:33:id).

The convention for naming Redis keys is to use a
colon sign as a separator for creating namespaced
keys. By doing so, the key names are especially
verbose and related keys share part of the same
schema in their names.

Edit the images/image/detail.xhtml template of the images
application and add the following code highlighted in bold:

def image_detail(request, id, slug):
 image = get_object_or_404(Image, id=id, slug=slu
 # increment total image views by 1
 total_views = r.incr(f'image:{image.id}:views')
 return render(request,
 'images/image/detail.xhtml',
 {'section': 'images',
 'image': image,
 'total_views': total_views})

Run the development server with the following command:

python manage.py runserver

Open an image detail page in your browser and reload it several
times. You will see that each time the view is processed, the total

...
<div class="image-info">
 <div>

 {{ total_likes }}
 like{{ total_likes|pluralize }}

 {{ total_views }} view{{ total_views|pluralize

 <a href="#" data-id="{{ image.id }}" data-action
 class="like button">
 {% if request.user not in users_like %}
 Like
 {% else %}
 Unlike
 {% endif %}

 </div>
 {{ image.description|linebreaks }}
</div>
...

views displayed is incremented by 1. Take a look at the following
example:

Figure 7.12: The image detail page, including the count of likes and views

Great! You have successfully integrated Redis into your project to
count image views. In the next section, you will learn how to build a
ranking of the most viewed images with Redis.

Storing a ranking in Redis
We will now create something more complex with Redis. We will
use Redis to store a ranking of the most viewed images on the
platform. We will use Redis sorted sets for this. A sorted set is a non-
repeating collection of strings in which every member is associated
with a score. Items are sorted by their score.

Edit the views.py file of the images application and add the
following code highlighted in bold to the image_detail view:

You use the zincrby() command to store image views in a sorted
set with the image:ranking key. You will store the image id and a
related score of 1 , which will be added to the total score of this
element in the sorted set. This will allow you to keep track of all
image views globally and have a sorted set ordered by the total
number of views.

Now, create a new view to display the ranking of the most viewed
images. Add the following code to the views.py file of the images
application:

def image_detail(request, id, slug):
 image = get_object_or_404(Image, id=id, slug=slu
 # increment total image views by 1
 total_views = r.incr(f'image:{image.id}:views')
 # increment image ranking by 1
 r.zincrby('image_ranking', 1, image.id)
 return render(request,
 'images/image/detail.xhtml',
 {'section': 'images',
 'image': image,
 'total_views': total_views})

@login_required
def image_ranking(request):
 # get image ranking dictionary

The image_ranking view works like this:

1. You use the zrange() command to obtain the elements in the
sorted set. This command expects a custom range according to
the lowest and highest scores. Using 0 as the lowest and -1 as
the highest score, you are telling Redis to return all elements in
the sorted set. You also specify desc=True to retrieve the
elements ordered by descending score. Finally, you slice the
results using [:10] to get the first 10 elements with the highest
score.

2. You build a list of returned image IDs and store it in the
image_ranking_ids variable as a list of integers. You retrieve
the Image objects for those IDs and force the query to be
executed using the list() function. It is important to force the
QuerySet execution because you will use the sort() list
method on it (at this point, you need a list of objects instead of a
QuerySet).

 image_ranking = r.zrange('image_ranking', 0, -1,
 desc=True)[:10]
 image_ranking_ids = [int(id) for id in image_ran
 # get most viewed images
 most_viewed = list(Image.objects.filter(
 id__in=image_ranking_ids)
 most_viewed.sort(key=lambda x: image_ranking_ids
 return render(request,
 'images/image/ranking.xhtml',
 {'section': 'images',
 'most_viewed': most_viewed})

3. You sort the Image objects by their index of appearance in the
image ranking. Now you can use the most_viewed list in your
template to display the 10 most viewed images.

Create a new ranking.xhtml template inside the images/image/
template directory of the images application and add the following
code to it:

{% extends "base.xhtml" %}
{% block title %}Images ranking{% endblock %}
{% block content %}
 <h1>Images ranking</h1>

 {% for image in most_viewed %}

 {{ image.title }}

 {% endfor %}

{% endblock %}

The template is pre�y straightforward. You iterate over the Image
objects contained in the most_viewed list and display their names,
including a link to the image detail page.

Finally, you need to create a URL pa�ern for the new view. Edit the
urls.py file of the images application and add the following URL
pa�ern highlighted in bold:

Run the development server, access your site in your web browser,
and load the image detail page multiple times for different images.
Then, access http://127.0.0.1:8000/images/ranking/ from
your browser. You should be able to see an image ranking, as
follows:

Figure 7.13: The ranking page built with data retrieved from Redis

urlpatterns = [
 path('create/', views.image_create, name='create
 path('detail/<int:id>/<slug:slug>/',
 views.image_detail, name='detail'),
 path('like/', views.image_like, name='like'),
 path('', views.image_list, name='list'),
 path('ranking/', views.image_ranking, name='rank
]

Great! You just created a ranking with Redis.

Next steps with Redis
Redis is not a replacement for your SQL database, but it does offer
fast in-memory storage that is more suitable for certain tasks. Add it
to your stack and use it when you really feel it’s needed. The
following are some scenarios in which Redis could be useful:

Counting: As you have seen, it is very easy to manage counters
with Redis. You can use incr() and incrby() for counting
stuff.
Storing the latest items: You can add items to the start/end of a
list using lpush() and rpush() . Remove and return the
first/last element using lpop() /rpop() . You can trim the list’s
length using ltrim() to maintain its length.
Queues: In addition to push and pop commands, Redis offers
the blocking of queue commands.
Caching: Using expire() and expireat() allows you to use
Redis as a cache. You can also find third-party Redis cache
backends for Django.
Pub/sub: Redis provides commands for
subscribing/unsubscribing and sending messages to channels.
Rankings and leaderboards: Redis’ sorted sets with scores
make it very easy to create leaderboards.
Real-time tracking: Redis’s fast I/O makes it perfect for real-
time scenarios.

Additional resources
The following resources provide additional information related to
the topics covered in this chapter:

Source code for this chapter –
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter07

Custom user models –
https://docs.djangoproject.com/en/4.1/topics/auth/c
ustomizing/#specifying-a-custom-user-model

The contenttypes framework –
https://docs.djangoproject.com/en/4.1/ref/contrib/c
ontenttypes/

Built-in Django signals –
https://docs.djangoproject.com/en/4.1/ref/signals/

Application configuration classes –
https://docs.djangoproject.com/en/4.1/ref/applicati
ons/

Django Debug Toolbar documentation – https://django-
debug-toolbar.readthedocs.io/

Django Debug Toolbar third-party panels – https://django-
debug-
toolbar.readthedocs.io/en/latest/panels.xhtml#third
-party-panels

Redis in-memory data store – https://redis.io/
Docker download and install instructions –
https://docs.docker.com/get-docker/

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter07
https://docs.djangoproject.com/en/4.1/topics/auth/customizing/#specifying-a-custom-user-model
https://docs.djangoproject.com/en/4.1/ref/contrib/contenttypes/
https://docs.djangoproject.com/en/4.1/ref/signals/
https://docs.djangoproject.com/en/4.1/ref/applications/
https://django-debug-toolbar.readthedocs.io/
https://django-debug-toolbar.readthedocs.io/en/latest/panels.xhtml#third-party-panels
https://redis.io/
https://docs.docker.com/get-docker/

Official Redis Docker image —
https://hub.docker.com/_/redis.
Redis download options – https://redis.io/download/
Redis commands – https://redis.io/commands/
Redis data types – https://redis.io/docs/manual/data-
types/

redis-py documentation – https://redis-
py.readthedocs.io/

Summary
In this chapter, you built a follow system using many-to-many
relationships with an intermediary model. You also created an
activity stream using generic relations and you optimized QuerySets
to retrieve related objects. This chapter then introduced you to
Django signals, and you created a signal receiver function to
denormalize related object counts. We covered application
configuration classes, which you used to load your signal handlers.
You added Django Debug Toolbar to your project. You also learned
how to install and configure Redis in your Django project. Finally,
you used Redis in your project to store item views, and you built an
image ranking with Redis.

In the next chapter, you will learn how to build an online shop. You
will create a product catalog and build a shopping cart using
sessions. You will learn how to create custom context processors.
You will also manage customer orders and send asynchronous
notifications using Celery and RabbitMQ.

https://hub.docker.com/_/redis
https://redis.io/download/
https://redis.io/commands/
https://redis.io/docs/manual/data-types/
https://redis-py.readthedocs.io/

8

Building an Online Shop

In the previous chapter, you created a follow system and built a user
activity stream. You also learned how Django signals work and
integrated Redis into your project to count image views.

In this chapter, you will start a new Django project that consists of a
fully featured online shop. This chapter and the following two
chapters will show you how to build the essential functionalities of
an e-commerce platform. Your online shop will enable clients to
browse products, add them to the cart, apply discount codes, go
through the checkout process, pay with a credit card, and obtain an
invoice. You will also implement a recommendation engine to
recommend products to your customers, and you will use
internationalization to offer your site in multiple languages.

In this chapter, you will learn how to:

Create a product catalog
Build a shopping cart using Django sessions
Create custom context processors
Manage customer orders
Configure Celery in your project with RabbitMQ as a message
broker
Send asynchronous notifications to customers using Celery

Monitor Celery using Flower

The source code for this chapter can be found at
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter08.

All Python modules used in this chapter are included in the
requirements.txt file in the source code that comes along with
this chapter. You can follow the instructions to install each Python
module below or you can install all requirements at once with the
command pip install -r requirements.txt .

Creating an online shop project
Let’s start with a new Django project to build an online shop. Your
users will be able to browse through a product catalog and add
products to a shopping cart. Finally, they will be able to check out
the cart and place an order. This chapter will cover the following
functionalities of an online shop:

Creating the product catalog models, adding them to the
administration site, and building the basic views to display the
catalog
Building a shopping cart system using Django sessions to allow
users to keep selected products while they browse the site
Creating the form and functionality to place orders on the site
Sending an asynchronous email confirmation to users when
they place an order

Open a shell and use the following command to create a new virtual
environment for this project within the env/ directory:

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter08

python -m venv env/myshop

If you are using Linux or macOS, run the following command to
activate your virtual environment:

source env/myshop/bin/activate

If you are using Windows, use the following command instead:

.\env\myshop\Scripts\activate

The shell prompt will display your active virtual environment, as
follows:

(myshop)laptop:~ zenx$

Install Django in your virtual environment with the following
command:

pip install Django~=4.1.0

Start a new project called myshop with an application called shop
by opening a shell and running the following command:

django-admin startproject myshop

The initial project structure has been created. Use the following
commands to get into your project directory and create a new
application named shop :

cd myshop/
django-admin startapp shop

Edit settings.py and add the following line highlighted in bold to
the INSTALLED_APPS list:

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'shop.apps.ShopConfig',
]

Your application is now active for this project. Let’s define the
models for the product catalog.

Creating product catalog models
The catalog of your shop will consist of products that are organized
into different categories. Each product will have a name, an optional
description, an optional image, a price, and its availability.

Edit the models.py file of the shop application that you just created
and add the following code:

from django.db import models
class Category(models.Model):
 name = models.CharField(max_length=200)
 slug = models.SlugField(max_length=200,
 unique=True)
 class Meta:
 ordering = ['name']
 indexes = [
 models.Index(fields=['name']),
]
 verbose_name = 'category'
 verbose_name_plural = 'categories'
 def __str__(self):
 return self.name
class Product(models.Model):
 category = models.ForeignKey(Category,
 related_name='produ
 on_delete=models.CA
 name = models.CharField(max_length=200)
 slug = models.SlugField(max_length=200)
 image = models.ImageField(upload_to='products/%Y
 blank=True)
 description = models.TextField(blank=True)
 price = models.DecimalField(max_digits=10,
 decimal_places=2)
 available = models.BooleanField(default=True)
 created = models.DateTimeField(auto_now_add=True
 updated = models.DateTimeField(auto_now=True)

These are the Category and Product models. The Category model
consists of a name field and a unique slug field (unique implies the
creation of an index). In the Meta class of the Category model, we
have defined an index for the name field.

The Product model fields are as follows:

category : A ForeignKey to the Category model. This is a
one-to-many relationship: a product belongs to one category
and a category contains multiple products.
name : The name of the product.
slug : The slug for this product to build beautiful URLs.
image : An optional product image.
description : An optional description of the product.
price : This field uses Python’s decimal.Decimal type to store
a fixed-precision decimal number. The maximum number of
digits (including the decimal places) is set using the
max_digits a�ribute and decimal places with the
decimal_places a�ribute.

 class Meta:
 ordering = ['name']
 indexes = [
 models.Index(fields=['id', 'slug']),
 models.Index(fields=['name']),
 models.Index(fields=['-created']),
]
 def __str__(self):
 return self.name

available : A Boolean value that indicates whether the product
is available or not. It will be used to enable/disable the product
in the catalog.
created : This field stores when the object was created.
updated : This field stores when the object was last updated.

For the price field, we use DecimalField instead of FloatField
to avoid rounding issues.

Always use DecimalField to store monetary
amounts. FloatField uses Python’s float type
internally, whereas DecimalField uses Python’s
Decimal type. By using the Decimal type, you will
avoid float rounding issues.

In the Meta class of the Product model, we have defined a multiple-
field index for the id and slug fields. Both fields are indexed
together to improve performance for queries that utilize the two
fields.

We plan to query products by both id and slug . We have added an
index for the name field and an index for the created field. We have
used a hyphen before the field name to define the index with a
descending order.

Figure 8.1 shows the two data models you have created:

Figure 8.1: Models for the product catalog

In Figure 8.1, you can see the different fields of the data models and
the one-to-many relationship between the Category and the
Product models.

These models will result in the following database tables displayed
in Figure 8.2:

Figure 8.2: Database tables for the product catalog models

The one-to-many relationship between both tables is defined with
the category_id field in the shop_product table, which is used to
store the ID of the related Category for each Product object.

Let’s create the initial database migrations for the shop application.
Since you are going to deal with images in your models you will
need to install the Pillow library. Remember that in Chapter 4,
Building a Social Website, you learned how to install the Pillow library
to manage images. Open the shell and install Pillow with the
following command:

pip install Pillow==9.2.0

Now run the next command to create initial migrations for your
project:

python manage.py makemigrations

You will see the following output:

Run the next command to sync the database:

python manage.py migrate

You will see output that includes the following line:

Applying shop.0001_initial... OK

The database is now synced with your models.

Migrations for 'shop':
 shop/migrations/0001_initial.py
 - Create model Category
 - Create model Product
 - Create index shop_catego_name_289c7e_idx on fi
 - Create index shop_produc_id_f21274_idx on fiel
 - Create index shop_produc_name_a2070e_idx on fi
 - Create index shop_produc_created_ef211c_idx on

Registering catalog models on the
administration site
Let’s add your models to the administration site so that you can
easily manage categories and products. Edit the admin.py file of the
shop application and add the following code to it:

Remember that you use the prepopulated_fields a�ribute to
specify fields where the value is automatically set using the value of
other fields. As you have seen before, this is convenient for
generating slugs.

You use the list_editable a�ribute in the ProductAdmin class to
set the fields that can be edited from the list display page of the
administration site. This will allow you to edit multiple rows at once.

from django.contrib import admin
from .models import Category, Product
@admin.register(Category)
class CategoryAdmin(admin.ModelAdmin):
 list_display = ['name', 'slug']
 prepopulated_fields = {'slug': ('name',)}
@admin.register(Product)
class ProductAdmin(admin.ModelAdmin):
 list_display = ['name', 'slug', 'price',
 'available', 'created', 'updated
 list_filter = ['available', 'created', 'updated
 list_editable = ['price', 'available']
 prepopulated_fields = {'slug': ('name',)}

Any field in list_editable must also be listed in the
list_display a�ribute, since only the fields displayed can be
edited.

Now create a superuser for your site using the following command:

python manage.py createsuperuser

Enter the desired username, email, and password. Run the
development server with the following command:

python manage.py runserver

Open http://127.0.0.1:8000/admin/shop/product/add/ in
your browser and log in with the user that you just created. Add a
new category and product using the administration interface. The
add product form should look as follows:

Figure 8.3: The product creation form

Click on the Save bu�on. The product change list page of the
administration page will then look like this:

Figure 8.4: The product change list page

Building catalog views
In order to display the product catalog, you need to create a view to
list all the products or filter products by a given category. Edit the
views.py file of the shop application and add the following code
highlighted in bold:

from django.shortcuts import render, get_object_or_4
from .models import Category, Product
def product_list(request, category_slug=None):

In the preceding code, you filter the QuerySet with
available=True to retrieve only available products. You use an
optional category_slug parameter to optionally filter products by
a given category.

You also need a view to retrieve and display a single product. Add
the following view to the views.py file:

def product_detail(request, id, slug):
 product = get_object_or_404(Product,
 id=id,
 slug=slug,
 available=True)
 return render(request,
 'shop/product/detail.xhtml',
 {'product': product})

 category = None
 categories = Category.objects.all()
 products = Product.objects.filter(available=True
 if category_slug:
 category = get_object_or_404(Category,
 slug=category_s
 products = products.filter(category=category
 return render(request,
 'shop/product/list.xhtml',
 {'category': category,
 'categories': categories,
 'products': products})

The product_detail view expects the id and slug parameters in
order to retrieve the Product instance. You can get this instance just
through the ID, since it’s a unique a�ribute. However, you include
the slug in the URL to build SEO-friendly URLs for products.

After building the product list and detail views, you have to define
URL pa�erns for them. Create a new file inside the shop application
directory and name it urls.py . Add the following code to it:

These are the URL pa�erns for your product catalog. You have
defined two different URL pa�erns for the product_list view: a
pa�ern named product_list , which calls the product_list view
without any parameters, and a pa�ern named
product_list_by_category , which provides a category_slug
parameter to the view for filtering products according to a given
category. You added a pa�ern for the product_detail view, which
passes the id and slug parameters to the view in order to retrieve a
specific product.

from django.urls import path
from . import views
app_name = 'shop'
urlpatterns = [
 path('', views.product_list, name='product_list
 path('<slug:category_slug>/', views.product_list
 name='product_list_by_category'),
 path('<int:id>/<slug:slug>/', views.product_deta
 name='product_detail'),
]

Edit the urls.py file of the myshop project to make it look like this:

In the main URL pa�erns of the project, you include URLs for the
shop application under a custom namespace named shop .

Next, edit the models.py file of the shop application, import the
reverse() function, and add a get_absolute_url() method to
the Category and Product models as follows. The new code is
highlighted in bold:

from django.contrib import admin
from django.urls import path, include
urlpatterns = [
 path('admin/', admin.site.urls),
 path('', include('shop.urls', namespace='shop'))
]

from django.db import models
from django.urls import reverse
class Category(models.Model):
 # ...
 def get_absolute_url(self):
 return reverse('shop:product_list_by_categor
 args=[self.slug])
class Product(models.Model):
 # ...
 def get_absolute_url(self):
 return reverse('shop:product_detail',
 args=[self.id, self.slug])

As you already know, get_absolute_url() is the convention to
retrieve the URL for a given object. Here, you use the URL pa�erns
that you just defined in the urls.py file.

Creating catalog templates
Now you need to create templates for the product list and detail
views. Create the following directory and file structure inside the
shop application directory:

templates/
 shop/
 base.xhtml
 product/
 list.xhtml
 detail.xhtml

You need to define a base template and then extend it in the product
list and detail templates. Edit the shop/base.xhtml template and
add the following code to it:

{% load static %}
<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>{% block title %}My shop{% endblock %}</t
 <link href="{% static "css/base.css" %}" rel="st

This is the base template that you will use for your shop. In order to
include the CSS styles and images that are used by the templates,
you need to copy the static files that accompany this chapter, which
are located in the static/ directory of the shop application. Copy
them to the same location in your project. You can find the contents
of the directory at
https://github.com/PacktPublishing/Django-4-by-
Example/tree/main/Chapter08/myshop/shop/static.

Edit the shop/product/list.xhtml template and add the
following code to it:

 </head>
 <body>
 <div id="header">
 My shop
 </div>
 <div id="subheader">
 <div class="cart">
 Your cart is empty.
 </div>
 </div>
 <div id="content">
 {% block content %}
 {% endblock %}
 </div>
 </body>
</html>

https://github.com/PacktPublishing/Django-4-by-Example/tree/main/Chapter08/myshop/shop/static

{% extends "shop/base.xhtml" %}
{% load static %}
{% block title %}
 {% if category %}{{ category.name }}{% else %}Prod
{% endblock %}
{% block content %}
 <div id="sidebar">
 <h3>Categories</h3>

 <li {% if not category %}class="selected"{% en
 All<

 {% for c in categories %}
 <li {% if category.slug == c.slug %}class="s
 {% endif %}>
 {{ c.na

 {% endfor %}

 </div>
 <div id="main" class="product-list">
 <h1>{% if category %}{{ category.name }}{% else
 {% endif %}</h1>
 {% for product in products %}
 <div class="item">

 <img src="{% if product.image %}{{ product

 {{

 ${{ product.price }}

Make sure that no template tag is split into multiple lines.

This is the product list template. It extends the shop/base.xhtml
template and uses the categories context variable to display all the
categories in a sidebar, and products to display the products of the
current page. The same template is used for both listing all available
products and listing products filtered by a category. Since the image
field of the Product model can be blank, you need to provide a
default image for the products that don’t have an image. The image
is located in your static files directory with the relative path
img/no_image.png .

Since you are using ImageField to store product images, you need
the development server to serve uploaded image files.

Edit the settings.py file of myshop and add the following se�ings:

MEDIA_URL = 'media/'
MEDIA_ROOT = BASE_DIR / 'media'

MEDIA_URL is the base URL that serves media files uploaded by
users. MEDIA_ROOT is the local path where these files reside, which
you build by dynamically prepending the BASE_DIR variable.

 </div>
 {% endfor %}
 </div>
{% endblock %}

For Django to serve the uploaded media files using the development
server, edit the main urls.py file of myshop and add the following
code highlighted in bold:

Remember that you only serve static files this way during
development. In a production environment, you should never serve
static files with Django; the Django development server doesn’t serve
static files in an efficient manner. Chapter 17, Going Live, will teach
you how to serve static files in a production environment.

Run the development server with the following command:

python manage.py runserver

Add a couple of products to your shop using the administration site
and open http://127.0.0.1:8000/ in your browser. You will see
the product list page, which will look similar to this:

from django.contrib import admin
from django.urls import path, include
from django.conf import settings
from django.conf.urls.static import static
urlpatterns = [
 path('admin/', admin.site.urls),
 path('', include('shop.urls', namespace='shop'))
]
if settings.DEBUG:
 urlpatterns += static(settings.MEDIA_URL,
 document_root=settings.MED

Figure 8.5: The product list page

Images in this chapter:

Green tea: Photo by Jia Ye on Unsplash
Red tea: Photo by Manki Kim on Unsplash
Tea powder: Photo by Phuong Nguyen on
Unsplash

If you create a product using the administration site and don’t
upload any image for it, the default no_image.png image will be
displayed instead:

Figure 8.6: The product list displaying a default image for products that have no image

Edit the shop/product/detail.xhtml template and add the
following code to it:

{% extends "shop/base.xhtml" %}
{% load static %}
{% block title %}
 {{ product.name }}
{% endblock %}
{% block content %}
 <div class="product-detail">
 <img src="{% if product.image %}{{ product.image
 {% static "img/no_image.png" %}{% endif %}">
 <h1>{{ product.name }}</h1>
 <h2>
 <a href="{{ product.category.get_absolute_url
 {{ product.category }}

 </h2>
 <p class="price">${{ product.price }}</p>

|

In the preceding code, you call the get_absolute_url() method
on the related category object to display the available products that
belong to the same category.

Now open http://127.0.0.1:8000/ in your browser and click on
any product to see the product detail page. It will look as follows:

Figure 8.7: The product detail page

You have now created a basic product catalog. Next, you will
implement a shopping cart that allows users to add any product to it
while browsing the online shop.

 {{ product.description|linebreaks }}
 </div>
{% endblock %}

Building a shopping cart
After building the product catalog, the next step is to create a
shopping cart so that users can pick the products that they want to
purchase. A shopping cart allows users to select products and set the
amount they want to order, and then store this information
temporarily while they browse the site, until they eventually place
an order. The cart has to be persisted in the session so that the cart
items are maintained during a user’s visit.

You will use Django’s session framework to persist the cart. The cart
will be kept in the session until it finishes or the user checks out of
the cart. You will also need to build additional Django models for the
cart and its items.

Using Django sessions
Django provides a session framework that supports anonymous and
user sessions. The session framework allows you to store arbitrary
data for each visitor. Session data is stored on the server side, and
cookies contain the session ID unless you use the cookie-based
session engine. The session middleware manages the sending and
receiving of cookies. The default session engine stores session data in
the database, but you can choose other session engines.

To use sessions, you have to make sure that the MIDDLEWARE se�ing
of your project contains
'django.contrib.sessions.middleware.SessionMiddleware' .
This middleware manages sessions. It’s added by default to the

MIDDLEWARE se�ing when you create a new project using the
startproject command.

The session middleware makes the current session available in the
request object. You can access the current session using
request.session , treating it like a Python dictionary to store and
retrieve session data. The session dictionary accepts any Python
object by default that can be serialized to JSON. You can set a
variable in the session like this:

request.session['foo'] = 'bar'

Retrieve a session key as follows:

request.session.get('foo')

Delete a key you previously stored in the session as follows:

del request.session['foo']

When users log in to the site, their anonymous session
is lost, and a new session is created for authenticated
users. If you store items in an anonymous session that
you need to keep after the user logs in, you will have
to copy the old session data into the new session. You
can do this by retrieving the session data before you
log in the user using the login() function of the

Django authentication system and storing it in the
session after that.

Session settings
There are several se�ings you can use to configure sessions for your
project. The most important is SESSION_ENGINE . This se�ing allows
you to set the place where sessions are stored. By default, Django
stores sessions in the database using the Session model of the
django.contrib.sessions application.

Django offers the following options for storing session data:

Database sessions: Session data is stored in the database. This is
the default session engine.
File-based sessions: Session data is stored in the filesystem.
Cached sessions: Session data is stored in a cache backend. You
can specify cache backends using the CACHES se�ing. Storing
session data in a cache system provides the best performance.
Cached database sessions: Session data is stored in a write-
through cache and database. Reads only use the database if the
data is not already in the cache.
Cookie-based sessions: Session data is stored in the cookies
that are sent to the browser.

For be�er performance use a cache-based session
engine. Django supports Memcached out of the box
and you can find third-party cache backends for Redis
and other cache systems.

You can customize sessions with specific se�ings. Here are some of
the important session-related se�ings:

SESSION_COOKIE_AGE : The duration of session cookies in
seconds. The default value is 1209600 (two weeks).
SESSION_COOKIE_DOMAIN : The domain used for session
cookies. Set this to mydomain.com to enable cross-domain
cookies or use None for a standard domain cookie.
SESSION_COOKIE_HTTPONLY : Whether to use HttpOnly flag on
the session cookie. If this is set to True , client-side JavaScript
will not be able to access the session cookie. The default value is
True for increased security against user session hijacking.
SESSION_COOKIE_SECURE : A Boolean indicating that the cookie
should only be sent if the connection is an HTTPS connection.
The default value is False .
SESSION_EXPIRE_AT_BROWSER_CLOSE : A Boolean indicating
that the session has to expire when the browser is closed. The
default value is False .
SESSION_SAVE_EVERY_REQUEST : A Boolean that, if True , will
save the session to the database on every request. The session
expiration is also updated each time it’s saved. The default
value is False .

You can see all the session se�ings and their default values at
https://docs.djangoproject.com/en/4.1/ref/settings/#ses
sions.

https://docs.djangoproject.com/en/4.1/ref/settings/#sessions

Session expiration
You can choose to use browser-length sessions or persistent sessions
using the SESSION_EXPIRE_AT_BROWSER_CLOSE se�ing. This is set
to False by default, forcing the session duration to the value stored
in the SESSION_COOKIE_AGE se�ing. If you set
SESSION_EXPIRE_AT_BROWSER_CLOSE to True , the session will
expire when the user closes the browser, and the
SESSION_COOKIE_AGE se�ing will not have any effect.

You can use the set_expiry() method of request.session to
overwrite the duration of the current session.

Storing shopping carts in sessions
You need to create a simple structure that can be serialized to JSON
for storing cart items in a session. The cart has to include the
following data for each item contained in it:

The ID of a Product instance
The quantity selected for the product
The unit price for the product

Since product prices may vary, let’s take the approach of storing the
product’s price along with the product itself when it’s added to the
cart. By doing so, you use the current price of the product when
users add it to their cart, no ma�er whether the product’s price is
changed afterward. This means that the price that the item has when
the client adds it to the cart is maintained for that client in the
session until checkout is completed or the session finishes.

Next, you have to build functionality to create shopping carts and
associate them with sessions. This has to work as follows:

When a cart is needed, you check whether a custom session key
is set. If no cart is set in the session, you create a new cart and
save it in the cart session key.
For successive requests, you perform the same check and get the
cart items from the cart session key. You retrieve the cart items
from the session and their related Product objects from the
database.

Edit the settings.py file of your project and add the following
se�ing to it:

CART_SESSION_ID = 'cart'

This is the key that you are going to use to store the cart in the user
session. Since Django sessions are managed per visitor, you can use
the same cart session key for all sessions.

Let’s create an application for managing shopping carts. Open the
terminal and create a new application, running the following
command from the project directory:

python manage.py startapp cart

Then, edit the settings.py file of your project and add the new
application to the INSTALLED_APPS se�ing with the following line
highlighted in bold:

INSTALLED_APPS = [
 # ...
 'shop.apps.ShopConfig',
 'cart.apps.CartConfig',
]

Create a new file inside the cart application directory and name it
cart.py . Add the following code to it:

This is the Cart class that will allow you to manage the shopping
cart. You require the cart to be initialized with a request object. You
store the current session using self.session = request.session
to make it accessible to the other methods of the Cart class.

from decimal import Decimal
from django.conf import settings
from shop.models import Product
class Cart:
 def __init__(self, request):
 """
 Initialize the cart.
 """
 self.session = request.session
 cart = self.session.get(settings.CART_SESSIO
 if not cart:
 # save an empty cart in the session
 cart = self.session[settings.CART_SESSIO
 self.cart = cart

First, you try to get the cart from the current session using
self.session.get(settings.CART_SESSION_ID) . If no cart is
present in the session, you create an empty cart by se�ing an empty
dictionary in the session.

You will build your cart dictionary with product IDs as keys, and
for each product key, a dictionary will be a value that includes
quantity and price. By doing this, you can guarantee that a product
will not be added more than once to the cart. This way, you can also
simplify retrieving cart items.

Let’s create a method to add products to the cart or update their
quantity. Add the following add() and save() methods to the
Cart class:

class Cart:
 # ...
 def add(self, product, quantity=1, override_quan
 """
 Add a product to the cart or update its quan
 """
 product_id = str(product.id)
 if product_id not in self.cart:
 self.cart[product_id] = {'quantity': 0,
 'price': str(pr
 if override_quantity:
 self.cart[product_id]['quantity'] = quan
 else:
 self.cart[product_id]['quantity'] += qua
 self.save()
 def save(self):

The add() method takes the following parameters as input:

product : The product instance to add or update in the cart.
quantity : An optional integer with the product quantity. This
defaults to 1 .
override_quantity : This is a Boolean that indicates whether
the quantity needs to be overridden with the given quantity
(True), or whether the new quantity has to be added to the
existing quantity (False).

You use the product ID as a key in the cart’s content dictionary. You
convert the product ID into a string because Django uses JSON to
serialize session data, and JSON only allows string key names. The
product ID is the key, and the value that you persist is a dictionary
with quantity and price figures for the product. The product’s price
is converted from decimal into a string to serialize it. Finally, you
call the save() method to save the cart in the session.

The save() method marks the session as modified using
session.modified = True . This tells Django that the session has
changed and needs to be saved.

You also need a method for removing products from the cart. Add
the following method to the Cart class:

class Cart:
 # ...

 # mark the session as "modified" to make sur
 self.session.modified = True

 def remove(self, product):
 """
 Remove a product from the cart.
 """
 product_id = str(product.id)
 if product_id in self.cart:
 del self.cart[product_id]
 self.save()

The remove() method removes a given product from the cart
dictionary and calls the save() method to update the cart in the
session.

You will have to iterate through the items contained in the cart and
access the related Product instances. To do so, you can define an
__iter__() method in your class. Add the following method to the
Cart class:

class Cart:
 # ...
 def __iter__(self):
 """
 Iterate over the items in the cart and get t
 from the database.
 """
 product_ids = self.cart.keys()
 # get the product objects and add them to th
 products = Product.objects.filter(id__in=pro
 cart = self.cart.copy()
 for product in products:

In the __iter__() method, you retrieve the Product instances that
are present in the cart to include them in the cart items. You copy the
current cart in the cart variable and add the Product instances to
it. Finally, you iterate over the cart items, converting each item’s
price back into decimal, and adding a total_price a�ribute to each
item. This __iter__() method will allow you to easily iterate over
the items in the cart in views and templates.

You also need a way to return the number of total items in the cart.
When the len() function is executed on an object, Python calls its
__len__() method to retrieve its length. Next, you are going to
define a custom __len__() method to return the total number of
items stored in the cart.

Add the following __len__() method to the Cart class:

 cart[str(product.id)]['product'] = produ
 for item in cart.values():
 item['price'] = Decimal(item['price'])
 item['total_price'] = item['price'] * it
 yield item

class Cart:
 # ...
 def __len__(self):
 """
 Count all items in the cart.
 """
 return sum(item['quantity'] for item in self

You return the sum of the quantities of all the cart items.

Add the following method to calculate the total cost of the items in
the cart:

Finally, add a method to clear the cart session:

class Cart:
 # ...
 def clear(self):
 # remove cart from session
 del self.session[settings.CART_SESSION_ID]
 self.save()

Your Cart class is now ready to manage shopping carts.

Creating shopping cart views
Now that you have a Cart class to manage the cart, you need to
create the views to add, update, or remove items from it. You need to
create the following views:

A view to add or update items in the cart that can handle
current and new quantities
A view to remove items from the cart

class Cart:
 # ...
 def get_total_price(self):
 return sum(Decimal(item['price']) * item['qu

A view to display cart items and totals

Adding items to the cart
To add items to the cart, you need a form that allows the user to
select a quantity. Create a forms.py file inside the cart application
directory and add the following code to it:

You will use this form to add products to the cart. Your
CartAddProductForm class contains the following two fields:

quantity : This allows the user to select a quantity between 1
and 20. You use a TypedChoiceField field with coerce=int to
convert the input into an integer.
override : This allows you to indicate whether the quantity has
to be added to any existing quantity in the cart for this product
(False), or whether the existing quantity has to be overridden
with the given quantity (True). You use a HiddenInput widget
for this field, since you don’t want to display it to the user.

from django import forms
PRODUCT_QUANTITY_CHOICES = [(i, str(i)) for i in ran
class CartAddProductForm(forms.Form):
 quantity = forms.TypedChoiceField(
 choices=PRODUCT_QUAN
 coerce=int)
 override = forms.BooleanField(required=False,
 initial=False,
 widget=forms.Hidde

Let’s create a view for adding items to the cart. Edit the views.py
file of the cart application and add the following code highlighted
in bold:

This is the view for adding products to the cart or updating
quantities for existing products. You use the require_POST
decorator to allow only POST requests. The view receives the
product ID as a parameter. You retrieve the Product instance with
the given ID and validate CartAddProductForm . If the form is valid,
you either add or update the product in the cart. The view redirects
to the cart_detail URL, which will display the contents of the
cart. You are going to create the cart_detail view shortly.

from django.shortcuts import render, redirect, get_o
from django.views.decorators.http import require_POS
from shop.models import Product
from .cart import Cart
from .forms import CartAddProductForm
@require_POST
def cart_add(request, product_id):
 cart = Cart(request)
 product = get_object_or_404(Product, id=product_
 form = CartAddProductForm(request.POST)
 if form.is_valid():
 cd = form.cleaned_data
 cart.add(product=product,
 quantity=cd['quantity'],
 override_quantity=cd['override'])
 return redirect('cart:cart_detail')

You also need a view to remove items from the cart. Add the
following code to the views.py file of the cart application:

The cart_remove view receives the product ID as a parameter. You
use the require_POST decorator to allow only POST requests. You
retrieve the Product instance with the given ID and remove the
product from the cart. Then, you redirect the user to the
cart_detail URL.

Finally, you need a view to display the cart and its items. Add the
following view to the views.py file of the cart application:

The cart_detail view gets the current cart to display it.

You have created views to add items to the cart, update quantities,
remove items from the cart, and display the cart’s contents. Let’s add
URL pa�erns for these views. Create a new file inside the cart

@require_POST
def cart_remove(request, product_id):
 cart = Cart(request)
 product = get_object_or_404(Product, id=product_
 cart.remove(product)
 return redirect('cart:cart_detail')

def cart_detail(request):
 cart = Cart(request)
 return render(request, 'cart/detail.xhtml', {'ca

application directory and name it urls.py . Add the following URLs
to it:

Edit the main urls.py file of the myshop project and add the
following URL pa�ern highlighted in bold to include the cart URLs:

Make sure that you include this URL pa�ern before the shop.urls
pa�ern, since it’s more restrictive than the la�er.

Building a template to display the cart

from django.urls import path
from . import views
app_name = 'cart'
urlpatterns = [
 path('', views.cart_detail, name='cart_detail'),
 path('add/<int:product_id>/', views.cart_add, na
 path('remove/<int:product_id>/', views.cart_remo
 name='cart_remo
]

urlpatterns = [
 path('admin/', admin.site.urls),
 path('cart/', include('cart.urls', namespace='ca
 path('', include('shop.urls', namespace='shop'))
]

The cart_add and cart_remove views don’t render any templates,
but you need to create a template for the cart_detail view to
display cart items and totals.

Create the following file structure inside the cart application
directory:

templates/
 cart/
 detail.xhtml

Edit the cart/detail.xhtml template and add the following code
to it:

{% extends "shop/base.xhtml" %}
{% load static %}
{% block title %}
 Your shopping cart
{% endblock %}
{% block content %}
 <h1>Your shopping cart</h1>
 <table class="cart">
 <thead>
 <tr>
 <th>Image</th>
 <th>Product</th>
 <th>Quantity</th>
 <th>Remove</th>
 <th>Unit price</th>
 <th>Price</th>

 </tr>
 </thead>
 <tbody>
 {% for item in cart %}
 {% with product=item.product %}
 <tr>
 <td>
 <a href="{{ product.get_absolute_url }
 <img src="{% if product.image %}{{ p
 {% else %}{% static "img/no_image.pn

 </td>
 <td>{{ product.name }}</td>
 <td>{{ item.quantity }}</td>
 <td>
 <form action="{% url "cart:cart_remove
 <input type="submit" value="Remove">
 {% csrf_token %}
 </form>
 </td>
 <td class="num">${{ item.price }}</td>
 <td class="num">${{ item.total_price }}<
 </tr>
 {% endwith %}
 {% endfor %}
 <tr class="total">
 <td>Total</td>
 <td colspan="4"></td>
 <td class="num">${{ cart.get_total_price }}<
 </tr>
 </tbody>
 </table>

Make sure that no template tag is split into multiple lines.

This is the template that is used to display the cart’s contents. It
contains a table with the items stored in the current cart. You allow
users to change the quantity of the selected products using a form
that is posted to the cart_add view. You also allow users to remove
items from the cart by providing a Remove bu�on for each of them.
Finally, you use an HTML form with an action a�ribute that points
to the cart_remove URL including the product ID.

Adding products to the cart
Now you need to add an Add to cart bu�on to the product detail
page. Edit the views.py file of the shop application and add
CartAddProductForm to the product_detail view, as follows:

 <p class="text-right">
 <a href="{% url "shop:product_list" %}" class="b
 light">Continue shopping
 Checkout
 </p>
{% endblock %}

from cart.forms import CartAddProductForm
...
def product_detail(request, id, slug):
 product = get_object_or_404(Product, id=id,
 slug=slug,
 available=T
 cart_product_form = CartAddProductForm()

Edit the shop/product/detail.xhtml template of the shop
application and add the following form to the product price as
follows. New lines are highlighted in bold:

Run the development server with the following command:

python manage.py runserver

Now open http://127.0.0.1:8000/ in your browser and
navigate to a product’s detail page. It will contain a form to choose a
quantity before adding the product to the cart. The page will look
like this:

 return render(request,
 'shop/product/detail.xhtml',
 {'product': product,
 'cart_product_form': cart_product

...
<p class="price">${{ product.price }}</p>
<form action="{% url "cart:cart_add" product.id %}"
 {{ cart_product_form }}
 {% csrf_token %}
 <input type="submit" value="Add to cart">
</form>
{{ product.description|linebreaks }}
...

Figure 8.8: The product detail page, including the Add to cart form

Choose a quantity and click on the Add to cart bu�on. The form is
submi�ed to the cart_add view via POST . The view adds the
product to the cart in the session, including its current price and the
selected quantity. Then, it redirects the user to the cart detail page,
which will look like Figure 8.9:

Figure 8.9: The cart detail page

Updating product quantities in the cart
When users see the cart, they might want to change product
quantities before placing an order. You are going to allow users to
change quantities from the cart detail page.

Edit the views.py file of the cart application and add the
following lines highlighted in bold to the cart_detail view:

def cart_detail(request):
 cart = Cart(request)
 for item in cart:
 item['update_quantity_form'] = CartAddProduc
 'quantity': item['quanti
 'override': True})
 return render(request, 'cart/detail.xhtml', {'ca

You create an instance of CartAddProductForm for each item in the
cart to allow changing product quantities. You initialize the form
with the current item quantity and set the override field to True so
that when you submit the form to the cart_add view, the current
quantity is replaced with the new one.

Now edit the cart/detail.xhtml template of the cart application
and find the following line:

<td>{{ item.quantity }}</td>

Replace the previous line with the following code:

Run the development server with the following command:

python manage.py runserver

Open http://127.0.0.1:8000/cart/ in your browser.

<td>
 <form action="{% url "cart:cart_add" product.id %}
 {{ item.update_quantity_form.quantity }}
 {{ item.update_quantity_form.override }}
 <input type="submit" value="Update">
 {% csrf_token %}
 </form>
</td>

You will see a form to edit the quantity for each cart item, as follows:

Figure 8.10: The cart detail page, including the form to update product quantities

Change the quantity of an item and click on the Update bu�on to
test the new functionality. You can also remove an item from the cart
by clicking the Remove bu�on.

Creating a context processor for the
current cart
You might have noticed that the message Your cart is empty is
displayed in the header of the site, even when the cart contains
items. You should display the total number of items in the cart and
the total cost instead. Since this has to be displayed on all pages, you
need to build a context processor to include the current cart in the
request context, regardless of the view that processes the request.

Context processors
A context processor is a Python function that takes the request
object as an argument and returns a dictionary that gets added to the
request context. Context processors come in handy when you need
to make something available globally to all templates.

By default, when you create a new project using the startproject
command, your project contains the following template context
processors in the context_processors option inside the
TEMPLATES se�ing:

django.template.context_processors.debug : This sets the
Boolean debug and sql_queries variables in the context,
representing the list of SQL queries executed in the request.
django.template.context_processors.request : This sets
the request variable in the context.
django.contrib.auth.context_processors.auth : This sets
the user variable in the request.
django.contrib.messages.context_processors.messages :
This sets a messages variable in the context containing all the
messages that have been generated using the messages
framework.

Django also enables
django.template.context_processors.csrf to avoid cross-site
request forgery (CSRF) a�acks. This context processor is not present
in the se�ings, but it is always enabled and can’t be turned off for
security reasons.

You can see the list of all built-in context processors at
https://docs.djangoproject.com/en/4.1/ref/templates/api
/#built-in-template-context-processors.

Setting the cart into the request context
Let’s create a context processor to set the current cart into the request
context. With it, you will be able to access the cart in any template.

Create a new file inside the cart application directory and name it
context_processors.py . Context processors can reside anywhere
in your code but creating them here will keep your code well
organized. Add the following code to the file:

from .cart import Cart
def cart(request):
 return {'cart': Cart(request)}

In your context processor, you instantiate the cart using the request
object and make it available for the templates as a variable named
cart .

Edit the settings.py file of your project and add
cart.context_processors.cart to the context_processors
option inside the TEMPLATES se�ing, as follows. The new line is
highlighted in bold:

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django

https://docs.djangoproject.com/en/4.1/ref/templates/api/#built-in-template-context-processors

The cart context processor will be executed every time a template is
rendered using Django’s RequestContext . The cart variable will
be set in the context of your templates. You can read more about
RequestContext at
https://docs.djangoproject.com/en/4.1/ref/templates/api
/#django.template.RequestContext.

Context processors are executed in all the requests
that use RequestContext . You might want to create a
custom template tag instead of a context processor if
your functionality is not needed in all templates,
especially if it involves database queries.

Next, edit the shop/base.xhtml template of the shop application
and find the following lines:

 'DIRS': [],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors
 'django.template.context_processors
 'django.contrib.auth.context_process
 'django.contrib.messages.context_pro
 'cart.context_processors.cart',
],
 },
 },
]

https://docs.djangoproject.com/en/4.1/ref/templates/api/#django.template.RequestContext

<div class="cart">
 Your cart is empty.
</div>

Replace the previous lines with the following code:

Restart the development server with the following command:

python manage.py runserver

Open http://127.0.0.1:8000/ in your browser and add some
products to the cart.

In the header of the website, you can now see the total number of
items in the cart and the total cost, as follows:

<div class="cart">
 {% with total_items=cart|length %}
 {% if total_items > 0 %}
 Your cart:

 {{ total_items }} item{{ total_items|plurali
 ${{ cart.get_total_price }}

 {% else %}
 Your cart is empty.
 {% endif %}
 {% endwith %}
</div>

Figure 8.11: The site header displaying the current items in the cart

You have completed the cart functionality. Next, you are going to
create the functionality to register customer orders.

Registering customer orders
When a shopping cart is checked out, you need to save an order in
the database. Orders will contain information about customers and
the products they are buying.

Create a new application for managing customer orders using the
following command:

python manage.py startapp orders

Edit the settings.py file of your project and add the new
application to the INSTALLED_APPS se�ing, as follows:

INSTALLED_APPS = [
 # ...
 'shop.apps.ShopConfig',
 'cart.apps.CartConfig',
 'orders.apps.OrdersConfig',
]

You have activated the orders application.

Creating order models
You will need a model to store the order details and a second model
to store items bought, including their price and quantity. Edit the
models.py file of the orders application and add the following
code to it:

from django.db import models
from shop.models import Product
class Order(models.Model):
 first_name = models.CharField(max_length=50)
 last_name = models.CharField(max_length=50)

 email = models.EmailField()
 address = models.CharField(max_length=250)
 postal_code = models.CharField(max_length=20)
 city = models.CharField(max_length=100)
 created = models.DateTimeField(auto_now_add=True
 updated = models.DateTimeField(auto_now=True)
 paid = models.BooleanField(default=False)
 class Meta:
 ordering = ['-created']
 indexes = [
 models.Index(fields=['-created']),
]
 def __str__(self):
 return f'Order {self.id}'
 def get_total_cost(self):
 return sum(item.get_cost() for item in self
class OrderItem(models.Model):
 order = models.ForeignKey(Order,
 related_name='items',
 on_delete=models.CASCA
 product = models.ForeignKey(Product,
 related_name='order_
 on_delete=models.CAS
 price = models.DecimalField(max_digits=10,
 decimal_places=2)
 quantity = models.PositiveIntegerField(default=1
 def __str__(self):
 return str(self.id)
 def get_cost(self):
 return self.price * self.quantity

The Order model contains several fields to store customer
information and a paid Boolean field, which defaults to False .
Later on, you are going to use this field to differentiate between paid
and unpaid orders. We have also defined a get_total_cost()
method to obtain the total cost of the items bought in this order.

The OrderItem model allows you to store the product, quantity,
and price paid for each item. We have defined a get_cost()
method that returns the cost of the item by multiplying the item
price with the quantity.

Run the next command to create initial migrations for the orders
application:

python manage.py makemigrations

You will see output similar to the following:

Run the following command to apply the new migration:

python manage.py migrate

You will see the following output:

Migrations for 'orders':
 orders/migrations/0001_initial.py
 - Create model Order
 - Create model OrderItem
 - Create index orders_orde_created_743fca_idx on

Applying orders.0001_initial... OK

Your order models are now synced to the database.

Including order models in the
administration site
Let’s add the order models to the administration site. Edit the
admin.py file of the orders application and add the following code
highlighted in bold:

You use a ModelInline class for the OrderItem model to include it
as an inline in the OrderAdmin class. An inline allows you to include
a model on the same edit page as its related model.

Run the development server with the following command:

from django.contrib import admin
from .models import Order, OrderItem
class OrderItemInline(admin.TabularInline):
 model = OrderItem
 raw_id_fields = ['product']
@admin.register(Order)
class OrderAdmin(admin.ModelAdmin):
 list_display = ['id', 'first_name', 'last_name',
 'address', 'postal_code', 'city
 'created', 'updated']
 list_filter = ['paid', 'created', 'updated']
 inlines = [OrderItemInline]

python manage.py runserver

Open http://127.0.0.1:8000/admin/orders/order/add/ in
your browser. You will see the following page:

Figure 8.12: The Add order form, including OrderItemInline

Creating customer orders

You will use the order models that you created to persist the items
contained in the shopping cart when the user finally places an order.
A new order will be created following these steps:

1. Present a user with an order form to fill in their data
2. Create a new Order instance with the data entered, and create

an associated OrderItem instance for each item in the cart
3. Clear all the cart’s contents and redirect the user to a success

page

First, you need a form to enter the order details. Create a new file
inside the orders application directory and name it forms.py . Add
the following code to it:

This is the form that you are going to use to create new Order
objects. Now you need a view to handle the form and create a new
order. Edit the views.py file of the orders application and add the
following code highlighted in bold:

from django import forms
from .models import Order
class OrderCreateForm(forms.ModelForm):
 class Meta:
 model = Order
 fields = ['first_name', 'last_name', 'email
 'postal_code', 'city']

from django.shortcuts import render
from .models import OrderItem

In the order_create view, you obtain the current cart from the
session with cart = Cart(request) . Depending on the request
method, you perform the following tasks:

GET request: Instantiates the OrderCreateForm form and
renders the orders/order/create.xhtml template.

from .forms import OrderCreateForm
from cart.cart import Cart
def order_create(request):
 cart = Cart(request)
 if request.method == 'POST':
 form = OrderCreateForm(request.POST)
 if form.is_valid():
 order = form.save()
 for item in cart:
 OrderItem.objects.create(order=order
 product=ite
 price=item[
 quantity=it
 # clear the cart
 cart.clear()
 return render(request,
 'orders/order/created.xhtm
 {'order': order})
 else:
 form = OrderCreateForm()
 return render(request,
 'orders/order/create.xhtml',
 {'cart': cart, 'form': form})

POST request: Validates the data sent in the request. If the data
is valid, you create a new order in the database using order =
form.save() . You iterate over the cart items and create an
OrderItem for each of them. Finally, you clear the cart’s
contents and render the template
orders/order/created.xhtml .

Create a new file inside the orders application directory and name
it urls.py . Add the following code to it:

This is the URL pa�ern for the order_create view.

Edit the urls.py file of myshop and include the following pa�ern.
Remember to place it before the shop.urls pa�ern as follows. The
new line is highlighted in bold:

from django.urls import path
from . import views
app_name = 'orders'
urlpatterns = [
 path('create/', views.order_create, name='order_
]

urlpatterns = [
 path('admin/', admin.site.urls),
 path('cart/', include('cart.urls', namespace='ca
 path('orders/', include('orders.urls', namespace
 path('', include('shop.urls', namespace='shop'))
]

Edit the cart/detail.xhtml template of the cart application and
find this line:

Checkout

Add the order_create URL to the href HTML a�ribute as
follows:

Users can now navigate from the cart detail page to the order form.

You still need to define templates for creating orders. Create the
following file structure inside the orders application directory:

templates/
 orders/
 order/
 create.xhtml
 created.xhtml

Edit the orders/order/create.xhtml template and add the
following code:

<a href="{% url "orders:order_create" %}" class="but
 Checkout

This template displays the cart items, including totals and the form
to place an order.

Edit the orders/order/created.xhtml template and add the
following code:

{% extends "shop/base.xhtml" %}
{% block title %}
 Checkout
{% endblock %}
{% block content %}
 <h1>Checkout</h1>
 <div class="order-info">
 <h3>Your order</h3>

 {% for item in cart %}

 {{ item.quantity }}x {{ item.product.name
 ${{ item.total_price }}

 {% endfor %}

 <p>Total: ${{ cart.get_total_price }}</p>
 </div>
 <form method="post" class="order-form">
 {{ form.as_p }}
 <p><input type="submit" value="Place order"></p>
 {% csrf_token %}
 </form>
{% endblock %}

This is the template that you render when the order is successfully
created.

Start the web development server to load new files. Open
http://127.0.0.1:8000/ in your browser, add a couple of
products to the cart, and continue to the checkout page. You will see
the following form:

{% extends "shop/base.xhtml" %}
{% block title %}
 Thank you
{% endblock %}
{% block content %}
 <h1>Thank you</h1>
 <p>Your order has been successfully completed. You
 {{ order.id }}.</p>
{% endblock %}

Figure 8.13: The order creation page, including the chart checkout form and order details

Fill in the form with valid data and click on the Place order bu�on.
The order will be created, and you will see a success page like this:

Figure 8.14: The order created template displaying the order number

The order has been registered and the cart has been cleared.

You might have noticed that the message Your cart is empty is
displayed in the header when an order is completed. This is because
the cart has been cleared. We can easily avoid this message for views
that have an order object in the template context.

Edit the shop/base.xhtml template of the shop application and
replace the following line highlighted in bold:

...
<div class="cart">
 {% with total_items=cart|length %}
 {% if total_items > 0 %}
 Your cart:

 {{ total_items }} item{{ total_items|plurali
 ${{ cart.get_total_price }}

 {% elif not order %}

The message Your cart is empty will not be displayed anymore
when an order is created.

Now open the administration site at
http://127.0.0.1:8000/admin/orders/order/ . You will see
that the order has been successfully created, like this:

Figure 8.15: The order change list section of the administration site including the order created

You have implemented the order system. Now you will learn how to
create asynchronous tasks to send confirmation emails to users when
they place an order.

Asynchronous tasks
When receiving an HTTP request, you need to return a response to
the user as quickly as possible. Remember that in Chapter 7, Tracking

 Your cart is empty.
 {% endif %}
 {% endwith %}
</div>
...

User Actions, you used the Django Debug Toolbar to check the time
for the different phases of the request/response cycle and the
execution time for the SQL queries performed. Every task executed
during the course of the request/response cycle adds up to the total
response time. Long-running tasks can seriously slow down the
server response. How do we return a fast response to the user while
still completing time-consuming tasks? We can do it with
asynchronous execution.

Working with asynchronous tasks
We can offload work from the request/response cycle by executing
certain tasks in the background. For example, a video-sharing
platform allows users to upload videos but requires a long time to
transcode uploaded videos. When the user uploads a video, the site
might return a response informing that the transcoding will start
soon and start transcoding the video asynchronously. Another
example is sending emails to users. If your site sends email
notifications from a view, the Simple Mail Transfer Protocol
(SMTP) connection might fail or slow down the response. By
sending the email asynchronously, you avoid blocking the code
execution.

Asynchronous execution is especially relevant for data-intensive,
resource-intensive, and time-consuming processes or processes
subject to failure, which might require a retry policy.

Workers, message queues, and
message brokers
While your web server processes requests and returns responses,
you need a second task-based server, named worker, to process the
asynchronous tasks. One or multiple workers can be running and
executing tasks in the background. These workers can access the
database, process files, send e-mails, etc. Workers can even queue
future tasks. All while keeping the main web server free to process
HTTP requests.

To tell the workers what tasks to execute we need to send messages.
We communicate with brokers by adding messages to a message
queue, which is basically a first in, first out (FIFO) data structure.
When a broker becomes available, it takes the first message from the
queue and starts executing the corresponding task. When finished,
the broker takes the next message from the queue and executes the
corresponding task. Brokers become idle when the message queue is
empty. When using multiple brokers, each broker takes the first
available message in order when they become available. The queue
ensures each broker only gets one task at a time, and that no task is
processed by more than one worker.

Figure 8.16 shows how a message queue works:

Figure 8.16: Asynchronous execution using a message queue and workers

A producer sends a message to the queue, and the worker(s)
consume the messages on a first-come, first-served basis; the first
message added to the message queue is the first message to be
processed by the worker(s).

In order to manage the message queue, we need a message broker.
The message broker is used to translate messages to a formal
messaging protocol and manage message queues for multiple
receivers. It provides reliable storage and guaranteed message
delivery. The message broker allows us to create message queues,
route messages, distribute messages among workers, etc.

Using Django with Celery and RabbitMQ
Celery is a distributed task queue that can process vast amounts of
messages. We will use Celery to define asynchronous tasks as
Python functions within our Django applications. We will run Celery

workers that will listen to the message broker to get new messages
to process asynchronous tasks.

Using Celery, not only can you create asynchronous tasks easily and
let them be executed by workers as soon as possible, but you can
also schedule them to run at a specific time. You can find the Celery
documentation at
https://docs.celeryq.dev/en/stable/index.xhtml.

Celery communicates via messages and requires a message broker to
mediate between clients and workers. There are several options for a
message broker for Celery, including key/value stores such as Redis,
or an actual message broker such as RabbitMQ.

RabbitMQ is the most widely deployed message broker. It supports
multiple messaging protocols, such as the Advanced Message
Queuing Protocol (AMQP), and it is the recommended message
worker for Celery. RabbitMQ is lightweight, easy to deploy, and can
be configured for scalability and high availability.

Figure 8.17 shows how we will use Django, Celery, and RabbitMQ to
execute asynchronous tasks:

https://docs.celeryq.dev/en/stable/index.xhtml

Figure 8.17: Architecture for asynchronous tasks with Django, RabbitMQ, and Celery

Installing Celery
Let’s install Celery and integrate it into the project. Install Celery via
pip using the following command:

pip install celery==5.2.7

You can find an introduction to Celery at
https://docs.celeryq.dev/en/stable/getting-
started/introduction.xhtml.

Installing RabbitMQ
The RabbitMQ community provides a Docker image that makes it
very easy to deploy a RabbitMQ server with a standard

https://docs.celeryq.dev/en/stable/getting-started/introduction.xhtml

configuration. Remember that you learned how to install Docker in
Chapter 7, Tracking User Actions.

After installing Docker on your machine, you can easily pull the
RabbitMQ Docker image by running the following command from
the shell:

docker pull rabbitmq

This will download the RabbitMQ Docker image to your local
machine. You can find information about the official RabbitMQ
Docker image at https://hub.docker.com/_/rabbitmq.

If you want to install RabbitMQ natively on your machine instead of
using Docker, you will find detailed installation guides for different
operating systems at
https://www.rabbitmq.com/download.xhtml.

Execute the following command in the shell to start the RabbitMQ
server with Docker:

With this command, we are telling RabbitMQ to run on port 5672 ,
and we are running its web-based management user interface on
port 15672 .

You will see output that includes the following lines:

docker run -it --rm --name rabbitmq -p 5672:5672 -p

https://hub.docker.com/_/rabbitmq
https://www.rabbitmq.com/download.xhtml

Starting broker...
...
completed with 4 plugins.
Server startup complete; 4 plugins started.

RabbitMQ is running on port 5672 and ready to receive messages.

Accessing RabbitMQ’s management interface
Open http://127.0.0.1:15672/ in your browser. You will see the
login screen for the management UI of RabbitMQ. It will look like
this:

Figure 8.18: The RabbitMQ management UI login screen

Enter guest as both the username and the password and click on
Login. You will see the following screen:

Figure 8.19: The RabbitMQ management UI dashboard

This is the default admin user for RabbitMQ. In this screen you can
monitor the current activity for RabbitMQ. You can see that there is
one node running with no connections or queues registered.

If you use RabbitMQ in a production environment, you will need to
create a new admin user and remove the default guest user. You
can do that in the Admin section of the management UI.

Now we will add Celery to the project. Then, we will run Celery and
test the connection to RabbitMQ.

Adding Celery to your project
You have to provide a configuration for the Celery instance. Create a
new file next to the settings.py file of myshop and name it
celery.py . This file will contain the Celery configuration for your
project. Add the following code to it:

In this code, you do the following:

You set the DJANGO_SETTINGS_MODULE variable for the Celery
command-line program.
You create an instance of the application with app =
Celery('myshop') .
You load any custom configuration from your project se�ings
using the config_from_object() method. The namespace
a�ribute specifies the prefix that Celery-related se�ings will
have in your settings.py file. By se�ing the CELERY
namespace, all Celery se�ings need to include the CELERY_
prefix in their name (for example, CELERY_BROKER_URL).
Finally, you tell Celery to auto-discover asynchronous tasks for
your applications. Celery will look for a tasks.py file in each

import os
from celery import Celery
set the default Django settings module for the 'ce
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'mys
app = Celery('myshop')
app.config_from_object('django.conf:settings', names
app.autodiscover_tasks()

application directory of applications added to INSTALLED_APPS
in order to load asynchronous tasks defined in it.

You need to import the celery module in the __init__.py file of
your project to ensure it is loaded when Django starts.

Edit the myshop/__init__.py file and add the following code to it:

import celery
from .celery import app as celery_app
__all__ = ['celery_app']

You have added Celery to the Django project, and you can now start
using it.

Running a Celery worker
A Celery worker is a process that handles bookkeeping features like
sending/receiving queue messages, registering tasks, killing hung
tasks, tracking status, etc. A worker instance can consume from any
number of message queues.

Open another shell and start a Celery worker from your project
directory, using the following command:

celery -A myshop worker -l info

The Celery worker is now running and ready to process tasks. Let’s
check if there is a connection between Celery and RabbitMQ.

Open http://127.0.0.1:15672/ in your browser to access the
RabbitMQ management UI. You will now see a graph under Queued
messages and another graph under Message rates, like in Figure
8.20:

Figure 8.20: The RabbitMQ management dashboard displaying connections and queues

Obviously, there are no queued messages as we didn’t send any
messages to the message queue yet. The graph under Message rates
should update every five seconds; you can see the refresh rate on the
top right of the screen. This time, both Connections and Queues
should display a number higher than zero.

Now we can start programming asynchronous tasks.

The CELERY_ALWAYS_EAGER se�ing allows you to
execute tasks locally in a synchronous manner, instead
of sending them to the queue. This is useful for
running unit tests or executing the application in your
local environment without running Celery.

Adding asynchronous tasks to your
application
Let’s send a confirmation email to the user whenever an order is
placed in the online shop. We will implement sending the email in a
Python function and register it as a task with Celery. Then, we will
add it to the order_create view to execute the task
asynchronously.

When the order_create view is executed, Celery will send the
message to a message queue managed by RabbitMQ and then a
Celery broker will execute the asynchronous task that we defined
with a Python function.

The convention for easy task discovery by Celery is to define
asynchronous tasks for your application in a tasks module within

the application directory.

Create a new file inside the orders application and name it
tasks.py . This is the place where Celery will look for asynchronous
tasks. Add the following code to it:

We have defined the order_created task by using the
@shared_task decorator. As you can see, a Celery task is just a
Python function decorated with @shared_task . The
order_created task function receives an order_id parameter. It’s

from celery import shared_task
from django.core.mail import send_mail
from .models import Order
@shared_task
def order_created(order_id):
 """
 Task to send an e-mail notification when an orde
 successfully created.
 """
 order = Order.objects.get(id=order_id)
 subject = f'Order nr. {order.id}'
 message = f'Dear {order.first_name},\n\n' \
 f'You have successfully placed an orde
 f'Your order ID is {order.id}.'
 mail_sent = send_mail(subject,
 message,
 'admin@myshop.com',
 [order.email])
 return mail_sent

always recommended to only pass IDs to task functions and retrieve
objects from the database when the task is executed. By doing so we
avoid accessing outdated information, since the data in the database
might have changed while the task was queued. We have used the
send_mail() function provided by Django to send an email
notification to the user who placed the order.

You learned how to configure Django to use your SMTP server in
Chapter 2, Enhancing Your Blog with Advanced Features. If you don’t
want to set up email se�ings, you can tell Django to write emails to
the console by adding the following se�ing to the settings.py file:

Use asynchronous tasks not only for time-consuming
processes, but also for other processes that do not take
so much time to be executed but that are subject to
connection failures or require a retry policy.

Now you have to add the task to your order_create view. Edit the
views.py file of the orders application, import the task, and call
the order_created asynchronous task after clearing the cart, as
follows:

from .tasks import order_created
#...
def order_create(request):
 # ...

EMAIL_BACKEND = 'django.core.mail.backends.console.E

 if request.method == 'POST':
 # ...
 if form.is_valid():
 # ...
 cart.clear()
 # launch asynchronous task
 order_created.delay(order.id)
 # ...

You call the delay() method of the task to execute it
asynchronously. The task will be added to the message queue and
executed by the Celery worker as soon as possible.

Make sure RabbitMQ is running. Then, stop the Celery worker
process and start it again with the following command:

celery -A myshop worker -l info

The Celery worker has now registered the task. In another shell, start
the development server from the project directory with the following
command:

python manage.py runserver

Open http://127.0.0.1:8000/ in your browser, add some
products to your shopping cart, and complete an order. In the shell
where you started the Celery worker you will see output similar to
the following:

The order_created task has been executed and an email
notification for the order has been sent. If you are using the email
backend console.EmailBackend , no email is sent but you should
see the rendered text of the email in the output of the console.

Monitoring Celery with Flower
Besides the RabbitMQ management UI, you can use other tools to
monitor the asynchronous tasks that are executed with Celery.
Flower is a useful web-based tool for monitoring Celery.

Install Flower using the following command:

pip install flower==1.1.0

Once installed, you can launch Flower by running the following
command in a new shell from your project directory:

celery -A myshop flower

Open http://localhost:5555/dashboard in your browser. You
will be able to see the active Celery workers and asynchronous task
statistics. The screen should look as follows:

[2022-02-03 20:25:19,569: INFO/MainProcess] Task ord
...
[2022-02-03 20:25:19,605: INFO/ForkPoolWorker-8] Tas

Figure 8.21: The Flower dashboard

You will see an active worker, whose name starts with celery@ and
whose status is Online.

Click on the worker’s name and then click on the Queues tab. You
will see the following screen:

Figure 8.22: Flower – Worker Celery task queues

Here you can see the active queue named celery. This is the active
queue consumer connected to the message broker.

Click the Tasks tab. You will see the following screen:

Figure 8.23: Flower – Worker Celery tasks

Here you can see the tasks that have been processed and the number
of times that they have been executed. You should see the
order_created task and the total times that it has been executed.
This number might vary depending on how many orders you have
placed.

Open http://localhost:8000/ in your browser. Add some items
to the cart, and then complete the checkout process.

Open http://localhost:5555/dashboard in your browser.
Flower has registered the task as processed. You should now see 1
under Processed and 1 under Succeeded as well:

Figure 8.24: Flower – Celery workers

Under Tasks you can see additional details about each task
registered with Celery:

Figure 8.25: Flower – Celery tasks

You can find the documentation for Flower at
https://flower.readthedocs.io/.

Additional resources
The following resources provide additional information related to
the topics covered in this chapter:

Source code for this chapter –
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter08

Static files for the project –
https://github.com/PacktPublishing/Django-4-by-
Example/tree/main/Chapter08/myshop/shop/static

Django session se�ings –
https://docs.djangoproject.com/en/4.1/ref/settings/

https://flower.readthedocs.io/
https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter08
https://github.com/PacktPublishing/Django-4-by-Example/tree/main/Chapter08/myshop/shop/static
https://docs.djangoproject.com/en/4.1/ref/settings/#sessions

#sessions

Django built-in context processors –
https://docs.djangoproject.com/en/4.1/ref/templates
/api/#built-in-template-context-processors

Information about RequestContext –
https://docs.djangoproject.com/en/4.1/ref/templates
/api/#django.template.RequestContext

Celery documentation –
https://docs.celeryq.dev/en/stable/index.xhtml

Introduction to Celery –
https://docs.celeryq.dev/en/stable/getting-
started/introduction.xhtml

Official RabbitMQ Docker image —
https://hub.docker.com/_/rabbitmq

RabbitMQ installation instructions –
https://www.rabbitmq.com/download.xhtml

Flower documentation – https://flower.readthedocs.io/

Summary
In this chapter, you created a basic e-commerce application. You
made a product catalog and built a shopping cart using sessions.
You implemented a custom context processor to make the cart
available to all templates and created a form for placing orders. You
also learned how to implement asynchronous tasks using Celery and
RabbitMQ.

https://docs.djangoproject.com/en/4.1/ref/settings/#sessions
https://docs.djangoproject.com/en/4.1/ref/templates/api/#built-in-template-context-processors
https://docs.djangoproject.com/en/4.1/ref/templates/api/#django.template.RequestContext
https://docs.celeryq.dev/en/stable/index.xhtml
https://docs.celeryq.dev/en/stable/getting-started/introduction.xhtml%20
https://hub.docker.com/_/rabbitmq
https://www.rabbitmq.com/download.xhtml
https://flower.readthedocs.io/

In the next chapter, you will discover how to integrate a payment
gateway into your shop, add custom actions to the administration
site, export data in CSV format, and generate PDF files dynamically.

Join us on Discord
Read this book alongside other users and the author.

Ask questions, provide solutions to other readers, chat with the
author via Ask Me Anything sessions, and much more. Scan the QR
code or visit the link to join the book community.

https://packt.link/django

9

Managing Payments and Orders

In the previous chapter, you created a basic online shop with a
product catalog and a shopping cart. You learned how to use Django
sessions and built a custom context processor. You also learned how
to launch asynchronous tasks using Celery and RabbitMQ.

In this chapter, you will learn how to integrate a payment gateway
into your site to let users pay by credit card. You will also extend the
administration site with different features.

In this chapter, you will:

Integrate the Stripe payment gateway into your project
Process credit card payments with Stripe
Handle payment notifications
Export orders to CSV files
Create custom views for the administration site
Generate PDF invoices dynamically

The source code for this chapter can be found at
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter09.

All Python packages used in this chapter are included in the
requirements.txt file in the source code for the chapter. You can

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter09

follow the instructions to install each Python package in the
following sections, or you can install all the requirements at once
with the command pip install -r requirements.txt .

Integrating a payment gateway
A payment gateway is a technology used by merchants to process
payments from customers online. Using a payment gateway, you
can manage customers’ orders and delegate payment processing to a
reliable, secure third party. By using a trusted payment gateway,
you won’t have to worry about the technical, security, and
regulatory complexity of processing credit cards in your own
system.

There are several payment gateway providers to choose from. We
are going to integrate Stripe, which is a very popular payment
gateway used by online services such as Shopify, Uber, Twitch, and
GitHub, among others.

Stripe provides an Application Programming Interface (API) that
allows you to process online payments with multiple payment
methods, such as credit card, Google Pay, and Apple Pay. You can
learn more about Stripe at https://www.stripe.com/.

Stripe provides different products related to payment processing. It
can manage one-off payments, recurring payments for subscription
services, multiparty payments for platforms and marketplaces, and
more.

Stripe offers different integration methods, from Stripe-hosted
payment forms to fully customizable checkout flows. We will

https://www.stripe.com/

integrate the Stripe Checkout product, which consists of a payment
page optimized for conversion. Users will be able to easily pay with
a credit card or other payment methods for the items they order. We
will receive payment notifications from Stripe. You can see the Stripe
Checkout documentation at
https://stripe.com/docs/payments/checkout.

By leveraging Stripe Checkout to process payments, you rely on a
solution that is secure and compliant with Payment Card Industry
(PCI) requirements. You will be able to collect payments from
Google Pay, Apple Pay, Afterpay, Alipay, SEPA direct debits, Bacs
direct debit, BECS direct debit, iDEAL, Sofort, GrabPay, FPX, and
other payment methods.

Creating a Stripe account
You need a Stripe account to integrate the payment gateway into
your site. Let’s create an account to test the Stripe API. Open
https://dashboard.stripe.com/register in your browser. You
will see a form like the following one:

https://stripe.com/docs/payments/checkout
https://dashboard.stripe.com/register

Figure 9.1: The Stripe signup form

Fill in the form with your own data and click on Create account. You
will receive an email from Stripe with a link to verify your email
address. The email will look like this:

Figure 9.2: The verification email to verify your email address

Open the email in your inbox and click on Verify email address.

You will be redirected to the Stripe dashboard screen, which will
look like this:

Figure 9.3: The Stripe dashboard after verifying the email address

In the top right of the screen, you can see that Test mode is activated.
Stripe provides you with a test environment and a production
environment. If you own a business or are a freelancer, you can add
your business details to activate the account and get access to
process real payments. However, this is not necessary to implement
and test payments through Stripe, as we will be working on the test
environment.

You need to add an account name to process payments. Open
https://dashboard.stripe.com/settings/account in your
browser. You will see the following screen:

https://dashboard.stripe.com/settings/account

Figure 9.4: The Stripe account se�ings

Under Account name, enter the name of your choice and then click
on Save. Go back to the Stripe dashboard. You will see your account
name displayed in the header:

Figure 9.5: The Stripe dashboard header including the account name

We will continue by installing the Stripe Python SDK and adding
Stripe to our Django project.

Installing the Stripe Python library
Stripe provides a Python library that simplifies dealing with its API.
We are going to integrate the payment gateway into the project using
the stripe library.

You can find the source code for the Stripe Python library at
https://github.com/stripe/stripe-python.

Install the stripe library from the shell using the following
command:

pip install stripe==4.0.2

Adding Stripe to your project
Open https://dashboard.stripe.com/test/apikeys in your
browser. You can also access this page from the Stripe dashboard by
clicking on Developers and then clicking on API keys. You will see
the following screen:

https://github.com/stripe/stripe-python
https://dashboard.stripe.com/test/apikeys

Figure 9.6: The Stripe test API keys screen

Stripe provides a key pair for two different environments, test and
production. There is a Publishable key and a Secret key for each
environment. Test mode publishable keys have the prefix pk_test_
and live mode publishable keys have the prefix pk_live_ . Test
mode secret keys have the prefix sk_test_ and live mode secret
keys have the prefix sk_live_ .

You will need this information to authenticate requests to the Stripe
API. You should always keep your private key secret and store it
securely. The publishable key can be used in client-side code such as
JavaScript scripts. You can read more about Stripe API keys at
https://stripe.com/docs/keys.

Add the following se�ings to the settings.py file of your project:

https://stripe.com/docs/keys

Stripe settings
STRIPE_PUBLISHABLE_KEY = '' # Publishable key
STRIPE_SECRET_KEY = '' # Secret key
STRIPE_API_VERSION = '2022-08-01'

Replace the STRIPE_PUBLISHABLE_KEY and STRIPE_SECRET_KEY
values with the test Publishable key and the Secret key provided by
Stripe. You will use Stripe API version 2022-08-01 . You can see the
release notes for this API version at
https://stripe.com/docs/upgrades#2022-08-01.

You are using the test environment keys for the
project. Once you go live and validate your Stripe
account, you will obtain the production environment
keys. In Chapter 17, Going Live, you will learn how to
configure se�ings for multiple environments.

Let’s integrate the payment gateway into the checkout process. You
can find the Python documentation for Stripe at
https://stripe.com/docs/api?lang=python.

Building the payment process
The checkout process will work as follows:

1. Add items to the shopping cart
2. Check out the shopping cart
3. Enter credit card details and pay

https://stripe.com/docs/upgrades#2022-08-01
https://stripe.com/docs/api?lang=python

We are going to create a new application to manage payments.
Create a new application in your project using the following
command:

python manage.py startapp payment

Edit the settings.py file of the project and add the new
application to the INSTALLED_APPS se�ing, as follows. The new line
is highlighted in bold:

INSTALLED_APPS = [
 # ...
 'shop.apps.ShopConfig',
 'cart.apps.CartConfig',
 'orders.apps.OrdersConfig',
 'payment.apps.PaymentConfig',
]

The payment application is now active in the project.

Currently, users are able to place orders but they cannot pay for
them. After clients place an order, we need to redirect them to the
payment process.

Edit the views.py file of the orders application and include the
following imports:

from django.urls import reverse
from django.shortcuts import render, redirect

In the same file, find the following lines of the order_create view:

launch asynchronous task
order_created.delay(order.id)
return render(request,
 'orders/order/created.xhtml',
 locals())

Replace them with the following code:

launch asynchronous task
order_created.delay(order.id)
set the order in the session
request.session['order_id'] = order.id
redirect for payment
return redirect(reverse('payment:process'))

The edited view should look as follows:

from django.urls import reverse
from django.shortcuts import render, redirect
...
def order_create(request):
 cart = Cart(request)
 if request.method == 'POST':
 form = OrderCreateForm(request.POST)
 if form.is_valid():
 order = form.save()
 for item in cart:

Instead of rendering the template orders/order/created.xhtml
when placing a new order, the order ID is stored in the user session
and the user is redirected to the payment:process URL. We are
going to implement this URL later. Remember that Celery has to be
running for the order_created task to be queued and executed.

Let’s integrate the payment gateway.

Integrating Stripe Checkout
The Stripe Checkout integration consists of a checkout page hosted
by Stripe that allows the user to enter the payment details, usually a
credit card, and collects the payment. If the payment is successful,

 OrderItem.objects.create(order=order
 product=item
 price=item[
 quantity=ite
 # clear the cart
 cart.clear()
 # launch asynchronous task
 order_created.delay(order.id)
 # set the order in the session
 request.session['order_id'] = order.id
 # redirect for payment
 return redirect(reverse('payment:process
 else:
 form = OrderCreateForm()
 return render(request,
 'orders/order/create.xhtml',
 {'cart': cart, 'form': form})

Stripe redirects the client to a success page. If the payment is
canceled by the client, it redirects the client to a cancel page.

We will implement three views:

payment_process : Creates a Stripe Checkout Session and
redirects the client to the Stripe-hosted payment form. A
checkout session is a programmatic representation of what the
client sees when they are redirected to the payment form,
including the products, quantities, currency, and amount to
charge
payment_completed : Displays a message for successful
payments. The user is redirected to this view if the payment is
successful
payment_canceled : Displays a message for canceled
payments. The user is redirected to this view if the payment is
canceled

Figure 9.7 shows the checkout payment flow:

Figure 9.7: The checkout payment flow

The complete checkout process will work as follows:

1. After an order is created, the user is redirected to the
payment_process view. The user is presented with an order
summary and a bu�on to proceed with the payment.

2. When the user proceeds to pay, a Stripe checkout session is
created. The checkout session includes the list of items that the
user will purchase, a URL to redirect the user to after a
successful payment, and a URL to redirect the user to if the
payment is canceled.

3. The view redirects the user to the Stripe-hosted checkout page.
This page includes the payment form. The client enters their
credit card details and submits the form.

4. Stripe processes the payment and redirects the client to the
payment_completed view. If the client doesn’t complete the
payment, Stripe redirects the client to the payment_canceled
view instead.

Let’s start building the payment views. Edit the views.py file of the
payment application and add the following code to it:

from decimal import Decimal
import stripe
from django.conf import settings
from django.shortcuts import render, redirect, rever
 get_object_or_404
from orders.models import Order
create the Stripe instance
stripe.api_key = settings.STRIPE_SECRET_KEY
stripe.api_version = settings.STRIPE_API_VERSION
def payment_process(request):
 order_id = request.session.get('order_id', None)
 order = get_object_or_404(Order, id=order_id)
 if request.method == 'POST':
 success_url = request.build_absolute_uri(
 reverse('payment:completed')
 cancel_url = request.build_absolute_uri(
 reverse('payment:canceled'))
 # Stripe checkout session data
 session_data = {

In the previous code, the stripe module is imported and the Stripe
API key is set using the value of the STRIPE_SECRET_KEY se�ing.
The API version to use is also set using the value of the
STRIPE_API_VERSION se�ing.

The payment_process view performs the following tasks:

1. The current Order object is retrieved from the database using
the order_id session key, which was stored previously in the
session by the order_create view.

2. The Order object for the given ID is retrieved. By using the
shortcut function get_object_or_404() , an Http404 (page
not found) exception is raised if no order is found with the
given ID.

3. If the view is loaded with a GET request, the template
payment/process.xhtml is rendered and returned. This
template will include the order summary and a bu�on to

 'mode': 'payment',
 'client_reference_id': order.id,
 'success_url': success_url,
 'cancel_url': cancel_url,
 'line_items': []
 }
 # create Stripe checkout session
 session = stripe.checkout.Session.create(**s
 # redirect to Stripe payment form
 return redirect(session.url, code=303)
 else:
 return render(request, 'payment/process.xhtm

proceed with the payment, which will generate a POST request
to the view.

4. If the view is loaded with a POST request, a Stripe checkout
session is created with stripe.checkout.Session.create()
using the following parameters:

mode : The mode of the checkout session. We use payment
for a one-time payment. You can see the different values
accepted for this parameter at
https://stripe.com/docs/api/checkout/sessions/ob
ject#checkout_session_object-mode.
client_reference_id : The unique reference for this
payment. We will use this to reconcile the Stripe checkout
session with our order. By passing the order ID, we link
Stripe payments to orders in our system, and we will be
able to receive payment notifications from Stripe to mark
the orders as paid.
success_url : The URL for Stripe to redirect the user to if
the payment is successful. We use
request.build_absolute_uri() to generate an absolute
URI from the URL path. You can see the documentation for
this method at
https://docs.djangoproject.com/en/4.1/ref/reques
t-
response/#django.http.HttpRequest.build_absolute
_uri.
cancel_url : The URL for Stripe to redirect the user to if
the payment is canceled.

https://stripe.com/docs/api/checkout/sessions/object#checkout_session_object-mode
https://docs.djangoproject.com/en/4.1/ref/request-response/#django.http.HttpRequest.build_absolute_uri

line_items : This is an empty list. We will next populate it
with the order items to be purchased.

5. After creating the checkout session, an HTTP redirect with
status code 303 is returned to redirect the user to Stripe. The
status code 303 is recommended to redirect web applications to
a new URI after an HTTP POST has been performed.

You can see all the parameters to create a Stripe session object at
https://stripe.com/docs/api/checkout/sessions/create.

Let’s populate the line_items list with the order items to create the
checkout session. Each item will contain the name of the item, the
amount to charge, the currency to use, and the quantity purchased.

Add the following code highlighted in bold to the
payment_process view:

def payment_process(request):
 order_id = request.session.get('order_id', None)
 order = get_object_or_404(Order, id=order_id)
 if request.method == 'POST':
 success_url = request.build_absolute_uri(
 reverse('payment:completed')
 cancel_url = request.build_absolute_uri(
 reverse('payment:canceled'))
 # Stripe checkout session data
 session_data = {
 'mode': 'payment',
 'success_url': success_url,
 'cancel_url': cancel_url,
 'line_items': []

https://stripe.com/docs/api/checkout/sessions/create

We use the following information for each item:

price_data : Price-related information.
unit_amount : The amount in cents to be collected by the
payment. This is a positive integer representing how much
to charge in the smallest currency unit with no decimal
places. For example, to charge $10.00, this would be 1000
(that is, 1,000 cents). The item price, item.price, is
multiplied by Decimal(‘100’) to obtain the value in cents
and then it is converted into an integer.

 }
 # add order items to the Stripe checkout ses
 for item in order.items.all():
 session_data['line_items'].append({
 'price_data': {
 'unit_amount': int(item.price *
 'currency': 'usd',
 'product_data': {
 'name': item.product.name,
 },
 },
 'quantity': item.quantity,
 })
 # create Stripe checkout session
 session = stripe.checkout.Session.create(**s
 # redirect to Stripe payment form
 return redirect(session.url, code=303)
 else:
 return render(request, 'payment/process.xhtm

currency : The currency to use in three-le�er ISO format.
We use usd for US dollars. You can see a list of supported
currencies at https://stripe.com/docs/currencies.
product_data : Product-related information.

name : The name of the product.
quantity : The number of units to purchase.

The payment_process view is now ready. Let’s create simple views
for the payment success and cancel pages.

Add the following code to the views.py file of the payment
application:

Create a new file inside the payment application directory and name
it urls.py . Add the following code to it:

def payment_completed(request):
 return render(request, 'payment/completed.xhtml
def payment_canceled(request):
 return render(request, 'payment/canceled.xhtml')

from django.urls import path
from . import views
app_name = 'payment'
urlpatterns = [
 path('process/', views.payment_process, name='pr
 path('completed/', views.payment_completed, name
 path('canceled/', views.payment_canceled, name=
]

https://stripe.com/docs/currencies

These are the URLs for the payment workflow. We have included
the following URL pa�erns:

process : The view that displays the order summary to the
user, creates the Stripe checkout session, and redirects the user
to the Stripe-hosted payment form
completed : The view for Stripe to redirect the user to if the
payment is successful
canceled : The view for Stripe to redirect the user to if the
payment is canceled

Edit the main urls.py file of the myshop project and include the
URL pa�erns for the payment application, as follows:

We have placed the new path before the shop.urls pa�ern to avoid
an unintended pa�ern match with a pa�ern defined in shop.urls .
Remember that Django runs through each URL pa�ern in order and
stops at the first one that matches the requested URL.

Let’s build a template for each view. Create the following file
structure inside the payment application directory:

urlpatterns = [
 path('admin/', admin.site.urls),
 path('cart/', include('cart.urls', namespace='ca
 path('orders/', include('orders.urls', namespace
 path('payment/', include('payment.urls', namespa
 path('', include('shop.urls', namespace='shop'))
]

templates/
 payment/
 process.xhtml
 completed.xhtml
 canceled.xhtml

Edit the payment/process.xhtml template and add the following
code to it:

{% extends "shop/base.xhtml" %}
{% load static %}
{% block title %}Pay your order{% endblock %}
{% block content %}
 <h1>Order summary</h1>
 <table class="cart">
 <thead>
 <tr>
 <th>Image</th>
 <th>Product</th>
 <th>Price</th>
 <th>Quantity</th>
 <th>Total</th>
 </tr>
 </thead>
 <tbody>
 {% for item in order.items.all %}
 <tr class="row{% cycle "1" "2" %}">
 <td>
 <img src="{% if item.product.image %}{{
 {% else %}{% static "img/no_image.png" %

This is the template to display the order summary to the user and
allow the client to proceed with the payment. It includes a form and
a Pay now bu�on to submit it via POST . When the form is submi�ed,
the payment_process view creates the Stripe checkout session and
redirects the user to the Stripe-hosted payment form.

Edit the payment/completed.xhtml template and add the
following code to it:

 </td>
 <td>{{ item.product.name }}</td>
 <td class="num">${{ item.price }}</td>
 <td class="num">{{ item.quantity }}</td>
 <td class="num">${{ item.get_cost }}</td>
 </tr>
 {% endfor %}
 <tr class="total">
 <td colspan="4">Total</td>
 <td class="num">${{ order.get_total_cost }}<
 </tr>
 </tbody>
 </table>
 <form action="{% url "payment:process" %}" method=
 <input type="submit" value="Pay now">
 {% csrf_token %}
 </form>
{% endblock %}

{% extends "shop/base.xhtml" %}
{% block title %}Payment successful{% endblock %}

This is the template for the page that the user is redirected to after a
successful payment.

Edit the payment/canceled.xhtml template and add the following
code to it:

This is the template for the page that the user is redirected to when
the payment is canceled.

We have implemented the necessary views to process payments,
including their URL pa�erns and templates. It’s time to try out the
checkout process.

Testing the checkout process
Execute the following command in the shell to start the RabbitMQ
server with Docker:

{% block content %}
 <h1>Your payment was successful</h1>
 <p>Your payment has been processed successfully.</
{% endblock %}

{% extends "shop/base.xhtml" %}
{% block title %}Payment canceled{% endblock %}
{% block content %}
 <h1>Your payment has not been processed</h1>
 <p>There was a problem processing your payment.</p
{% endblock %}

This will run RabbitMQ on port 5672 and the web-based
management interface on port 15672 .

Open another shell and start the Celery worker from your project
directory with the following command:

celery -A myshop worker -l info

Open one more shell and start the development server from your
project directory with this command:

python manage.py runserver

Open http://127.0.0.1:8000/ in your browser, add some
products to the shopping cart, and fill in the checkout form. Click the
Place order bu�on. The order will be persisted to the database, the
order ID will be saved in the current session, and you will be
redirected to the payment process page.

The payment process page will look as follows:

docker run -it --rm --name rabbitmq -p 5672:5672 -p

Figure 9.8: The payment process page including an order summary

Images in this chapter:

Green tea: Photo by Jia Ye on Unsplash
Red tea: Photo by Manki Kim on Unsplash

On this page, you can see an order summary and a Pay now bu�on.
Click on Pay now. The payment_process view will create a Stripe

checkout session and you will be redirected to the Stripe-hosted
payment form. You will see the following page:

Figure 9.9: The Stripe checkout payment from

Using test credit cards
Stripe provides different test credit cards from different card issuers
and countries, which allows you to simulate payments to test all

possible scenarios (successful payment, declined payment, etc.). The
following table shows some of the cards you can test for different
scenarios:

Result Test Credit
Card

CVC Expiry
date

Successful payment 4242 4242
4242 4242

Any 3
digits

Any
future
date

Failed payment 4000 0000
0000 0002

Any 3
digits

Any
future
date

Requires 3D secure
authentication

4000 0025
0000 3155

Any 3
digits

Any
future
date

You can find the complete list of credit cards for testing at
https://stripe.com/docs/testing.

We are going to use the test card 4242 4242 4242 4242 , which is a
Visa card that returns a successful purchase. We will use the CVC
123 and any future expiration date, such as 12/29 . Enter the credit
card details in the payment form as follows:

https://stripe.com/docs/testing

Figure 9.10: The payment form with the valid test credit card details

Click the Pay bu�on. The bu�on text will change to Processing…, as
in Figure 9.11:

Figure 9.11: The payment form being processed

After a couple of seconds, you will see the bu�on turns green like in
Figure 9.12:

Figure 9.12: The payment form after the payment is successful

Then Stripe redirects your browser to the payment completed URL
you provided when creating the checkout session. You will see the
following page:

Figure 9.13: The successful payment page

Checking the payment information in the
Stripe dashboard
Access the Stripe dashboard at
https://dashboard.stripe.com/test/payments. Under
Payments, you will be able to see the payment like in Figure 9.14:

Figure 9.14: The payment object with status Succeeded in the Stripe dashboard

https://dashboard.stripe.com/test/payments

The payment status is Succeeded. The payment description includes
the payment intent ID that starts with pi_ . When a checkout session
is confirmed, Stripe creates a payment intent associated with the
session. A payment intent is used to collect a payment from the user.
Stripe records all a�empted payments as payment intents. Each
payment intent has a unique ID, and it encapsulates the details of
the transaction, such as the supported payment methods, the
amount to collect, and the desired currency. Click on the transaction
to access the payment details.

You will see the following screen:

Figure 9.15: Payment details for a Stripe transaction

Here you can see the payment information and the payment
timeline, including payment changes. Under Checkout summary,
you can find the line items purchased, including name, quantity,
unit price, and amount. Under Payment details, you can see a
breakdown of the amount paid and the Stripe fee for processing the
payment.

Under this section, you will find a Payment method section
including details about the payment method and the credit card
checks performed by Stripe, like in Figure 9.16:

Figure 9.16: Payment method used in the Stripe transaction

Under this section, you will find another section named Events and
logs, like in Figure 9.17:

Figure 9.17: Events and logs for a Stripe transaction

This section contains all the activity related to the transaction,
including requests to the Stripe API. You can click on any request to
see the HTTP request to the Stripe API and the response in JSON
format.

Let’s review the activity events in chronological order, from bo�om
to top:

1. First, a new checkout session is created by sending a POST
request to the Stripe API endpoint /v1/checkout/sessions .
The Stripe SDK method
stripe.checkout.Session.create() that is used in the
payment_process view builds and sends the request to the
Stripe API and handles the response to return a session object.

2. The user is redirected to the checkout page where they submit
the payment form. A request to confirm the checkout session is
sent by the Stripe checkout page.

3. A new payment intent is created.
4. A charge related to the payment intent is created.
5. The payment intent is now completed with a successful

payment.
6. The checkout session is completed.

Congratulations! You have successfully integrated Stripe Checkout
into your project. Next, you will learn how to receive payment
notifications from Stripe and how to reference Stripe payments in
your shop orders.

Using webhooks to receive payment
notifications
Stripe can push real-time events to our application by using
webhooks. A webhook, also called a callback, can be thought of as
an event-driven API instead of a request-driven API. Instead of

polling the Stripe API frequently to know when a new payment is
completed, Stripe can send an HTTP request to a URL of our
application to notify of successful payments in real time. These
notification of these events will be asynchronous, when the event
occurs, regardless of our synchronous calls to the Stripe API.

We will build a webhook endpoint to receive Stripe events. The
webhook will consist of a view that will receive a JSON payload with
the event information to process it. We will use the event
information to mark orders as paid when the checkout session is
successfully completed.

Creating a webhook endpoint
You can add webhook endpoint URLs to your Stripe account to
receive events. Since we are using webhooks and we don’t have a
hosted website accessible through a public URL, we will use the
Stripe Command-Line Interface (CLI) to listen to events and
forward them to our local environment.

Open https://dashboard.stripe.com/test/webhooks in your
browser. You will see the following screen:

https://dashboard.stripe.com/test/webhooks

Figure 9.18: The Stripe webhooks default screen

Here you can see a schema of how Stripe notifies your integration
asynchronously. You will get Stripe notifications in real time
whenever an event happens. Stripe sends different types of events
like checkout session created, payment intent created, payment
intent updated, or checkout session completed. You can find a list of

all the types of events that Stripe sends at
https://stripe.com/docs/api/events/types.

Click on Test in a local environment. You will see the following
screen:

Figure 9.19: The Stripe webhook setup screen

https://stripe.com/docs/api/events/types

This screen shows the steps to listen to Stripe events from your local
environment. It also includes a sample Python webhook endpoint.
Copy just the endpoint_secret value.

Edit the settings.py file of the myshop project and add the
following se�ing to it:

STRIPE_WEBHOOK_SECRET = ''

Replace the STRIPE_WEBHOOK_SECRET value with the
endpoint_secret value provided by Stripe.

To build a webhook endpoint, we will create a view that receives a
JSON payload with the event details. We will check the event details
to identify when a checkout session is completed and mark the
related order as paid.

Stripe signs the webhook events it sends to your endpoints by
including a Stripe-Signature header with a signature in each
event. By checking the Stripe signature, you can verify that events
were sent by Stripe and not by a third party. If you don’t check the
signature, an a�acker could send fake events to your webhooks
intentionally. The Stripe SDK provides a method to verify
signatures. We will use it to create a webhook that verifies the
signature.

Add a new file to the payment/ application directory and name it
webhooks.py . Add the following code to the new webhooks.py file:

The @csrf_exempt decorator is used to prevent Django from
performing the CSRF validation that is done by default for all POST
requests. We use the method
stripe.Webhook.construct_event() of the stripe library to
verify the event’s signature header. If the event’s payload or the
signature is invalid, we return an HTTP 400 Bad Request

import stripe
from django.conf import settings
from django.http import HttpResponse
from django.views.decorators.csrf import csrf_exempt
from orders.models import Order
@csrf_exempt
def stripe_webhook(request):
 payload = request.body
 sig_header = request.META['HTTP_STRIPE_SIGNATURE
 event = None
 try:
 event = stripe.Webhook.construct_event(
 payload,
 sig_header,
 settings.STRIPE_WEBHOOK_SECRET)
 except ValueError as e:
 # Invalid payload
 return HttpResponse(status=400)
 except stripe.error.SignatureVerificationError a
 # Invalid signature
 return HttpResponse(status=400)
 return HttpResponse(status=200)

response. Otherwise, we return an HTTP 200 OK response. This is
the basic functionality required to verify the signature and construct
the event from the JSON payload. Now we can implement the
actions of the webhook endpoint.

Add the following code highlighted in bold to the stripe_webhook
view:

@csrf_exempt
def stripe_webhook(request):
 payload = request.body
 sig_header = request.META['HTTP_STRIPE_SIGNATURE
 event = None
 try:
 event = stripe.Webhook.construct_event(
 payload,
 sig_header,
 settings.STRIPE_WEBHOOK_SECRET)
 except ValueError as e:
 # Invalid payload
 return HttpResponse(status=400)
 except stripe.error.SignatureVerificationError a
 # Invalid signature
 return HttpResponse(status=400)
 if event.type == 'checkout.session.completed':
 session = event.data.object
 if session.mode == 'payment' and session.pay
 try:
 order = Order.objects.get(id=session
 except Order.DoesNotExist:
 return HttpResponse(status=404)

In the new code, we check if the event received is
checkout.session.completed . This event indicates that the
checkout session has been successfully completed. If we receive this
event, we retrieve the session object and check whether the session
mode is payment because this is the expected mode for one-off
payments. Then we get the client_reference_id a�ribute that we
used when we created the checkout session and use the Django
ORM to retrieve the Order object with the given id . If the order
does not exist, we raise an HTTP 404 exception. Otherwise, we mark
the order as paid with order.paid = True and we save the order
to the database.

Edit the urls.py file of the payment application and add the
following code highlighted in bold:

 # mark order as paid
 order.paid = True
 order.save()
 return HttpResponse(status=200)

from django.urls import path
from . import views
from . import webhooks
app_name = 'payment'
urlpatterns = [
 path('process/', views.payment_process, name='pr
 path('completed/', views.payment_completed, name
 path('canceled/', views.payment_canceled, name=

We have imported the webhooks module and added the URL
pa�ern for the Stripe webhook.

Testing webhook notifications
To test webhooks, you need to install the Stripe CLI. The Stripe CLI
is a developer tool that allows you to test and manage your
integration with Stripe directly from your shell. You will find
installation instructions at https://stripe.com/docs/stripe-
cli#install.

If you are using macOS or Linux, you can install the Stripe CLI with
Homebrew using the following command:

brew install stripe/stripe-cli/stripe

If you are using Windows, or you are using macOS or Linux without
Homebrew, download the latest Stripe CLI release for macOS,
Linux, or Windows from https://github.com/stripe/stripe-
cli/releases/latest and unzip the file. If you are using
Windows, run the unzipped .exe file.

After installing the Stripe CLI, run the following command from a
shell:

stripe login

 path('webhook/', webhooks.stripe_webhook, name=
]

https://stripe.com/docs/stripe-cli#install
https://github.com/stripe/stripe-cli/releases/latest

You will see the following output:

Press Enter or open the URL in your browser. You will see the
following screen:

Your pairing code is: xxxx-yyyy-zzzz-oooo This pairi

Figure 9.20: The Stripe CLI pairing screen

Verify that the pairing code in the Stripe CLI matches the one shown
on the website and click on Allow access. You will see the following
message:

Figure 9.21: The Stripe CLI pairing confirmation

Now run the following command from your shell:

We use this command to tell Stripe to listen to events and forward
them to our local host. We use port 8000 , where the Django
development server is running, and the path /payment/webhook/ ,
which matches the URL pa�ern of our webhook.

You will see the following output:

stripe listen --forward-to localhost:8000/payment/we

Here, you can see the webhook secret. Check that the webhook
signing secret matches the STRIPE_WEBHOOK_SECRET se�ing in the
settings.py file of your project.

Open https://dashboard.stripe.com/test/webhooks in your
browser. You will see the following screen:

Figure 9.22: The Stripe Webhooks page

Under Local listeners, you will see the local listener that we created.

In a production environment, the Stripe CLI is not
needed. Instead, you would need to add a hosted
webhook endpoint using the URL of your hosted
application.

Getting ready... > Ready! You are using Stripe API V

https://dashboard.stripe.com/test/webhooks

Open http://127.0.0.1:8000/ in your browser, add some
products to the shopping cart, and complete the checkout process.

Check the shell where you are running the Stripe CLI:

You can see the different events that have been sent by Stripe to the
local webhook endpoint. These are, in chronological order:

payment_intent.created : The payment intent has been
created.
payment_intent.succeeded : The payment intent succeeded.
charge.succeeded : The charge associated with the payment
intent succeeded.
checkout.session.completed : The checkout session has been
completed. This is the event that we use to mark the order as
paid.

The stripe_webhook webhook returns an HTTP 200 OK response
to all of the requests sent by Stripe. However, we only process the

2022-08-17 13:06:13 --> payment_intent.created [ev
2022-08-17 13:06:13 <-- [200] POST http://localhos
2022-08-17 13:06:13 --> payment_intent.succeeded [
2022-08-17 13:06:13 <-- [200] POST http://localhos
2022-08-17 13:06:13 --> charge.succeeded [evt_...]
2022-08-17 13:06:13 <-- [200] POST http://localhos
2022-08-17 13:06:14 --> checkout.session.completed
2022-08-17 13:06:14 <-- [200] POST http://localhos

event checkout.session.completed to mark the order related to
the payment as paid.

Next, open http://127.0.0.1:8000/admin/orders/order/ in
your browser. The order should now be marked as paid:

Figure 9.23: An order marked as paid in the order list of the administration site

Now orders get automatically marked as paid with Stripe payment
notifications. Next, you are going to learn how to reference Stripe
payments in your shop orders.

Referencing Stripe payments in orders
Each Stripe payment has a unique identifier. We can use the
payment ID to associate each order with its corresponding Stripe
payment. We will add a new field to the Order model of the orders
application, so that we can reference the related payment by its ID.
This will allow us to link each order with the related Stripe
transaction.

Edit the models.py file of the orders application and add the
following field to the Order model. The new field is highlighted in
bold:

class Order(models.Model):
 # ...

Let’s sync this field with the database. Use the following command
to generate the database migrations for the project:

python manage.py makemigrations

You will see the following output:

Migrations for 'orders':
 orders/migrations/0002_order_stripe_id.py
 - Add field stripe_id to order

Apply the migration to the database with the following command:

python manage.py migrate

You will see output that ends with the following line:

Applying orders.0002_order_stripe_id... OK

The model changes are now synced with the database. Now you will
be able to store the Stripe payment ID for each order.

Edit the stripe_webhook function in the views.py file of the
payment application and add the following lines highlighted in
bold:

 stripe_id = models.CharField(max_length=250, bla

With this change, when receiving a webhook notification for a
completed checkout session, the payment intent ID is stored in the
stripe_id field of the order object.

Open http://127.0.0.1:8000/ in your browser, add some
products to the shopping cart, and complete the checkout process.
Then, access http://127.0.0.1:8000/admin/orders/order/ in
your browser and click on the latest order ID to edit it. The

...
@csrf_exempt
def stripe_webhook(request):
 # ...

 if event.type == 'checkout.session.completed':
 session = event.data.object
 if session.mode == 'payment' and session.pay
 try:
 order = Order.objects.get(id=session
 except Order.DoesNotExist:
 return HttpResponse(status=404)
 # mark order as paid
 order.paid = True
 # store Stripe payment ID
 order.stripe_id = session.payment_intent
 order.save()
 # launch asynchronous task
 payment_completed.delay(order.id)
 return HttpResponse(status=200)

stripe_id field should contain the payment intent ID as in Figure
9.24:

Figure 9.24: The Stripe ID field with the payment intent ID

Great! We are successfully referencing Stripe payments in orders.
Now, we can add Stripe payment IDs to the order list on the
administration site. We can also include a link to each payment ID to
see the payment details in the Stripe dashboard.

Edit the models.py file of the orders application and add the
following code highlighted in bold:

from django.db import models
from django.conf import settings
from shop.models import Product
class Order(models.Model):
 # ...
 class Meta:
 # ...
 def __str__(self):
 return f'Order {self.id}'
 def get_total_cost(self):
 return sum(item.get_cost() for item in self
 def get_stripe_url(self):
 if not self.stripe_id:
 # no payment associated

We have added the new get_stripe_url() method to the Order
model. This method is used to return the Stripe dashboard’s URL for
the payment associated with the order. If no payment ID is stored in
the stripe_id field of the Order object, an empty string is
returned. Otherwise, the URL for the payment in the Stripe
dashboard is returned. We check if the string _test_ is present in
the STRIPE_SECRET_KEY se�ing to discriminate the production
environment from the test environment. Payments in the production
environment follow the pa�ern
https://dashboard.stripe.com/payments/{id} , whereas test
payments follow the pa�ern
https://dashboard.stripe.com/payments/test/{id} .

Let’s add a link to each Order object on the list display page of the
administration site.

Edit the admin.py file of the orders application and add the
following code highlighted in bold:

 return ''
 if '_test_' in settings.STRIPE_SECRET_KEY:
 # Stripe path for test payments
 path = '/test/'
 else:
 # Stripe path for real payments
 path = '/'
 return f'https://dashboard.stripe.com{path}p

The order_stripe_payment() function takes an Order object as
an argument and returns an HTML link with the payment URL in
Stripe. Django escapes HTML output by default. We use the
mark_safe function to avoid auto-escaping.

Avoid using mark_safe on input that has come from
the user to avoid Cross-Site Scripting (XSS). XSS
enables a�ackers to inject client-side scripts into web
content viewed by other users.

Open http://127.0.0.1:8000/admin/orders/order/ in your
browser. You will see a new column named STRIPE PAYMENT.
You will see the related Stripe payment ID for the latest order. If you

from django.utils.safestring import mark_safe
def order_payment(obj):
 url = obj.get_stripe_url()
 if obj.stripe_id:
 html = f'{ob
 return mark_safe(html)
 return ''
order_payment.short_description = 'Stripe payment'
@admin.register(Order)
class OrderAdmin(admin.ModelAdmin):
 list_display = ['id', 'first_name', 'last_name',
 'address', 'postal_code', 'city
 order_payment, 'created', 'updat
 # ...

click on the payment ID, you will be taken to the payment URL in
Stripe, where you can find the additional payment details.

Figure 9.25: The Stripe payment ID for an order object in the administration site

Now you automatically store Stripe payment IDs in orders when
receiving payment notifications. You have successfully integrated
Stripe into your project.

Going live
Once you have tested your integration, you can apply for a
production Stripe account. When you are ready to move into
production, remember to replace your test Stripe credentials with
the live ones in the settings.py file. You will also need to add a
webhook endpoint for your hosted website at
https://dashboard.stripe.com/webhooks instead of using the
Stripe CLI. Chapter 17, Going Live, will teach you how to configure
project se�ings for multiple environments.

Exporting orders to CSV files
Sometimes, you might want to export the information contained in a
model to a file so that you can import it into another system. One of
the most widely used formats to export/import data is Comma-
Separated Values (CSV). A CSV file is a plain text file consisting of a

https://dashboard.stripe.com/webhooks

number of records. There is usually one record per line and some
delimiter character, usually a literal comma, separating the record
fields. We are going to customize the administration site to be able to
export orders to CSV files.

Adding custom actions to the
administration site
Django offers a wide range of options to customize the
administration site. You are going to modify the object list view to
include a custom administration action. You can implement custom
administration actions to allow staff users to apply actions to
multiple elements at once in the change list view.

An administration action works as follows: a user selects objects
from the administration object list page with checkboxes, then they
select an action to perform on all of the selected items, and execute
the actions. Figure 9.26 shows where actions are located in the
administration site:

Figure 9.26: The drop-down menu for Django administration actions

You can create a custom action by writing a regular function that
receives the following parameters:

The current ModelAdmin being displayed
The current request object as an HttpRequest instance
A QuerySet for the objects selected by the user

This function will be executed when the action is triggered from the
administration site.

You are going to create a custom administration action to download
a list of orders as a CSV file.

Edit the admin.py file of the orders application and add the
following code before the OrderAdmin class:

import csv
import datetime
from django.http import HttpResponse
def export_to_csv(modeladmin, request, queryset):
 opts = modeladmin.model._meta
 content_disposition = f'attachment; filename={op
 response = HttpResponse(content_type='text/csv')
 response['Content-Disposition'] = content_dispos
 writer = csv.writer(response)
 fields = [field for field in opts.get_fields() i
 field.many_to_many and not field.one_t
 # Write a first row with header information
 writer.writerow([field.verbose_name for field in
 # Write data rows
 for obj in queryset:

In this code, you perform the following tasks:

1. You create an instance of HttpResponse , specifying the
text/csv content type, to tell the browser that the response has
to be treated as a CSV file. You also add a Content-
Disposition header to indicate that the HTTP response
contains an a�ached file.

2. You create a CSV writer object that will write to the response
object.

3. You get the model fields dynamically using the get_fields()
method of the model’s _meta options. You exclude many-to-
many and one-to-many relationships.

4. You write a header row including the field names.
5. You iterate over the given QuerySet and write a row for each

object returned by the QuerySet. You take care of forma�ing
datetime objects because the output value for CSV has to be a
string.

6. You customize the display name for the action in the actions
drop-down element of the administration site by se�ing a

 data_row = []
 for field in fields:
 value = getattr(obj, field.name)
 if isinstance(value, datetime.datetime)
 value = value.strftime('%d/%m/%Y')
 data_row.append(value)
 writer.writerow(data_row)
 return response
export_to_csv.short_description = 'Export to CSV'

short_description a�ribute on the function.

You have created a generic administration action that can be added
to any ModelAdmin class.

Finally, add the new export_to_csv administration action to the
OrderAdmin class, as follows. New code is highlighted in bold:

Start the development server with the command:

python manage.py runserver

Open http://127.0.0.1:8000/admin/orders/order/ in your
browser. The resulting administration action should look like this:

@admin.register(Order)
class OrderAdmin(admin.ModelAdmin):
 list_display = ['id', 'first_name', 'last_name',
 'address', 'postal_code', 'city
 order_payment, 'created', 'updat
 list_filter = ['paid', 'created', 'updated']
 inlines = [OrderItemInline]
 actions = [export_to_csv]

Figure 9.27: Using the custom Export to CSV administration action

Select some orders and choose the Export to CSV action from the
select box, then click the Go bu�on. Your browser will download the
generated CSV file named order.csv . Open the downloaded file
using a text editor. You should see content with the following
format, including a header row and a row for each Order object you
selected:

As you can see, creating administration actions is pre�y
straightforward. You can learn more about generating CSV files with
Django at
https://docs.djangoproject.com/en/4.1/howto/outputting-
csv/.

ID,first name,last name,email,address,postal code,ci
5,Antonio,Melé,antonio.mele@zenxit.com,20 W 34th St,
...

https://docs.djangoproject.com/en/4.1/howto/outputting-csv/

Next, you are going to customize the administration site further by
creating a custom administration view.

Extending the administration site
with custom views
Sometimes, you may want to customize the administration site
beyond what is possible through configuring ModelAdmin , creating
administration actions, and overriding administration templates.
You might want to implement additional functionalities that are not
available in existing administration views or templates. If this is the
case, you need to create a custom administration view. With a
custom view, you can build any functionality you want; you just
have to make sure that only staff users can access your view and that
you maintain the administration look and feel by making your
template extend an administration template.

Let’s create a custom view to display information about an order.
Edit the views.py file of the orders application and add the
following code highlighted in bold:

from django.urls import reverse
from django.shortcuts import render, redirect, get_o
from django.contrib.admin.views.decorators import st
from .models import OrderItem, Order
from .forms import OrderCreateForm
, from .tasks import order_created
from cart.cart import Cart
def order_create(request):

The staff_member_required decorator checks that both the
is_active and is_staff fields of the user requesting the page are
set to True . In this view, you get the Order object with the given ID
and render a template to display the order.

Next, edit the urls.py file of the orders application and add the
following URL pa�ern highlighted in bold:

Create the following file structure inside the templates/ directory
of the orders application:

admin/
 orders/
 order/
 detail.xhtml

 # ...
@staff_member_required
def admin_order_detail(request, order_id):
 order = get_object_or_404(Order, id=order_id)
 return render(request,
 'admin/orders/order/detail.xhtml',
 {'order': order})

urlpatterns = [
 path('create/', views.order_create, name='order_
 path('admin/order/<int:order_id>/', views.admin_
 name='admin_
]

Edit the detail.xhtml template and add the following content to it:

{% extends "admin/base_site.xhtml" %}
{% block title %}
 Order {{ order.id }} {{ block.super }}
{% endblock %}
{% block breadcrumbs %}
 <div class="breadcrumbs">
 Home &rsaq
 <a href="{% url "admin:orders_order_changelist"
 ›
 <a href="{% url "admin:orders_order_change" orde
 › Detail
 </div>
{% endblock %}
{% block content %}
<div class="module">
 <h1>Order {{ order.id }}</h1>
 <ul class="object-tools">

 Print order

 <table>
 <tr>
 <th>Created</th>
 <td>{{ order.created }}</td>
 </tr>

 <tr>
 <th>Customer</th>
 <td>{{ order.first_name }} {{ order.last_name
 </tr>
 <tr>
 <th>E-mail</th>
 <td>{{ orde
 </tr>
 <tr>
 <th>Address</th>
 <td>
 {{ order.address }},
 {{ order.postal_code }} {{ order.city }}
 </td>
 </tr>
 <tr>
 <th>Total amount</th>
 <td>${{ order.get_total_cost }}</td>
 </tr>
 <tr>
 <th>Status</th>
 <td>{% if order.paid %}Paid{% else %}Pending p
 </tr>
 <tr>
 <th>Stripe payment</th>
 <td>
 {% if order.stripe_id %}
 <a href="{{ order.get_stripe_url }}" targe
 {{ order.stripe_id }}

 {% endif %}
 </td>

 </tr>
 </table>
</div>
<div class="module">
 <h2>Items bought</h2>
 <table style="width:100%">
 <thead>
 <tr>
 <th>Product</th>
 <th>Price</th>
 <th>Quantity</th>
 <th>Total</th>
 </tr>
 </thead>
 <tbody>
 {% for item in order.items.all %}
 <tr class="row{% cycle "1" "2" %}">
 <td>{{ item.product.name }}</td>
 <td class="num">${{ item.price }}</td>
 <td class="num">{{ item.quantity }}</td>
 <td class="num">${{ item.get_cost }}</td>
 </tr>
 {% endfor %}
 <tr class="total">
 <td colspan="3">Total</td>
 <td class="num">${{ order.get_total_cost }}<
 </tr>
 </tbody>
 </table>
</div>
{% endblock %}

Make sure that no template tag is split into multiple lines.

This is the template to display the details of an order on the
administration site. This template extends the
admin/base_site.xhtml template of Django’s administration site,
which contains the main HTML structure and CSS styles. You use
the blocks defined in the parent template to include your own
content. You display information about the order and the items
bought.

When you want to extend an administration template, you need to
know its structure and identify existing blocks. You can find all
administration templates at
https://github.com/django/django/tree/4.0/django/contri
b/admin/templates/admin.

You can also override an administration template if you need to. To
do so, copy a template into your templates/ directory, keeping the
same relative path and filename. Django’s administration site will
use your custom template instead of the default one.

Finally, let’s add a link to each Order object on the list display page
of the administration site. Edit the admin.py file of the orders
application and add the following code to it, above the OrderAdmin
class:

from django.urls import reverse
def order_detail(obj):
 url = reverse('orders:admin_order_detail', args=
 return mark_safe(f'View')

https://github.com/django/django/tree/4.0/django/contrib/admin/templates/admin

This is a function that takes an Order object as an argument and
returns an HTML link for the admin_order_detail URL. Django
escapes HTML output by default. You have to use the mark_safe
function to avoid auto-escaping.

Then, edit the OrderAdmin class to display the link as follows. New
code is highlighted in bold:

Start the development server with the command:

python manage.py runserver

Open http://127.0.0.1:8000/admin/orders/order/ in your
browser. Each row includes a View link, as follows:

Figure 9.28: The View link included in each order row

Click on the View link for any order to load the custom order detail
page. You should see a page like the following one:

class OrderAdmin(admin.ModelAdmin):
 list_display = ['id', 'first_name', 'last_name',
 'address', 'postal_code', 'city
 order_payment, 'created', 'updat
 order_detail]
 # ...

Figure 9.29: The custom order detail page on the administration site

Now that you have created the product detail page, you will learn
how to generate order invoices in PDF format dynamically.

Generating PDF invoices
dynamically
Now that you have a complete checkout and payment system, you
can generate a PDF invoice for each order. There are several Python
libraries to generate PDF files. One popular library to generate PDFs

with Python code is ReportLab. You can find information about how
to output PDF files with ReportLab at
https://docs.djangoproject.com/en/4.1/howto/outputting-
pdf/.

In most cases, you will have to add custom styles and forma�ing to
your PDF files. You will find it more convenient to render an HTML
template and convert it into a PDF file, keeping Python away from
the presentation layer. You are going to follow this approach and use
a module to generate PDF files with Django. You will use
WeasyPrint, which is a Python library that can generate PDF files
from HTML templates.

Installing WeasyPrint
First, install WeasyPrint’s dependencies for your operating system
from
https://doc.courtbouillon.org/weasyprint/stable/first_s
teps.xhtml. Then, install WeasyPrint via pip using the following
command:

pip install WeasyPrint==56.1

Creating a PDF template
You need an HTML document as input for WeasyPrint. You are
going to create an HTML template, render it using Django, and pass
it to WeasyPrint to generate the PDF file.

https://docs.djangoproject.com/en/4.1/howto/outputting-pdf/
https://doc.courtbouillon.org/weasyprint/stable/first_steps.xhtml

Create a new template file inside the templates/orders/order/
directory of the orders application and name it pdf.xhtml . Add
the following code to it:

<html>
<body>
 <h1>My Shop</h1>
 <p>
 Invoice no. {{ order.id }}

 {{ order.created|date:"M d, Y" }}

 </p>
 <h3>Bill to</h3>
 <p>
 {{ order.first_name }} {{ order.last_name }}

 {{ order.email }}

 {{ order.address }}

 {{ order.postal_code }}, {{ order.city }}
 </p>
 <h3>Items bought</h3>
 <table>
 <thead>
 <tr>
 <th>Product</th>
 <th>Price</th>
 <th>Quantity</th>
 <th>Cost</th>
 </tr>
 </thead>
 <tbody>

This is the template for the PDF invoice. In this template, you
display all order details and an HTML <table> element including
the products. You also include a message to display whether the
order has been paid.

Rendering PDF files
You are going to create a view to generate PDF invoices for existing
orders using the administration site. Edit the views.py file inside

 {% for item in order.items.all %}
 <tr class="row{% cycle "1" "2" %}">
 <td>{{ item.product.name }}</td>
 <td class="num">${{ item.price }}</td>
 <td class="num">{{ item.quantity }}</td>
 <td class="num">${{ item.get_cost }}</td>
 </tr>
 {% endfor %}
 <tr class="total">
 <td colspan="3">Total</td>
 <td class="num">${{ order.get_total_cost }}<
 </tr>
 </tbody>
 </table>

 <span class="{% if order.paid %}paid{% else %}pend
 {% if order.paid %}Paid{% else %}Pending payment

</body>
</html>

the orders application directory and add the following code to it:

This is the view to generate a PDF invoice for an order. You use the
staff_member_required decorator to make sure only staff users
can access this view.

You get the Order object with the given ID and you use the
render_to_string() function provided by Django to render
orders/order/pdf.xhtml . The rendered HTML is saved in the
html variable.

Then, you generate a new HttpResponse object specifying the
application/pdf content type and including the Content-
Disposition header to specify the filename. You use WeasyPrint to

from django.conf import settings
from django.http import HttpResponse
from django.template.loader import render_to_string
import weasyprint
@staff_member_required
def admin_order_pdf(request, order_id):
 order = get_object_or_404(Order, id=order_id)
 html = render_to_string('orders/order/pdf.xhtml
 {'order': order})
 response = HttpResponse(content_type='applicatio
 response['Content-Disposition'] = f'filename=ord
 weasyprint.HTML(string=html).write_pdf(response,
 stylesheets=[weasyprint.CSS(
 settings.STATIC_ROOT / 'css/pdf.css')])
 return response

generate a PDF file from the rendered HTML code and write the file
to the HttpResponse object.

You use the static file css/pdf.css to add CSS styles to the
generated PDF file. Then, you load it from the local path by using
the STATIC_ROOT se�ing. Finally, you return the generated
response.

If you are missing the CSS styles, remember to copy the static files
located in the static/ directory of the shop application to the same
location of your project.

You can find the contents of the directory at
https://github.com/PacktPublishing/Django-4-by-
Example/tree/main/Chapter09/myshop/shop/static.

Since you need to use the STATIC_ROOT se�ing, you have to add it
to your project. This is the project’s path where static files reside.
Edit the settings.py file of the myshop project and add the
following se�ing:

STATIC_ROOT = BASE_DIR / 'static'

Then, run the following command:

python manage.py collectstatic

You should see output that ends like this:

131 static files copied to 'code/myshop/static'.

https://github.com/PacktPublishing/Django-4-by-Example/tree/main/Chapter09/myshop/shop/static

The collectstatic command copies all static files from your
applications into the directory defined in the STATIC_ROOT se�ing.
This allows each application to provide its own static files using a
static/ directory containing them. You can also provide additional
static file sources in the STATICFILES_DIRS se�ing. All of the
directories specified in the STATICFILES_DIRS list will also be
copied to the STATIC_ROOT directory when collectstatic is
executed. Whenever you execute collectstatic again, you will be
asked if you want to override the existing static files.

Edit the urls.py file inside the orders application directory and
add the following URL pa�ern highlighted in bold:

urlpatterns = [
 # ...
 path('admin/order/<int:order_id>/pdf/',
 views.admin_order_pdf,
 name='admin_order_pdf'),
]

Now you can edit the administration list display page for the Order
model to add a link to the PDF file for each result. Edit the
admin.py file inside the orders application and add the following
code above the OrderAdmin class:

def order_pdf(obj):
 url = reverse('orders:admin_order_pdf', args=[ob
 return mark_safe(f'PDF')
order_pdf.short_description = 'Invoice'

If you specify a short_description a�ribute for your callable,
Django will use it for the name of the column.

Add order_pdf to the list_display a�ribute of the OrderAdmin
class, as follows:

Make sure the development server is running. Open
http://127.0.0.1:8000/admin/orders/order/ in your browser.
Each row should now include a PDF link, like this:

Figure 9.30: The PDF link included in each order row

Click on the PDF link for any order. You should see a generated PDF
file like the following one for orders that have not been paid yet:

class OrderAdmin(admin.ModelAdmin):
 list_display = ['id', 'first_name', 'last_name',
 'address', 'postal_code', 'city
 order_payment, 'created', 'updat
 order_detail, order_pdf]

Figure 9.31: The PDF invoice for an unpaid order

For paid orders, you will see the following PDF file:

Figure 9.32: The PDF invoice for a paid order

Sending PDF files by email
When a payment is successful, you will send an automatic email to
your customer including the generated PDF invoice. You will create
an asynchronous task to perform this action.

Create a new file inside the payment application directory and name
it tasks.py . Add the following code to it:

from io import BytesIO
from celery import shared_task
import weasyprint
from django.template.loader import render_to_string
from django.core.mail import EmailMessage
from django.conf import settings
from orders.models import Order
@shared_task
def payment_completed(order_id):
 """
 Task to send an e-mail notification when an orde
 successfully paid.
 """
 order = Order.objects.get(id=order_id)
 # create invoice e-mail
 subject = f'My Shop - Invoice no. {order.id}'
 message = 'Please, find attached the invoice for
 email = EmailMessage(subject,
 message,
 'admin@myshop.com',
 [order.email])
 # generate PDF

You define the payment_completed task by using the
@shared_task decorator. In this task, you use the EmailMessage
class provided by Django to create an email object. Then, you
render the template into the html variable. You generate the PDF file
from the rendered template and output it to a BytesIO instance,
which is an in-memory bytes buffer. Then, you a�ach the generated
PDF file to the EmailMessage object using the attach() method,
including the contents of the out buffer. Finally, you send the email.

Remember to set up your Simple Mail Transfer Protocol (SMTP)
se�ings in the settings.py file of the project to send emails. You
can refer to Chapter 2, Enhancing Your Blog with Advanced Features, to
see a working example of an SMTP configuration. If you don’t want
to set up email se�ings, you can tell Django to write emails to the
console by adding the following se�ing to the settings.py file:

 html = render_to_string('orders/order/pdf.xhtml
 out = BytesIO()
 stylesheets=[weasyprint.CSS(settings.STATIC_ROOT
 weasyprint.HTML(string=html).write_pdf(out,
 stylesheet
 # attach PDF file
 email.attach(f'order_{order.id}.pdf',
 out.getvalue(),
 'application/pdf')
 # send e-mail
 email.send()

EMAIL_BACKEND = 'django.core.mail.backends.console.E

Let’s add the payment_completed task to the webhook endpoint
that handles payment completion events.

Edit the webhooks.py file of the payment application and modify it
to make it look like this:

import stripe
from django.conf import settings
from django.http import HttpResponse
from django.views.decorators.csrf import csrf_exempt
from orders.models import Order
from .tasks import payment_completed
@csrf_exempt
def stripe_webhook(request):
 payload = request.body
 sig_header = request.META['HTTP_STRIPE_SIGNATURE
 event = None
 try:
 event = stripe.Webhook.construct_event(
 payload,
 sig_header,
 settings.STRIPE_WEBHOOK_SECRET)
 except ValueError as e:
 # Invalid payload
 return HttpResponse(status=400)
 except stripe.error.SignatureVerificationError a
 # Invalid signature
 return HttpResponse(status=400)
 if event.type == 'checkout.session.completed':
 session = event.data.object

The payment_completed task is queued by calling its delay()
method. The task will be added to the queue and will be executed
asynchronously by a Celery worker as soon as possible.

Now you can complete a new checkout process in order to receive
the PDF invoice in your email. If you are using the
console.EmailBackend for your email backend, in the shell where
you are running Celery you will be able to see the following output:

 if session.mode == 'payment' and session.pay
 try:
 order = Order.objects.get(id=session
 except Order.DoesNotExist:
 return HttpResponse(status=404)
 # mark order as paid
 order.paid = True
 # store Stripe payment ID
 order.stripe_id = session.payment_intent
 order.save()
 # launch asynchronous task
 payment_completed.delay(order.id)
 return HttpResponse(status=200)

MIME-Version: 1.0
Subject: My Shop - Invoice no. 7
From: admin@myshop.com
To: antonio.mele@zenxit.com
Date: Sun, 27 Mar 2022 20:15:24 -0000
Message-ID: <164841212458.94972.10344068999595916799
--===============8908668108717577350==

This output shows that the email contains an a�achment. You have
learned how to a�ach files to emails and send them
programmatically.

Congratulations! You have completed the Stripe integration and
have added valuable functionality to your shop.

Additional resources
The following resources provide additional information related to
the topics covered in this chapter:

Source code for this chapter –
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter09

Stripe website – https://www.stripe.com/
Stripe Checkout documentation –
https://stripe.com/docs/payments/checkout

Content-Type: text/plain; charset="utf-8"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Please, find attached the invoice for your recent pu
--===============8908668108717577350==
Content-Type: application/pdf
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="order_7.p
JVBERi0xLjcKJfCflqQKMSAwIG9iago8PAovVHlwZSA...

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter09
https://www.stripe.com/
https://stripe.com/docs/payments/checkout

Creating a Stripe account –
https://dashboard.stripe.com/register

Stripe account se�ings –
https://dashboard.stripe.com/settings/account

Stripe Python library – https://github.com/stripe/stripe-
python

Stripe test API keys –
https://dashboard.stripe.com/test/apikeys

Stripe API keys documentation –
https://stripe.com/docs/keys

Stripe API version 2022-08-01 release notes –
https://stripe.com/docs/upgrades#2022-08-01

Stripe checkout session modes –
https://stripe.com/docs/api/checkout/sessions/objec
t#checkout_session_object-mode

Building absolute URIs with Django –
https://docs.djangoproject.com/en/4.1/ref/request-
response/#django.http.HttpRequest.build_absolute_ur
i

Creating Stripe sessions –
https://stripe.com/docs/api/checkout/sessions/creat
e

Stripe-supported currencies –
https://stripe.com/docs/currencies

Stripe Payments dashboard –
https://dashboard.stripe.com/test/payments

https://dashboard.stripe.com/register
https://dashboard.stripe.com/settings/account
https://github.com/stripe/stripe-python
https://dashboard.stripe.com/test/apikeys
https://stripe.com/docs/keys
https://stripe.com/docs/upgrades#2022-08-01
https://stripe.com/docs/api/checkout/sessions/object#checkout_session_object-mode
https://docs.djangoproject.com/en/4.1/ref/request-response/#django.http.HttpRequest.build_absolute_uri
https://stripe.com/docs/api/checkout/sessions/create
https://stripe.com/docs/currencies
https://dashboard.stripe.com/test/payments

Credit cards for testing payments with Stripe –
https://stripe.com/docs/testing

Stripe webhooks –
https://dashboard.stripe.com/test/webhooks

Types of events sent by Stripe –
https://stripe.com/docs/api/events/types

Installing the Stripe CLI –
https://stripe.com/docs/stripe-cli#install

Latest Stripe CLI release –
https://github.com/stripe/stripe-
cli/releases/latest

Generating CSV files with Django –
https://docs.djangoproject.com/en/4.1/howto/outputt
ing-csv/

Django administration templates –
https://github.com/django/django/tree/4.0/django/co
ntrib/admin/templates/admin

Outpu�ing PDF files with ReportLab –
https://docs.djangoproject.com/en/4.1/howto/outputt
ing-pdf/

Installing WeasyPrint –
https://weasyprint.readthedocs.io/en/latest/install
.xhtml

Static files for this chapter –
https://github.com/PacktPublishing/Django-4-by-
Example/tree/main/Chapter09/myshop/shop/static

https://stripe.com/docs/testing
https://dashboard.stripe.com/test/webhooks
https://stripe.com/docs/api/events/types
https://stripe.com/docs/stripe-cli#install
https://github.com/stripe/stripe-cli/releases/latest
https://docs.djangoproject.com/en/4.1/howto/outputting-csv/
https://github.com/django/django/tree/4.0/django/contrib/admin/templates/admin
https://docs.djangoproject.com/en/4.1/howto/outputting-pdf/
https://weasyprint.readthedocs.io/en/latest/install.xhtml
https://github.com/PacktPublishing/Django-4-by-Example/tree/main/Chapter09/myshop/shop/static

Summary
In this chapter, you integrated the Stripe payment gateway into your
project and created a webhook endpoint to receive payment
notifications. You built a custom administration action to export
orders to CSV. You also customized the Django administration site
using custom views and templates. Finally, you learned how to
generate PDF files with WeasyPrint and how to a�ach them to
emails.

The next chapter will teach you how to create a coupon system using
Django sessions and you will build a product recommendation
engine with Redis.

10

Extending Your Shop

In the previous chapter, you learned how to integrate a payment
gateway into your shop. You also learned how to generate CSV and
PDF files.

In this chapter, you will add a coupon system to your shop and
create a product recommendation engine.

This chapter will cover the following points:

Creating a coupon system
Applying coupons to the shopping cart
Applying coupons to orders
Creating coupons for Stripe Checkout
Storing products that are usually bought together
Building a product recommendation engine with Redis

The source code for this chapter can be found at
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter10.

All the Python packages used in this chapter are included in the
requirements.txt file in the source code for the chapter. You can
follow the instructions to install each Python package in the

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter10

following sections, or you can install all the requirements at once
with the command pip install -r requirements.txt .

Creating a coupon system
Many online shops give out coupons to customers that can be
redeemed for discounts on their purchases. An online coupon
usually consists of a code that is given to users and is valid for a
specific time frame.

You are going to create a coupon system for your shop. Your
coupons will be valid for customers during a certain time frame. The
coupons will not have any limitations in terms of the number of
times they can be redeemed, and they will be applied to the total
value of the shopping cart.

For this functionality, you will need to create a model to store the
coupon code, a valid time frame, and the discount to apply.

Create a new application inside the myshop project using the
following command:

python manage.py startapp coupons

Edit the settings.py file of myshop and add the application to the
INSTALLED_APPS se�ing, as follows:

INSTALLED_APPS = [
 # ...

 'coupons.apps.CouponsConfig',
]

The new application is now active in your Django project.

Building the coupon model
Let’s start by creating the Coupon model. Edit the models.py file of
the coupons application and add the following code to it:

This is the model that you are going to use to store coupons. The
Coupon model contains the following fields:

from django.db import models
from django.core.validators import MinValueValidator
 MaxValueValidator
class Coupon(models.Model):
 code = models.CharField(max_length=50,
 unique=True)
 valid_from = models.DateTimeField()
 valid_to = models.DateTimeField()
 discount = models.IntegerField(
 validators=[MinValueValidator(0),
 MaxValueValidator(100
 help_text='Percentage value (0 to
 active = models.BooleanField()
 def __str__(self):
 return self.code

code : The code that users have to enter in order to apply the
coupon to their purchase.
valid_from : The datetime value that indicates when the
coupon becomes valid.
valid_to : The datetime value that indicates when the coupon
becomes invalid.
discount : The discount rate to apply (this is a percentage, so it
takes values from 0 to 100). You use validators for this field to
limit the minimum and maximum accepted values.
active : A Boolean that indicates whether the coupon is active.

Run the following command to generate the initial migration for the
coupons application:

python manage.py makemigrations

The output should include the following lines:

Migrations for 'coupons':
 coupons/migrations/0001_initial.py
 - Create model Coupon

Then, execute the next command to apply migrations:

python manage.py migrate

You should see an output that includes the following line:

Applying coupons.0001_initial... OK

The migrations have now been applied to the database. Let’s add the
Coupon model to the administration site. Edit the admin.py file of
the coupons application and add the following code to it:

The Coupon model is now registered on the administration site.
Ensure that your local server is running with the following
command:

python manage.py runserver

Open http://127.0.0.1:8000/admin/coupons/coupon/add/ in
your browser.

You should see the following form:

from django.contrib import admin
from .models import Coupon
@admin.register(Coupon)
class CouponAdmin(admin.ModelAdmin):
 list_display = ['code', 'valid_from', 'valid_to
 'discount', 'active']
 list_filter = ['active', 'valid_from', 'valid_to
 search_fields = ['code']

Figure 10.1: The Add coupon form on the Django administration site

Fill in the form to create a new coupon that is valid for the current
date, make sure that you check the Active checkbox, and click the
SAVE bu�on. Figure 10.2 shows an example of creating a coupon:

Figure 10.2: The Add coupon form with sample data

After creating the coupon, the coupon change list page on the
administration site will look similar to Figure 10.3:

Figure 10.3: The coupon change list page on the Django administration site

Next, we will implement the functionality to apply coupons to the
shopping cart.

Applying a coupon to the shopping cart
You can store new coupons and make queries to retrieve existing
coupons. Now you need a way for customers to apply coupons to
their purchases. The functionality to apply a coupon would be as
follows:

1. The user adds products to the shopping cart.
2. The user can enter a coupon code in a form displayed on the

shopping cart details page.
3. When the user enters a coupon code and submits the form, you

look for an existing coupon with the given code that is currently
valid. You have to check that the coupon code matches the one
entered by the user, that the active a�ribute is True , and that

the current datetime is between the valid_from and valid_to
values.

4. If a coupon is found, you save it in the user’s session and
display the cart, including the discount applied to it and the
updated total amount.

5. When the user places an order, you save the coupon to the given
order.

Create a new file inside the coupons application directory and name
it forms.py . Add the following code to it:

from django import forms
class CouponApplyForm(forms.Form):
 code = forms.CharField()

This is the form that you are going to use for the user to enter a
coupon code. Edit the views.py file inside the coupons application
and add the following code to it:

from django.shortcuts import render, redirect
from django.utils import timezone
from django.views.decorators.http import require_POS
from .models import Coupon
from .forms import CouponApplyForm
@require_POST
def coupon_apply(request):
 now = timezone.now()
 form = CouponApplyForm(request.POST)
 if form.is_valid():

The coupon_apply view validates the coupon and stores it in the
user’s session. You apply the require_POST decorator to this view
to restrict it to POST requests. In the view, you perform the following
tasks:

1. You instantiate the CouponApplyForm form using the posted
data and check that the form is valid.

2. If the form is valid, you get the code entered by the user from
the form’s cleaned_data dictionary. You try to retrieve the
Coupon object with the given code. You use the iexact field
lookup to perform a case-insensitive exact match. The coupon
has to be currently active (active=True) and valid for the
current datetime. You use Django’s timezone.now() function
to get the current timezone-aware datetime, and you compare it
with the valid_from and valid_to fields by performing the
lte (less than or equal to) and gte (greater than or equal to)
field lookups, respectively.

3. You store the coupon ID in the user’s session.

 code = form.cleaned_data['code']
 try:
 coupon = Coupon.objects.get(code__iexact
 valid_from__
 valid_to__gt
 active=True)
 request.session['coupon_id'] = coupon.id
 except Coupon.DoesNotExist:
 request.session['coupon_id'] = None
 return redirect('cart:cart_detail')

4. You redirect the user to the cart_detail URL to display the
cart with the coupon applied.

You need a URL pa�ern for the coupon_apply view. Create a new
file inside the coupons application directory and name it urls.py .
Add the following code to it:

Then, edit the main urls.py of the myshop project and include the
coupons URL pa�erns with the following line highlighted in bold:

Remember to place this pa�ern before the shop.urls pa�ern.

from django.urls import path
from . import views
app_name = 'coupons'
urlpatterns = [
 path('apply/', views.coupon_apply, name='apply')
]

urlpatterns = [
 path('admin/', admin.site.urls),
 path('cart/', include('cart.urls', namespace='ca
 path('orders/', include('orders.urls', namespace
 path('payment/', include('payment.urls', namespa
 path('coupons/', include('coupons.urls', namespa
 path('', include('shop.urls', namespace='shop'))
]

Now, edit the cart.py file of the cart application. Include the
following import:

from coupons.models import Coupon

Add the following code highlighted in bold to the end of the
__init__() method of the Cart class to initialize the coupon from
the current session:

In this code, you try to get the coupon_id session key from the
current session and store its value in the Cart object. Add the
following methods highlighted in bold to the Cart object:

class Cart:
 def __init__(self, request):
 """
 Initialize the cart.
 """
 self.session = request.session
 cart = self.session.get(settings.CART_SESSIO
 if not cart:
 # save an empty cart in the session
 cart = self.session[settings.CART_SESSIO
 self.cart = cart
 # store current applied coupon
 self.coupon_id = self.session.get('coupon_id

These methods are as follows:

coupon() : You define this method as a property . If the cart
contains a coupon_id a�ribute, the Coupon object with the
given ID is returned.
get_discount() : If the cart contains a coupon, you retrieve its
discount rate and return the amount to be deducted from the
total amount of the cart.
get_total_price_after_discount() : You return the total
amount of the cart after deducting the amount returned by the
get_discount() method.

class Cart:
 # ...
 @property
 def coupon(self):
 if self.coupon_id:
 try:
 return Coupon.objects.get(id=self.co
 except Coupon.DoesNotExist:
 pass
 return None
 def get_discount(self):
 if self.coupon:
 return (self.coupon.discount / Decimal(1
 * self.get_total_price()
 return Decimal(0)
 def get_total_price_after_discount(self):
 return self.get_total_price() - self.get_dis

The Cart class is now prepared to handle a coupon applied to the
current session and apply the corresponding discount.

Let’s include the coupon system in the cart’s detail view. Edit the
views.py file of the cart application and add the following import
to the top of the file:

from coupons.forms import CouponApplyForm

Further down, edit the cart_detail view and add the new form to
it, as follows:

Edit the cart/detail.xhtml template of the cart application and
locate the following lines:

<tr class="total">
 <td>Total</td>

def cart_detail(request):
 cart = Cart(request)
 for item in cart:
 item['update_quantity_form'] = CartAddProduc
 'quantity': item['quanti
 'override': True})
 coupon_apply_form = CouponApplyForm()
 return render(request,
 'cart/detail.xhtml',
 {'cart': cart,
 'coupon_apply_form': coupon_apply

 <td colspan="4"></td>
 <td class="num">${{ cart.get_total_price }}</td>
</tr>

Replace them with the following code:

{% if cart.coupon %}
 <tr class="subtotal">
 <td>Subtotal</td>
 <td colspan="4"></td>
 <td class="num">${{ cart.get_total_price|floatfo
 </tr>
 <tr>
 <td>
 "{{ cart.coupon.code }}" coupon
 ({{ cart.coupon.discount }}% off)
 </td>
 <td colspan="4"></td>
 <td class="num neg">
 - ${{ cart.get_discount|floatformat:2 }}
 </td>
 </tr>
{% endif %}
<tr class="total">
 <td>Total</td>
 <td colspan="4"></td>
 <td class="num">
 ${{ cart.get_total_price_after_discount|floatfor
 </td>
</tr>

This is the code for displaying an optional coupon and its discount
rate. If the cart contains a coupon, you display the first row,
including the total amount of the cart as the subtotal. Then, you use
a second row to display the current coupon applied to the cart.
Finally, you display the total price, including any discount, by
calling the get_total_price_after_discount() method of the
cart object.

In the same file, include the following code after the </table>
HTML tag:

This will display the form to enter a coupon code and apply it to the
current cart.

Open http://127.0.0.1:8000/ in your browser and add a
product to the cart. You will see that the shopping cart page now
includes a form to apply a coupon:

<p>Apply a coupon:</p>
<form action="{% url "coupons:apply" %}" method="pos
 {{ coupon_apply_form }}
 <input type="submit" value="Apply">
 {% csrf_token %}
</form>

Figure 10.4: The cart detail page, including a form to apply a coupon

Image of Tea powder: Photo by Phuong Nguyen on
Unsplash

In the Code field, enter the coupon code you created using the
administration site:

Figure 10.5: The cart detail page, including a coupon code on the form

Click the Apply bu�on. The coupon will be applied, and the cart will
display the coupon discount as follows:

Figure 10.6: The cart detail page, including the coupon applied

Let’s add the coupon to the next step of the purchase process. Edit
the orders/order/create.xhtml template of the orders
application and locate the following lines:

 {% for item in cart %}

 {{ item.quantity }}x {{ item.product.name }}
 ${{ item.total_price }}

 {% endfor %}

Replace them with the following code:

The order summary should now include the coupon applied, if there
is one. Now find the following line:

<p>Total: ${{ cart.get_total_price }}</p>

Replace it with the following:

 {% for item in cart %}

 {{ item.quantity }}x {{ item.product.name }}
 ${{ item.total_price|floatformat:2 }}</s

 {% endfor %}
 {% if cart.coupon %}

 "{{ cart.coupon.code }}" ({{ cart.coupon.disco
 - ${{ cart.get_discount|floa

 {% endif %}

<p>Total: ${{ cart.get_total_price_after_discount|fl

By doing this, the total price will also be calculated by applying the
discount of the coupon.

Open http://127.0.0.1:8000/orders/create/ in your browser.
You should see that the order summary includes the applied coupon,
as follows:

Figure 10.7: The order summary, including the coupon applied to the cart

Users can now apply coupons to their shopping cart. However, you
still need to store coupon information in the order that it is created
when users check out the cart.

Applying coupons to orders
You are going to store the coupon that was applied to each order.
First, you need to modify the Order model to store the related
Coupon object, if there is one.

Edit the models.py file of the orders application and add the
following imports to it:

Then, add the following fields to the Order model:

These fields allow you to store an optional coupon for the order and
the discount percentage applied with the coupon. The discount is
stored in the related Coupon object, but you can include it in the
Order model to preserve it if the coupon has been modified or
deleted. You set on_delete to models.SET_NULL so that if the
coupon gets deleted, the coupon field is set to Null , but the
discount is preserved.

You need to create a migration to include the new fields of the
Order model. Run the following command from the command line:

from decimal import Decimal
from django.core.validators import MinValueValidator
 MaxValueValidator
from coupons.models import Coupon

class Order(models.Model):
 # ...
 coupon = models.ForeignKey(Coupon,
 related_name='orders
 null=True,
 blank=True,
 on_delete=models.SET_
 discount = models.IntegerField(default=0,
 validators=[MinVa
 MaxValueValid

python manage.py makemigrations

You should see an output like the following:

Apply the new migration with the following command:

python manage.py migrate orders

You should see the following confirmation indicating that the new
migration has been applied:

The Order model field changes are now synced with the database.

Edit the models.py file, and add two new methods,
get_total_cost_before_discount() and get_discount() , to
the Order model like this. The new code is highlighted in bold:

Migrations for 'orders':
 orders/migrations/0003_order_coupon_order_discount
 - Add field coupon to order
 - Add field discount to order

Applying orders.0003_order_coupon_order_discount...

class Order(models.Model):
 # ...
 def get_total_cost_before_discount(self):

Then, edit the get_total_cost() method of the Order model as
follows. The new code is highlighted in bold:

The get_total_cost() method of the Order model will now take
into account the discount applied, if there is one.

Edit the views.py file of the orders application and modify the
order_create view to save the related coupon and its discount
when creating a new order. Add the following code highlighted in
bold to the order_create view:

 return sum(item.get_cost() for item in self.
 def get_discount(self):
 total_cost = self.get_total_cost_before_disc
 if self.discount:
 return total_cost * (self.discount / Dec
 return Decimal(0)

 def get_total_cost(self):
 total_cost = self.get_total_cost_before_disc
 return total_cost - self.get_discount()

def order_create(request):
 cart = Cart(request)
 if request.method == 'POST':
 form = OrderCreateForm(request.POST)
 if form.is_valid():
 order = form.save(commit=False)
 if cart.coupon:

In the new code, you create an Order object using the save()
method of the OrderCreateForm form. You avoid saving it to the
database yet by using commit=False . If the cart contains a coupon,
you store the related coupon and the discount that was applied.
Then, you save the order object to the database.

Edit the payment/process.xhtml template of the payment
application and locate the following lines:

 order.coupon = cart.coupon
 order.discount = cart.coupon.discoun
 order.save()
 for item in cart:
 OrderItem.objects.create(order=order
 product=item
 price=item[
 quantity=ite
 # clear the cart
 cart.clear()
 # launch asynchronous task
 order_created.delay(order.id)
 # set the order in the session
 request.session['order_id'] = order.id
 # redirect for payment
 return redirect(reverse('payment:process
 else:
 form = OrderCreateForm()
 return render(request,
 'orders/order/create.xhtml',
 {'cart': cart, 'form': form})

<tr class="total">
 <td>Total</td>
 <td colspan="4"></td>
 <td class="num">${{ order.get_total_cost }}</td>
</tr>

Replace them with the following code. New lines are highlighted in
bold:

{% if order.coupon %}
 <tr class="subtotal">
 <td>Subtotal</td>
 <td colspan="3"></td>
 <td class="num">
 ${{ order.get_total_cost_before_discount|float
 </td>
 </tr>
 <tr>
 <td>
 "{{ order.coupon.code }}" coupon
 ({{ order.discount }}% off)
 </td>
 <td colspan="3"></td>
 <td class="num neg">
 - ${{ order.get_discount|floatformat:2 }}
 </td>
 </tr>
{% endif %}
<tr class="total">
 <td>Total</td>

We have updated the order summary before payment.

Make sure that the development server is running with the
following command:

python manage.py runserver

Make sure Docker is running, and execute the following command
in another shell to start the RabbitMQ server with Docker:

Open another shell and start the Celery worker from your project
directory with the following command:

celery -A myshop worker -l info

Open an additional shell and execute the following command to
forward Stripe events to your local webhook URL:

 <td colspan="3"></td>
 <td class="num">
 ${{ order.get_total_cost|floatformat:2 }}
 </td>
</tr>

docker run -it --rm --name rabbitmq -p 5672:5672 -p

stripe listen --forward-to localhost:8000/payment/we

Open http://127.0.0.1:8000/ in your browser and create an
order using the coupon you created. After validating the items in the
shopping cart, on the Order summary page, you will see the coupon
applied to the order:

Figure 10.8: The Order summary page, including the coupon applied to the order

If you click on Pay now, you will see that Stripe is not aware of the
discount applied, as displayed in Figure 10.9:

Figure 10.9: The item details of the Stripe Checkout page, including no discount coupon

Stripe shows the full amount to be paid without any deduction. This
is because we are not passing on the discount to Stripe. Remember
that in the payment_process view, we pass the order items as
line_items to Stripe, including the cost and quantity of each order
item.

Creating coupons for Stripe Checkout
Stripe allows you to define discount coupons and link them to one-
time payments. You can find more information about creating
discounts for Stripe Checkout at
https://stripe.com/docs/payments/checkout/discounts.

Let’s edit the payment_process view to create a coupon for Stripe
Checkout. Edit the views.py file of the payment application and
add the following code highlighted in bold to the payment_process
view:

def payment_process(request):
 order_id = request.session.get('order_id', None)
 order = get_object_or_404(Order, id=order_id)

https://stripe.com/docs/payments/checkout/discounts

 if request.method == 'POST':
 success_url = request.build_absolute_uri(
 reverse('payment:completed')
 cancel_url = request.build_absolute_uri(
 reverse('payment:canceled'))
 # Stripe checkout session data
 session_data = {
 'mode': 'payment',
 'client_reference_id': order.id,
 'success_url': success_url,
 'cancel_url': cancel_url,
 'line_items': []
 }
 # add order items to the Stripe checkout ses
 for item in order.items.all():
 session_data['line_items'].append({
 'price_data': {
 'unit_amount': int(item.price *
 'currency': 'usd',
 'product_data': {
 'name': item.product.name,
 },
 },
 'quantity': item.quantity,
 })
 # Stripe coupon
 if order.coupon:
 stripe_coupon = stripe.Coupon.create(
 name=order.coupon.co
 percent_off=order.di
 duration='once')
 session_data['discounts'] = [{

In the new code, you check if the order has a related coupon. In that
case, you use the Stripe SDK to create a Stripe coupon using
stripe.Coupon.create() . You use the following a�ributes for the
coupon:

name : The code of the coupon related to the order object is
used.
percent_off : The discount of the order object is issued.
duration : The value once is used. This indicates to Stripe that
this is a coupon for a one-time payment.

After creating the coupon, its id is added to the session_data
dictionary used to create the Stripe Checkout session. This links the
coupon to the checkout session.

Open http://127.0.0.1:8000/ in your browser and complete a
purchase using the coupon you created. When redirected to the
Stripe Checkout page, you will see the coupon applied:

 'coupon': stripe_coupon.id
 }]
 # create Stripe checkout session
 session = stripe.checkout.Session.create(**s
 # redirect to Stripe payment form
 return redirect(session.url, code=303)
 else:
 return render(request, 'payment/process.xhtm

Figure 10.10: The item details of the Stripe Checkout page, including a discount coupon named
SUMMER

The Stripe Checkout page now includes the order coupon, and the
total amount to pay now includes the amount deducted using the
coupon.

Complete the purchase and then open
http://127.0.0.1:8000/admin/orders/order/ in your browser.

Click on the order object for which the coupon was used. The edit
form will display the discount applied, as shown in Figure 10.11:

Figure 10.11: The order edit form, including the coupon and discount applied

You are successfully storing coupons for orders and processing
payments with discounts. Next, you will add coupons to the order
detail view of the administration site and to PDF invoices for orders.

Adding coupons to orders on the
administration site and to PDF invoices
Let’s add the coupon to the order detail page on the administration
site. Edit the admin/orders/order/detail.xhtml template of the
orders application and add the following code highlighted in bold:

...
<table style="width:100%">
 ...

 <tbody>
 {% for item in order.items.all %}
 <tr class="row{% cycle "1" "2" %}">
 <td>{{ item.product.name }}</td>
 <td class="num">${{ item.price }}</td>
 <td class="num">{{ item.quantity }}</td>
 <td class="num">${{ item.get_cost }}</td>
 </tr>
 {% endfor %}
 {% if order.coupon %}
 <tr class="subtotal">
 <td colspan="3">Subtotal</td>
 <td class="num">
 ${{ order.get_total_cost_before_discount|f
 </td>
 </tr>
 <tr>
 <td colspan="3">
 "{{ order.coupon.code }}" coupon
 ({{ order.discount }}% off)
 </td>
 <td class="num neg">
 - ${{ order.get_discount|floatformat:2 }}
 </td>
 </tr>
 {% endif %}
 <tr class="total">
 <td colspan="3">Total</td>
 <td class="num">
 ${{ order.get_total_cost|floatformat:2 }}
 </td>
 </tr>

Access http://127.0.0.1:8000/admin/orders/order/ with
your browser, and click on the View link of the latest order. The
Items bought table will now include the coupon used, as shown in
Figure 10.12:

Figure 10.12: The product detail page on the administration site, including the coupon used

Now, let’s modify the order invoice template to include the coupon
used for the order. Edit the orders/order/detail.pdf template of
the orders application and add the following code highlighted in
bold:

 </tbody>
</table>
...

...
<table>
 <thead>
 <tr>

 <th>Product</th>
 <th>Price</th>
 <th>Quantity</th>
 <th>Cost</th>
 </tr>
 </thead>
 <tbody>
 {% for item in order.items.all %}
 <tr class="row{% cycle "1" "2" %}">
 <td>{{ item.product.name }}</td>
 <td class="num">${{ item.price }}</td>
 <td class="num">{{ item.quantity }}</td>
 <td class="num">${{ item.get_cost }}</td>
 </tr>
 {% endfor %}
 {% if order.coupon %}
 <tr class="subtotal">
 <td colspan="3">Subtotal</td>
 <td class="num">
 ${{ order.get_total_cost_before_discount|f
 </td>
 </tr>
 <tr>
 <td colspan="3">
 "{{ order.coupon.code }}" coupon
 ({{ order.discount }}% off)
 </td>
 <td class="num neg">
 - ${{ order.get_discount|floatformat:2 }}
 </td>
 </tr>
 {% endif %}

Access http://127.0.0.1:8000/admin/orders/order/ with
your browser, and click on the PDF link of the latest order. The
Items bought table will now include the coupon used, as shown in
Figure 10.13:

 <tr class="total">
 <td colspan="3">Total</td>
 <td class="num">${{ order.get_total_cost|float
 </tr>
 </tbody>
</table>
...

Figure 10.13: The PDF order invoice, including the coupon used

You successfully added a coupon system to your shop. Next, you are
going to build a product recommendation engine.

Building a recommendation engine
A recommendation engine is a system that predicts the preference or
rating that a user would give to an item. The system selects relevant
items for a user based on their behavior and the knowledge it has
about them. Nowadays, recommendation systems are used in many
online services. They help users by selecting the stuff they might be
interested in from the vast amount of available data that is irrelevant
to them. Offering good recommendations enhances user
engagement. E-commerce sites also benefit from offering relevant
product recommendations by increasing their average revenue per
user.

You are going to create a simple, yet powerful, recommendation
engine that suggests products that are usually bought together. You
will suggest products based on historical sales, thus identifying
products that are usually bought together. You are going to suggest
complementary products in two different scenarios:

Product detail page: You will display a list of products that are
usually bought with the given product. This will be displayed as
users who bought this also bought X, Y, and Z. You need a data
structure that allows you to store the number of times each
product has been bought together with the product being
displayed.

Cart detail page: Based on the products that users add to the
cart, you are going to suggest products that are usually bought
together with these ones. In this case, the score you calculate to
obtain related products has to be aggregated.

You are going to use Redis to store products that are usually
purchased together. Remember that you already used Redis in
Chapter 7, Tracking User Actions. If you haven’t installed Redis yet,
you can find installation instructions in that chapter.

Recommending products based on
previous purchases
We will recommend products to users based on the items that are
frequently bought together. For that, we are going to store a key in
Redis for each product bought on the site. The product key will
contain a Redis sorted set with scores. Every time a new purchase is
completed, we will increment the score by 1 for each product bought
together. The sorted set will allow you to give scores to products that
are bought together. We will use the number of times the product is
bought with another product as the score for that item.

Remember to install redis-py in your environment using the
following command:

pip install redis==4.3.4

Edit the settings.py file of your project and add the following
se�ings to it:

Redis settings
REDIS_HOST = 'localhost'
REDIS_PORT = 6379
REDIS_DB = 1

These are the se�ings required to establish a connection with the
Redis server. Create a new file inside the shop application directory
and name it recommender.py . Add the following code to it:

import redis
from django.conf import settings
from .models import Product
connect to redis
r = redis.Redis(host=settings.REDIS_HOST,
 port=settings.REDIS_PORT,
 db=settings.REDIS_DB)
class Recommender:
 def get_product_key(self, id):
 return f'product:{id}:purchased_with'
 def products_bought(self, products):
 product_ids = [p.id for p in products]
 for product_id in product_ids:
 for with_id in product_ids:
 # get the other products bought with
 if product_id != with_id:
 # increment score for product pu
 r.zincrby(self.get_product_key(p
 1,
 with_id)

This is the Recommender class, which will allow you to store product
purchases and retrieve product suggestions for a given product or
products.

The get_product_key() method receives an ID of a Product
object and builds the Redis key for the sorted set where related
products are stored, which looks like product:
[id]:purchased_with .

The products_bought() method receives a list of Product objects
that have been bought together (that is, belong to the same order).

In this method, you perform the following tasks:

1. You get the product IDs for the given Product objects.
2. You iterate over the product IDs. For each ID, you iterate again

over the product IDs and skip the same product so that you get
the products that are bought together with each product.

3. You get the Redis product key for each product bought using
the get_product_id() method. For a product with an ID of
33 , this method returns the key product:33:purchased_with .
This is the key for the sorted set that contains the product IDs of
products that were bought together with this one.

4. You increment the score of each product ID contained in the
sorted set by 1. The score represents the number of times
another product has been bought together with the given
product.

You now have a method to store and score the products that were
bought together. Next, you need a method to retrieve the products
that were bought together for a list of given products. Add the

following suggest_products_for() method to the Recommender
class:

def suggest_products_for(self, products, max_results
 product_ids = [p.id for p in products]
 if len(products) == 1:
 # only 1 product
 suggestions = r.zrange(
 self.get_product_key(product_id
 0, -1, desc=True)[:max_results]
 else:
 # generate a temporary key
 flat_ids = ''.join([str(id) for id in produc
 tmp_key = f'tmp_{flat_ids}'
 # multiple products, combine scores of all p
 # store the resulting sorted set in a tempor
 keys = [self.get_product_key(id) for id in p
 r.zunionstore(tmp_key, keys)
 # remove ids for the products the recommenda
 r.zrem(tmp_key, *product_ids)
 # get the product ids by their score, descen
 suggestions = r.zrange(tmp_key, 0, -1,
 desc=True)[:max_resul
 # remove the temporary key
 r.delete(tmp_key)
 suggested_products_ids = [int(id) for id in sugg
 # get suggested products and sort by order of ap
 suggested_products = list(Product.objects.filter
 id__in=suggested_products_ids))
 suggested_products.sort(key=lambda x: suggested_
 return suggested_products

The suggest_products_for() method receives the following
parameters:

products : This is a list of Product objects to get
recommendations for. It can contain one or more products.
max_results : This is an integer that represents the maximum
number of recommendations to return.

In this method, you perform the following actions:

1. You get the product IDs for the given Product objects.
2. If only one product is given, you retrieve the ID of the products

that were bought together with the given product, ordered by
the total number of times that they were bought together. To do
so, you use Redis’ ZRANGE command. You limit the number of
results to the number specified in the max_results a�ribute (6
by default).

3. If more than one product is given, you generate a temporary
Redis key built with the IDs of the products.

4. Combine and sum all scores for the items contained in the
sorted set of each of the given products. This is done using the
Redis ZUNIONSTORE command. The ZUNIONSTORE command
performs a union of the sorted sets with the given keys and
stores the aggregated sum of scores of the elements in a new
Redis key. You can read more about this command at
https://redis.io/commands/zunionstore/. You save the
aggregated scores in the temporary key.

https://redis.io/commands/zunionstore/

5. Since you are aggregating scores, you might obtain the same
products you are ge�ing recommendations for. You remove
them from the generated sorted set using the ZREM command.

6. You retrieve the IDs of the products from the temporary key,
ordered by their scores using the ZRANGE command. You limit
the number of results to the number specified in the
max_results a�ribute. Then, you remove the temporary key.

7. Finally, you get the Product objects with the given IDs, and
you order the products in the same order as them.

For practical purposes, let’s also add a method to clear the
recommendations. Add the following method to the Recommender
class:

Let’s try the recommendation engine. Make sure you include several
Product objects in the database and initialize the Redis Docker
container using the following command:

Open another shell and run the following command to open the
Python shell:

def clear_purchases(self):
 for id in Product.objects.values_list('id', flat
 r.delete(self.get_product_key(id))

docker run -it --rm --name redis -p 6379:6379 redis

python manage.py shell

Make sure that you have at least four different products in your
database. Retrieve four different products by their names:

Then, add some test purchases to the recommendation engine:

You have stored the following scores:

>>> from shop.models import Product
>>> black_tea = Product.objects.get(name='Black tea
>>> red_tea = Product.objects.get(name='Red tea')
>>> green_tea = Product.objects.get(name='Green tea
>>> tea_powder = Product.objects.get(name='Tea powde

>>> from shop.recommender import Recommender
>>> r = Recommender()
>>> r.products_bought([black_tea, red_tea])
>>> r.products_bought([black_tea, green_tea])
>>> r.products_bought([red_tea, black_tea, tea_powde
>>> r.products_bought([green_tea, tea_powder])
>>> r.products_bought([black_tea, tea_powder])
>>> r.products_bought([red_tea, green_tea])

black_tea: red_tea (2), tea_powder (2), green_tea (
red_tea: black_tea (2), tea_powder (1), green_tea

This is a representation of products that have been bought together
with each of the products, including how many times they have
been bought together.

Let’s retrieve product recommendations for a single product:

You can see that the order for recommended products is based on
their score. Let’s get recommendations for multiple products with
aggregated scores:

green_tea: black_tea (1), tea_powder (1), red_tea(1
tea_powder: black_tea (2), red_tea (1), green_tea (1

>>> r.suggest_products_for([black_tea])
[<Product: Tea powder>, <Product: Red tea>, <Product
>>> r.suggest_products_for([red_tea])
[<Product: Black tea>, <Product: Tea powder>, <Produ
>>> r.suggest_products_for([green_tea])
[<Product: Black tea>, <Product: Tea powder>, <Produ
>>> r.suggest_products_for([tea_powder])
[<Product: Black tea>, <Product: Red tea>, <Product

>>> r.suggest_products_for([black_tea, red_tea])
[<Product: Tea powder>, <Product: Green tea>]
>>> r.suggest_products_for([green_tea, red_tea])
[<Product: Black tea>, <Product: Tea powder>]
>>> r.suggest_products_for([tea_powder, black_tea])
[<Product: Red tea>, <Product: Green tea>]

You can see that the order of the suggested products matches the
aggregated scores. For example, products suggested for black_tea
and red_tea are tea_powder (2+1) and green_tea (1+1).

You have verified that your recommendation algorithm works as
expected. Let’s now display recommendations for products on your
site.

Edit the views.py file of the shop application. Add the
functionality to retrieve a maximum of four recommended products
into the product_detail view, as follows:

Edit the shop/product/detail.xhtml template of the shop
application and add the following code after {{
product.description|linebreaks }} :

from .recommender import Recommender
def product_detail(request, id, slug):
 product = get_object_or_404(Product,
 id=id,
 slug=slug,
 available=True)
 cart_product_form = CartAddProductForm()
 r = Recommender()
 recommended_products = r.suggest_products_for([p
 return render(request,
 'shop/product/detail.xhtml',
 {'product': product,
 'cart_product_form': cart_product
 'recommended_products': recommend

Run the development server, and open http://127.0.0.1:8000/
in your browser. Click on any product to view its details. You should
see that recommended products are displayed below the product, as
shown in Figure 10.14:

{% if recommended_products %}
 <div class="recommendations">
 <h3>People who bought this also bought</h3>
 {% for p in recommended_products %}
 <div class="item">

 <img src="{% if p.image %}{{ p.image.url }
 {% static "img/no_image.png" %}{% endif %

 <p>{{ p.n
 </div>
 {% endfor %}
 </div>
{% endif %}

Figure 10.14: The product detail page, including recommended products

Images in this chapter:

Green tea: Photo by Jia Ye on Unsplash
Red tea: Photo by Manki Kim on Unsplash
Tea powder: Photo by Phuong Nguyen on
Unsplash

You are also going to include product recommendations in the cart.
The recommendations will be based on the products that the user
has added to the cart.

Edit views.py inside the cart application, import the
Recommender class, and edit the cart_detail view to make it look
like the following:

from shop.recommender import Recommender
def cart_detail(request):
 cart = Cart(request)
 for item in cart:
 item['update_quantity_form'] = CartAddProduc
 'quantity': item['quanti
 'override': True})
 coupon_apply_form = CouponApplyForm()
 r = Recommender()
 cart_products = [item['product'] for item in car
 if(cart_products):
 recommended_products = r.suggest_products_fo
 cart_products,
 max_results=4)
 else:
 recommended_products = []
 return render(request,
 'cart/detail.xhtml',
 {'cart': cart,
 'coupon_apply_form': coupon_apply
 'recommended_products': recommend

Edit the cart/detail.xhtml template of the cart application and
add the following code just after the </table> HTML tag:

Open http://127.0.0.1:8000/en/ in your browser and add a
couple of products to your cart. When you navigate to
http://127.0.0.1:8000/en/cart/ , you should see the
aggregated product recommendations for the items in the cart, as
follows:

{% if recommended_products %}
 <div class="recommendations cart">
 <h3>People who bought this also bought</h3>
 {% for p in recommended_products %}
 <div class="item">

 <img src="{% if p.image %}{{ p.image.url }
 {% static "img/no_image.png" %}{% endif %}

 <p>{{ p.n
 </div>
 {% endfor %}
 </div>
{% endif %}

Figure 10.15: The shopping cart details page, including recommended products

Congratulations! You have built a complete recommendation engine
using Django and Redis.

Additional resources
The following resources provide additional information related to
the topics covered in this chapter:

Source code for this chapter –
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter10

Discounts for Stripe Checkout –
https://stripe.com/docs/payments/checkout/discounts

The Redis ZUNIONSTORE command –
https://redis.io/commands/zunionstore/

Summary
In this chapter, you created a coupon system using Django sessions
and integrated it with Stripe. You also built a recommendation
engine using Redis to recommend products that are usually
purchased together.

The next chapter will give you an insight into the
internationalization and localization of Django projects. You will
learn how to translate code and manage translations with Rose�a.
You will implement URLs for translations and build a language
selector. You will also implement model translations using django-
parler and you will validate localized form fields using django-
localflavor .

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter10
https://stripe.com/docs/payments/checkout/discounts
https://redis.io/commands/zunionstore/

11

Adding Internationalization to
Your Shop

In the previous chapter, you added a coupon system to your shop
and built a product recommendation engine.

In this chapter, you will learn how internationalization and
localization work.

This chapter will cover the following points:

Preparing your project for internationalization
Managing translation files
Translating Python code
Translating templates
Using Rose�a to manage translations
Translating URL pa�erns and using a language prefix in URLs
Allowing users to switch language
Translating models using django-parler
Using translations with the ORM
Adapting views to use translations
Using localized form fields of django-localflavor

The source code for this chapter can be found at
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter11.

All the Python modules used in this chapter are included in the
requirements.txt file in the source code that comes with this
chapter. You can follow the instructions to install each Python
module below or you can install all the requirements at once with
the command pip install -r requirements.txt .

Internationalization with Django
Django offers full internationalization and localization support. It
allows you to translate your application into multiple languages and
it handles locale-specific forma�ing for dates, times, numbers, and
time zones. Let’s clarify the difference between internationalization
and localization:

Internationalization (frequently abbreviated to i18n) is the process
of adapting software for the potential use of different languages and
locales so that it isn’t hardwired to a specific language or locale.

Localization (abbreviated to l10n) is the process of actually
translating the software and adapting it to a particular locale. Django
itself is translated into more than 50 languages using its
internationalization framework.

The internationalization framework allows you to easily mark
strings for translation, both in Python code and in your templates. It
relies on the GNU ge�ext toolset to generate and manage message
files. A message file is a plain text file that represents a language. It

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter11

contains a part, or all, of the translation strings found in your
application and their respective translations for a single language.
Message files have the .po extension. Once the translation is done,
message files are compiled to offer rapid access to translated strings.
The compiled translation files have the .mo extension.

Internationalization and localization
settings
Django provides several se�ings for internationalization. The
following se�ings are the most relevant ones:

USE_I18N : A Boolean that specifies whether Django’s
translation system is enabled. This is True by default.
USE_L10N : A Boolean indicating whether localized forma�ing is
enabled. When active, localized formats are used to represent
dates and numbers. This is False by default.
USE_TZ : A Boolean that specifies whether datetimes are time-
zone-aware. When you create a project with the startproject
command, this is set to True .
LANGUAGE_CODE : The default language code for the project. This
is in the standard language ID format, for example, 'en-us' for
American English, or 'en-gb' for British English. This se�ing
requires USE_I18N to be set to True in order to take effect. You
can find a list of valid language IDs at
http://www.i18nguy.com/unicode/language-
identifiers.xhtml.

http://www.i18nguy.com/unicode/language-identifiers.xhtml

LANGUAGES : A tuple that contains available languages for the
project. They come in two tuples of a language code and a
language name. You can see the list of available languages at
django.conf.global_settings . When you choose which
languages your site will be available in, you set LANGUAGES to a
subset of that list.
LOCALE_PATHS : A list of directories where Django looks for
message files containing translations for the project.
TIME_ZONE : A string that represents the time zone for the
project. This is set to 'UTC' when you create a new project
using the startproject command. You can set it to any other
time zone, such as 'Europe/Madrid' .

These are some of the internationalization and localization se�ings
available. You can find the full list at
https://docs.djangoproject.com/en/4.1/ref/settings/#glo
balization-i18n-l10n.

Internationalization management
commands
Django includes the following management commands to manage
translations:

makemessages : This runs over the source tree to find all the
strings marked for translation and creates or updates the .po
message files in the locale directory. A single .po file is
created for each language.

https://docs.djangoproject.com/en/4.1/ref/settings/#globalization-i18n-l10n

compilemessages : This compiles the existing .po message
files to .mo files, which are used to retrieve translations.

Installing the gettext toolkit
You will need the ge�ext toolkit to be able to create, update, and
compile message files. Most Linux distributions include the ge�ext
toolkit. If you are using macOS, the simplest way to install it is via
Homebrew, at https://brew.sh/, with the following command:

brew install gettext

You might also need to force link it with the following command:

brew link --force gettext

If you are using Windows, follow the steps at
https://docs.djangoproject.com/en/4.1/topics/i18n/trans
lation/#gettext-on-windows. You can download a precompiled
ge�ext binary installer for Windows from
https://mlocati.github.io/articles/gettext-iconv-
windows.xhtml.

How to add translations to a Django
project
Let’s take a look at the process of internationalizing your project.
You will need to do the following:

https://brew.sh/
https://docs.djangoproject.com/en/4.1/topics/i18n/translation/#gettext-on-windows
https://mlocati.github.io/articles/gettext-iconv-windows.xhtml

1. Mark the strings for translation in your Python code and your
templates.

2. Run the makemessages command to create or update message
files that include all the translation strings from your code.

3. Translate the strings contained in the message files and compile
them using the compilemessages management command.

How Django determines the current
language
Django comes with a middleware that determines the current
language based on the request data. This is the LocaleMiddleware
middleware that resides in
django.middleware.locale.LocaleMiddleware , which performs
the following tasks:

1. If you are using i18n_patterns , that is, you are using
translated URL pa�erns, it looks for a language prefix in the
requested URL to determine the current language.

2. If no language prefix is found, it looks for an existing
LANGUAGE_SESSION_KEY in the current user’s session.

3. If the language is not set in the session, it looks for an existing
cookie with the current language. A custom name for this cookie
can be provided in the LANGUAGE_COOKIE_NAME se�ing. By
default, the name for this cookie is django_language .

4. If no cookie is found, it looks for the Accept-Language HTTP
header of the request.

5. If the Accept-Language header does not specify a language,
Django uses the language defined in the LANGUAGE_CODE
se�ing.

By default, Django will use the language defined in the
LANGUAGE_CODE se�ing unless you are using LocaleMiddleware .
The process described here only applies when using this
middleware.

Preparing your project for
internationalization
Let’s prepare your project to use different languages. You are going
to create an English and a Spanish version for your shop. Edit the
settings.py file of your project and add the following LANGUAGES
se�ing to it. Place it next to the LANGUAGE_CODE se�ing:

LANGUAGES = [
 ('en', 'English'),
 ('es', 'Spanish'),
]

The LANGUAGES se�ing contains two tuples that consist of a
language code and a name. Language codes can be locale-specific,
such as en-us or en-gb , or generic, such as en . With this se�ing,
you specify that your application will only be available in English
and Spanish. If you don’t define a custom LANGUAGES se�ing, the

site will be available in all the languages that Django is translated
into.

Make your LANGUAGE_CODE se�ing look like the following:

LANGUAGE_CODE = 'en'

Add 'django.middleware.locale.LocaleMiddleware' to the
MIDDLEWARE se�ing. Make sure that this middleware comes after
SessionMiddleware because LocaleMiddleware needs to use
session data. It also has to be placed before CommonMiddleware
because the la�er needs an active language to resolve the requested
URL. The MIDDLEWARE se�ing should now look like the following:

The order of middleware classes is very important
because each middleware can depend on data set by
another middleware that was executed previously.

MIDDLEWARE = [
 'django.middleware.security.SecurityMiddleware',
 'django.contrib.sessions.middleware.SessionMiddl
 'django.middleware.locale.LocaleMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMi
 'django.contrib.messages.middleware.MessageMiddl
 'django.middleware.clickjacking.XFrameOptionsMid
]

Middleware is applied for requests in order of
appearance in MIDDLEWARE , and in reverse order for
responses.

Create the following directory structure inside the main project
directory, next to the manage.py file:

locale/
 en/
 es/

The locale directory is the place where message files for your
application will reside. Edit the settings.py file again and add the
following se�ing to it:

LOCALE_PATHS = [
 BASE_DIR / 'locale',
]

The LOCALE_PATHS se�ing specifies the directories where Django
has to look for translation files. Locale paths that appear first have
the highest precedence.

When you use the makemessages command from your project
directory, message files will be generated in the locale/ path you
created. However, for applications that contain a locale/ directory,
message files will be generated in that directory.

Translating Python code
To translate literals in your Python code, you can mark strings for
translation using the gettext() function included in
django.utils.translation . This function translates the message
and returns a string. The convention is to import this function as a
shorter alias named _ (the underscore character).

You can find all the documentation about translations at
https://docs.djangoproject.com/en/4.1/topics/i18n/trans
lation/.

Standard translations
The following code shows how to mark a string for translation:

from django.utils.translation import gettext as _
output = _('Text to be translated.')

Lazy translations
Django includes lazy versions for all of its translation functions,
which have the suffix _lazy() . When using the lazy functions,
strings are translated when the value is accessed, rather than when
the function is called (this is why they are translated lazily). The lazy
translation functions come in handy when the strings marked for
translation are in paths that are executed when modules are loaded.

https://docs.djangoproject.com/en/4.1/topics/i18n/translation/

Using gettext_lazy() instead of gettext() means
that strings are translated when the value is accessed.
Django offers a lazy version for all translation
functions.

Translations including variables
The strings marked for translation can include placeholders to
include variables in the translations. The following code is an
example of a translation string with a placeholder:

By using placeholders, you can reorder the text variables. For
example, an English translation of the previous example might be
today is April 14, while the Spanish one might be hoy es 14 de Abril.
Always use string interpolation instead of positional interpolation
when you have more than one parameter for the translation string.
By doing so, you will be able to reorder the placeholder text.

Plural forms in translations
For plural forms, you can use ngettext() and ngettext_lazy() .
These functions translate singular and plural forms depending on an

from django.utils.translation import gettext as _
month = _('April')
day = '14'
output = _('Today is %(month)s %(day)s') % {'month'
 'day': d

argument that indicates the number of objects. The following
example shows how to use them:

output = ngettext('there is %(count)d product',
 'there are %(count)d products',
 count) % {'count': count}

Now that you know the basics of translating literals in your Python
code, it’s time to apply translations to your project.

Translating your own code
Edit the settings.py file of your project, import the
gettext_lazy() function, and change the LANGUAGES se�ing, as
follows, to translate the language names:

Here, you use the gettext_lazy() function instead of gettext()
to avoid a circular import, thus translating the languages’ names
when they are accessed.

Open the shell and run the following command from your project
directory:

from django.utils.translation import gettext_lazy as
...
LANGUAGES = [
 ('en', _('English')),
 ('es', _('Spanish')),
]

django-admin makemessages --all

You should see the following output:

processing locale es
processing locale en

Take a look at the locale/ directory. You should see a file structure
like the following:

en/
 LC_MESSAGES/
 django.po
es/
 LC_MESSAGES/
 django.po

A .po message file has been created for each language. Open
es/LC_MESSAGES/django.po with a text editor. At the end of the
file, you should be able to see the following:

#: myshop/settings.py:118
msgid "English"
msgstr ""
#: myshop/settings.py:119
msgid "Spanish"
msgstr ""

Each translation string is preceded by a comment showing details
about the file and the line where it was found. Each translation
includes two strings:

msgid : The translation string as it appears in the source code.
msgstr : The language translation, which is empty by default.
This is where you have to enter the actual translation for the
given string.

Fill in the msgstr translations for the given msgid string, as follows:

#: myshop/settings.py:118
msgid "English"
msgstr "Inglés"
#: myshop/settings.py:119
msgid "Spanish"
msgstr "Español"

Save the modified message file, open the shell, and run the following
command:

django-admin compilemessages

If everything goes well, you should see an output like the following:

processing file django.po in myshop/locale/en/LC_MES
processing file django.po in myshop/locale/es/LC_MES

The output gives you information about the message files that are
being compiled. Take a look at the locale directory of the myshop
project again. You should see the following files:

en/
 LC_MESSAGES/
 django.mo
 django.po
es/
 LC_MESSAGES/
 django.mo
 django.po

You can see that a .mo compiled message file has been generated for
each language.

You have translated the language names. Now, let’s translate the
model field names that are displayed on the site. Edit the models.py
file of the orders application, and add names marked for
translation to the Order model fields as follows:

from django.utils.translation import gettext_lazy as
class Order(models.Model):
 first_name = models.CharField(_('first name'),
 max_length=50)
 last_name = models.CharField(_('last name'),
 max_length=50)
 email = models.EmailField(_('e-mail'))
 address = models.CharField(_('address'),
 max_length=250)

You have added names for the fields that are displayed when a user
is placing a new order. These are first_name , last_name , email ,
address , postal_code , and city . Remember that you can also use
the verbose_name a�ribute to name the fields.

Create the following directory structure inside the orders
application directory:

locale/
 en/
 es/

By creating a locale directory, the translation strings of this
application will be stored in a message file under this directory
instead of the main messages file. In this way, you can generate
separate translation files for each application.

Open the shell from the project directory and run the following
command:

django-admin makemessages --all

You should see the following output:

 postal_code = models.CharField(_('postal code'),
 max_length=20)
 city = models.CharField(_('city'),
 max_length=100)
 # ...

processing locale es
processing locale en

Open the locale/es/LC_MESSAGES/django.po file of the order
application using a text editor. You will see the translation strings for
the Order model. Fill in the following msgstr translations for the
given msgid strings:

#: orders/models.py:12
msgid "first name"
msgstr "nombre"
#: orders/models.py:14
msgid "last name"
msgstr "apellidos"
#: orders/models.py:16
msgid "e-mail"
msgstr "e-mail"
#: orders/models.py:17
msgid "address"
msgstr "dirección"
#: orders/models.py:19
msgid "postal code"
msgstr "código postal"
#: orders/models.py:21
msgid "city"
msgstr "ciudad"

After you have finished adding the translations, save the file.

Besides a text editor, you can use Poedit to edit translations. Poedit
is a piece of software for editing translations that uses ge�ext. It is
available for Linux, Windows, and macOS. You can download
Poedit from https://poedit.net/.

Let’s also translate the forms of your project. The OrderCreateForm
of the orders application does not have to be translated. That’s
because it is a ModelForm and it uses the verbose_name a�ribute of
the Order model fields for the form field labels. You are going to
translate the forms of the cart and coupons applications.

Edit the forms.py file inside the cart application directory and
add a label a�ribute to the quantity field of the
CartAddProductForm . Then, mark this field for translation, as
follows:

from django import forms
from django.utils.translation import gettext_lazy as
PRODUCT_QUANTITY_CHOICES = [(i, str(i)) for i in ran
class CartAddProductForm(forms.Form):
 quantity = forms.TypedChoiceField(
 choices=PRODUCT_QUANTITY_CHOICES,
 coerce=int,
 label=_('Quantity'))
 override = forms.BooleanField(required=False,
 initial=False,
 widget=forms.Hidden

https://poedit.net/

Edit the forms.py file of the coupons application and translate the
CouponApplyForm form, as follows:

You have added a label to the code field and marked it for
translation.

Translating templates
Django offers the {% trans %} and {% blocktrans %} template
tags to translate the strings in templates. In order to use the
translation template tags, you have to add {% load i18n %} to the
top of your template to load them.

The {% trans %} template tag
The {% trans %} template tag allows you to mark a literal for
translation. Internally, Django executes gettext() on the given
text. This is how to mark a string for translation in a template:

{% trans "Text to be translated" %}

You can use as to store the translated content in a variable that you
can use throughout your template. The following example stores the

from django import forms
from django.utils.translation import gettext_lazy as
class CouponApplyForm(forms.Form):
 code = forms.CharField(label=_('Coupon'))

translated text in a variable called greeting :

{% trans "Hello!" as greeting %}
<h1>{{ greeting }}</h1>

The {% trans %} tag is useful for simple translation strings, but it
can’t handle content for translation that includes variables.

The {% blocktrans %} template tag
The {% blocktrans %} template tag allows you to mark content
that includes literals and variable content using placeholders. The
following example shows you how to use the {% blocktrans %}
tag, including a name variable in the content for translation:

You can use with to include template expressions, such as accessing
object a�ributes or applying template filters to variables. You always
have to use placeholders for these. You can’t access expressions or
object a�ributes inside the blocktrans block. The following
example shows you how to use with to include an object a�ribute to
which the capfirst filter has been applied:

{% blocktrans with name=user.name|capfirst %}
 Hello {{ name }}!
{% endblocktrans %}

{% blocktrans %}Hello {{ name }}!{% endblocktrans %}

Use the {% blocktrans %} tag instead of {% trans
%} when you need to include variable content in your
translation string.

Translating the shop templates
Edit the shop/base.xhtml template of the shop application. Make
sure that you load the i18n tag at the top of the template and mark
the strings for translation, as follows. New code is highlighted in
bold:

{% load i18n %}
{% load static %}
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>
 {% block title %}{% trans "My shop" %}{% endbloc
 </title>
 <link href="{% static "css/base.css" %}" rel="styl
</head>
<body>
 <div id="header">
 {% trans "My shop" %}</
 </div>
 <div id="subheader">
 <div class="cart">
 {% with total_items=cart|length %}

Make sure that no template tag is split across multiple lines.

Notice the {% blocktrans %} tag to display the cart’s summary.
The cart’s summary was previously as follows:

{{ total_items }} item{{ total_items|pluralize }},
${{ cart.get_total_price }}

 {% if total_items > 0 %}
 {% trans "Your cart" %}:

 {% blocktrans with total=cart.get_total_
 {{ items }} item, ${{ total }}
 {% plural %}
 {{ items }} items, ${{ total }}
 {% endblocktrans %}

 {% elif not order %}
 {% trans "Your cart is empty." %}
 {% endif %}
 {% endwith %}
 </div>
 </div>
 <div id="content">
 {% block content %}
 {% endblock %}
 </div>
</body>
</html>

You changed it, and now you use {% blocktrans with ... %} to
set up the placeholder total with the value of
cart.get_total_price (the object method called here). You also
use count , which allows you to set a variable for counting objects
for Django to select the right plural form. You set the items variable
to count objects with the value of total_items .

This allows you to set a translation for the singular and plural forms,
which you separate with the {% plural %} tag within the {%
blocktrans %} block. The resulting code is:

Next, edit the shop/product/detail.xhtml template of the shop
application and load the i18n tags at the top of it, but after the {%
extends %} tag, which always has to be the first tag in the template:

{% extends "shop/base.xhtml" %}
{% load i18n %}
{% load static %}
...

Then, find the following line:

{% blocktrans with total=cart.get_total_price count
 {{ items }} item, ${{ total }}
{% plural %}
 {{ items }} items, ${{ total }}
{% endblocktrans %}

<input type="submit" value="Add to cart">

Replace it with the following:

Then, find the following line:

<h3>People who bought this also bought</h3>

Replace it with the following:

Now, translate the orders application template. Edit the
orders/order/create.xhtml template of the orders application
and mark the text for translation, as follows:

<input type="submit" value="{% trans "Add to cart" %

<h3>{% trans "People who bought this also bought" %}

{% extends "shop/base.xhtml" %}
{% load i18n %}
{% block title %}
 {% trans "Checkout" %}
{% endblock %}
{% block content %}
 <h1>{% trans "Checkout" %}</h1>
 <div class="order-info">

Make sure that no template tag is split across multiple lines. Take a
look at the following files in the code that accompanies this chapter
to see how the strings have been marked for translation:

 <h3>{% trans "Your order" %}</h3>

 {% for item in cart %}

 {{ item.quantity }}x {{ item.product.name
 ${{ item.total_price }}

 {% endfor %}
 {% if cart.coupon %}

 {% blocktrans with code=cart.coupon.code d
 "{{ code }}" ({{ discount }}% off)
 {% endblocktrans %}
 - ${{ cart.get_discount

 {% endif %}

 <p>{% trans "Total" %}: ${{
 cart.get_total_price_after_discount|floatformat
 </div>
 <form method="post" class="order-form">
 {{ form.as_p }}
 <p><input type="submit" value="{% trans "Place o
 {% csrf_token %}
 </form>
{% endblock %}

The shop application: Template shop/product/list.xhtml
The orders application: Template orders/order/pdf.xhtml
The cart application: Template cart/detail.xhtml
The payments application: Templates
payment/process.xhtml , payment/completed.xhtml , and
payment/canceled.xhtml

Remember that you can find the source code for this chapter at
https://github.com/PacktPublishing/Django-4-by-
Example/tree/master/Chapter11.

Let’s update the message files to include the new translation strings.
Open the shell and run the following command:

django-admin makemessages --all

The .po files are inside the locale directory of the myshop project,
and you’ll see that the orders application now contains all the
strings that you marked for translation.

Edit the .po translation files of the project and the orders
application and include Spanish translations in msgstr . You can
also use the translated .po files in the source code that accompanies
this chapter.

Run the following command to compile the translation files:

django-admin compilemessages

You will see the following output:

https://github.com/PacktPublishing/Django-4-by-Example/tree/master/Chapter11

A .mo file containing compiled translations has been generated for
each .po translation file.

Using the Rosetta translation
interface
Rose�a is a third-party application that allows you to edit
translations using the same interface as the Django administration
site. Rose�a makes it easy to edit .po files, and it updates compiled
translation files. Let’s add it to your project.

Install Rose�a via pip using this command:

pip install django-rosetta==0.9.8

Then, add 'rosetta' to the INSTALLED_APPS se�ing in your
project’s settings.py file, as follows:

INSTALLED_APPS = [
 # ...
 'rosetta',
]

processing file django.po in myshop/locale/en/LC_MES
processing file django.po in myshop/locale/es/LC_MES
processing file django.po in myshop/orders/locale/en
processing file django.po in myshop/orders/locale/es

You need to add Rose�a’s URLs to your main URL configuration.
Edit the main urls.py file of your project and add the following
URL pa�ern highlighted in bold:

Make sure you place it before the shop.urls pa�ern to avoid an
undesired pa�ern match.

Open http://127.0.0.1:8000/admin/ and log in with a
superuser. Then, navigate to http://127.0.0.1:8000/rosetta/
in your browser. In the Filter menu, click THIRD PARTY to display
all the available message files, including those that belong to the
orders application.

You should see a list of existing languages, as follows:

urlpatterns = [
 path('admin/', admin.site.urls),
 path('cart/', include('cart.urls', namespace='ca
 path('orders/', include('orders.urls', namespace
 path('payment/', include('payment.urls', namespa
 path('coupons/', include('coupons.urls', namespa
 path('rosetta/', include('rosetta.urls')),
 path('', include('shop.urls', namespace='shop'))
]

Figure 11.1: The Rose�a administration interface

Click the Myshop link under the Spanish section to edit the Spanish
translations. You should see a list of translation strings, as follows:

Figure 11.2: Editing Spanish translations using Rose�a

You can enter the translations under the SPANISH column. The
OCCURRENCE(S) column displays the files and lines of code where
each translation string was found.

Translations that include placeholders will appear as follows:

Figure 11.3: Translations including placeholders

Rose�a uses a different background color to display placeholders.
When you translate content, make sure that you keep placeholders
untranslated. For example, take the following string:

%(items)s items, $%(total)s

It can be translated into Spanish as follows:

%(items)s productos, $%(total)s

You can take a look at the source code that comes with this chapter
to use the same Spanish translations for your project.

When you finish editing translations, click the Save and translate
next block bu�on to save the translations to the .po file. Rose�a
compiles the message file when you save translations, so there is no
need for you to run the compilemessages command. However,
Rose�a requires write access to the locale directories to write the
message files. Make sure that the directories have valid permissions.

If you want other users to be able to edit translations, open
http://127.0.0.1:8000/admin/auth/group/add/ in your
browser and create a new group named translators . Then, access
http://127.0.0.1:8000/admin/auth/user/ to edit the users to
whom you want to grant permissions so that they can edit
translations. When editing a user, under the Permissions section,
add the translators group to the Chosen Groups for each user.
Rose�a is only available to superusers or users who belong to the
translators group.

You can read Rose�a’s documentation at https://django-
rosetta.readthedocs.io/.

When you add new translations to your production
environment, if you serve Django with a real web
server, you will have to reload your server after
running the compilemessages command, or after
saving the translations with Rose�a, for any changes
to take effect.

When editing translations, a translation can be marked as fuzzy. Let’s
review what fuzzy translations are.

Fuzzy translations
When editing translations in Rose�a, you can see a FUZZY column.
This is not a Rose�a feature; it is provided by ge�ext. If the FUZZY
flag is active for a translation, it will not be included in the compiled
message files. This flag marks translation strings that need to be

https://django-rosetta.readthedocs.io/

reviewed by a translator. When .po files are updated with new
translation strings, it is possible that some translation strings will
automatically be flagged as fuzzy. This happens when ge�ext finds
some msgid that has been slightly modified. ge�ext pairs it with
what it thinks was the old translation and flags it as fuzzy for
review. The translator should then review the fuzzy translations,
remove the FUZZY flag, and compile the translation file again.

URL patterns for
internationalization
Django offers internationalization capabilities for URLs. It includes
two main features for internationalized URLs:

Language prefix in URL pa�erns: Adding a language prefix to
URLs to serve each language version under a different base
URL.
Translated URL pa�erns: Translating URL pa�erns so that
every URL is different for each language.

One reason for translating URLs is to optimize your site for search
engines. By adding a language prefix to your pa�erns, you will be
able to index a URL for each language instead of a single URL for all
of them. Furthermore, by translating URLs into each language, you
will provide search engines with URLs that will rank be�er for each
language.

Adding a language prefix to URL
patterns
Django allows you to add a language prefix to your URL pa�erns.
For example, the English version of your site can be served under a
path starting with /en/ , and the Spanish version under /es/ . To
use languages in URL pa�erns, you have to use the
LocaleMiddleware provided by Django. The framework will use it
to identify the current language from the requested URL. Previously,
you added it to the MIDDLEWARE se�ing of your project, so you don’t
need to do it now.

Let’s add a language prefix to your URL pa�erns. Edit the main
urls.py file of the myshop project and add i18n_patterns() , as
follows:

You can combine non-translatable standard URL pa�erns and
pa�erns under i18n_patterns so that some pa�erns include a

from django.conf.urls.i18n import i18n_patterns
urlpatterns = i18n_patterns(
 path('admin/', admin.site.urls),
 path('cart/', include('cart.urls', namespace='ca
 path('orders/', include('orders.urls', namespace
 path('payment/', include('payment.urls', namespa
 path('coupons/', include('coupons.urls', namespa
 path('rosetta/', include('rosetta.urls')),
 path('', include('shop.urls', namespace='shop'))
)

language prefix and others don’t. However, it’s be�er to use
translated URLs only to avoid the possibility that a carelessly
translated URL matches a non-translated URL pa�ern.

Run the development server and open http://127.0.0.1:8000/
in your browser. Django will perform the steps described in the How
Django determines the current language section to determine the
current language, and it will redirect you to the requested URL,
including the language prefix. Take a look at the URL in your
browser; it should now look like http://127.0.0.1:8000/en/ .
The current language is the one set by the Accept-Language header
of your browser if it is Spanish or English; otherwise, it is the default
LANGUAGE_CODE (English) defined in your se�ings.

Translating URL patterns
Django supports translated strings in URL pa�erns. You can use a
different translation for each language for a single URL pa�ern. You
can mark URL pa�erns for translation in the same way as you would
with literals, using the gettext_lazy() function.

Edit the main urls.py file of the myshop project and add
translation strings to the regular expressions of the URL pa�erns for
the cart , orders , payment , and coupons applications, as follows:

from django.utils.translation import gettext_lazy as
urlpatterns = i18n_patterns(
 path('admin/', admin.site.urls),
 path(_('cart/'), include('cart.urls', namespace=
 path(_('orders/'), include('orders.urls', namesp

Edit the urls.py file of the orders application and mark the
order_create URL pa�ern for translation, as follows:

Edit the urls.py file of the payment application and change the
code to the following:

Note that these URL pa�erns will include a language prefix because
they are included under i18n_patterns() in the main urls.py

 path(_('payment/'), include('payment.urls', name
 path(_('coupons/'), include('coupons.urls', name
 path('rosetta/', include('rosetta.urls')),
 path('', include('shop.urls', namespace='shop'))
)

from django.utils.translation import gettext_lazy as
urlpatterns = [
 path(_('create/'), views.order_create, name='ord
 # ...
]

from django.utils.translation import gettext_lazy as
urlpatterns = [
 path(_('process/'), views.payment_process, name=
 path(_('done/'), views.payment_done, name='done
 path(_('canceled/'), views.payment_canceled, nam
 path('webhook/', webhooks.stripe_webhook, name=
]

file of the project. This will make each URL pa�ern have a different
URI for each available language, one starting with /en/ , another one
with /es/ , and so on. However, we need a single URL for Stripe to
notify events, and we need to avoid language prefixes in the
webhook URL.

Remove the webhook URL pa�ern from the urls.py file of the
payment application. The file should now look like the following:

Then, add the following webhook URL pa�ern to the main urls.py
file of the myshop project. The new code is highlighted in bold:

from django.utils.translation import gettext_lazy as
urlpatterns = [
 path(_('process/'), views.payment_process, name=
 path(_('done/'), views.payment_done, name='done
 path(_('canceled/'), views.payment_canceled, nam
]

from django.utils.translation import gettext_lazy as
from payment import webhooks
urlpatterns = i18n_patterns(
 path('admin/', admin.site.urls),
 path(_('cart/'), include('cart.urls', namespace=
 path(_('orders/'), include('orders.urls', namesp
 path(_('payment/'), include('payment.urls', name
 path(_('coupons/'), include('coupons.urls', name
 path('rosetta/', include('rosetta.urls')),
 path('', include('shop.urls', namespace='shop'))

We have added the webhook URL pa�ern to urlpatterns outside
of i18n_patterns() to ensure we maintain a single URL for Stripe
event notifications.

You don’t need to translate the URL pa�erns of the shop
application, as they are built with variables and do not include any
other literals.

Open the shell and run the next command to update the message
files with the new translations:

django-admin makemessages --all

Make sure the development server is running with the following
command:

python manage.py runserver

Open http://127.0.0.1:8000/en/rosetta/ in your browser and
click the Myshop link under the Spanish section. Click on

)
urlpatterns += [
 path('payment/webhook/', webhooks.stripe_webhook
 name='stripe-webhook'),
]
if settings.DEBUG:
 urlpatterns += static(settings.MEDIA_URL,
 document_root=settings.MED

UNTRANSLATED ONLY to only see the strings that have not been
translated yet. Now you will see the URL pa�erns for translation, as
shown in Figure 11.4:

Figure 11.4: URL pa�erns for translation in the Rose�a interface

Add a different translation string for each URL. Don’t forget to
include a slash character / at the end of each URL, as shown in
Figure 11.5:

Figure 11.5: Spanish translations for URL pa�erns in the Rose�a interface

When you have finished, click SAVE AND TRANSLATE NEXT
BLOCK.

Then, click on FUZZY ONLY. You will see translations that have
been flagged as fuzzy because they were paired with the old
translation of a similar original string. In the case displayed in Figure
11.6, the translations are incorrect and need to be corrected:

Figure 11.6: Fuzzy translations in the Rose�a interface

Enter the correct text for the fuzzy translations. Rose�a will
automatically uncheck the FUZZY select box when you enter new
text for a translation. When you have finished, click SAVE AND
TRANSLATE NEXT BLOCK:

Figure 11.7: Correcting fuzzy translations in the Rose�a interface

You can now go back to
http://127.0.0.1:8000/en/rosetta/files/third-party/ and
edit the Spanish translation for the orders application as well.

Allowing users to switch language
Since you are serving content that is available in multiple languages,
you should let your users switch the site’s language. You are going
to add a language selector to your site. The language selector will
consist of a list of available languages displayed using links.

Edit the shop/base.xhtml template of the shop application and
locate the following lines:

Replace them with the following code:

<div id="header">
 {% trans "My shop" %}
</div>

<div id="header">
 {% trans "My shop" %}
 {% get_current_language as LANGUAGE_CODE %}
 {% get_available_languages as LANGUAGES %}
 {% get_language_info_list for LANGUAGES as languag
 <div class="languages">
 <p>{% trans "Language" %}:</p>
 <ul class="languages">

Make sure that no template tag is split into multiple lines.

This is how you build your language selector:

1. You load the internationalization tags using {% load i18n %} .
2. You use the {% get_current_language %} tag to retrieve the

current language.
3. You get the languages defined in the LANGUAGES se�ing using

the {% get_available_languages %} template tag.
4. You use the tag {% get_language_info_list %} to provide

easy access to the language a�ributes.
5. You build an HTML list to display all available languages, and

you add a selected class a�ribute to the current active
language.

In the code for the language selector, you used the template tags
provided by i18n , based on the languages available in the se�ings
of your project. Now open http://127.0.0.1:8000/ in your

 {% for language in languages %}

 <a href="/{{ language.code }}/"
 {% if language.code == LANGUAGE_CODE %} cl
 {{ language.name_local }}

 {% endfor %}

 </div>
</div>

browser and take a look. You should see the language selector in the
top right-hand corner of the site, as follows:

Figure 11.8: The product list page, including a language selector in the site header

Images in this chapter:

Green tea: Photo by Jia Ye on Unsplash
Red tea: Photo by Manki Kim on Unsplash
Tea powder: Photo by Phuong Nguyen on
Unsplash

Users can now easily switch to their preferred language by clicking
on it.

Translating models with django-
parler
Django does not provide a solution for translating models out of the
box. You have to implement your own solution to manage content
stored in different languages, or use a third-party module for model
translation. There are several third-party applications that allow you
to translate model fields. Each of them takes a different approach to
storing and accessing translations. One of these applications is
django-parler . This module offers a very effective way to translate
models, and it integrates smoothly with Django’s administration
site.

django-parler generates a separate database table for each model
that contains translations. This table includes all the translated fields
and a foreign key for the original object that the translation belongs
to. It also contains a language field, since each row stores the content
for a single language.

Installing django-parler
Install django-parler via pip using the following command:

pip install django-parler==2.3

Edit the settings.py file of your project and add 'parler' to the
INSTALLED_APPS se�ing, as follows:

INSTALLED_APPS = [
 # ...
 'parler',
]

Also, add the following code to your se�ings:

django-parler settings
PARLER_LANGUAGES = {
 None: (
 {'code': 'en'},
 {'code': 'es'},
),
 'default': {
 'fallback': 'en',
 'hide_untranslated': False,
 }
}

This se�ing defines the available languages, en and es , for django-
parler . You specify the default language en and indicate that
django-parler should not hide untranslated content.

Translating model fields
Let’s add translations to your product catalog. django-parler
provides a TranslatableModel model class and a
TranslatedFields wrapper to translate model fields.

Edit the models.py file inside the shop application directory and
add the following import:

Then, modify the Category model to make the name and slug
fields translatable, as follows:

class Category(TranslatableModel):
 translations = TranslatedFields(
 name = models.CharField(max_length=200),
 slug = models.SlugField(max_length=200,
 unique=True),
)

The Category model now inherits from TranslatableModel
instead of models.Model , and both the name and slug fields are
included in the TranslatedFields wrapper.

Edit the Product model to add translations for the name , slug , and
description fields, as follows:

from parler.models import TranslatableModel, Transla

class Product(TranslatableModel):
 translations = TranslatedFields(
 name = models.CharField(max_length=200),
 slug = models.SlugField(max_length=200),
 description = models.TextField(blank=True)
)
 category = models.ForeignKey(Category,

django-parler manages translations by generating another model
for each translatable model. In the following schema, you can see the
fields of the Product model and what the generated
ProductTranslation model will look like:

Figure 11.9: The Product model and related ProductTranslation model generated by django-parler

 related_name='produ
 on_delete=models.CA
 image = models.ImageField(upload_to='products/%Y
 blank=True)
 price = models.DecimalField(max_digits=10,
 decimal_places=2)
 available = models.BooleanField(default=True)
 created = models.DateTimeField(auto_now_add=True
 updated = models.DateTimeField(auto_now=True)

The ProductTranslation model generated by django-parler
includes the name , slug , and description translatable fields, a
language_code field, and a ForeignKey for the master Product
object. There is a one-to-many relationship from Product to
ProductTranslation . A ProductTranslation object will exist for
each available language of each Product object.

Since Django uses a separate table for translations, there are some
Django features that you can’t use. It is not possible to use a default
ordering by a translated field. You can filter by translated fields in
queries, but you can’t include a translatable field in the ordering
Meta options. Also, you can’t use indexes for the fields that are
translated, as these fields will not exist in the original model, because
they will reside in the translation model.

Edit the models.py file of the shop application and comment out
the ordering and indexes a�ributes of the Category Meta class:

class Category(TranslatableModel):
 # ...
 class Meta:
 # ordering = ['name']
 # indexes = [
 # models.Index(fields=['name']),
 #]
 verbose_name = 'category'
 verbose_name_plural = 'categories'

You also have to comment out the ordering and a�ribute of the
Product Meta class and the indexes that refer to the translated

fields. Comment out the following lines of the Product Meta class:

class Product(TranslatableModel):
 # ...
 class Meta:
 # ordering = ['name']
 indexes = [
 # models.Index(fields=['id', 'slug']),
 # models.Index(fields=['name']),
 models.Index(fields=['-created']),
]

You can read more about the django-parler module’s
compatibility with Django at https://django-
parler.readthedocs.io/en/latest/compatibility.xhtml.

Integrating translations into the
administration site
django-parler integrates smoothly with the Django administration
site. It includes a TranslatableAdmin class that overrides the
ModelAdmin class provided by Django to manage model
translations.

Edit the admin.py file of the shop application and add the
following import to it:

from parler.admin import TranslatableAdmin

https://django-parler.readthedocs.io/en/latest/compatibility.xhtml

Modify the CategoryAdmin and ProductAdmin classes to inherit
from TranslatableAdmin instead of ModelAdmin . django-parler
doesn’t support the prepopulated_fields a�ribute, but it does
support the get_prepopulated_fields() method that provides
the same functionality. Let’s change this accordingly. Edit the
admin.py file to make it look like the following:

You have adapted the administration site to work with the new
translated models. You can now sync the database with the model
changes that you made.

from django.contrib import admin
from parler.admin import TranslatableAdmin
from .models import Category, Product
@admin.register(Category)
class CategoryAdmin(TranslatableAdmin):
 list_display = ['name', 'slug']
 def get_prepopulated_fields(self, request, obj=N
 return {'slug': ('name',)}
@admin.register(Product)
class ProductAdmin(TranslatableAdmin):
 list_display = ['name', 'slug', 'price',
 'available', 'created', 'updated
 list_filter = ['available', 'created', 'updated
 list_editable = ['price', 'available']
 def get_prepopulated_fields(self, request, obj=N
 return {'slug': ('name',)}

Creating migrations for model
translations
Open the shell and run the following command to create a new
migration for the model translations:

You will see the following output:

python manage.py makemigrations shop --name "transla

Migrations for 'shop':
 shop/migrations/0002_translations.py
 - Create model CategoryTranslation
 - Create model ProductTranslation
 - Change Meta options on category
 - Change Meta options on product
 - Remove index shop_catego_name_289c7e_idx from
 - Remove index shop_produc_id_f21274_idx from pr
 - Remove index shop_produc_name_a2070e_idx from
 - Remove field name from category
 - Remove field slug from category
 - Remove field description from product
 - Remove field name from product
 - Remove field slug from product
 - Add field master to producttranslation
 - Add field master to categorytranslation
 - Alter unique_together for producttranslation (
 - Alter unique_together for categorytranslation

This migration automatically includes the CategoryTranslation
and ProductTranslation models created dynamically by django-
parler . It’s important to note that this migration deletes the
previous existing fields from your models. This means that you will
lose that data and will need to set your categories and products
again on the administration site after running it.

Edit the file migrations/0002_translations.py of the shop
application and replace the two occurrences of the following line:

with the following one:

This is a fix for a minor issue found in the django-parler version
you are using. This change is necessary to prevent the migration
from failing when applying it. This issue is related to creating
translations for existing fields in the model and will probably be
fixed in newer django-parler versions.

Run the following command to apply the migration:

python manage.py migrate shop

You will see an output that ends with the following line:

bases=(parler.models.TranslatedFieldsModelMixin, mod

bases=(parler.models.TranslatableModel, models.Model

Applying shop.0002_translations... OK

Your models are now synchronized with the database.

Run the development server using the following command:

python manage.py runserver

Open http://127.0.0.1:8000/en/admin/shop/category/ in
your browser. You will see that existing categories lost their name
and slug due to deleting those fields and using the translatable
models generated by django-parler instead. You will just see a
dash under each column like in Figure 11.10:

Figure 11.10: The category list on the Django administration site after creating the translation
models

Click on the dash under the category name to edit it. You will see
that the Change category page includes two different tabs, one for
English and one for Spanish translations:

Figure 11.11: The category edit form, including the language tabs added by django-parler

Make sure that you fill in a name and slug for all existing categories.
When you edit a category, enter the English details and click on Save
and continue editing. Then, click on Spanish, add the Spanish
translation for the fields, and click on SAVE:

Figure 11.12: The Spanish translation of the category edit form

Make sure to save the changes before switching between the
language tabs.

After completing the data for existing categories, open
http://127.0.0.1:8000/en/admin/shop/product/ and edit
each of the products, providing an English and Spanish name, a
slug, and a description.

Using translations with the ORM
You have to adapt your shop views to use translation QuerySets.
Run the following command to open the Python shell:

python manage.py shell

Let’s take a look at how you can retrieve and query translation
fields. To get the object with translatable fields translated into a
specific language, you can use Django’s activate() function, as
follows:

>>> from shop.models import Product
>>> from django.utils.translation import activate
>>> activate('es')
>>> product=Product.objects.first()
>>> product.name
'Té verde'

Another way to do this is by using the language() manager
provided by django-parler , as follows:

>>> product=Product.objects.language('en').first()
>>> product.name
'Green tea'

When you access translated fields, they are resolved using the
current language. You can set a different current language for an
object to access that specific translation, as follows:

>>> product.set_current_language('es')
>>> product.name
'Té verde'
>>> product.get_current_language()
'es'

When performing a QuerySet using filter() , you can filter using
the related translation objects with the translations__ syntax, as
follows:

Adapting views for translations
Let’s adapt the product catalog views. Edit the views.py file of the
shop application and add the following code highlighted in bold to

>>> Product.objects.filter(translations__name='Green
<TranslatableQuerySet [<Product: Té verde>]>

the product_list view:

Then, edit the product_detail view and add the following code
highlighted in bold:

def product_list(request, category_slug=None):
 category = None
 categories = Category.objects.all()
 products = Product.objects.filter(available=True
 if category_slug:
 language = request.LANGUAGE_CODE
 category = get_object_or_404(Category,
 translations__langu
 translations__slug=
 products = products.filter(category=category
 return render(request,
 'shop/product/list.xhtml',
 {'category': category,
 'categories': categories,
 'products': products})

def product_detail(request, id, slug):
 language = request.LANGUAGE_CODE
 product = get_object_or_404(Product,
 id=id,
 translations__langua
 translations__slug=s
 available=True)
 cart_product_form = CartAddProductForm()

The product_list and product_detail views are now adapted to
retrieve objects using translated fields.

Run the development server with the following command:

python manage.py runserver

Open http://127.0.0.1:8000/es/ in your browser. You should
see the product list page, including all products translated into
Spanish:

 r = Recommender()
 recommended_products = r.suggest_products_for([p
 return render(request,
 'shop/product/detail.xhtml',
 {'product': product,
 'cart_product_form': cart_product
 'recommended_products': recommend

Figure 11.13: The Spanish version of the product list page

Now, each product’s URL is built using the slug field translated
into the current language. For example, the URL for a product in
Spanish is http://127.0.0.1:8000/es/2/te-rojo/ , whereas, in
English, the URL is http://127.0.0.1:8000/en/2/red-tea/ . If
you navigate to a product details page, you will see the translated
URL and the contents of the selected language, as shown in the
following example:

Figure 11.14: The Spanish version of the product details page

If you want to know more about django-parler , you can find the
full documentation at https://django-
parler.readthedocs.io/en/latest/.

You have learned how to translate Python code, templates, URL
pa�erns, and model fields. To complete the internationalization and
localization process, you need to use localized forma�ing for dates,
times, and numbers as well.

Format localization
Depending on the user’s locale, you might want to display dates,
times, and numbers in different formats. Localized forma�ing can be
activated by changing the USE_L10N se�ing to True in the
settings.py file of your project.

https://django-parler.readthedocs.io/en/latest/

When USE_L10N is enabled, Django will try to use a locale-specific
format whenever it outputs a value in a template. You can see that
decimal numbers in the English version of your site are displayed
with a dot separator for decimal places, while in the Spanish version,
they are displayed using a comma. This is due to the locale formats
specified for the es locale by Django. You can take a look at the
Spanish forma�ing configuration at
https://github.com/django/django/blob/stable/4.0.x/djan
go/conf/locale/es/formats.py.

Normally, you will set the USE_L10N se�ing to True and let Django
apply the format localization for each locale. However, there might
be situations in which you don’t want to use localized values. This is
especially relevant when outpu�ing JavaScript or JSON, which has
to provide a machine-readable format.

Django offers a {% localize %} template tag that allows you to
turn on/off localization for template fragments. This gives you
control over localized forma�ing. You will have to load the l10n
tags to be able to use this template tag. The following is an example
of how to turn localization on and off in a template:

{% load l10n %}
{% localize on %}
 {{ value }}
{% endlocalize %}
{% localize off %}
 {{ value }}
{% endlocalize %}

https://github.com/django/django/blob/stable/4.0.x/django/conf/locale/es/formats.py

Django also offers the localize and unlocalize template filters to
force or avoid the localization of a value. These filters can be applied
as follows:

{{ value|localize }}
{{ value|unlocalize }}

You can also create custom format files to specify locale forma�ing.
You can find further information about format localization at
https://docs.djangoproject.com/en/4.1/topics/i18n/forma
tting/.

Next, you will learn how to create localized form fields.

Using django-localflavor to validate
form fields
django-localflavor is a third-party module that contains a
collection of utilities, such as form fields or model fields, that are
specific for each country. It’s very useful for validating local regions,
local phone numbers, identity card numbers, social security
numbers, and so on. The package is organized into a series of
modules named after ISO 3166 country codes.

Install django-localflavor using the following command:

pip install django-localflavor==3.1

https://docs.djangoproject.com/en/4.1/topics/i18n/formatting/

Edit the settings.py file of your project and add localflavor to
the INSTALLED_APPS se�ing, as follows:

INSTALLED_APPS = [
 # ...
 'localflavor',
]

You are going to add the United States zip code field so that a valid
United States zip code is required to create a new order.

Edit the forms.py file of the orders application and make it look
like the following:

You import the USZipCodeField field from the us package of
localflavor and use it for the postal_code field of the
OrderCreateForm form.

Run the development server with the following command:

from django import forms
from localflavor.us.forms import USZipCodeField
from .models import Order
class OrderCreateForm(forms.ModelForm):
 postal_code = USZipCodeField()
 class Meta:
 model = Order
 fields = ['first_name', 'last_name', 'email
 'postal_code', 'city']

python manage.py runserver

Open http://127.0.0.1:8000/en/orders/create/ in your
browser. Fill in all the fields, enter a three-le�er zip code, and then
submit the form. You will get the following validation error, which is
raised by USZipCodeField :

Figure 11.15 shows the form validation error:

Figure 11.15: The validation error for an invalid US zip code

This is just a brief example of how to use a custom field from
localflavor in your own project for validation purposes. The local
components provided by localflavor are very useful for adapting
your application to specific countries. You can read the django-
localflavor documentation and see all the available local
components for each country at https://django-
localflavor.readthedocs.io/en/latest/.

Enter a zip code in the format XXXXX or XXXXX-XXXX.

https://django-localflavor.readthedocs.io/en/latest/

Additional resources
The following resources provide additional information related to
the topics covered in this chapter:

Source code for this chapter –
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter11

List of valid language IDs –
http://www.i18nguy.com/unicode/language-
identifiers.xhtml

List of internationalization and localization se�ings –
https://docs.djangoproject.com/en/4.1/ref/settings/
#globalization-i18n-l10n

Homebrew package manager – https://brew.sh/
Installing ge�ext on Windows –
https://docs.djangoproject.com/en/4.1/topics/i18n/t
ranslation/#gettext-on-windows

Precompiled ge�ext binary installer for Windows –
https://mlocati.github.io/articles/gettext-iconv-
windows.xhtml

Documentation about translations –
https://docs.djangoproject.com/en/4.1/topics/i18n/t
ranslation/

Poedit translation file editor – https://poedit.net/
Documentation for Django Rose�a – https://django-
rosetta.readthedocs.io/

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter11
http://www.i18nguy.com/unicode/language-identifiers.xhtml
https://docs.djangoproject.com/en/4.1/ref/settings/#globalization-i18n-l10n
https://brew.sh/
https://docs.djangoproject.com/en/4.1/topics/i18n/translation/#gettext-on-windows
https://mlocati.github.io/articles/gettext-iconv-windows.xhtml
https://docs.djangoproject.com/en/4.1/topics/i18n/translation/
https://poedit.net/
https://django-rosetta.readthedocs.io/

The django-parler module’s compatibility with Django –
https://django-
parler.readthedocs.io/en/latest/compatibility.xhtml

Documentation for django-parler – https://django-
parler.readthedocs.io/en/latest/

Django forma�ing configuration for the Spanish locale –
https://github.com/django/django/blob/stable/4.0.x/
django/conf/locale/es/formats.py

Django format localization –
https://docs.djangoproject.com/en/4.1/topics/i18n/f
ormatting/

Documentation for django-localflavor – https://django-
localflavor.readthedocs.io/en/latest/

Summary
In this chapter, you learned the basics of the internationalization and
localization of Django projects. You marked code and template
strings for translation, and you discovered how to generate and
compile translation files. You also installed Rose�a in your project to
manage translations through a web interface. You translated URL
pa�erns, and you created a language selector to allow users to
switch the language of the site. Then, you used django-parler to
translate models, and you used django-localflavor to validate
localized form fields.

In the next chapter, you will start a new Django project that will
consist of an e-learning platform. You will create the application

https://django-parler.readthedocs.io/en/latest/compatibility.xhtml
https://django-parler.readthedocs.io/en/latest/
https://github.com/django/django/blob/stable/4.0.x/django/conf/locale/es/formats.py
https://docs.djangoproject.com/en/4.1/topics/i18n/formatting/
https://django-localflavor.readthedocs.io/en/latest/

models, and you will learn how to create and apply fixtures to
provide initial data for the models. You will build a custom model
field and use it in your models. You will also build authentication
views for your new application.

12

Building an E-Learning Platform

In the previous chapter, you learned the basics of the
internationalization and localization of Django projects. You added
internationalization to your online shop project. You learned how to
translate Python strings, templates, and models. You also learned
how to manage translations, and you created a language selector
and added localized fields to your forms.

In this chapter, you will start a new Django project that will consist
of an e-learning platform with your own content management
system (CMS). Online learning platforms are a great example of
applications where you need to provide tools to generate content
with flexibility in mind.

In this chapter, you will learn how to:

Create models for the CMS
Create fixtures for your models and apply them
Use model inheritance to create data models for polymorphic
content
Create custom model fields
Order course contents and modules
Build authentication views for the CMS

The source code for this chapter can be found at
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter12.

All the Python modules used in this chapter are included in the
requirements.txt file in the source code that comes with this
chapter. You can follow the instructions to install each Python
module below, or you can install all the requirements at once with
the command pip install -r requirements.txt .

Setting up the e-learning project
Your final practical project will be an e-learning platform. First,
create a virtual environment for your new project within the env/
directory with the following command:

python -m venv env/educa

If you are using Linux or macOS, run the following command to
activate your virtual environment:

source env/educa/bin/activate

If you are using Windows, use the following command instead:

.\env\educa\Scripts\activate

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter12

Install Django in your virtual environment with the following
command:

pip install Django~=4.1.0

You are going to manage image uploads in your project, so you also
need to install Pillow with the following command:

pip install Pillow==9.2.0

Create a new project using the following command:

django-admin startproject educa

Enter the new educa directory and create a new application using
the following commands:

cd educa
django-admin startapp courses

Edit the settings.py file of the educa project and add courses to
the INSTALLED_APPS se�ing, as follows. The new line is highlighted
in bold:

INSTALLED_APPS = [
 'courses.apps.CoursesConfig',
 'django.contrib.admin',
 'django.contrib.auth',

 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
]

The courses application is now active for the project. Next, we are
going to prepare our project to serve media files, and we will define
the models for the courses and course contents.

Serving media files
Before creating the models for courses and course contents, we will
prepare the project to serve media files. Course instructors will be
able to upload media files to course contents using the CMS that we
will build. Therefore, we will configure the project to serve media
files.

Edit the settings.py file of the project and add the following lines:

MEDIA_URL = 'media/'
MEDIA_ROOT = BASE_DIR / 'media'

This will enable Django to manage file uploads and serve media
files. MEDIA_URL is the base URL used to serve the media files
uploaded by users. MEDIA_ROOT is the local path where they reside.
Paths and URLs for files are built dynamically by prepending the
project path or the media URL to them for portability.

Now, edit the main urls.py file of the educa project and modify
the code, as follows. New lines are highlighted in bold:

We have added the static() helper function to serve media files
with the Django development server during development (that is,
when the DEBUG se�ing is set to True).

Remember that the static() helper function is
suitable for development but not for production use.
Django is very inefficient at serving static files. Never
serve your static files with Django in a production
environment. You will learn how to serve static files in
a production environment in Chapter 17, Going Live.

The project is now ready to serve media files. Let’s create the models
for the courses and course contents.

from django.contrib import admin
from django.urls import path
from django.conf import settings
from django.conf.urls.static import static
urlpatterns = [
 path('admin/', admin.site.urls),
]
if settings.DEBUG:
 urlpatterns += static(settings.MEDIA_URL,
 document_root=settings.MED

Building the course models
Your e-learning platform will offer courses on various subjects. Each
course will be divided into a configurable number of modules, and
each module will contain a configurable number of contents. The
contents will be of various types: text, files, images, or videos. The
following example shows what the data structure of your course
catalog will look like:

Subject 1
 Course 1
 Module 1
 Content 1 (image)
 Content 2 (text)
 Module 2
 Content 3 (text)
 Content 4 (file)
 Content 5 (video)
 ...

Let’s build the course models. Edit the models.py file of the
courses application and add the following code to it:

from django.db import models
from django.contrib.auth.models import User
class Subject(models.Model):
 title = models.CharField(max_length=200)
 slug = models.SlugField(max_length=200, unique=T
 class Meta:
 ordering = ['title']

These are the initial Subject , Course , and Module models. The
Course model fields are as follows:

owner : The instructor who created this course.

 def __str__(self):
 return self.title
class Course(models.Model):
 owner = models.ForeignKey(User,
 related_name='courses_cre
 on_delete=models.CASCADE)
 subject = models.ForeignKey(Subject,
 related_name='course
 on_delete=models.CAS
 title = models.CharField(max_length=200)
 slug = models.SlugField(max_length=200, unique=T
 overview = models.TextField()
 created = models.DateTimeField(auto_now_add=True
 class Meta:
 ordering = ['-created']
 def __str__(self):
 return self.title
class Module(models.Model):
 course = models.ForeignKey(Course,
 related_name='modules
 on_delete=models.CASC
 title = models.CharField(max_length=200)
 description = models.TextField(blank=True)
 def __str__(self):
 return self.title

subject : The subject that this course belongs to. It is a
ForeignKey field that points to the Subject model.
title : The title of the course.
slug : The slug of the course. This will be used in URLs later.
overview : A TextField column to store an overview of the
course.
created : The date and time when the course was created. It
will be automatically set by Django when creating new objects
because of auto_now_add=True .

Each course is divided into several modules. Therefore, the Module
model contains a ForeignKey field that points to the Course model.

Open the shell and run the following command to create the initial
migration for this application:

python manage.py makemigrations

You will see the following output:

Migrations for 'courses':
 courses/migrations/0001_initial.py:
 - Create model Course
 - Create model Module
 - Create model Subject
 - Add field subject to course

Then, run the following command to apply all migrations to the
database:

python manage.py migrate

You should see output that includes all applied migrations,
including those of Django. The output will contain the following
line:

Applying courses.0001_initial... OK

The models of your courses application have been synced with the
database.

Registering the models in the
administration site
Let’s add the course models to the administration site. Edit the
admin.py file inside the courses application directory and add the
following code to it:

from django.contrib import admin
from .models import Subject, Course, Module
@admin.register(Subject)
class SubjectAdmin(admin.ModelAdmin):
 list_display = ['title', 'slug']
 prepopulated_fields = {'slug': ('title',)}
class ModuleInline(admin.StackedInline):
 model = Module
@admin.register(Course)
class CourseAdmin(admin.ModelAdmin):

 list_display = ['title', 'subject', 'created']
 list_filter = ['created', 'subject']
 search_fields = ['title', 'overview']
 prepopulated_fields = {'slug': ('title',)}
 inlines = [ModuleInline]

The models for the course application are now registered on the
administration site. Remember that you use the
@admin.register() decorator to register models on the
administration site.

Using fixtures to provide initial data
for models
Sometimes, you might want to prepopulate your database with
hardcoded data. This is useful for automatically including initial
data in the project setup, instead of having to add it manually.
Django comes with a simple way to load and dump data from the
database into files that are called fixtures. Django supports fixtures
in JSON, XML, or YAML formats. You are going to create a fixture to
include several initial Subject objects for your project.

First, create a superuser using the following command:

python manage.py createsuperuser

Then, run the development server using the following command:

python manage.py runserver

Open http://127.0.0.1:8000/admin/courses/subject/ in
your browser. Create several subjects using the administration site.
The change list page should look as follows:

Figure 12.1: The subject change list view on the administration site

Run the following command from the shell:

python manage.py dumpdata courses --indent=2

You will see an output similar to the following:

[
{
 "model": "courses.subject",
 "pk": 1,

 "fields": {
 "title": "Mathematics",
 "slug": "mathematics"
 }
},
{
 "model": "courses.subject",
 "pk": 2,
 "fields": {
 "title": "Music",
 "slug": "music"
 }
},
{
 "model": "courses.subject",
 "pk": 3,
 "fields": {
 "title": "Physics",
 "slug": "physics"
 }
},
{
 "model": "courses.subject",
 "pk": 4,
 "fields": {
 "title": "Programming",
 "slug": "programming"
 }
}
]

The dumpdata command dumps data from the database into the
standard output, serialized in JSON format by default. The resulting
data structure includes information about the model and its fields
for Django to be able to load it into the database.

You can limit the output to the models of an application by
providing the application names to the command, or specifying
single models for outpu�ing data using the app.Model format. You
can also specify the format using the --format flag. By default,
dumpdata outputs the serialized data to the standard output.
However, you can indicate an output file using the --output flag.
The --indent flag allows you to specify indentations. For more
information on dumpdata parameters, run python manage.py
dumpdata --help .

Save this dump to a fixtures file in a new fixtures/ directory in the
courses application using the following commands:

Run the development server and use the administration site to
remove the subjects you created, as shown in Figure 12.2:

mkdir courses/fixtures
python manage.py dumpdata courses --indent=2 --outpu

Figure 12.2: Deleting all existing subjects

After deleting all subjects, load the fixture into the database using
the following command:

python manage.py loaddata subjects.json

All Subject objects included in the fixture are loaded into the
database again:

Figure 12.3: Subjects from the fixture are now loaded into the database

By default, Django looks for files in the fixtures/ directory of each
application, but you can specify the complete path to the fixture file
for the loaddata command. You can also use the FIXTURE_DIRS
se�ing to tell Django additional directories to look in for fixtures.

Fixtures are not only useful for se�ing up initial data,
but also for providing sample data for your
application or data required for your tests.

You can read about how to use fixtures for testing at
https://docs.djangoproject.com/en/4.1/topics/testing/to
ols/#fixture-loading.

If you want to load fixtures in model migrations, look at Django’s
documentation about data migrations. You can find the
documentation for migrating data at

https://docs.djangoproject.com/en/4.1/topics/testing/tools/#fixture-loading

https://docs.djangoproject.com/en/4.1/topics/migrations
/#data-migrations.

You have created the models to manage course subjects, courses, and
course modules. Next, you will create models to manage different
types of module contents.

Creating models for polymorphic
content
You plan to add different types of content to the course modules,
such as text, images, files, and videos. Polymorphism is the
provision of a single interface to entities of different types. You need
a versatile data model that allows you to store diverse content that is
accessible through a single interface. In Chapter 7, Tracking User
Actions, you learned about the convenience of using generic relations
to create foreign keys that can point to the objects of any model. You
are going to create a Content model that represents the modules’
contents and define a generic relation to associate any object with the
content object.

Edit the models.py file of the courses application and add the
following imports:

Then, add the following code to the end of the file:

from django.contrib.contenttypes.models import Conte
from django.contrib.contenttypes.fields import Gener

https://docs.djangoproject.com/en/4.1/topics/migrations/#data-migrations

This is the Content model. A module contains multiple contents, so
you define a ForeignKey field that points to the Module model. You
can also set up a generic relation to associate objects from different
models that represent different types of content. Remember that you
need three different fields to set up a generic relation. In your
Content model, these are:

content_type : A ForeignKey field to the ContentType
model.
object_id : A PositiveIntegerField to store the primary
key of the related object.
item : A GenericForeignKey field to the related object
combining the two previous fields.

Only the content_type and object_id fields have a
corresponding column in the database table of this model. The item
field allows you to retrieve or set the related object directly, and its
functionality is built on top of the other two fields.

You are going to use a different model for each type of content. Your
Content models will have some common fields, but they will differ

class Content(models.Model):
 module = models.ForeignKey(Module,
 related_name='content
 on_delete=models.CASC
 content_type = models.ForeignKey(ContentType,
 on_delete=models.CASC
 object_id = models.PositiveIntegerField()
 item = GenericForeignKey('content_type', 'object

in the actual data they can store. This is how you will create a single
interface for different types of content.

Using model inheritance
Django supports model inheritance. It works in a similar way to
standard class inheritance in Python. Django offers the following
three options to use model inheritance:

Abstract models: Useful when you want to put some common
information into several models.
Multi-table model inheritance: Applicable when each model in
the hierarchy is considered a complete model by itself.
Proxy models: Useful when you need to change the behavior of
a model, for example, by including additional methods,
changing the default manager, or using different meta options.

Let’s take a closer look at each of them.

Abstract models
An abstract model is a base class in which you define the fields you
want to include in all child models. Django doesn’t create any
database tables for abstract models. A database table is created for
each child model, including the fields inherited from the abstract
class and the ones defined in the child model.

To mark a model as abstract, you need to include abstract=True in
its Meta class. Django will recognize that it is an abstract model and
will not create a database table for it. To create child models, you just
need to subclass the abstract model.

The following example shows an abstract Content model and a
child Text model:

In this case, Django would create a table for the Text model only,
including the title , created , and body fields.

Multi-table model inheritance
In multi-table inheritance, each model corresponds to a database
table. Django creates a OneToOneField field for the relationship
between the child model and its parent model. To use multi-table
inheritance, you have to subclass an existing model. Django will
create a database table for both the original model and the sub-
model. The following example shows multi-table inheritance:

from django.db import models
class BaseContent(models.Model):
 title = models.CharField(max_length=100)
 created = models.DateTimeField(auto_now_add=True
 class Meta:
 abstract = True
class Text(BaseContent):
 body = models.TextField()

from django.db import models
class BaseContent(models.Model):
 title = models.CharField(max_length=100)
 created = models.DateTimeField(auto_now_add=True

Django will include an automatically generated OneToOneField
field in the Text model and create a database table for each model.

Proxy models
A proxy model changes the behavior of a model. Both models
operate on the database table of the original model. To create a
proxy model, add proxy=True to the Meta class of the model. The
following example illustrates how to create a proxy model:

Here, you define an OrderedContent model that is a proxy model
for the Content model. This model provides a default ordering for
QuerySets and an additional created_delta() method. Both
models, Content and OrderedContent , operate on the same

class Text(BaseContent):
 body = models.TextField()

from django.db import models
from django.utils import timezone
class BaseContent(models.Model):
 title = models.CharField(max_length=100)
 created = models.DateTimeField(auto_now_add=True
class OrderedContent(BaseContent):
 class Meta:
 proxy = True
 ordering = ['created']
 def created_delta(self):
 return timezone.now() - self.created

database table, and objects are accessible via the ORM through either
model.

Creating the Content models
The Content model of your courses application contains a generic
relation to associate different types of content with it. You will create
a different model for each type of content. All Content models will
have some fields in common and additional fields to store custom
data. You are going to create an abstract model that provides the
common fields for all Content models.

Edit the models.py file of the courses application and add the
following code to it:

class ItemBase(models.Model):
 owner = models.ForeignKey(User,
 related_name='%(class)s_rel
 on_delete=models.CASCADE)
 title = models.CharField(max_length=250)
 created = models.DateTimeField(auto_now_add=True
 updated = models.DateTimeField(auto_now=True)
 class Meta:
 abstract = True
 def __str__(self):
 return self.title
class Text(ItemBase):
 content = models.TextField()
class File(ItemBase):
 file = models.FileField(upload_to='files')

In this code, you define an abstract model named ItemBase .
Therefore, you set abstract=True in its Meta class.

In this model, you define the owner , title , created , and updated
fields. These common fields will be used for all types of content.

The owner field allows you to store which user created the content.
Since this field is defined in an abstract class, you need a different
related_name for each sub-model. Django allows you to specify a
placeholder for the model class name in the related_name a�ribute
as %(class)s . By doing so, the related_name for each child model
will be generated automatically. Since you are using '%
(class)s_related' as the related_name , the reverse relationship
for child models will be text_related , file_related ,
image_related , and video_related , respectively.

You have defined four different Content models that inherit from
the ItemBase abstract model. They are as follows:

Text : To store text content
File : To store files, such as PDFs
Image : To store image files
Video : To store videos; you use an URLField field to provide a
video URL in order to embed it

class Image(ItemBase):
 file = models.FileField(upload_to='images')
class Video(ItemBase):
 url = models.URLField()

Each child model contains the fields defined in the ItemBase class
in addition to its own fields. A database table will be created for the
Text , File , Image , and Video models, respectively. There will be
no database table associated with the ItemBase model since it is an
abstract model.

Edit the Content model you created previously and modify its
content_type field, as follows:

content_type = models.ForeignKey(ContentType,
 on_delete=models.CASCADE,
 limit_choices_to={'model__in':(
 'text',
 'video',
 'image',
 'file')})

You add a limit_choices_to argument to limit the ContentType
objects that can be used for the generic relation. You use the
model__in field lookup to filter the query to the ContentType
objects with a model a�ribute that is 'text' , 'video' , 'image' , or
'file' .

Let’s create a migration to include the new models you have added.
Run the following command from the command line:

python manage.py makemigrations

You will see the following output:

Then, run the following command to apply the new migration:

python manage.py migrate

The output you see should end with the following line:

You have created models that are suitable for adding diverse content
to the course modules. However, there is still something missing in
your models: the course modules and contents should follow a
particular order. You need a field that allows you to order them
easily.

Creating custom model fields
Django comes with a complete collection of model fields that you
can use to build your models. However, you can also create your

Migrations for 'courses':
 courses/migrations/0002_video_text_image_file_cont
 - Create model Video
 - Create model Text
 - Create model Image
 - Create model File
 - Create model Content

Applying courses.0002_video_text_image_file_content

own model fields to store custom data or alter the behavior of
existing fields.

You need a field that allows you to define an order for the objects.
An easy way to specify an order for objects using existing Django
fields is by adding a PositiveIntegerField to your models. Using
integers, you can easily specify the order of the objects. You can
create a custom order field that inherits from
PositiveIntegerField and provides additional behavior.

There are two relevant functionalities that you will build into your
order field:

Automatically assign an order value when no specific order is
provided: When saving a new object with no specific order,
your field should automatically assign the number that comes
after the last existing ordered object. If there are two objects
with orders 1 and 2 respectively, when saving a third object,
you should automatically assign order 3 to it if no specific order
has been provided.
Order objects with respect to other fields: Course modules will
be ordered with respect to the course they belong to and
module contents with respect to the module they belong to.

Create a new fields.py file inside the courses application
directory and add the following code to it:

from django.db import models
from django.core.exceptions import ObjectDoesNotExis
class OrderField(models.PositiveIntegerField):
 def __init__(self, for_fields=None, *args, **kwa

This is the custom OrderField . It inherits from the
PositiveIntegerField field provided by Django. Your
OrderField field takes an optional for_fields parameter, which
allows you to indicate the fields used to order the data.

Your field overrides the pre_save() method of the
PositiveIntegerField field, which is executed before saving the

 self.for_fields = for_fields
 super().__init__(*args, **kwargs)
 def pre_save(self, model_instance, add):
 if getattr(model_instance, self.attname) is
 # no current value
 try:
 qs = self.model.objects.all()
 if self.for_fields:
 # filter by objects with the sam
 # for the fields in "for_fields
 query = {field: getattr(model_in
 for field in self.for_fields}
 qs = qs.filter(**query)
 # get the order of the last item
 last_item = qs.latest(self.attname)
 value = last_item.order + 1
 except ObjectDoesNotExist:
 value = 0
 setattr(model_instance, self.attname, va
 return value
 else:
 return super().pre_save(model_instance,

field to the database. In this method, you perform the following
actions:

1. You check whether a value already exists for this field in the
model instance. You use self.attname , which is the a�ribute
name given to the field in the model. If the a�ribute’s value is
different from None , you calculate the order you should give it
as follows:

1. You build a QuerySet to retrieve all objects for the field’s
model. You retrieve the model class the field belongs to by
accessing self.model .

2. If there are any field names in the for_fields a�ribute of
the field, you filter the QuerySet by the current value of the
model fields in for_fields . By doing so, you calculate the
order with respect to the given fields.

3. You retrieve the object with the highest order with
last_item = qs.latest(self.attname) from the
database. If no object is found, you assume this object is the
first one and assign order 0 to it.

4. If an object is found, you add 1 to the highest order found.
5. You assign the calculated order to the field’s value in the

model instance using setattr() and return it.

2. If the model instance has a value for the current field, you use it
instead of calculating it.

When you create custom model fields, make them
generic. Avoid hardcoding data that depends on a

specific model or field. Your field should work in any
model.

You can find more information about writing custom model fields at
https://docs.djangoproject.com/en/4.1/howto/custom-
model-fields/.

Adding ordering to module and
content objects
Let’s add the new field to your models. Edit the models.py file of
the courses application, and import the OrderField class and a
field to the Module model, as follows:

You name the new field order and specify that the ordering is
calculated with respect to the course by se�ing for_fields=
['course'] . This means that the order for a new module will be
assigned by adding 1 to the last module of the same Course object.

Now, you can edit the __str__() method of the Module model to
include its order, as follows:

from .fields import OrderField
class Module(models.Model):
 # ...
 order = OrderField(blank=True, for_fields=['cour

https://docs.djangoproject.com/en/4.1/howto/custom-model-fields/

class Module(models.Model):
 # ...
 def __str__(self):
 return f'{self.order}. {self.title}'

Module contents also need to follow a particular order. Add an
OrderField field to the Content model, as follows:

This time, you specify that the order is calculated with respect to the
module field.

Finally, let’s add a default ordering for both models. Add the
following Meta class to the Module and Content models:

class Module(models.Model):
 # ...
 class Meta:
 ordering = ['order']
class Content(models.Model):
 # ...
 class Meta:
 ordering = ['order']

The Module and Content models should now look as follows:

class Content(models.Model):
 # ...
 order = OrderField(blank=True, for_fields=['modu

Let’s create a new model migration that reflects the new order fields.
Open the shell and run the following command:

class Module(models.Model):
 course = models.ForeignKey(Course,
 related_name='modules
 on_delete=models.CASC
 title = models.CharField(max_length=200)
 description = models.TextField(blank=True)
 order = OrderField(blank=True, for_fields=['cour
 class Meta:
 ordering = ['order']
 def __str__(self):
 return f'{self.order}. {self.title}'
class Content(models.Model):
 module = models.ForeignKey(Module,
 related_name='content
 on_delete=models.CASC
 content_type = models.ForeignKey(ContentType,
 on_delete=models.CASCADE,
 limit_choices_to={'model_
 'text',
 'video
 'image
 'file')
 object_id = models.PositiveIntegerField()
 item = GenericForeignKey('content_type', 'object
 order = OrderField(blank=True, for_fields=['modu
 class Meta:
 ordering = ['order']

python manage.py makemigrations courses

You will see the following output:

Django is telling you that you have to provide a default value for the
new order field for existing rows in the database. If the field
includes null=True , it accepts null values and Django creates the
migration automatically instead of asking for a default value. You
can specify a default value, or cancel the migration and add a
default a�ribute to the order field in the models.py file before
creating the migration.

Enter 1 and press Enter to provide a default value for existing
records. You will see the following output:

It is impossible to add a non-nullable field 'order
Please select a fix:
 1) Provide a one-off default now (will be set on al
 2) Quit and manually define a default value in mode
Select an option:

Please enter the default value as valid Python.
The datetime and django.utils.timezone modules are a
Type 'exit' to exit this prompt
>>>

Enter 0 so that this is the default value for existing records and press
Enter. Django will ask you for a default value for the Module model
too. Choose the first option and enter 0 as the default value again.
Finally, you will see an output similar to the following one:

Then, apply the new migrations with the following command:

python manage.py migrate

The output of the command will inform you that the migration was
successfully applied, as follows:

Let’s test your new field. Open the shell with the following
command:

python manage.py shell

Create a new course, as follows:

Migrations for 'courses':
courses/migrations/0003_alter_content_options_alter_
 - Change Meta options on content
 - Change Meta options on module
 - Add field order to content
 - Add field order to module

Applying courses.0003_alter_content_options_alter_mo

You have created a course in the database. Now, you will add
modules to the course and see how their order is automatically
calculated. You create an initial module and check its order:

OrderField sets its value to 0 , since this is the first Module object
created for the given course. You can create a second module for the
same course:

OrderField calculates the next order value, adding 1 to the highest
order for existing objects. Let’s create a third module, forcing a
specific order:

>>> from django.contrib.auth.models import User
>>> from courses.models import Subject, Course, Modu
>>> user = User.objects.last()
>>> subject = Subject.objects.last()
>>> c1 = Course.objects.create(subject=subject, owne

>>> m1 = Module.objects.create(course=c1, title='Mod
>>> m1.order
0

>>> m2 = Module.objects.create(course=c1, title='Mod
>>> m2.order
1

If you provide a custom order when creating or saving an object,
OrderField will use that value instead of calculating the order.

Let’s add a fourth module:

The order for this module has been automatically set. Your
OrderField field does not guarantee that all order values are
consecutive. However, it respects existing order values and always
assigns the next order based on the highest existing order.

Let’s create a second course and add a module to it:

To calculate the new module’s order, the field only takes into
consideration existing modules that belong to the same course. Since
this is the first module of the second course, the resulting order is 0 .

>>> m3 = Module.objects.create(course=c1, title='Mod
>>> m3.order
5

>>> m4 = Module.objects.create(course=c1, title='Mod
>>> m4.order
6

>>> c2 = Course.objects.create(subject=subject, titl
>>> m5 = Module.objects.create(course=c2, title='Mod
>>> m5.order
0

This is because you specified for_fields=['course'] in the
order field of the Module model.

Congratulations! You have successfully created your first custom
model field. Next, you are going to create an authentication system
for the CMS.

Adding authentication views
Now that you have created a polymorphic data model, you are
going to build a CMS to manage the courses and their contents. The
first step is to add an authentication system for the CMS.

Adding an authentication system
You are going to use Django’s authentication framework for users to
authenticate to the e-learning platform. Both instructors and
students will be instances of Django’s User model, so they will be
able to log in to the site using the authentication views of
django.contrib.auth .

Edit the main urls.py file of the educa project and include the
login and logout views of Django’s authentication framework:

from django.contrib import admin
from django.urls import path
from django.conf import settings
from django.conf.urls.static import static
from django.contrib.auth import views as auth_views
urlpatterns = [

Creating the authentication templates
Create the following file structure inside the courses application
directory:

templates/
 base.xhtml
 registration/
 login.xhtml
 logged_out.xhtml

Before building the authentication templates, you need to prepare
the base template for your project. Edit the base.xhtml template
file and add the following content to it:

 path('accounts/login/', auth_views.LoginView.as_
 name='login'),
 path('accounts/logout/', auth_views.LogoutView.a
 name='logout'),
 path('admin/', admin.site.urls),
]
if settings.DEBUG:
 urlpatterns += static(settings.MEDIA_URL,
 document_root=settings.MED

{% load static %}
<!DOCTYPE html>
<html>
 <head>

This is the base template that will be extended by the rest of the
templates. In this template, you define the following blocks:

 <meta charset="utf-8" />
 <title>{% block title %}Educa{% endblock %}</tit
 <link href="{% static "css/base.css" %}" rel="st
 </head>
 <body>
 <div id="header">
 Educa
 <ul class="menu">
 {% if request.user.is_authenticated %}
 Sign out<
 {% else %}
 Sign in</a
 {% endif %}

 </div>
 <div id="content">
 {% block content %}
 {% endblock %}
 </div>
 <script>
 document.addEventListener('DOMContentLoaded',
 // DOM loaded
 {% block domready %}
 {% endblock %}
 })
 </script>
 </body>
</html>

title : The block for other templates to add a custom title for
each page.
content : The main block for content. All templates that extend
the base template should add content to this block.
domready : Located inside the JavaScript event listener for the
DOMContentLoaded event. It allows you to execute code when
the Document Object Model (DOM) has finished loading.

The CSS styles used in this template are located in the static/
directory of the courses application in the code that comes with
this chapter. Copy the static/ directory into the same directory of
your project to use them. You can find the contents of the directory
at https://github.com/PacktPublishing/Django-4-by-
Example/tree/main/Chapter12/educa/courses/static.

Edit the registration/login.xhtml template and add the
following code to it:

{% extends "base.xhtml" %}
{% block title %}Log-in{% endblock %}
{% block content %}
 <h1>Log-in</h1>
 <div class="module">
 {% if form.errors %}
 <p>Your username and password didn't match. Pl
 {% else %}
 <p>Please, use the following form to log-in:</
 {% endif %}
 <div class="login-form">
 <form action="{% url 'login' %}" method="post"

https://github.com/PacktPublishing/Django-4-by-Example/tree/main/Chapter12/educa/courses/static

This is a standard login template for Django’s login view.

Edit the registration/logged_out.xhtml template and add the
following code to it:

This is the template that will be displayed to the user after logging
out. Run the development server with the following command:

 {{ form.as_p }}
 {% csrf_token %}
 <input type="hidden" name="next" value="{{ n
 <p><input type="submit" value="Log-in"></p>
 </form>
 </div>
 </div>
{% endblock %}

{% extends "base.xhtml" %}
{% block title %}Logged out{% endblock %}
{% block content %}
 <h1>Logged out</h1>
 <div class="module">
 <p>
 You have been successfully logged out.
 You can log-in aga
 </p>
 </div>
{% endblock %}

python manage.py runserver

Open http://127.0.0.1:8000/accounts/login/ in your
browser. You should see the login page:

Figure 12.4: The account login page

Open http://127.0.0.1:8000/accounts/logout/ in your
browser. You should see the Logged out page now, as shown in
Figure 12.5:

Figure 12.5: The account logged out page

You have successfully created an authentication system for the CMS.

Additional resources
The following resources provide additional information related to
the topics covered in this chapter:

Source code for this chapter —
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter12

Using Django fixtures for testing —
https://docs.djangoproject.com/en/4.1/topics/testin
g/tools/#fixture-loading

Data migrations —
https://docs.djangoproject.com/en/4.1/topics/migrat
ions/#data-migrations

Creating custom model fields –
https://docs.djangoproject.com/en/4.1/howto/custom-
model-fields/

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter12
https://docs.djangoproject.com/en/4.1/topics/testing/tools/#fixture-loading
https://docs.djangoproject.com/en/4.1/topics/migrations/#data-migrations
https://docs.djangoproject.com/en/4.1/howto/custom-model-fields/

Static directory for the e-learning project –
https://github.com/PacktPublishing/Django-4-by-
Example/tree/main/Chapter12/educa/courses/static

Summary
In this chapter, you learned how to use fixtures to provide initial
data for models. By using model inheritance, you created a flexible
system to manage different types of content for the course modules.
You also implemented a custom model field on order objects and
created an authentication system for the e-learning platform.

In the next chapter, you will implement the CMS functionality to
manage course contents using class-based views. You will use the
Django groups and permissions system to restrict access to views,
and you will implement formsets to edit the content of courses. You
will also create a drag-and-drop functionality to reorder course
modules and their content using JavaScript and Django.

Join us on Discord
Read this book alongside other users and the author.

Ask questions, provide solutions to other readers, chat with the
author via Ask Me Anything sessions, and much more. Scan the QR
code or visit the link to join the book community.

https://packt.link/django

https://github.com/PacktPublishing/Django-4-by-Example/tree/main/Chapter12/educa/courses/static

13

Creating a Content Management
System

In the previous chapter, you created the application models for the
e-learning platform and learned how to create and apply data
fixtures for models. You created a custom model field to order
objects and implemented user authentication.

In this chapter, you will learn how to build the functionality for
instructors to create courses and manage the contents of those
courses in a versatile and efficient manner.

In this chapter, you will learn how to:

Create a content management system using class-based views
and mixins
Build formsets and model formsets to edit course modules and
module contents
Manage groups and permissions
Implement a drag-and-drop functionality to reorder modules
and content

The source code for this chapter can be found at
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter13.

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter13

All Python modules used in this chapter are included in the
requirements.txt file in the source code that comes along with
this chapter. You can follow the instructions to install each Python
module below or you can install all the requirements at once with
the command pip install -r requirements.txt .

Creating a CMS
Now that you have created a versatile data model, you are going to
build the CMS. The CMS will allow instructors to create courses and
manage their content. You need to provide the following
functionality:

List the courses created by the instructor
Create, edit, and delete courses
Add modules to a course and reorder them
Add different types of content to each module
Reorder course modules and content

Let’s start with the basic CRUD views.

Creating class-based views
You are going to build views to create, edit, and delete courses. You
will use class-based views for this. Edit the views.py file of the
courses application and add the following code:

from django.views.generic.list import ListView
from .models import Course
class ManageCourseListView(ListView):

This is the ManageCourseListView view. It inherits from Django’s
generic ListView . You override the get_queryset() method of the
view to retrieve only courses created by the current user. To prevent
users from editing, updating, or deleting courses they didn’t create,
you will also need to override the get_queryset() method in the
create, update, and delete views. When you need to provide a
specific behavior for several class-based views, it is recommended
that you use mixins.

Using mixins for class-based views
Mixins are a special kind of multiple inheritance for a class. You can
use them to provide common discrete functionality that, when
added to other mixins, allows you to define the behavior of a class.
There are two main situations to use mixins:

You want to provide multiple optional features for a class
You want to use a particular feature in several classes

Django comes with several mixins that provide additional
functionality to your class-based views. You can learn more about
mixins at
https://docs.djangoproject.com/en/4.1/topics/class-
based-views/mixins/.

 model = Course
 template_name = 'courses/manage/course/list.xhtm
 def get_queryset(self):
 qs = super().get_queryset()
 return qs.filter(owner=self.request.user)

https://docs.djangoproject.com/en/4.1/topics/class-based-views/mixins/

You are going to implement common behavior for multiple views in
mixin classes and use it for the course views. Edit the views.py file
of the courses application and modify it as follows:

from django.views.generic.list import ListView
from django.views.generic.edit import CreateView, \
 UpdateView, DeleteView
from django.urls import reverse_lazy
from .models import Course
class OwnerMixin:
 def get_queryset(self):
 qs = super().get_queryset()
 return qs.filter(owner=self.request.user)
class OwnerEditMixin:
 def form_valid(self, form):
 form.instance.owner = self.request.user
 return super().form_valid(form)
class OwnerCourseMixin(OwnerMixin):
 model = Course
 fields = ['subject', 'title', 'slug', 'overview
 success_url = reverse_lazy('manage_course_list')
class OwnerCourseEditMixin(OwnerCourseMixin, OwnerEd
 template_name = 'courses/manage/course/form.xhtm
class ManageCourseListView(OwnerCourseMixin, ListVie
 template_name = 'courses/manage/course/list.xhtm
class CourseCreateView(OwnerCourseEditMixin, CreateV
 pass
class CourseUpdateView(OwnerCourseEditMixin, UpdateV
 pass
class CourseDeleteView(OwnerCourseMixin, DeleteView)

In this code, you create the OwnerMixin and OwnerEditMixin
mixins. You will use these mixins together with the ListView ,
CreateView , UpdateView , and DeleteView views provided by
Django. OwnerMixin implements the get_queryset() method,
which is used by the views to get the base QuerySet. Your mixin will
override this method to filter objects by the owner a�ribute to
retrieve objects that belong to the current user (request.user).

OwnerEditMixin implements the form_valid() method, which is
used by views that use Django’s ModelFormMixin mixin, that is,
views with forms or model forms such as CreateView and
UpdateView . form_valid() is executed when the submi�ed form
is valid.

The default behavior for this method is saving the instance (for
model forms) and redirecting the user to success_url . You
override this method to automatically set the current user in the
owner a�ribute of the object being saved. By doing so, you set the
owner for an object automatically when it is saved.

Your OwnerMixin class can be used for views that interact with any
model that contains an owner a�ribute.

You also define an OwnerCourseMixin class that inherits
OwnerMixin and provides the following a�ributes for child views:

model : The model used for QuerySets; it is used by all views.

 template_name = 'courses/manage/course/delete.xh

fields : The fields of the model to build the model form of the
CreateView and UpdateView views.
success_url : Used by CreateView , UpdateView , and
DeleteView to redirect the user after the form is successfully
submi�ed or the object is deleted. You use a URL with the name
manage_course_list , which you are going to create later.

You define an OwnerCourseEditMixin mixin with the following
a�ribute:

template_name : The template you will use for the CreateView
and UpdateView views.

Finally, you create the following views that subclass
OwnerCourseMixin :

ManageCourseListView : Lists the courses created by the user.
It inherits from OwnerCourseMixin and ListView . It defines a
specific template_name a�ribute for a template to list courses.
CourseCreateView : Uses a model form to create a new Course
object. It uses the fields defined in OwnerCourseMixin to build
a model form and also subclasses CreateView . It uses the
template defined in OwnerCourseEditMixin .
CourseUpdateView : Allows the editing of an existing Course
object. It uses the fields defined in OwnerCourseMixin to build
a model form and also subclasses UpdateView . It uses the
template defined in OwnerCourseEditMixin .
CourseDeleteView : Inherits from OwnerCourseMixin and the
generic DeleteView . It defines a specific template_name
a�ribute for a template to confirm the course deletion.

You have created the basic views to manage courses. Next, you are
going to use the Django authentication groups and permissions to
limit access to these views.

Working with groups and permissions
Currently, any user can access the views to manage courses. You
want to restrict these views so that only instructors have permission
to create and manage courses.

Django’s authentication framework includes a permission system
that allows you to assign permissions to users and groups. You are
going to create a group for instructor users and assign permissions
to create, update, and delete courses.

Run the development server using the following command:

python manage.py runserver

Open http://127.0.0.1:8000/admin/auth/group/add/ in your
browser to create a new Group object. Add the name Instructors
and choose all permissions of the courses application, except those
of the Subject model, as follows:

Figure 13.1: The Instructors group permissions

As you can see, there are four different permissions for each model:
can view, can add, can change, and can delete. After choosing
permissions for this group, click the SAVE bu�on.

Django creates permissions for models automatically, but you can
also create custom permissions. You will learn how to create custom
permissions in Chapter 15, Building an API. You can read more about
adding custom permissions at

https://docs.djangoproject.com/en/4.1/topics/auth/custo
mizing/#custom-permissions.

Open http://127.0.0.1:8000/admin/auth/user/add/ and
create a new user. Edit the user and add it to the Instructors group,
as follows:

Figure 13.2: User group selection

Users inherit the permissions of the groups they belong to, but you
can also add individual permissions to a single user using the
administration site. Users that have is_superuser set to True have
all permissions automatically.

Restricting access to class-based views
You are going to restrict access to the views so that only users with
the appropriate permissions can add, change, or delete Course
objects. You are going to use the following two mixins provided by
django.contrib.auth to limit access to views:

https://docs.djangoproject.com/en/4.1/topics/auth/customizing/#custom-permissions

LoginRequiredMixin : Replicates the login_required
decorator’s functionality.
PermissionRequiredMixin : Grants access to the view to users
with a specific permission. Remember that superusers
automatically have all permissions.

Edit the views.py file of the courses application and add the
following import:

Make OwnerCourseMixin inherit LoginRequiredMixin and
PermissionRequiredMixin , like this:

Then, add a permission_required a�ribute to the course views, as
follows:

from django.contrib.auth.mixins import LoginRequired
 PermissionReq

class OwnerCourseMixin(OwnerMixin,
 LoginRequiredMixin,
 PermissionRequiredMixin):
 model = Course
 fields = ['subject', 'title', 'slug', 'overview
 success_url = reverse_lazy('manage_course_list')

class ManageCourseListView(OwnerCourseMixin, ListVie
 template_name = 'courses/manage/course/list.xhtm
 permission_required = 'courses.view_course'

PermissionRequiredMixin checks that the user accessing the view
has the permission specified in the permission_required a�ribute.
Your views are now only accessible to users with the proper
permissions.

Let’s create URLs for these views. Create a new file inside the
courses application directory and name it urls.py . Add the
following code to it:

from django.urls import path
from . import views
urlpatterns = [
 path('mine/',
 views.ManageCourseListView.as_view(),
 name='manage_course_list'),
 path('create/',
 views.CourseCreateView.as_view(),
 name='course_create'),
 path('<pk>/edit/',
 views.CourseUpdateView.as_view(),
 name='course_edit'),
 path('<pk>/delete/',

class CourseCreateView(OwnerCourseEditMixin, CreateV
 permission_required = 'courses.add_course'
class CourseUpdateView(OwnerCourseEditMixin, UpdateV
 permission_required = 'courses.change_course'
class CourseDeleteView(OwnerCourseMixin, DeleteView)
 template_name = 'courses/manage/course/delete.xh
 permission_required = 'courses.delete_course'

 views.CourseDeleteView.as_view(),
 name='course_delete'),
]

These are the URL pa�erns for the list, create, edit, and delete course
views. The pk parameter refers to the primary key field. Remember
that pk is a short for primary key. Every Django model has a field
that serves as its primary key. By default, the primary key is the
automatically generated id field. The Django generic views for
single objects retrieve an object by its pk field. Edit the main
urls.py file of the educa project and include the URL pa�erns of
the courses application, as follows.

New code is highlighted in bold:

from django.contrib import admin
from django.urls import path, include
from django.conf import settings
from django.conf.urls.static import static
from django.contrib.auth import views as auth_views
urlpatterns = [
 path('accounts/login/',
 auth_views.LoginView.as_view(),
 name='login'),
 path('accounts/logout/',
 auth_views.LogoutView.as_view(),
 name='logout'),
 path('admin/', admin.site.urls),
 path('course/', include('courses.urls')),
]

You need to create the templates for these views. Create the
following directories and files inside the templates/ directory of
the courses application:

courses/
 manage/
 course/
 list.xhtml
 form.xhtml
 delete.xhtml

Edit the courses/manage/course/list.xhtml template and add
the following code to it:

if settings.DEBUG:
 urlpatterns += static(settings.MEDIA_URL,
 document_root=settings.MED

{% extends "base.xhtml" %}
{% block title %}My courses{% endblock %}
{% block content %}
 <h1>My courses</h1>
 <div class="module">
 {% for course in object_list %}
 <div class="course-info">
 <h3>{{ course.title }}</h3>
 <p>
 <a href="{% url "course_edit" course.id %}
 <a href="{% url "course_delete" course.id

This is the template for the ManageCourseListView view. In this
template, you list the courses created by the current user. You
include links to edit or delete each course, and a link to create new
courses.

Run the development server using the command:

python manage.py runserver

Open http://127.0.0.1:8000/accounts/login/?
next=/course/mine/ in your browser and log in with a user
belonging to the Instructors group. After logging in, you will be
redirected to the http://127.0.0.1:8000/course/mine/ URL
and you should see the following page:

 </p>
 </div>
 {% empty %}
 <p>You haven't created any courses yet.</p>
 {% endfor %}
 <p>
 <a href="{% url "course_create" %}" class="but
 </p>
 </div>
{% endblock %}

Figure 13.3: The instructor courses page with no courses

This page will display all courses created by the current user.

Let’s create the template that displays the form for the create and
update course views. Edit the
courses/manage/course/form.xhtml template and write the
following code:

{% extends "base.xhtml" %}
{% block title %}
 {% if object %}
 Edit course "{{ object.title }}"
 {% else %}
 Create a new course
 {% endif %}
{% endblock %}
{% block content %}
 <h1>
 {% if object %}

The form.xhtml template is used for both the CourseCreateView
and CourseUpdateView views. In this template, you check whether
an object variable is in the context. If object exists in the context,
you know that you are updating an existing course, and you use it in
the page title. Otherwise, you are creating a new Course object.

Open http://127.0.0.1:8000/course/mine/ in your browser
and click the CREATE NEW COURSE bu�on. You will see the
following page:

 Edit course "{{ object.title }}"
 {% else %}
 Create a new course
 {% endif %}
 </h1>
 <div class="module">
 <h2>Course info</h2>
 <form method="post">
 {{ form.as_p }}
 {% csrf_token %}
 <p><input type="submit" value="Save course"></
 </form>
 </div>
{% endblock %}

Figure 13.4: The form to create a new course

Fill in the form and click the SAVE COURSE bu�on. The course will
be saved, and you will be redirected to the course list page. It should
look as follows:

Figure 13.5: The instructor courses page with one course

Then, click the Edit link for the course you have just created. You
will see the form again, but this time you are editing an existing
Course object instead of creating one.

Finally, edit the courses/manage/course/delete.xhtml template
and add the following code:

{% extends "base.xhtml" %}
{% block title %}Delete course{% endblock %}
{% block content %}

This is the template for the CourseDeleteView view. This view
inherits from DeleteView , provided by Django, which expects user
confirmation to delete an object.

Open the course list in the browser and click the Delete link of your
course. You should see the following confirmation page:

Figure 13.6: The delete course confirmation page

 <h1>Delete course "{{ object.title }}"</h1>
 <div class="module">
 <form action="" method="post">
 {% csrf_token %}
 <p>Are you sure you want to delete "{{ object
 <input type="submit" value="Confirm">
 </form>
 </div>
{% endblock %}

Click the CONFIRM bu�on. The course will be deleted, and you
will be redirected to the course list page again.

Instructors can now create, edit, and delete courses. Next, you need
to provide them with a CMS to add course modules and their
contents. You will start by managing course modules.

Managing course modules and their
contents
You are going to build a system to manage course modules and their
contents. You will need to build forms that can be used for managing
multiple modules per course and different types of content for each
module. Both modules and their contents will have to follow a
specific order and you should be able to reorder them using the
CMS.

Using formsets for course modules
Django comes with an abstraction layer to work with multiple forms
on the same page. These groups of forms are known as formsets.
Formsets manage multiple instances of a certain Form or
ModelForm . All forms are submi�ed at once and the formset takes
care of the initial number of forms to display, limiting the maximum
number of forms that can be submi�ed and validating all the forms.

Formsets include an is_valid() method to validate all forms at
once. You can also provide initial data for the forms and specify how
many additional empty forms to display. You can learn more about

formsets at
https://docs.djangoproject.com/en/4.1/topics/forms/form
sets/ and about model formsets at
https://docs.djangoproject.com/en/4.1/topics/forms/mode
lforms/#model-formsets.

Since a course is divided into a variable number of modules, it
makes sense to use formsets to manage them. Create a forms.py file
in the courses application directory and add the following code to
it:

This is the ModuleFormSet formset. You build it using the
inlineformset_factory() function provided by Django. Inline
formsets are a small abstraction on top of formsets that simplify
working with related objects. This function allows you to build a
model formset dynamically for the Module objects related to a
Course object.

You use the following parameters to build the formset:

from django import forms
from django.forms.models import inlineformset_factor
from .models import Course, Module
ModuleFormSet = inlineformset_factory(Course,
 Module,
 fields=['title
 'descr
 extra=2,
 can_delete=Tru

https://docs.djangoproject.com/en/4.1/topics/forms/formsets/
https://docs.djangoproject.com/en/4.1/topics/forms/modelforms/#model-formsets

fields : The fields that will be included in each form of the
formset.
extra : Allows you to set the number of empty extra forms to
display in the formset.
can_delete : If you set this to True , Django will include a
Boolean field for each form that will be rendered as a checkbox
input. It allows you to mark the objects that you want to delete.

Edit the views.py file of the courses application and add the
following code to it:

from django.shortcuts import redirect, get_object_or
from django.views.generic.base import TemplateRespon
from .forms import ModuleFormSet
class CourseModuleUpdateView(TemplateResponseMixin,
 template_name = 'courses/manage/module/formset.x
 course = None
 def get_formset(self, data=None):
 return ModuleFormSet(instance=self.course,
 data=data)
 def dispatch(self, request, pk):
 self.course = get_object_or_404(Course,
 id=pk,
 owner=request
 return super().dispatch(request, pk)
 def get(self, request, *args, **kwargs):
 formset = self.get_formset()
 return self.render_to_response({
 'course': self.c
 'formset': forms

The CourseModuleUpdateView view handles the formset to add,
update, and delete modules for a specific course. This view inherits
from the following mixins and views:

TemplateResponseMixin : This mixin takes charge of rendering
templates and returning an HTTP response. It requires a
template_name a�ribute that indicates the template to be
rendered and provides the render_to_response() method to
pass it a context and render the template.
View : The basic class-based view provided by Django.

In this view, you implement the following methods:

get_formset() : You define this method to avoid repeating the
code to build the formset. You create a ModuleFormSet object
for the given Course object with optional data.
dispatch() : This method is provided by the View class. It
takes an HTTP request and its parameters and a�empts to
delegate to a lowercase method that matches the HTTP method
used. A GET request is delegated to the get() method and a
POST request to post() , respectively. In this method, you use
the get_object_or_404() shortcut function to get the Course

 def post(self, request, *args, **kwargs):
 formset = self.get_formset(data=request.POST
 if formset.is_valid():
 formset.save()
 return redirect('manage_course_list')
 return self.render_to_response({
 'formset': forms

object for the given id parameter that belongs to the current
user. You include this code in the dispatch() method because
you need to retrieve the course for both GET and POST requests.
You save it into the course a�ribute of the view to make it
accessible to other methods.
get() : Executed for GET requests. You build an empty
ModuleFormSet formset and render it to the template together
with the current Course object using the
render_to_response() method provided by
TemplateResponseMixin .
post() : Executed for POST requests.
In this method, you perform the following actions:

1. You build a ModuleFormSet instance using the submi�ed
data.

2. You execute the is_valid() method of the formset to
validate all of its forms.

3. If the formset is valid, you save it by calling the save()
method. At this point, any changes made, such as adding,
updating, or marking modules for deletion, are applied to
the database. Then, you redirect users to the
manage_course_list URL. If the formset is not valid, you
render the template to display any errors instead.

Edit the urls.py file of the courses application and add the
following URL pa�ern to it:

path('<pk>/module/',
 views.CourseModuleUpdateView.as_view(),

 name='course_module_update'),

Create a new directory inside the courses/manage/ template
directory and name it module . Create a
courses/manage/module/formset.xhtml template and add the
following code to it:

{% extends "base.xhtml" %}
{% block title %}
 Edit "{{ course.title }}"
{% endblock %}
{% block content %}
 <h1>Edit "{{ course.title }}"</h1>
 <div class="module">
 <h2>Course modules</h2>
 <form method="post">
 {{ formset }}
 {{ formset.management_form }}
 {% csrf_token %}
 <input type="submit" value="Save modules">
 </form>
 </div>
{% endblock %}

In this template, you create a <form> HTML element in which you
include formset . You also include the management form for the
formset with the variable {{ formset.management_form }} . The
management form includes hidden fields to control the initial, total,

minimum, and maximum number of forms. You can see that it’s
very easy to create a formset.

Edit the courses/manage/course/list.xhtml template and add
the following link for the course_module_update URL below the
course Edit and Delete links:

You have included the link to edit the course modules.

Open http://127.0.0.1:8000/course/mine/ in your browser.
Create a course and click the Edit modules link for it. You should see
a formset, as follows:

Edit
Delete
<a href="{% url "course_module_update" course.id %}"

Figure 13.7: The course edit page, including the formset for course modules

The formset includes a form for each Module object contained in the
course. After these, two empty extra forms are displayed because
you set extra=2 for ModuleFormSet . When you save the formset,
Django will include another two extra fields to add new modules.

Adding content to course modules
Now, you need a way to add content to course modules. You have
four different types of content: text, video, image, and file. You could
consider creating four different views to create content, with one for
each model. However, you are going to take a more generic
approach and create a view that handles creating or updating the
objects of any content model.

Edit the views.py file of the courses application and add the
following code to it:

from django.forms.models import modelform_factory
from django.apps import apps
from .models import Module, Content
class ContentCreateUpdateView(TemplateResponseMixin,
 module = None
 model = None
 obj = None
 template_name = 'courses/manage/content/form.xht
 def get_model(self, model_name):
 if model_name in ['text', 'video', 'image',
 return apps.get_model(app_label='courses
 model_name=model_n
 return None
 def get_form(self, model, *args, **kwargs):
 Form = modelform_factory(model, exclude=['ow
 'or
 'cr
 'up
 return Form(*args, **kwargs)

This is the first part of ContentCreateUpdateView . It will allow
you to create and update different models’ contents. This view
defines the following methods:

get_model() : Here, you check that the given model name is
one of the four content models: Text , Video , Image , or File .
Then, you use Django’s apps module to obtain the actual class
for the given model name. If the given model name is not one of
the valid ones, you return None .
get_form() : You build a dynamic form using the
modelform_factory() function of the form’s framework. Since
you are going to build a form for the Text , Video , Image , and
File models, you use the exclude parameter to specify the
common fields to exclude from the form and let all other
a�ributes be included automatically. By doing so, you don’t
have to know which fields to include depending on the model.
dispatch() : It receives the following URL parameters and
stores the corresponding module, model, and content object as

 def dispatch(self, request, module_id, model_nam
 self.module = get_object_or_404(Module,
 id=module_id,
 course__owner
 self.model = self.get_model(model_name)
 if id:
 self.obj = get_object_or_404(self.model,
 id=id,
 owner=reque
 return super().dispatch(request, module_id,

class a�ributes:
module_id : The ID for the module that the content is/will
be associated with.
model_name : The model name of the content to
create/update.
id : The ID of the object that is being updated. It’s None to
create new objects.

Add the following get() and post() methods to
ContentCreateUpdateView :

def get(self, request, module_id, model_name, id=Non
 form = self.get_form(self.model, instance=self.o
 return self.render_to_response({'form': form,
 'object': self.o
def post(self, request, module_id, model_name, id=No
 form = self.get_form(self.model,
 instance=self.obj,
 data=request.POST,
 files=request.FILES)
 if form.is_valid():
 obj = form.save(commit=False)
 obj.owner = request.user
 obj.save()
 if not id:
 # new content
 Content.objects.create(module=self.modul
 item=obj)
 return redirect('module_content_list', self

These methods are as follows:

get() : Executed when a GET request is received. You build the
model form for the Text , Video , Image , or File instance that
is being updated. Otherwise, you pass no instance to create a
new object, since self.obj is None if no ID is provided.
post() : Executed when a POST request is received. You build
the model form, passing any submi�ed data and files to it. Then,
you validate it. If the form is valid, you create a new object and
assign request.user as its owner before saving it to the
database. You check for the id parameter. If no ID is provided,
you know the user is creating a new object instead of updating
an existing one. If this is a new object, you create a Content
object for the given module and associate the new content with
it.

Edit the urls.py file of the courses application and add the
following URL pa�erns to it:

 return self.render_to_response({'form': form,
 'object': self.o

path('module/<int:module_id>/content/<model_name>/cr
 views.ContentCreateUpdateView.as_view(),
 name='module_content_create'),
path('module/<int:module_id>/content/<model_name>/<i
 views.ContentCreateUpdateView.as_view(),
 name='module_content_update'),

The new URL pa�erns are as follows:

module_content_create : To create new text, video, image, or
file objects and add them to a module. It includes the
module_id and model_name parameters. The first one allows
linking the new content object to the given module. The la�er
specifies the content model to build the form for.
module_content_update : To update an existing text, video,
image, or file object. It includes the module_id and
model_name parameters and an id parameter to identify the
content that is being updated.

Create a new directory inside the courses/manage/ template
directory and name it content . Create the template
courses/manage/content/form.xhtml and add the following
code to it:

{% extends "base.xhtml" %}
{% block title %}
 {% if object %}
 Edit content "{{ object.title }}"
 {% else %}
 Add new content
 {% endif %}
{% endblock %}
{% block content %}
 <h1>
 {% if object %}
 Edit content "{{ object.title }}"
 {% else %}

This is the template for the ContentCreateUpdateView view. In
this template, you check whether an object variable is in the
context. If object exists in the context, you are updating an existing
object. Otherwise, you are creating a new object.

You include enctype="multipart/form-data" in the <form>
HTML element because the form contains a file upload for the File
and Image content models.

Run the development server, open
http://127.0.0.1:8000/course/mine/ , click Edit modules for
an existing course, and create a module.

Then open the Python shell with the following command:

python manage.py shell

 Add new content
 {% endif %}
 </h1>
 <div class="module">
 <h2>Course info</h2>
 <form action="" method="post" enctype="multipart
 {{ form.as_p }}
 {% csrf_token %}
 <p><input type="submit" value="Save content"><
 </form>
 </div>
{% endblock %}

Obtain the ID of the most recently created module, as follows:

>>> from courses.models import Module
>>> Module.objects.latest('id').id
6

Run the development server and open
http://127.0.0.1:8000/course/module/6/content/image/cre
ate/ in your browser, replacing the module ID with the one you
obtained before. You will see the form to create an Image object, as
follows:

Figure 13.8: The course add new image content form

Don’t submit the form yet. If you try to do so, it will fail because you
haven’t defined the module_content_list URL yet. You are going
to create it in a bit.

You also need a view for deleting content. Edit the views.py file of
the courses application and add the following code:

The ContentDeleteView class retrieves the Content object with
the given ID. It deletes the related Text , Video , Image , or File
object. Finally, it deletes the Content object and redirects the user to
the module_content_list URL to list the other contents of the
module.

Edit the urls.py file of the courses application and add the
following URL pa�ern to it:

path('content/<int:id>/delete/',
 views.ContentDeleteView.as_view(),

class ContentDeleteView(View):
 def post(self, request, id):
 content = get_object_or_404(Content,
 id=id,
 module__course__owner=request
 module = content.module
 content.item.delete()
 content.delete()
 return redirect('module_content_list', modul

 name='module_content_delete'),

Now instructors can create, update, and delete content easily.

Managing modules and their contents
You have built views to create, edit, and delete course modules and
their contents. Next, you need a view to display all modules for a
course and list the contents of a specific module.

Edit the views.py file of the courses application and add the
following code to it:

This is the ModuleContentListView view. This view gets the
Module object with the given ID that belongs to the current user and
renders a template with the given module.

Edit the urls.py file of the courses application and add the
following URL pa�ern to it:

path('module/<int:module_id>/',
 views.ModuleContentListView.as_view(),

class ModuleContentListView(TemplateResponseMixin, V
 template_name = 'courses/manage/module/content_l
 def get(self, request, module_id):
 module = get_object_or_404(Module,
 id=module_id,
 course__owner=req
 return self.render_to_response({'module': mo

 name='module_content_list'),

Create a new template inside the
templates/courses/manage/module/ directory and name it
content_list.xhtml . Add the following code to it:

{% extends "base.xhtml" %}
{% block title %}
 Module {{ module.order|add:1 }}: {{ module.title }
{% endblock %}
{% block content %}
{% with course=module.course %}
 <h1>Course "{{ course.title }}"</h1>
 <div class="contents">
 <h3>Modules</h3>
 <ul id="modules">
 {% for m in course.modules.all %}
 <li data-id="{{ m.id }}" {% if m == module %
 class="selected"{% endif %}>
 <a href="{% url "module_content_list" m.id

 Module {{ m.order

 {{ m.title }}

 {% empty %}
 No modules yet.
 {% endfor %}

 <p><a href="{% url "course_module_update" course
 Edit modules</p>
 </div>
 <div class="module">
 <h2>Module {{ module.order|add:1 }}: {{ module.t
 <h3>Module contents:</h3>
 <div id="module-contents">
 {% for content in module.contents.all %}
 <div data-id="{{ content.id }}">
 {% with item=content.item %}
 <p>{{ item }}</p>
 Edit
 <form action="{% url "module_content_del
 method="post">
 <input type="submit" value="Delete">
 {% csrf_token %}
 </form>
 {% endwith %}
 </div>
 {% empty %}
 <p>This module has no contents yet.</p>
 {% endfor %}
 </div>
 <h3>Add new content:</h3>
 <ul class="content-types">

 <a href="{% url "module_content_create" modu
 Text

Make sure that no template tag is split into multiple lines.

This is the template that displays all modules for a course and the
contents of the selected module. You iterate over the course modules
to display them in a sidebar. You iterate over a module’s contents
and access content.item to get the related Text , Video , Image , or
File object. You also include links to create new text, video, image,
or file content.

You want to know which type of object each of the item objects is:
Text , Video , Image , or File . You need the model name to build
the URL to edit the object. Besides this, you could display each item

 <a href="{% url "module_content_create" modu
 Image

 <a href="{% url "module_content_create" modu
 Video

 <a href="{% url "module_content_create" modu
 File

 </div>
{% endwith %}
{% endblock %}

in the template differently based on the type of content it is. You can
get the model name for an object from the model’s Meta class by
accessing the object’s _meta a�ribute. Nevertheless, Django doesn’t
allow accessing variables or a�ributes starting with an underscore in
templates to prevent retrieving private a�ributes or calling private
methods. You can solve this by writing a custom template filter.

Create the following file structure inside the courses application
directory:

templatetags/
 __init__.py
 course.py

Edit the course.py module and add the following code to it:

from django import template
register = template.Library()
@register.filter
def model_name(obj):
 try:
 return obj._meta.model_name
 except AttributeError:
 return None

This is the model_name template filter. You can apply it in templates
as object|model_name to get the model name for an object.

Edit the
templates/courses/manage/module/content_list.xhtml

template and add the following line below the {% extends %}
template tag:

{% load course %}

This will load the course template tags. Then, find the following
lines:

<p>{{ item }}</p>
Edit

Replace them with the following ones:

In the preceding code, you display the item model name in the
template and also use the model name to build the link to edit the
object.

Edit the courses/manage/course/list.xhtml template and add a
link to the module_content_list URL, like this:

<p>{{ item }} ({{ item|model_name }})</p>
<a href="{% url "module_content_update" module.id it
 Edit

<a href="{% url "course_module_update" course.id %}"
{% if course.modules.count > 0 %}
 <a href="{% url "module_content_list" course.modul

The new link allows users to access the contents of the first module
of the course, if there are any.

Stop the development server and run it again using the command:

python manage.py runserver

By stopping and running the development server, you make sure
that the course template tags file gets loaded.

Open http://127.0.0.1:8000/course/mine/ and click the
Manage contents link for a course that contains at least one module.
You will see a page like the following one:

 Manage contents

{% endif %}

Figure 13.9: The page to manage course module contents

When you click on a module in the left sidebar, its contents are
displayed in the main area. The template also includes links to add
new text, video, image, or file content for the module being
displayed.

Add a couple of different types of content to the module and look at
the result. Module contents will appear below Module contents:

Figure 13.10: Managing different module contents

Next, we will allow course instructors to reorder modules and
module contents with a simple drag-and-drop functionality.

Reordering modules and their contents

We will implement a JavaScript drag-and-drop functionality to let
course instructors reorder the modules of a course by dragging
them.

To implement this feature, we will use the HTML5 Sortable library,
which simplifies the process of creating sortable lists using the native
HTML5 Drag and Drop API.

When users finish dragging a module, you will use the JavaScript
Fetch API to send an asynchronous HTTP request to the server that
stores the new module order.

You can read more information about the HTML5 Drag and Drop
API at
https://www.w3schools.com/html/html5_draganddrop.asp.
You can find examples built with the HTML5 Sortable library at
https://lukasoppermann.github.io/html5sortable/.
Documentation for the HTML5 Sortable library is available at
https://github.com/lukasoppermann/html5sortable.

Using mixins from django-braces
django-braces is a third-party module that contains a collection of
generic mixins for Django. These mixins provide additional features
for class-based views. You can see a list of all mixins provided by
django-braces at https://django-braces.readthedocs.io/.

You will use the following mixins of django-braces :

CsrfExemptMixin : Used to avoid checking the cross-site
request forgery (CSRF) token in the POST requests. You need

https://www.w3schools.com/html/html5_draganddrop.asp
https://lukasoppermann.github.io/html5sortable/
https://github.com/lukasoppermann/html5sortable
https://django-braces.readthedocs.io/

this to perform AJAX POST requests without the need to pass a
csrf_token .
JsonRequestResponseMixin : Parses the request data as JSON
and also serializes the response as JSON and returns an HTTP
response with the application/json content type.

Install django-braces via pip using the following command:

pip install django-braces==1.15.0

You need a view that receives the new order of module IDs encoded
in JSON and updates the order accordingly. Edit the views.py file
of the courses application and add the following code to it:

This is the ModuleOrderView view, which allows you to update the
order of course modules.

You can build a similar view to order a module’s contents. Add the
following code to the views.py file:

from braces.views import CsrfExemptMixin, JsonReques
class ModuleOrderView(CsrfExemptMixin,
 JsonRequestResponseMixin,
 View):
 def post(self, request):
 for id, order in self.request_json.items():
 Module.objects.filter(id=id,
 course__owner=request.user).updat
 return self.render_json_response({'saved':

Now, edit the urls.py file of the courses application and add the
following URL pa�erns to it:

path('module/order/',
 views.ModuleOrderView.as_view(),
 name='module_order'),
path('content/order/',
 views.ContentOrderView.as_view(),
 name='content_order'),

Finally, you need to implement the drag-and-drop functionality in
the template. We will use the HTML5 Sortable library, which
simplifies the creation of sortable elements using the standard
HTML Drag and Drop API.

Edit the base.xhtml template located in the templates/ directory
of the courses application and add the following block highlighted
in bold:

class ContentOrderView(CsrfExemptMixin,
 JsonRequestResponseMixin,
 View):
 def post(self, request):
 for id, order in self.request_json.items():
 Content.objects.filter(id=id,
 module__course__owner=request
 .update(order=order)
 return self.render_json_response({'saved':

This new block named include_js will allow you to insert
JavaScript files in any template that extends the base.xhtml
template.

{% load static %}
<!DOCTYPE html>
<html>
 <head>
 # ...
 </head>
 <body>
 <div id="header">
 # ...
 </div>
 <div id="content">
 {% block content %}
 {% endblock %}
 </div>
 {% block include_js %}
 {% endblock %}
 <script>
 document.addEventListener('DOMContentLoaded',
 // DOM loaded
 {% block domready %}
 {% endblock %}
 })
 </script>
 </body>
</html>

Next, edit the courses/manage/module/content_list.xhtml
template and add the following code highlighted in bold to the
bo�om of the template:

In this code, you load the HTML5 Sortable library from a public
CDN. Remember you loaded a JavaScript library from a content
delivery network before in Chapter 6, Sharing Content on Your Website.

Now add the following domready block highlighted in bold to the
courses/manage/module/content_list.xhtml template:

...
{% block content %}
 # ...
{% endblock %}
{% block include_js %}
 <script src="https://cdnjs.cloudflare.com/ajax/lib
{% endblock %}

...
{% block content %}
 # ...
{% endblock %}
{% block include_js %}
 <script src="https://cdnjs.cloudflare.com/ajax/lib
{% endblock %}
{% block domready %}
 var options = {
 method: 'POST',

In these new lines, you add JavaScript code to the {% block
domready %} block that was defined in the event listener for the
DOMContentLoaded event in the base.xhtml template. This
guarantees that your JavaScript code will be executed once the page
has been loaded. With this code, you define the options for the HTTP
request to reorder modules that you will implement next. You will
send a POST request using the Fetch API to update the module
order. The module_order URL path is built and stored in the
JavaScript constant moduleOrderUrl .

Add the following code highlighted in bold to the domready block:

 mode: 'same-origin'
 }
 const moduleOrderUrl = '{% url "module_order" %}';
{% endblock %}

{% block domready %}
 var options = {
 method: 'POST',
 mode: 'same-origin'
 }
 const moduleOrderUrl = '{% url "module_order" %}';
 sortable('#modules', {
 forcePlaceholderSize: true,
 placeholderClass: 'placeholder'
 });
{% endblock %}

In the new code, you define a sortable element for the HTML
element with id="modules" , which is the module list in the sidebar.
Remember that you use a CSS selector # to select the element with
the given id . When you start dragging an item, the HTML5 Sortable
library creates a placeholder item so that you can easily see where
the element will be placed.

You set the forcePlacehoderSize option to true , to force the
placeholder element to have a height, and you use the
placeholderClass to define the CSS class for the placeholder
element. You use the class named placeholder that is defined in
the css/base.css static file loaded in the base.xhtml template.

Open http://127.0.0.1:8000/course/mine/ in your browser
and click on Manage contents for any course. Now you can drag
and drop the course modules in the left sidebar, as in Figure 13.11:

Figure 13.11: Reordering modules with the drag-and-drop functionality

While you drag the element, you will see the placeholder item
created by the Sortable library, which has a dashed-line border. The
placeholder element allows you to identify the position where the
dragged element will be dropped.

When you drag a module to a different position, you need to send an
HTTP request to the server to store the new order. This can be done

by a�aching an event handler to the sortable element and sending a
request to the server using the JavaScript Fetch API.

Edit the domready block of the
courses/manage/module/content_list.xhtml template and add
the following code highlighted in bold:

{% block domready %}
 var options = {
 method: 'POST',
 mode: 'same-origin'
 }
 const moduleOrderUrl = '{% url "module_order" %}';
 sortable('#modules', {
 forcePlaceholderSize: true,
 placeholderClass: 'placeholder'
 })[0].addEventListener('sortupdate', function(e) {
 modulesOrder = {};
 var modules = document.querySelectorAll('#module
 modules.forEach(function (module, index) {
 // update module index
 modulesOrder[module.dataset.id] = index;
 // update index in HTML element
 module.querySelector('.order').innerHTML = ind
 // add new order to the HTTP request options
 options['body'] = JSON.stringify(modulesOrder)
 // send HTTP request
 fetch(moduleOrderUrl, options)
 });
 });
{% endblock %}

In the new code, an event listener is created for the sortupdate
event of the sortable element. The sortupdate event is triggered
when an element is dropped in a different position. The following
tasks are performed in the event function:

1. An empty modulesOrder dictionary is created. The keys for
this dictionary will be the module IDs, and the values will
contain the index of each module.

2. The list elements of the #modules HTML element are selected
with document.querySelectorAll() , using the #modules li
CSS selector.

3. forEach() is used to iterate over each list element.
4. The new index for each module is stored in the modulesOrder

dictionary. The ID of each module is retrieved from the HTML
data-id a�ribute by accessing module.dataset.id . You use
the ID as the key of the modulesOrder dictionary and the new
index of the module as the value.

5. The order displayed for each module is updated by selecting the
element with the order CSS class. Since the index is zero-based
and we want to display a one-based index, we add 1 to index .

6. A key named body is added to the options dictionary with the
new order contained in modulesOrder . The
JSON.stringify() method converts the JavaScript object into
a JSON string. This is the body for the HTTP request to update
the module order.

7. The Fetch API is used by creating a fetch() HTTP request to
update the module order. The view ModuleOrderView that

corresponds to the module_order URL takes care of updating
the order of the modules.

You can now drag and drop modules. When you finish dragging a
module, an HTTP request is sent to the module_order URL to
update the order of the modules. If you refresh the page, the latest
module order will be kept because it was updated in the database.
Figure 13.12 shows a different order for the modules in the sidebar
after sorting them using drag and drop:

Figure 13.12: New order for modules after reordering them with drag and drop

If you run into any issues, remember to use your browser’s
developer tools to debug JavaScript and HTTP requests. Usually,
you can right-click anywhere on the website to open the contextual
menu and click on Inspect or Inspect Element to access the web
developer tools of your browser.

Let’s add the same drag-and-drop functionality to allow course
instructors to sort module contents as well.

Edit the domready block of the
courses/manage/module/content_list.xhtml template and add
the following code highlighted in bold:

{% block domready %}
 // ...

 const contentOrderUrl = '{% url "content_order" %}
 sortable('#module-contents', {
 forcePlaceholderSize: true,
 placeholderClass: 'placeholder'
 })[0].addEventListener('sortupdate', function(e) {
 contentOrder = {};
 var contents = document.querySelectorAll('#modul
 contents.forEach(function (content, index) {
 // update content index
 contentOrder[content.dataset.id] = index;
 // add new order to the HTTP request options
 options['body'] = JSON.stringify(contentOrder)
 // send HTTP request
 fetch(contentOrderUrl, options)

In this case, you use the content_order URL instead of
module_order and build the sortable functionality on the HTML
element with the ID module-contents . The functionality is mainly
the same as for ordering course modules. In this case, you don’t
need to update the numbering of the contents because they don’t
include any visible index.

Now you can drag and drop both modules and module contents, as
in Figure 13.13:

 });
 });
{% endblock %}

Figure 13.13: Reordering module contents with the drag-and-drop functionality

Great! You built a very versatile content management system for the
course instructors.

Additional resources
The following resources provide additional information related to
the topics covered in this chapter:

Source code for this chapter –
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter13

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter13

Django mixins documentation –
https://docs.djangoproject.com/en/4.1/topics/class-
based-views/mixins/

Creating custom permissions –
https://docs.djangoproject.com/en/4.1/topics/auth/c
ustomizing/#custom-permissions

Django formsets –
https://docs.djangoproject.com/en/4.1/topics/forms/
formsets/

Django model formsets –
https://docs.djangoproject.com/en/4.1/topics/forms/
modelforms/#model-formsets

HTML5 drag-and-drop API –
https://www.w3schools.com/html/html5_draganddrop.as
p

HTML5 Sortable library documentation –
https://github.com/lukasoppermann/html5sortable

HTML5 Sortable library examples –
https://lukasoppermann.github.io/html5sortable/

django-braces documentation – https://django-
braces.readthedocs.io/

Summary
In this chapter, you learned how to use class-based views and mixins
to create a content management system. You also worked with
groups and permissions to restrict access to your views. You learned

https://docs.djangoproject.com/en/4.1/topics/class-based-views/mixins/
https://docs.djangoproject.com/en/4.1/topics/auth/customizing/#custom-permissions
https://docs.djangoproject.com/en/4.1/topics/forms/formsets/
https://docs.djangoproject.com/en/4.1/topics/forms/modelforms/#model-formsets
https://www.w3schools.com/html/html5_draganddrop.asp
https://github.com/lukasoppermann/html5sortable
https://lukasoppermann.github.io/html5sortable/
https://django-braces.readthedocs.io/

how to use formsets and model formsets to manage course modules
and their content. You also built a drag-and-drop functionality with
JavaScript to reorder course modules and their contents.

In the next chapter, you will create a student registration system and
manage student enrollment onto courses. You will also learn how to
render different kinds of content and cache content using Django’s
cache framework.

14

Rendering and Caching Content

In the previous chapter, you used model inheritance and generic
relations to create flexible course content models. You implemented
a custom model field, and you built a course management system
using class-based views. Finally, you created a JavaScript drag-and-
drop functionality using asynchronous HTTP requests to order
course modules and their contents.

In this chapter, you will build the functionality to access course
contents, create a student registration system, and manage student
enrollment onto courses. You will also learn how to cache data using
the Django cache framework.

In this chapter, you will:

Create public views for displaying course information
Build a student registration system
Manage student enrollment onto courses
Render diverse content for course modules
Install and configure Memcached
Cache content using the Django cache framework
Use the Memcached and Redis cache backends
Monitor your Redis server in the Django administration site

Let’s start by creating a course catalog for students to browse
existing courses and enroll on them.

The source code for this chapter can be found at
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter14.

All Python modules used in this chapter are included in the
requirements.txt file in the source code that comes along with
this chapter. You can follow the instructions to install each Python
module below or you can install all requirements at once with the
command pip install -r requirements.txt .

Displaying courses
For your course catalog, you have to build the following
functionalities:

List all available courses, optionally filtered by subject
Display a single course overview

Edit the views.py file of the courses application and add the
following code:

from django.db.models import Count
from .models import Subject
class CourseListView(TemplateResponseMixin, View):
 model = Course
 template_name = 'courses/course/list.xhtml'
 def get(self, request, subject=None):
 subjects = Subject.objects.annotate(

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter14

This is the CourseListView view. It inherits from
TemplateResponseMixin and View . In this view, you perform the
following tasks:

1. You retrieve all subjects, using the ORM’s annotate() method
with the Count() aggregation function to include the total
number of courses for each subject.

2. You retrieve all available courses, including the total number of
modules contained in each course.

3. If a subject slug URL parameter is given, you retrieve the
corresponding subject object and limit the query to the
courses that belong to the given subject.

4. You use the render_to_response() method provided by
TemplateResponseMixin to render the objects to a template
and return an HTTP response.

Let’s create a detail view for displaying a single course overview.
Add the following code to the views.py file:

 total_courses=Count('courses
 courses = Course.objects.annotate(
 total_modules=Count('modules
 if subject:
 subject = get_object_or_404(Subject, slu
 courses = courses.filter(subject=subject
 return self.render_to_response({'subjects':
 'subject': s
 'courses': c

from django.views.generic.detail import DetailView
class CourseDetailView(DetailView):
 model = Course
 template_name = 'courses/course/detail.xhtml'

This view inherits from the generic DetailView provided by
Django. You specify the model and template_name a�ributes.
Django’s DetailView expects a primary key (pk) or slug URL
parameter to retrieve a single object for the given model. The view
renders the template specified in template_name , including the
Course object in the template context variable object .

Edit the main urls.py file of the educa project and add the
following URL pa�ern to it:

You add the course_list URL pa�ern to the main urls.py file of
the project because you want to display the list of courses in the URL
http://127.0.0.1:8000/ , and all other URLs for the courses
application have the /course/ prefix.

Edit the urls.py file of the courses application and add the
following URL pa�erns:

from courses.views import CourseListView
urlpatterns = [
 # ...
 path('', CourseListView.as_view(), name='course_
]

path('subject/<slug:subject>/',
 views.CourseListView.as_view(),
 name='course_list_subject'),
path('<slug:slug>/',
 views.CourseDetailView.as_view(),
 name='course_detail'),

You define the following URL pa�erns:

course_list_subject : For displaying all courses for a subject
course_detail : For displaying a single course overview

Let’s build templates for the CourseListView and
CourseDetailView views.

Create the following file structure inside the templates/courses/
directory of the courses application:

course/
 list.xhtml
 detail.xhtml

Edit the courses/course/list.xhtml template of the courses
application and write the following code:

{% extends "base.xhtml" %}
{% block title %}
 {% if subject %}
 {{ subject.title }} courses
 {% else %}

 All courses
 {% endif %}
{% endblock %}
{% block content %}
 <h1>
 {% if subject %}
 {{ subject.title }} courses
 {% else %}
 All courses
 {% endif %}
 </h1>
 <div class="contents">
 <h3>Subjects</h3>
 <ul id="modules">
 <li {% if not subject %}class="selected"{% end
 All

 {% for s in subjects %}
 <li {% if subject == s %}class="selected"{%
 <a href="{% url "course_list_subject" s.sl
 {{ s.title }}

 {{ s.total_courses }} course{{ s.total

 {% endfor %}

 </div>
 <div class="module">
 {% for course in courses %}

Make sure that no template tag is split into multiple lines.

This is the template for listing the available courses. You create an
HTML list to display all Subject objects and build a link to the
course_list_subject URL for each of them. You also include the
total number of courses for each subject and use the pluralize
template filter to add a plural suffix to the word course when the
number is different than 1 , to show 0 courses, 1 course, 2 courses, etc.
You add a selected HTML class to highlight the current subject if a
subject is selected. You iterate over every Course object, displaying
the total number of modules and the instructor’s name.

Run the development server and open http://127.0.0.1:8000/
in your browser. You should see a page similar to the following one:

 {% with subject=course.subject %}
 <h3>
 <a href="{% url "course_detail" course.slu
 {{ course.title }}

 </h3>
 <p>
 <a href="{% url "course_list_subject" subj
 {{ course.total_modules }} modules.
 Instructor: {{ course.owner.get_full_nam
 </p>
 {% endwith %}
 {% endfor %}
 </div>
{% endblock %}

Figure 14.1: The course list page

The left sidebar contains all subjects, including the total number of
courses for each of them. You can click any subject to filter the
courses displayed.

Edit the courses/course/detail.xhtml template and add the
following code to it:

{% extends "base.xhtml" %}
{% block title %}

In this template, you display the overview and details for a single
course. Open http://127.0.0.1:8000/ in your browser and click
on one of the courses. You should see a page with the following
structure:

 {{ object.title }}
{% endblock %}
{% block content %}
 {% with subject=object.subject %}
 <h1>
 {{ object.title }}
 </h1>
 <div class="module">
 <h2>Overview</h2>
 <p>
 <a href="{% url "course_list_subject" subjec
 {{ subject.title }}.
 {{ object.modules.count }} modules.
 Instructor: {{ object.owner.get_full_name }}
 </p>
 {{ object.overview|linebreaks }}
 </div>
 {% endwith %}
{% endblock %}

Figure 14.2: The course overview page

You have created a public area for displaying courses. Next, you
need to allow users to register as students and enroll on courses.

Adding student registration
Create a new application using the following command:

python manage.py startapp students

Edit the settings.py file of the educa project and add the new
application to the INSTALLED_APPS se�ing, as follows:

INSTALLED_APPS = [
 # ...

 'students.apps.StudentsConfig',
]

Creating a student registration view
Edit the views.py file of the students application and write the
following code:

This is the view that allows students to register on your site. You use
the generic CreateView , which provides the functionality for
creating model objects. This view requires the following a�ributes:

template_name : The path of the template to render this view.

from django.urls import reverse_lazy
from django.views.generic.edit import CreateView
from django.contrib.auth.forms import UserCreationFo
from django.contrib.auth import authenticate, login
class StudentRegistrationView(CreateView):
 template_name = 'students/student/registration.x
 form_class = UserCreationForm
 success_url = reverse_lazy('student_course_list
 def form_valid(self, form):
 result = super().form_valid(form)
 cd = form.cleaned_data
 user = authenticate(username=cd['username'],
 password=cd['password1']
 login(self.request, user)
 return result

form_class : The form for creating objects, which has to be
ModelForm . You use Django’s UserCreationForm as the
registration form to create User objects.
success_url : The URL to redirect the user to when the form is
successfully submi�ed. You reverse the URL named
student_course_list , which you are going to create in the
Accessing the course contents section for listing the courses that
students are enrolled on.

The form_valid() method is executed when valid form data has
been posted. It has to return an HTTP response. You override this
method to log the user in after they have successfully signed up.

Create a new file inside the students application directory and
name it urls.py . Add the following code to it:

from django.urls import path
from . import views
urlpatterns = [
 path('register/',
 views.StudentRegistrationView.as_view(),
 name='student_registration'),
]

Then, edit the main urls.py of the educa project and include the
URLs for the students application by adding the following pa�ern
to your URL configuration:

urlpatterns = [
 # ...

 path('students/', include('students.urls')),
]

Create the following file structure inside the students application
directory:

templates/
 students/
 student/
 registration.xhtml

Edit the students/student/registration.xhtml template and
add the following code to it:

{% extends "base.xhtml" %}
{% block title %}
 Sign up
{% endblock %}
{% block content %}
 <h1>
 Sign up
 </h1>
 <div class="module">
 <p>Enter your details to create an account:</p>
 <form method="post">
 {{ form.as_p }}
 {% csrf_token %}
 <p><input type="submit" value="Create my accou
 </form>

Run the development server and open
http://127.0.0.1:8000/students/register/ in your browser.
You should see a registration form like this:

 </div>
{% endblock %}

Figure 14.3: The student registration form

Note that the student_course_list URL specified in the
success_url a�ribute of the StudentRegistrationView view
doesn’t exist yet. If you submit the form, Django won’t find the URL
to redirect you to after a successful registration. As mentioned, you
will create this URL in the Accessing the course contents section.

Enrolling on courses
After users create an account, they should be able to enroll on
courses. To store enrollments, you need to create a many-to-many
relationship between the Course and User models.

Edit the models.py file of the courses application and add the
following field to the Course model:

From the shell, execute the following command to create a migration
for this change:

python manage.py makemigrations

You will see output similar to this:

students = models.ManyToManyField(User,
 related_name='cour
 blank=True)

Migrations for 'courses':
 courses/migrations/0004_course_students.py
 - Add field students to course

Then, execute the next command to apply pending migrations:

python manage.py migrate

You should see output that ends with the following line:

Applying courses.0004_course_students... OK

You can now associate students with the courses on which they are
enrolled. Let’s create the functionality for students to enroll on
courses.

Create a new file inside the students application directory and
name it forms.py . Add the following code to it:

from django import forms
from courses.models import Course
class CourseEnrollForm(forms.Form):
 course = forms.ModelChoiceField(
 queryset=Course.objects.all(),
 widget=forms.HiddenInput)

You are going to use this form for students to enroll on courses. The
course field is for the course on which the user will be enrolled;

therefore, it’s a ModelChoiceField . You use a HiddenInput widget
because you are not going to show this field to the user. You are
going to use this form in the CourseDetailView view to display a
bu�on to enroll.

Edit the views.py file of the students application and add the
following code:

This is the StudentEnrollCourseView view. It handles students
enrolling on courses. The view inherits from the
LoginRequiredMixin mixin so that only logged-in users can access
the view. It also inherits from Django’s FormView view, since you
handle a form submission. You use the CourseEnrollForm form for
the form_class a�ribute and also define a course a�ribute for

from django.views.generic.edit import FormView
from django.contrib.auth.mixins import LoginRequired
from .forms import CourseEnrollForm
class StudentEnrollCourseView(LoginRequiredMixin,
 FormView):
 course = None
 form_class = CourseEnrollForm
 def form_valid(self, form):
 self.course = form.cleaned_data['course']
 self.course.students.add(self.request.user)
 return super().form_valid(form)
 def get_success_url(self):
 return reverse_lazy('student_course_detail',
 args=[self.course.id])

storing the given Course object. When the form is valid, you add the
current user to the students enrolled on the course.

The get_success_url() method returns the URL that the user will
be redirected to if the form was successfully submi�ed. This method
is equivalent to the success_url a�ribute. Then, you reverse the
URL named student_course_detail .

Edit the urls.py file of the students application and add the
following URL pa�ern to it:

path('enroll-course/',
 views.StudentEnrollCourseView.as_view(),
 name='student_enroll_course'),

Let’s add the enroll bu�on form to the course overview page. Edit
the views.py file of the courses application and modify
CourseDetailView to make it look as follows:

from students.forms import CourseEnrollForm
class CourseDetailView(DetailView):
 model = Course
 template_name = 'courses/course/detail.xhtml'
 def get_context_data(self, **kwargs):
 context = super().get_context_data(**kwargs)
 context['enroll_form'] = CourseEnrollForm(
 initial={'course
 return context

You use the get_context_data() method to include the
enrollment form in the context for rendering the templates. You
initialize the hidden course field of the form with the current
Course object so that it can be submi�ed directly.

Edit the courses/course/detail.xhtml template and locate the
following line:

{{ object.overview|linebreaks }}

Replace it with the following code:

This is the bu�on for enrolling on courses. If the user is
authenticated, you display the enrollment bu�on, including the
hidden form that points to the student_enroll_course URL. If the

{{ object.overview|linebreaks }}
{% if request.user.is_authenticated %}
 <form action="{% url "student_enroll_course" %}" m
 {{ enroll_form }}
 {% csrf_token %}
 <input type="submit" value="Enroll now">
 </form>
{% else %}
 <a href="{% url "student_registration" %}" class="
 Register to enroll

{% endif %}

user is not authenticated, you display a link to register on the
platform.

Make sure that the development server is running, open
http://127.0.0.1:8000/ in your browser, and click a course. If
you are logged in, you should see an ENROLL NOW bu�on placed
below the course overview, as follows:

Figure 14.4: The course overview page, including an ENROLL NOW bu�on

If you are not logged in, you will see a REGISTER TO ENROLL
bu�on instead.

Accessing the course contents
You need a view for displaying the courses that students are
enrolled on, and a view for accessing the actual course contents. Edit
the views.py file of the students application and add the
following code to it:

This is the view to see courses that students are enrolled on. It
inherits from LoginRequiredMixin to make sure that only logged-
in users can access the view. It also inherits from the generic
ListView for displaying a list of Course objects. You override the
get_queryset() method to retrieve only the courses that a student
is enrolled on; you filter the QuerySet by the student’s
ManyToManyField field to do so.

Then, add the following code to the views.py file of the students
application:

from django.views.generic.list import ListView
from courses.models import Course
class StudentCourseListView(LoginRequiredMixin, List
 model = Course
 template_name = 'students/course/list.xhtml'
 def get_queryset(self):
 qs = super().get_queryset()
 return qs.filter(students__in=[self.request

from django.views.generic.detail import DetailView
class StudentCourseDetailView(DetailView):
 model = Course
 template_name = 'students/course/detail.xhtml'
 def get_queryset(self):
 qs = super().get_queryset()
 return qs.filter(students__in=[self.request
 def get_context_data(self, **kwargs):
 context = super().get_context_data(**kwargs)

This is the StudentCourseDetailView view. You override the
get_queryset() method to limit the base QuerySet to courses on
which the student is enrolled. You also override the
get_context_data() method to set a course module in the context
if the module_id URL parameter is given. Otherwise, you set the
first module of the course. This way, students will be able to
navigate through modules inside a course.

Edit the urls.py file of the students application and add the
following URL pa�erns to it:

path('courses/',
 views.StudentCourseListView.as_view(),
 name='student_course_list'),
path('course/<pk>/',
 views.StudentCourseDetailView.as_view(),
 name='student_course_detail'),
path('course/<pk>/<module_id>/',

 # get course object
 course = self.get_object()
 if 'module_id' in self.kwargs:
 # get current module
 context['module'] = course.modules.get(
 id=self.kwargs['module_id'])
 else:
 # get first module
 context['module'] = course.modules.all()
 return context

 views.StudentCourseDetailView.as_view(),
 name='student_course_detail_module'),

Create the following file structure inside the templates/students/
directory of the students application:

course/
 detail.xhtml
 list.xhtml

Edit the students/course/list.xhtml template and add the
following code to it:

{% extends "base.xhtml" %}
{% block title %}My courses{% endblock %}
{% block content %}
 <h1>My courses</h1>
 <div class="module">
 {% for course in object_list %}
 <div class="course-info">
 <h3>{{ course.title }}</h3>
 <p><a href="{% url "student_course_detail" c
 Access contents</p>
 </div>
 {% empty %}
 <p>
 You are not enrolled in any courses yet.
 Browse cou
 to enroll on a course.
 </p>

This template displays the courses that the student is enrolled on.
Remember that when a new student successfully registers with the
platform, they will be redirected to the student_course_list URL.
Let’s also redirect students to this URL when they log in to the
platform.

Edit the settings.py file of the educa project and add the
following code to it:

This is the se�ing used by the auth module to redirect the student
after a successful login if no next parameter is present in the
request. After a successful login, a student will be redirected to the
student_course_list URL to view the courses that they are
enrolled on.

Edit the students/course/detail.xhtml template and add the
following code to it:

 {% endfor %}
 </div>
{% endblock %}

from django.urls import reverse_lazy
LOGIN_REDIRECT_URL = reverse_lazy('student_course_li

{% extends "base.xhtml" %}
{% block title %}
 {{ object.title }}
{% endblock %}

{% block content %}
 <h1>
 {{ module.title }}
 </h1>
 <div class="contents">
 <h3>Modules</h3>
 <ul id="modules">
 {% for m in object.modules.all %}
 <li data-id="{{ m.id }}" {% if m == module %
 <a href="{% url "student_course_detail_mod

 Module {{ m.order

 {{ m.title }}

 {% empty %}
 No modules yet.
 {% endfor %}

 </div>
 <div class="module">
 {% for content in module.contents.all %}
 {% with item=content.item %}
 <h2>{{ item.title }}</h2>
 {{ item.render }}
 {% endwith %}
 {% endfor %}
 </div>
{% endblock %}

Make sure no template tag is split across multiple lines. This is the
template for enrolled students to access the contents of a course.
First, you build an HTML list including all course modules and
highlighting the current module. Then, you iterate over the current
module contents and access each content item to display it using {{
item.render }} . You will add the render() method to the content
models next. This method will take care of rendering the content
properly.

You can now access
http://127.0.0.1:8000/students/register/ , register a new
student account, and enroll on any course.

Rendering different types of content
To display the course contents, you need to render the different
content types that you created: text, image, video, and file.

Edit the models.py file of the courses application and add the
following render() method to the ItemBase model:

from django.template.loader import render_to_string
class ItemBase(models.Model):
 # ...
 def render(self):
 return render_to_string(
 f'courses/content/{self._meta.model_name
 {'item': self})

This method uses the render_to_string() function for rendering
a template and returning the rendered content as a string. Each kind
of content is rendered using a template named after the content
model. You use self._meta.model_name to generate the
appropriate template name for each content model dynamically. The
render() method provides a common interface for rendering
diverse content.

Create the following file structure inside the templates/courses/
directory of the courses application:

content/
 text.xhtml
 file.xhtml
 image.xhtml
 video.xhtml

Edit the courses/content/text.xhtml template and write this
code:

{{ item.content|linebreaks }}

This is the template to render text content. The linebreaks
template filter replaces line breaks in plain text with HTML line
breaks.

Edit the courses/content/file.xhtml template and add the
following:

This is the template to render files. You generate a link to download
the file.

Edit the courses/content/image.xhtml template and write:

This is the template to render images.

You also have to create a template for rendering Video objects. You
will use django-embed-video for embedding video content.
django-embed-video is a third-party Django application that
allows you to embed videos in your templates, from sources such as
YouTube or Vimeo, by simply providing their public URL.

Install the package with the following command:

pip install django-embed-video==1.4.4

Edit the settings.py file of your project and add the application to
the INSTALLED_APPS se�ing, as follows:

<p>
 Downl
</p>

<p>
 <img src="{{ item.file.url }}" alt="{{ item.title
</p>

INSTALLED_APPS = [
 # ...
 'embed_video',
]

You can find the django-embed-video application’s documentation
at https://django-embed-video.readthedocs.io/en/latest/.

Edit the courses/content/video.xhtml template and write the
following code:

{% load embed_video_tags %}
{% video item.url "small" %}

This is the template to render videos.

Now, run the development server and access
http://127.0.0.1:8000/course/mine/ in your browser. Access
the site with a user that belongs to the Instructors group, and add
multiple contents to a course. To include video content, you can just
copy any YouTube URL, such as
https://www.youtube.com/watch?v=bgV39DlmZ2U , and include it
in the url field of the form.

After adding contents to the course, open
http://127.0.0.1:8000/ , click the course, and click on the
ENROLL NOW bu�on. You should be enrolled on the course and
redirected to the student_course_detail URL. Figure 14.5 shows
a sample course contents page:

https://django-embed-video.readthedocs.io/en/latest/

Figure 14.5: A course contents page

Great! You have created a common interface for rendering courses
with different types of content.

Using the cache framework

Processing HTTP requests to your web application usually entails
database access, data manipulation, and template rendering. It is
much more expensive in terms of processing than just serving a
static website. The overhead in some requests can be significant
when your site starts ge�ing more and more traffic. This is where
caching becomes precious. By caching queries, calculation results, or
rendered content in an HTTP request, you will avoid expensive
operations in the following requests that need to return the same
data. This translates into shorter response times and less processing
on the server side.

Django includes a robust cache system that allows you to cache data
with different levels of granularity. You can cache a single query, the
output of a specific view, parts of rendered template content, or your
entire site. Items are stored in the cache system for a default time,
but you can specify the timeout when you cache data.

This is how you will usually use the cache framework when your
application processes an HTTP request:

1. Try to find the requested data in the cache.
2. If found, return the cached data.
3. If not found, perform the following steps:

1. Perform the database query or processing required to
generate the data.

2. Save the generated data in the cache.
3. Return the data.

You can read detailed information about Django’s cache system at
https://docs.djangoproject.com/en/4.1/topics/cache/.

https://docs.djangoproject.com/en/4.1/topics/cache/

Available cache backends
Django comes with the following cache backends:

backends.memcached.PyMemcacheCache or
backends.memcached.PyLibMCCache : Memcached backends.
Memcached is a fast and efficient memory-based cache server.
The backend to use depends on the Memcached Python
bindings you choose.
backends.redis.RedisCache : A Redis cache backend. This
backend has been added in Django 4.0.
backends.db.DatabaseCache : Use the database as a cache
system.
backends.filebased.FileBasedCache : Use the file storage
system. This serializes and stores each cache value as a separate
file.
backends.locmem.LocMemCache : A local memory cache
backend. This is the default cache backend.
backends.dummy.DummyCache : A dummy cache backend
intended only for development. It implements the cache
interface without actually caching anything. This cache is per-
process and thread-safe.

For optimal performance, use a memory-based cache
backend such as the Memcached or Redis backends.

Installing Memcached

Memcached is a popular high-performance, memory-based cache
server. We are going to use Memcached and the PyMemcacheCache
Memcached backend.

Installing the Memcached Docker
image
Run the following command from the shell to pull the Memcached
Docker image:

docker pull memcached

This will download the Memcached Docker image to your local
machine. If you don’t want to use Docker, you can also download
Memcached from https://memcached.org/downloads.

Run the Memcached Docker container with the following command:

Memcached runs on port 11211 by default. The -p option is used to
publish the 11211 port to the same host interface port. The -m
option is used to limit the memory for the container to 64 MB.
Memcached runs in memory, and it is allo�ed a specified amount of
RAM. When the allo�ed RAM is full, Memcached starts removing
the oldest data to store new data. If you want to run the command in
detached mode (in the background of your terminal) you can use the
-d option.

docker run -it --rm --name memcached -p 11211:11211

https://memcached.org/downloads

You can find more information about Memcached at
https://memcached.org.

Installing the Memcached Python
binding
After installing Memcached, you have to install a Memcached
Python binding. We will install pymemcache , which is a fast, pure-
Python Memcached client. Run the following command in the shell:

pip install pymemcache==3.5.2

You can read more information about the pymemcache library at
https://github.com/pinterest/pymemcache.

Django cache settings
Django provides the following cache se�ings:

CACHES : A dictionary containing all available caches for the
project.
CACHE_MIDDLEWARE_ALIAS : The cache alias to use for storage.
CACHE_MIDDLEWARE_KEY_PREFIX : The prefix to use for cache
keys. Set a prefix to avoid key collisions if you share the same
cache between several sites.
CACHE_MIDDLEWARE_SECONDS : The default number of seconds
to cache pages.

https://memcached.org/
https://github.com/pinterest/pymemcache

The caching system for the project can be configured using the
CACHES se�ing. This se�ing allows you to specify the configuration
for multiple caches. Each cache included in the CACHES dictionary
can specify the following data:

BACKEND : The cache backend to use.
KEY_FUNCTION : A string containing a do�ed path to a callable
that takes a prefix, version, and key as arguments and returns a
final cache key.
KEY_PREFIX : A string prefix for all cache keys, to avoid
collisions.
LOCATION : The location of the cache. Depending on the cache
backend, this might be a directory, a host and port, or a name
for the in-memory backend.
OPTIONS : Any additional parameters to be passed to the cache
backend.
TIMEOUT : The default timeout, in seconds, for storing the cache
keys. It is 300 seconds by default, which is 5 minutes. If set to
None , cache keys will not expire.
VERSION : The default version number for the cache keys. Useful
for cache versioning.

Adding Memcached to your project
Let’s configure the cache for your project. Edit the settings.py file
of the educa project and add the following code to it:

You are using the PyMemcacheCache backend. You specify its
location using the address:port notation. If you have multiple
Memcached instances, you can use a list for LOCATION .

You have set up Memcached for your project. Let’s start caching
data!

Cache levels
Django provides the following levels of caching, listed here by
ascending order of granularity:

Low-level cache API: Provides the highest granularity. Allows
you to cache specific queries or calculations.
Template cache: Allows you to cache template fragments.
Per-view cache: Provides caching for individual views.
Per-site cache: The highest-level cache. It caches your entire site.

Think about your cache strategy before implementing
caching. Focus first on expensive queries or
calculations that are not calculated on a per-user basis.

CACHES = {
 'default': {
 'BACKEND': 'django.core.cache.backends.memca
 'LOCATION': '127.0.0.1:11211',
 }
}

Let’s start by learning how to use the low-level cache API in your
Python code.

Using the low-level cache API
The low-level cache API allows you to store objects in the cache with
any granularity. It is located at django.core.cache . You can
import it like this:

from django.core.cache import cache

This uses the default cache. It’s equivalent to caches['default'] .
Accessing a specific cache is also possible via its alias:

from django.core.cache import caches
my_cache = caches['alias']

Let’s take a look at how the cache API works. Open the Django shell
with the following command:

python manage.py shell

Execute the following code:

>>> from django.core.cache import cache
>>> cache.set('musician', 'Django Reinhardt', 20)

You access the default cache backend and use set(key, value,
timeout) to store a key named 'musician' with a value that is the
string 'Django Reinhardt' for 20 seconds. If you don’t specify a
timeout, Django uses the default timeout specified for the cache
backend in the CACHES se�ing. Now, execute the following code:

>>> cache.get('musician')
'Django Reinhardt'

You retrieve the key from the cache. Wait for 20 seconds and execute
the same code:

>>> cache.get('musician')

No value is returned this time. The 'musician' cache key has
expired and the get() method returns None because the key is not
in the cache anymore.

Always avoid storing a None value in a cache key
because you won’t be able to distinguish between the
actual value and a cache miss.

Let’s cache a QuerySet with the following code:

>>> from courses.models import Subject
>>> subjects = Subject.objects.all()
>>> cache.set('my_subjects', subjects)

You perform a QuerySet on the Subject model and store the
returned objects in the 'my_subjects' key. Let’s retrieve the cached
data:

You are going to cache some queries in your views. Edit the
views.py file of the courses application and add the following
import:

from django.core.cache import cache

In the get() method of the CourseListView , find the following
lines:

subjects = Subject.objects.annotate(
 total_courses=Count('courses'))

Replace the lines with the following ones:

subjects = cache.get('all_subjects')
if not subjects:
 subjects = Subject.objects.annotate(
 total_courses=Count('courses'))
 cache.set('all_subjects', subjects)

>>> cache.get('my_subjects')
<QuerySet [<Subject: Mathematics>, <Subject: Music>,

In this code, you try to get the all_students key from the cache
using cache.get() . This returns None if the given key is not found.
If no key is found (not cached yet or cached but timed out), you
perform the query to retrieve all Subject objects and their number
of courses, and you cache the result using cache.set() .

Checking cache requests with Django
Debug Toolbar
Let’s add Django Debug Toolbar to the project to check the cache
queries. You learned how to use Django Debug Toolbar in Chapter 7,
Tracking User Actions.

First install Django Debug Toolbar with the following command:

pip install django-debug-toolbar==3.6.0

Edit the settings.py file of your project and add debug_toolbar
to the INSTALLED_APPS se�ing as follows. The new line is
highlighted in bold:

INSTALLED_APPS = [
 # ...
 'debug_toolbar',
]

In the same file, add the following line highlighted in bold to the
MIDDLEWARE se�ing:

Remember that DebugToolbarMiddleware has to be placed before
any other middleware, except for middleware that encodes the
response’s content, such as GZipMiddleware , which, if present,
should come first.

Add the following lines at the end of the settings.py file:

INTERNAL_IPS = [
 '127.0.0.1',
]

Django Debug Toolbar will only display if your IP address matches
an entry in the INTERNAL_IPS se�ing.

Edit the main urls.py file of the project and add the following URL
pa�ern to urlpatterns :

MIDDLEWARE = [
 'debug_toolbar.middleware.DebugToolbarMiddleware
 'django.middleware.security.SecurityMiddleware',
 'django.contrib.sessions.middleware.SessionMiddl
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMi
 'django.contrib.messages.middleware.MessageMiddl
 'django.middleware.clickjacking.XFrameOptionsMid
]

path('__debug__/', include('debug_toolbar.urls')),]

Run the development server and open http://127.0.0.1:8000/
in your browser.

You should now see Django Debug Toolbar on the right side of the
page. Click on Cache in the sidebar menu. You will see the following
panel:

Figure 14.6: The Cache panel of Django Debug Toolbar including cache requests for CourseListView
on a cache miss

Under Total calls you should see 2 . The first time the
CourseListView view is executed there are two cache requests.
Under Commands you will see that the get command has been
executed once, and that the set command has been executed once
as well. The get command corresponds to the call that retrieves the

all_subjects cache key. This is the first call displayed under Calls.
The first time the view is executed a cache miss occurs because no
data is cached yet. That’s why there is 1 under Cache misses. Then,
the set command is used to store the results of the subjects
QuerySet in the cache using the all_subjects cache key. This is
the second call displayed under Calls.

In the SQL menu item of Django Debug Toolbar, you will see the
total number of SQL queries executed in this request. This includes
the query to retrieve all subjects that are then stored in the cache:

Figure 14.7: SQL queries executed for CourseListView on a cache miss

Reload the page in the browser and click on Cache in the sidebar
menu:

Figure 14.8: The Cache panel of Django Debug Toolbar, including cache requests for CourseListView
view on a cache hit

Now, there is only a single cache request. Under Total calls you
should see 1 . And under Commands you can see that the cache
request corresponds to a get command. In this case there is a cache
hit (see Cache hits) instead of a cache miss because the data has been
found in the cache. Under Calls you can see the get request to
retrieve the all_subjects cache key.

Check the SQL menu item of the debug toolbar. You should see that
there is one less SQL query in this request. You are saving one SQL
query because the view finds the data in the cache and doesn’t need
to retrieve it from the database:

Figure 14.9: SQL queries executed for CourseListView on a cache hit

In this example, for a single request, it takes more time to retrieve
the item from the cache than the time saved on the additional SQL
query. However, when you have many users accessing your site,
you will find significant time reductions by retrieving the data from
the cache instead of hi�ing the database, and you will be able to
serve the site to more concurrent users.

Successive requests to the same URL will retrieve the data from the
cache. Since we didn’t specify a timeout when caching data with
cache.set('all_subjects', subjects) in the CourseListView
view, the default timeout will be used (300 seconds by default,
which is 5 minutes). When the timeout is reached, the next request to
the URL will generate a cache miss, the QuerySet will be executed,
and data will be cached for another 5 minutes. You can define a
different default timeout in the TIMEOUT element of the CACHES
se�ing.

Caching based on dynamic data
Often, you will want to cache something that is based on dynamic
data. In these cases, you have to build dynamic keys that contain all
the information required to uniquely identify the cached data.

Edit the views.py file of the courses application and modify the
CourseListView view to make it look like this:

In this case, you also cache both all courses and courses filtered by
subject. You use the all_courses cache key for storing all courses if

class CourseListView(TemplateResponseMixin, View):
 model = Course
 template_name = 'courses/course/list.xhtml'
 def get(self, request, subject=None):
 subjects = cache.get('all_subjects')
 if not subjects:
 subjects = Subject.objects.annotate(
 total_courses=Count('cour
 cache.set('all_subjects', subjects)
 all_courses = Course.objects.annotate(
 total_modules=Count('modu
 if subject:
 subject = get_object_or_404(Subject, slu
 key = f'subject_{subject.id}_courses'
 courses = cache.get(key)
 if not courses:
 courses = all_courses.filter(subject
 cache.set(key, courses)
 else:
 courses = cache.get('all_courses')
 if not courses:
 courses = all_courses
 cache.set('all_courses', courses)
 return self.render_to_response({'subjects':
 'subject': s
 'courses': c

no subject is given. If there is a subject, you build the key
dynamically with f'subject_{subject.id}_courses' .

It’s important to note that you can’t use a cached QuerySet to build
other QuerySets, since what you cached are actually the results of
the QuerySet. So you can’t do the following:

courses = cache.get('all_courses')
courses.filter(subject=subject)

Instead, you have to create the base QuerySet
Course.objects.annotate(total_modules=Count('modules'))
, which is not going to be executed until it is forced, and use it to
further restrict the QuerySet with
all_courses.filter(subject=subject) in case the data was not
found in the cache.

Caching template fragments
Caching template fragments is a higher-level approach. You need to
load the cache template tags in your template using {% load cache
%} . Then, you will be able to use the {% cache %} template tag to
cache specific template fragments. You will usually use the template
tag as follows:

{% cache 300 fragment_name %}
 ...
{% endcache %}

The {% cache %} template tag has two required arguments: the
timeout in seconds and a name for the fragment. If you need to cache
content depending on dynamic data, you can do so by passing
additional arguments to the {% cache %} template tag to uniquely
identify the fragment.

Edit the /students/course/detail.xhtml of the students
application. Add the following code at the top of it, just after the {%
extends %} tag:

{% load cache %}

Then, find the following lines:

{% for content in module.contents.all %}
 {% with item=content.item %}
 <h2>{{ item.title }}</h2>
 {{ item.render }}
 {% endwith %}
{% endfor %}

Replace them with the following ones:

{% cache 600 module_contents module %}
 {% for content in module.contents.all %}
 {% with item=content.item %}
 <h2>{{ item.title }}</h2>
 {{ item.render }}
 {% endwith %}

 {% endfor %}
{% endcache %}

You cache this template fragment using the name module_contents
and pass the current Module object to it. Thus, you uniquely identify
the fragment. This is important to avoid caching a module’s contents
and serving the wrong content when a different module is
requested.

If the USE_I18N se�ing is set to True , the per-site middleware cache
will respect the active language. If you use the {% cache %}
template tag, you have to use one of the translation-specific variables
available in templates to achieve the same result, such as {% cache
600 name request.LANGUAGE_CODE %} .

Caching views
You can cache the output of individual views using the cache_page
decorator located at django.views.decorators.cache . The
decorator requires a timeout argument (in seconds).

Let’s use it in your views. Edit the urls.py file of the students
application and add the following import:

Then, apply the cache_page decorator to the
student_course_detail and student_course_detail_module
URL pa�erns, as follows:

from django.views.decorators.cache import cache_page

Now, the complete content returned by the
StudentCourseDetailView is cached for 15 minutes.

The per-view cache uses the URL to build the cache
key. Multiple URLs pointing to the same view will be
cached separately.

Using the per-site cache
This is the highest-level cache. It allows you to cache your entire site.
To allow the per-site cache, edit the settings.py file of your project
and add the UpdateCacheMiddleware and
FetchFromCacheMiddleware classes to the MIDDLEWARE se�ing, as
follows:

path('course/<pk>/',
 cache_page(60 * 15)(views.StudentCourseDetailVi
 name='student_course_detail'),
path('course/<pk>/<module_id>/',
 cache_page(60 * 15)(views.StudentCourseDetailVi
 name='student_course_detail_module'),

MIDDLEWARE = [
 'debug_toolbar.middleware.DebugToolbarMiddleware
 'django.middleware.security.SecurityMiddleware',
 'django.contrib.sessions.middleware.SessionMiddl
 'django.middleware.cache.UpdateCacheMiddleware',
 'django.middleware.common.CommonMiddleware',

Remember that middleware is executed in the given order during
the request phase, and in reverse order during the response phase.
UpdateCacheMiddleware is placed before CommonMiddleware
because it runs during response time, when middleware is executed
in reverse order. FetchFromCacheMiddleware is placed after
CommonMiddleware intentionally because it needs to access request
data set by the la�er.

Next, add the following se�ings to the settings.py file:

CACHE_MIDDLEWARE_ALIAS = 'default'
CACHE_MIDDLEWARE_SECONDS = 60 * 15 # 15 minutes
CACHE_MIDDLEWARE_KEY_PREFIX = 'educa'

In these se�ings, you use the default cache for your cache
middleware and set the global cache timeout to 15 minutes. You
also specify a prefix for all cache keys to avoid collisions in case you
use the same Memcached backend for multiple projects. Your site
will now cache and return cached content for all GET requests.

You can access the different pages and check the cache requests
using Django Debug Toolbar. The per-site cache is not viable for

 'django.middleware.cache.FetchFromCacheMiddlewar
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMi
 'django.contrib.messages.middleware.MessageMiddl
 'django.middleware.clickjacking.XFrameOptionsMid
]

many sites because it affects all views, even the ones that you might
not want to cache, like management views where you want data to
be returned from the database to reflect the latest changes.

In this project, the best approach is to cache the templates or views
that are used to display course contents to students, while keeping
the content management views for instructors without any cache.

Let’s deactivate the per-site cache. Edit the settings.py file of your
project and comment out the UpdateCacheMiddleware and
FetchFromCacheMiddleware classes in the MIDDLEWARE se�ing, as
follows:

You have seen an overview of the different methods provided by
Django to cache data. You should always define your cache strategy
wisely, taking into account expensive QuerySets or calculations, data

MIDDLEWARE = [
 'debug_toolbar.middleware.DebugToolbarMiddleware
 'django.middleware.security.SecurityMiddleware',
 'django.contrib.sessions.middleware.SessionMiddl
 # 'django.middleware.cache.UpdateCacheMiddleware
 'django.middleware.common.CommonMiddleware',
 # 'django.middleware.cache.FetchFromCacheMiddlew
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMi
 'django.contrib.messages.middleware.MessageMiddl
 'django.middleware.clickjacking.XFrameOptionsMid
]

that won’t change frequently, and data that will be accessed
concurrently by many users.

Using the Redis cache backend
Django 4.0 introduced a Redis cache backend. Let’s change the
se�ings to use Redis instead of Memcached as the cache backend for
the project. Remember that you already used Redis in Chapter 7,
Tracking User Actions, and in Chapter 10, Extending Your Shop.

Install redis-py in your environment using the following
command:

pip install redis==4.3.4

Then, edit the settings.py file of the educa project and modify the
CACHES se�ing, as follows:

The project will now use the RedisCache cache backend. The
location is defined in the format redis://[host]:[port] . You use
127.0.0.1 to point to the local host and 6379 , which is the default
port for Redis.

CACHES = {
 'default': {
 'BACKEND': 'django.core.cache.backends.redis
 'LOCATION': 'redis://127.0.0.1:6379',
 }
}

Initialize the Redis Docker container using the following command:

If you want to run the command in the background (in detached
mode) you can use the -d option.

Run the development server and open http://127.0.0.1:8000/
in your browser. Check the cache requests in the Cache panel of
Django Debug Toolbar. You are now using Redis as your project’s
cache backend instead of Memcached.

Monitoring Redis with Django
Redisboard
You can monitor your Redis server using Django Redisboard.
Django Redisboard adds Redis statistics to the Django
administration site. You can find more information about Django
Redisboard at https://github.com/ionelmc/django-
redisboard.

Install django-redisboard in your environment using the
following command:

pip install django-redisboard==8.3.0

Install the attrs Python library used by django-redisboard in
your environment with the following command:

docker run -it --rm --name redis -p 6379:6379 redis

https://github.com/ionelmc/django-redisboard

pip install attrs

Edit the settings.py file of your project and add the application to
the INSTALLED_APPS se�ing, as follows:

INSTALLED_APPS = [
 # ...
 'redisboard',
]

Run the following command from your project’s directory to run the
Django Redisboard migrations:

python manage.py migrate redisboard

Run the development server and open
http://127.0.0.1:8000/admin/redisboard/redisserver/add/
in your browser to add a Redis server to monitor. Under the Label,
enter redis , and under URL, enter redis://localhost:6379/0 ,
as in Figure 14.10:

Figure 14.10: The form to add a Redis server for Django Redisboard in the administration site

We will monitor the Redis instance running on our local host, which
runs on port 6379 and uses the Redis database numbered 0 . Click
on SAVE. The information will be saved to the database, and you
will be able to see the Redis configuration and metrics on the Django
administration site:

Figure 14.11: The Redis monitoring of Django Redisboard on the administration site

Congratulations! You have successfully implemented caching for
your project.

Additional resources
The following resources provide additional information related to
the topics covered in this chapter:

Source code for this chapter –
https://github.com/PacktPublishing/Django-4-by-

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter14

example/tree/main/Chapter14

django-embed-video documentation – https://django-
embed-video.readthedocs.io/en/latest/

Django’s cache framework documentation –
https://docs.djangoproject.com/en/4.1/topics/cache/

Memcached downloads –
https://memcached.org/downloads

Memcached official website – https://memcached.org
Pymemcache 's source code –
https://github.com/pinterest/pymemcache

Django Redisboard’s source code –
https://github.com/ionelmc/django-redisboard

Summary
In this chapter, you implemented the public views for the course
catalog. You built a system for students to register and enroll on
courses. You also created the functionality to render different types
of content for the course modules. Finally, you learned how to use
the Django cache framework and you used the Memcached and
Redis cache backends for your project.

In the next chapter, you will build a RESTful API for your project
using Django REST framework and consume it using the Python
Requests library.

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter14
https://django-embed-video.readthedocs.io/en/latest/
https://docs.djangoproject.com/en/4.1/topics/cache/
https://memcached.org/downloads
https://memcached.org/
https://github.com/pinterest/pymemcache
https://github.com/ionelmc/django-redisboard

15

Building an API

In the previous chapter, you built a system for student registration
and enrollment on courses. You created views to display course
contents and learned how to use Django’s cache framework.

In this chapter, you will create a RESTful API for your e-learning
platform. An API allows you to build a common core that can be
used on multiple platforms like websites, mobile applications,
plugins, and so on. For example, you can create an API to be
consumed by a mobile application for your e-learning platform. If
you provide an API to third parties, they will be able to consume
information and operate with your application programmatically.
An API allows developers to automate actions on your platform and
integrate your service with other applications or online services. You
will build a fully featured API for your e-learning platform.

In this chapter, you will:

Install Django REST framework
Create serializers for your models
Build a RESTful API
Create nested serializers
Build custom API views
Handle API authentication

Add permissions to API views
Create a custom permission
Implement ViewSets and routers
Use the Requests library to consume the API

Let’s start with the setup of your API.

The source code for this chapter can be found at
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter15.

All Python modules used in this chapter are included in the
requirements.txt file in the source code that comes along with
this chapter. You can follow the instructions to install each Python
module below or you can install all requirements at once with the
command pip install -r requirements.txt .

Building a RESTful API
When building an API, there are several ways you can structure its
endpoints and actions, but following REST principles is encouraged.
The REST architecture comes from Representational State Transfer.
RESTful APIs are resource-based; your models represent resources
and HTTP methods such as GET , POST , PUT , or DELETE are used to
retrieve, create, update, or delete objects. HTTP response codes are
also used in this context. Different HTTP response codes are
returned to indicate the result of the HTTP request, for example, 2XX
response codes for success, 4XX for errors, and so on.

The most common formats to exchange data in RESTful APIs are
JSON and XML. You will build a RESTful API with JSON

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter15

serialization for your project. Your API will provide the following
functionality:

Retrieve subjects
Retrieve available courses
Retrieve course contents
Enroll on a course

You can build an API from scratch with Django by creating custom
views. However, there are several third-party modules that simplify
creating an API for your project; the most popular among them is
Django REST framework.

Installing Django REST framework
Django REST framework allows you to easily build RESTful APIs for
your project. You can find all the information about REST
framework at https://www.django-rest-framework.org/.

Open the shell and install the framework with the following
command:

pip install djangorestframework==3.13.1

Edit the settings.py file of the educa project and add
rest_framework to the INSTALLED_APPS se�ing to activate the
application, as follows:

INSTALLED_APPS = [
 # ...

https://www.django-rest-framework.org/

 'rest_framework',
]

Then, add the following code to the settings.py file:

You can provide a specific configuration for your API using the
REST_FRAMEWORK se�ing. REST framework offers a wide range of
se�ings to configure default behaviors. The
DEFAULT_PERMISSION_CLASSES se�ing specifies the default
permissions to read, create, update, or delete objects. You set
DjangoModelPermissionsOrAnonReadOnly as the only default
permission class. This class relies on Django’s permissions system to
allow users to create, update, or delete objects while providing read-
only access for anonymous users. You will learn more about
permissions later, in the Adding permissions to views section.

For a complete list of available se�ings for REST framework, you can
visit https://www.django-rest-framework.org/api-
guide/settings/.

Defining serializers

REST_FRAMEWORK = {
 'DEFAULT_PERMISSION_CLASSES': [
 'rest_framework.permissions.DjangoModelPermiss
]
}

https://www.django-rest-framework.org/api-guide/settings/

After se�ing up REST framework, you need to specify how your
data will be serialized. Output data has to be serialized in a specific
format, and input data will be deserialized for processing. The
framework provides the following classes to build serializers for
single objects:

Serializer : Provides serialization for normal Python class
instances
ModelSerializer : Provides serialization for model instances
HyperlinkedModelSerializer : The same as
ModelSerializer , but it represents object relationships with
links rather than primary keys

Let’s build your first serializer. Create the following file structure
inside the courses application directory:

api/
 __init__.py
 serializers.py

You will build all the API functionality inside the api directory to
keep everything well organized. Edit the serializers.py file and
add the following code:

from rest_framework import serializers
from courses.models import Subject
class SubjectSerializer(serializers.ModelSerializer)
 class Meta:

This is the serializer for the Subject model. Serializers are defined
in a similar fashion to Django’s Form and ModelForm classes. The
Meta class allows you to specify the model to serialize and the fields
to be included for serialization. All model fields will be included if
you don’t set a fields a�ribute.

Let’s try the serializer. Open the command line and start the Django
shell with the following command:

python manage.py shell

Run the following code:

In this example, you get a Subject object, create an instance of
SubjectSerializer , and access the serialized data. You can see
that the model data is translated into Python native data types.

 model = Subject
 fields = ['id', 'title', 'slug']

>>> from courses.models import Subject
>>> from courses.api.serializers import SubjectSeria
>>> subject = Subject.objects.latest('id')
>>> serializer = SubjectSerializer(subject)
>>> serializer.data
{'id': 4, 'title': 'Programming', 'slug': 'programmi

Understanding parsers and renderers
The serialized data has to be rendered in a specific format before you
return it in an HTTP response. Likewise, when you get an HTTP
request, you have to parse the incoming data and deserialize it
before you can operate with it. REST framework includes renderers
and parsers to handle that.

Let’s see how to parse incoming data. Execute the following code in
the Python shell:

Given a JSON string input, you can use the JSONParser class
provided by REST framework to convert it to a Python object.

REST framework also includes Renderer classes that allow you to
format API responses. The framework determines which renderer to
use through content negotiation by inspecting the request’s Accept
header to determine the expected content type for the response.
Optionally, the renderer is determined by the format suffix of the
URL. For example, the URL
http://127.0.0.1:8000/api/data.json might be an endpoint
that triggers the JSONRenderer in order to return a JSON response.

>>> from io import BytesIO
>>> from rest_framework.parsers import JSONParser
>>> data = b'{"id":4,"title":"Programming","slug":"p
>>> JSONParser().parse(BytesIO(data))
{'id': 4, 'title': 'Programming', 'slug': 'programmi

Go back to the shell and execute the following code to render the
serializer object from the previous serializer example:

You will see the following output:

You use the JSONRenderer to render the serialized data into JSON.
By default, REST framework uses two different renderers:
JSONRenderer and BrowsableAPIRenderer . The la�er provides a
web interface to easily browse your API. You can change the default
renderer classes with the DEFAULT_RENDERER_CLASSES option of the
REST_FRAMEWORK se�ing.

You can find more information about renderers and parsers at
https://www.django-rest-framework.org/api-
guide/renderers/ and https://www.django-rest-
framework.org/api-guide/parsers/, respectively.

Next, you are going to learn how to build API views and use
serializers in views.

Building list and detail views

>>> from rest_framework.renderers import JSONRendere
>>> JSONRenderer().render(serializer.data)

b'{"id":4,"title":"Programming","slug":"programming"

https://www.django-rest-framework.org/api-guide/renderers/
https://www.django-rest-framework.org/api-guide/parsers/

REST framework comes with a set of generic views and mixins that
you can use to build your API views. They provide the functionality
to retrieve, create, update, or delete model objects. You can see all
the generic mixins and views provided by REST framework at
https://www.django-rest-framework.org/api-
guide/generic-views/.

Let’s create list and detail views to retrieve Subject objects. Create
a new file inside the courses/api/ directory and name it
views.py . Add the following code to it:

In this code, you are using the generic ListAPIView and
RetrieveAPIView views of REST framework. You include a pk
URL parameter for the detail view to retrieve the object for the given
primary key. Both views have the following a�ributes:

queryset : The base QuerySet to use to retrieve objects
serializer_class : The class to serialize objects

from rest_framework import generics
from courses.models import Subject
from courses.api.serializers import SubjectSerialize
class SubjectListView(generics.ListAPIView):
 queryset = Subject.objects.all()
 serializer_class = SubjectSerializer
class SubjectDetailView(generics.RetrieveAPIView):
 queryset = Subject.objects.all()
 serializer_class = SubjectSerializer

https://www.django-rest-framework.org/api-guide/generic-views/

Let’s add URL pa�erns for your views. Create a new file inside the
courses/api/ directory, name it urls.py , and make it look as
follows:

from django.urls import path
from . import views
app_name = 'courses'
urlpatterns = [
 path('subjects/',
 views.SubjectListView.as_view(),
 name='subject_list'),
 path('subjects/<pk>/',
 views.SubjectDetailView.as_view(),
 name='subject_detail'),
]

Edit the main urls.py file of the educa project and include the API
pa�erns, as follows:

Our initial API endpoints are now ready to be used.

Consuming the API

urlpatterns = [
 # ...
 path('api/', include('courses.api.urls', namespa
]

You use the api namespace for your API URLs. Ensure that your
server is running with the following command:

python manage.py runserver

We are going to use curl to consume the API. curl is a command-
line tool that allows you to transfer data to and from a server. If you
are using Linux, macOS, or Windows 10/11, curl is very likely
included in your system. However, you can download curl from
https://curl.se/download.xhtml.

Open the shell and retrieve the URL
http://127.0.0.1:8000/api/subjects/ with curl , as follows:

curl http://127.0.0.1:8000/api/subjects/

You will get a response similar to the following one:

[
 {
 "id":1,
 "title":"Mathematics",
 "slug":"mathematics"
 },
 {
 "id":2,
 "title":"Music",
 "slug":"music"
 },

https://curl.se/download.xhtml

 {
 "id":3,
 "title":"Physics",
 "slug":"physics"
 },
 {
 "id":4,
 "title":"Programming",
 "slug":"programming"
 }
]

To obtain a more readable, well-indented JSON response, you can
use curl with the json_pp utility, as follows:

curl http://127.0.0.1:8000/api/subjects/ | json_pp

The HTTP response contains a list of Subject objects in JSON
format.

Instead of curl , you can also use any other tool to send custom
HTTP requests, including a browser extension such as Postman,
which you can get at https://www.getpostman.com/.

Open http://127.0.0.1:8000/api/subjects/ in your browser.
You will see REST framework’s browsable API, as follows:

https://www.getpostman.com/

Figure 15.1: The subject list page in the REST framework browsable API

This HTML interface is provided by the BrowsableAPIRenderer
renderer. It displays the result headers and content, and it allows

you to perform requests. You can also access the API detail view for
a Subject object by including its ID in the URL.

Open http://127.0.0.1:8000/api/subjects/1/ in your
browser. You will see a single Subject object rendered in JSON
format.

Figure 15.2: The subject detail page in the REST framework browsable API

This is the response for the SubjectDetailView . Next, we are going
to dig deeper into model serializers.

Creating nested serializers

We are going to create a serializer for the Course model. Edit the
api/serializers.py file of the courses application and add the
following code highlighted in bold:

Let’s take a look at how a Course object is serialized. Open the shell
and execute the following command:

python manage.py shell

Run the following code:

from courses.models import Subject, Course
class CourseSerializer(serializers.ModelSerializer)
 class Meta:
 model = Course
 fields = ['id', 'subject', 'title', 'slug',
 'overview', 'created', 'owner',
 'modules']

>>> from rest_framework.renderers import JSONRendere
>>> from courses.models import Course
>>> from courses.api.serializers import CourseSerial
>>> course = Course.objects.latest('id')
>>> serializer = CourseSerializer(course)
>>> JSONRenderer().render(serializer.data)

You will get a JSON object with the fields that you included in
CourseSerializer . You can see that the related objects of the
modules manager are serialized as a list of primary keys, as follows:

"modules": [6, 7, 9, 10]

You want to include more information about each module, so you
need to serialize Module objects and nest them. Modify the previous
code of the api/serializers.py file of the courses application to
make it look as follows:

In the new code, you define ModuleSerializer to provide
serialization for the Module model. Then, you add a modules
a�ribute to CourseSerializer to nest the ModuleSerializer

from rest_framework import serializers
from courses.models import Subject, Course, Module
class ModuleSerializer(serializers.ModelSerializer)
 class Meta:
 model = Module
 fields = ['order', 'title', 'description']
class CourseSerializer(serializers.ModelSerializer)
 modules = ModuleSerializer(many=True, read_only=
 class Meta:
 model = Course
 fields = ['id', 'subject', 'title', 'slug',
 'overview', 'created', 'owner',
 'modules']

serializer. You set many=True to indicate that you are serializing
multiple objects. The read_only parameter indicates that this field
is read-only and should not be included in any input to create or
update objects.

Open the shell and create an instance of CourseSerializer again.
Render the serializer’s data a�ribute with JSONRenderer . This
time, the listed modules are being serialized with the nested
ModuleSerializer serializer, as follows:

You can read more about serializers at https://www.django-rest-
framework.org/api-guide/serializers/.

Generic API views are very useful to build REST APIs based on your
models and serializers. However, you might also need to implement

"modules": [
 {
 "order": 0,
 "title": "Introduction to overview",
 "description": "A brief overview about the W
 },
 {
 "order": 1,
 "title": "Configuring Django",
 "description": "How to install Django."
 },
 ...
]

https://www.django-rest-framework.org/api-guide/serializers/

your own views with custom logic. Let’s learn how to create a
custom API view.

Building custom API views
REST framework provides an APIView class that builds API
functionality on top of Django’s View class. The APIView class
differs from View by using REST framework’s custom Request and
Response objects and handling APIException exceptions to return
the appropriate HTTP responses. It also has a built-in authentication
and authorization system to manage access to views.

You are going to create a view for users to enroll on courses. Edit the
api/views.py file of the courses application and add the
following code highlighted in bold:

from django.shortcuts import get_object_or_404
from rest_framework.views import APIView
from rest_framework.response import Response
from rest_framework import generics
from courses.models import Subject, Course
from courses.api.serializers import SubjectSerialize
...
class CourseEnrollView(APIView):
 def post(self, request, pk, format=None):
 course = get_object_or_404(Course, pk=pk)
 course.students.add(request.user)
 return Response({'enrolled': True})

The CourseEnrollView view handles user enrollment on courses.
The preceding code is as follows:

1. You create a custom view that subclasses APIView .
2. You define a post() method for POST actions. No other HTTP

method will be allowed for this view.
3. You expect a pk URL parameter containing the ID of a course.

You retrieve the course by the given pk parameter and raise a
404 exception if it’s not found.

4. You add the current user to the students many-to-many
relationship of the Course object and return a successful
response.

Edit the api/urls.py file and add the following URL pa�ern for
the CourseEnrollView view:

path('courses/<pk>/enroll/',
 views.CourseEnrollView.as_view(),
 name='course_enroll'),

Theoretically, you could now perform a POST request to enroll the
current user on a course. However, you need to be able to identify
the user and prevent unauthenticated users from accessing this
view. Let’s see how API authentication and permissions work.

Handling authentication
REST framework provides authentication classes to identify the user
performing the request. If authentication is successful, the

framework sets the authenticated User object in request.user . If
no user is authenticated, an instance of Django’s AnonymousUser is
set instead.

REST framework provides the following authentication backends:

BasicAuthentication : This is HTTP basic authentication. The
user and password are sent by the client in the Authorization
HTTP header encoded with Base64. You can learn more about it
at
https://en.wikipedia.org/wiki/Basic_access_authenti
cation.
TokenAuthentication : This is token-based authentication. A
Token model is used to store user tokens. Users include the
token in the Authorization HTTP header for authentication.
SessionAuthentication : This uses Django’s session backend
for authentication. This backend is useful for performing
authenticated AJAX requests to the API from your website’s
frontend.
RemoteUserAuthentication : This allows you to delegate
authentication to your web server, which sets a REMOTE_USER
environment variable.

You can build a custom authentication backend by subclassing the
BaseAuthentication class provided by REST framework and
overriding the authenticate() method.

You can set authentication on a per-view basis, or set it globally with
the DEFAULT_AUTHENTICATION_CLASSES se�ing.

https://en.wikipedia.org/wiki/Basic_access_authentication

Authentication only identifies the user performing the
request. It won’t allow or deny access to views. You
have to use permissions to restrict access to views.

You can find all the information about authentication at
https://www.django-rest-framework.org/api-
guide/authentication/.

Let’s add BasicAuthentication to your view. Edit the
api/views.py file of the courses application and add an
authentication_classes a�ribute to CourseEnrollView , as
follows:

Users will be identified by the credentials set in the Authorization
header of the HTTP request.

Adding permissions to views
REST framework includes a permission system to restrict access to
views. Some of the built-in permissions of REST framework are:

AllowAny : Unrestricted access, regardless of whether a user is
authenticated or not.

...
from rest_framework.authentication import BasicAuthe
class CourseEnrollView(APIView):
 authentication_classes = [BasicAuthentication]
 # ...

https://www.django-rest-framework.org/api-guide/authentication/

IsAuthenticated : Allows access to authenticated users only.
IsAuthenticatedOrReadOnly : Complete access to
authenticated users. Anonymous users are only allowed to
execute read methods such as GET , HEAD , or OPTIONS .
DjangoModelPermissions : Permissions tied to
django.contrib.auth . The view requires a queryset
a�ribute. Only authenticated users with model permissions
assigned are granted permission.
DjangoObjectPermissions : Django permissions on a per-
object basis.

If users are denied permission, they will usually get one of the
following HTTP error codes:

HTTP 401 : Unauthorized
HTTP 403 : Permission denied

You can read more information about permissions at
https://www.django-rest-framework.org/api-
guide/permissions/.

Edit the api/views.py file of the courses application and add a
permission_classes a�ribute to CourseEnrollView , as follows:

...
from rest_framework.authentication import BasicAuthe
from rest_framework.permissions import IsAuthenticat
class CourseEnrollView(APIView):
 authentication_classes = [BasicAuthentication]
 permission_classes = [IsAuthenticated]
 # ...

https://www.django-rest-framework.org/api-guide/permissions/

You include the IsAuthenticated permission. This will prevent
anonymous users from accessing the view. Now, you can perform a
POST request to your new API method.

Make sure the development server is running. Open the shell and
run the following command:

You will get the following response:

You got a 401 HTTP code as expected since you are not
authenticated. Let’s use basic authentication with one of your users.
Run the following command, replacing student:password with the
credentials of an existing user:

You will get the following response:

curl -i -X POST http://127.0.0.1:8000/api/courses/1/

HTTP/1.1 401 Unauthorized
...
{"detail": "Authentication credentials were not prov

curl -i -X POST -u student:password http://127.0.0.1

HTTP/1.1 200 OK
...
{"enrolled": true}

You can access the administration site and check that the user is now
enrolled in the course.

Next, you are going to learn a different way to build common views
by using ViewSets .

Creating ViewSets and routers
ViewSets allow you to define the interactions of your API and let
REST framework build the URLs dynamically with a Router object.
By using ViewSets , you can avoid repeating logic for multiple
views. ViewSets include actions for the following standard
operations:

Create operation: create()
Retrieve operation: list() and retrieve()
Update operation: update() and partial_update()
Delete operation: destroy()

Let’s create a ViewSet for the Course model. Edit the
api/views.py file and add the following code to it:

...
from rest_framework import viewsets
from courses.api.serializers import SubjectSerialize
 CourseSerializer

You subclass ReadOnlyModelViewSet , which provides the read-
only actions list() and retrieve() to both list objects, or
retrieves a single object.

Edit the api/urls.py file and create a router for your ViewSet , as
follows:

from django.urls import path, include
from rest_framework import routers
from . import views
router = routers.DefaultRouter()
router.register('courses', views.CourseViewSet)
urlpatterns = [
 # ...
 path('', include(router.urls)),
]

You create a DefaultRouter object and register your ViewSet with
the courses prefix. The router takes charge of generating URLs
automatically for your ViewSet .

Open http://127.0.0.1:8000/api/ in your browser. You will see
that the router lists all ViewSets in its base URL, as shown in Figure
15.3:

class CourseViewSet(viewsets.ReadOnlyModelViewSet):
 queryset = Course.objects.all()
 serializer_class = CourseSerializer

Figure 15.3: The API root page of the REST framework browsable API

You can access http://127.0.0.1:8000/api/courses/ to retrieve
the list of courses.

You can learn more about ViewSets at https://www.django-
rest-framework.org/api-guide/viewsets/. You can also find
more information about routers at https://www.django-rest-
framework.org/api-guide/routers/.

Adding additional actions to ViewSets
You can add extra actions to ViewSets . Let’s change your previous
CourseEnrollView view into a custom ViewSet action. Edit the
api/views.py file and modify the CourseViewSet class to look as
follows:

https://www.django-rest-framework.org/api-guide/viewsets/
https://www.django-rest-framework.org/api-guide/routers/

In the preceding code, you add a custom enroll() method that
represents an additional action for this ViewSet . The preceding
code is as follows:

1. You use the action decorator of the framework with the
parameter detail=True to specify that this is an action to be
performed on a single object.

2. The decorator allows you to add custom a�ributes for the
action. You specify that only the post() method is allowed for
this view and set the authentication and permission classes.

3. You use self.get_object() to retrieve the Course object.
4. You add the current user to the students many-to-many

relationship and return a custom success response.

...
from rest_framework.decorators import action
class CourseViewSet(viewsets.ReadOnlyModelViewSet):
 queryset = Course.objects.all()
 serializer_class = CourseSerializer
 @action(detail=True,
 methods=['post'],
 authentication_classes=[BasicAuthenticat
 permission_classes=[IsAuthenticated])
 def enroll(self, request, *args, **kwargs):
 course = self.get_object()
 course.students.add(request.user)
 return Response({'enrolled': True})

Edit the api/urls.py file and remove or comment out the
following URL, since you don’t need it anymore:

path('courses/<pk>/enroll/',
 views.CourseEnrollView.as_view(),
 name='course_enroll'),

Then, edit the api/views.py file and remove or comment out the
CourseEnrollView class.

The URL to enroll on courses is now automatically generated by the
router. The URL remains the same since it’s built dynamically using
the action name enroll .

After students are enrolled in a course, they need to access the
course’s content. Next, you are going to learn how to ensure only
students that enrolled can access the course.

Creating custom permissions
You want students to be able to access the contents of the courses
they are enrolled on. Only students enrolled on a course should be
able to access its contents. The best way to do this is with a custom
permission class. REST Framework provides a BasePermission
class that allows you to define the following methods:

has_permission() : View-level permission check
has_object_permission() : Instance-level permission check

These methods should return True to grant access, or False
otherwise.

Create a new file inside the courses/api/ directory and name it
permissions.py . Add the following code to it:

You subclass the BasePermission class and override the
has_object_permission() . You check that the user performing
the request is present in the students relationship of the Course
object. You are going to use the IsEnrolled permission next.

Serializing course contents
You need to serialize course contents. The Content model includes a
generic foreign key that allows you to associate objects of different
content models. Yet, you added a common render() method for all
content models in the previous chapter. You can use this method to
provide rendered content to your API.

Edit the api/serializers.py file of the courses application and
add the following code to it:

from rest_framework.permissions import BasePermissio
class IsEnrolled(BasePermission):
 def has_object_permission(self, request, view, o
 return obj.students.filter(id=request.user.i

from courses.models import Subject, Course, Module,
class ItemRelatedField(serializers.RelatedField):
 def to_representation(self, value):
 return value.render()
class ContentSerializer(serializers.ModelSerializer)

In this code, you define a custom field by subclassing the
RelatedField serializer field provided by REST framework and
overriding the to_representation() method. You define the
ContentSerializer serializer for the Content model and use the
custom field for the item generic foreign key.

You need an alternative serializer for the Module model that
includes its contents, and an extended Course serializer as well. Edit
the api/serializers.py file and add the following code to it:

 item = ItemRelatedField(read_only=True)
 class Meta:
 model = Content
 fields = ['order', 'item']

class ModuleWithContentsSerializer(
 serializers.ModelSerializer):
 contents = ContentSerializer(many=True)
 class Meta:
 model = Module
 fields = ['order', 'title', 'description',
 'contents']
class CourseWithContentsSerializer(
 serializers.ModelSerializer):
 modules = ModuleWithContentsSerializer(many=True
 class Meta:
 model = Course
 fields = ['id', 'subject', 'title', 'slug',
 'overview', 'created', 'owner',
 'modules']

Let’s create a view that mimics the behavior of the retrieve()
action, but includes the course contents. Edit the api/views.py file
and add the following method to the CourseViewSet class:

The description of this method is as follows:

1. You use the action decorator with the parameter
detail=True to specify an action that is performed on a single
object.

2. You specify that only the GET method is allowed for this action.
3. You use the new CourseWithContentsSerializer serializer

class that includes rendered course contents.
4. You use both IsAuthenticated and your custom IsEnrolled

permissions. By doing so, you make sure that only users
enrolled in the course are able to access its contents.

from courses.api.permissions import IsEnrolled
from courses.api.serializers import CourseWithConten
class CourseViewSet(viewsets.ReadOnlyModelViewSet):
 # ...
 @action(detail=True,
 methods=['get'],
 serializer_class=CourseWithContentsSeria
 authentication_classes=[BasicAuthenticat
 permission_classes=[IsAuthenticated, IsE
 def contents(self, request, *args, **kwargs):
 return self.retrieve(request, *args, **kwarg

5. You use the existing retrieve() action to return the Course
object.

Open http://127.0.0.1:8000/api/courses/1/contents/ in
your browser. If you access the view with the right credentials, you
will see that each module of the course includes the rendered HTML
for course contents, as follows:

{
 "order": 0,
 "title": "Introduction to Django",
 "description": "Brief introduction to the Django
 "contents": [
 {
 "order": 0,
 "item": "<p>Meet Django. Django is a hig
 Python Web framework
 ...</p>"
 },
 {
 "order": 1,
 "item": "\n<iframe width=\"480\" height=
 src=\"http://www.youtube.com/embed/bgV39
 wmode=opaque\"
 frameborder=\"0\" allowfullscreen></ifra
 }
]
}

You have built a simple API that allows other services to access the
course application programmatically. REST framework also allows
you to handle creating and editing objects with the ModelViewSet
class. We have covered the main aspects of Django REST framework,
but you will find further information about its features in its
extensive documentation at https://www.django-rest-
framework.org/.

Consuming the RESTful API
Now that you have implemented an API, you can consume it in a
programmatic manner from other applications. You can interact with
the API using the JavaScript Fetch API in the frontend of your
application, in a similar fashion to the functionalities you built in
Chapter 6, Sharing Content on Your Website. You can also consume the
API from applications built with Python or any other programming
language.

You are going to create a simple Python application that uses the
RESTful API to retrieve all available courses and then enroll a
student in all of them. You will learn how to authenticate against the
API using HTTP basic authentication and perform GET and POST
requests.

We will use the Python Requests library to consume the API. We
used Requests in Chapter 6, Sharing Content on Your Website to retrieve
images by their URL. Requests abstracts the complexity of dealing
with HTTP requests and provides a very simple interface to
consume HTTP services. You can find the documentation for the

https://www.django-rest-framework.org/

Requests library at
https://requests.readthedocs.io/en/master/.

Open the shell and install the Requests library with the following
command:

pip install requests==2.28.1

Create a new directory next to the educa project directory and name
it api_examples . Create a new file inside the api_examples/
directory and name it enroll_all.py . The file structure should
now look like this:

api_examples/
 enroll_all.py
educa/
 ...

Edit the enroll_all.py file and add the following code to it:

import requests
base_url = 'http://127.0.0.1:8000/api/'
retrieve all courses
r = requests.get(f'{base_url}courses/')
courses = r.json()
available_courses = ', '.join([course['title'] for c
print(f'Available courses: {available_courses}')

https://requests.readthedocs.io/en/master/

In this code, you perform the following actions:

1. You import the Requests library and define the base URL for the
API.

2. You use requests.get() to retrieve data from the API by
sending a GET request to the URL
http://127.0.0.1:8000/api/courses/ . This API endpoint is
publicly accessible, so it does not require any authentication.

3. You use the json() method of the response object to decode the
JSON data returned by the API.

4. You print the title a�ribute of each course.

Start the development server from the educa project directory with
the following command:

python manage.py runserver

In another shell, run the following command from the
api_examples/ directory:

python enroll_all.py

You will see output with a list of all course titles, like this:

This is your first automated call to your API.

Edit the enroll_all.py file and change it to make it look like this:

Available courses: Introduction to Django, Python fo

Replace the values for the username and password variables with
the credentials of an existing user.

With the new code, you perform the following actions:

1. You define the username and password of the student you want
to enroll on courses.

2. You iterate over the available courses retrieved from the API.
3. You store the course ID a�ribute in the course_id variable and

the title a�ribute in the course_title variable.
4. You use requests.post() to send a POST request to the URL
http://127.0.0.1:8000/api/courses/[id]/enroll/ for

import requests
username = ''
password = ''
base_url = 'http://127.0.0.1:8000/api/'
retrieve all courses
r = requests.get(f'{base_url}courses/')
courses = r.json()
available_courses = ', '.join([course['title'] for c
print(f'Available courses: {available_courses}')
for course in courses:
 course_id = course['id']
 course_title = course['title']
 r = requests.post(f'{base_url}courses/{course_id}/
 auth=(username, password))
 if r.status_code == 200:
 # successful request
 print(f'Successfully enrolled in {course_title}

each course. This URL corresponds to the CourseEnrollView
API view, which allows you to enroll a user on a course. You
build the URL for each course using the course_id variable.
The CourseEnrollView view requires authentication. It uses
the IsAuthenticated permission and the
BasicAuthentication authentication class. The Requests
library supports HTTP basic authentication out of the box. You
use the auth parameter to pass a tuple with the username and
password to authenticate the user using HTTP basic
authentication.

5. If the status code of the response is 200 OK , you print a
message to indicate that the user has been successfully enrolled
on the course.

You can use different kinds of authentication with Requests. You can
find more information on authentication with Requests at
https://requests.readthedocs.io/en/master/user/authenti
cation/.

Run the following command from the api_examples/ directory:

python enroll_all.py

You will now see output like this:

Available courses: Introduction to Django, Python fo
Successfully enrolled in Introduction to Django
Successfully enrolled in Python for beginners
Successfully enrolled in Algebra basics

https://requests.readthedocs.io/en/master/user/authentication/

Great! You have successfully enrolled the user on all available
courses using the API. You will see a Successfully enrolled
message for each course on the platform. As you can see, it’s very
easy to consume the API from any other application. You can
effortlessly build other functionalities based on the API and let
others integrate your API into their applications.

Additional resources
The following resources provide additional information related to
the topics covered in this chapter:

Source code for this chapter –
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter15

REST framework website – https://www.django-rest-
framework.org/

REST framework se�ings – https://www.django-rest-
framework.org/api-guide/settings/

REST framework renderers – https://www.django-rest-
framework.org/api-guide/renderers/

REST framework parsers – https://www.django-rest-
framework.org/api-guide/parsers/

REST framework generic mixins and views –
https://www.django-rest-framework.org/api-
guide/generic-views/

Download curl – https://curl.se/download.xhtml

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter15
https://www.django-rest-framework.org/
https://www.django-rest-framework.org/api-guide/settings/
https://www.django-rest-framework.org/api-guide/renderers/
https://www.django-rest-framework.org/api-guide/parsers/
https://www.django-rest-framework.org/api-guide/generic-views/
https://curl.se/download.xhtml

Postman API platform – https://www.getpostman.com/
REST framework serializers – https://www.django-rest-
framework.org/api-guide/serializers/

HTTP basic authentication –
https://en.wikipedia.org/wiki/Basic_access_authenti
cation

REST framework authentication – https://www.django-rest-
framework.org/api-guide/authentication/

REST framework permissions – https://www.django-rest-
framework.org/api-guide/permissions/

REST framework ViewSets – https://www.django-rest-
framework.org/api-guide/viewsets/

REST framework routers – https://www.django-rest-
framework.org/api-guide/routers/

Python Requests library documentation –
https://requests.readthedocs.io/en/master/

Authentication with the Requests library –
https://requests.readthedocs.io/en/master/user/auth
entication/

Summary
In this chapter, you learned how to use Django REST framework to
build a RESTful API for your project. You created serializers and
views for models, and you built custom API views. You also added
authentication to your API and restricted access to API views using
permissions. Next, you discovered how to create custom

https://www.getpostman.com/
https://www.django-rest-framework.org/api-guide/serializers/
https://en.wikipedia.org/wiki/Basic_access_authentication
https://www.django-rest-framework.org/api-guide/authentication/
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/viewsets/
https://www.django-rest-framework.org/api-guide/routers/
https://requests.readthedocs.io/en/master/
https://requests.readthedocs.io/en/master/user/authentication/

permissions, and you implemented ViewSets and routers. Finally,
you used the Requests library to consume the API from an external
Python script.

The next chapter will teach you how to build a chat server using
Django Channels. You will implement asynchronous communication
using WebSockets and you will use Redis to set up a channel layer.

16

Building a Chat Server

In the previous chapter, you created a RESTful API for your project.
In this chapter, you will build a chat server for students using
Django Channels. Students will be able to access a different chat
room for each course they are enrolled on. To create the chat server,
you will learn how to serve your Django project through
Asynchronous Server Gateway Interface (ASGI), and you will
implement asynchronous communication.

In this chapter, you will:

Add Channels to your project
Build a WebSocket consumer and appropriate routing
Implement a WebSocket client
Enable a channel layer with Redis
Make your consumer fully asynchronous

The source code for this chapter can be found at
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter16.

All Python modules used in this chapter are included in the
requirements.txt file in the source code that comes along with
this chapter. You can follow the instructions to install each Python

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter16

module below or you can install all requirements at once with the
command pip install -r requirements.txt .

Creating a chat application
You are going to implement a chat server to provide students with a
chat room for each course. Students enrolled on a course will be able
to access the course chat room and exchange messages in real time.
You will use Channels to build this functionality. Channels is a
Django application that extends Django to handle protocols that
require long-running connections, such as WebSockets, chatbots, or
MQTT (a lightweight publish/subscribe message transport
commonly used in Internet of Things (IoT) projects).

Using Channels, you can easily implement real-time or
asynchronous functionalities into your project in addition to your
standard HTTP synchronous views. You will start by adding a new
application to your project. The new application will contain the
logic for the chat server.

You can the documentation for Django Channels at
https://channels.readthedocs.io/.

Let’s start implementing the chat server. Run the following
command from the project educa directory to create the new
application file structure:

django-admin startapp chat

https://channels.readthedocs.io/

Edit the settings.py file of the educa project and activate the
chat application in your project by editing the INSTALLED_APPS
se�ing, as follows:

INSTALLED_APPS = [
 # ...
 'chat',
]

The new chat application is now active in your project.

Implementing the chat room view
You will provide students with a different chat room for each course.
You need to create a view for students to join the chat room of a
given course. Only students who are enrolled on a course will be
able to access the course chat room.

Edit the views.py file of the new chat application and add the
following code to it:

from django.shortcuts import render, get_object_or_4
from django.http import HttpResponseForbidden
from django.contrib.auth.decorators import login_req
@login_required
def course_chat_room(request, course_id):
 try:
 # retrieve course with given id joined by th
 course = request.user.courses_joined.get(id=
 except:

This is the course_chat_room view. In this view, you use the
@login_required decorator to prevent any non-authenticated user
from accessing the view. The view receives a required course_id
parameter that is used to retrieve the course with the given id .

You access the courses that the user is enrolled on through the
relationship courses_joined and you retrieve the course with the
given id from that subset of courses. If the course with the given id
does not exist or the user is not enrolled on it, you return an
HttpResponseForbidden response, which translates to an HTTP
response with status 403 .

If the course with the given id exists and the user is enrolled on it,
you render the chat/room.xhtml template, passing the course
object to the template context.

You need to add a URL pa�ern for this view. Create a new file inside
the chat application directory and name it urls.py . Add the
following code to it:

 # user is not a student of the course or cou
 return HttpResponseForbidden()
 return render(request, 'chat/room.xhtml', {'cour

from django.urls import path
from . import views
app_name = 'chat'
urlpatterns = [
 path('room/<int:course_id>/', views.course_chat_

This is the initial URL pa�erns file for the chat application. You
define the course_chat_room URL pa�ern, including the
course_id parameter with the int prefix, as you only expect an
integer value here.

Include the new URL pa�erns of the chat application in the main
URL pa�erns of the project. Edit the main urls.py file of the educa
project and add the following line to it:

URL pa�erns for the chat application are added to the project
under the chat/ path.

You need to create a template for the course_chat_room view. This
template will contain an area to visualize the messages that are
exchanged in the chat, and a text input with a submit bu�on to send
text messages to the chat.

Create the following file structure within the chat application
directory:

 name='course_chat_room'),
]

urlpatterns = [
 # ...
 path('chat/', include('chat.urls', namespace='ch
]

templates/
 chat/
 room.xhtml

Edit the chat/room.xhtml template and add the following code to
it:

This is the template for the course chat room. In this template, you
extend the base.xhtml template of your project and fill its content
block. In the template, you define a <div> HTML element with the
chat ID that you will use to display the chat messages sent by the
user and by other students. You also define a second <div> element
with a text input and a submit bu�on that will allow the user to

{% extends "base.xhtml" %}
{% block title %}Chat room for "{{ course.title }}"{
{% block content %}
 <div id="chat">
 </div>
 <div id="chat-input">
 <input id="chat-message-input" type="text">
 <input id="chat-message-submit" type="submit" va
 </div>
{% endblock %}
{% block include_js %}
{% endblock %}
{% block domready %}
{% endblock %}

send messages. You add the include_js and domready blocks
defined in the base.xhtml template, which you are going to
implement later, to establish a connection with a WebSocket and
send or receive messages.

Run the development server and open
http://127.0.0.1:8000/chat/room/1/ in your browser,
replacing 1 with the id of an existing course in the database. Access
the chat room with a logged-in user who is enrolled on the course.
You will see the following screen:

Figure 16.1: The course chat room page

This is the course chat room screen that students will use to discuss
topics within a course.

Real-time Django with Channels
You are building a chat server to provide students with a chat room
for each course. Students enrolled on a course will be able to access
the course chat room and exchange messages. This functionality
requires real-time communication between the server and the client.
The client should be able to connect to the chat and send or receive
data at any time. There are several ways you could implement this
feature, using AJAX polling or long polling in combination with
storing the messages in your database or Redis. However, there is no
efficient way to implement a chat server using a standard
synchronous web application. You are going to build a chat server
using asynchronous communication through ASGI.

Asynchronous applications using ASGI
Django is usually deployed using Web Server Gateway Interface
(WSGI), which is the standard interface for Python applications to
handle HTTP requests. However, to work with asynchronous
applications, you need to use another interface called ASGI, which
can handle WebSocket requests as well. ASGI is the emerging
Python standard for asynchronous web servers and applications.

You can find an introduction to ASGI at
https://asgi.readthedocs.io/en/latest/introduction.xhtm
l.

Django comes with support for running asynchronous Python
through ASGI. Writing asynchronous views is supported since
Django 3.1 and Django 4.1 introduces asynchronous handlers for

https://asgi.readthedocs.io/en/latest/introduction.xhtml

class-based views. Channels builds upon the native ASGI support
available in Django and provides additional functionalities to handle
protocols that require long-running connections, such as
WebSockets, IoT protocols, and chat protocols.

WebSockets provide full-duplex communication by establishing a
persistent, open, bidirectional Transmission Control Protocol (TCP)
connection between servers and clients. You are going to use
WebSockets to implement your chat server.

You can find more information about deploying Django with ASGI
at
https://docs.djangoproject.com/en/4.1/howto/deployment/
asgi/.

You can find more information about Django’s support for writing
asynchronous views at
https://docs.djangoproject.com/en/4.1/topics/async/ and
Django’s support for asynchronous class-based views at
https://docs.djangoproject.com/en/4.1/topics/class-
based-views/#async-class-based-views.

The request/response cycle using
Channels
It’s important to understand the differences in a request cycle
between a standard synchronous request cycle and a Channels
implementation. The following schema shows the request cycle of a
synchronous Django setup:

https://docs.djangoproject.com/en/4.1/howto/deployment/asgi/
https://docs.djangoproject.com/en/4.1/topics/async/
https://docs.djangoproject.com/en/4.1/topics/class-based-views/#async-class-based-views

Figure 16.2: The Django request/response cycle

When an HTTP request is sent by the browser to the web server,
Django handles the request and passes the HttpRequest object to
the corresponding view. The view processes the request and returns
an HttpResponse object that is sent back to the browser as an HTTP
response. There is no mechanism to maintain an open connection or
send data to the browser without an associated HTTP request.

The following schema shows the request cycle of a Django project
using Channels with WebSockets:

Figure 16.3: The Django Channels request/response cycle

Channels replaces Django’s request/response cycle with messages
that are sent across channels. HTTP requests are still routed to view
functions using Django, but they get routed over channels. This
allows for WebSockets message handling as well, where you have
producers and consumers that exchange messages across a channel

layer. Channels preserves Django’s synchronous architecture,
allowing you to choose between writing synchronous code and
asynchronous code, or a combination of both.

Installing Channels
You are going to add Channels to your project and set up the
required basic ASGI application routing for it to manage HTTP
requests.

Install Channels in your virtual environment with the following
command:

pip install channels==3.0.5

Edit the settings.py file of the educa project and add channels
to the INSTALLED_APPS se�ing as follows:

INSTALLED_APPS = [
 # ...
 'channels',
]

The channels application is now activated in your project.

Channels expects you to define a single root application that will be
executed for all requests. You can define the root application by
adding the ASGI_APPLICATION se�ing to your project. This is
similar to the ROOT_URLCONF se�ing that points to the base URL

pa�erns of your project. You can place the root application anywhere
in your project, but it is recommended to put it in a project-level file.
You can add your root routing configuration to the asgi.py file
directly, where the ASGI application will be defined.

Edit the asgi.py file in the educa project directory and add the
following code highlighted in bold:

In the previous code, you define the main ASGI application that will
be executed when serving the Django project through ASGI. You use
the ProtocolTypeRouter class provided by Channels as the main
entry point of your routing system. ProtocolTypeRouter takes a
dictionary that maps communication types like http or websocket
to ASGI applications. You instantiate this class with the default
application for the HTTP protocol. Later, you will add a protocol for
the WebSocket.

Add the following line to the settings.py file of your project:

ASGI_APPLICATION = 'educa.routing.application'

import os
from django.core.asgi import get_asgi_application
from channels.routing import ProtocolTypeRouter
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'edu
django_asgi_app = get_asgi_application()
application = ProtocolTypeRouter({
 'http': django_asgi_app,
})

The ASGI_APPLICATION se�ing is used by Channels to locate the
root routing configuration.

When Channels is added to the INSTALLED_APPS se�ing, it takes
control over the runserver command, replacing the standard
Django development server. Besides handling URL routing to
Django views for synchronous requests, the Channels development
server also manages routes to WebSocket consumers.

Start the development server using the following command:

python manage.py runserver

You will see output similar to the following:

Check that the output contains the line Starting ASGI/Channels
version 3.0.4 development server . This line confirms that you
are using the Channels development server, which is capable of
managing synchronous and asynchronous requests, instead of the
standard Django development server. HTTP requests continue to
behave the same as before, but they get routed over Channels.

Watching for file changes with StatReloader
Performing system checks...
System check identified no issues (0 silenced).
May 30, 2022 - 08:02:57
Django version 4.0.4, using settings 'educa.settings
Starting ASGI/Channels version 3.0.4 development ser
Quit the server with CONTROL-C.

Now that Channels is installed in your project, you can build the
chat server for courses. To implement the chat server for your
project, you will need to take the following steps:

1. Set up a consumer: Consumers are individual pieces of code
that can handle WebSockets in a very similar way to traditional
HTTP views. You will build a consumer to read and write
messages to a communication channel.

2. Configure routing: Channels provides routing classes that allow
you to combine and stack your consumers. You will configure
URL routing for your chat consumer.

3. Implement a WebSocket client: When the student accesses the
chat room, you will connect to the WebSocket from the browser
and send or receive messages using JavaScript.

4. Enable a channel layer: Channel layers allow you to talk
between different instances of an application. They’re a useful
part of making a distributed real-time application. You will set
up a channel layer using Redis.

Let’s start by writing your own consumer to handle connecting to a
WebSocket, receiving and sending messages, and disconnecting.

Writing a consumer
Consumers are the equivalent of Django views for asynchronous
applications. As mentioned, they handle WebSockets in a very
similar way to how traditional views handle HTTP requests.
Consumers are ASGI applications that can handle messages,
notifications, and other things. Unlike Django views, consumers are

built for long-running communication. URLs are mapped to
consumers through routing classes that allow you to combine and
stack consumers.

Let’s implement a basic consumer that can accept WebSocket
connections and echoes every message it receives from the
WebSocket back to it. This initial functionality will allow the student
to send messages to the consumer and receive back the messages it
sends.

Create a new file inside the chat application directory and name it
consumers.py . Add the following code to it:

This is the ChatConsumer consumer. This class inherits from the
Channels WebsocketConsumer class to implement a basic

import json
from channels.generic.websocket import WebsocketCons
class ChatConsumer(WebsocketConsumer):
 def connect(self):
 # accept connection
 self.accept()
 def disconnect(self, close_code):
 pass
 # receive message from WebSocket
 def receive(self, text_data):
 text_data_json = json.loads(text_data)
 message = text_data_json['message']
 # send message to WebSocket
 self.send(text_data=json.dumps({'message': m

WebSocket consumer. In this consumer, you implement the
following methods:

connnect() : Called when a new connection is received. You
accept any connection with self.accept() . You can also reject
a connection by calling self.close() .
disconnect() : Called when the socket closes. You use pass
because you don’t need to implement any action when a client
closes the connection.
receive() : Called whenever data is received. You expect text
to be received as text_data (this could also be binary_data
for binary data). You treat the text data received as JSON.
Therefore, you use json.loads() to load the received JSON
data into a Python dictionary. You access the message key,
which you expect to be present in the JSON structure received.
To echo the message, you send the message back to the
WebSocket with self.send() , transforming it into JSON
format again through json.dumps() .

The initial version of your ChatConsumer consumer accepts any
WebSocket connection and echoes to the WebSocket client every
message it receives. Note that the consumer does not broadcast
messages to other clients yet. You will build this functionality by
implementing a channel layer later.

Routing
You need to define a URL to route connections to the ChatConsumer
consumer you have implemented. Channels provides routing classes

that allow you to combine and stack consumers to dispatch based on
what the connection is. You can think of them as the URL routing
system of Django for asynchronous applications.

Create a new file inside the chat application directory and name it
routing.py . Add the following code to it:

from django.urls import re_path
from . import consumers
websocket_urlpatterns = [
 re_path(r'ws/chat/room/(?P<course_id>\d+)/$',
 consumers.ChatConsumer.as_asgi()),
]

In this code, you map a URL pa�ern with the ChatConsumer class
that you defined in the chat/consumers.py file. You use Django’s
re_path to define the path with regular expressions. You use the
re_path function instead of the common path function because of
the limitations of Channels’ URL routing. The URL includes an
integer parameter called course_id . This parameter will be
available in the scope of the consumer and will allow you to identify
the course chat room that the user is connecting to. You call the
as_asgi() method of the consumer class in order to get an ASGI
application that will instantiate an instance of the consumer for each
user connection. This behavior is similar to Django’s as_view()
method for class-based views.

It is a good practice to prepend WebSocket URLs with
/ws/ to differentiate them from URLs used for

standard synchronous HTTP requests. This also
simplifies the production setup when an HTTP server
routes requests based on the path.

Edit the global asgi.py file located next to the settings.py file so
that it looks like this:

In this code, you add a new route for the websocket protocol. You
use URLRouter to map websocket connections to the URL pa�erns
defined in the websocket_urlpatterns list of the chat application
routing.py file. You also use AuthMiddlewareStack . The
AuthMiddlewareStack class provided by Channels supports
standard Django authentication, where the user details are stored in

import os
from django.core.asgi import get_asgi_application
from channels.routing import ProtocolTypeRouter, URL
from channels.auth import AuthMiddlewareStack
import chat.routing
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'edu
django_asgi_app = get_asgi_application()
application = ProtocolTypeRouter({
 'http': django_asgi_app,
 'websocket': AuthMiddlewareStack(
 URLRouter(chat.routing.websocket_urlpatterns
),
})

the session. Later, you will access the user instance in the scope of
the consumer to identify the user who sends a message.

Implementing the WebSocket
client
So far, you have created the course_chat_room view and its
corresponding template for students to access the course chat room.
You have implemented a WebSocket consumer for the chat server
and tied it with URL routing. Now, you need to build a WebSocket
client to establish a connection with the WebSocket in the course chat
room template and be able to send/receive messages.

You are going to implement the WebSocket client with JavaScript to
open and maintain a connection in the browser. You will interact
with the Document Object Model (DOM) using JavaScript.

Edit the chat/room.xhtml template of the chat application and
modify the include_js and domready blocks, as follows:

{% block include_js %}
 {{ course.id|json_script:"course-id" }}
{% endblock %}
{% block domready %}
 const courseId = JSON.parse(
 document.getElementById('course-id').textContent
);
 const url = 'ws://' + window.location.host +
 '/ws/chat/room/' + courseId + '/';

In the include_js block, you use the json_script template filter
to securely use the value of course.id with JavaScript. The
json_script template filter provided by Django outputs a Python
object as JSON, wrapped in a <script> tag, so that you can safely
use it with JavaScript. The code {{
course.id|json_script:"course-id" }} is rendered as <script
id="course-id" type="application/json">6</script> . This
value is then retrieved in the domready block by parsing the content
of the element with id="course-id" using JSON.parse() . This is
the safe way to use Python objects in JavaScript.

You can find more information about the json_script template
filter at
https://docs.djangoproject.com/en/4.1/ref/templates/bui
ltins/#json-script.

In the domready block, you define an URL with the WebSocket
protocol, which looks like ws:// (or wss:// for secure WebSockets,
just like https://). You build the URL using the current location of
the browser, which you obtain from window.location.host . The
rest of the URL is built with the path for the chat room URL pa�ern
that you defined in the routing.py file of the chat application.

You write the URL instead of building it with a resolver because
Channels does not provide a way to reverse URLs. You use the

 const chatSocket = new WebSocket(url);
{% endblock %}

https://docs.djangoproject.com/en/4.1/ref/templates/builtins/#json-script

current course ID to generate the URL for the current course and
store the URL in a new constant named url .

You then open a WebSocket connection to the stored URL using new
WebSocket(url) . You assign the instantiated WebSocket client
object to the new constant chatSocket .

You have created a WebSocket consumer, you have included routing
for it, and you have implemented a basic WebSocket client. Let’s try
the initial version of your chat.

Start the development server using the following command:

python manage.py runserver

Open the URL http://127.0.0.1:8000/chat/room/1/ in your
browser, replacing 1 with the id of an existing course in the
database. Take a look at the console output. Besides the HTTP GET
requests for the page and its static files, you should see two lines
including WebSocket HANDSHAKING and WebSocket CONNECT , like
the following output:

The Channels development server listens for incoming socket
connections using a standard TCP socket. The handshake is the

HTTP GET /chat/room/1/ 200 [0.02, 127.0.0.1:57141]
HTTP GET /static/css/base.css 200 [0.01, 127.0.0.1:5
WebSocket HANDSHAKING /ws/chat/room/1/ [127.0.0.1:57
WebSocket CONNECT /ws/chat/room/1/ [127.0.0.1:57144]

bridge from HTTP to WebSockets. In the handshake, details of the
connection are negotiated and either party can close the connection
before completion. Remember that you are using self.accept() to
accept any connection in the connect() method of the
ChatConsumer class, implemented in the consumers.py file of the
chat application. The connection is accepted, and therefore, you see
the WebSocket CONNECT message in the console.

If you use the browser developer tools to track network connections,
you can also see information for the WebSocket connection that has
been established.

It should look like Figure 16.4:

Figure 16.4: The browser developer tools showing that the WebSocket connection has been established

Now that you can connect to the WebSocket, it’s time to interact with
it. You will implement the methods to handle common events, such
as receiving a message and closing the connection. Edit the
chat/room.xhtml template of the chat application and modify the
domready block, as follows:

{% block domready %}
 const courseId = JSON.parse(
 document.getElementById('course-id').textContent

In this code, you define the following events for the WebSocket
client:

onmessage : Fired when data is received through the
WebSocket. You parse the message, which you expect in JSON
format, and access its message a�ribute. You then append a
new <div> element with the message received to the HTML
element with the chat ID. This will add new messages to the
chat log, while keeping all previous messages that have been
added to the log. You scroll the chat log <div> to the bo�om to
ensure that the new message gets visibility. You achieve this by
scrolling to the total scrollable height of the chat log, which can
be obtained by accessing its scrollHeight a�ribute.

);
 const url = 'ws://' + window.location.host +
 '/ws/chat/room/' + courseId + '/';
 const chatSocket = new WebSocket(url);
 chatSocket.onmessage = function(event) {
 const data = JSON.parse(event.data);
 const chat = document.getElementById('chat');
 chat.innerHTML += '<div class="message">' +
 data.message + '</div>';
 chat.scrollTop = chat.scrollHeight;
 };
 chatSocket.onclose = function(event) {
 console.error('Chat socket closed unexpectedly')
 };
{% endblock %}

onclose : Fired when the connection with the WebSocket is
closed. You don’t expect to close the connection, and therefore,
you write the error Chat socket closed unexpectedly to
the console log if this happens.

You have implemented the action to display the message when a
new message is received. You need to implement the functionality to
send messages to the socket as well.

Edit the chat/room.xhtml template of the chat application and
add the following JavaScript code to the bo�om of the domready
block:

In this code, you define an event listener for the click event of the
submit bu�on, which you select by its ID chat-message-submit .
When the bu�on is clicked, you perform the following actions:

const input = document.getElementById('chat-message-
const submitButton = document.getElementById('chat-m
submitButton.addEventListener('click', function(even
 const message = input.value;
 if(message) {
 // send message in JSON format
 chatSocket.send(JSON.stringify({'message': messa
 // clear input
 input.innerHTML = '';
 input.focus();
 }
});

1. You read the message entered by the user from the value of the
text input element with the ID chat-message-input .

2. You check whether the message has any content with
if(message) .

3. If the user has entered a message, you form JSON content such
as {'message': 'string entered by the user'} by using
JSON.stringify() .

4. You send the JSON content through the WebSocket, calling the
send() method of chatSocket client.

5. You clear the contents of the text input by se�ing its value to an
empty string with input.innerHTML = '' .

6. You return the focus to the text input with input.focus() so
that the user can write a new message straightaway.

The user is now able to send messages using the text input and by
clicking the submit bu�on.

To improve the user experience, you will give focus to the text input
as soon as the page loads so that the user can type directly in it. You
will also capture keyboard keypress events to identify the Enter key
and fire the click event on the submit bu�on. The user will be able
to either click the bu�on or press the Enter key to send a message.

Edit the chat/room.xhtml template of the chat application and
add the following JavaScript code to the bo�om of the domready
block:

input.addEventListener('keypress', function(event) {
 if (event.key === 'Enter') {
 // cancel the default action, if needed

In this code, you also define a function for the keypress event of the
input element. For any key that the user presses, you check
whether its key is Enter . You prevent the default behavior for this
key with event.preventDefault() . If the Enter key is pressed, you
fire the click event on the submit bu�on to send the message to the
WebSocket.

Outside of the event handler, in the main JavaScript code for the
domready block, you give the focus to the text input with
input.focus() . By doing so, when the DOM is loaded, the focus
will be set on the input element for the user to type a message.

The domready block of the chat/room.xhtml template should now
look as follows:

 event.preventDefault();
 // trigger click event on button
 submitButton.click();
 }
 });

input.focus();

{% block domready %}
 const courseId = JSON.parse(
 document.getElementById('course-id').textContent
);
 const url = 'ws://' + window.location.host +
 '/ws/chat/room/' + courseId + '/';
 const chatSocket = new WebSocket(url);

 chatSocket.onmessage = function(event) {
 const data = JSON.parse(event.data);
 const chat = document.getElementById('chat');
 chat.innerHTML += '<div class="message">' +
 data.message + '</div>';
 chat.scrollTop = chat.scrollHeight;
 };
 chatSocket.onclose = function(event) {
 console.error('Chat socket closed unexpectedly')
 };
 const input = document.getElementById('chat-messag
 const submitButton = document.getElementById('chat
 submitButton.addEventListener('click', function(ev
 const message = input.value;
 if(message) {
 // send message in JSON format
 chatSocket.send(JSON.stringify({'message': mes
 // clear input
 input.value = '';
 input.focus();
 }
 });
 input.addEventListener('keypress', function(event)
 if (event.key === 'Enter') {
 // cancel the default action, if needed
 event.preventDefault();
 // trigger click event on button
 submitButton.click();
 }
 });

Open the URL http://127.0.0.1:8000/chat/room/1/ in your
browser, replacing 1 with the id of an existing course in the
database. With a logged-in user who is enrolled on the course, write
some text in the input field and click the SEND bu�on or press the
Enter key.

You will see that your message appears in the chat log:

Figure 16.5: The chat room page, including messages sent through the WebSocket

Great! The message has been sent through the WebSocket and the
ChatConsumer consumer has received the message and has sent it

 input.focus();
{% endblock %}

back through the WebSocket. The chatSocket client has received a
message event and the onmessage function has been fired, adding
the message to the chat log.

You have implemented the functionality with a WebSocket
consumer and a WebSocket client to establish client/server
communication and can send or receive events. However, the chat
server is not able to broadcast messages to other clients. If you open
a second browser tab and enter a message, the message will not
appear on the first tab. In order to build communication between
consumers, you have to enable a channel layer.

Enabling a channel layer
Channel layers allow you to communicate between different
instances of an application. A channel layer is the transport
mechanism that allows multiple consumer instances to communicate
with each other and with other parts of Django.

In your chat server, you plan to have multiple instances of the
ChatConsumer consumer for the same course chat room. Each
student who joins the chat room will instantiate the WebSocket client
in their browser, and that will open a connection with an instance of
the WebSocket consumer. You need a common channel layer to
distribute messages between consumers.

Channels and groups
Channel layers provide two abstractions to manage
communications: channels and groups:

Channel: You can think of a channel as an inbox where
messages can be sent to or as a task queue. Each channel has a
name. Messages are sent to a channel by anyone who knows the
channel name and then given to consumers listening on that
channel.
Group: Multiple channels can be grouped into a group. Each
group has a name. A channel can be added or removed from a
group by anyone who knows the group name. Using the group
name, you can also send a message to all channels in the group.

You will work with channel groups to implement the chat server. By
creating a channel group for each course chat room, the
ChatConsumer instances will be able to communicate with each
other.

Setting up a channel layer with Redis
Redis is the preferred option for a channel layer, though Channels
has support for other types of channel layers. Redis works as the
communication store for the channel layer. Remember that you
already used Redis in Chapter 7, Tracking User Actions, Chapter 10,
Extending Your Shop, and Chapter 14, Rendering and Caching Content.

If you haven’t installed Redis yet, you can find installation
instructions in Chapter 7, Tracking User Actions.

To use Redis as a channel layer, you have to install the channels-
redis package. Install channels-redis in your virtual
environment with the following command:

pip install channels-redis==3.4.1

Edit the settings.py file of the educa project and add the
following code to it:

The CHANNEL_LAYERS se�ing defines the configuration for the
channel layers available to the project. You define a default channel
layer using the RedisChannelLayer backend provided by
channels-redis and specify the host 127.0.0.1 and the port
6379 , on which Redis is running.

Let’s try the channel layer. Initialize the Redis Docker container
using the following command:

If you want to run the command in the background (in detached
mode) you can use the -d option.

CHANNEL_LAYERS = {
 'default': {
 'BACKEND': 'channels_redis.core.RedisChannel
 'CONFIG': {
 'hosts': [('127.0.0.1', 6379)],
 },
 },
}

docker run -it --rm --name redis -p 6379:6379 redis

Open the Django shell using the following command from the
project directory:

python manage.py shell

To verify that the channel layer can communicate with Redis, write
the following code to send a message to a test channel named
test_channel and receive it back:

You should get the following output:

{'message': 'hello'}

In the previous code, you send a message to a test channel through
the channel layer, and then you retrieve it from the channel layer.
The channel layer is communicating successfully with Redis.

Updating the consumer to broadcast
messages

>>> import channels.layers
>>> from asgiref.sync import async_to_sync
>>> channel_layer = channels.layers.get_channel_laye
>>> async_to_sync(channel_layer.send)('test_channel
>>> async_to_sync(channel_layer.receive)('test_chann

Let’s edit the ChatConsumer consumer to use the channel layer. You
will use a channel group for each course chat room. Therefore, you
will use the course id to build the group name. ChatConsumer
instances will know the group name and will be able to
communicate with each other.

Edit the consumers.py file of the chat application, import the
async_to_sync() function, and modify the connect() method of
the ChatConsumer class, as follows:

In this code, you import the async_to_sync() helper function to
wrap calls to asynchronous channel layer methods. ChatConsumer

import json
from channels.generic.websocket import WebsocketCons
from asgiref.sync import async_to_sync
class ChatConsumer(WebsocketConsumer):
 def connect(self):
 self.id = self.scope['url_route']['kwargs'][
 self.room_group_name = f'chat_{self.id}'
 # join room group
 async_to_sync(self.channel_layer.group_add)(
 self.room_group_name,
 self.channel_name
)
 # accept connection
 self.accept()
 # ...

is a synchronous WebsocketConsumer consumer, but it needs to call
asynchronous methods of the channel layer.

In the new connect() method, you perform the following tasks:

1. You retrieve the course id from the scope to know the course
that the chat room is associated with. You access
self.scope['url_route']['kwargs ']['course_id'] to
retrieve the course_id parameter from the URL. Every
consumer has a scope with information about its connection,
arguments passed by the URL, and the authenticated user, if
any.

2. You build the group name with the id of the course that the
group corresponds to. Remember that you will have a channel
group for each course chat room. You store the group name in
the room_group_name a�ribute of the consumer.

3. You join the group by adding the current channel to the group.
You obtain the channel name from the channel_name a�ribute
of the consumer. You use the group_add method of the channel
layer to add the channel to the group. You use the
async_to_sync() wrapper to use the channel layer
asynchronous method.

4. You keep the self.accept() call to accept the WebSocket
connection.

When the ChatConsumer consumer receives a new WebSocket
connection, it adds the channel to the group associated with the
course in its scope. The consumer is now able to receive any
messages sent to the group.

In the same consumers.py file, modify the disconnect() method
of the ChatConsumer class, as follows:

When the connection is closed, you call the group_discard()
method of the channel layer to leave the group. You use the
async_to_sync() wrapper to use the channel layer asynchronous
method.

In the same consumers.py file, modify the receive() method of
the ChatConsumer class, as follows:

 class ChatConsumer(WebsocketConsumer):
 # ...
 def disconnect(self, close_code):
 # leave room group
 async_to_sync(self.channel_layer.group_disca
 self.room_group_name,
 self.channel_name
)
 # ...

class ChatConsumer(WebsocketConsumer):
 # ...
 # receive message from WebSocket
 def receive(self, text_data):
 text_data_json = json.loads(text_data)
 message = text_data_json['message']
 # send message to room group
 async_to_sync(self.channel_layer.group_send)

When you receive a message from the WebSocket connection,
instead of sending the message to the associated channel, you send
the message to the group. You do this by calling the group_send()
method of the channel layer. You use the async_to_sync()
wrapper to use the channel layer asynchronous method. You pass
the following information in the event sent to the group:

type : The event type. This is a special key that corresponds to
the name of the method that should be invoked on consumers
that receive the event. You can implement a method in the
consumer named the same as the message type so that it gets
executed every time a message with that specific type is
received.
message : The actual message you are sending.

In the same consumers.py file, add a new chat_message()
method in the ChatConsumer class, as follows:

class ChatConsumer(WebsocketConsumer):
 # ...
 # receive message from room group
 def chat_message(self, event):

 self.room_group_name,
 {
 'type': 'chat_message',
 'message': message,
 }
)

 # send message to WebSocket
 self.send(text_data=json.dumps(event))

You name this method chat_message() to match the type key that
is sent to the channel group when a message is received from the
WebSocket. When a message with type chat_message is sent to the
group, all consumers subscribed to the group will receive the
message and will execute the chat_message() method. In the
chat_message() method, you send the event message received to
the WebSocket.

The complete consumers.py file should now look like this:

import json
from channels.generic.websocket import WebsocketCons
from asgiref.sync import async_to_sync
class ChatConsumer(WebsocketConsumer):
 def connect(self):
 self.id = self.scope['url_route']['kwargs'][
 self.room_group_name = f'chat_{self.id}'
 # join room group
 async_to_sync(self.channel_layer.group_add)(
 self.room_group_name,
 self.channel_name
)
 # accept connection
 self.accept()
 def disconnect(self, close_code):
 # leave room group
 async_to_sync(self.channel_layer.group_disca

You have implemented a channel layer in ChatConsumer , allowing
consumers to broadcast messages and communicate with each other.

Run the development server with the following command:

python manage.py runserver

Open the URL http://127.0.0.1:8000/chat/room/1/ in your
browser, replacing 1 with the id of an existing course in the
database. Write a message and send it. Then, open a second browser

 self.room_group_name,
 self.channel_name
)
 # receive message from WebSocket
 def receive(self, text_data):
 text_data_json = json.loads(text_data)
 message = text_data_json['message']
 # send message to room group
 async_to_sync(self.channel_layer.group_send)
 self.room_group_name,
 {
 'type': 'chat_message',
 'message': message,
 }
)
 # receive message from room group
 def chat_message(self, event):
 # send message to WebSocket
 self.send(text_data=json.dumps(event))

window and access the same URL. Send a message from each
browser window.

The result should look like this:

Figure 16.6: The chat room page with messages sent from different browser windows

You will see that the first message is only displayed in the first
browser window. When you open a second browser window,
messages sent in any of the browser windows are displayed in both
of them. When you open a new browser window and access the chat
room URL, a new WebSocket connection is established between the
JavaScript WebSocket client in the browser and the WebSocket

consumer in the server. Each channel gets added to the group
associated with the course ID and passed through the URL to the
consumer. Messages are sent to the group and received by all
consumers.

Adding context to the messages
Now that messages can be exchanged between all users in a chat
room, you probably want to display who sent which message and
when it was sent. Let’s add some context to the messages.

Edit the consumers.py file of the chat application and implement
the following changes:

import json
from channels.generic.websocket import WebsocketCons
from asgiref.sync import async_to_sync
from django.utils import timezone
class ChatConsumer(WebsocketConsumer):
 def connect(self):
 self.user = self.scope['user']
 self.id = self.scope['url_route']['kwargs'][
 self.room_group_name = f'chat_{self.id}'
 # join room group
 async_to_sync(self.channel_layer.group_add)(
 self.room_group_name,
 self.channel_name
)
 # accept connection
 self.accept()
 def disconnect(self, close_code):

You now import the timezone module provided by Django. In the
connect() method of the consumer, you retrieve the current user
from the scope with self.scope['user'] and store them in a new
user a�ribute of the consumer. When the consumer receives a
message through the WebSocket, it gets the current time using

 # leave room group
 async_to_sync(self.channel_layer.group_disca
 self.room_group_name,
 self.channel_name
)
 # receive message from WebSocket
 def receive(self, text_data):
 text_data_json = json.loads(text_data)
 message = text_data_json['message']
 now = timezone.now()
 # send message to room group
 async_to_sync(self.channel_layer.group_send)
 self.room_group_name,
 {
 'type': 'chat_message',
 'message': message,
 'user': self.user.username,
 'datetime': now.isoformat(),
 }
)
 # receive message from room group
 def chat_message(self, event):
 # send message to WebSocket
 self.send(text_data=json.dumps(event))

timezone.now() and passes the current user and datetime in ISO
8601 format along with the message in the event sent to the channel
group.

Edit the chat/room.xhtml template of the chat application and
add the following line highlighted in bold to the include_js block:

Using the json_script template, you safely print the username of
the request user to use it with JavaScript.

In the domready block of the chat/room.xhtml template, add the
following lines highlighted in bold:

{% block include_js %}
 {{ course.id|json_script:"course-id" }}
 {{ request.user.username|json_script:"request-user
{% endblock %}

{% block domready %}
 const courseId = JSON.parse(
 document.getElementById('course-id').textContent
);
 const requestUser = JSON.parse(
 document.getElementById('request-user').textCont
);
 # ...
{% endblock %}

In the new code, you safely parse the data of the element with the ID
request-user and store it in the requestUser constant.

Then, in the domready block, find the following lines:

const data = JSON.parse(e.data);
const chat = document.getElementById('chat');
chat.innerHTML += '<div class="message">' +
 data.message + '</div>';
chat.scrollTop = chat.scrollHeight;

Replace those lines with the following code:

In this code, you implement the following changes:

1. You convert the datetime received in the message to a
JavaScript Date object and format it with a specific locale.

const data = JSON.parse(e.data);
const chat = document.getElementById('chat');
const dateOptions = {hour: 'numeric', minute: 'numer
const datetime = new Date(data.datetime).toLocaleStr
const isMe = data.user === requestUser;
const source = isMe ? 'me' : 'other';
const name = isMe ? 'Me' : data.user;
chat.innerHTML += '<div class="message ' + source +
 '' + name + ' ' +
 '' + datetime +
 data.message + '</div>';
chat.scrollTop = chat.scrollHeight;

2. You compare the username received in the message with two
different constants as helpers to identify the user.

3. The constant source gets the value me if the user sending the
message is the current user, or other otherwise.

4. The constant name gets the value Me if the user sending the
message is the current user or the name of the user sending the
message otherwise. You use it to display the name of the user
sending the message.

5. You use the source value as a class of the main <div>
message element to differentiate messages sent by the current
user from messages sent by others. Different CSS styles are
applied based on the class a�ribute. These CSS styles are
declared in the css/base.css static file.

6. You use the username and the datetime in the message that
you append to the chat log.

Open the URL http://127.0.0.1:8000/chat/room/1/ in your
browser, replacing 1 with the id of an existing course in the
database. With a logged-in user who is enrolled on the course, write
a message and send it.

Then, open a second browser window in incognito mode to prevent
the use of the same session. Log in with a different user, also
enrolled on the same course, and send a message.

You will be able to exchange messages using the two different users
and see the user and time, with a clear distinction between messages
sent by the user and messages sent by others. The conversation
between two users should look similar to the following one:

Figure 16.7: The chat room page with messages from two different user sessions

Great! You have built a functional real-time chat application using
Channels. Next, you will learn how to improve the chat consumer by
making it fully asynchronous.

Modifying the consumer to be fully
asynchronous
The ChatConsumer you have implemented inherits from the base
WebsocketConsumer class, which is synchronous. Synchronous

consumers are convenient for accessing Django models and calling
regular synchronous I/O functions. However, asynchronous
consumers perform be�er, since they don’t require additional
threads when handling requests. Since you are using the
asynchronous channel layer functions, you can easily rewrite the
ChatConsumer class to be asynchronous.

Edit the consumers.py file of the chat application and implement
the following changes:

import json
from channels.generic.websocket import AsyncWebsocke
from asgiref.sync import async_to_sync
from django.utils import timezone
class ChatConsumer(AsyncWebsocketConsumer):
 async def connect(self):
 self.user = self.scope['user']
 self.id = self.scope['url_route']['kwargs'][
 self.room_group_name = 'chat_%s' % self.id
 # join room group
 await self.channel_layer.group_add(
 self.room_group_name,
 self.channel_name
)
 # accept connection
 await self.accept()
 async def disconnect(self, close_code):
 # leave room group
 await self.channel_layer.group_discard(
 self.room_group_name,
 self.channel_name

You have implemented the following changes:

1. The ChatConsumer consumer now inherits from the
AsyncWebsocketConsumer class to implement asynchronous
calls

2. You have changed the definition of all methods from def to
async def

3. You use await to call asynchronous functions that perform I/O
operations

)
 # receive message from WebSocket
 async def receive(self, text_data):
 text_data_json = json.loads(text_data)
 message = text_data_json['message']
 now = timezone.now()
 # send message to room group
 await self.channel_layer.group_send(
 self.room_group_name,
 {
 'type': 'chat_message',
 'message': message,
 'user': self.user.username,
 'datetime': now.isoformat(),
 }
)
 # receive message from room group
 async def chat_message(self, event):
 # send message to WebSocket
 await self.send(text_data=json.dumps(event))

4. You no longer use the async_to_sync() helper function when
calling methods on the channel layer

Open the URL http://127.0.0.1:8000/chat/room/1/ with two
different browser windows again and verify that the chat server still
works. The chat server is now fully asynchronous!

Integrating the chat application
with existing views
The chat server is now fully implemented, and students enrolled on
a course can communicate with each other. Let’s add a link for
students to join the chat room for each course.

Edit the students/course/detail.xhtml template of the
students application and add the following <h3> HTML element
code at the bo�om of the <div class="contents"> element:

Open the browser and access any course that the student is enrolled
on to view the course contents. The sidebar will now contain a

<div class="contents">
 ...
 <h3>
 <a href="{% url "chat:course_chat_room" object.i
 Course chat room

 </h3>
</div>

Course chat room link that points to the course chat room view. If
you click on it, you will enter the chat room:

Figure 16.8: The course detail page, including a link to the course chat room

Congratulations! You successfully built your first asynchronous
application using Django Channels.

Additional resources
The following resources provide additional information related to
the topics covered in this chapter:

Source code for this chapter –
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter16

Introduction to ASGI –
https://asgi.readthedocs.io/en/latest/introduction.
xhtml

Django support for asynchronous views –
https://docs.djangoproject.com/en/4.1/topics/async/

Django support for asynchronous class-based views –
https://docs.djangoproject.com/en/4.1/topics/class-
based-views/#async-class-based-views

Django Channels documentation –
https://channels.readthedocs.io/

Deploying Django with ASGI –
https://docs.djangoproject.com/en/4.1/howto/deploym
ent/asgi/

json_script template filter usage –
https://docs.djangoproject.com/en/4.1/ref/templates
/builtins/#json-script

Summary
In this chapter, you learned how to create a chat server using
Channels. You implemented a WebSocket consumer and client. You

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter16
https://asgi.readthedocs.io/en/latest/introduction.xhtml
https://docs.djangoproject.com/en/4.1/topics/async/
https://docs.djangoproject.com/en/4.1/topics/class-based-views/#async-class-based-views
https://channels.readthedocs.io/
https://docs.djangoproject.com/en/4.1/howto/deployment/asgi/
https://docs.djangoproject.com/en/4.1/ref/templates/builtins/#json-script

also enabled communication between consumers using a channel
layer with Redis and modified the consumer to be fully
asynchronous.

The next chapter will teach you how to build a production
environment for your Django project using NGINX, uWSGI, and
Daphne with Docker Compose. You will also learn how to
implement custom middleware and create custom management
commands.

17

Going Live

In the previous chapter, you built a real-time chat server for students
using Django Channels. Now that you have created a fully
functional e-learning platform, you need to set up a production
environment so that it can be accessed over the internet. Until now,
you have been working in a development environment, using the
Django development server to run your site. In this chapter, you will
learn how to set up a production environment that is able to serve
your Django project in a secure and efficient manner.

This chapter will cover the following topics:

Configuring Django se�ings for multiple environments
Using Docker Compose to run multiple services
Se�ing up a web server with uWSGI and Django
Serving PostgreSQL and Redis with Docker Compose
Using the Django system check framework
Serving NGINX with Docker
Serving static assets through NGINX
Securing connections through TLS/SSL
Using the Daphne ASGI server for Django Channels
Creating a custom Django middleware
Implementing custom Django management commands

The source code for this chapter can be found at
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter17.

All Python modules used in this chapter are included in the
requirements.txt file in the source code that comes along with
this chapter. You can follow the instructions to install each Python
module below or you can install all requirements at once with the
command pip install -r requirements.txt .

Creating a production environment
It’s time to deploy your Django project in a production environment.
You will start by configuring Django se�ings for multiple
environments, and then you will set up a production environment.

Managing settings for multiple
environments
In real-world projects, you will have to deal with multiple
environments. You will usually have at least a local environment for
development and a production environment for serving your
application. You could have other environments as well, such as
testing or staging environments.

Some project se�ings will be common to all environments, but others
will be specific to each environment. Usually, you will use a base file
that defines common se�ings, and a se�ings file per environment
that overrides any necessary se�ings and defines additional ones.

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter17

We will manage the following environments:

local : The local environment to run the project on your
machine.
prod : The environment for deploying your project on a
production server.

Create a settings/ directory next to the settings.py file of the
educa project. Rename the settings.py file to base.py and move
it into the new settings/ directory.

Create the following additional files inside the settings/ folder so
that the new directory looks as follows:

settings/
 __init__.py
 base.py
 local.py
 prod.py

These files are as follows:

base.py : The base se�ings file that contains common se�ings
(previously settings.py)
local.py : Custom se�ings for your local environment
prod.py : Custom se�ings for the production environment

You have moved the se�ings files to a directory one level below, so
you need to update the BASE_DIR se�ing in the settings/base.py
file to point to the main project directory.

When handling multiple environments, create a base se�ings file
and a se�ings file for each environment. Environment se�ings files
should inherit the common se�ings and override environment-
specific se�ings.

Edit the settings/base.py file and replace the following line:

BASE_DIR = Path(__file__).resolve().parent.parent

with the following one:

You point to one directory above by adding .parent to the
BASE_DIR path. Let’s configure the se�ings for the local
environment.

Local environment settings
Instead of using a default configuration for the DEBUG and
DATABASES se�ings, you will define them for each environment
explicitly. These se�ings will be environment specific. Edit the
educa/settings/local.py file and add the following lines:

from .base import *
DEBUG = True
DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',

BASE_DIR = Path(__file__).resolve().parent.parent.pa

 'NAME': BASE_DIR / 'db.sqlite3',
 }
}

This is the se�ings file for your local environment. In this file, you
import all se�ings defined in the base.py file, and you define the
DEBUG and DATABASES se�ings for this environment. The DEBUG
and DATABASES se�ings remain the same as you have been using for
development.

Now remove the DATABASES and DEBUG se�ings from the base.py
se�ings file.

Django management commands won’t automatically detect the
se�ings file to use because the project se�ings file is not the default
settings.py file. When running management commands, you
need to indicate the se�ings module to use by adding a --settings
option, as follows:

Next, we are going to validate the project and the local environment
configuration.

Running the local environment
Let’s run the local environment using the new se�ings structure.
Make sure Redis is running or start the Redis Docker container in a
shell with the following command:

python manage.py runserver --settings=educa.settings

Run the following management command in another shell, from the
project directory:

Open http://127.0.0.1:8000/ in your browser and check that
the site loads correctly. You are now serving your site using the
se�ings for the local environment.

If don’t want to pass the --settings option every time you run a
management command, you can define the
DJANGO_SETTINGS_MODULE environment variable. Django will use it
to identify the se�ings module to use. If you are using Linux or
macOS, you can define the environment variable by executing the
following command in the shell:

export DJANGO_SETTINGS_MODULE=educa.settings.local

If you are using Windows, you can execute the following command
in the shell:

set DJANGO_SETTINGS_MODULE=educa.settings.local

Any management command you execute after will use the se�ings
defined in the DJANGO_SETTINGS_MODULE environment variable.

docker run -it --rm --name redis -p 6379:6379 redis

python manage.py runserver --settings=educa.settings

Stop the Django development server from the shell by pressing the
keys Ctrl + C and stop the Redis Docker container from the shell by
also pressing the keys Ctrl + C.

The local environment works well. Let’s prepare the se�ings for the
production environment.

Production environment settings
Let’s start by adding initial se�ings for the production environment.
Edit the educa/settings/prod.py file and make it look as follows:

from .base import *
DEBUG = False
ADMINS = [
 ('Antonio M', 'email@mydomain.com'),
]
ALLOWED_HOSTS = ['*']
DATABASES = {
 'default': {
 }
}

These are the se�ings for the production environment:

DEBUG : Se�ing DEBUG to False is necessary for any production
environment. Failing to do so will result in the traceback
information and sensitive configuration data being exposed to
everyone.
ADMINS : When DEBUG is False and a view raises an exception,
all information will be sent by email to the people listed in the

ADMINS se�ing. Make sure that you replace the name/email
tuple with your own information.
ALLOWED_HOSTS : For security reasons, Django will only allow
the hosts included in this list to serve the project. For now, you
allow all hosts by using the asterisk symbol, * . You will limit
the hosts that can be used for serving the project later.
DATABASES : You keep default database se�ings empty
because you will configure the production database later.

Over the next sections of this chapter, you will complete the se�ings
file for your production environment.

You have successfully organized se�ings for handling multiple
environments. Now you will build a complete production
environment by se�ing up different services with Docker.

Using Docker Compose
Docker allows you to build, deploy, and run application containers.
A Docker container combines application source code with
operating system libraries and dependencies required to run the
application. By using application containers, you can improve your
application portability. You are already using a Redis Docker image
to serve Redis in your local environment. This Docker image
contains everything needed to run Redis and allows you to run it
seamlessly on your machine. For the production environment, you
will use Docker Compose to build and run different Docker
containers.

Docker Compose is a tool for defining and running multi-container
applications. You can create a configuration file to define the
different services and use a single command to start all services from
your configuration. You can find information about Docker
Compose at https://docs.docker.com/compose/.

For the production environment, you will create a distributed
application that runs across multiple Docker containers. Each
Docker container will run a different service. You will initially define
the following three services and you will add additional services in
the next sections:

Web service: A web server to serve the Django project
Database service: A database service to run PostgreSQL
Cache service: A service to run Redis

Let’s start by installing Docker Compose.

Installing Docker Compose
You can run Docker Compose on macOS, 64-bit Linux, and
Windows. The fastest way to install Docker Compose is by installing
Docker Desktop. The installation includes Docker Engine, the
command-line interface, and the Docker Compose plugin.

Install Docker Desktop by following the instructions at
https://docs.docker.com/compose/install/compose-
desktop/.

Open the Docker Desktop application and click on Containers. It
will look as follows:

https://docs.docker.com/compose/
https://docs.docker.com/compose/install/compose-desktop/

Figure 17.1: The Docker Desktop interface

After installing Docker Compose, you will need to create a Docker
image for your Django project.

Creating a Dockerfile
You need to create a Docker image to run the Django project. A
Dockerfile is a text file that contains the commands for Docker to
assemble a Docker image. You will prepare a Dockerfile with the
commands to build the Docker image for the Django project.

Next to the educa project directory, create a new file and name it
Dockerfile . Add the following code to the new file:

Pull official base Python Docker image
FROM python:3.10.6
Set environment variables
ENV PYTHONDONTWRITEBYTECODE=1
ENV PYTHONUNBUFFERED=1
Set work directory
WORKDIR /code
Install dependencies
RUN pip install --upgrade pip
COPY requirements.txt /code/
RUN pip install -r requirements.txt
Copy the Django project
COPY . /code/

This code performs the following tasks:

1. The Python 3.10.6 parent Docker image is used. You can find the
official Python Docker image at
https://hub.docker.com/_/python.

2. The following environment variables are set:

a. PYTHONDONTWRITEBYTECODE : Prevents Python from
writing out pyc files.

b. PYTHONUNBUFFERED : Ensures that the Python stdout and
stderr streams are sent straight to the terminal without
first being buffered.

3. The WORKDIR command is used to define the working directory
of the image.

4. The pip package of the image is upgraded.

https://hub.docker.com/_/python

5. The requirements.txt file is copied to the code directory of
the parent Python image.

6. The Python packages in requirements.txt are installed in the
image using pip .

7. The Django project source code is copied from the local
directory to the code directory of the image.

With this Dockerfile , you have defined how the Docker image to
serve Django will be assembled. You can find the Dockerfile
reference at
https://docs.docker.com/engine/reference/builder/.

Adding the Python requirements
A requirements.txt file is used in the Dockerfile you created to
install all necessary Python packages for the project.

Next to the educa project directory, create a new file and name it
requirements.txt . You may have already created this file before
and copied the content for the requirements.txt file from
https://github.com/PacktPublishing/Django-4-by-
example/blob/main/Chapter17/requirements.txt. If you
haven’t done so, add the following lines to the newly created
requirements.txt file:

asgiref==3.5.2
Django~=4.1
Pillow==9.2.0
sqlparse==0.4.2
django-braces==1.15.0

https://docs.docker.com/engine/reference/builder/
https://github.com/PacktPublishing/Django-4-by-example/blob/main/Chapter17/requirements.txt

django-embed-video==1.4.4
pymemcache==3.5.2
django-debug-toolbar==3.6.0
redis==4.3.4
django-redisboard==8.3.0
djangorestframework==3.13.1
requests==2.28.1
channels==3.0.5
channels-redis==3.4.1
psycopg2==2.9.3
uwsgi==2.0.20
daphne==3.0.2

In addition to the Python packages that you have installed in the
previous chapters, the requirements.txt includes the following
packages:

psycopg2 : A PostgreSQL adapter. You will use PostgreSQL for
the production environment.
uwsgi : A WSGI web server. You will configure this web server
later to serve Django in the production environment.
daphne : An ASGI web server. You will use this web server later
to serve Django Channels.

Let’s start by se�ing up the Docker application in Docker Compose.
We will create a Docker Compose file with the definition for the web
server, database, and Redis services.

Creating a Docker Compose file

To define the services that will run in different Docker containers,
we will use a Docker Compose file. The Compose file is a text file
with YAML format, defining services, networks, and data volumes
for a Docker application. YAML is a human-readable data-
serialization language. You can see an example of a YAML file at
https://yaml.org/.

Next to the educa project directory, create a new file and name it
docker-compose.yml . Add the following code to it:

In this file, you define a web service. The sections to define this
service are as follows:

build : Defines the build requirements for a service container
image. This can be a single string defining a context path, or a
detailed build definition. You provide a relative path with a
single dot . to point to the same directory where the Compose
file is located. Docker Compose will look for a Dockerfile at

services:
 web:
 build: .
 command: python /code/educa/manage.py runserver
 restart: always
 volumes:
 - .:/code
 ports:
 - "8000:8000"
 environment:
 - DJANGO_SETTINGS_MODULE=educa.settings.prod

https://yaml.org/

this location. You can read more about the build section at
https://docs.docker.com/compose/compose-file/build/.
command : Overrides the default command of the container. You
run the Django development server using the runserver
management command. The project is served on host 0.0.0.0 ,
which is the default Docker IP, on port 8000 .
restart : Defines the restart policy for the container. Using
always , the container is restarted always if it stops. This is
useful for a production environment, where you want to
minimize downtime. You can read more about the restart policy
at https://docs.docker.com/config/containers/start-
containers-automatically/.
volumes : Data in Docker containers is not permanent. Each
Docker container has a virtual filesystem that is populated with
the files of the image and that is destroyed when the container is
stopped. Volumes are the preferred method to persist data
generated and used by Docker containers. In this section, you
mount the local directory . to the /code directory of the image.
You can read more about Docker volumes at
https://docs.docker.com/storage/volumes/.
ports : Exposes container ports. Host port 8000 is mapped to
container port 8000 , on which the Django development server
is running.
environment : Defines environment variables. You set the
DJANGO_SETTINGS_MODULE environment variable to use the
production Django se�ings file educa.settings.prod .

https://docs.docker.com/compose/compose-file/build/
https://docs.docker.com/config/containers/start-containers-automatically/
https://docs.docker.com/storage/volumes/

Note that in the Docker Compose file definition, you are using the
Django development server to serve the application. The Django
development server is not suitable for production use, so you will
replace it later with a WSGI Python web server.

You can find information about the Docker Compose specification at
https://docs.docker.com/compose/compose-file/.

At this point, assuming your parent directory is named Chapter17 ,
the file structure should look as follows:

Chapter17/
 Dockerfile
 docker-compose.yml
 educa/
 manage.py
 ...
 requirements.txt

Open a shell in the parent directory, where the docker-
compose.yml file is located, and run the following command:

docker compose up

This will start the Docker app defined in the Docker Compose file.
You will see an output that includes the following lines:

chapter17-web-1 | Performing system checks...
chapter17-web-1 |
chapter17-web-1 | System check identified no issues

|

https://docs.docker.com/compose/compose-file/

The Docker container for your Django project is running!

Open http://localhost:8000/admin/ with your browser. You
should see the Django administration site login form. It should look
like Figure 17.2:

Figure 17.2: The Django administration site login form

CSS styles are not being loaded. You are using DEBUG=False , so
URL pa�erns for serving static files are not being included in the
main urls.py file of the project. Remember that the Django
development server is not suitable for serving static files. You will
configure a server for serving static files later in this chapter.

If you access any other URL of your site, you might get an HTTP
500 error because you haven’t configured a database for the
production environment yet.

chapter17-web-1 | July 19, 2022 - 15:56:28
chapter17-web-1 | Django version 4.1, using setting
chapter17-web-1 | Starting ASGI/Channels version 3
chapter17-web-1 | Quit the server with CONTROL-C.

Take a look at the Docker Desktop app. You will see the following
containers:

Figure 17.3: The chapter17 application and the web-1 container in Docker Desktop

The chapter17 Docker application is running and it has a single
container named web-1 , which is running on port 8000 . The name
for the Docker application is generated dynamically using the name
of the directory where the Docker Compose file is located, in this
case, chapter17 .

Next, you are going to add a PostgreSQL service and a Redis service
to your Docker application.

Configuring the PostgreSQL service
Throughout this book, you have mostly used the SQLite database.
SQLite is simple and quick to set up, but for a production
environment, you will need a more powerful database, such as
PostgreSQL, MySQL, or Oracle. You learned how to install
PostgreSQL in Chapter 3, Extending Your Blog Application. For the
production environment, we will use a PostgreSQL Docker image
instead. You can find information about the official PostgreSQL
Docker image at https://hub.docker.com/_/postgres.

https://hub.docker.com/_/postgres

Edit the docker-compose.yml file and add the following lines
highlighted in bold:

services:
 db:
 image: postgres:14.5
 restart: always
 volumes:
 - ./data/db:/var/lib/postgresql/data
 environment:
 - POSTGRES_DB=postgres
 - POSTGRES_USER=postgres
 - POSTGRES_PASSWORD=postgres
 web:
 build: .
 command: python /code/educa/manage.py runserver
 restart: always
 volumes:
 - .:/code
 ports:
 - "8000:8000"
 environment:
 - DJANGO_SETTINGS_MODULE=educa.settings.prod
 - POSTGRES_DB=postgres
 - POSTGRES_USER=postgres
 - POSTGRES_PASSWORD=postgres
 depends_on:
 - db

With these changes, you define a service named db with the
following subsections:

image : The service uses the base postgres Docker image.
restart : The restart policy is set to always .
volumes : You mount the ./data/db directory to the image
directory /var/lib/postgresql/data to persist the database
so that data stored in the database is maintained after the
Docker application is stopped. This will create the local
data/db/ path.
environment : You use the POSTGRES_DB (database name),
POSTGRES_USER , and POSTGRES_PASSWORD variables with
default values.

The definition for the web service now includes the PostgreSQL
environment variables for Django. You create a service dependency
using depends_on so that the web service is started after the db
service. This will guarantee the order of the container initialization,
but it won’t guarantee that PostgreSQL is fully initiated before the
Django web server is started. To solve this, you need to use a script
that will wait on the availability of the database host and its TCP
port. Docker recommends using the wait-for-it tool to control
container initialization.

Download the wait-for-it.sh Bash script from
https://github.com/vishnubob/wait-for-
it/blob/master/wait-for-it.sh and save the file next to the
docker-compose.yml file. Then edit the docker-compose.yml file
and modify the web service definition as follows. New code is
highlighted in bold:

https://github.com/vishnubob/wait-for-it/blob/master/wait-for-it.sh

In this service definition, you use the wait-for-it.sh Bash script
to wait for the db host to be ready and accepting connections on port
5432 , the default port for PostgreSQL, before starting the Django
development server. You can read more about the service startup
order in Compose at
https://docs.docker.com/compose/startup-order/.

Let’s edit Django se�ings. Edit the educa/settings/prod.py file
and add the following code highlighted in bold:

web:
 build: .
 command: ["./wait-for-it.sh", "db:5432", "--",
 "python", "/code/educa/manage.py", "runs
 "0.0.0.0:8000"]
 restart: always
 volumes:
 - .:/code
 environment:
 - DJANGO_SETTINGS_MODULE=educa.settings.prod
 - POSTGRES_DB=postgres
 - POSTGRES_USER=postgres
 - POSTGRES_PASSWORD=postgres
 depends_on:
 - db

import os
from .base import *
DEBUG = False

https://docs.docker.com/compose/startup-order/

In the production se�ings file, you use the following se�ings:

ENGINE : You use the Django database backend for PostgreSQL.
NAME , USER , and PASSWORD : You use os.environ.get() to
retrieve the environment variables POSTGRES_DB (database
name), POSTGRES_USER , and POSTGRES_PASSWORD . You have
set these environment variables in the Docker Compose file.
HOST : You use db , which is the container hostname for the
database service defined in the Docker Compose file. A
container hostname defaults to the container’s ID in Docker.
That’s why you use the db hostname.
PORT : You use the value 5432 , which is the default port for
PostgreSQL.

ADMINS = [
 ('Antonio M', 'email@mydomain.com'),
]
ALLOWED_HOSTS = ['*']
DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql',
 'NAME': os.environ.get('POSTGRES_DB'),
 'USER': os.environ.get('POSTGRES_USER'),
 'PASSWORD': os.environ.get('POSTGRES_PASSWOR
 'HOST': 'db',
 'PORT': 5432,
 }
}

Stop the Docker application from the shell by pressing the keys Ctrl
+ C or using the stop bu�on in the Docker Desktop app. Then start
Compose again with the command:

docker compose up

The first execution after adding the db service to the Docker
Compose file will take longer because PostgreSQL needs to initialize
the database. The output will contain the following two lines:

Both the PostgreSQL database and the Django application are ready.
The production database is empty, so you need to apply database
migrations.

Applying database migrations and
creating a superuser
Open a different shell in the parent directory, where the docker-
compose.yml file is located, and run the following command:

chapter17-db-1 | database system is ready to accep
...
chapter17-web-1 | Starting ASGI/Channels version 3

docker compose exec web python /code/educa/manage.py

The command docker compose exec allows you to execute
commands in the container. You use this command to execute the
migrate management command in the web Docker container.

Finally, create a superuser with the following command:

Migrations have been applied to the database and you have created
a superuser. You can access http://localhost:8000/admin/ with
the superuser credentials. CSS styles still won’t load because you
haven’t configured serving static files yet.

You have defined services to serve Django and PostgreSQL using
Docker Compose. Next, you will add a service to serve Redis in the
production environment.

Configuring the Redis service
Let’s add a Redis service to the Docker Compose file. For this
purpose, you will use the official Redis Docker image. You can find
information about the official Redis Docker image at
https://hub.docker.com/_/redis.

Edit the docker-compose.yml file and add the following lines
highlighted in bold:

services:
 db:
 # ...

docker compose exec web python /code/educa/manage.py

https://hub.docker.com/_/redis

 cache:
 image: redis:7.0.4
 restart: always
 volumes:
 - ./data/cache:/data
 web:
 # ...
 depends_on:
 - db
 - cache

In the previous code, you define the cache service with the
following subsections:

image : The service uses the base redis Docker image.
restart : The restart policy is set to always .
volumes : You mount the ./data/cache directory to the image
directory /data where any Redis writes will be persisted. This
will create the local data/cache/ path.

In the web service definition, you add the cache service as a
dependency, so that the web service is started after the cache
service. The Redis server initializes fast, so you don’t need to use the
wait-for-it tool in this case.

Edit the educa/settings/prod.py file and add the following lines:

REDIS_URL = 'redis://cache:6379'
CACHES['default']['LOCATION'] = REDIS_URL
CHANNEL_LAYERS['default']['CONFIG']['hosts'] = [REDI

In these se�ings, you use the cache hostname that is automatically
generated by Docker Compose using the name of the cache service
and port 6379 used by Redis. You modify the Django CACHE se�ing
and the CHANNEL_LAYERS se�ing used by Channels to use the
production Redis URL.

Stop the Docker application from the shell by pressing the keys Ctrl
+ C or using the stop bu�on in the Docker Desktop app. Then start
Compose again with the command:

docker compose up

Open the Docker Desktop application. You should see now the
chapter17 Docker application running a container for each service
defined in the Docker Compose file: db , cache , and web :

Figure 17.4: The chapter17 application with the db-1, web-1, and cache-1 containers in Docker
Desktop

You are still serving Django with the Django development server,
which is not suitable for production use. Let’s replace it with the
WSGI Python web server.

Serving Django through WSGI and
NGINX
Django’s primary deployment platform is WSGI. WSGI stands for
Web Server Gateway Interface, and it is the standard for serving
Python applications on the web.

When you generate a new project using the startproject
command, Django creates a wsgi.py file inside your project
directory. This file contains a WSGI application callable, which is an
access point to your application.

WSGI is used for both running your project with the Django
development server and deploying your application with the server
of your choice in a production environment. You can learn more
about WSGI at https://wsgi.readthedocs.io/en/latest/.

Using uWSGI
Throughout this book, you have been using the Django development
server to run projects in your local environment. However, you need
a standard web server for deploying your application in a
production environment.

uWSGI is an extremely fast Python application server. It
communicates with your Python application using the WSGI

https://wsgi.readthedocs.io/en/latest/

specification. uWSGI translates web requests into a format that your
Django project can process.

Let’s configure uWSGI to serve the Django project. You already
added uwsgi==2.0.20 to the requirements.txt file of the project,
so uWSGI is already being installed in the Docker image of the web
service.

Edit the docker-compose.yml file and modify the web service
definition as follows. New code is highlighted in bold:

Make sure to remove the ports section. uWSGI will be reachable
with a socket, so you don’t need to expose a port in the container.

web:
 build: .
 command: ["./wait-for-it.sh", "db:5432", "--",
 "uwsgi", "--ini", "/code/config/uwsgi/
 restart: always
 volumes:
 - .:/code
 environment:
 - DJANGO_SETTINGS_MODULE=educa.settings.prod
 - POSTGRES_DB=postgres
 - POSTGRES_USER=postgres
 - POSTGRES_PASSWORD=postgres
 depends_on:
 - db
 - cache

The new command for the image runs uwsgi passing the
configuration file /code/config/uwsgi/uwsgi.ini to it. Let’s
create the configuration file for uWSGI.

Configuring uWSGI
uWSGI allows you to define a custom configuration in a .ini file.
Next to the docker-compose.yml file, create the file path
config/uwsgi/uwsgi.ini . Assuming your parent directory is
named Chapter17 , the file structure should look as follows:

Chapter17/
 config/
 uwsgi/
 uwsgi.ini
 Dockerfile
 docker-compose.yml
 educa/
 manage.py
 ...
 requirements.txt

Edit the config/uwsgi/uwsgi.ini file and add the following code
to it:

[uwsgi]
socket=/code/educa/uwsgi_app.sock
chdir = /code/educa/
module=educa.wsgi:application

master=true
chmod-socket=666
uid=www-data
gid=www-data
vacuum=true

In the uwsgi.ini file, you define the following options:

socket : The UNIX/TCP socket to bind the server.
chdir : The path to your project directory, so that uWSGI
changes to that directory before loading the Python application.
module : The WSGI module to use. You set this to the
application callable contained in the wsgi module of your
project.
master : Enable the master process.
chmod-socket : The file permissions to apply to the socket file.
In this case, you use 666 so that NGINX can read/write the
socket.
uid : The user ID of the process once it’s started.
gid : The group ID of the process once it’s started.
vacuum : Using true instructs uWSGI to clean up any
temporary files or UNIX sockets it creates.

The socket option is intended for communication with some third-
party router, such as NGINX. You are going to run uWSGI using a
socket and you are going to configure NGINX as your web server,
which will communicate with uWSGI through the socket.

You can find the list of available uWSGI options at https://uwsgi-
docs.readthedocs.io/en/latest/Options.xhtml.

https://uwsgi-docs.readthedocs.io/en/latest/Options.xhtml

You will not be able to access your uWSGI instance from your
browser now, since it’s running through a socket. Let’s complete the
production environment.

Using NGINX
When you are serving a website, you have to serve dynamic content,
but you also need to serve static files, such as CSS style sheets,
JavaScript files, and images. While uWSGI is capable of serving static
files, it adds an unnecessary overhead to HTTP requests and
therefore, it is encouraged to set up a web server, such as NGINX,
in front of it.

NGINX is a web server focused on high concurrency, performance,
and low memory usage. NGINX also acts as a reverse proxy,
receiving HTTP and WebSocket requests and routing them to
different backends.

Generally, you will use a web server, such as NGINX, in front of
uWSGI for serving static files efficiently, and you will forward
dynamic requests to uWSGI workers. By using NGINX, you can also
apply different rules and benefit from its reverse proxy capabilities.

We will add the NGINX service to the Docker Compose file using
the official NGINX Docker image. You can find information about
the official NGINX Docker image at
https://hub.docker.com/_/nginx.

Edit the docker-compose.yml file and add the following lines
highlighted in bold:

https://hub.docker.com/_/nginx

services:
 db:
 # ...
 cache:
 # ...
 web:
 # ...
 nginx:
 image: nginx:1.23.1
 restart: always
 volumes:
 - ./config/nginx:/etc/nginx/templates
 - .:/code
 ports:
 - "80:80"

You have added the definition for the nginx service with the
following subsections:

image : The service uses the base nginx Docker image.
restart : The restart policy is set to always .
volumes : You mount the ./config/nginx volume to the
/etc/nginx/templates directory of the Docker image. This is
where NGINX will look for a default configuration template.
You also mount the local directory . to the /code directory of
the image, so that NGINX can have access to static files.
ports : You expose port 80 , which is mapped to container port
80 . This is the default port for HTTP.

Let’s configure the NGINX web server.

Configuring NGINX
Create the following file path highlighted in bold under the
config/ directory:

config/
 uwsgi/
 uwsgi.ini

nginx/

default.conf.template

Edit the file nginx/default.conf.template and add the following
code to it:

upstream for uWSGI
upstream uwsgi_app {
 server unix:/code/educa/uwsgi_app.sock;
}
server {
 listen 80;
 server_name www.educaproject.com educaproject.c
 error_log stderr warn;
 access_log /dev/stdout main;
 location / {
 include /etc/nginx/uwsgi_params;
 uwsgi_pass uwsgi_app;

This is the basic configuration for NGINX. In this configuration, you
set up an upstream named uwsgi_app , which points to the socket
created by uWSGI. You use the server block with the following
configuration:

You tell NGINX to listen on port 80 .
You set the server name to both www.educaproject.com and
educaproject.com . NGINX will serve incoming requests for
both domains.
You use stderr for the error_log directive to get error logs
wri�en to the standard error file. The second parameter
determines the logging level. You use warn to get warnings and
errors of higher severity.
You point access_log to the standard output with
/dev/stdout .
You specify that any request under the / path has to be routed
to the uwsgi_app socket to uWSGI.
You include the default uWSGI configuration parameters that
come with NGINX. These are located at
/etc/nginx/uwsgi_params .

NGINX is now configured. You can find the NGINX documentation
at https://nginx.org/en/docs/.

Stop the Docker application from the shell by pressing the keys Ctrl
+ C or using the stop bu�on in the Docker Desktop app. Then start

 }
}

https://nginx.org/en/docs/

Compose again with the command:

docker compose up

Open the URL http://localhost/ in your browser. It’s not
necessary to add a port to the URL because you are accessing the
host through the standard HTTP port 80 . You should see the course
list page with no CSS styles, like Figure 17.5:

Figure 17.5: The course list page served with NGINX and uWSGI

The following diagram shows the request/response cycle of the
production environment that you have set up:

Figure 17.6: The production environment request/response cycle

The following happens when the client browser sends an HTTP
request:

1. NGINX receives the HTTP request.
2. NGINX delegates the request to uWSGI through a socket.
3. uWSGI passes the request to Django for processing.
4. Django returns an HTTP response that is passed back to

NGINX, which in turn passes it back to the client browser.

If you check the Docker Desktop application, you should see that
there are 4 containers running:

db service running PostgreSQL
cache service running Redis
web service running uWSGI + Django
nginx service running NGINX

Let’s continue with the production environment setup. Instead of
accessing our project using localhost , we will configure the project
to use the educaproject.com hostname.

Using a hostname

You will use the educaproject.com hostname for your site. Since
you are using a sample domain name, you need to redirect it to your
local host.

If you are using Linux or macOS, edit the /etc/hosts file and add
the following line to it:

127.0.0.1 educaproject.com www.educaproject.com

If you are using Windows, edit the file
C:\Windows\System32\drivers\etc and add the same line.

By doing so, you are routing the hostnames educaproject.com and
www.educaproject.com to your local server. In a production
server, you won’t need to do this, since you will have a fixed IP
address and you will point your hostname to your server in your
domain’s DNS configuration.

Open http://educaproject.com/ in your browser. You should be
able to see your site, still without any static assets loaded. Your
production environment is almost ready.

Now you can restrict the hosts that can serve your Django project.
Edit the production se�ings file educa/settings/prod.py of your
project and change the ALLOWED_HOSTS se�ing, as follows:

Django will only serve your application if it’s running under any of
these hostnames. You can read more about the ALLOWED_HOSTS

ALLOWED_HOSTS = ['educaproject.com', 'www.educaproje

se�ing at
https://docs.djangoproject.com/en/4.1/ref/settings/#all
owed-hosts.

The production environment is almost ready. Let’s continue by
configuring NGINX to serve static files.

Serving static and media assets
uWSGI is capable of serving static files flawlessly, but it is not as fast
and effective as NGINX. For the best performance, you will use
NGINX to serve static files in your production environment. You
will set up NGINX to serve both the static files of your application
(CSS style sheets, JavaScript files, and images) and media files
uploaded by instructors for the course contents.

Edit the settings/base.py file and add the following line just
below the STATIC_URL se�ing:

STATIC_ROOT = BASE_DIR / 'static'

This is the root directory for all static files of the project. Next, you
are going to collect the static files from the different Django
applications into the common directory.

Collecting static files
Each application in your Django project may contain static files in a
static/ directory. Django provides a command to collect static files
from all applications into a single location. This simplifies the setup

https://docs.djangoproject.com/en/4.1/ref/settings/#allowed-hosts

for serving static files in production. The collectstatic command
collects the static files from all applications of the project into the
path defined with the STATIC_ROOT se�ing.

Stop the Docker application from the shell by pressing the keys Ctrl
+ C or using the stop bu�on in the Docker Desktop app. Then start
Compose again with the command:

docker compose up

Open another shell in the parent directory, where the docker-
compose.yml file is located, and run the following command:

Note that you can alternatively run the following command in the
shell, from the educa/ project directory:

Both commands will have the same effect since the base local
directory is mounted to the Docker image. Django will ask if you
want to override any existing files in the root directory. Type yes
and press Enter . You will see the following output:

171 static files copied to '/code/educa/static'.

docker compose exec web python /code/educa/manage.py

python manage.py collectstatic --settings=educa.sett

Files located under the static/ directory of each application
present in the INSTALLED_APPS se�ing have been copied to the
global /educa/static/ project directory.

Serving static files with NGINX
Edit the config/nginx/default.conf.template file and add the
following lines highlighted in bold to the server block:

server {
 # ...
 location / {
 include /etc/nginx/uwsgi_params;
 uwsgi_pass uwsgi_app;
 }
 location /static/ {
 alias /code/educa/static/;
 }
 location /media/ {
 alias /code/educa/media/;
 }
}

These directives tell NGINX to serve static files located under the
/static/ and /media/ paths directly. These paths are as follows:

/static/ : Corresponds to the path of the STATIC_URL se�ing.
The target path corresponds to the value of the STATIC_ROOT
se�ing. You use it to serve the static files of your application
from the directory mounted to the NGINX Docker image.

/media/ : Corresponds to the path of the MEDIA_URL se�ing,
and its target path corresponds to the value of the MEDIA_ROOT
se�ing. You use it to serve the media files uploaded to the
course contents from the directory mounted to the NGINX
Docker image.

The schema of the production environment now looks like this:

Figure 17.7: The production environment request/response cycle, including static files

Files under the /static/ and /media/ paths are now served by
NGINX directly, instead of being forwarded to uWSGI. Requests to
any other path are still passed by NGINX to uWSGI through the
UNIX socket.

Stop the Docker application from the shell by pressing the keys Ctrl
+ C or using the stop bu�on in the Docker Desktop app. Then start
Compose again with the command:

docker compose up

Open http://educaproject.com/ in your browser. You should
see the following screen:

Figure 17.8: The course list page served with NGINX and uWSGI

Static resources, such as CSS style sheets and images, are now
loaded correctly. HTTP requests for static files are now being served
by NGINX directly, instead of being forwarded to uWSGI.

You have successfully configured NGINX for serving static files.
Next, you are going to check your Django project to deploy it in a
production environment and you are going to serve your site under
HTTPS.

Securing your site with SSL/TLS
The Transport Layer Security (TLS) protocol is the standard for
serving websites through a secure connection. The TLS predecessor
is Secure Sockets Layer (SSL). Although SSL is now deprecated, in
multiple libraries and online documentation, you will find references

to both the terms TLS and SSL. It’s strongly encouraged that you
serve your websites over HTTPS.

In this section, you are going to check your Django project for a
production deployment and prepare the project to be served over
HTTPS. Then, you are going to configure an SSL/TLS certificate in
NGINX to serve your site securely.

Checking your project for production
Django includes a system check framework for validating your
project at any time. The check framework inspects the applications
installed in your Django project and detects common problems.
Checks are triggered implicitly when you run management
commands like runserver and migrate . However, you can trigger
checks explicitly with the check management command.

You can read more about Django’s system check framework at
https://docs.djangoproject.com/en/4.1/topics/checks/.

Let’s confirm that the check framework does not raise any issues for
your project. Open the shell in the educa project directory and run
the following command to check your project:

You will see the following output:

System check identified no issues (0 silenced).

python manage.py check --settings=educa.settings.pro

https://docs.djangoproject.com/en/4.1/topics/checks/

The system check framework didn’t identify any issues. If you use
the --deploy option, the system check framework will perform
additional checks that are relevant for a production deployment.

Run the following command from the educa project directory:

You will see output like the following:

The check framework has identified five issues (0 errors, 5
warnings). All warnings are related to security-related se�ings.

Let’s address issue security.W009 . Edit the
educa/settings/base.py file and modify the SECRET_KEY se�ing
by removing the django-insecure- prefix and adding additional
random characters to generate a string with at least 50 characters.

Run the check command again and verify that issue
security.W009 is not raised anymore. The rest of the warnings are

python manage.py check --deploy --settings=educa.set

System check identified some issues:
WARNINGS:
(security.W004) You have not set a value for the SEC
(security.W008) Your SECURE_SSL_REDIRECT setting is
(security.W009) Your SECRET_KEY has less than 50 cha
(security.W012) SESSION_COOKIE_SECURE is not set to
(security.W016) You have 'django.middleware.csrf.Csr
System check identified 5 issues (0 silenced).

related to SSL/TLS configuration. We will address them next.

Configuring your Django project for
SSL/TLS
Django comes with specific se�ings for SSL/TLS support. You are
going to edit the production se�ings to serve your site over HTTPS.

Edit the educa/settings/prod.py se�ings file and add the
following se�ings to it:

Security
CSRF_COOKIE_SECURE = True
SESSION_COOKIE_SECURE = True
SECURE_SSL_REDIRECT = True

These se�ings are as follows:

CSRF_COOKIE_SECURE : Use a secure cookie for cross-site
request forgery (CSRF) protection. With True , browsers will
only transfer the cookie over HTTPS.
SESSION_COOKIE_SECURE : Use a secure session cookie. With
True , browsers will only transfer the cookie over HTTPS.
SECURE_SSL_REDIRECT : Whether HTTP requests have to be
redirected to HTTPS.

Django will now redirect HTTP requests to HTTPS; session and
CSRF cookies will be sent only over HTTPS.

Run the following command from the main directory of your
project:

Only one warning remains, security.W004 :

This warning is related to the HTTP Strict Transport Security
(HSTS) policy. The HSTS policy prevents users from bypassing
warnings and connecting to a site with an expired, self-signed, or
otherwise invalid SSL certificate. In the next section, we will use a
self-signed certificate for our site, so we will ignore this warning.
When you own a real domain, you can apply for a trusted Certificate
Authority (CA) to issue an SSL/TLS certificate for it, so that browsers
can verify its identity. In that case, you can give a value to
SECURE_HSTS_SECONDS higher than 0 , which is the default value.
You can learn more about the HSTS policy at
https://docs.djangoproject.com/en/4.1/ref/middleware/#h
ttp-strict-transport-security.

You have successfully fixed the rest of the issues raised by the check
framework. You can read more about the Django deployment
checklist at
https://docs.djangoproject.com/en/4.1/howto/deployment/
checklist/.

Creating an SSL/TLS certificate

python manage.py check --deploy --settings=educa.set

(security.W004) You have not set a value for the SEC

https://docs.djangoproject.com/en/4.1/ref/middleware/#http-strict-transport-security
https://docs.djangoproject.com/en/4.1/howto/deployment/checklist/

Create a new directory inside the educa project directory and name
it ssl . Then, generate an SSL/TLS certificate from the command line
with the following command:

This will generate a private key and a 2048-bit SSL/TLS certificate
that is valid for 10 years. This certificate is issued for the hostname
*.educaproject.com . This is a wildcard certificate; by using the
wildcard character * in the domain name, the certificate can be used
for any subdomain of educaproject.com , such as
www.educaproject.com or django.educaproject.com . After
generating the certificate, the educa/ssl/ directory will contain two
files: educa.key (the private key) and educa.crt (the certificate).

You will need at least OpenSSL 1.1.1 or LibreSSL 3.1.0 to use the -
addext option. You can check the OpenSSL location in your
machine with the command which openssl and you can check the
version with the command openssl version .

Alternatively, you can use the SSL/TLS certificate provided in the
source code for this chapter. You will find the certificate at
https://github.com/PacktPublishing/Django-4-by-
example/blob/main/Chapter17/educa/ssl/. Note that you
should generate a private key and not use this certificate in
production.

openssl req -x509 -newkey rsa:2048 -sha256 -days 365
 -keyout ssl/educa.key -out ssl/educa.crt \
 -subj '/CN=*.educaproject.com' \
 -addext 'subjectAltName=DNS:*.educaproject.com'

https://github.com/PacktPublishing/Django-4-by-example/blob/main/Chapter17/educa/ssl/

Configuring NGINX to use SSL/TLS
Edit the docker-compose.yml file and add the following line
highlighted in bold:

services:
 # ...
 nginx:
 #...
 ports:
 - "80:80"
 - "443:443"

The NGINX container host will be accessible through port 80
(HTTP) and port 443 (HTTPS). The host port 443 is mapped to the
container port 443 .

Edit the config/nginx/default.conf.template file of the educa
project and edit the server block to include SSL/TLS, as follows:

server {
 listen 80;
 listen 443 ssl;
 ssl_certificate /code/educa/ssl/educa.crt;
 ssl_certificate_key /code/educa/ssl/educa.key;
 server_name www.educaproject.com educapr
 # ...
}

With the preceding code, NGINX now listens both to HTTP over
port 80 and HTTPS over port 443 . You indicate the path to the
SSL/TLS certificate with ssl_certificate and the certificate key
with ssl_certificate_key .

Stop the Docker application from the shell by pressing the keys Ctrl
+ C or using the stop bu�on in the Docker Desktop app. Then start
Compose again with the command:

docker compose up

Open https://educaproject.com/ with your browser. You
should see a warning message similar to the following one:

Figure 17.9: An invalid certificate warning

This screen might vary depending on your browser. It alerts you that
your site is not using a trusted or valid certificate; the browser can’t
verify the identity of your site. This is because you signed your own
certificate instead of obtaining one from a trusted CA. When you
own a real domain, you can apply for a trusted CA to issue an
SSL/TLS certificate for it, so that browsers can verify its identity. If
you want to obtain a trusted certificate for a real domain, you can
refer to the Let’s Encrypt project created by the Linux Foundation. It
is a nonprofit CA that simplifies obtaining and renewing trusted

SSL/TLS certificates for free. You can find more information at
https://letsencrypt.org.

Click on the link or bu�on that provides additional information and
choose to visit the website, ignoring warnings. The browser might
ask you to add an exception for this certificate or verify that you
trust it. If you are using Chrome, you might not see any option to
proceed to the website. If this is the case, type thisisunsafe and
press Enter directly in Chrome on the warning page. Chrome will
then load the website. Note that you do this with your own issued
certificate; don’t trust any unknown certificate or bypass the browser
SSL/TLS certificate checks for other domains.

When you access the site, the browser will display a lock icon next to
the URL like Figure 17.10:

Figure 17.10: The browser address bar, including a secure connection padlock icon

Other browsers might display a warning indicating that the
certificate is not trusted, like Figure 17.11:

Figure 17.11: The browser address bar, including a warning message

If you click the lock icon or the warning icon, the SSL/TLS certificate
details will be displayed as follows:

https://letsencrypt.org/

Figure 17.12: TLS/SSL certificate details

In the certificate details, you will see it is a self-signed certificate and
you will see its expiration date. Your browser might mark the
certificate as unsafe, but you are using it for testing purposes only.
You are now serving your site securely over HTTPS.

Redirecting HTTP traffic over to HTTPS
You are redirecting HTTP requests to HTTPS with Django using the
SECURE_SSL_REDIRECT se�ing. Any request using http:// is

redirected to the same URL using https:// . However, this can be
handled in a more efficient manner using NGINX.

Edit the config/nginx/default.conf.template file and add the
following lines highlighted in bold:

In this code, you remove the directive listen 80; from the original
server block, so that the platform is only available over HTTPS
(port 443). On top of the original server block, you add an
additional server block that only listens on port 80 and redirects
all HTTP requests to HTTPS. To achieve this, you return an HTTP
response code 301 (permanent redirect) that redirects to the

upstream for uWSGI
upstream uwsgi_app {
 server unix:/code/educa/uwsgi_app.sock;
}
server {
 listen 80;
 server_name www.educaproject.com educaproject.co
 return 301 https://$host$request_uri;
}
server {
 listen 443 ssl;
 ssl_certificate /code/educa/ssl/educa.crt;
 ssl_certificate_key /code/educa/ssl/educa.key;
 server_name www.educaproject.com educaproject
 # ...
}

https:// version of the requested URL using the $host and
$request_uri variables.

Open a shell in the parent directory, where the docker-
compose.yml file is located, and run the following command to
reload NGINX:

docker compose exec nginx nginx -s reload

This runs the nginx -s reload command in the nginx container.
You are now redirecting all HTTP traffic to HTTPS using NGINX.

Your environment is now secured with TLS/SSL. To complete the
production environment, you need to set up an asynchronous web
server for Django Channels.

Using Daphne for Django Channels
In Chapter 16, Building a Chat Server, you used Django Channels to
build a chat server using WebSockets. uWSGI is suitable for running
Django or any other WSGI application, but it doesn’t support
asynchronous communication using Asynchronous Server Gateway
Interface (ASGI) or WebSockets. In order to run Channels in
production, you need an ASGI web server that is capable of
managing WebSockets.

Daphne is an HTTP, HTTP2, and WebSocket server for ASGI
developed to serve Channels. You can run Daphne alongside uWSGI
to serve both ASGI and WSGI applications efficiently. You can find

more information about Daphne at
https://github.com/django/daphne.

You already added daphne==3.0.2 to the requirements.txt file
of the project. Let’s create a new service in the Docker Compose file
to run the Daphne web server.

Edit the docker-compose.yml file and add the following lines:

The daphne service definition is very similar to the web service. The
image for the daphne service is also built with the Dockerfile you
previously created for the web service. The main differences are:

daphne:
 build: .
 working_dir: /code/educa/
 command: ["../wait-for-it.sh", "db:5432", "--",
 "daphne", "-u", "/code/educa/daphne.so
 "educa.asgi:application"]
 restart: always
 volumes:
 - .:/code
 environment:
 - DJANGO_SETTINGS_MODULE=educa.settings.prod
 - POSTGRES_DB=postgres
 - POSTGRES_USER=postgres
 - POSTGRES_PASSWORD=postgres
 depends_on:
 - db
 - cache

https://github.com/django/daphne

working_dir changes the working directory of the image to
/code/educa/ .
command runs the educa.asgi:application application
defined in the educa/asgi.py file with daphne using a UNIX
socket. It also uses the wait-for-it Bash script to wait for the
PostgreSQL database to be ready before initializing the web
server.

Since you are running Django on production, Django checks the
ALLOWED_HOSTS when receiving HTTP requests. We will implement
the same validation for WebSocket connections.

Edit the educa/asgi.py file of your project and add the following
lines highlighted in bold:

import os
from django.core.asgi import get_asgi_application
from channels.routing import ProtocolTypeRouter, URL
from channels.security.websocket import AllowedHosts
from channels.auth import AuthMiddlewareStack
import chat.routing
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'edu
django_asgi_app = get_asgi_application()
application = ProtocolTypeRouter({
 'http': django_asgi_app,
 'websocket': AllowedHostsOriginValidator(
 AuthMiddlewareStack(
 URLRouter(chat.routing.websocket_urlpatt
)
),
})

The Channels configuration is now ready for production.

Using secure connections for
WebSockets
You have configured NGINX to use secure connections with
SSL/TLS. You need to change ws (WebSocket) connections to use the
wss (WebSocket Secure) protocol now, in the same way that HTTP
connections are now being served over HTTPS.

Edit the chat/room.xhtml template of the chat application and
find the following line in the domready block:

const url = 'ws://' + window.location.host +

Replace that line with the following one:

const url = 'wss://' + window.location.host +

By using wss:// instead of ws:// , you are explicitly connecting to a
secure WebSocket.

Including Daphne in the NGINX
configuration
In your production setup, you will run Daphne on a UNIX socket
and use NGINX in front of it. NGINX will pass requests to Daphne

based on the requested path. You will expose Daphne to NGINX
through a UNIX socket interface, just like the uWSGI setup.

Edit the config/nginx/default.conf.template file and make it
look as follows:

upstream for uWSGI
upstream uwsgi_app {
 server unix:/code/educa/uwsgi_app.sock;
}
upstream for Daphne
upstream daphne {
 server unix:/code/educa/daphne.sock;
}
server {
 listen 80;
 server_name www.educaproject.com educaproject.co
 return 301 https://$host$request_uri;
}
server {
 listen 443 ssl;
 ssl_certificate /code/educa/ssl/educa.crt;
 ssl_certificate_key /code/educa/ssl/educa.key;
 server_name www.educaproject.com educaproject.c
 error_log stderr warn;
 access_log /dev/stdout main;
 location / {
 include /etc/nginx/uwsgi_params;
 uwsgi_pass uwsgi_app;
 }
 location /ws/ {

In this configuration, you set up a new upstream named daphne ,
which points to a UNIX socket created by Daphne. In the server
block, you configure the /ws/ location to forward requests to
Daphne. You use the proxy_pass directive to pass requests to
Daphne and you include some additional proxy directives.

With this configuration, NGINX will pass any URL request that
starts with the /ws/ prefix to Daphne and the rest to uWSGI, except
for files under the /static/ or /media/ paths, which will be
served directly by NGINX.

The production setup including Daphne now looks like this:

 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 proxy_redirect off;
 proxy_pass http://daphne;
 }
 location /static/ {
 alias /code/educa/static/;
 }
 location /media/ {
 alias /code/educa/media/;
 }
}

Figure 17.13: The production environment request/response cycle, including Daphne

NGINX runs in front of uWSGI and Daphne as a reverse proxy
server. NGINX faces the web and passes requests to the application
server (uWSGI or Daphne) based on their path prefix. Besides this,
NGINX also serves static files and redirects non-secure requests to
secure ones. This setup reduces downtime, consumes less server
resources, and provides greater performance and security.

Stop the Docker application from the shell by pressing the keys Ctrl
+ C or using the stop bu�on in the Docker Desktop app. Then start
Compose again with the command:

docker compose up

Use your browser to create a sample course with an instructor user,
log in with a user who is enrolled on the course, and open

https://educaproject.com/chat/room/1/ with your browser.
You should be able to send and receive messages like the following
example:

Figure 17.14: Course chat room messages served with NGINX and Daphne

Daphne is working correctly, and NGINX is passing WebSocket
requests to it. All connections are secured with SSL/TLS.

Congratulations! You have built a custom production-ready stack
using NGINX, uWSGI, and Daphne. You could do further
optimization for additional performance and enhanced security
through configuration se�ings in NGINX, uWSGI, and Daphne.
However, this production setup is a great start!

You have used Docker Compose to define and run services in
multiple containers. Note that you can use Docker Compose both for
local development environments as well as production
environments. You can find additional information on using Docker
Compose in production at
https://docs.docker.com/compose/production/.

For more advanced production environments, you will need to
dynamically distribute containers across a varying number of
machines. For that, instead of Docker Compose, you will need an
orchestrator like Docker Swarm mode or Kubernetes. You can find
information about Docker Swarm mode at
https://docs.docker.com/engine/swarm/, and about
Kubernetes at https://kubernetes.io/docs/home/.

Creating a custom middleware
You already know the MIDDLEWARE se�ing, which contains the
middleware for your project. You can think of it as a low-level plugin
system, allowing you to implement hooks that get executed in the
request/response process. Each middleware is responsible for some
specific action that will be executed for all HTTP requests or
responses.

Avoid adding expensive processing to middleware, since they are
executed in every single request.

When an HTTP request is received, middleware is executed in order
of appearance in the MIDDLEWARE se�ing. When an HTTP response

https://docs.docker.com/compose/production/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/docs/home/

has been generated by Django, the response passes through all
middleware back in reverse order.

A middleware can be wri�en as a function, as follows:

A middleware factory is a callable that takes a get_response
callable and returns a middleware. A middleware is a callable that
takes a request and returns a response, just like a view. The
get_response callable might be the next middleware in the chain
or the actual view in the case of the last listed middleware.

If any middleware returns a response without calling its
get_response callable, it short-circuits the process; no further
middleware gets executed (also not the view), and the response
returns through the same layers that the request passed in through.

The order of middleware in the MIDDLEWARE se�ing is very
important because middleware can depend on data set in the request
by other middleware that has been executed previously.

def my_middleware(get_response):
 def middleware(request):
 # Code executed for each request before
 # the view (and later middleware) are called
 response = get_response(request)
 # Code executed for each request/response af
 # the view is called.
 return response
 return middleware

When adding a new middleware to the MIDDLEWARE se�ing, make
sure to place it in the right position. Middleware is executed in order
of appearance in the se�ing during the request phase, and in reverse
order for responses.

You can find more information about middleware at
https://docs.djangoproject.com/en/4.1/topics/http/middl
eware/.

Creating a subdomain middleware
You are going to create a custom middleware to allow courses to be
accessible through a custom subdomain. Each course detail URL,
which looks like https://educaproject.com/course/django/ ,
will also be accessible through the subdomain that makes use of the
course slug, such as https://django.educaproject.com/ . Users
will be able to use the subdomain as a shortcut to access the course
details. Any requests to subdomains will be redirected to each
corresponding course detail URL.

Middleware can reside anywhere within your project. However, it’s
recommended to create a middleware.py file in your application
directory.

Create a new file inside the courses application directory and name
it middleware.py . Add the following code to it:

from django.urls import reverse
from django.shortcuts import get_object_or_404, redi
from .models import Course

https://docs.djangoproject.com/en/4.1/topics/http/middleware/

When an HTTP request is received, you perform the following tasks:

1. You get the hostname that is being used in the request and
divide it into parts. For example, if the user is accessing
mycourse.educaproject.com , you generate the list
['mycourse', 'educaproject', 'com'] .

2. You check whether the hostname includes a subdomain by
checking whether the split generated more than two elements. If
the hostname includes a subdomain, and this is not www , you try
to get the course with the slug provided in the subdomain.

def subdomain_course_middleware(get_response):
 """
 Subdomains for courses
 """
 def middleware(request):
 host_parts = request.get_host().split('.')
 if len(host_parts) > 2 and host_parts[0] !=
 # get course for the given subdomain
 course = get_object_or_404(Course, slug=
 course_url = reverse('course_detail',
 args=[course.slug])
 # redirect current request to the course
 url = '{}://{}{}'.format(request.scheme,
 '.'.join(host_p
 course_url)
 return redirect(url)
 response = get_response(request)
 return response
 return middleware

3. If a course is not found, you raise an HTTP 404 exception.
Otherwise, you redirect the browser to the course detail URL.

Edit the settings/base.py file of the project and add
'courses.middleware.SubdomainCourseMiddleware' at the
bo�om of the MIDDLEWARE list, as follows:

The middleware will now be executed in every request.

Remember that the hostnames allowed to serve your Django project
are specified in the ALLOWED_HOSTS se�ing. Let’s change this se�ing
so that any possible subdomain of educaproject.com is allowed to
serve your application.

Edit the educa/settings/prod.py file and modify the
ALLOWED_HOSTS se�ing, as follows:

ALLOWED_HOSTS = ['.educaproject.com']

A value that begins with a period is used as a subdomain wildcard;
'.educaproject.com' will match educaproject.com and any
subdomain for this domain, for example,
course.educaproject.com and django.educaproject.com .

MIDDLEWARE = [
 # ...
 'courses.middleware.subdomain_course_middleware
]

Serving multiple subdomains with NGINX
You need NGINX to be able to serve your site with any possible
subdomain. Edit the config/nginx/default.conf.template file
and replace the two occurrences of the following line:

with the following one:

server_name *.educaproject.com educaproject.com;

By using the asterisk, this rule applies to all subdomains of
educaproject.com . In order to test your middleware locally, you
need to add any subdomains you want to test to /etc/hosts . For
testing the middleware with a Course object with the slug django ,
add the following line to your /etc/hosts file:

127.0.0.1 django.educaproject.com

Stop the Docker application from the shell by pressing the keys Ctrl
+ C or using the stop bu�on in the Docker Desktop app. Then start
Compose again with the command:

docker compose up

server_name www.educaproject.com educaproject.com;

Then, open https://django.educaproject.com/ in your
browser. The middleware will find the course by the subdomain and
redirect your browser to
https://educaproject.com/course/django/ .

Implementing custom management
commands
Django allows your applications to register custom management
commands for the manage.py utility. For example, you used the
management commands makemessages and compilemessages in
Chapter 11, Adding Internationalization to Your Shop, to create
and compile translation files.

A management command consists of a Python module containing a
Command class that inherits from
django.core.management.base.BaseCommand or one of its
subclasses. You can create simple commands or make them take
positional and optional arguments as input.

Django looks for management commands in the
management/commands/ directory for each active application in the
INSTALLED_APPS se�ing. Each module found is registered as a
management command named after it.

You can learn more about custom management commands at
https://docs.djangoproject.com/en/4.1/howto/custom-
management-commands/.

https://docs.djangoproject.com/en/4.1/howto/custom-management-commands/

You are going to create a custom management command to remind
students to enroll on at least one course. The command will send an
email reminder to users who have been registered for longer than a
specified period and who aren’t enrolled on any course yet.

Create the following file structure inside the students application
directory:

management/
 __init__.py
 commands/
 __init__.py
 enroll_reminder.py

Edit the enroll_reminder.py file and add the following code to it:

import datetime
from django.conf import settings
from django.core.management.base import BaseCommand
from django.core.mail import send_mass_mail
from django.contrib.auth.models import User
from django.db.models import Count
from django.utils import timezone
class Command(BaseCommand):
 help = 'Sends an e-mail reminder to users regist
 than N days that are not enrolled into an
 def add_arguments(self, parser):
 parser.add_argument('--days', dest='days', t
 def handle(self, *args, **options):
 emails = []

This is your enroll_reminder command. The preceding code is as
follows:

The Command class inherits from BaseCommand .
You include a help a�ribute. This a�ribute provides a short
description of the command that is printed if you run the
command python manage.py help enroll_reminder .
You use the add_arguments() method to add the --days
named argument. This argument is used to specify the
minimum number of days a user has to be registered, without
having enrolled on any course, in order to receive the reminder.
The handle() command contains the actual command. You get
the days a�ribute parsed from the command line. If this is not

 subject = 'Enroll in a course'
 date_joined = timezone.now().today() - \
 datetime.timedelta(days=option
 users = User.objects.annotate(course_count=C
 .filter(course_count=0,
 date_joined__dat
 for user in users:
 message = """Dear {},
 We noticed that you didn't enroll in any
 What are you waiting for?""".format(user
 emails.append((subject,
 message,
 settings.DEFAULT_FROM_EMA
 [user.email]))
 send_mass_mail(emails)
 self.stdout.write('Sent {} reminders'.format

set, you use 0 , so that a reminder is sent to all users that haven’t
enrolled on a course, regardless of when they registered. You
use the timezone utility provided by Django to retrieve the
current timezone-aware date with timezone.now().date() .
(You can set the timezone for your project with the TIME_ZONE
se�ing.) You retrieve the users who have been registered for
more than the specified days and are not enrolled on any
courses yet. You achieve this by annotating the QuerySet with
the total number of courses each user is enrolled on. You
generate the reminder email for each user and append it to the
emails list. Finally, you send the emails using the
send_mass_mail() function, which is optimized to open a
single SMTP connection for sending all emails, instead of
opening one connection per email sent.

You have created your first management command. Open the shell
and run your command:

If you don’t have a local SMTP server running, you can look at
Chapter 2, Enhancing Your Blog with Advanced Features, where you
configured SMTP se�ings for your first Django project. Alternatively,
you can add the following se�ing to the settings.py file to make
Django output emails to the standard output during development:

docker compose exec web python /code/educa/manage.py
 enroll_reminder --days=20 --settings=educa.setting

EMAIL_BACKEND = 'django.core.mail.backends.console.E

Django also includes a utility to call management commands using
Python. You can run management commands from your code as
follows:

Congratulations! You can now create custom management
commands for your applications.

Additional resources
The following resources provide additional information related to
the topics covered in this chapter:

Source code for this chapter –
https://github.com/PacktPublishing/Django-4-by-
example/tree/main/Chapter17

Docker Compose overview –
https://docs.docker.com/compose/

Installing Docker Desktop –
https://docs.docker.com/compose/install/compose-
desktop/

Official Python Docker image –
https://hub.docker.com/_/python

Dockerfile reference –
https://docs.docker.com/engine/reference/builder/

from django.core import management
management.call_command('enroll_reminder', days=20)

https://github.com/PacktPublishing/Django-4-by-example/tree/main/Chapter17
https://docs.docker.com/compose/
https://docs.docker.com/compose/install/compose-desktop/
https://hub.docker.com/_/python
https://docs.docker.com/engine/reference/builder/

requirements.txt file for this chapter –
https://github.com/PacktPublishing/Django-4-by-
example/blob/main/Chapter17/requirements.txt

YAML file example – https://yaml.org/
Dockerfile build section –
https://docs.docker.com/compose/compose-file/build/

Docker restart policy –
https://docs.docker.com/config/containers/start-
containers-automatically/

Docker volumes –
https://docs.docker.com/storage/volumes/

Docker Compose specification –
https://docs.docker.com/compose/compose-file/

Official PostgreSQL Docker image –
https://hub.docker.com/_/postgres

wait-for-it.sh Bash script for Docker –
https://github.com/vishnubob/wait-for-
it/blob/master/wait-for-it.sh

Service startup order in Compose –
https://docs.docker.com/compose/startup-order/

Official Redis Docker image –
https://hub.docker.com/_/redis

WSGI documentation –
https://wsgi.readthedocs.io/en/latest/

List of uWSGI options – https://uwsgi-
docs.readthedocs.io/en/latest/Options.xhtml

https://github.com/PacktPublishing/Django-4-by-example/blob/main/Chapter17/requirements.txt
https://yaml.org/
https://docs.docker.com/compose/compose-file/build/
https://docs.docker.com/config/containers/start-containers-automatically/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/compose/compose-file/
https://hub.docker.com/_/postgres
https://github.com/vishnubob/wait-for-it/blob/master/wait-for-it.sh
https://docs.docker.com/compose/startup-order/
https://hub.docker.com/_/redis
https://wsgi.readthedocs.io/en/latest/
https://uwsgi-docs.readthedocs.io/en/latest/Options.xhtml

Official NGINX Docker image –
https://hub.docker.com/_/nginx

NGINX documentation – https://nginx.org/en/docs/
ALLOWED_HOSTS se�ing –
https://docs.djangoproject.com/en/4.1/ref/settings/
#allowed-hosts

Django’s system check framework –
https://docs.djangoproject.com/en/4.1/topics/checks
/

HTTP Strict Transport Security policy with Django –
https://docs.djangoproject.com/en/4.1/ref/middlewar
e/#http-strict-transport-security

Django deployment checklist –
https://docs.djangoproject.com/en/4.1/howto/deploym
ent/checklist/

Self-generated SSL/TLS certificate directory –
https://github.com/PacktPublishing/Django-4-by-
example/blob/main/Chapter17/educa/ssl/

Let’s Encrypt Certificate Authority –
https://letsencrypt.org/

Daphne source code – https://github.com/django/daphne
Using Docker Compose in production –
https://docs.docker.com/compose/production/

Docker Swarm mode –
https://docs.docker.com/engine/swarm/

Kubernetes – https://kubernetes.io/docs/home/

https://hub.docker.com/_/nginx
https://nginx.org/en/docs/
https://docs.djangoproject.com/en/4.1/ref/settings/#allowed-hosts
https://docs.djangoproject.com/en/4.1/topics/checks/
https://docs.djangoproject.com/en/4.1/ref/middleware/#http-strict-transport-security
https://docs.djangoproject.com/en/4.1/howto/deployment/checklist/
https://github.com/PacktPublishing/Django-4-by-example/blob/main/Chapter17/educa/ssl/
https://letsencrypt.org/
https://github.com/django/daphne
https://docs.docker.com/compose/production/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/docs/home/

Django middleware –
https://docs.djangoproject.com/en/4.1/topics/http/m
iddleware/

Creating custom management commands –
https://docs.djangoproject.com/en/4.1/howto/custom-
management-commands/

Summary
In this chapter, you created a production environment using Docker
Compose. You configured NGINX, uWSGI, and Daphne to serve
your application in production. You secured your environment
using SSL/TLS. You also implemented a custom middleware and
you learned how to create custom management commands.

You have reached the end of this book. Congratulations! You have
learned the skills required to build successful web applications with
Django. This book has guided you through the process of
developing real-life projects and integrating Django with other
technologies. Now you are ready to create your own Django project,
whether it is a simple prototype or a large-scale web application.

Good luck with your next Django adventure!

https://docs.djangoproject.com/en/4.1/topics/http/middleware/
https://docs.djangoproject.com/en/4.1/howto/custom-management-commands/

packt.com

Subscribe to our online digital library for full access to over 7,000
books and videos, as well as industry leading tools to help you plan
your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical
eBooks and Videos from over 4,000 industry professionals
Improve your learning with Skill Plans built especially for you
Get a free eBook or video every month
Fully searchable for easy access to vital information
Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical
articles, sign up for a range of free newsle�ers, and receive exclusive
discounts and offers on Packt books and eBooks.

http://packt.com/
http://www.packt.com/

Other Books You May Enjoy

If you enjoyed this book, you may be interested in this other books
by Packt:

101 UX Principles, Second Edition

Will Grant

ISBN: 9781803234885

Work with user expectations, not against them
Make interactive elements obvious and discoverable
Optimize your interface for mobile
Streamline creating and entering passwords

https://www.packtpub.com/product/101-ux-principles/9781803234885?_ga=2.3016309.498224176.1660818556-382118192.1639980901

Use animation with care in user interfaces
How to handle destructive user actions

Coding Roblox Games Made Easy, Second Edition

Zander Brumbaugh

ISBN: 9781803234670

Use Roblox Studio and other free resources
Learn coding in Luau: basics, game systems, physics
manipulation, etc
Test, evaluate, and redesign to create bug-free and engaging
games
Use Roblox programming and rewards to make your first game
Move from lobby to ba�leground, build avatars, locate weapons
to fight
Character selection, countdown timers, locate escape items,
assign rewards

https://www.packtpub.com/product/coding-roblox-games-made-easy/9781803234670?_ga=2.7260791.498224176.1660818556-382118192.1639980901

Master the 3 Ms: Mechanics, Monetization, Marketing (and
Metaverse)
50 cool things to do in Roblox

Packt is searching for authors like
you
If you’re interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with
thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com/

Share your thoughts
Now you’ve finished Django 4 By Example, Fourth Edition, we’d love
to hear your thoughts! If you purchased the book from Amazon,
please click here to go straight to the Amazon review
page for this book and share your feedback or leave a review on the
site that you purchased it from.

Your review is important to us and the tech community and will
help us make sure we’re delivering excellent quality content.

https://packt.link/r/1801813051

Index

Symbols
{% blocktrans %} template tag 487
__iter__() method 354
__str__() method 13
{% trans %} template tag 486
__unicode__() method 13

A
abstract models 525
administration action 425
administration site

blog models, adding to 25-27

comments, adding to 76, 77

course models, registering 520

creating, for models 23

custom actions, adding to 425-427

display, customizing 27-29

extending, with custom views 427-432

model translations, integrating into 504, 505

superuser, creating 24, 25

Advanced Message Queuing Protocol (AMQP) 376
aggregation

reference link 101

Amazon Simple Email Service
reference link 65

Application Programming Interface (API) 388
applications

configuration classes 315, 316

Asynchronous JavaScript and XML (AJAX) 268
asynchronous actions, adding with JavaScript 268, 269

CSRF, for HTTP requests 270, 271

HTTP requests, performing with JavaScript 272-277

JavaScript, loading on DOM 269, 270

Asynchronous Server Gateway Interface (ASGI) 4, 7, 702
chat server, building with asynchronous communication through
643

reference link 643

asynchronous tasks 374
adding, to application 380-382

chat consumer, modifying to 666-668

working with 374

authentication
handling 625

reference link 194

system adding, for CMS 535

templates, creating 536-539

views, adding 535

B
base template

creating 38, 39

blog
full-text search, adding to 130

blog application
activating 17

blog data models
creating 12

database index, adding 16

datetime fields, adding 14

default sort order, defining 15

many-to-one relationship, adding 19-21

migrations, applying 21-23

migrations, creating 21-23

Post model, creating 13, 14

status field, adding 17-19

blog models
adding, to administration site 25-27

blog posts
feeds, creating 123-130

bookmarklet 250

building, with JavaScript 250-263

built-in template tags and filters
reference link 106

C
cached database sessions 350
cached sessions 350
cache framework

backends 599

cache levels 601

cache requests, checking with Django Debug Toolbar 603-606

caching, based on dynamic data 606, 607

low-level cache API, using 601-603

Memcached, adding to project 601

Memcached, installing 599

per-site cache, deactivating 610

per-site cache, using 609

Redis cache backend, using 610, 611

reference link 599

settings 600

template fragments, caching 607, 608

using 598

views, caching 608

cache service 675
canonical URL

modifying, for posts 50, 51

using, for models 45-48

CDN (Content Delivery Network) 271
Celery

adding, to Django project 378, 379

Django, using with 375

installing 376

monitoring, with Flower 383, 384

reference link 376

running 379, 380

Celery worker 379, 380
Certificate Authority (CA) 203, 697
channel layer 656

channel 657

consumer, updating to broadcast messages 658-662

enabling 656

groups 657

messages, adding to context 662-666

setting up, with Redis 657, 658

Channels
installing 646, 647

real-time Django with 643

used for request/response cycle 644, 645

chat application

creating 639

channel layer, enabling 647

consumer, setting up 647

implementing 640-643

integrating, with existing views 668

modifying, to fully asynchronous 666-668

routing, configuring 647

WebSocket client, implementing 647

class-based views
advantages 59

building 59

need for, using 59

reference link 61

using, to list posts 59-61

class-based views, CMS
access, restricting 546-553

creating 542

mixins, using 542-544

Comma-Separated Values (CSV) file 424
orders, exporting to 424

comment form
templates, creating 80-82

comments
adding, to administration site 76, 77

adding, to post detail template 83-90

adding, to post detail view 82, 83

comment system
creating 74

Compose specification
reference link 679

connnect() 648
consumer

updating, to broadcast messages 658-662

writing 648

Content Management System (CMS)
class-based views, creating 542

creating 541

groups and permissions, working with 544-546

content models
creating 527-529

content object
ordering field, adding to 531-535

content, posting from other websites 243
bookmarklet, building with JavaScript 250-263

form fields, cleaning 244

Requests library, installing 245

save() method, overriding 245-249

contenttypes framework
using 300

context processor 192, 362-364
creating, for shopping cart 362

reference link 363

cookie-based sessions 350
coupon

adding, to orders on administration site 464-467

adding, to orders on PDF invoices 464-467

applying, to orders 456-460

applying, to shopping cart 448-455

creating, for Stripe Checkout 461-464

coupon model
building 444-448

coupon system
creating 443

course contents
accessing 592-595

content types, rendering 596-598

displaying 596

serializing 631-633

course models
building 517-519

registering, in administration site 520

course modules
content, adding 557-562

contents, managing 553, 562-568

contents, reordering 568, 569

formsets, using 553-557

managing 553, 562

reordering 568, 569

courses
displaying 580-584

cross-site request forgery (CSRF) 71, 153, 270, 697
for HTTP requests, in JavaScript 270, 271

reference link 71, 271

cross-site request forgery (CSRF) attacks 363
cross-site request forgery (CSRF) token 569
Cross-Site Scripting (XSS) 424
custom actions

adding, to administration site 425-427

custom API views
building 624, 625

custom authentication backend
building 194, 195

preventing, users from using existing email 196, 197

customer orders
creating 369-374

models, creating 366, 367

models, including in administration site 367

registering 365, 366

custom management commands
implementing 710-712

custom middleware
creating 707

custom model fields
creating 529-531

reference link 531

custom permissions
creating 630, 631

reference link 545

custom template filters
creating 106

creating, to support markdown syntax 113-118

implementing 113

custom template tags
creating 106

custom user model
reference link 190

using 190

custom views
administration site, extending with 427-432

D
Daphne 702

including, in NGINX configuration 704-706

reference link 702

using, for Django Channels 702, 703

Daring Firewall
reference link 113

data
loading into new database 134

database
index, adding 16

migration, creating for profile model 184-190

migration, applying 684

service 675

sessions 350

switching to Django project 133

data migration
reference link 524

datetime fields
adding 14

default sort order
defining 15

detail view, for images
creating 263-265

detail views
building 34, 619

creating 34, 35

get_object_or_404 shortcut, using 35

development server
running, through HTTPS 202-205

disconnect() 648
Django

emails, sending with 64-68

forms, creating with 62, 63

framework components 5

installing 3

installing, with pip 4

internationalization (i18n) with 478

posts, recommending by email 61

request/response cycle 42, 43

serving, through NGINX 686

serving, through WSGI 686

using, with Celery 375

using, with RabbitMQ 375

Django 4
features 4

overview 5

reference link 5

Django administration site
reference link 29

Django allowed hosts

reference link 202

Django application
creating 12

Django architecture 6
Django authentication framework

login view, creating 150-156

login views 157-163

logout views 157-163

models 150

password views, modifying 163-166

password views, resetting 166-174

using 149

views, using 157

django-braces
documentation link 577

mixins, using from 569-577

Django cache settings 600
Django Channels

reference link 640

Django compatibility
reference link 504

django.db.models
aggregation functions 101

Django Debug Toolbar
adding, to project 603

cache requests, checking with 603-606

commands 322, 323

installing 317-319, 603

panels 320-322

using 317

Django, deploying with ASGI
reference link 643

Django deployment checklist
reference link 697

Django, Design Philosophies
reference link 5

Django Extensions documentation
reference link 205

Django formsets
reference link 577

django-localflavor
using, to validate form fields 512, 513

Django mixins
documentation link 577

Django model formsets
reference link 577

django-parler
installing 501

model fields, translating with 501-504

model translations, integrating into administration site 504, 505

used, for translating models 501

Django project
checking, for production 695, 696

configuring, for SSL/TLS 696, 697

creating 7

development server, running 9, 10

initial database migrations, applying 8

project and application 11

resources 43, 44

settings 10, 11

structure 11

Django project, settings
reference link 10

Django Redisboard
Redis, monitoring with 611-613

reference link 611

Django REST framework
installing 616, 617

reference link 633

Django sessions
used, for building shopping cart 349

Django settings
managing, for multiple environments 672

Django settings, ALLOWED_HOSTS
reference link 692

Django’s, support for asynchronous class-based views
reference link 643

Django’s, support for writing asynchronous views
reference link 643

Django syndication feed
reference link 130

Django, system check framework
reference link 695

django-taggit
reference link 92

Django template language
reference link 37

django.urls utility functions
reference link 47

Docker
installing 324

Docker Compose 675
database migrations, applying 684

Dockerfile, creating 676, 677

file, creating 678-681

installing 675, 676

PostgreSQL service, configuring 681-684

Python requirements, adding 677, 678

Redis service, configuring 684-686

reference link 675

superuser, creating 684

using 675

Docker Desktop
installation link 676

Dockerfile 676
creating 676, 677

reference link 677

Docker Swarm mode
reference link 706

Document Object Model (DOM) 254, 270, 537, 650

E
easy-thumbnails

image thumbnails, creating with 265-268

reference link 268

e-learning project
course models, building 517-519

preparing, to serve media files 516, 517

setting up 515, 516

emails
sending, in views 69, 70

sending, with Django 64-68

enum
reference link 18

event types, Stripe

reference link 413

exclude() method
used, for retrieving objects 32

F
Facebook

reference link, for developer portal 205

used, for adding social authentication 205-213

feeds
creating, for blog posts 123-130

file-based sessions 350
filter() method

used, for retrieving objects 31

first in, first out (FIFO) 375
fixtures 132, 520

using, to provide initial data for models 520-524

fixtures, for testing
reference link 524

Flower
reference link 384

used, for monitoring Celery 383, 384

Fluent Reader
download link 125

follow system
building 287

list and detail views, creating for user profiles 291-295

many-to-many relationships, creating with intermediary model
288-291

user follow/unfollow actions, adding with JavaScript 296-298

format localization 511, 512
reference link 512

form fields
cleaning 244

validating, with django-localflavor 512, 513

forms
creating, from models 78

creating, with Django 62, 63

handling, in views 63, 64

reference link 78

rendering, in templates 70-74

formsets
using, for course modules 553

forms, field types
reference link 63

full-text search 136
adding, to blog 130

database, switching to Django project 133

data, loading into new database 134

existing data, dumping 132, 133

PostgreSQL database, creating 131, 132

PostgreSQL, installing 131

queries, weighting 142, 143

reference link 144

results, ranking 140, 141

results, stemming 140, 141

searching, against multiple fields 136

search lookups 135, 136

search view, building 136-140

stop words, removing in different languages 142

stop words, stemming in different languages 142

with trigram similarity 143, 144

fuzzy translations 494

G
generic activity stream application

building 298, 299

contenttypes framework, using 300

displaying 307, 308

duplicate actions, avoiding 304

generic relations, adding to models 301-304

QuerySets, optimizing that involves related objects 308

templates, creating for actions 310-312

user actions, adding to 305-307

get_object_or_404 shortcut
using 35

GET request 370
gettext toolkit

installing 479

Google
used, for adding social authentication 227-235

H
hostname

using 692

HTML5 drag-and-drop API
reference link 569, 577

HTML5 Sortable library
documentation link 569, 577

HTTP basic authentication
reference link 636

HTTP requests
CSRF protection 270, 271

modes 274

performing, with JavaScript 272-277

HTTPS
development server, running through 202-205

HTTP Strict Transport Security (HSTS) policy 697
HTTP traffic

redirecting, to HTTPS 701

I
image bookmarking website

asynchronous actions, adding with JavaScript 268, 269

content, posting from other websites 243

creating 239

detail view for images, creating 263-265

image model, building 240, 241

image model, registering in administration site 243

image thumbnails, creating with easy-thumbnails 265-268

infinite scroll pagination, adding to image list 278-285

many-to-many relationships, creating 242, 243

references 285

image views
counting, with Redis 323

storing, in Redis 326-329

inclusion template tags
creating 109, 110

indexes
reference link 17

infinite scroll pagination
adding, to image list 278-285

intermediary model
many-to-many relationships, creating with 288-291

internationalization (i18n) 478

current language. determining 479, 480

gettext toolkit, installing 479

management commands 479

project, preparing 480, 481

settings 478

translations, adding to project 479

URL patterns 494

with Django 478

Internet of Things (IoT) 639

J
JavaScript

user follow/unfollow actions, adding with 296-298

JavaScript Fetch API 268
reference link 268

json_script template filter
reference link 651

K
Kubernetes

reference link 706

L
language prefix

adding, to URL patterns 494, 495

lazy translations 481
Let’s Encrypt

URL 699

Let’s Encrypt service 258
reference link 258

Lightweight Directory Access Protocol (LDAP) 194
list

building 619, 620

list and detail views
creating, for user profiles 291-295

list views
building 34

creating 34, 35

local environment
running 673, 674

settings, configuring 673

localization (l10n) 478
settings 478

login() function 349
low-level cache API 601

using 601, 602

working 602

M
many-to-many relationships

adding 19-21

creating 242, 243

creating, with intermediary model 288-291

reference link 97

many-to-one relationships
reference link 75

media files
serving 183, 692

serving, e-learning project 516, 517

Memcached
about 599

adding, to project 601

Docker image, installing 600

installing 599

Python binding, installing 600

URL 600

message broker 375
message file 478
message queue 375
messages

consumer, updating to broadcast 658-662

context, adding to 662-666

messages framework
reference link 193

using 190-193

middleware
reference link 707

migrations
applying 21-23

creating 21-23

creating, for model translations 505-507

minHeight variable 254
minWidth variable 254
mixins

reference link 542

using, for class-based views 542-544

using, from django-braces 569-577

model
administration site, creating for 23

canonical URLs, using 45-48

creating, for polymorphic content 524, 525

creating, to store user comments 75, 76

creating, to store user comments on posts 75

forms, creating 78

generic relations, adding to 301-304

translating, with django-parler 501

model fields
reference link 21

ModelForm
handling, in views 78-80

save() method 245

model inheritance
using 525

model managers
creating 33, 34

working with 29

model translations
integrating, into administration site 504, 505

using with ORM 508

views, adapting 508-511

module
ordering field, adding to 531-535

MTV (Model-Template-View) pattern 5
multiple environments

Django settings, managing 672

multi-table model inheritance 525, 526
MVC (Model-View-Controller) pattern 5

N
nested serializers

creating 622-624

NGINX 688
configuring 690-692

configuring, to use SSL/TLS 698-701

Django, serving 686

media files, serving 692

reference link 689, 691

static files, serving 692

used, for serving multiple subdomains 709

used, for serving static files 693- 695

using 688, 689

NGINX configuration
Daphne, including 704-706

O
OAuth 2.0 200
object-relational mapper (ORM) 29

model translations, using with 508

objects
creating 30, 31

deleting 32

retrieving 31

retrieving, with exclude() method 32

retrieving, with filter() method 31

retrieving, with order_by() method 32

updating 31

online shop
creating 334

product catalog models, creating 335-338

product catalog models, registering on administration site 339-
341

product catalog templates, creating 344-349

product catalog views, building 341-343

Open Authorization (OAuth) 200
order_by() method

used, for retrieving objects 32

order objects
building, with respect to other fields 529

orders
exporting, to CSV files 424

order value
assigning, automatically 529

P
pagination

adding 51

adding, to post list view 52

pagination errors
handling 55-58

pagination template
creating 52-55

Paginator class
reference link 58

parsers 618, 619
reference link 619, 636

Payment Card Industry (PCI) 388
payment gateway 387
payment gateway integration 388

references 441, 442

payment intent 408
payment process

building 393, 394

checkout payment flow 396

checkout process, testing 402-404

credit cards usage, testing 404-408

payment information, checking in Stripe dashboard 408-412

payment notifications, receiving with webhooks 412

publishing 424

Stripe Checkout integration 395

Stripe payments, referencing 421-424

PDF invoices
generating, dynamically 432

PDF files, rendering 434-438

PDF files, sending by email 438-441

template, creating 433, 434

permission
adding, to views 626, 627

reference link 636

per-site cache
deactivating 610

using 609

Pillow library
installing 183

Pinterest bookmarklet 250
pip documentation

reference link 4

Poedit
download link 485

polymorphic content
models, creating 524, 525

polymorphism 524
post detail template

comments, adding to 83-90

post detail view
comments, adding to 82, 83

Postgres.app
reference link 131

PostgreSQL
database, creating 131, 132

download link 131

installing 131

reference link, for Docker image 681

service, configuring 681-684

PostgreSQL’s, full-text search
reference link 130

post list template
creating 39

post list view
pagination, adding to 52

Postman
reference link 621

Postman API platform
reference link 636

Post model
creating 13, 14

POST parameters
action 269

image_id 269

POST request 370
posts

canonical URL, modifying 50, 51

retrieving, by similarity 101-106

SEO-friendly URLs, creating 48, 49

prefetch_related()
using 309

prerequisites, for creating comment system
about 74

comments, adding to administration site 76, 77

comments, adding to post detail template 83-90

comments, adding to post detail view 82, 83

forms, creating from models 78

model, creating to store user comments on posts 75, 76

ModelForms, handling in views 78-80

templates, creating, for comment form 80-82

prerequisites, for recommending posts by email
about 61

emails, sending in views 69, 70

emails, sending with Django 64-68

forms, creating with Django 62, 63

forms, handling in views 63, 64

forms, rendering in templates 70-74

production environment
creating 672

request/response cycle 691

settings 674, 675

project
preparing, for internationalization (i18n) 480, 481

proxy models 525, 526
Python

installing 2

Redis, using with 326

Python code
translating 481-486

Python Docker image
reference link 677

Python installer
download link 2

Python launcher
reference link 2

Python Requests library
documentation link 636

Python requirements
adding 677, 678

Python virtual environment
creating 2, 3

Q
QuerySet 30

evaluating 32

optimizing, that involves related objects 308

prefetch_related(), using 309

select_related(), using 308

working with 29

R
RabbitMQ

Django, using with 375

installing 376, 377

management interface, accessing 377, 378

reference link 377

real-time Django
with Channels 643

receive() 648
recommendation engine

building 467

products, recommending based on previous purchases 468-475

Redis
image views, storing 326-329

installing 324, 326

monitoring, with Django Redisboard 611-613

next step with 331

ranking, storing 329-331

scenarios 331

URL 323

used, for counting image views 323

used, for setting up channel layer 657, 658

using, with Python 326

Redis cache backend
using 610, 611

Redis Docker image

reference link 684

Redis service
configuring 684-686

renderers 618
reference link 619, 636

ReportLab 432
reference link 432

Representational State Transfer (REST) 616
request/response cycle

using Channels 644, 645

Requests library 245
installing 245

reference link 245

Response object
reference link 275

REST framework
reference link 616, 636

RESTful API
authentication, handling 625

building 616

consuming 620-622, 633-636

course contents, serializing 631-633

custom API views, building 624, 625

custom permissions, creating 630, 631

Django REST framework, installing 616

lists and detail views, building 619, 620

nested serializers, creating 622-624

parsers 618, 619

permissions, adding to views 626, 627

renderers 618

serializers, defining 617

ViewSets and routers, creating 627-629

Rosettas documentation
reference link 493

Rosetta translation interface
using 491-493

routers
creating 627-629

reference link 629, 636

routing 649, 650

S
save() method 31, 353

ModelForm, overriding 245-249

scrypt hasher 177
search view

building 136-140

secure connections
using, for WebSockets 703

Secure Sockets Layer (SSL) 202, 695
select_related()

using 308

SendGrid
URL 65

SEO-friendly URLs
creating, for posts 48, 49

serializers
defining 617

reference link 636

session data
storing, options 350

session settings
reference link 350

shopping cart
building 349

building, with Django sessions 349

context processor, creating 362

items, adding to 355-358

product quantities, updating 361, 362

products, adding to 359, 360

session expiration 351

session settings 350

setting, into request context 363-365

storing, in sessions 351-355

template, building to display 358, 359

views, creating 355

shop templates
translating 487-491

signals
using, for denormalizing counts 312

working with 313-315

Simple Mail Transfer Protocol (SMTP) 64, 171, 374, 439
simple template tags

creating 107-109

creating, that returns QuerySet 110-113

Single Sign-on (SSO) 200
site language

switching, by users 499, 500

sitemap
adding, to site 118-122

sites framework
reference link 122

siteUrl variable 254
social authentication

adding, to website 200, 201

adding, with Facebook 205-213

adding, with Google 227-235

adding, with Twitter 214-226

used, for creating social profile 235-237

social profile
creating, for user to register with social authentication 235-237

social website project
creating 148

initiating 148

SQLite 131
SSL/TLS

certificate, creating 697, 698

Django project, configuring 696, 697

NGINX, configuring 698-701

used, for securing websites 695

standard translations 481
static files

collecting 693

serving 692

serving, with NGINX 693-695

static() helper function 183, 517
staticUrl variable 254
status field

adding 17-19

stemming 140
Stripe 388

adding, to project 392

account, creating 388-391

Checkout coupon, creating 461-464

Checkout integration, performing 395-401

Command-Line Interface (CLI) 412

dashboard payment information, checking 408-412

payments referencing, in orders 421-424

Python library, installing 391, 392

URL 388

student registration
adding 585

courses, enrolling 589-592

view, creating 585-588

subdomain middleware
creating 708, 709

multiple subdomains, serving with NGINX 709

superuser
creating 684

supported backends
reference link 201

T
tag 91
tagging functionality

adding 91-100

template fragments
caching 607, 608

templates
creating, for comment form 80-82

forms, rendering 70-74

templates, for views
application, accessing 40

base template, creating 38, 39

creating 37, 38

post list template, creating 39

template tags
translating 486

translations
including variables 482

plural forms 482

reference link 481

Transmission Control Protocol (TCP) 643
Transport Layer Security (TLS) 65, 202, 695
trigram 143
Twitter

used, for adding social authentication 214-226

Twitter Developer Portal Dashboard
reference link 214

U
URL namespaces

reference link 37

URL patterns
adding, for views 36, 37

for internationalization (i18n) 494

language prefix, adding to 494, 495

modifying 49, 50

translating 495-499

user follow/unfollow actions
adding, with JavaScript 296-298

user model
extending 182

reference link 182

user profiles
list and detail views, creating 291-295

user registration 174-181
uWSGI 686

configuring 687, 688

options 688

reference link 688

using 686

V
venv

reference link 3

views
adapting, for model translations 508-511

caching 608

emails, sending 69, 70

forms, handling 63, 64

ModelForms, handling 78-80

modifying 50

URL patterns, adding 36, 37

ViewSets
actions, adding to 629, 630

creating 627-6293

reference link 629

W
WeasyPrint

installing 433

webhook
endpoint, creating 412-416

notifications, testing 417-420

payment notifications, receiving with 412

Web Server Gateway Interface (WSGI) 7, 643, 686
Django, serving 686

reference link 686

web service 675
website

social authentication, adding to 200, 201

securing, with SSL/TLS 695

WebSocket client
events, defining 652

implementing 650-656

WebSockets
secure connections, using 703

worker 374, 375

Y
YAML

URL 678

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Get in touch

	Building a Blog Application
	Installing Python
	Creating a Python virtual environment
	Installing Django
	Installing Django with pip
	New features in Django 4

	Django overview
	Main framework components
	The Django architecture
	Creating your first project
	Applying initial database migrations
	Running the development server
	Project settings
	Projects and applications
	Creating an application

	Creating the blog data models
	Creating the Post model
	Adding datetime fields
	Defining a default sort order
	Adding a database index
	Activating the application
	Adding a status field
	Adding a many-to-one relationship
	Creating and applying migrations

	Creating an administration site for models
	Creating a superuser
	The Django administration site
	Adding models to the administration site
	Customizing how models are displayed

	Working with QuerySets and managers
	Creating objects
	Updating objects
	Retrieving objects
	Using the filter() method
	Using exclude()
	Using order_by()

	Deleting objects
	When QuerySets are evaluated
	Creating model managers

	Building list and detail views
	Creating list and detail views
	Using the get_object_or_404 shortcut
	Adding URL patterns for your views

	Creating templates for your views
	Creating a base template
	Creating the post list template
	Accessing our application
	Creating the post detail template

	The request/response cycle
	Additional resources
	Summary
	Join us on Discord.

	Enhancing Your Blog with Advanced Features
	Using canonical URLs for models
	Creating SEO-friendly URLs for posts
	Modifying the URL patterns
	Modifying the views
	Modifying the canonical URL for posts
	Adding pagination
	Adding pagination to the post list view
	Creating a pagination template
	Handling pagination errors

	Building class-based views
	Why use class-based views
	Using a class-based view to list posts

	Recommending posts by email
	Creating forms with Django
	Handling forms in views
	Sending emails with Django
	Sending emails in views
	Rendering forms in templates

	Creating a comment system
	Creating a model for comments
	Adding comments to the administration site
	Creating forms from models
	Handling ModelForms in views
	Creating templates for the comment form
	Adding comments to the post detail view
	Adding comments to the post detail template

	Additional resources
	Summary

	Extending Your Blog Application
	Adding the tagging functionality
	Retrieving posts by similarity
	Creating custom template tags and filters
	Implementing custom template tags
	Creating a simple template tag
	Creating an inclusion template tag
	Creating a template tag that returns a QuerySet
	Implementing custom template filters
	Creating a template filter to support Markdown syntax

	Adding a sitemap to the site
	Creating feeds for blog posts
	Adding full-text search to the blog
	Installing PostgreSQL
	Creating a PostgreSQL database
	Dumping the existing data
	Switching the database in the project
	Loading the data into the new database
	Simple search lookups
	Searching against multiple fields
	Building a search view
	Stemming and ranking results
	Stemming and removing stop words in different languages
	Weighting queries
	Searching with trigram similarity

	Additional resources
	Summary

	Building a Social Website
	Creating a social website project
	Starting the social website project

	Using the Django authentication framework
	Creating a login view
	Using Django authentication views
	Login and logout views
	Change password views
	Reset password views

	User registration and user profiles
	User registration
	Extending the user model
	Installing Pillow and serving media files
	Creating migrations for the profile model
	Using a custom user model

	Using the messages framework

	Building a custom authentication backend
	Preventing users from using an existing email

	Additional resources
	Summary
	Join us on Discord.

	Implementing Social Authentication
	Adding social authentication to your site
	Running the development server through HTTPS
	Authentication using Facebook
	Authentication using Twitter
	Authentication using Google
	Creating a profile for users that register with social authentication

	Additional resources
	Summary

	Sharing Content on Your Website
	Creating an image bookmarking website
	Building the image model
	Creating many-to-many relationships
	Registering the image model in the administration site

	Posting content from other websites
	Cleaning form fields
	Installing the Requests library
	Overriding the save() method of a ModelForm
	Building a bookmarklet with JavaScript

	Creating a detail view for images
	Creating image thumbnails using easy-thumbnails
	Adding asynchronous actions with JavaScript
	Loading JavaScript on the DOM
	Cross-site request forgery for HTTP requests in JavaScript
	Performing HTTP requests with JavaScript

	Adding infinite scroll pagination to the image list
	Additional resources
	Summary

	Tracking User Actions
	Building a follow system
	Creating many-to-many relationships with an intermediary model
	Creating list and detail views for user profiles
	Adding user follow/unfollow actions with JavaScript

	Building a generic activity stream application
	Using the contenttypes framework
	Adding generic relations to your models
	Avoiding duplicate actions in the activity stream
	Adding user actions to the activity stream
	Displaying the activity stream
	Optimizing QuerySets that involve related objects
	Using select_related()
	Using prefetch_related()

	Creating templates for actions

	Using signals for denormalizing counts
	Working with signals
	Application configuration classes

	Using Django Debug Toolbar
	Installing Django Debug Toolbar
	Django Debug Toolbar panels
	Django Debug Toolbar commands

	Counting image views with Redis
	Installing Docker
	Installing Redis
	Using Redis with Python
	Storing image views in Redis
	Storing a ranking in Redis
	Next steps with Redis

	Additional resources
	Summary

	Building an Online Shop
	Creating an online shop project
	Creating product catalog models
	Registering catalog models on the administration site
	Building catalog views
	Creating catalog templates

	Building a shopping cart
	Using Django sessions
	Session settings
	Session expiration
	Storing shopping carts in sessions
	Creating shopping cart views
	Adding items to the cart
	Building a template to display the cart
	Adding products to the cart
	Updating product quantities in the cart

	Creating a context processor for the current cart
	Context processors
	Setting the cart into the request context

	Registering customer orders
	Creating order models
	Including order models in the administration site
	Creating customer orders

	Asynchronous tasks
	Working with asynchronous tasks
	Workers, message queues, and message brokers
	Using Django with Celery and RabbitMQ
	Monitoring Celery with Flower

	Additional resources
	Summary
	Join us on Discord.

	Managing Payments and Orders
	Integrating a payment gateway
	Creating a Stripe account
	Installing the Stripe Python library
	Adding Stripe to your project
	Building the payment process
	Integrating Stripe Checkout

	Testing the checkout process
	Using test credit cards
	Checking the payment information in the Stripe dashboard

	Using webhooks to receive payment notifications
	Creating a webhook endpoint
	Testing webhook notifications

	Referencing Stripe payments in orders
	Going live

	Exporting orders to CSV files
	Adding custom actions to the administration site

	Extending the administration site with custom views
	Generating PDF invoices dynamically
	Installing WeasyPrint
	Creating a PDF template
	Rendering PDF files
	Sending PDF files by email

	Additional resources
	Summary

	Extending Your Shop
	Creating a coupon system
	Building the coupon model
	Applying a coupon to the shopping cart
	Applying coupons to orders
	Creating coupons for Stripe Checkout
	Adding coupons to orders on the administration site and to PDF invoices

	Building a recommendation engine
	Recommending products based on previous purchases

	Additional resources
	Summary

	Adding Internationalization to Your Shop
	Internationalization with Django
	Internationalization and localization settings
	Internationalization management commands
	Installing the gettext toolkit
	How to add translations to a Django project
	How Django determines the current language

	Preparing your project for internationalization
	Translating Python code
	Standard translations
	Lazy translations
	Translations including variables
	Plural forms in translations
	Translating your own code

	Translating templates
	The {% trans %} template tag
	The {% blocktrans %} template tag
	Translating the shop templates

	Using the Rosetta translation interface
	Fuzzy translations
	URL patterns for internationalization
	Adding a language prefix to URL patterns
	Translating URL patterns

	Allowing users to switch language
	Translating models with django-parler
	Installing django-parler
	Translating model fields
	Integrating translations into the administration site
	Creating migrations for model translations
	Using translations with the ORM
	Adapting views for translations

	Format localization
	Using django-localflavor to validate form fields
	Additional resources
	Summary

	Building an E-Learning Platform
	Setting up the e-learning project
	Serving media files
	Building the course models
	Registering the models in the administration site
	Using fixtures to provide initial data for models

	Creating models for polymorphic content
	Using model inheritance
	Abstract models
	Multi-table model inheritance
	Proxy models

	Creating the Content models
	Creating custom model fields
	Adding ordering to module and content objects

	Adding authentication views
	Adding an authentication system
	Creating the authentication templates

	Additional resources
	Summary
	Join us on Discord.

	Creating a Content Management System
	Creating a CMS
	Creating class-based views
	Using mixins for class-based views
	Working with groups and permissions
	Restricting access to class-based views

	Managing course modules and their contents
	Using formsets for course modules
	Adding content to course modules
	Managing modules and their contents
	Reordering modules and their contents
	Using mixins from django-braces

	Additional resources
	Summary

	Rendering and Caching Content
	Displaying courses
	Adding student registration
	Creating a student registration view
	Enrolling on courses

	Accessing the course contents
	Rendering different types of content

	Using the cache framework
	Available cache backends
	Installing Memcached
	Installing the Memcached Docker image
	Installing the Memcached Python binding
	Django cache settings
	Adding Memcached to your project
	Cache levels
	Using the low-level cache API
	Checking cache requests with Django Debug Toolbar
	Caching based on dynamic data

	Caching template fragments
	Caching views
	Using the per-site cache

	Using the Redis cache backend
	Monitoring Redis with Django Redisboard

	Additional resources
	Summary

	Building an API
	Building a RESTful API
	Installing Django REST framework
	Defining serializers
	Understanding parsers and renderers
	Building list and detail views
	Consuming the API
	Creating nested serializers
	Building custom API views
	Handling authentication
	Adding permissions to views
	Creating ViewSets and routers
	Adding additional actions to ViewSets
	Creating custom permissions
	Serializing course contents
	Consuming the RESTful API

	Additional resources
	Summary

	Building a Chat Server
	Creating a chat application
	Implementing the chat room view

	Real-time Django with Channels
	Asynchronous applications using ASGI
	The request/response cycle using Channels

	Installing Channels
	Writing a consumer
	Routing
	Implementing the WebSocket client
	Enabling a channel layer
	Channels and groups
	Setting up a channel layer with Redis
	Updating the consumer to broadcast messages
	Adding context to the messages

	Modifying the consumer to be fully asynchronous
	Integrating the chat application with existing views
	Additional resources
	Summary

	Going Live
	Creating a production environment
	Managing settings for multiple environments
	Local environment settings
	Running the local environment
	Production environment settings

	Using Docker Compose
	Installing Docker Compose
	Creating a Dockerfile
	Adding the Python requirements
	Creating a Docker Compose file
	Configuring the PostgreSQL service
	Applying database migrations and creating a superuser
	Configuring the Redis service

	Serving Django through WSGI and NGINX
	Using uWSGI
	Configuring uWSGI
	Using NGINX
	Configuring NGINX
	Using a hostname
	Serving static and media assets
	Collecting static files
	Serving static files with NGINX

	Securing your site with SSL/TLS
	Checking your project for production
	Configuring your Django project for SSL/TLS
	Creating an SSL/TLS certificate
	Configuring NGINX to use SSL/TLS
	Redirecting HTTP traffic over to HTTPS

	Using Daphne for Django Channels
	Using secure connections for WebSockets
	Including Daphne in the NGINX configuration

	Creating a custom middleware
	Creating a subdomain middleware
	Serving multiple subdomains with NGINX

	Implementing custom management commands
	Additional resources
	Summary

	Other Books You May Enjoy
	Index

